Operating Systems Project: Topic 15

Kernel-Level Data Deduplication Mechanism

Liangsen Wang
224040364@link.cuhk.edu.cn

2026.2.5

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 1/22

Outline

@ Part 1. Requirements & Scope
© Part 2: Theoretical Foundations
© Part 3: Kernel Architecture

© Part 4: Implementation Details

© Part 5: Evaluation Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 2/22

Outline

@ Part 1. Requirements & Scope

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 3/22

1.1 Core Requirements (Topic 15)

Objective: Implement an In-line Deduplication mechanism within the Linux Kernel.

Mandatory Tasks (The "Must-Haves")

@ Interception Point: Modify fs/buffer.c or the Block Layer to intercept submit_bio() or
buffer head operations.

@ Fingerprinting: Utilize the Kernel Crypto APl to compute hashes (e.g., SHA-256) for data blocks.

© Mapping Logic: Maintain a Hash — Physical Block index to map multiple logical writes to a
single physical sector.

This must be done in Kernel Space. User-space solutions (like FUSE) are not allowed for the core logic.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 4/22

1.2 Advanced Scope & Goals

Beyond basic functionality, we aim for robustness and efficiency.

A. Optimization (Performance) B. Robustness (Safety)
o Compression: Integrate LZ4 or ZLIB to o Collision Handling: What happens if two
compress unique blocks before writing. different data blocks produce the same hash?
@ Async Processing: Move hashing to a (Hash Collision).
workqueue to avoid blocking the main write o Reference Counting: Ensuring a block is
thread. never freed while a file still references it.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 5/22

Outline

© Part 2: Theoretical Foundations

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 6/22

2.1 The Problem: Data Redundancy

Modern storage systems suffer from massive redundancy.
@ Scenario 1: Virtual Machines. Running 10 Ubuntu VMs results in 10 copies of the exact same
OS binaries (/bin/bash, kernel, libraries).
@ Scenario 2: Backups. Incremental backups often store unchanged data blocks repeatedly.
@ The Cost:

o Space: Wasted $$$ on SSDs/HDDs.
o Endurance: SSD Flash cells wear out faster due to Write Amplification.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 7/22

2.2 Choosing the Right Granularity

At what level should we deduplicate?

Level Pros Cons

File Level Easy to implement. Low savings. Changing 1 byte — new file.
Block Level High savings. Balanced CPU cost. Complex mapping table.

Byte Level = Max savings. Extremely high CPU & RAM overhead.

Our Choice: Fixed-Size Block Level (4KB). This matches the Linux Page Size and File System
Block Size.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 8/22

2.3 Concept: Content-Addressable Storage (CAS)

We shift from "Where should | write this?” to "Do | already have this?”

Traditional CAS / Dedu-
Storage plication
File A (Data X) File A (Data X)

File B (Data X) File B (Data X)
Hash Map

Ref Count = 2

-

\ Block 100 (Data X) \

| Block 100 (Data X)|

| Block 101 (Data X)|

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 9/22

2.4 Hashing Strategy & Collisions

The Fingerprint: A unique summary of the data block.

The "Birthday Paradox” (Collision)

Algorithm Selection

@ CRC32: Very fast, but high collision risk. Even with SHA-256, strictly speaking, collisions
(Not suitable for primary key). represent data corruption.

® SHA-256: 'Sl.ower, but c.ryptog'ra.phically'/ Safeguard Strategy: If Hash matches — Perform
secure. Collision chance is negligible (1 in a byte-by-byte comparison (memcmp) to verify

1077),
data is truly identical before discarding the write.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 10/22

Outline

© Part 3: Kernel Architecture

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 11/22

3.1 Where in the Kernel?

Linux 10 Stack is layered. We target the Buffer Cache / Page Cache boundary.

’ User Space (Applications) ‘

1

‘ VFS (Virtual Filesystem) ‘
1

Page Cache & Buffer Head + Our Module

1

’ Block Layer (BIO Construction) ‘

1

| SCSI / NVMe Drivers |

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 12/22

3.2 Kernel Data Structures (Conceptual)

We need persistent structures to track duplicates.

The Deduplication Entry Node Global Hash Index
Every unique block in memory has a descriptor: o A Hash Map in Kernel RAM.

o Fingerprint (32 bytes): The SHA-256 Hash. o Protected by Spinlocks to allow
concurrent access by multiple CPUs.

o Physical Address (8 bytes): Sector number on disk.

o Reference Counter (4 bytes): Atomic integer. How
many files claim this block?

o List Pointer: For handling hash bucket chains.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 13/22

3.3 The "Write” Workflow

What happens when write() is called?
@ Intercept: Catch the dirty page in fs/buffer.c.
@ Calculate: Run SHA-256 on the 4KB data page.
© Lookup: Check dedupe_index for this hash.
@ Decision:
e Found (Hit):
o Increment ref_count of existing block.

o Update Inode mapping.
@ Mark page clean (Skip disk write).

o Not Found (Miss):

o Allocate new phys_block.
o Write data to disk.
@ Insert new entry into dedupe_index.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 14 /22

Outline

© Part 4: Implementation Details

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 15/22

4.1 Using the Kernel Crypto API

We leverage the existing Linux Crypto Subsystem (not writing SHA-256 from scratch).

[1. Allocate Transform (sha256) 2. Init Request 3. Digest Data

Input: 4KB Page Buffer
Output: 32-Byte Hash

Key Implementation Logic:
@ Use kmalloc for temporary buffer allocation.
@ Use crypto_shash_digest () for the actual calculation.
@ Ensure kfree is called to prevent memory leaks.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 16 /22

4.2 Concurrency & Race Conditions

The Kernel is highly multi-threaded. Two processes might write the same data simultaneously.

Process A Process B

Writes "Hello” rites "Hello"

Hash Table

Solution: Fine-grained locking.
@ Instead of locking the whole table, we use Bucket Locking.

@ Lock only the specific hash bucket relevant to the data, allowing parallel processing for other data.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 17 /22

Outline

© Part 5: Evaluation Plan

Liangsen Wang (224040364@link.cuhk.edu. CSC5031 Project - Topic 15 2026.2.5 18 /22

5.1 Evaluation Metrics

1. Storage Efficiency 2. Performance Overhead
Logical Data Size o Latency: Time per 4KB write (ms).
Dedupe Ratio = - - .
Physical Disk Usage @ Throughput: MB/s under high load.
o CPU Usage: % of CPU spent in SHA-256
o Target: 10: 1 for VM Backups. calculation.

o Target: 1:1 for Encrypted Data (Worst case).J

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 19/22

5.2 Experimental Workloads

We will use FIO and Real Data for testing.

Test Data Type Hypothesis
Baseline Unique Random Overhead only. Performance drops.
Ideal Zero-filled 100% Dedupe. Extremely fast write (no 1/0).

Real World 1 Linux Kernel Src 5-10% Dedupe (Code reuse).
Real World 2 VM Disk Images >50% Dedupe (Same OS files).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 20/22

5.3 The CPU-I/O Trade-off Visualization

System Performance

benefit zone
/ Standard Kernel (Baseline)

Redundancy Level (%)

overhead zone

At low redundancy, hashing cost > /O savings. At high redundancy, eliminating 1/O > hashing cost.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 21/22

Summary

© Goal: Kernel-level In-line Deduplication.

@ Mechanism: Intercept buffer_head, Hash Content,
Map to Physical Block. Q&A

@ Impact: Reduce Disk Usage & Write Amplification.

@ Challenge: Balancing CPU Overhead vs. Storage
Savings.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 22/22

	Part 1: Requirements & Scope
	Part 2: Theoretical Foundations
	Part 3: Kernel Architecture
	Part 4: Implementation Details
	Part 5: Evaluation Plan

