
Operating Systems Project Guidelines
1. Overview
The course project is a core component of this class.
You will work directly with a real Linux kernel to explore, modify, and evaluate critical operating system
subsystems such as process scheduling, memory management, I/O, and file systems.

2. Group Organization and Topic Selection
Team Size: 2 students per group.

Topic Assignment:

Each group will choose one primary topic from the official topic list.

Each topic focuses on a specific OS subsystem (Scheduler, Memory, I/O, or File System).

Topics will be distributed on a first-come, first-served basis to ensure diversity and each topic can
be chosen by a maximum of two teams.

3. Project presentation and report
Each group will deliver both a presentation and a final report.

(a) Presentation

Duration: 30 minutes per group and 10 minutes for Q&A.

The details will be announced later. The two groups that choose the same topic will give their
presentations in the same class.

Content should include:

Project motivation and objectives.

Key kernel components modified or analyzed.

Demonstration of implementation or results.

Key findings, challenges, and insights.

Each member should participate in the presentation.

(b) Final Report

The report should include:

1. Introduction & Motivation — What problem are you solving and why is it interesting?

2. Background & Related Work — Describe the subsystem and relevant kernel mechanisms.

3. Design & Implementation — Detail your modifications or extensions to the kernel.

4. Experimental Setup & Methodology — Explain how you tested and evaluated performance.

af://n4177
af://n4179
af://n4183
af://n4197
af://n4199
af://n4218

5. Results & Analysis — Present and discuss your findings using graphs and tables.

6. Conclusion — Summarize your project.

Topics
These topics and descriptions are provided for your reference. You can decide the specific experimental
environment and project goals on your own.

I. Process Management (4 topics)

Topic 1: Modify Linux Kernel Scheduler

Objective: Understand and improve the Linux Completely Fair Scheduler (CFS).
Basic Requirements:

Locate and modify the scheduling logic in the kernel source code.

Implement custom scheduling policies (such as priority-based proportional allocation, random
scheduling, or multi-core load balancing optimization).

Conduct performance comparisons by running sysbench , or custom workloads.

Display the process status through the GUI.

Advanced Options:

Dynamically switch scheduling policies.

Multi-core load balancing optimization or NUMA-aware scheduling policies.

Topic 2: Kernel-Level Thread Implementation and Analysis

Objective: To gain an in-depth understanding of the Linux thread model (shared task_struct structure).
Basic Requirements:

Modify or expand the logic for creating kernel threads (kthreads).

Add custom fields/statistics (such as the number of context switches, CPU affinity).

Compare the differences between kernel threads and user threads in terms of performance and
resource isolation.

Advanced Options:

Implement a lightweight user-space thread library (coroutines) and compare it with kthreads.

Support interaction between user-space threads and kernel threads through system calls.

af://n4236
af://n4238
af://n4239
af://n4257

Topic 3: Enhanced IPC Mechanism in the Kernel

Objective: Add a new IPC mechanism to the Linux kernel or optimize an existing one (such as pipe or shared
memory).
Basic Requirements:

Modify or expand files such as fs/pipe.c and ipc/shm.c .

Test the latency and bandwidth of the custom mechanism.

Advanced Options:

Introduce zero-copy IPC.

Implement a high-performance communication channel using a lock-free ring buffer.

Optimize cache locality in a multi-core scenario.

Topic 4: Lightweight Container Implementation with Namespaces

Objective: Implement process and environment isolation without using Docker.
Basic Requirements:

Use Linux namespaces (pid, mnt, uts, net, ipc) directly via system calls to create an isolated container
environment.

Run a shell inside the container and verify isolation effects.

Advanced Options:

Integrate with cgroups for resource limitation.

Analyze the context switching and namespace clone() performance impact.

Add simple image packaging/import functionality.

II. Memory Management (4 topics)

Topic 5: Implement a Custom Page Replacement Policy

Objective: Modify the Linux kernel’s page replacement algorithm.
Basic Requirements:

Implement an alternative policy (e.g., Working Set, Adaptive LRU).

Use vmstat and perf to monitor page fault behavior.

Display the page replacement behavior and page status through the GUI.

Advanced Options:

Implement an Access-Frequency-Aware Replacement strategy.

Compare hit rate and performance under different workloads.

af://n4274
af://n4290
af://n4306
af://n4307

Topic 6: Investigating and Tuning the Linux Buddy Allocator

Objective: Study and improve the Linux memory allocation subsystem.
Basic Requirements:

Add logging or statistical code to monitor allocation patterns.

Modify the buddy allocation strategy (e.g., adjust compaction priority).

Advanced Options:

Implement a fragmentation-threshold-based adaptive buddy system.

Compare the performance of slab, slub, and slob allocators.

Topic 7: Copy-on-Write (COW) Optimization Study

Objective: Analyze the behavior and performance of Copy-on-Write.
 Basic Requirements:

analyze memory copy latency.

Modify the COW trigger logic (e.g., delayed allocation, pre-copy).

Advanced Options:

Implement a custom system call to manually trigger COW.

Topic 8: Kernel Virtual Memory Mapping Visualizer

Objective: Track and visualize kernel virtual memory mapping changes.
Basic Requirements:

record process mmap/unmap operations.

Output mapping region changes to vmmap_log .

Develop a user-space visualization tool (Python or Web UI).

Advanced Options:

Track page table copies during fork() or exec() .

III. I/O and Device Management (3 topics)

Topic 9: Implement and Evaluate a Custom Disk Scheduler

Objective: Implement a new I/O scheduling algorithm in the kernel block layer.
Basic Requirements:

Study block/blk-mq.c and existing schedulers (e.g., mq-deadline , bfq).

Implement a priority-aware scheduling algorithm.

af://n4323
af://n4337
af://n4349
af://n4363
af://n4364

Evaluate performance using fio .

Advanced Options:

Design an adaptive scheduler that switches strategy based on queue depth or I/O pattern.

Compare results between SSD and HDD devices.

Topic 10: Kernel-Level Buffer Cache Instrumentation

Objective: Analyze kernel page cache hit and write-back behavior.
Basic Requirements:

Modify fs/buffer.c to log cache hit/miss events.

Expose statistics via /proc/cache_stats .

Implement a custom cache replacement strategy (e.g., frequency-based).

Advanced Options:

Compare cache behaviour under different read/write access patterns.

Topic 11: Asynchronous I/O Benchmark and Enhancement

Objective: Compare performance between io_uring and traditional synchronous I/O.

Basic Requirements:

Write a user-space benchmark comparing read/write vs. io_uring .

Measure latency, CPU utilization, and syscall counts.

Advanced Options:

Modify the kernel’s io_uring implementation (fs/io_uring.c) to add a new submission strategy.

Optimize queue contention in multi-threaded scenarios.

IV. File System (4 topics)

Topic 12: Implement a Simple File System in Kernel Space

Objective: Implement a minimal file system (similar to ext2) in the Linux kernel.
 Basic Requirements:

Implement inode, superblock, directory, and data block management.

Support basic file operations.

Advanced Options:

Add journaling or delayed write-back mechanisms.

Add checksum validation or metadata compression.

af://n4380
af://n4394
af://n4408
af://n4409

Topic 13: Journaling and Crash Recovery Mechanism

Objective: Study and modify the ext4 journaling mechanism.
 Basic Requirements:

Read and understand the fs/jbd2/ subsystem.

Add journal statistics or simulate crash recovery scenarios.

Advanced Options:

Implement a lightweight journaling mechanism (metadata-only).

Compare journaling vs. copy-on-write (CoW) mechanisms (as in btrfs).

Topic 14: File System Performance Characterization

Objective: Evaluate the performance of ext4, XFS, and btrfs file systems.
 Basic Requirements:

Use fio , sysbench , and dd to generate different workloads.

Measure sequential/random I/O performance, latency, and CPU usage.

Advanced Options:

Tune mount parameters (e.g., barrier, journaling mode).

Design custom workloads (e.g., many small files vs. large sequential writes).

Topic 15: Kernel-Level Data Deduplication Mechanism

Objective: Implement data deduplication at the kernel page cache or file system level.
 Basic Requirements:

Modify or extend fs/buffer.c to detect duplicate blocks using hashing.

Implement basic deduplication logic.

Advanced Options:

Integrate with compression algorithms (zlib/lz4).

Analyze CPU–I/O trade-offs introduced by deduplication.

af://n4423
af://n4437
af://n4451

	Operating Systems Project Guidelines
	1. Overview
	2. Group Organization and Topic Selection
	3. Project presentation and report
	(a) Presentation
	(b) Final Report

	Topics
	I. Process Management (4 topics)
	Topic 1: Modify Linux Kernel Scheduler
	Topic 2: Kernel-Level Thread Implementation and Analysis
	Topic 3: Enhanced IPC Mechanism in the Kernel
	Topic 4: Lightweight Container Implementation with Namespaces

	II. Memory Management (4 topics)
	Topic 5: Implement a Custom Page Replacement Policy
	Topic 6: Investigating and Tuning the Linux Buddy Allocator
	Topic 7: Copy-on-Write (COW) Optimization Study
	Topic 8: Kernel Virtual Memory Mapping Visualizer

	III. I/O and Device Management (3 topics)
	Topic 9: Implement and Evaluate a Custom Disk Scheduler
	Topic 10: Kernel-Level Buffer Cache Instrumentation
	Topic 11: Asynchronous I/O Benchmark and Enhancement

	IV. File System (4 topics)
	Topic 12: Implement a Simple File System in Kernel Space
	Topic 13: Journaling and Crash Recovery Mechanism
	Topic 14: File System Performance Characterization
	Topic 15: Kernel-Level Data Deduplication Mechanism

