
Operating Systems Project: Topic 11
Asynchronous I/O Benchmark and Enhancement (io_uring)

Liangsen Wang

224040364@link.cuhk.edu.cn

2026.1.29

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 1 / 26



Outline

1 Project Goals & Requirements

2 Theory: Evolution of Linux I/O

3 Theory: Advanced Mechanisms

4 Implementation Guide

5 Evaluation Strategy

6 Conclusion

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 2 / 26



Outline

1 Project Goals & Requirements

2 Theory: Evolution of Linux I/O

3 Theory: Advanced Mechanisms

4 Implementation Guide

5 Evaluation Strategy

6 Conclusion

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 3 / 26



The Mission: Topic 11 Requirements
Objective: Compare the performance of the modern io_uring interface against traditional
Synchronous I/O.

Requirement 1: Benchmark (User Space)
Task: Write a C program to perform file I/O using both
read/write and io_uring.
Metrics: Measure Latency, Throughput (IOPS), and
Syscall Counts.
Goal: Prove that io_uring is faster for
high-concurrency workloads.

Requirement 2: Kernel Enhancement (Advanced)
Target: fs/io_uring.c.
Task: Modify submission logic or optimize queue
contention.

The Question:
Can we do I/O

without paying for
System Calls?

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 4 / 26



Advanced Options

Option A: New Submission Strategy
Current: io_uring processes requests FIFO.
Idea: Implement ”Priority Submission”. Add a flag to urgent requests so the kernel processes them
before others in the batch.

Option B: Lock Contention Analysis
Problem: Multiple threads sharing one Ring Buffer fight for the SQ lock.
Task: Analyze lock contention using perf and propose optimizations (e.g., per-CPU rings).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 5 / 26



Outline

1 Project Goals & Requirements

2 Theory: Evolution of Linux I/O

3 Theory: Advanced Mechanisms

4 Implementation Guide

5 Evaluation Strategy

6 Conclusion

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 6 / 26



Theory 1: The Cost of Synchronous I/O

Why is read() slow? Because of Context Switches and Spectre/Meltdown Mitigations.

Time

User Space Kernel Space
read()Syscall +

KPTI Overhead

Block (Wait for Disk)
Return

Context Switch

Problem: CPU spends time switching modes, not moving data.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 7 / 26



Theory 2: Why not Legacy AIO?

Linux already had libaio (io_submit). Why create io_uring?
Legacy AIO Problems:

Direct I/O Only: Only worked with
O_DIRECT (bypassing cache). Buffered I/O
would still block!
Complex API: Hard to use correctly.
Data Copy: Still required copying data
structures for every submission.

io_uring Solutions:
Universal: Works for Buffered I/O, Network
Sockets, etc.
Zero Copy: Shared memory ring buffers.
Extensible: Designed to support any syscall
asynchronously.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 8 / 26



Theory 3: The io_uring Architecture

Core Concept: Two circular ring buffers mapped into user space.

Shared Memory Region (mmap)

Submission Queue (SQ)
Entries (Indices)

SQ Entries Array (SQE)

Completion Queue (CQ)
CQ Entries (CQE)

Indirect

Kernel Consumes User writes SQE.
Kernel writes CQE.
No copying!

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 9 / 26



Outline

1 Project Goals & Requirements

2 Theory: Evolution of Linux I/O

3 Theory: Advanced Mechanisms

4 Implementation Guide

5 Evaluation Strategy

6 Conclusion

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 10 / 26



Advanced 1: Lockless Coordination

How do User and Kernel share a ring without locks? Memory Barriers.

The Producer-Consumer Contract
User (Producer): Writes SQE → smp_store_release(tail)
Kernel (Consumer): smp_load_acquire(tail) → Reads SQE

Why this matters: Explicit locking (‘mutex‘) puts threads to sleep. Memory barriers just ensure
ordering, allowing simpler wait-free progress in the fast path.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 11 / 26



Advanced 2: IOPOLL (Zero Syscalls)

Standard io_uring still needs 1 syscall (io_uring_enter) to wake the kernel. Polling Mode
(IORING_SETUP_IOPOLL) eliminates even that.

Mechanism:
Kernel creates a specific kernel thread (io-wq).
This thread spin-loops, checking the SQ ring
for new entries.
User simply writes to memory. Kernel picks it
up instantly.

Latency

Sy
nc

Re
ad

io
_u

rin
g

Po
lli

ng

≈ Hardware Limit

Trade-off: High CPU usage (100% on one core) for ultra-low latency.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 12 / 26



Advanced 3: Registered Buffers & Files

Problem: For every I/O, the kernel must: 1. Map user virtual address to physical pages
(get_user_pages). 2. Lookup file descriptor references (fget).
Solution: Pre-Registration

User maps buffers once at startup.
Kernel pins pages in RAM permanently.
During I/O, skip mapping and reference counting.

Result: Another 10-20% performance gain.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 13 / 26



Advanced 4: What if it blocks?
If an operation cannot be non-blocking (e.g., buffered read not in cache), io_uring cannot just block
the whole ring.

Core Logic VFS Layer

Would Block? Complete Inline

Offload to io-wq

No

Yes
Worker threads pool
handle blocking ops

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 14 / 26



Outline

1 Project Goals & Requirements

2 Theory: Evolution of Linux I/O

3 Theory: Advanced Mechanisms

4 Implementation Guide

5 Evaluation Strategy

6 Conclusion

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 15 / 26



Implementation 1: liburing Setup

Don’t use raw syscalls. Use liburing.
1 #include <liburing.h>
2

3 #define QUEUE_DEPTH 4096
4 struct io_uring ring;
5

6 // Setup
7 int ret = io_uring_queue_init(QUEUE_DEPTH, &ring, 0);
8 if (ret < 0) {
9 fprintf(stderr, "queue_init failed: %d\n", ret);

10 return 1;
11 }
12

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 16 / 26



Implementation 2: The Submission Loop

1 struct io_uring_sqe *sqe;
2 struct iovec iov;
3

4 // 1. Get an entry from the ring
5 sqe = io_uring_get_sqe(&ring);
6

7 // 2. Prepare the operation (PREP macro)
8 io_uring_prep_readv(sqe, fd, &iov, 1, offset);
9

10 // Optional: Set User Data (to identify this request later)
11 io_uring_sqe_set_data(sqe, my_data_ptr);
12

13 // 3. Submit (Batched!)
14 // This only does the syscall if the ring is full or you force it
15 io_uring_submit(&ring);
16

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 17 / 26



Implementation 3: The Completion Loop

1 struct io_uring_cqe *cqe;
2 unsigned head;
3 int count = 0;
4

5 // Efficiently iterate over completed events
6 io_uring_for_each_cqe(&ring, head, cqe) {
7 count++;
8

9 // Check result
10 if (cqe->res < 0) {
11 // Handle Error
12 }
13

14 // Process data...
15 }
16

17 // Mark events as seen (Advance the Ring)
18 io_uring_cq_advance(&ring, count);
19

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 18 / 26



Kernel 1: The Battlefield (fs/io_uring.c)

For the advanced requirement, you must edit the kernel.

Key Functions
io_uring_enter(): The system call entry point.
io_submit_sqes(): Iterates the user’s SQ ring.
io_issue_sqe(): Attempts to issue a single request.

Task: Insert a printk or logic inside io_submit_sqes to count how many requests are processed in
one batch.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 19 / 26



Kernel 2: Implementing Priority

1 // In fs/io_uring.c :: io_submit_sqes(...)
2

3 // Loop through SQEs
4 io_for_each_link(req, head) {
5

6 // YOUR MODIFICATION: Check a flag
7 // Assuming you added a flag IOSQE_URGENT to include/uapi/linux/io_uring.h
8

9 if (req->flags & IOSQE_URGENT) {
10 // Handle High Priority: Maybe dispatch to a special workqueue?
11 trace_printk("High Prio Req detected!\n");
12 }
13

14 io_submit_sqe(req, ...);
15 }
16

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 20 / 26



Outline

1 Project Goals & Requirements

2 Theory: Evolution of Linux I/O

3 Theory: Advanced Mechanisms

4 Implementation Guide

5 Evaluation Strategy

6 Conclusion

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 21 / 26



Evaluation 1: Designing the Test

You need to stress the system to see the difference.
Test A: Throughput (IOPS)

4KB Random Reads.
Queue Depth = 128.
Target: 500k+ IOPS on NVMe.

Test B: Latency
Queue Depth = 1.
Measure time per operation.
Target: Compare Polling mode vs. Interrupt
mode.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 22 / 26



Evaluation 2: What success looks like

Queue Depth

IOPS (Thousands)

io_uring

sync read()

Gap due to Syscalls

If the lines overlap, you are likely limited by the Disk, not the Software. Use a RAM-disk or faster
NVMe for testing.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 23 / 26



Outline

1 Project Goals & Requirements

2 Theory: Evolution of Linux I/O

3 Theory: Advanced Mechanisms

4 Implementation Guide

5 Evaluation Strategy

6 Conclusion

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 24 / 26



Summary

1 Problem: Synchronous I/O wastes CPU cycles on system calls and context switches.
2 Solution: io_uring uses shared memory rings to batch submission and completion.
3 Implementation: Use liburing for the user-space benchmark. Modify fs/io_uring.c for kernel

enhancements.
4 Result: Order-of-magnitude improvement in IOPS for high-speed devices.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 25 / 26



Roadmap & Resources

Action Plan:
1 Read: man io_uring_enter.
2 Baseline: Write the read() benchmark loop.
3 Experiment: Write the io_uring version. Enable Polling.
4 Hack: Compile kernel and inject counters into the submission loop.

Resources:
”Efficient IO with io_uring” (Jens Axboe, Kernel Maintainer).
liburing GitHub repository (Examples folder is gold).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 11 2026.1.29 26 / 26


	Project Goals & Requirements
	Theory: Evolution of Linux I/O
	Theory: Advanced Mechanisms
	Implementation Guide
	Evaluation Strategy
	Conclusion

