
Operating Systems Project: Topic 3
Enhanced IPC Mechanism: Design & Implementation

Liangsen Wang

224040364@link.cuhk.edu.cn

2026.1.15

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 1 / 23



Outline

1 Project Goals & Requirements

2 Theory: IPC & Kernel Fundamentals

3 Kernel Mechanics: The Building Blocks

4 Reference: Linux Kernel Implementation (fs/pipe.c)

5 Implementation Guide (Step-by-Step)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 2 / 23



Outline

1 Project Goals & Requirements

2 Theory: IPC & Kernel Fundamentals

3 Kernel Mechanics: The Building Blocks

4 Reference: Linux Kernel Implementation (fs/pipe.c)

5 Implementation Guide (Step-by-Step)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 3 / 23



The Mission: Topic 3 Requirements

Objective: Build a custom Inter-Process Communication (IPC) mechanism in the Linux Kernel.

Requirement 1: Core Implementation (The ”Builder”)
Task: Create a Character Device Driver (e.g., /dev/myipc).
Logic: It must function like a standard Pipe (FIFO Ring Buffer).
Constraint: It must support Blocking I/O (Readers sleep when empty; Writers sleep when full).
Basis: Modify or mimic fs/pipe.c.

Requirement 2: Benchmarking (The ”Tester”)
Latency: Measure Round-Trip Time (RTT) for 1-byte messages.
Bandwidth: Measure Throughput (MB/s) for bulk transfers.
Comparison: Your Driver vs. Linux Pipe vs. Shared Memory.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 4 / 23



Advanced Options

Option A: Zero-Copy (mmap)
Implement the .mmap file operation.
Map kernel pages directly to user space.
Benefit: Eliminates copy_to_user overhead.

Option B: Lock-Free Algorithms
Implement a Single-Producer Single-Consumer (SPSC) ring buffer.
Use memory barriers (smp_wmb) instead of Mutex locks.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 5 / 23



Outline

1 Project Goals & Requirements

2 Theory: IPC & Kernel Fundamentals

3 Kernel Mechanics: The Building Blocks

4 Reference: Linux Kernel Implementation (fs/pipe.c)

5 Implementation Guide (Step-by-Step)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 6 / 23



Theory 1: The OS Paradox (Isolation vs. Cooperation)

The Wall (Isolation)
Virtual Memory gives every process its own
address space.
Process A (Address 0x1000) 6= Process B
(Address 0x1000).
Why? Stability and Security. If Chrome
crashes, your OS survives.

The Gate (IPC)
Processes often need to collaborate (e.g., ‘grep
| wc‘, Server-Client).
IPC is the controlled mechanism to punch a
hole in this wall.

Your project is to build a new, efficient gate.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 7 / 23



Theory 2: The Linux IPC Landscape

Linux provides a ”Zoo” of IPC tools. Which one fits where?
1. Data Transfer

Pipes / FIFOs: Unidirectional byte streams.
Simple, thread-safe. (Your Model)
Message Queues: Linked lists of messages.
Preserves boundaries.
Shared Memory: Zero-copy access to RAM.
Fastest, but requires locking.

2. Communication
Unix Sockets: Bi-directional. Can pass File
Descriptors.
Signals: Asynchronous notifications (e.g.,
SIGINT). No data payload.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 8 / 23



Theory 3: The Physics of Data Movement

1. Message Passing (The Fax Machine)
Process A

Kernel Buffer

Process B

1. Copy User→Kern

2. Copy Kern→User

Cost: 2 Copies per message.
Pros: Safe, implicit synchronization.

2. Shared Memory (The Whiteboard)

Process A Physical RAM

Process B

Cost: 0 Copies (after setup).
Cons: Requires explicit locking.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 9 / 23



Outline

1 Project Goals & Requirements

2 Theory: IPC & Kernel Fundamentals

3 Kernel Mechanics: The Building Blocks

4 Reference: Linux Kernel Implementation (fs/pipe.c)

5 Implementation Guide (Step-by-Step)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 10 / 23



Kernel Mechanics 1: The User-Kernel Boundary

Critical Concept: You are writing code that lives in Kernel Space.

User Space
buffer (Virtual Addr)

Kernel Space
kbuf (Direct Map)

SEGFAULT if direct access!

Why?
User pointers are virtual addresses.
They might be swapped out (not in RAM).
Malicious users might pass invalid pointers.

Solution: MUST use copy_from_user() and
copy_to_user().

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 11 / 23



Kernel Mechanics 2: Concurrency & Synchronization

Your driver will be accessed by multiple processes simultaneously.

Lock Type Behavior When to use?

Spinlock Busy-Loops (Spins) Interrupt Contexts. Tiny critical sections. Cannot
Sleep.

Mutex Sleeps Process Context. Large critical sections. Can
Sleep (e.g., during copy_from_user).

Rule: Since copy_from_user might fault (sleep), you MUST use a Mutex.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 12 / 23



Kernel Mechanics 3: The Virtual File System (VFS)

How does a user calling write() end up in your code?

User App

glibc (write)

Syscall (sys_write)

VFS (vfs_write)

Your Driver (.write)

Dispatches via file_operations

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 13 / 23



Kernel Mechanics 4: The Lifecycle of a Blocking Read

What happens when you call read() on an empty pipe?
1 Check: Driver sees buffer is empty.
2 Prepare: Set state to TASK_INTERRUPTIBLE.
3 Enqueue: Add current task to wait_queue.
4 Yield: Call schedule(). CPU switches to another process.
5 Sleep: Process is paused. (Takes 0% CPU).
6 Wake: Writer calls wake_up(). Task moves to Runqueue.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 14 / 23



Outline

1 Project Goals & Requirements

2 Theory: IPC & Kernel Fundamentals

3 Kernel Mechanics: The Building Blocks

4 Reference: Linux Kernel Implementation (fs/pipe.c)

5 Implementation Guide (Step-by-Step)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 15 / 23



Reference 1: Core Data Structures

A Linux Pipe is not a simple byte array. It is a Ring of Pages.
1. pipe_inode_info (The Manager)

mutex: Serializes access.
bufs: Array of pipe_buffer.
head: Producer index (ever-increasing).
tail: Consumer index (ever-increasing).

2. pipe_buffer (The Container)
page: Pointer to physical RAM page.
offset: Where data starts in this page.
len: How much valid data is in this page.
Why Pages? Enables Zero-Copy Splice!

P0 P1 P2 ... bufs array

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 16 / 23



Reference 2: Efficient Ring Buffer Math

Linux uses a clever trick to avoid expensive Modulo (%) operations.

The ”Masking” Logic
Instead of wrapping head back to 0, Linux lets head grow indefinitely (until integer overflow).

Ring Size: Must be a power of 2 (e.g., 16, 32).
Index Calculation: index = head & (size - 1).
Full Check: head - tail >= size.
Empty Check: head == tail.

Project Tip: You can use the simple modulo operator (%) for your project to keep it simple, but know
that the kernel uses bitwise AND for speed.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 17 / 23



Reference 3: The Write Algorithm (Optimization)
When pipe_write receives data, it doesn’t always allocate a new page.

1 // Pseudocode logic
2 mutex_lock(&pipe->mutex);
3

4 // 1. Check current head page
5 buf = &pipe->bufs[head & mask];
6 if (buf has space) {
7 // Optimization: Append to existing page!
8 copy_to_page(buf->page, ...);
9 buf->len += bytes;

10 goto out;
11 }
12

13 // 2. If no space, allocate NEW page
14 page = alloc_page(GFP_KERNEL);
15 // ... attach page to ring ...
16 pipe->head++;
17

18 wake_up_interruptible(...);
19 mutex_unlock(...);
20

Key Concept: Merging
If you write ”H”, then ”E”, then
”LL”, Linux puts them in the same
4KB page.
This reduces memory fragmentation
and allocation overhead.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 18 / 23



Reference 4: The Read Algorithm

Reading is about consuming data and releasing pages back to the OS.
1 Lock & Wait: If head == tail, sleep via pipe_wait().
2 Map: Get the pipe_buffer at tail.
3 Copy: copy_page_to_iter() moves data to User Space.
4 Update: Increase buf->offset, Decrease buf->len.
5 Release:

If buf->len == 0 (Page fully consumed):
pipe_buf_release(buf) (Free the physical page).
pipe->tail++ (Move read pointer).

6 Wake Writer: Signal that space is free.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 19 / 23



Outline

1 Project Goals & Requirements

2 Theory: IPC & Kernel Fundamentals

3 Kernel Mechanics: The Building Blocks

4 Reference: Linux Kernel Implementation (fs/pipe.c)

5 Implementation Guide (Step-by-Step)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 20 / 23



Step 1: Define Your Device Structure

You need a data structure to maintain state.
1 struct my_ipc_dev {
2 char *data; // The Ring Buffer (use vmalloc)
3 int size; // Buffer Size (e.g., 64KB)
4 int head; // Write Index
5 int tail; // Read Index
6

7 struct mutex lock; // For thread safety
8 wait_queue_head_t wq; // For blocking I/O
9 };

10

Ring Buffer Math:
Index: Always use % size. e.g., pos = head % size.
Empty: head == tail
Full: (head + 1) % size == tail (Keep one slot open).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 21 / 23



Step 2: Implementing Blocking I/O (Crucial)

This pattern allows processes to sleep efficiently.
The Read Function:

1 mutex_lock(&dev->lock);
2

3 while (is_empty(dev)) {
4 mutex_unlock(&dev->lock); // Release!
5

6 // Sleep until not empty
7 if (wait_event_interruptible(
8 dev->wq, !is_empty(dev)))
9 return -ERESTARTSYS;

10

11 mutex_lock(&dev->lock); // Re-acquire!
12 }
13

14 // ... Copy data to user ...
15

The Write Function:
1 mutex_lock(&dev->lock);
2

3 // ... Copy data from user ...
4 // ... Update head index ...
5

6 // Wake up the sleepers!
7 wake_up_interruptible(&dev->wq);
8

9 mutex_unlock(&dev->lock);
10

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 22 / 23



Step 3: Registration

Use the Character Device API to expose your driver to user space.
1 static struct file_operations fops = {
2 .owner = THIS_MODULE,
3 .read = my_read,
4 .write = my_write,
5 .open = my_open,
6 .release = my_release,
7 };
8

9 // In module_init:
10 // 1. alloc_chrdev_region()
11 // 2. cdev_init(&my_cdev, &fops)
12 // 3. cdev_add(&my_cdev, ...)
13

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 23 / 23


	Project Goals & Requirements
	Theory: IPC & Kernel Fundamentals
	Kernel Mechanics: The Building Blocks
	Reference: Linux Kernel Implementation (fs/pipe.c)
	Implementation Guide (Step-by-Step)

