Operating Systems Project: Topic 2

Kernel-Level Thread Implementation and Analysis

Liangsen Wang
224040364 @link.cuhk.edu.cn

2026.1.12

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2

2026.1.12

1/24

Outline

@ Foundations: Core Concepts

© Theory: Evolution of Linux Threading
© Mechanism: The clone() System Call
@ Kernel API & Lifecycle Management

6 Project Topic 2 Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 2/24

Outline

@ Foundations: Core Concepts

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 3/24

Foundations: Process vs. Thread

Process (Resource Container) Thread (Execution Unit)

@ "Lightweight Process” (LWP).

o Shared Resources: Code, Global Data, Heap,
Open Files.

@ An instance of a running program.
o Isolated Resources: Owns Memory (Page
Tables), File Descriptors, Signals.

o Heavyweight: Creation requires duplicating
the entire address space (COW helps, but page
tables are still copied).

o Private Resources: Program Counter (PC),
Register Set, Stack.

Single-Threaded Process Multi-Threaded Process

Shared Code/Data

Shared Files

Code/Data

Files - - - = f’a:allfliim ,,,,, N

Regs/Stack

Stack 1 | Stack 2 | Stack 3

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 4/24

Foundations: User-Level Threads (ULT)

Definition: Threads managed entirely by a user-space library (e.g., Green Threads, GNU Pth). The
Kernel knows nothing about them.

The Fatal Flaw

Mechanism
Blocking System Calls: If one ULT executes a

blocking syscall (e.g., read()), the Kernel blocks
the entire process.

@ Thread Table is stored in process memory.

o Context Switch: Just saving registers to user
stack. No Mode Switch (User <+ Kernel).

- Gromsil Bl s ([T Ewer dian [T, Result: All other threads stop, even if they are

ready to run.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 5/24

Foundations: Kernel-Level Threads (KLT)

Definition: Threads managed directly by the OS Kernel. (This is what we use in modern Linux).

Mechanism

@ Kernel maintains a Thread Table (TCB) for
every thread.

@ Scheduling: Kernel schedules threads, not

Trade-offs

@ Pros: If one thread blocks, others continue
running. True Multi-core utilization.

@ Cons: Context switch requires a Mode

rocesses.
P .) Switch (User — Kernel — User), which is
° P-arallellsm. Can run on different CPU cores expensive (cache pollution, TLB implications).
simultaneously.)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 6/24

Outline

© Theory: Evolution of Linux Threading

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 7/24

The Big Picture: Threading Models

Before diving into Linux, we must understand the three mapping models:

3. Many-to-Many (M:N)

1. Many-to-One (M:1) 2. One-to-One (1:1) o Hybrid approach.
@ User-Level Threads. @ Linux Model (NPTL). o Complex scheduler in user
@ Kernel sees 1 process. @ 1 User Thread = 1 Kernel space.
o Example: Old Java Green Entity. e Example: Go Goroutines,
Threads. o Example: Pthreads on Linux. Erlang.
@ Block one = Block all. ° @ High concurrency, low
overhead.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 8/24

History: From "Hack” to Standard

The Old Days: LinuxThreads (Pre-2.6)

@ Used clone() but logic was flawed.
@ Signal Handling Issue: Signals were sent to specific threads, not the process.
@ PID Issue: Each thread had a different PID (broke POSIX compliance).

The Modern Standard: NPTL (Native POSIX Thread Library)

@ Introduced in kernel 2.6.
@ 1:1 Model: Kernel manages scheduling directly.
@ Solved the PID/Signal issues using Thread Group ID (TGID).

@ Heavy optimization for context switching.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 9/24

The Core Concept: PID vs. TGID

Crucial for your understanding of kernel internals:

struct task_struct {

o User Space View (getpid()): : S RS Y P Fer
o All threads in a process share the Same PID. 5 pid_t tgid; // Shared by group
o Kernel View (task_struct): ‘
o Each thread is a "Task” 5 s.truct task_struct *group_leader
o Each task has a unique ID: pid (userspace calls this 6 ;truct list_head thread_group;
TID). 7}

o All threads share a tgid (Thread Group ID). 8

Logic: If pid == tgid, this task is the Main Thread. ‘

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 10/24

Outline

© Mechanism: The clone() System Call

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 11/24

Creating Processes vs. Threads

In Linux, there is no "Create Thread” system call. There is only "Create Task".

System Call Semantics Sharing

fork() Copy-on-Write (COW) Shares nothing (mostly). Copies page ta-
bles.

viork () Block Parent Shares memory (legacy, dangerous).

clone() Flexible Selective sharing via flags.

Project Insight: When you implement "Kernel Threads”, you are essentially creating a task that shares
Kernel Memory but has its own stack.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 12/24

Deep Dive: clone() Flags

Understanding these flags is required to understand kernel/fork.c.

#define
#define
#define
#define
#define

N o A w N e

CLONE_VM
CLONE_FS
CLONE_FILES
CLONE_SIGHAND
CLONE_THREAD

Question for Class

0x00000100
0x00000200
0x00000400
0x00000800
0x00010000

// Essential Flags for Threads (pthread_create uses these)

Share Memory Descriptor (mm_struct)
Share Filesystem info (cwd, root)
Share File Descriptor Table (£d)
Share Signal Handlers

Put in same thread group (Same TGID)

If | call clone(CLONE_VM | CLONE_FILES) but NOT CLONE_THREAD, what do | get?

Liangsen Wang (224040364@link.cuhk.edu.cn)

CSC5031 Project - Topic 2 2026.1.12 13/24

w o=

4

~ o o

Deep Dive: clone() Flags

Understanding these flags is required to understand kernel/fork.c.

// Essential Flags for Threads (pthread_create uses these)

#define CLONE_VM 0x00000100
#define CLONE_FS 0x00000200
#define CLONE_FILES 0x00000400

#define CLONE_SIGHAND 0x00000800
#define CLONE_THREAD 0x00010000

Question for Class
If | call clone (CLONE_VM | CLONE_FILES) but NOT CLONE_THREAD, what do | get? Answer: A

Share Memory Descriptor (mm_struct)
Share Filesystem info (cwd, root)
Share File Descriptor Table (£d)
Share Signal Handlers

Put in same thread group (Same TGID)

classic "Lightweight Process” (LWP) that shares memory but has a different PID in userspace (like old

LinuxThreads).

Liangsen Wang (224040364@link.cuhk.edu.cn)

CSC5031 Project - Topic 2 2026.1.12 13/24

Outline

@ Kernel API & Lifecycle Management

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 14 /24

API: Creating Kernel Threads

Unlike user threads, Kernel Threads (kthreads) have no User Space memory (mm is NULL).
Header: <linux/kthread.h>

1. The Easy Way: kthread_run

1 struct task_struct *ts;

2> // Creates thread AND wakes it up immediately

5 ts = kthread_run(thread_fn, data, "worker_%d", id);
4

v

2. The Manual Way: kthread create

1 ts = kthread_create(thread_fn, data, "worker");
if (!IS_ERR(ts)) {

3 // You can bind CPU affinity here before starting!
4 kthread_bind(ts, cpu_id);

5 wake_up_process(ts);

6

7

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 15/24

API: Stopping Kernel Threads

Warning: Killing kernel threads forcefully is bad. They must exit voluntarily.
Worker Logic (Thread Function):

int thread_fn(void *data) {

Controller Logk:(hﬂodlde EXH): while (!'kthread_should_stop()) {
// Do work...

. // Request the thread to stop

> int ret = kthread_stop(ts);

3 // This function blocks until thread exits!

oA W o =

// IMPORTANT: Yield CPU
schedule_timeout_interruptible (HZ) ;
}

6
7
8 return O;
9
0

1

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 16 /24

API: CPU Affinity (Project Requirement)

One of your tasks is to monitor/set CPU Affinity.

Setting Affinity (Binding)

1 // Bind current thread to CPU 0O
> kthread_bind(current, 0);
3

.

Checking Affinity (Statistics)

Inside task_struct, look for:

1 struct cpumask cpus_mask; // Allowed CPUs

2 int cpu; // Current CPU
3

Note: You might need to export this via /proc or printk to verify your scheduler is working.

N

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 17 /24

Outline

e Project Topic 2 Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 18 /24

Basic Requirements: Implementation Guide

Goal: Create a Kernel Module that spawns threads and measures them.
© Module Init:

o Create N kernel threads using kthread_create.
e Bind them to specific Cores (e.g., Thread 0 — CPU 0).

@ The Payload:

o The threads should do something measurable (e.g., increment a shared atomic counter, or just
sleep/wake).

@ Measurement (The ”Analysis” part):

o Context Switches (CSW): Read current->nvcsw (Voluntary) and current->nivcsw (Involuntary).
o Log these values to dmesg or a custom /proc file before exit.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 19/24

Requirement: KLT vs ULT Comparison

You must compare your Kernel Module threads against a User-Space Pthread program.
Experiment Setup:

@ Scenario A: 4 Threads on 4 Cores incrementing a shared atomic variable.
@ Scenario B: High-frequency yielding (yield()).

What to measure?
o System Time (sys): High for KLT (syscall overhead if communicating).
e User Time (user): Zero for KLT!

@ Throughput: Operations per second.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 20/24

Advanced Option: User-Space Coroutines

Challenge: Implement "Green Threads” without Kernel support.
Mechanism: Stack Switching

@ You need to allocate a memory block (heap) to act as a stack.
o Use setjmp / longjmp (C Library) OR swapcontext (ucontext.h).
#include <ucontext.h>

ucontext_t main_ctx, thread_ctx;
char stack[16384];

N

w

4
5 void thread_func() { ... }

6

7 // Setup

s getcontext (&thread_ctx);

9 thread_ctx.uc_stack.ss_sp = stack;

10 thread_ctx.uc_stack.ss_size = sizeof (stack);

11 makecontext (&thread_ctx, thread_func, 0);

13 // Switch
14+ swapcontext (&main_ctx, &thread_ctx);

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12

21/24

Advanced Option: Hybrid Interaction

Goal: Communicate between User Space and Kernel Thread.
Ideas:

o Netlink Socket: Asynchronous, message-based. Best for event notification.
@ Debugfs / Sysfs: Use a file to pass commands.

o Custom System Call: (Hardcore) Add a syscall that wakes up a specific wait_queue in the kernel.

Use Case Example: A user program captures network packets (raw socket) and passes them to a
high-priority Kernel Thread for processing without copying data (Zero-Copy using shared memory).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 22/24

Evaluation & Grading (Topic 2 Specific)

Component

Detailed Focus

Implementation (25%)
Advanced Options (10%)
Stability (5%)

Presentation (20%)

Final Report (20%)

Correct usage of kthread_run/stop. Accurate statistics (CSW, CPU
Affinity). Clean cleanup (no zombies).

Completeness of User-Space Coroutines (Stack switching) OR Hybrid
Communication mechanism OR other innovation.

Crucial: No Kernel Panics during the live demo. System must remain
responsive.

Demo (10%): Successful live run.

Structure (5%): Clarity of technical explanation.

Q&A (5%): Ability to answer kernel-level questions .

Guidelines (5%)

Depth (10%)

Analysis (5%)

Liangsen Wang (224040364@link.cuhk.edu.cn)

CSC5031 Project - Topic 2 2026.1.12 23/24

Resources & Next Steps

Recommended Reading:
o Linux Kernel Development (Robert Love) - Chapter 3 (Process Management).
@ man clone, man setjmp.
@ Source: kernel/kthread.c, kernel/fork.c.
Immediate Action ltems:
@ Compile a "Hello World” kernel module.
@ Add kthread_run to it.
@ Try to unload the module (rmmod). If it hangs, you forgot kthread_should_stop()!

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 24 /24

	Foundations: Core Concepts
	Theory: Evolution of Linux Threading
	Mechanism: The clone() System Call
	Kernel API & Lifecycle Management
	Project Topic 2 Requirements

