
Operating Systems Project: Topic 1
Modify Linux Kernel Scheduler

Liangsen Wang

224040364@link.cuhk.edu.cn

2026.1.12

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 1 / 26

Outline

1 Project Overview & Motivation

2 Refresher: Process Management Basics

3 Linux Scheduling Policies

4 Project Topic 1 Requirements

5 Grading Advanced Exploration

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 2 / 26

Outline

1 Project Overview & Motivation

2 Refresher: Process Management Basics

3 Linux Scheduling Policies

4 Project Topic 1 Requirements

5 Grading Advanced Exploration

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 3 / 26

Project Overview & Motivation

Objective: Understand and improve the Linux process scheduler.
Why this topic?

The scheduler is the heart of the OS, determining responsiveness and throughput.
Mastering this allows you to optimize systems for specific workloads (e.g., Real-time, HPC).

Core Challenge: Working with kernel/sched/ code—one of the most complex parts of the kernel.
You can obtain the Linux source code from https://www.kernel.org/
Linux source code (v6.18.4) - Bootlin Elixir Cross Referencer can help you to search symbols in the
kernel

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 4 / 26

https://www.kernel.org/
https://elixir.bootlin.com/linux/v6.18.4/source

Outline

1 Project Overview & Motivation

2 Refresher: Process Management Basics

3 Linux Scheduling Policies

4 Project Topic 1 Requirements

5 Grading Advanced Exploration

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 5 / 26

OS Refresher: The 5-State Process Model

Newstart Ready Running

Blocked

Exit
Admit

Dispatch (Scheduler)

Timeout/Yield

Event WaitEvent Occurs

Release

Ready: Processes waiting in the Runqueue.
Running: Process currently executing on CPU.
Scheduler’s Role: Decides which process transitions from Ready → Running.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 6 / 26

OS Refresher: Context Switch

Definition
The process of storing the state of a process so that it can be restored and resume execution later.

What is saved?
Program Counter (PC)
Stack Pointer (SP)
General Purpose Registers
Process Control Block (PCB)

Implications
Overhead: CPU does no useful work during
switching.
Frequency: High frequency = Responsiveness
but low throughput.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 7 / 26

Linux Reality: task_struct

Defined in include/linux/sched.h, the task_struct is the PCB in Linux.

1. Process Identity & State
These fields are essential for debugging your scheduler (printk/logging).

pid_t pid;: The Process ID.
char comm[TASK_COMM_LEN];: The name of the program (e.g., ”bash”, ”python”).
volatile long state; (or __state in newer kernels):

-1: Unrunnable
0 (TASK_RUNNING): Ready or Executing.

1 struct task_struct {
2 volatile long state; // -1 unrunnable, 0 runnable, >0 stopped
3 void *stack; // Kernel stack
4 pid_t pid;
5 char comm[16]; // Executable name
6 ...
7 };
8

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 8 / 26

Linux Reality: task_struct

2. The Scheduling ”Hooks” (Critical for Topic 1)
Linux supports multiple scheduling policies simultaneously using Scheduling Classes.

struct sched_class *sched_class:
Pointer to the function table (polymorphism).
E.g., fair_sched_class, rt_sched_class.
Project Goal: You might create my_sched_class.

struct sched_entity se:
Used by CFS (Completely Fair Scheduler).
Contains vruntime (Virtual Runtime).

1 struct task_struct {
2 ...
3 int prio;
4 int static_prio;
5 int normal_prio;
6 unsigned int rt_priority;
7
8 const struct sched_class *sched_class;
9 struct sched_entity se; // For CFS

10 struct sched_rt_entity rt; // For Real-time
11 ...
12 };
13

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 9 / 26

Modular Scheduling Classes
Does Linux use one huge algorithm for all tasks? No!
Linux uses a Modular Architecture. Each ”Scheduling Class” encapsulates a specific policy. The
kernel iterates through them in a fixed priority order:

1. Stop Class (Migration/Shutdown)

2. Deadline Class (SCHED_DEADLINE)

3. RT Class (SCHED_FIFO, SCHED_RR)

4. Fair Class (SCHED_NORMAL) ← Most processes!

5. Idle Class (swapper)

Highest Priority

Lowest Priority

Polymorphism in C:
1 struct sched_class {
2 const struct sched_class *next;
3
4 // Interface functions
5 void (*enqueue_task) (...);
6 void (*dequeue_task) (...);
7 struct task_struct *(*pick_next_task) (...);
8 };
9

When pick_next_task() is called, the
kernel asks the Stop Class first. If it returns
NULL, it asks Deadline, and so on.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 10 / 26

Understanding the Hierarchy: The ”VIP” Line

Linux uses a modular hierarchy. When pick_next_task is called, it checks classes in strictly
descending order:

1 stop (Highest): Kernel emergency tasks (migration, shutdown).
2 dl (Deadline): Hard real-time guarantees (SCHED_DEADLINE).
3 rt (Real-Time): POSIX real-time (SCHED_FIFO, SCHED_RR).
4 fair (CFS): Normal user processes (Bash, Chrome, Python).
5 idle (Lowest): Runs only when CPU has nothing else to do.

Critical Implication
If a task in the rt class enters an infinite loop, tasks in the fair class (your shell, GUI) will never
execute. The system will appear to hang.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 11 / 26

Outline

1 Project Overview & Motivation

2 Refresher: Process Management Basics

3 Linux Scheduling Policies

4 Project Topic 1 Requirements

5 Grading Advanced Exploration

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 12 / 26

Overview of Linux Scheduling Policies

Linux supports multiple policies defined by POSIX standards.

Real-Time (Static Priority 0-99)
SCHED_FIFO: First-In, First-Out.
SCHED_RR: Round Robin (FIFO + Time Slice).

Normal (Dynamic Priority 100-139)
SCHED_NORMAL: Standard CFS (Completely
Fair Scheduler).
SCHED_IDLE: For background jobs.

Deadline (Highest Priority)
SCHED_DEADLINE: Earliest Deadline First (EDF).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 13 / 26

Real-Time: FIFO vs. Round Robin

These policies are managed by rt_sched_class.

SCHED_FIFO (First-In, First-Out)
Logic: Run the highest priority task until it:

1 Blocks (waits for I/O).
2 Yields voluntarily (sched_yield()).
3 Is preempted by a higher priority task.

No Time Slice: A purely CPU-bound FIFO task can starve the entire system (infinite loop risk).

SCHED_RR (Round Robin)
Logic: Same as FIFO, but with a Time Quantum (slice).
If the slice expires, the task is moved to the end of the queue for its priority level.
Ensures fairness among real-time tasks of the same priority.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 14 / 26

Normal: CFS (Completely Fair Scheduler)

Managed by fair_sched_class. Used for 99% of user tasks.
Goal: Model an ”Ideal Multi-Tasking CPU” on real hardware.
Mechanism:

Virtual Runtime (vruntime): A counter that increases as the process runs.
Weight: High priority (low nice value) tasks increase vruntime slower (get more CPU).

Data Structure: Red-Black Tree
Replaces the Runqueue array.
Key: vruntime.
Selection: Always pick the leftmost node (smallest
vruntime).
O(log N) efficiency.

20

10

5 15

30

(Leftmost = Next)

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 15 / 26

Outline

1 Project Overview & Motivation

2 Refresher: Process Management Basics

3 Linux Scheduling Policies

4 Project Topic 1 Requirements

5 Grading Advanced Exploration

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 16 / 26

Topic 1: Basic Requirements (Overview)

Objective: Understand the generic Linux scheduling framework and implement a custom scheduling
policy.

Mandatory Requirements (Pass/Fail Criteria):
1 Locate & Modify:

Modify kernel/sched/fair.c or add a new scheduling class.
Add printk/logging to prove your code is running.

2 Implement a Concrete Algorithm:
You must implement AT LEAST TWO specific algorithm (Details on next slide).
The scheduler must handle enqueue, dequeue, and pick_next_task.

3 Performance Comparison:
Run sysbench --test=cpu or you can choose a specific workload and implement the corresponding
targeted scheduling strategy. .
Compare Context Switches (csw) & Latency vs. Standard CFS.

4 GUI Visualization: Display process status (PID, State, Priority).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 17 / 26

Topic 1: Select Your Target Strategy

Choose AT LEAST TWO of the following strategies to implement:

Option A: Lottery Scheduler (Random)
”The more tickets you have, the higher chance to run.”

Mechanism: Assign ”tickets” to tasks based on their Nice value (Static Priority).
Logic: Generate a random number [0, Total Tickets]. Traverse the queue and pick the winner.
Pros: Easy to implement; statistically fair over time.

Option B: Weighted Round Robin (WRR)
”Higher priority gets a larger time slice.”

Mechanism: Replace the CFS Red-Black Tree with a simple Linked List.
Logic: Iterate through the list. Assign time slice = Base Slice × Weight.
Pros: Deterministic; simpler than CFS.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 18 / 26

Topic 1: Select Your Target Strategy

Choose AT LEAST TWO of the following strategies to implement:

Option C: Shortest Remaining Time First (SRTF)
”Finish small jobs fast.”

Mechanism: Add a burst_time field to task_struct (simulate via syscall).
Logic: Always pick the task with the smallest remaining burst time.
Pros: Minimizes average waiting time (Theoretical Optimum).

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 19 / 26

Implementation: Where to start?

Key Files in Kernel Source:
kernel/sched/core.c: Main scheduler entry point (__schedule).
kernel/sched/fair.c: Example implementation (CFS).

Critical Function Hook (Example for Lottery):
1 // In kernel/sched/fair.c
2 struct task_struct *
3 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4 {
5 // 1. Calculate total tickets (for Lottery)
6 // 2. Generate random number
7 // 3. Iterate 'cfs_rq->tasks' list to find the winner
8 // 4. Return the 'task_struct' of the winner
9

10 // NOTE: You might need to disable the RB-Tree logic
11 // and rely on the list_head for simple algorithms.
12 }
13

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 20 / 26

Requirement: GUI Visualization

You need to show what is happening inside the Kernel.
Recommended Approach:

1 Kernel Side: Expose data via /proc/mysched.
Iterate through ‘task_struct‘ list.
Print PID, Name, State, Tickets/Weight.

2 User Side: Python/C++ GUI.
Read /proc/mysched every 100ms.
Visualization: Draw a Pie Chart (Ticket distribution) or
Gantt Chart.

Tip
Visualizing the ”Tickets” or ”Time
Slices” specifically helps verify your
algorithm works!

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 21 / 26

Outline

1 Project Overview & Motivation

2 Refresher: Process Management Basics

3 Linux Scheduling Policies

4 Project Topic 1 Requirements

5 Grading Advanced Exploration

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 22 / 26

Grading Criteria (Topic 1 Specific)

Component Focus
Basic Implementation (25%) Logic correctness, Code structure (The ”Must-Haves”).
Advanced Options (10%) Innovation & Complexity (See next slides).
Stability (5%) NO KERNEL PANICS.
Presentation (20%) Live Demo + Q&A.
Report (20%) Analysis of results (Why did performance change?).

Note: Advanced Options are ”Open-Ended”.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 23 / 26

Advanced Options: Freedom to Explore

”Advanced Options are just some suggestions; any topic-related implementation you wish to
carry out is welcome.”

You are encouraged to go beyond the list. Choose a path that interests you:

Path A: System Features
Add practical features to your scheduler:

Dynamic Switching: Switch policies at
runtime via sysctl without rebooting.
NUMA-Awareness(Multi core): Prefer CPUs
on the same memory node to reduce latency.

Path B: Research & Optimization
Reproduce a paper.
Optimize for a specific workload.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 24 / 26

Research-Oriented Examples (For Path B)

Example 1: Paper Reproduction
Read a classic or recent paper from SOSP, OSDI, EuroSys or other system conference.
Implement a simplified version of their algorithm.

Example 2: Workload-Aware Scheduling
Analyze a specific application you care about (e.g., Redis, Video Encoding, Gaming).
Design a policy tailored for it.
e.g., ”A Scheduler that prioritizes tasks holding a mutex lock to reduce lock contention duration.”

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 25 / 26

Next Steps

1 Download Linux Kernel Source (Recommend v5.x or v6.x).
2 Set up a Virtual Machine or simulator (QEMU/KVM/VBOX) for development.

Warning: Do not develop on your host OS directly.
3 Read kernel/sched/sched.h and other related code to understand struct sched_class and

the implementation methods of Linux scheduling.
4 Realize your ideas.

Liangsen Wang (224040364@link.cuhk.edu.cn) CSC5031 Project - Topic 1 2026.1.12 26 / 26

	Project Overview & Motivation
	Refresher: Process Management Basics
	Linux Scheduling Policies
	Project Topic 1 Requirements
	Grading Advanced Exploration

