Operating Systems Project: Topic 12

Implement a Simple In-Memory File System (RamFS)

Liangsen Wang
224040364 @link.cuhk.edu.cn

2026.1.29

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29

1/19

Outline

@ Project Goals & Requirements
© Theory: Architecture

© Implementation Logic

© Evaluation Strategy

© Action Plan

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29 2/19

Outline

@ Project Goals & Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29 3/19

The Mission: Topic 12 Requirements

Objective: Build a file system that lives entirely in RAM (like tmpfs).

Requirement 1: System Integration

@ No Block Device: Must mount with mount -t
myramfs none /mnt.

o VFS Compliance: Must integrate with Linux Virtual
File System.

Requirement 2: Core Operations

o Metadata: Create files (touch) and directories (mkdir).
o Data: Read and write file content using the Page Cache.)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29 4/19

Advanced Options

Option A: Memory Quotas (Safety)

o Risk: A user writing 'yes > /mnt/file' can crash the OS (OOM).
@ Solution: Limit max pages per superblock. Return ~ENOSPC.

.

Option B: Snapshot Persistence
o Risk: RAM is volatile. Reboot = Data Loss.

@ Solution: Serialize the memory tree to a file on umount and restore on mount.

v

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29

5/19

Outline

© Theory: Architecture

Liangsen Wang (224040364@link.cuhk.edu. CSC5031 Project - Topic 12 2026.1.29 6/19

Theory 1: Architecture Comparison

VFS Layer VFS Layer

Ext4 Driver MyRamFS

Block Layer (Bio No BIO!
I:Y(II Page Allocator | N4 10 Scheduler!

Traditional (Ext4) =2 In-Memory (Your FS) [t e

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29 7/19

Theory 2: The "Backing Store” Secret

Where is the file data actually stored? The Page Cache.

Flush (Ext4)

‘ Page Cache (RAM) % —————————
V)

Keep (RamFS)

» Data Lifecycle

RamFS Strategy:
Mark pages as "Dirty” but never flush them.
The cache is the storage.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29 8/19

Theory 3: Memory Objects

Since we don't have a disk to store metadata, we use kernel structures.

Struct Inode (The File) Struct Dentry (The Name)
@ Permissions (0755) o Name ("home”, "bin")
@ Timestamps @ Parent/Child pointers
o Mapping: Points to Pages @ Points to Inode

Crucial Rule: RamFS must PIN these in memory. Normal VFS deletes unused dentries. If RamFS lets
a dentry die, the file is gone forever!

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29 9/19

Outline

© Implementation Logic

Liangsen Wang 4040364 C@link.cuhk.ed CSC5031 Project - Topic 12 2026.1.29 10/19

Logic 1: The Mount Process

What happens when you type mount -t myramfs ...7

User: mount rm————- ->’ 1. Setup Superblock‘

1
1
I
’ Kernel: mount_nodev () ‘ | Trigger |2. Alloc Root Inode‘
1
1
1
1
1

’Callback: £ill_super } -]3. Alloc Root Dentry‘

Success: Mounted at /mnt

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29 11/19

Logic 2: Creating a File (touch)

This flow splits into two phases: Validation and Allocation.

my_mknod

Quota OK?

’ 2. Init Ops (file_ops) ‘

Return -ENOSPC

3. d_instantiate

‘ 4. dget(dentry) (Pin!) ‘

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29 12/19

Logic 3: Writing Data (echo "hi")

You don't write "write” logic. You leverage the page cache helpers.

User Write

’ generic_file_write_iter }—»’ .write_begin }—»‘ Grab Page (Alloc) ‘

Copy Data

.write_end

Mark Dirty
Kernel Helper: simple_write_begin

Use this! Do not write your own.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29 13/19

Logic 4: Directory Lookup (1s)

How does the kernel find files in your memory?

Dir Inode Kernel Dcache List }—>{ File B‘

Magic: simple_dir_inode_operations
The kernel maintains the list of children for you.
You just need to allocate the Inodes.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29 14 /19

Outline

© Evaluation Strategy

Liangsen Wang (224040364@link.cuhk.edu. CSC5031 Project - Topic 12 2026.1.29 15/19

Evaluation 1: Functional Verification

@ Load Module: insmod myramfs.ko

@ Mount: mount -t myramfs none /mnt/test
© Basic Ops:

touch /mnt/test/a.txt (Test Create)

echo "Hello" > /mnt/test/a.txt (Test Write)
cat /mnt/test/a.txt (Test Read)

rm /mnt/test/a.txt (Test Unlink/Free)

@ Unmount: umount /mnt/test

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29 16 /19

Evaluation 2: Stress & Quota Test

The "Bomb” Test:

|dd if=/dev/zero of=/mnt/file bs=1M Stops at limit (e.g. 100MB)

‘System Freeze (OOM) ‘ Eats all RAM

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29 17 /19

Outline

© Action Plan

Liangsen Wang E i I CSC5031 Project - Topic 12 2026.1.29 18/19

Roadmap & Resources

Action Plan:

@ Setup: Write the module skeleton. Register file_system_type.

@ Mount: Implement £i11_super. Create the Root Inode and Dentry.

© Logic: Implement create and mkdir using simple_x helpers.

Q Safety: Add memory quotas or snapshotting logic to prevent data loss.
Resources:

e fs/ramfs/: The official reference implementation (Gold Standard).

o fs/libfs.c: Contains simple_read_folio and other VFS helpers.

@ include/linux/fs.h: Definitions for inode, dentry, and super_block.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 12 2026.1.29 19/19

	Project Goals & Requirements
	Theory: Architecture
	Implementation Logic
	Evaluation Strategy
	Action Plan

