Operating Systems Project: Topic 3

Enhanced IPC Mechanism: Design & Implementation

Liangsen Wang
224040364 @link.cuhk.edu.cn

2026.1.15

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15

1/23

Outline

@ Project Goals & Requirements

© Theory: IPC & Kernel Fundamentals

e Kernel Mechanics: The Building Blocks

@ Reference: Linux Kernel Implementation (fs/pipe.c)

© Implementation Guide (Step-by-Step)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 2/23

Outline

@ Project Goals & Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 3/23

The Mission: Topic 3 Requirements

Objective: Build a custom Inter-Process Communication (IPC) mechanism in the Linux Kernel.

Requirement 1: Core Implementation (The "Builder")

@ Task: Create a Character Device Driver (e.g., /dev/myipc).
@ Logic: It must function like a standard Pipe (FIFO Ring Buffer).

o Constraint: It must support Blocking 1/0 (Readers sleep when empty; Writers sleep when full).
o Basis: Modify or mimic £s/pipe.c.

Requirement 2: Benchmarking (The "Tester”)

e Latency: Measure Round-Trip Time (RTT) for 1-byte messages.
o Bandwidth: Measure Throughput (MB/s) for bulk transfers.

o Comparison: Your Driver vs. Linux Pipe vs. Shared Memory.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 4/23

Advanced Options

Option A: Zero-Copy (mmap)

@ Implement the .mmap file operation.
@ Map kernel pages directly to user space.

@ Benefit: Eliminates copy_to_user overhead.

.

Option B: Lock-Free Algorithms
@ Implement a Single-Producer Single-Consumer (SPSC) ring buffer.

@ Use memory barriers (smp_wmb) instead of Mutex locks.

A\

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 5/23

Outline

© Theory: IPC & Kernel Fundamentals

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 6/23

Theory 1: The OS Paradox (Isolation vs. Cooperation)

The Wall (Isolation)

@ Virtual Memory gives every process its own The Gate (IPC)

address space. @ Processes often need to collaborate (e.g., ‘grep
@ Process A (Address 0x1000) # Process B | we', Server-Client).

(Address 0x1000). o IPC is the controlled mechanism to punch a
© Why? Stability and Security. If Chrome hole in this wall.

crashes, your OS survives.

Your project is to build a new, efficient gate.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 7/23

Theory 2: The Linux IPC Landscape

Linux provides a "Zoo" of IPC tools. Which one fits where?
1. Data Transfer

o Pipes / FIFOs: Unidirectional byte streams. 2. Communication

Simple, thread-safe. (Your Model) @ Unix Sockets: Bi-directional. Can pass File
o Message Queues: Linked lists of messages. Descriptors.

Preserves boundaries. @ Signals: Asynchronous notifications (e.g.,
o Shared Memory: Zero-copy access to RAM. SIGINT). No data payload.

Fastest, but requires locking.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 8/23

Theory 3: The Physics of Data Movement

1. Message Passing (The Fax Machine) 2. Shared Memory (The Whiteboard)
Process A

1. Copy User—Kern

Process A Physical RAM
~

Kernel Buffer

2. Copy Kern—User

e

Process B Process B

o Cost: 2 Copies per message. o Cost: 0 Copies (after setup).
@ Pros: Safe, implicit synchronization. e Cons: Requires explicit locking.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 9/23

Outline

e Kernel Mechanics: The Building Blocks

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 10/23

Kernel Mechanics 1: The User-Kernel Boundary

Critical Concept: You are writing code that lives in Kernel Space.
Why?
User Space @ User pointers are virtual addresses.
buffer (Vitual Ader) o They might be swapped out (not in RAM).

il Ml @ Malicious users might pass invalid pointers.
SEGFAULT if direct access!

Kol Space Solution: MUST use copy_from_user() and
REUf (Direct Map) copy_to_user().

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 11/23

Kernel Mechanics 2: Concurrency & Synchronization

Your driver will be accessed by multiple processes simultaneously.

Lock Type Behavior When to use?

Spinlock Busy-Loops (Spins) Interrupt Contexts. Tiny critical sections. Cannot
Sleep.

Mutex Sleeps Process Context. Large critical sections. Can

Sleep (e.g., during copy_from_user).

Rule: Since copy_from_user might fault (sleep), you MUST use a Mutex.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 12/23

Kernel Mechanics 3: The Virtual File System (VFS)

How does a user calling write() end up in your code?

Dispatches via file_operations

‘ Your Driver (.write) ‘

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15

13/23

Kernel Mechanics 4: The Lifecycle of a Blocking Read

What happens when you call read() on an empty pipe?
@ Check: Driver sees buffer is empty.
@ Prepare: Set state to TASK_INTERRUPTIBLE.
© Enqueue: Add current task to wait_queue.
@ Yield: Call schedule(). CPU switches to another process.
© Sleep: Process is paused. (Takes 0% CPU).
@ Wake: Writer calls wake_up(). Task moves to Runqueue.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 14 /23

Outline

@ Reference: Linux Kernel Implementation (fs/pipe.c)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 15/23

Reference 1: Core Data Structures

A Linux Pipe is not a simple byte array. It is a Ring of Pages.

1. pipe_inode_info (The Manager) 2. pipe_buffer (The Container)
@ mutex: Serializes access. @ page: Pointer to physical RAM page.
@ bufs: Array of pipe_buffer. o offset: Where data starts in this page.
@ head: Producer index (ever-increasing). @ len: How much valid data is in this page.
e tail: Consumer index (ever-increasing). o Why Pages? Enables Zero-Copy Splice!

o] s o

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 16 /23

Reference 2: Efficient Ring Buffer Math

Linux uses a clever trick to avoid expensive Modulo (%) operations.

The "Masking” Logic

Instead of wrapping head back to 0, Linux lets head grow indefinitely (until integer overflow).
e Ring Size: Must be a power of 2 (e.g., 16, 32).

Index Calculation: index = head & (size - 1).

Full Check: head - tail >= size.

Empty Check: head == tail.

Project Tip: You can use the simple modulo operator (%) for your project to keep it simple, but know
that the kernel uses bitwise AND for speed.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 17/23

Reference 3: The Write Algorithm (Optimization)

When pipe_write receives data, it doesn't always allocate a new page.

// Pseudocode logic
» mutex_lock (&pipe->mutex) ;

+ // 1. Check current head page
; buf = &pipe->bufs[head & mask];
if (buf has space) {

// Optimization: Append to existing page!

copy_to_page (buf->page, ...);
goto out;

/
3
) buf->len += bytes;
)
3

)

3 // 2. If no space, allocate NEW page
. page = alloc_page (GFP_KERNEL) ;

5 // ... attach page to ring

; pipe->head++;

wake_up_interruptible(...);
mutex_unlock(...);

Liangsen Wang (224040364@link.cuhk.edu.cn)

CSC5031 Project - Topic 3

Key Concept: Merging
o If you write "H"”, then "E", then
"LL", Linux puts them in the same
4KB page.
@ This reduces memory fragmentation
and allocation overhead.

2026.1.15 18/23

Reference 4: The Read Algorithm

Reading is about consuming data and releasing pages back to the OS.
Q Lock & Wait: If head == tail, sleep via pipe_wait().
@ Map: Get the pipe_buffer at tail.
@ Copy: copy_page_to_iter() moves data to User Space.
@ Update: Increase buf->offset, Decrease buf->len.

@ Release:

o If buf->len == 0 (Page fully consumed):
o pipe_buf_release(buf) (Free the physical page).
e pipe->tail++ (Move read pointer).

@ Wake Writer: Signal that space is free.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 19/23

Outline

© Implementation Guide (Step-by-Step)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 20/23

Step 1: Define Your Device Structure

You need a data structure to maintain state.

struct my_ipc_dev {

1

2 char *data; // The Ring Buffer (use vmalloc)
3 int size; // Buffer Size (e.g., 64KB)

4 int head; // Write Index

5 int tail; // Read Index

6

7 struct mutex lock; // For thread safety

8 wait_queue_head_t wq; // For blocking I/0

9 };

10

Ring Buffer Math:
o Index: Always use %, size. e.g., pos = head ¥ size.
o Empty: head == tail
o Full: (head + 1) % size == tail (Keep one slot open).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15 21/23

Step 2: Implementing Blocking 1/0O (Crucial)

This pattern allows processes to sleep efficiently.

The Read Function:

. mutex_lock (&dev->lock);

)

; while (is_empty(dev)) {

' mutex_unlock (&dev->lock); // Release!

5 // Sleep until not empty
if (wait_event_interruptible(

|

3 dev->wq, !is_empty(dev)))

) return -ERESTARTSYS;

)

] mutex_lock (&dev->lock); // Re-acquire!
» 3

3

+ // ... Copy data to user

-

The Write Function:

mutex_lock (&dev->1lock) ;

// ... Copy data from user
// ... Update head index

// Wake up the sleepers!
wake_up_interruptible (&dev->wq) ;

mutex_unlock (&dev->lock) ;

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 3 2026.1.15

22/23

Liangsen Wang (224040364@link.cuhk.edu.cn)

Step 3: Registration

Use the Character Device API to expose your driver to user space.

static struct file_operations fops = {
.owner = THIS_MODULE,

.read = my_read,

.write = my_write,

.open = my_open,

.release = my_release,

w N =

module_init:
alloc_chrdev_region ()
cdev_init (&my_cdev, &fops)
cdev_add (&my_cdev, ...)

CSC5031 Project - Topic 3

2026.1.15

23/23

	Project Goals & Requirements
	Theory: IPC & Kernel Fundamentals
	Kernel Mechanics: The Building Blocks
	Reference: Linux Kernel Implementation (fs/pipe.c)
	Implementation Guide (Step-by-Step)

