Operating Systems Project: Topic 1
Modify Linux Kernel Scheduler

Liangsen Wang
224040364 @link.cuhk.edu.cn

2026.1.12

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 1/26

Outline

@ Project Overview & Motivation

© Refresher: Process Management Basics
© Linux Scheduling Policies

@ Project Topic 1 Requirements

© Grading Advanced Exploration

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 2/26

Outline

@ Project Overview & Motivation

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 3/26

Project Overview & Motivation

Objective: Understand and improve the Linux process scheduler.
Why this topic?
o The scheduler is the heart of the OS, determining responsiveness and throughput.
e Mastering this allows you to optimize systems for specific workloads (e.g., Real-time, HPC).

Core Challenge: Working with kernel/sched/ code—one of the most complex parts of the kernel.

You can obtain the Linux source code from https://www.kernel.org/

@ Linux source code (v6.18.4) - Bootlin Elixir Cross Referencer can help you to search symbols in the
kernel

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 4/26

https://www.kernel.org/
https://elixir.bootlin.com/linux/v6.18.4/source

Outline

© Refresher: Process Management Basics

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 5/26

OS Refresher: The 5-State Process Model

Dispatch (Scheduler

‘@
T

imeout/Yield
Event Occurs Event Wait

Release

start *’

Blocked

o Ready: Processes waiting in the Runqueue.
@ Running: Process currently executing on CPU.
@ Scheduler’s Role: Decides which process transitions from Ready — Running.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 6/26

OS Refresher: Context Switch

Definition
The process of storing the state of a process so that it can be restored and resume execution later.

What is saved?

Implications

o Program Counter (PC) @ Overhead: CPU does no useful work during
@ Stack Pointer (SP) switching.

o General Purpose Registers @ Frequency: High frequency = Responsiveness
@ Process Control Block (PCB) but low throughput.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 7/26

Linux Reality: task_struct

Defined in include/linux/sched.h, the task_struct is the PCB in Linux.

1. Process Identity & State

These fields are essential for debugging your scheduler (printk/logging).
@ pid_t pid;: The Process ID.

@ char comm[TASK_COMM_LEN];: The name of the program (e.g., "bash”, "python™).
@ volatile long state; (or __state in newer kernels):

e -1: Unrunnable
o O (TASK_RUNNING): Ready or Executing.

1 struct task_struct {

2 volatile long state; // -1 unrunnable, O runnable, >0 stopped
3 void *stack; // Kernel stack

4 pid_t pid;

5 char comm[16]; // Executable name

6 coo

7}

8

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 8/26

Linux Reality: task_struct

2. The Scheduling "Hooks" (Critical for Topic 1)

Linux supports multiple scheduling policies simultaneously using Scheduling Classes.

@ struct sched_class *sched_class: !
o Pointer to the function table (polymorphism). ;
o E.g., fair_sched_class, rt_sched_class. : ‘izzlggzjaf;{’riz;})rioriw,

o Project Goal: You might create my_sched_class.

const struct sched_class *sched_class;

. . 9 struct sched_entity se; // For CFS
@ struct sched_entity se: 10 St ORI GGy T8 /) Mo Recil=se
. 11
o Used by CFS (Completely Fair Scheduler). 2 ¥

o Contains vruntime (Virtual Runtime).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 9/26

Modular Scheduling Classes

Does Linux use one huge algorithm for all tasks? No!
Linux uses a Modular Architecture. Each "Scheduling Class” encapsulates a specific policy. The
kernel iterates through them in a fixed priority order:

1. Stop Class (Mijgration/Shutdown)

2. Deadline Class (SCHED_DEADLINE)

3. RT Class (SCHED_FIFQ, SCHED_RR)

Highest Priority

Polymorphism in C:

struct sched_class {
const struct sched_class *next;

// Interface functions

void (*enqueue_task) (...);

void (xdequeue_task) (...);

struct task_struct *(xpick_next_task) (...);

1
2
3
4
5

8 1

9

4. Fair Class (SCHED_NORMAL) <+ Most processes!

When pick_next_task() is called, the
kernel asks the Stop Class first. If it returns

5. Idle Class (swapper)

NULL, it asks Deadline, and so on.

Lowest Priority

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 10/26

Understanding the Hierarchy: The "VIP" Line

Linux uses a modular hierarchy. When pick_next_task is called, it checks classes in strictly
descending order:

stop (Highest): Kernel emergency tasks (migration, shutdown).
dl (Deadline): Hard real-time guarantees (SCHED_DEADLINE).

rt (Real-Time): POSIX real-time (SCHED_FIFO, SCHED_RR).
fair (CFS): Normal user processes (Bash, Chrome, Python).

00000

idle (Lowest): Runs only when CPU has nothing else to do.

Critical Implication

If a task in the rt class enters an infinite loop, tasks in the fair class (your shell, GUI) will never
execute. The system will appear to hang.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 11/26

Outline

© Linux Scheduling Policies

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 12/26

Overview of Linux Scheduling Policies

Linux supports multiple policies defined by POSIX standards.

Normal (Dynamic Priority 100-139)

@ SCHED_NORMAL: Standard CFS (Completely
Fair Scheduler).

@ SCHED_IDLE: For background jobs.

Real-Time (Static Priority 0-99)
@ SCHED_FIFO: First-In, First-Out.
@ SCHED_RR: Round Robin (FIFO + Time Slice).

Deadline (Highest Priority)
o SCHED_DEADLINE: Earliest Deadline First (EDF).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 13/26

Real-Time: FIFO vs. Round Robin

These policies are managed by rt_sched_class.

SCHED_FIFO (First-In, First-Out)

@ Logic: Run the highest priority task until it:
@ Blocks (waits for 1/0).
@ Yields voluntarily (sched_yield()).
© |Is preempted by a higher priority task.

@ No Time Slice: A purely CPU-bound FIFO task can starve the entire system (infinite loop risk).

o

SCHED_RR (Round Robin)

o Logic: Same as FIFO, but with a Time Quantum (slice).
o If the slice expires, the task is moved to the end of the queue for its priority level.

@ Ensures fairness among real-time tasks of the same priority.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 14 /26

Normal: CFS (Completely Fair Scheduler)

Managed by fair_sched_class. Used for 99% of user tasks.
@ Goal: Model an "ldeal Multi-Tasking CPU" on real hardware.
o Mechanism:

o Virtual Runtime (vruntime): A counter that increases as the process runs.
e Weight: High priority (low nice value) tasks increase vruntime slower (get more CPU).

Data Structure: Red-Black Tree @
@ Replaces the Runqueue array.
o Key: vruntime. @ @

@ Selection: Always pick the leftmost node (smallest
vruntime). ° @
e O(log N) efficiency. (Leftmost = Next)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 15/26

Outline

@ Project Topic 1 Requirements

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 16 /26

Topic 1: Basic Requirements (Overview)

Objective: Understand the generic Linux scheduling framework and implement a custom scheduling
policy.

Mandatory Requirements (Pass/Fail Criteria):
© Locate & Modify:

o Modify kernel/sched/fair.c or add a new scheduling class.
e Add printk/logging to prove your code is running.
@ Implement a Concrete Algorithm:
o You must implement AT LEAST TWO specific algorithm (Details on next slide).

o The scheduler must handle enqueue, dequeue, and pick_next_task.
© Performance Comparison:

o Run sysbench --test=cpu or you can choose a specific workload and implement the corresponding
targeted scheduling strategy. .

o Compare Context Switches (csw) & Latency vs. Standard CFS.
@ GUI Visualization: Display process status (PID, State, Priority).

CSC5031 Project - Topic 1 2026.1.12 17/26

Topic 1: Select Your Target Strategy

Choose AT LEAST TWO of the following strategies to implement:

Option A: Lottery Scheduler (Random)

"The more tickets you have, the higher chance to run.”

@ Mechanism: Assign "tickets” to tasks based on their Nice value (Static Priority).

o Logic: Generate a random number [0, Total Tickets]. Traverse the queue and pick the winner.
@ Pros: Easy to implement; statistically fair over time.

Option B: Weighted Round Robin (WRR)

"Higher priority gets a larger time slice.”

@ Mechanism: Replace the CFS Red-Black Tree with a simple Linked List.

o Logic: lterate through the list. Assign time slice = Base Slice x Weight.
@ Pros: Deterministic; simpler than CFS.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1

2026.1.12 18 /26

Topic 1: Select Your Target Strategy

Choose AT LEAST TWO of the following strategies to implement:
Option C: Shortest Remaining Time First (SRTF)

"Finish small jobs fast.”
@ Mechanism: Add a burst_time field to task_struct (simulate via syscall).
o Logic: Always pick the task with the smallest remaining burst time.

@ Pros: Minimizes average waiting time (Theoretical Optimum).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 19/26

Implementation: Where to start?

Key Files in Kernel Source:
@ kernel/sched/core.c: Main scheduler entry point (__schedule).
@ kernel/sched/fair.c: Example implementation (CFS).

Critical Function Hook (Example for Lottery):

1 // In kernel/sched/fair.c
> struct task_struct *
3 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)

o q

5 // 1. Calculate total tickets (for Lottery)

6 // 2. Generate random number

7 // 3. Iterate 'cfs_rq->tasks' list to find the winner
8 // 4. Return the 'task_struct' of the winner

9

10 // NOTE: You might need to disable the RB-Tree logic

11 // and rely on the list_head for simple algorithms.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 20/26

Requirement: GUI Visualization

You need to show what is happening inside the Kernel.
Recommended Approach:

@ Kernel Side: Expose data via /proc/mysched.

o lterate through ‘task_struct’ list.
o Print PID, Name, State, Tickets/Weight.

. Visualizing the "Tickets” or "Time
@ User Side: Python/C++ GUL. Slices” specifically helps verify your
o Read /proc/mysched every 100ms. algorithm works!

o Visualization: Draw a Pie Chart (Ticket distribution) or
Gantt Chart.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 21/26

Outline

© Grading Advanced Exploration

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 22/26

Grading Criteria (Topic 1 Specific)

Component Focus

Basic Implementation (25%) Logic correctness, Code structure (The "Must-Haves").
Advanced Options (10%) Innovation & Complexity (See next slides).

Stability (5%) NO KERNEL PANICS.

Presentation (20%) Live Demo + Q&A.

Report (20%) Analysis of results (Why did performance change?).

Note: Advanced Options are "Open-Ended”.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 23/26

Advanced Options: Freedom to Explore

"Advanced Options are just some suggestions; any topic-related implementation you wish to
carry out is welcome.”

You are encouraged to go beyond the list. Choose a path that interests you:

Path A: System Features

Add practical features to your scheduler: Path B: Research & Optimization

@ Dynamic Switching: Switch policies at e Reproduce a paper

runtime via sysctl without rebooting.

. @ Optimize for a specific workload.
o NUMA-Awareness(Multi core): Prefer CPUSJ

on the same memory node to reduce latency.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 24/26

Research-Oriented Examples (For Path B)

Example 1: Paper Reproduction
@ Read a classic or recent paper from SOSP, OSDI, EuroSys or other system conference.

@ Implement a simplified version of their algorithm.

Example 2: Workload-Aware Scheduling
@ Analyze a specific application you care about (e.g., Redis, Video Encoding, Gaming).
@ Design a policy tailored for it.

@ e.g., "A Scheduler that prioritizes tasks holding a mutex lock to reduce lock contention duration.”

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 25/26

Next Steps

@ Download Linux Kernel Source (Recommend v5.x or v6.x).
@ Set up a Virtual Machine or simulator (QEMU/KVM/VBOX) for development.
e Warning: Do not develop on your host OS directly.

© Read kernel/sched/sched.h and other related code to understand struct sched_class and
the implementation methods of Linux scheduling.

© Realize your ideas.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 26/26

	Project Overview & Motivation
	Refresher: Process Management Basics
	Linux Scheduling Policies
	Project Topic 1 Requirements
	Grading Advanced Exploration

