
Operating Systems Project: Topic 13
Journaling and Crash Recovery (Ext4 & JBD2)

Liangsen Wang

224040364@link.cuhk.edu.cn

2026.2.3

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 1 / 21



Outline

1 Project Goals & Requirements

2 Theory: The Crash Consistency Problem

3 Kernel Mechanics: JBD2

4 Implementation Guide

5 Evaluation Strategy

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 2 / 21



Outline

1 Project Goals & Requirements

2 Theory: The Crash Consistency Problem

3 Kernel Mechanics: JBD2

4 Implementation Guide

5 Evaluation Strategy

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 3 / 21



The Mission: Topic 13 Requirements

Objective: Deep dive into Ext4’s reliability layer (fs/jbd2) to understand how file systems survive
power failures.

Requirement 1: Analysis
Target: The fs/jbd2/ subsystem.
Task: Trace the lifecycle of a filesystem transaction
(Start → Commit → Checkpoint).

Requirement 2: Instrumentation
Task: Add stats to measure transaction latency (time
spent committing).
Task: Simulate a crash (kernel panic) and verify that
JBD2 recovers the data upon reboot.

The Problem:
If power cuts

during a write,
is your disk
corrupted?

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 4 / 21



Advanced Options

Option A: Lightweight Journaling
Idea: Full journaling (Data + Metadata) is slow.
Task: Configure and analyze ”Metadata-Only” journaling (Ordered Mode). Explain why this is
faster but still safe for file structure.

Option B: Journaling vs. CoW (Btrfs)
Comparison: Ext4 updates in-place (needs Journal). Btrfs writes to new location (Copy-on-Write).
Task: Benchmark Ext4 vs Btrfs under heavy random writes to see the performance trade-off.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 5 / 21



Outline

1 Project Goals & Requirements

2 Theory: The Crash Consistency Problem

3 Kernel Mechanics: JBD2

4 Implementation Guide

5 Evaluation Strategy

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 6 / 21



Theory 1: The Atomicity Problem

A file system operation (e.g., append data) is not atomic. It involves 3 separate writes:

1. Update Inode (Size) 2. Update Bitmap (Alloc) 3. Write Data Block

CRASH HERE!

Result: Inode says file is bigger, but data is garbage/old. Corruption!

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 7 / 21



Theory 2: Write-Ahead Logging (WAL)

Rule: Write the ”note” to the journal before touching the main filesystem.

The Protocol:
1 Log: Write metadata + data to Journal.
2 Commit: Write a ”Commit Block” (Atomic!).
3 Checkpoint: Copy from Journal to Main Disk.
4 Free: Mark Journal space as free.

Journal Area

Tx Start

Inode

Bitmap

Commit

Main FS

Checkpoint

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 8 / 21



Theory 3: Ext4 Journaling Modes

Trade-off between Safety and Speed.

ordered (Default)
”Balanced”

1. Write Data to Disk
2. Log Metadata

→ No Garbage Data

journal (Safest)
”Paranoid”

Log Data + Metadata
(Double Write)
→ Max Integrity

writeback (Fastest)
”Risky”

Log Metadata Only
Data is async

→ Risk: Old Data

High Safety High SpeedTrade-off

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 9 / 21



Outline

1 Project Goals & Requirements

2 Theory: The Crash Consistency Problem

3 Kernel Mechanics: JBD2

4 Implementation Guide

5 Evaluation Strategy

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 10 / 21



Mechanics 1: JBD2 (Journaling Block Device)

Ext4 doesn’t do logging itself. It uses a separate subsystem: JBD2.

Ext4 File System JBD2 Layer Disk Driver

Calls
jbd2_journal_start

Manages Transac-
tions & Ring Buffer

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 11 / 21



Mechanics 2: The Circular Log

The Journal is a fixed-size ring buffer on disk.

Active TxCommitted (Needs CP)

Head

Tail

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 12 / 21



Mechanics 3: Key Data Structures

transaction_t: Represents one atomic update
set.

t_id: Sequence Number (1, 2, 3...).
t_buffers: List of modified buffers.
t_state: RUNNING, FLUSH, COMMIT.

handle_t: A handle for a single syscall’s part of a
transaction.

Workflow
start_handle()
... modify metadata ...
stop_handle()

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 13 / 21



Outline

1 Project Goals & Requirements

2 Theory: The Crash Consistency Problem

3 Kernel Mechanics: JBD2

4 Implementation Guide

5 Evaluation Strategy

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 14 / 21



Implementation 1: Lifecycle Tracing

Where to hook? Follow the state machine.

T_RUNNING T_LOCKED T_FLUSH T_COMMIT

T_FINISHED

Timeout/Full IO Done

Accepting Handles Writing Commit Block

<– Hook Here!

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 15 / 21



Implementation 2: Instrumentation

Goal: Measure how long a commit takes.

Plan
1 Open fs/jbd2/commit.c.
2 Locate jbd2_journal_commit_transaction().
3 Add timestamps:

start = ktime_get(); at function start.
end = ktime_get(); after commit block write.

4 Export to /proc/jbd2_stats.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 16 / 21



Implementation 3: Simulating a Crash

How to verify recovery without pulling the power plug?

The ”Self-Destruct” Sequence

1. Start Heavy I/O
dd if=/dev/zero ...

2. Trigger Panic
echo c > /proc/sysrq-trigger

3. Kernel Panic
(Instant System Halt)

Post-Reboot Verification
After the VM restarts, check if JBD2 did its job:
1. Check Kernel Logs:

$ dmesg | g rep ” r e c o v e r y ”
EXT4−f s : r e c o v e r y complete
EXT4−f s : mounted f i l e s y s t e m . . .

2. Check Disk Consistency:

$ e 2 f s c k −n / dev / sdb1
/ dev / sdb1 : c l ean , . . .

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 17 / 21



Outline

1 Project Goals & Requirements

2 Theory: The Crash Consistency Problem

3 Kernel Mechanics: JBD2

4 Implementation Guide

5 Evaluation Strategy

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 18 / 21



Evaluation 1: Performance Benchmarking

Comparing data=journal vs data=ordered.

Throughput (MB/s)

Workload
Seq Write Rand Write

Ordered

Journal

Journal Mode is slow!

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 19 / 21



Evaluation 2: Recovery Speed

How long does fsck take after a crash?
Ext2 (No Journal): Must scan whole disk. Hours.
Ext4 (Journal): Only replay the log. Seconds.

Experiment: 1. Fill 10GB disk. 2. Crash. 3. Measure mount time.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 20 / 21



Resources

Kernel Source:
fs/ext4/super.c: Where ext4 connects to JBD2.
fs/jbd2/journal.c: Core journal management.

Reading:
”Journaling the Linux ext2fs Filesystem” (Whitepaper).
OSTEP Chapter: Crash Consistency.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 13 2026.2.3 21 / 21


	Project Goals & Requirements
	Theory: The Crash Consistency Problem
	Kernel Mechanics: JBD2
	Implementation Guide
	Evaluation Strategy

