Operating Systems Project: Topic 10

Kernel-Level Buffer Cache Instrumentation

Liangsen Wang
2240403640link.cuhk.edu.cn

2026.1.27

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 1/22



Outline

@ Project Goals & Requirements
© Theory: The Buffer Cache

© Kernel Mechanics: fs/buffer.c
@ Implementation Guide

© Evaluation Strategy

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 2/22



Outline

@ Project Goals & Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 3/22



The Mission: Topic 10 Requirements

Objective: Analyze and optimize the Kernel Buffer Cache mechanism.

Requirement 1: Instrumentation

o Target: Modify fs/buffer.c (or related memory
paths).

@ Task: Log Cache Hits vs. Cache Misses.

@ Output: Expose statistics via a new file:
/proc/cache_stats.

Requirement 2: Custom Policy
@ Task: Implement a custom cache replacement strategy.

o Example: Frequency-based (LFU) instead of the default
LRU-like approach.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 4/22



Advanced Options

Option A: Workload Characterization

@ Task: Compare cache behavior under different patterns (Sequential Read vs. Random Write vs.
Database).

@ Analysis: Why does LRU fail for "Scan” workloads?

A,

Option B: Visualizing the Hotspot

o Task: Create a heatmap of cached blocks. Which files are currently in RAM?

o Challenge: Mapping buffer heads back to filenames.

A,

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 5/22



Outline

© Theory: The Buffer Cache

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 6/22



Deep Analysis: Topic 5 vs. Topic 10 (Conceptual)

While both manage memory, their Triggers and Goals are opposite.

Topic 5: Page Replacement Topic 10: Buffer Cache

o Role: The "Janitor” (Garbage Collector). o Role: The "Librarian” (Lookup Service).

o Trigger: Memory Pressure (RAM is full). o Trigger: File Access (Read/Write request).

@ Question: "Who do | kill?” @ Question: "Do we have this?"

@ Mechanism: Scanning LRU lists to find cold @ Mechanism: Hashing/Tree search to find
pages to swap out. specific blocks.

o Key Metric: Page Fault Rate (Minimizing o Key Metric: Hit Rate (Maximizing logical
disk access due to eviction). lookups served from RAM).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 7/22



Deep Analysis: The Structural Relationship

Modern Linux uses a Unified Page Cache, but the data structures differ.

Physical Page (4KB) (Topic 5) Managed by mm/vmscan.c
T Mapped To ] [ :
\|BH1||[BH2||BH3 || BH4 |
1 1

Buffer Heads (1KB each) (Topic 10)

Liangsen Wang (224040364@link.cuhk.edu.cn)

CSC5031 Project - Topic 10

e Topic 5 treats the whole 4KB
page as one unit (Active/Inactive
lists).

e Topic 10 manages the
buffer_head metadata attached
to the page (fs/buffer.c).

2026.1.27

8/22



Deep Analysis: The Code Path

Where do you insert your hooks? The battlefields are totally different.

Topic 5 (Global Reclaim) Topic 10 (Filesystem Layer)

e Entry: kswapd (Background thread) or Direct o Entry: ext4_read_block calls buffer layer.
Reclaim. o Key Function: __find_get_block().

o Key Function: shrink_page_list(). o Logic:

"] LOgiC: 1 bh = lookup_hash(block, size);

2 if (bh) {

1 if (!PageReferenced(page)) { 3 hit_count++;

2 reclaim_page (page) ; 4 return bh;

3 3 5 }

4 6

o Focus: Checking hardware bits (A-bit) to o Focus: Managing the Hash Table / Radix Tree
guess "Recency". lookup success.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 9/22



Why Topic 10 Still Matters (Despite Unified Cache)

If Page Cache stores file data, what does Buffer Cache do today?

Metadata Matters

While file contents are in Page Cache, Filesystem Metadata still relies heavily on Buffer Heads.
@ Superblocks, Inode Tables, Bitmaps, Directory Entries.

The Topic 10 Nuance

In Topic 10, you are likely optimizing the caching of Metadata operations (e.g., ‘Is -R’, creating
millions of files), whereas Topic 5 optimizes the caching of Data content.

| A\

A,

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 10/22



Theory 1: The Gap Redux

Disk access is expensive. We need a copy in RAM.

‘ User Application (read()) ‘

VFES
1. Check

Layer

3. Hit (Fast return)

‘ Page/Buffer Cache ‘

1 2. Miss (Read 1/0)

o Page Cache: Caches file data (4KB Pages).

o Buffer Cache: Caches block metadata (Superblocks, Inodes, Bitmaps).
CSC5031 Project - Topic 10 2026.1.27

Two Layers:

11/22



Theory 2: Replacement Policies (LRU vs LFU)

RAM is finite. When full, who leaves?
LFU (Least Frequently Used)

LRU (Least Recently Used) . .
o "If you are rarely used, get out.
@ "If you haven't been used lately, you probably .
, " o Requires: A counter per block.
won't be used soon.
@ Strength: Protects hot data from scans.

@ Standard: Good for locality. .
o Weakness: One-time scans flush hot data. ¢ Weaknes.s. Ghost” items (popular once,
never again) stay forever.

2026.1.27

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10

12/22



Outline

© Kernel Mechanics: fs/buffer.c

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 13/22



Mechanics 1: The buffer_head (bh)

In fs/buffer.c, the atomic unit is the buffer_head. It maps a part of a page to a disk block.

. struct buffer_head {

i

> unsigned long b_state; // Uptodate? Dirty? .

3 struct buffer_head *b_this_page; Key Functions:

‘ SRS PR D9 // Backing Page @ submit_bh(): Sends 1/O to disk.
; sector_t b_blocknr; // Block # on disk o mark_buffer_dirty(): Mark for
/ size_t b_size; // Block size writeback.

3

) atomic_t b_count; // Users count @ brelse(): Release (decrement

) o count).

L

)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 14 /22



Mechanics 2: The Lookup Flow (Hit/Miss)

How does the kernel find a block?

’ Request Block N‘

v

Is Block N in RAM? <- Hook Here!

CACHE HIT

CACHE MISS

| Submit BIO to Disk

Project Strategy: Find the specific function that performs this check (likely __find_get_block or
similar) and insert your counters.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 15/22



Outline

@ Implementation Guide

Liangsen Wang (224040364@link.cuhk.edu. CSC5031 Project - Topic 10 2026.1.27 16 /22



Step 1: Instrumentation Points

Open fs/buffer.c.

Function 1: __find_get_block

This function searches the cache.

o If it returns a bh, it's a ¥**HIT**,
o If it returns NULL, it's a ¥**MISS** (and caller will trigger 1/0O).

Global Counters:

1 static unsigned long total_hits = 0;
> static unsigned long total_misses = 0;
3
4

// Add spinlock for safety!

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 17 /22



Step 2: Custom Replacement (LFU)

Modifying the global replacement policy is hard (it's deeply integrated into mm/vmscan.c).
Simpler Approach for Project:

Q Add a field unsigned int access_count to struct buffer_head (in
include/linux/buffer_head.h).

@ Increment it in touch_buffer().
@ In the reclaim path, prioritize keeping buffers with high counts.

Note: Modifying a core struct requires a full kernel recompile and is risky. Test in VM!

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 18 /22



Step 3: Creating /proc/cache_stats

You need to see the numbers.

1 #include <linux/proc_fs.h>
> #include <linux/seq_file.h>

4+ static int my_stats_show(struct seq_file *m, void *v) {

5 seq_printf (m, "Buffer Cache Hits: %lul\n", total_hits);

6 seq_printf (m, "Buffer Cache Misses: %lu\n", total_misses);

7 seq_printf(m, "Hit Rate: %lu%%\n",

8 (total_hits * 100) / (total_hits + total_misses + 1));
9 return O;

0 }

11 // Register this in module_init

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 19/22



Outline

© Evaluation Strategy

Liangsen Wang E i CSC5031 Project - Topic 10 2026.1.27 20/22



Step 4: Generating Workloads

How to prove your instrumentation works?
Scenario 1: Cold Cache

@ Drop caches: echo 3 >
/proc/sys/vm/drop_caches

©Q Read a large file: cat file.txt > . _
/dev/null @ Expect: High Hits.

© Expect: High Misses.

Scenario 2: Warm Cache

@ Read the same file again immediately.

Tooling: Use fio for complex patterns (Zipfian distribution mimics databases).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 21/22



Resources & Next Steps

Action Plan:
@ Trace: Use ftrace to confirm __find_get_block is called during reads.
@ Modify: Add counters to fs/buffer.c.
© Export: Implement the proc file.
@ Test: Run the Cold/Warm experiments and graph the Hit Rate.
Resources:

o Linux Kernel Development: Chapter 12 (Memory Management) 16 (Page Cache).
o fs/buffer.c source code.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 10 2026.1.27 22/22



	Project Goals & Requirements
	Theory: The Buffer Cache
	Kernel Mechanics: fs/buffer.c
	Implementation Guide
	Evaluation Strategy

