Operating Systems Project: Topic 11

Asynchronous |/O Benchmark and Enhancement (io_uring)

Liangsen Wang
224040364 @link.cuhk.edu.cn

2026.1.29

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29

1/26



Outline

@ Project Goals & Requirements
© Theory: Evolution of Linux I/O
© Theory: Advanced Mechanisms
© Implementation Guide

© Evaluation Strategy

@ Conclusion

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 2/26



Outline

@ Project Goals & Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 3/26



The Mission: Topic 11 Requirements

Objective: Compare the performance of the modern io_uring interface against traditional
Synchronous 1/0.

Requirement 1: Benchmark (User Space)

@ Task: Write a C program to perform file 1/0O using both
read/write and io_uring.

o Metrics: Measure Latency, Throughput (IOPS), and

Syscall Counts. The Question:

o Goal: Prove that io_uring is faster for _Can W do_ /0
high-concurrency workloads. without paying for

System Calls?

Requirement 2: Kernel Enhancement (Advanced)

o Target: fs/io_uring.c.

@ Task: Modify submission logic or optimize queue
contention.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 4/26



Advanced Options

Option A: New Submission Strategy

o Current: io_uring processes requests FIFO.

@ Idea: Implement "Priority Submission”. Add a flag to urgent requests so the kernel processes them
before others in the batch.

o

Option B: Lock Contention Analysis

@ Problem: Multiple threads sharing one Ring Buffer fight for the SQ lock.

@ Task: Analyze lock contention using perf and propose optimizations (e.g., per-CPU rings).

v

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 5/26



Outline

© Theory: Evolution of Linux I/O

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 6/26



Theory 1: The Cost of Synchronous I/O

Why is read () slow? Because of Context Switches and Spectre/Meltdown Mitigations.

User Space Kernel Space

Syesd )+
PTHOverte:

T K|

Blogk (Wait for Disk)
Return

<«~-- :
Context Switch

Problem: CPU spends time switching modes, not moving data.

Time

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 7/26



Theory 2: Why not Legacy AIO?

Linux already had libaio (io_submit). Why create io_uring?
Legacy AIO Problems:
o Direct 1/0O Only: Only worked with
0_DIRECT (bypassing cache). Buffered 1/0
would still block!

o Complex API: Hard to use correctly.

io__uring Solutions:
@ Universal: Works for Buffered 1/0, Network
Sockets, etc.
@ Zero Copy: Shared memory ring buffers.

o Extensible: Designed to support any syscall

o Data Copy: Still required copying data asynchronously.

structures for every submission.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 8/26



Theory 3: The io_uring Architecture

Core Concept: Two circular ring buffers mapped into user space.

Shared Memory Region (mmap)
I
I
I
I
I
I
|
|

Kernél Condumes User writes SQE.
Submission Queue (SQ) Completion Queue (CQ)| Kernel writes CQE.

Entries (Indices) CQ Entries (CQE) No copying!

SQ Entries Array (SQE)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 9/26



Outline

© Theory: Advanced Mechanisms

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 10/26



Advanced 1: Lockless Coordination

How do User and Kernel share a ring without locks? Memory Barriers.

The Producer-Consumer Contract

o User (Producer): Writes SQE — smp_store_release(tail)
o Kernel (Consumer): smp_load_acquire(tail) — Reads SQE

Why this matters: Explicit locking (‘mutex’) puts threads to sleep. Memory barriers just ensure
ordering, allowing simpler wait-free progress in the fast path.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 11/26



Advanced 2: IOPOLL (Zero Syscalls)

Standard io_uring still needs 1 syscall (io_uring_enter) to wake the kernel. Polling Mode
(IORING_SETUP_IOPOLL) eliminates even that.

. Latency
Mechanism: ~ Hardware Limit

@ Kernel creates a specific kernel thread (io-wq).

@ This thread spin-loops, checking the SQ ring
for new entries.

Sync Read

@ User simply writes to memory. Kernel picks it
up instantly.

Pﬂn g

Trade-off: High CPU usage (100% on one core) for ultra-low latency.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 12/26



Advanced 3: Registered Buffers & Files

Problem: For every |/O, the kernel must: 1. Map user virtual address to physical pages
(get_user_pages). 2. Lookup file descriptor references (fget).
Solution: Pre-Registration

@ User maps buffers once at startup.
@ Kernel pins pages in RAM permanently.

@ During /O, skip mapping and reference counting.
Result: Another 10-20% performance gain.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 13/26



Advanced 4: What if it blocks?

If an operation cannot be non-blocking (e.g., buffered read not in cache), io_uring cannot just block
the whole ring.

Core Logic

Would Block?

Complete Inline

Worker threads pool

Oﬂ:load to 10-wq handle blocking ops
Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 14 /26




Outline

© Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu. CSC5031 Project - Topic 11 2026.1.29 15/26



Implementation 1: liburing Setup

Don't use raw syscalls. Use liburing.

#include <liburing.h>

#define QUEUE_DEPTH 4096
struct io_uring ring;

// Setup
int ret = io_uring_queue_init (QUEUE_DEPTH, &ring, 0);
if (ret < 0) {
fprintf (stderr, "queue_init failed: %d\n", ret);
return 1;

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11

2026.1.29

16 /26



Implementation 2: The Submission Loop

struct io_uring_sqe *sqe;
struct iovec iov;

// 1. Get an entry from the ring
sqe = io_uring_get_sqe (&ring);

// 2. Prepare the operation (PREP macro)
io_uring_prep_readv(sqe, fd, &iov, 1, offset);

// Optional: Set User Data (to identify this request later)
io_uring_sqe_set_data(sqe, my_data_ptr);

// 3. Submit (Batched!)
// This only does the syscall if the ring is full or you force it
io_uring_submit (&ring) ;

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29

17/26



Implementation 3: The Completion Loop

1 struct io_uring_cqe *cqe;
> unsigned head;
3 int count = 0;

5 // Efficiently iterate over completed events
6 io_uring_for_each_cqe(&ring, head, cqe) {

7 count++;

8

9 // Check result

10 if (cqe->res < 0) {
11 // Handle Error
12 ¥

13

14 // Process data...

15 }

17 // Mark events as seen (Advance the Ring)
18 io_uring_cq_advance (&ring, count);

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 18 /26



Kernel 1: The Battlefield (fs/io_uring.c)

For the advanced requirement, you must edit the kernel.

@ io_uring_enter(): The system call entry point.

@ io_submit_sqes(): lterates the user's SQ ring.
@ io_issue_sqe(): Attempts to issue a single request.

Task: Insert a printk or logic inside io_submit_sqges to count how many requests are processed in
one batch.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 19/26



1
2
3
4

5
6
7
8
9

10

11

Kernel 2: Implementing Priority

// In fs/io_uring.c :: io_submit_sqges(...)

// Loop through SQEs
io_for_each_link(req, head) {

// YOUR MODIFICATION: Check a flag

// Assuming you added a flag IOSQE_URGENT to include/uapi/linux/io_uring.h

if (req->flags & IOSQE_URGENT) {
// Handle High Priority: Maybe dispatch to a special workqueue?
trace_printk("High Prio Req detected!\n");

}

io_submit_sqe(req, ...);

}

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11

2026.1.29

20/26



Outline

© Evaluation Strategy

Liangsen Wang 4040364 @link.cuhk.ed CSC5031 Project - Topic 11 2026.1.29 21/26



Evaluation 1: Designing the Test

You need to stress the system to see the difference.
Test A: Throughput (IOPS)
o 4KB Random Reads.

@ Queue Depth = 128.

o Target: 500k-+ IOPS on NVMe @ Target: Compare Polling mode vs. Interrupt
’ ' mode.

Test B: Latency
o Queue Depth = 1.
@ Measure time per operation.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 22/26



Evaluation 2: What success looks like

IOPS (Thousands)

io_uring

|
p due to Syscalls
|

sync read()

Queue Depth

If the lines overlap, you are likely limited by the Disk, not the Software. Use a RAM-disk or faster
NVMe for testing.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29

23/26



Outline

@ Conclusion

gsen Wang E i CSC5031 Project - Topic 11 2026.1.29 24 /26



Summary

@ Problem: Synchronous |/O wastes CPU cycles on system calls and context switches.
@ Solution: io_uring uses shared memory rings to batch submission and completion.

© Implementation: Use liburing for the user-space benchmark. Modify fs/io_uring.c for kernel
enhancements.

@ Result: Order-of-magnitude improvement in IOPS for high-speed devices.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 25/26



Roadmap & Resources

Action Plan:

@ Read: man io_uring_enter.

@ Baseline: Write the read () benchmark loop.

© Experiment: Write the io_uring version. Enable Polling.

@ Hack: Compile kernel and inject counters into the submission loop.
Resources:

o "Efficient 10 with io_uring” (Jens Axboe, Kernel Maintainer).

e liburing GitHub repository (Examples folder is gold).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 26/26



	Project Goals & Requirements
	Theory: Evolution of Linux I/O
	Theory: Advanced Mechanisms
	Implementation Guide
	Evaluation Strategy
	Conclusion

