
Operating Systems Project: Topic 15
Kernel-Level Data Deduplication Mechanism

Liangsen Wang

224040364@link.cuhk.edu.cn

2026.2.5

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 1 / 22



Outline

1 Part 1: Requirements & Scope

2 Part 2: Theoretical Foundations

3 Part 3: Kernel Architecture

4 Part 4: Implementation Details

5 Part 5: Evaluation Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 2 / 22



Outline

1 Part 1: Requirements & Scope

2 Part 2: Theoretical Foundations

3 Part 3: Kernel Architecture

4 Part 4: Implementation Details

5 Part 5: Evaluation Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 3 / 22



1.1 Core Requirements (Topic 15)

Objective: Implement an In-line Deduplication mechanism within the Linux Kernel.

Mandatory Tasks (The ”Must-Haves”)
1 Interception Point: Modify fs/buffer.c or the Block Layer to intercept submit_bio() or

buffer head operations.
2 Fingerprinting: Utilize the Kernel Crypto API to compute hashes (e.g., SHA-256) for data blocks.
3 Mapping Logic: Maintain a Hash → Physical Block index to map multiple logical writes to a

single physical sector.

Constraint
This must be done in Kernel Space. User-space solutions (like FUSE) are not allowed for the core logic.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 4 / 22



1.2 Advanced Scope & Goals

Beyond basic functionality, we aim for robustness and efficiency.
A. Optimization (Performance)

Compression: Integrate LZ4 or ZLIB to
compress unique blocks before writing.
Async Processing: Move hashing to a
workqueue to avoid blocking the main write
thread.

B. Robustness (Safety)
Collision Handling: What happens if two
different data blocks produce the same hash?
(Hash Collision).
Reference Counting: Ensuring a block is
never freed while a file still references it.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 5 / 22



Outline

1 Part 1: Requirements & Scope

2 Part 2: Theoretical Foundations

3 Part 3: Kernel Architecture

4 Part 4: Implementation Details

5 Part 5: Evaluation Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 6 / 22



2.1 The Problem: Data Redundancy

Modern storage systems suffer from massive redundancy.
Scenario 1: Virtual Machines. Running 10 Ubuntu VMs results in 10 copies of the exact same
OS binaries (/bin/bash, kernel, libraries).
Scenario 2: Backups. Incremental backups often store unchanged data blocks repeatedly.
The Cost:

Space: Wasted $$$ on SSDs/HDDs.
Endurance: SSD Flash cells wear out faster due to Write Amplification.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 7 / 22



2.2 Choosing the Right Granularity

At what level should we deduplicate?

Level Pros Cons
File Level Easy to implement. Low savings. Changing 1 byte → new file.
Block Level High savings. Balanced CPU cost. Complex mapping table.
Byte Level Max savings. Extremely high CPU & RAM overhead.

Our Choice: Fixed-Size Block Level (4KB). This matches the Linux Page Size and File System
Block Size.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 8 / 22



2.3 Concept: Content-Addressable Storage (CAS)

We shift from ”Where should I write this?” to ”Do I already have this?”

Traditional
Storage

File A (Data X)

File B (Data X)

Block 100 (Data X)

Block 101 (Data X)

CAS / Dedu-
plication

File A (Data X)

File B (Data X)

Hash Map

Block 100 (Data X)

Ref Count = 2

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 9 / 22



2.4 Hashing Strategy & Collisions

The Fingerprint: A unique summary of the data block.

Algorithm Selection
CRC32: Very fast, but high collision risk.
(Not suitable for primary key).
SHA-256: Slower, but cryptographically
secure. Collision chance is negligible (1 in
1077).

The ”Birthday Paradox” (Collision)
Even with SHA-256, strictly speaking, collisions
represent data corruption.

Safeguard Strategy: If Hash matches → Perform
a byte-by-byte comparison (memcmp) to verify
data is truly identical before discarding the write.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 10 / 22



Outline

1 Part 1: Requirements & Scope

2 Part 2: Theoretical Foundations

3 Part 3: Kernel Architecture

4 Part 4: Implementation Details

5 Part 5: Evaluation Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 11 / 22



3.1 Where in the Kernel?

Linux IO Stack is layered. We target the Buffer Cache / Page Cache boundary.

User Space (Applications)

VFS (Virtual Filesystem)

Page Cache & Buffer Head ← Our Module

Block Layer (BIO Construction)

SCSI / NVMe Drivers

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 12 / 22



3.2 Kernel Data Structures (Conceptual)

We need persistent structures to track duplicates.

The Deduplication Entry Node
Every unique block in memory has a descriptor:

Fingerprint (32 bytes): The SHA-256 Hash.
Physical Address (8 bytes): Sector number on disk.
Reference Counter (4 bytes): Atomic integer. How
many files claim this block?
List Pointer: For handling hash bucket chains.

Global Hash Index
A Hash Map in Kernel RAM.
Protected by Spinlocks to allow
concurrent access by multiple CPUs.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 13 / 22



3.3 The ”Write” Workflow

What happens when write() is called?
1 Intercept: Catch the dirty page in fs/buffer.c.
2 Calculate: Run SHA-256 on the 4KB data page.
3 Lookup: Check dedupe_index for this hash.
4 Decision:

Found (Hit):
Increment ref_count of existing block.
Update Inode mapping.
Mark page clean (Skip disk write).

Not Found (Miss):
Allocate new phys_block.
Write data to disk.
Insert new entry into dedupe_index.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 14 / 22



Outline

1 Part 1: Requirements & Scope

2 Part 2: Theoretical Foundations

3 Part 3: Kernel Architecture

4 Part 4: Implementation Details

5 Part 5: Evaluation Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 15 / 22



4.1 Using the Kernel Crypto API

We leverage the existing Linux Crypto Subsystem (not writing SHA-256 from scratch).

1. Allocate Transform (sha256) 2. Init Request 3. Digest Data

Input: 4KB Page Buffer
Output: 32-Byte Hash

Key Implementation Logic:
Use kmalloc for temporary buffer allocation.
Use crypto_shash_digest() for the actual calculation.
Ensure kfree is called to prevent memory leaks.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 16 / 22



4.2 Concurrency & Race Conditions
The Kernel is highly multi-threaded. Two processes might write the same data simultaneously.

Process A Process B

Race!

Hash Table

Writes ”Hello” Writes ”Hello”

Solution: Fine-grained locking.
Instead of locking the whole table, we use Bucket Locking.
Lock only the specific hash bucket relevant to the data, allowing parallel processing for other data.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 17 / 22



Outline

1 Part 1: Requirements & Scope

2 Part 2: Theoretical Foundations

3 Part 3: Kernel Architecture

4 Part 4: Implementation Details

5 Part 5: Evaluation Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 18 / 22



5.1 Evaluation Metrics

1. Storage Efficiency

Dedupe Ratio =
Logical Data Size

Physical Disk Usage

Target: 10 : 1 for VM Backups.
Target: 1 : 1 for Encrypted Data (Worst case).

2. Performance Overhead
Latency: Time per 4KB write (ms).
Throughput: MB/s under high load.
CPU Usage: % of CPU spent in SHA-256
calculation.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 19 / 22



5.2 Experimental Workloads

We will use FIO and Real Data for testing.

Test Data Type Hypothesis
Baseline Unique Random Overhead only. Performance drops.
Ideal Zero-filled 100% Dedupe. Extremely fast write (no I/O).
Real World 1 Linux Kernel Src 5-10% Dedupe (Code reuse).
Real World 2 VM Disk Images >50% Dedupe (Same OS files).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 20 / 22



5.3 The CPU-I/O Trade-off Visualization

Redundancy Level (%)

System Performance

Standard Kernel (Baseline)

With Dedupe

overhead zone

benefit zone

At low redundancy, hashing cost > I/O savings. At high redundancy, eliminating I/O > hashing cost.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 21 / 22



Summary

1 Goal: Kernel-level In-line Deduplication.
2 Mechanism: Intercept buffer_head, Hash Content,

Map to Physical Block.
3 Impact: Reduce Disk Usage & Write Amplification.
4 Challenge: Balancing CPU Overhead vs. Storage

Savings.

Q & A

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 15 2026.2.5 22 / 22


	Part 1: Requirements & Scope
	Part 2: Theoretical Foundations
	Part 3: Kernel Architecture
	Part 4: Implementation Details
	Part 5: Evaluation Plan

