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1.1 Core Requirements (Topic 15)

Objective: Implement an In-line Deduplication mechanism within the Linux Kernel.

Mandatory Tasks (The ”Must-Haves”)
1 Interception Point: Modify fs/buffer.c or the Block Layer to intercept submit_bio() or

buffer head operations.
2 Fingerprinting: Utilize the Kernel Crypto API to compute hashes (e.g., SHA-256) for data blocks.
3 Mapping Logic: Maintain a Hash → Physical Block index to map multiple logical writes to a

single physical sector.

Constraint
This must be done in Kernel Space. User-space solutions (like FUSE) are not allowed for the core logic.
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1.2 Advanced Scope & Goals

Beyond basic functionality, we aim for robustness and efficiency.
A. Optimization (Performance)

Compression: Integrate LZ4 or ZLIB to
compress unique blocks before writing.
Async Processing: Move hashing to a
workqueue to avoid blocking the main write
thread.

B. Robustness (Safety)
Collision Handling: What happens if two
different data blocks produce the same hash?
(Hash Collision).
Reference Counting: Ensuring a block is
never freed while a file still references it.
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2.1 The Problem: Data Redundancy

Modern storage systems suffer from massive redundancy.
Scenario 1: Virtual Machines. Running 10 Ubuntu VMs results in 10 copies of the exact same
OS binaries (/bin/bash, kernel, libraries).
Scenario 2: Backups. Incremental backups often store unchanged data blocks repeatedly.
The Cost:

Space: Wasted $$$ on SSDs/HDDs.
Endurance: SSD Flash cells wear out faster due to Write Amplification.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 7 / 22



2.2 Choosing the Right Granularity

At what level should we deduplicate?

Level Pros Cons
File Level Easy to implement. Low savings. Changing 1 byte → new file.
Block Level High savings. Balanced CPU cost. Complex mapping table.
Byte Level Max savings. Extremely high CPU & RAM overhead.

Our Choice: Fixed-Size Block Level (4KB). This matches the Linux Page Size and File System
Block Size.
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2.3 Concept: Content-Addressable Storage (CAS)

We shift from ”Where should I write this?” to ”Do I already have this?”

Traditional
Storage

File A (Data X)

File B (Data X)

Block 100 (Data X)

Block 101 (Data X)

CAS / Dedu-
plication

File A (Data X)

File B (Data X)

Hash Map

Block 100 (Data X)

Ref Count = 2

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 9 / 22



2.4 Hashing Strategy & Collisions

The Fingerprint: A unique summary of the data block.

Algorithm Selection
CRC32: Very fast, but high collision risk.
(Not suitable for primary key).
SHA-256: Slower, but cryptographically
secure. Collision chance is negligible (1 in
1077).

The ”Birthday Paradox” (Collision)
Even with SHA-256, strictly speaking, collisions
represent data corruption.

Safeguard Strategy: If Hash matches → Perform
a byte-by-byte comparison (memcmp) to verify
data is truly identical before discarding the write.
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3.1 Where in the Kernel?

Linux IO Stack is layered. We target the Buffer Cache / Page Cache boundary.

User Space (Applications)

VFS (Virtual Filesystem)

Page Cache & Buffer Head ← Our Module

Block Layer (BIO Construction)

SCSI / NVMe Drivers
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3.2 Kernel Data Structures (Conceptual)

We need persistent structures to track duplicates.

The Deduplication Entry Node
Every unique block in memory has a descriptor:

Fingerprint (32 bytes): The SHA-256 Hash.
Physical Address (8 bytes): Sector number on disk.
Reference Counter (4 bytes): Atomic integer. How
many files claim this block?
List Pointer: For handling hash bucket chains.

Global Hash Index
A Hash Map in Kernel RAM.
Protected by Spinlocks to allow
concurrent access by multiple CPUs.
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3.3 The ”Write” Workflow

What happens when write() is called?
1 Intercept: Catch the dirty page in fs/buffer.c.
2 Calculate: Run SHA-256 on the 4KB data page.
3 Lookup: Check dedupe_index for this hash.
4 Decision:

Found (Hit):
Increment ref_count of existing block.
Update Inode mapping.
Mark page clean (Skip disk write).

Not Found (Miss):
Allocate new phys_block.
Write data to disk.
Insert new entry into dedupe_index.
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4.1 Using the Kernel Crypto API

We leverage the existing Linux Crypto Subsystem (not writing SHA-256 from scratch).

1. Allocate Transform (sha256) 2. Init Request 3. Digest Data

Input: 4KB Page Buffer
Output: 32-Byte Hash

Key Implementation Logic:
Use kmalloc for temporary buffer allocation.
Use crypto_shash_digest() for the actual calculation.
Ensure kfree is called to prevent memory leaks.
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4.2 Concurrency & Race Conditions
The Kernel is highly multi-threaded. Two processes might write the same data simultaneously.

Process A Process B

Race!

Hash Table

Writes ”Hello” Writes ”Hello”

Solution: Fine-grained locking.
Instead of locking the whole table, we use Bucket Locking.
Lock only the specific hash bucket relevant to the data, allowing parallel processing for other data.
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5.1 Evaluation Metrics

1. Storage Efficiency

Dedupe Ratio =
Logical Data Size

Physical Disk Usage

Target: 10 : 1 for VM Backups.
Target: 1 : 1 for Encrypted Data (Worst case).

2. Performance Overhead
Latency: Time per 4KB write (ms).
Throughput: MB/s under high load.
CPU Usage: % of CPU spent in SHA-256
calculation.
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5.2 Experimental Workloads

We will use FIO and Real Data for testing.

Test Data Type Hypothesis
Baseline Unique Random Overhead only. Performance drops.
Ideal Zero-filled 100% Dedupe. Extremely fast write (no I/O).
Real World 1 Linux Kernel Src 5-10% Dedupe (Code reuse).
Real World 2 VM Disk Images >50% Dedupe (Same OS files).
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5.3 The CPU-I/O Trade-off Visualization

Redundancy Level (%)

System Performance

Standard Kernel (Baseline)

With Dedupe

overhead zone

benefit zone

At low redundancy, hashing cost > I/O savings. At high redundancy, eliminating I/O > hashing cost.
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Summary

1 Goal: Kernel-level In-line Deduplication.
2 Mechanism: Intercept buffer_head, Hash Content,

Map to Physical Block.
3 Impact: Reduce Disk Usage & Write Amplification.
4 Challenge: Balancing CPU Overhead vs. Storage

Savings.

Q & A
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