
Operating Systems Project: Topic 2
Kernel-Level Thread Implementation and Analysis

Liangsen Wang

224040364@link.cuhk.edu.cn

2026.1.12

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 1 / 24



Outline

1 Foundations: Core Concepts

2 Theory: Evolution of Linux Threading

3 Mechanism: The clone() System Call

4 Kernel API & Lifecycle Management

5 Project Topic 2 Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 2 / 24



Outline

1 Foundations: Core Concepts

2 Theory: Evolution of Linux Threading

3 Mechanism: The clone() System Call

4 Kernel API & Lifecycle Management

5 Project Topic 2 Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 3 / 24



Foundations: Process vs. Thread

Process (Resource Container)
An instance of a running program.
Isolated Resources: Owns Memory (Page
Tables), File Descriptors, Signals.
Heavyweight: Creation requires duplicating
the entire address space (COW helps, but page
tables are still copied).

Thread (Execution Unit)
”Lightweight Process” (LWP).
Shared Resources: Code, Global Data, Heap,
Open Files.
Private Resources: Program Counter (PC),
Register Set, Stack.

Single-Threaded Process

Code/Data

Files

Regs/Stack

Multi-Threaded Process

Shared Code/Data

Shared Files

Stack 1 Stack 2 Stack 3

Parallelism

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 4 / 24



Foundations: User-Level Threads (ULT)

Definition: Threads managed entirely by a user-space library (e.g., Green Threads, GNU Pth). The
Kernel knows nothing about them.

Mechanism
Thread Table is stored in process memory.
Context Switch: Just saving registers to user
stack. No Mode Switch (User ↔ Kernel).
Speed: Extremely fast (10× faster than KLT).

The Fatal Flaw
Blocking System Calls: If one ULT executes a
blocking syscall (e.g., read()), the Kernel blocks
the entire process.
Result: All other threads stop, even if they are
ready to run.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 5 / 24



Foundations: Kernel-Level Threads (KLT)

Definition: Threads managed directly by the OS Kernel. (This is what we use in modern Linux).

Mechanism
Kernel maintains a Thread Table (TCB) for
every thread.
Scheduling: Kernel schedules threads, not
processes.
Parallelism: Can run on different CPU cores
simultaneously.

Trade-offs
Pros: If one thread blocks, others continue
running. True Multi-core utilization.
Cons: Context switch requires a Mode
Switch (User → Kernel → User), which is
expensive (cache pollution, TLB implications).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 6 / 24



Outline

1 Foundations: Core Concepts

2 Theory: Evolution of Linux Threading

3 Mechanism: The clone() System Call

4 Kernel API & Lifecycle Management

5 Project Topic 2 Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 7 / 24



The Big Picture: Threading Models

Before diving into Linux, we must understand the three mapping models:

1. Many-to-One (M:1)
User-Level Threads.
Kernel sees 1 process.
Example: Old Java Green
Threads.
Block one = Block all.

2. One-to-One (1:1)
Linux Model (NPTL).
1 User Thread = 1 Kernel
Entity.
Example: Pthreads on Linux.
True Parallelism.

3. Many-to-Many (M:N)
Hybrid approach.
Complex scheduler in user
space.
Example: Go Goroutines,
Erlang.
High concurrency, low
overhead.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 8 / 24



History: From ”Hack” to Standard

The Old Days: LinuxThreads (Pre-2.6)
Used clone() but logic was flawed.
Signal Handling Issue: Signals were sent to specific threads, not the process.
PID Issue: Each thread had a different PID (broke POSIX compliance).

The Modern Standard: NPTL (Native POSIX Thread Library)
Introduced in kernel 2.6.
1:1 Model: Kernel manages scheduling directly.
Solved the PID/Signal issues using Thread Group ID (TGID).
Heavy optimization for context switching.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 9 / 24



The Core Concept: PID vs. TGID

Crucial for your understanding of kernel internals:

User Space View (getpid()):
All threads in a process share the Same PID.

Kernel View (task_struct):
Each thread is a ”Task”.
Each task has a unique ID: pid (userspace calls this
TID).
All threads share a tgid (Thread Group ID).

1 struct task_struct {
2 pid_t pid; // Unique per thread
3 pid_t tgid; // Shared by group
4

5 struct task_struct *group_leader
;

6 struct list_head thread_group;
7 };
8

Logic: If pid == tgid, this task is the Main Thread.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 10 / 24



Outline

1 Foundations: Core Concepts

2 Theory: Evolution of Linux Threading

3 Mechanism: The clone() System Call

4 Kernel API & Lifecycle Management

5 Project Topic 2 Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 11 / 24



Creating Processes vs. Threads

In Linux, there is no ”Create Thread” system call. There is only ”Create Task”.

System Call Semantics Sharing
fork() Copy-on-Write (COW) Shares nothing (mostly). Copies page ta-

bles.
vfork() Block Parent Shares memory (legacy, dangerous).
clone() Flexible Selective sharing via flags.

Project Insight: When you implement ”Kernel Threads”, you are essentially creating a task that shares
Kernel Memory but has its own stack.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 12 / 24



Deep Dive: clone() Flags

Understanding these flags is required to understand kernel/fork.c.
1 // Essential Flags for Threads (pthread_create uses these)
2 #define CLONE_VM 0x00000100 // Share Memory Descriptor (mm_struct)
3 #define CLONE_FS 0x00000200 // Share Filesystem info (cwd, root)
4 #define CLONE_FILES 0x00000400 // Share File Descriptor Table (fd)
5 #define CLONE_SIGHAND 0x00000800 // Share Signal Handlers
6 #define CLONE_THREAD 0x00010000 // Put in same thread group (Same TGID)
7

Question for Class
If I call clone(CLONE_VM | CLONE_FILES) but NOT CLONE_THREAD, what do I get?

Answer: A
classic ”Lightweight Process” (LWP) that shares memory but has a different PID in userspace (like old
LinuxThreads).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 13 / 24



Deep Dive: clone() Flags

Understanding these flags is required to understand kernel/fork.c.
1 // Essential Flags for Threads (pthread_create uses these)
2 #define CLONE_VM 0x00000100 // Share Memory Descriptor (mm_struct)
3 #define CLONE_FS 0x00000200 // Share Filesystem info (cwd, root)
4 #define CLONE_FILES 0x00000400 // Share File Descriptor Table (fd)
5 #define CLONE_SIGHAND 0x00000800 // Share Signal Handlers
6 #define CLONE_THREAD 0x00010000 // Put in same thread group (Same TGID)
7

Question for Class
If I call clone(CLONE_VM | CLONE_FILES) but NOT CLONE_THREAD, what do I get? Answer: A
classic ”Lightweight Process” (LWP) that shares memory but has a different PID in userspace (like old
LinuxThreads).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 13 / 24



Outline

1 Foundations: Core Concepts

2 Theory: Evolution of Linux Threading

3 Mechanism: The clone() System Call

4 Kernel API & Lifecycle Management

5 Project Topic 2 Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 14 / 24



API: Creating Kernel Threads
Unlike user threads, Kernel Threads (kthreads) have no User Space memory (mm is NULL).
Header: <linux/kthread.h>

1. The Easy Way: kthread_run

1 struct task_struct *ts;
2 // Creates thread AND wakes it up immediately
3 ts = kthread_run(thread_fn, data, "worker_%d", id);
4

2. The Manual Way: kthread_create

1 ts = kthread_create(thread_fn, data, "worker");
2 if (!IS_ERR(ts)) {
3 // You can bind CPU affinity here before starting!
4 kthread_bind(ts, cpu_id);
5 wake_up_process(ts);
6 }
7

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 15 / 24



API: Stopping Kernel Threads

Warning: Killing kernel threads forcefully is bad. They must exit voluntarily.

Controller Logic (Module Exit):
1 // Request the thread to stop
2 int ret = kthread_stop(ts);
3 // This function blocks until thread exits!
4

Worker Logic (Thread Function):
1 int thread_fn(void *data) {
2 while (!kthread_should_stop()) {
3 // Do work...
4

5 // IMPORTANT: Yield CPU
6 schedule_timeout_interruptible(HZ);
7 }
8 return 0;
9 }

10

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 16 / 24



API: CPU Affinity (Project Requirement)

One of your tasks is to monitor/set CPU Affinity.

Setting Affinity (Binding)

1 // Bind current thread to CPU 0
2 kthread_bind(current, 0);
3

Checking Affinity (Statistics)
Inside task_struct, look for:

1 struct cpumask cpus_mask; // Allowed CPUs
2 int cpu; // Current CPU
3

Note: You might need to export this via /proc or printk to verify your scheduler is working.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 17 / 24



Outline

1 Foundations: Core Concepts

2 Theory: Evolution of Linux Threading

3 Mechanism: The clone() System Call

4 Kernel API & Lifecycle Management

5 Project Topic 2 Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 18 / 24



Basic Requirements: Implementation Guide

Goal: Create a Kernel Module that spawns threads and measures them.
1 Module Init:

Create N kernel threads using kthread_create.
Bind them to specific Cores (e.g., Thread 0 → CPU 0).

2 The Payload:
The threads should do something measurable (e.g., increment a shared atomic counter, or just
sleep/wake).

3 Measurement (The ”Analysis” part):
Context Switches (CSW): Read current->nvcsw (Voluntary) and current->nivcsw (Involuntary).
Log these values to dmesg or a custom /proc file before exit.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 19 / 24



Requirement: KLT vs ULT Comparison

You must compare your Kernel Module threads against a User-Space Pthread program.
Experiment Setup:

Scenario A: 4 Threads on 4 Cores incrementing a shared atomic variable.
Scenario B: High-frequency yielding (yield()).

What to measure?
System Time (sys): High for KLT (syscall overhead if communicating).
User Time (user): Zero for KLT!
Throughput: Operations per second.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 20 / 24



Advanced Option: User-Space Coroutines
Challenge: Implement ”Green Threads” without Kernel support.
Mechanism: Stack Switching

You need to allocate a memory block (heap) to act as a stack.
Use setjmp / longjmp (C Library) OR swapcontext (ucontext.h).

1 #include <ucontext.h>
2 ucontext_t main_ctx, thread_ctx;
3 char stack[16384];
4

5 void thread_func() { ... }
6

7 // Setup
8 getcontext(&thread_ctx);
9 thread_ctx.uc_stack.ss_sp = stack;

10 thread_ctx.uc_stack.ss_size = sizeof(stack);
11 makecontext(&thread_ctx, thread_func, 0);
12

13 // Switch
14 swapcontext(&main_ctx, &thread_ctx);
15

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 21 / 24



Advanced Option: Hybrid Interaction

Goal: Communicate between User Space and Kernel Thread.
Ideas:

Netlink Socket: Asynchronous, message-based. Best for event notification.
Debugfs / Sysfs: Use a file to pass commands.
Custom System Call: (Hardcore) Add a syscall that wakes up a specific wait_queue in the kernel.

Use Case Example: A user program captures network packets (raw socket) and passes them to a
high-priority Kernel Thread for processing without copying data (Zero-Copy using shared memory).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 22 / 24



Evaluation & Grading (Topic 2 Specific)

Component Detailed Focus

Implementation (25%) Correct usage of kthread_run/stop. Accurate statistics (CSW, CPU
Affinity). Clean cleanup (no zombies).

Advanced Options (10%) Completeness of User-Space Coroutines (Stack switching) OR Hybrid
Communication mechanism OR other innovation.

Stability (5%) Crucial: No Kernel Panics during the live demo. System must remain
responsive.

Presentation (20%) Demo (10%): Successful live run.
Structure (5%): Clarity of technical explanation.
Q&A (5%): Ability to answer kernel-level questions .

Final Report (20%) Guidelines (5%)
Depth (10%)
Analysis (5%)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 23 / 24



Resources & Next Steps

Recommended Reading:
Linux Kernel Development (Robert Love) - Chapter 3 (Process Management).
man clone, man setjmp.
Source: kernel/kthread.c, kernel/fork.c.

Immediate Action Items:
1 Compile a ”Hello World” kernel module.
2 Add kthread_run to it.
3 Try to unload the module (rmmod). If it hangs, you forgot kthread_should_stop()!

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 2 2026.1.12 24 / 24


	Foundations: Core Concepts
	Theory: Evolution of Linux Threading
	Mechanism: The clone() System Call
	Kernel API & Lifecycle Management
	Project Topic 2 Requirements

