OpenMIP

OpenMP
Application Programming
Interface

Version 5.0 November 2018

Copyright (©)1997-2018 OpenMP Architecture Review Board.

Permission to copy without fee all or part of this material is granted, provided the OpenMP
Architecture Review Board copyright notice and the title of this document appear. Notice is
given that copying is by permission of the OpenMP Architecture Review Board.

This page intentionally left blank.

Contents

1 Introduction 1
1.1 Scope. e 1
1.2 Glossary oo 2

1.2.1 Threading Concepts o e 2
1.2.2 OpenMP Language Terminology 2
123 Loop Terminology 8
1.2.4 Synchronization Terminology 9
1.2.5 Tasking Terminology 10
1.2.6 DataTerminology i 12
1.2.7 Implementation Terminology 17
1.2.8 Tool Terminology 17
1.3 ExecutionModel 20
1.4 Memory Model 23
1.4.1 Structure of the OpenMP Memory Model 23
1.4.2 Device Data Environments 24
1.43 Memory Management 25
144 TheFlushOperation 25
1.4.5 Flush Synchronization and Happens Before 27
1.4.6 OpenMP Memory Consistency 28
1.5 Toollnterfaces 29
151 OMPT 29
1.52 OMPD e 30

ii

1.6 OpenMP Compliance it 31

1.7 Normative References 31
1.8 Organization of this Document 34
2 Directives 37
2.1 Directive Format 38
2.1.1 Fixed Source Form Directives 41
2.1.2 Free Source Form Directives 41
2.1.3 Stand-Alone Directives o 42
2.1.4 Array Shaping 43
2.1.5 Array Sections 44
2.1.6 Tterators 47
2.2 Conditional Compilation 49
2.2.1 Fixed Source Form Conditional Compilation Sentinels 50
2.2.2 Free Source Form Conditional Compilation Sentinel 50
2.3 Variant Directives 51
23.1 OpenMP Context. o v i vt e e e 51
2.3.2 Context Selectors 53
2.3.3 Matching and Scoring Context Selectors 55
234 Metadirectives 56
235 declarevariantDirective 58
24 requiresDirective 60
2.5 Internal Control Variables 63
2.5.1 ICV Descriptions 64
2.5.2 ICV Initialization 66
2.5.3 Modifying and Retrieving ICV Values 68
254 HowlICVsareScoped 70
2.54.1 How the Per-Data Environment ICVs Work 72
2.5.5 ICV Override Relationships 72
2.6 parallel ConstrucCt v i v v v it et e e e e 74
2.6.1 Determining the Number of Threads for a parallel Region 78
2.6.2 Controlling OpenMP Thread Affinity 80
277 teams ConstruCt it t 82

OpenMP API — Version 5.0 November 2018

2.8 Worksharing Constructs L 86

2.8.1 sectionsConstruct 86
282 singleConstruct. 89
2.8.3 workshare Constructo 92
2.9 Loop-Related Directives 95
29.1 Canonical LoopForm, 95
29.2 Worksharing-Loop Construct 101
2.9.2.1 Determining the Schedule of a Worksharing-Loop 109
293 SIMDDirectives 110
29.3.1 simdConstruct 110
2.9.3.2 Worksharing-Loop SIMD Construct 114
2933 declaresimdDirective 116
294 distributeloopConstructs 120
294.1 distributeConstruct 120
2942 distributesimdConstruct. 123
2.9.43 Distribute Parallel Worksharing-Loop Construct 125
2.9.4.4 Distribute Parallel Worksharing-Loop SIMD Construct 126
295 1oop CONnStruct v v v v v e e e e e e e e e 128
29.6 scanDirective e 132
2.10 Tasking Constructs 135
2.10.1 task Construct e e 135
2.10.2 taskloop Construct v v v i vt e e e 140
2.10.3 taskloopsimdConstruct 146
2.104 taskyieldConstruct 147
2.10.5 Inmitial Tasko 148
2.10.6 Task Scheduling 149
2.11 Memory Management Directives 152
2.11.1 Memory Spaceso e 152
2.11.2 Memory Allocators 152
2.11.3 allocateDirective 156
2.114 allocateClause 158
2.12 Device Directives e 160
2.12.1 Device Initialization o 160

Contents iii

2.12.2 targetdataConstruct 161
2.12.3 target enterdataConstruct. 164
2.12.4 target exit dataConstruct 166
2125 target Construct. e 170
2.12.6 target update Construct 176
2.12.7 declaretarget Directive 180
2.13 Combined Constructs e 185
2.13.1 Parallel Worksharing-Loop Construct 185
2.13.2 parallel loop Construct o v v v v v v ... 186
2.13.3 parallel sections Construct 188
2.13.4 parallel workshare Construct 189
2.13.5 Parallel Worksharing-Loop SIMD Construct 190
2.13.6 parallelmasterConstruct 191
2.13.7 master taskloopConstructo 192
2.13.8 master taskloop simd Construct 194
2.13.9 parallel master taskloop Construct 195
2.13.10 parallel master taskloop simd Construct. 196
2.13.11 teamsdistribute Construct 197
2.13.12 teams distribute simd Construct 198
2.13.13 Teams Distribute Parallel Worksharing-Loop Construct 200
2.13.14 Teams Distribute Parallel Worksharing-Loop SIMD Construct 201
2.13.15 teams 1oop CONSIIUCt v v v vt et e e e e 202
2.13.16 target parallel Construct v v v v vt 203
2.13.17 Target Parallel Worksharing-Loop Construct 205
2.13.18 Target Parallel Worksharing-Loop SIMD Construct 206
2.13.19 target parallel loop Construct 208
2.13.20 target simd Construct 209
2.13.21 target teams Construct L. 210
2.13.22 target teams distribute Construct 211
2.13.23 target teams distribute simd Construct 213
2.13.24 target teams loop Construct 214
2.13.25 Target Teams Distribute Parallel Worksharing-Loop Construct 215
2.13.26 Target Teams Distribute Parallel Worksharing-Loop SIMD Construct 216

iv OpenMP API — Version 5.0 November 2018

2.14 Clauses on Combined and Composite Constructs 218

215 A£Clauseo e e 220
2.16 master Construct 221
2.17 Synchronization Constructs and Clauses 223
2.17.1 eritical Construct i 223
2.172 barrierConstruct 226
2.17.3 Implicit Barriers 228
2.17.4 Implementation-Specific Barriers 230
2.17.5 taskwait Construct 230
2.17.6 taskgroup Constructt 232
2177 atomicConstruct. 234
2.17.8 £lushConstruct e 242
2.17.8.1 ImplicitFlushes 246
2.179 orderedConstructo 250
2.17.10 Depend Objects o e e 254
2.17.10.1 depobj Construct e 254
2.17.11 depend Clause i i it e e e 255
2.17.12 Synchronization Hints 260
2.18 Cancellation Constructs 263
2.18.1 cancel ConsStruct. o it i e e e e e 263
2.18.2 cancellationpoint Construct 267
2.19 Data Environment e 269
2.19.1 Data-Sharing Attribute Rules 269
2.19.1.1 Variables Referenced in a Construct 270
2.19.1.2 Variables Referenced in a Region but not in a Construct 273
2.19.2 threadprivateDirective, 274
2.193 List Item Privatization 279
2.19.4 Data-Sharing Attribute Clauses, . 282
2.19.4.1 defaultClause 282
21942 sharedClause i 283
21943 privateClause e 285
2.19.44 firstprivateClause, ... 286
2.19.45 lastprivateClause 288

Contents v

2.19.46 linearClause i i i 290
2.19.5 Reduction Clauses and Directives 293
2.19.5.1 Properties Common To All Reduction Clauses 294
2.19.5.2 Reduction Scoping Clauses 299
2.19.5.3 Reduction Participating Clauses 300
2.19.54 reductionClause 300
2.1955 task_reductionClause 303
2.19.5.6 in_reductionClause 303
2.19.5.7 declare reduction Directive 304
2.19.6 Data Copying Clauses o v v v v vt e i e e 309
2.19.6.1 copyinClause e 310
2.19.6.2 copyprivateClause 312
2.19.7 Data-Mapping Attribute Rules, Clauses, and Directives 314
2.19.7.1 mapClause 315
2.19.7.2 defaultmapClause 324
2.19.7.3 declaremapper Directive L. 326

220 Nestingof Regions 328
3 Runtime Library Routines 331
3.1 Runtime Library Definitions 332
3.2 Execution Environment Routines 334
32.1 omp_set_num threads 334
322 omp_get_ num threads 335
3.2.3 omp_get_max_threads 336
324 omp_get_thread num 337
325 omp_get_nNuUm PrOCS v v it e e 338
326 omp_in parallel 339
327 omp_set_dynamic 340
328 omp_get_dynamic 341
329 omp_get_cancellation 342
3210 omp_set_nested. e 343
3211 omp_get_nested. e 344
32.12 omp_set_schedule 345
32.13 omp_get_schedule 347

vi OpenMP API — Version 5.0 November 2018

3.2.14 omp_get_thread limit 348

3.2.15 omp_get_supported_active levels 349
3.2.16 omp_set_max _active_levels 350
3.2.17 omp_get_max_active_levels 351
3218 omp_get_level e e 352
3.2.19 omp_get_ancestor_thread num 353
3220 omp_get_team size 354
3.221 omp_get_active_level 355
3222 omp_in_final e 356
3223 omp_get_proc_bind 357
3224 omp_get _num places 358
3225 omp_get_place num ProCS 359
3226 omp_get_place proc_ids 360
3227 omp_get_place numt 362
3.2.28 omp_get_partition num places 362
3229 omp_get_partition_place_nums 363
3230 omp_set_affinity format 364
3231 omp_get_affinity format 366
3232 omp_display_affinity 367
3233 omp_capture_affinity 368
3234 omp_set_default_device 369
3235 omp_get_default_device 370
3236 omp_get_num devices 371
3237 omp_get_device_ num 372
3238 omp_get_num_teams 373
3239 omp_get_team num 374
3240 omp_is_initial device 375
3241 omp_get_initial_device 376
3.242 omp_get_max_task_priority 377
3243 omp_pause_XeSOUXCE« v v v v v v it et 378
3244 omp_pause_resource_all 380
33 LockRoutines 381
3.3.1 omp_init_lock and omp_init_nest_lock 384

Contents vii

332

omp_init_lock_with_hint and

omp_init_nest_lock_with_hint 385

333 omp_destroy_lock and omp_destroy nest_lock. 387
334 omp_set_lockand omp_set_nest_lock 388
3.3.5 omp_unset_lock and omp_unset_nest_lock 390
33.6 omp_test_lockand omp_test_nest_lock 392
34 TimingRoutines L 394
3.4.1 omp_get_wtime 394
342 omp_get_wtick 395
3.5 EventRoutine 396
35,1 omp_fulfill event, . 396
3.6 Device Memory Routines 397
3.6.1 omp_target_alloc 397
362 omp_target_free 399
363 omp_target_is_present 400
3,64 omp_target MEemCPYt e e 400
3.6.5 omp_target_memcpy rect 402
3.6.6 omp_target_associate_ ptr. 403
3.6.7 omp_target_disassociate_ ptr 405
3.7 Memory Management Routines L. 406
3.77.1 Memory Management Types 406
372 omp_init_allocator 409
3773 omp_destroy_allocator 410
374 omp_set_default_allocator 411
3.7.5 omp_get_default_allocator 412
37.6 omp_alloC it e e e e 413
377 omp_free e 414
3.8 ToolControl Routine 415
4 OMPT Interface 419
4.1 OMPT Interfaces Definitions 419
4.2 Activating a First-Party Tool 420
4.2.1 ompt_start_tool 420
4.2.2 Determining Whether a First-Party Tool Should be Initialized 421

viii OpenMP API — Version 5.0 November 2018

4.2.3 Initializing a First-Party Tool 423

4.2.3.1 Binding Entry Points in the OMPT Callback Interface 424
4.2.4 Monitoring Activity on the Host with OMPT 425
4.2.5 Tracing Activity on Target Devices with OMPT 427

4.3 Finalizing a First-Party Tool 432
4.4 OMPTDataTypes o v v i i e e e e e e e e e e 433
4.4.1 Tool Initialization and Finalization 433
442 Callbacks o 434
443 Tracing e 435

4.43.1 RecordType e 435

4432 NativeRecordKind L oo 435

4.43.3 Native Record Abstract Type 436

4434 RecordType e 436
4.44 Miscellaneous Type Definitions 438

4441 ompt_callback_t 438

4442 ompt_set_result_t, 438

4443 ompt_id t 439

4444 ompt_data_t e 440

4445 ompt_device_t 441

4446 ompt_device_time_t, 441

4447 ompt_buffer t 441

4448 ompt_buffer cursor_t 442

4449 ompt_dependence_t 442

44410 ompt_thread t 443

44411 ompt_scope_endpoint_t 443

44412 ompt_dispatch_t, 444

44413 ompt_sync_region_t 444

44414 ompt_target_data op t 444

44415 ompt_work_t 445

44416 ompt_mutex_t 445

444.17 ompt_native mon_flag t 446

44418 ompt_task_flag t 446

44419 ompt_task status_t 447

Contents ix

X

44420 ompt_target_t 448

44421 ompt_parallel flag t 448
44422 ompt_target map flag t 449
44423 ompt_dependence_type_t 450
44424 ompt_cancel_flag t, 450
44425 ompt_hwid t 451
44426 ompt_state_ t 452
44427 ompt_frame_t 454
44428 ompt_frame flag t, 455
44429 ompt_wait_id t 456
4.5 OMPT Tool Callback Signatures and Trace Records 457
4.5.1 Initialization and Finalization Callback Signature 457
45.1.1 ompt_initialize_t, 457
4512 ompt_finalize t 458
4.5.2 Event Callback Signatures and Trace Records 459
452.1 ompt_callback _thread begin_t 459
4522 ompt_callback thread end t 460
4523 ompt_callback parallel begin_t............... 461
4524 ompt_callback parallel end t 463
4525 ompt_callback work t. 464
452.6 ompt_callback dispatch t 465
4527 ompt_callback task_create_t 467
452.8 ompt_callback dependences_t 468
4529 ompt_callback_task_dependence_t 470
452.10 ompt_callback task_schedule t 470
452.11 ompt_callback_implicit_task t 471
452.12 ompt_callback master_t 473
45.2.13 ompt_callback sync_region t 474
452.14 ompt_callback mutex acquire t 476
452.15 ompt_callback mutex t 477
452.16 ompt_callback nest_lock_t................... 479
452.17 ompt_callback _flush t 480
45.2.18 ompt_callback cancel_t 481

OpenMP API — Version 5.0 November 2018

4.5.2.19
4.5.2.20
45221
4.5.2.22
4.5.2.23
4.5.2.24
4.5.2.25
4.5.2.26
4.5.2.27
4.5.2.28
4.5.2.29

ompt_callback_device_initialize_t
ompt_callback_device_finalize t
ompt_callback_device load t
ompt_callback_device unload t
ompt_callback_buffer_ request_t.
ompt_callback_buffer complete_t
ompt_callback_target_data op t.
ompt_callback_target_t
ompt_callback_target map t
ompt_callback_target_submit_ t
ompt_callback_control tool t

4.6 OMPT Runtime Entry Points for Tools
4.6.1 Entry Points in the OMPT Callback Interface

4.6.1.1
4.6.1.2
4.6.1.3
4.6.14
4.6.1.5
4.6.1.6
4.6.1.7
4.6.1.8
4.6.1.9
4.6.1.10
4.6.1.11
4.6.1.12
4.6.1.13
4.6.1.14
4.6.1.15
4.6.1.16
4.6.1.17
4.6.1.18
4.6.1.19

ompt_enumerate states_t 00
ompt_enumerate mutex impls t
ompt_set_callback t,
ompt_get_callback t,
ompt_get_thread data_ t
ompt_get_num procs_t
ompt_get_num places_t
ompt_get_place_proc_ ids_t.
ompt_get_place_ num t.
ompt_get_partition place nums_t
ompt_get _proc_id t oo
ompt_get_state_t o oo o oo
ompt_get_parallel_info t
ompt_get_task_info t. 0 L.
ompt_get_task memory t
ompt_get_target_info_ t
ompt_get_num devices_t,
ompt_get_unique_id t. 0L,

ompt_finalize tool t.

Contents

xi

xii

4.6.2 Entry Points in the OMPT Device Tracing Interface 518
4.6.2.1 ompt_get_device_num procs_t 518
4.6.2.2 ompt_get_device_time_t 519
4623 ompt_translate_time t 520
4624 ompt_set_trace_ompt_t 521
4.6.2.5 ompt_set_trace_native_ t 522
4.6.2.6 ompt_start_trace t 523
46277 ompt_pause trace t 524
4.62.8 ompt_flush trace_ t 525
4629 ompt_stop_ trace_t 526
4.6.2.10 ompt_advance_buffer cursor_t 527
4.62.11 ompt_get record type t 528
4.6.2.12 ompt_get_record ompt_t 529
4.6.2.13 ompt_get_record native_t 530
4.6.2.14 ompt_get_record abstract_t 531

4.6.3 Lookup Entry Points: ompt_ function_lookup_t 531

5 OMPD Interface 533
5.1 OMPD Interfaces Definitions 534
5.2 ActivatinganOMPD Tool 534

5.2.1 Enabling the Runtime for OMPD 534

522 ompd_dll_locations 535

523 ompd dll locations_valid. 536

5.3 OMPDDataTypes ot i i e 536

5.3.1 SizeType o e 536

532 WaitIDType o o e 537

533 BasicValueTypes 537

534 Address Type L 538

5.3.5 Frame Information Type 538

5.3.6 System Device Identifiers 539

5.3.7 Native Thread Identifiers 539

5.3.8° OMPD Handle Types 540

5.3.9 OMPD Scope Types o v v it it 541

53.10 ICVIDTYpe . . . o v v it e e e e e e e e e 542

OpenMP API — Version 5.0 November 2018

5.3.11 Tool Context Types o i i ittt ettt 542

5.3.12 ReturnCode Types o v v i i i i e e 543
5.3.13 Primitive Type Sizes Lo 544
5.4 OMPD Tool Callback Interface 545
54.1 Memory Management of OMPD Library 545
5.4.1.1 ompd_callback _memory_alloc_fn t 546
54.12 ompd _callback memory free fn t. 546
5.4.2 Context Management and Navigation 547
5.4.2.1 ompd_callback_get_thread context_for_thread_ id
CEn ot e 547
5422 ompd callback sizeof fn t. 549
5.4.3 Accessing Memory in the OpenMP Program or Runtime 549
543.1 ompd_callback _symbol addr fn t............... 550
5432 ompd_callback memory read fn_ t............... 551
5433 ompd_callback _memory write fn t 553
5.4.4 Data Format Conversion: ompd_callback_device_host_fn t ... 554
54.5 Output: ompd_callback_print_string fn t. 556
54.6 The Callback Interface 556
5.5 OMPD Tool Interface Routines 558
5.5.1 Per OMPD Library Initialization and Finalization 558
5.5.1.1 ompd_initialize. 558
55.1.2 ompd _get_api_version. 559
5.5.1.3 ompd_get_version_string 560
55.14 ompd_finalize 561
5.5.2 Per OpenMP Process Initialization and Finalization 562
5.5.2.1 ompd_process_initialize 562
5522 ompd_device_initialize 563
5523 ompd_rel_address_space_handle 564
5.5.3 Thread and Signal Safety 565
5.54 Address Space Information oL 565
554.1 ompd _get_omp_version. 565
5542 ompd get_omp version_string 566

Contents xiii

Xiv

555 ThreadHandles 567

5.55.1 ompd_get_thread in parallel 567
5.552 ompd _get_thread handle 568
5553 ompd _rel thread handle 569
5.554 ompd_thread_handle compare 570
5555 ompd get_thread id 570
5.5.6 Parallel RegionHandles 571
5.5.6.1 ompd_get_curr_ parallel _handle 571
5.5.6.2 ompd_get_enclosing parallel_handle 572
5.5.6.3 ompd _get_task_parallel_handle 573
5.5.64 ompd _rel parallel_handle 574
5.5.6.5 ompd parallel_handle_compare 575
5,57 TaskHandles 576
5.5.7.1 ompd_get_curr_task_handle. 576
5.5.72 ompd_get_generating task_handle 577
5.5.7.3 ompd_get_scheduling task_handle 578
5574 ompd_get_task_in_ parallel. 579
5575 ompd _rel task_handle. 580
5.5.76 ompd_task_handle_compare 580
55777 ompd _get_task_function 581
5578 ompd _get_task_frame 582
5.5.79 ompd_enumerate_states 583
5.5.7.10 ompd _get_state 585
5.5.8 Display Control Variables 586
5.5.8.1 ompd_get_display_control_vars 586
5.5.82 ompd_rel display control_vars 587
5.5.9 Accessing Scope-Specific Information L0 588
5.59.1 ompd _enumerate_icvs 588
5592 ompd get_icv _from scope 590
5593 ompd get_icv_string from scope. 591
5594 ompd get_tool _data 592
5.6 Runtime Entry Points for OMPD 594
5.6.1 Beginning Parallel Regions 594

OpenMP API — Version 5.0 November 2018

5.6.2 Ending Parallel Regions 595

5.6.3 Beginning Task Regions L. 595
5.64 Ending Task Regions 596
5.6.5 Beginning OpenMP Threads 597
5.6.6 Ending OpenMP Threads 597
5.6.7 Initializing OpenMP Devices 598
5.6.8 Finalizing OpenMP Devices 599

6 Environment Variables 601
6.1 OMP_SCHEDULE v s vt ittt et e e e e e e s e e e e 601
6.2 OMP_NUM THREADS i i it ittt i e e e e e 602
6.3 OMP_DYNAMIC ittt ettt e e e e e e e e e 603
6.4 OMP_PROC_BIND vt vttt ettt e e e e e 604
6.5 OMP_PLACESt ittt ittt et e e e 605
6.6 OMP_STACKSIZE i i it ittt i e e e e e e 607
6.7 OMP_WAIT POLICYt v v ittt et e e e e e 608
6.8 OMP_MAX ACTIVE_LEVELS vt v vt 608
6.9 OMP_NESTED vt vttt ettt e e e e e e e e e e e e 609
6.10 OMP_THREAD_LIMITt vt i et ettt e e e e e e 610
6.11 OMP_CANCELLATION v vttt it e et e e e e e e e 610
6.12 OMP_DISPLAY ENVt v vttt it e et e e e e e e 611
6.13 OMP_DISPLAY AFFINITY i i i ittt e e e 612
6.14 OMP_AFFINITY FORMAT v vt i ettt e e e e 613
6.15 OMP_DEFAULT DEVICE vt v vttt et 615
6.16 OMP_MAX_ TASK PRIORITY ' v v i ittt 615
6.17 OMP_TARGET_OFFLOAD« . v vttt it e et e e e 615
6.18 OMP_TOOL v ittt et e e e e e 616
6.19 OMP_TOOL_LIBRARIES ot v vt ittt et 617
6.20 OMP_DEBUG v v it e et e e e e e e e e e e e e 617
6.21 OMP_ALLOCATORt ¢t e ittt et e e e e e e e 618
A OpenMP Implementation-Defined Behaviors 619
B Features History 627
B.1 Deprecated Features 627

Contents XV

B.2 Version4.5to5.0Differences 627

B.3 Version4.0to4.5Differences 631
B.4 Version3.1to 4.0 Differences 633
B.5 Version3.0to3.1 Differences 634
B.6 Version2.5to3.0Differences 635
Index 639

Xvi OpenMP API — Version 5.0 November 2018

List of Figures

2.1 Determining the schedule for a Worksharing-Loop 109

4.1 First-Party Tool Activation Flow Chart 422

Xvii

List of Tables

1.1

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12

3.1

4.1
4.2
4.3

5.1
5.2

6.1
6.2

Xviii

Map-Type Decay of Map Type Combinations

ICV Initial Values
Ways to Modify and to Retrieve ICV Values
Scopes of ICVs e
ICV Override Relationships
schedule Clause kind Values
schedule Clause modifier Values
ompt_callback_task_create callback flags evaluation
Predefined Memory Spaces
Allocator Traits
Predefined Allocators L
Implicitly Declared C/C++ reduction-identifiers
Implicitly Declared Fortran reduction-identifiers

Standard Tool Control Commands

OMPT Callback Interface Runtime Entry Point Names and Their Type Signatures .
Valid Return Codes of ompt_set_callback for Each Callback
OMPT Tracing Interface Runtime Entry Point Names and Their Type Signatures . .

Mapping of Scope Type and OMPD Handles
OMPD-specific ICVs e

Defined Abstract Names for OMP_ PLACES v v v v v v ii i
Auvailable Field Types for Formatting OpenMP Thread Affinity Information

426
428
430

542
589

605
613

ONO O~ W

10
11
12
13
14
15
16
17

18

19
20
21
22
23
24

CHAPTER 1

1.1

Introduction

The collection of compiler directives, library routines, and environment variables described in this
document collectively define the specification of the OpenMP Application Program Interface
(OpenMP API) for parallelism in C, C++ and Fortran programs.

This specification provides a model for parallel programming that is portable across architectures
from different vendors. Compilers from numerous vendors support the OpenMP API. More
information about the OpenMP API can be found at the following web site

http://www.openmp.org

The directives, library routines, environment variables, and tool support defined in this document
allow users to create, to manage, to debug and to analyze parallel programs while permitting
portability. The directives extend the C, C++ and Fortran base languages with single program
multiple data (SPMD) constructs, tasking constructs, device constructs, worksharing constructs,and
synchronization constructs, and they provide support for sharing, mapping and privatizing data.
The functionality to control the runtime environment is provided by library routines and
environment variables. Compilers that support the OpenMP API often include a command line
option to the compiler that activates and allows interpretation of all OpenMP directives.

Scope

The OpenMP API covers only user-directed parallelization, wherein the programmer explicitly
specifies the actions to be taken by the compiler and runtime system in order to execute the program
in parallel. OpenMP-compliant implementations are not required to check for data dependencies,
data conflicts, race conditions, or deadlocks, any of which may occur in conforming programs. In
addition, compliant implementations are not required to check for code sequences that cause a
program to be classified as non-conforming. Application developers are responsible for correctly

—_

O W N oo

12
13

14
15

16
17
18
19

20
21

22

23

24
25

using the OpenMP API to produce a conforming program. The OpenMP API does not cover
compiler-generated automatic parallelization.

1.2 Glossary

1.2.1 Threading Concepts

thread An execution entity with a stack and associated static memory, called threadprivate
memory.

OpenMP thread A thread that is managed by the OpenMP implementation.

thread number A number that the OpenMP implementation assigns to an OpenMP thread. For
threads within the same team, zero identifies the master thread and consecutive
numbers identify the other threads of this team.

idle thread An OpenMP thread that is not currently part of any parallel region.

thread-safe routine A routine that performs the intended function even when executed concurrently (by
more than one thread).

processor Implementation-defined hardware unit on which one or more OpenMP threads can
execute.

device An implementation-defined logical execution engine.
COMMENT: A device could have one or more processors.
host device The device on which the OpenMP program begins execution.
target device A device onto which code and data may be offloaded from the host device.

parent device For a given target region, the device on which the corresponding target
construct was encountered.

1.2.2 OpenMP Language Terminology

2

base language A programming language that serves as the foundation of the OpenMP specification.

COMMENT: See Section 1.7 on page 31 for a listing of current base
languages for the OpenMP APIL.

OpenMP API — Version 5.0 November 2018

—_

oN OO WN

11
12

13
14
15
16

17
18

19
20

21
22

23
24

25
26

27
28
29

30
31

32
33

base program

program order

structured block

compilation unit

enclosing context

directive

metadirective
white space

OpenMP program

conforming program

declarative directive

executable directive

stand-alone directive

A program written in a base language.

An ordering of operations performed by the same thread as determined by the
execution sequence of operations specified by the base language.

COMMENT: For C11 and C++11, program order corresponds to the
sequenced before relation between operations performed by the same
thread.

For C/C++, an executable statement, possibly compound, with a single entry at the
top and a single exit at the bottom, or an OpenMP construct.

For Fortran, a block of executable statements with a single entry at the top and a
single exit at the bottom, or an OpenMP construct.

COMMENT: See Section 2.1 on page 38 for restrictions on structured
blocks.

For C/C++, a translation unit.

For Fortran, a program unit.

For C/C++, the innermost scope enclosing an OpenMP directive.

For Fortran, the innermost scoping unit enclosing an OpenMP directive.

For C/C++, a #pragma, and for Fortran, a comment, that specifies OpenMP
program behavior.

COMMENT: See Section 2.1 on page 38 for a description of OpenMP
directive syntax.

A directive that conditionally resolves to another directive at compile time.
A non-empty sequence of space and/or horizontal tab characters.

A program that consists of a base program that is annotated with OpenMP directives
or that calls OpenMP API runtime library routines

An OpenMP program that follows all rules and restrictions of the OpenMP
specification.

An OpenMP directive that may only be placed in a declarative context. A declarative
directive results in one or more declarations only; it is not associated with the
immediate execution of any user code.

An OpenMP directive that is not declarative. That is, it may be placed in an
executable context.

An OpenMP executable directive that has no associated user code except for that
which appears in clauses in the directive.

CHAPTER 1. INTRODUCTION 3

- O OWow N~ WON =

—_

—_
w N

—_ 1
© 0N oM

N NN
N = O

\S]
w

N N
a

NN
N O

N
oo

29

30
31

32
33

construct

combined construct

composite construct

combined target
construct

region

active parallel region

inactive parallel region

active target region

inactive target region

An OpenMP executable directive (and for Fortran, the paired end directive, if any)
and the associated statement, loop or structured block, if any, not including the code
in any called routines. That is, the lexical extent of an executable directive.

A construct that is a shortcut for specifying one construct immediately nested inside
another construct. A combined construct is semantically identical to that of explicitly
specifying the first construct containing one instance of the second construct and no
other statements.

A construct that is composed of two constructs but does not have identical semantics
to specifying one of the constructs immediately nested inside the other. A composite
construct either adds semantics not included in the constructs from which it is
composed or the nesting of the one construct inside the other is not conforming.

A combined construct that is composed of a target construct along with another
construct.

All code encountered during a specific instance of the execution of a given construct
or of an OpenMP library routine. A region includes any code in called routines as
well as any implicit code introduced by the OpenMP implementation. The generation
of a task at the point where a task generating construct is encountered is a part of the
region of the encountering thread. However, an explicit task region corresponding to
a task generating construct is not part of the region of the encountering thread unless
it is an included task region. The point where a target or teams directive is
encountered is a part of the region of the encountering thread, but the region
corresponding to the target or teams directive is not.

COMMENTS:

A region may also be thought of as the dynamic or runtime extent of a
construct or of an OpenMP library routine.

During the execution of an OpenMP program, a construct may give rise to
many regions.

A parallel region that is executed by a team consisting of more than one thread.

A parallel region that is executed by a team of only one thread.

A target region that is executed on a device other than the device that encountered
the target construct.

A target region that is executed on the same device that encountered the target
construct.

4 OpenMP API - Version 5.0 November 2018

oONOO OO A WODN =

11
12

13
14
15
16

17
18
19
20

21

22
23

24
25

26
27

28
29
30

31
32
33

34

sequential part

master thread

parent thread

child thread

ancestor thread

descendent thread

team

league
contention group

implicit parallel region

initial thread

All code encountered during the execution of an initial task region that is not part of
aparallel region corresponding to a parallel construct or a task region
corresponding to a task construct.

COMMENTS:
A sequential part is enclosed by an implicit parallel region.

Executable statements in called routines may be in both a sequential part
and any number of explicit parallel regions at different points in the
program execution.

An OpenMP thread that has thread number 0. A master thread may be an initial
thread or the thread that encounters a parallel construct, creates a team,
generates a set of implicit tasks, and then executes one of those tasks as thread
number 0.

The thread that encountered the parallel construct and generated a parallel
region is the parent thread of each of the threads in the team of that parallel
region. The master thread of a parallel region is the same thread as its parent
thread with respect to any resources associated with an OpenMP thread.

When a thread encounters a parallel construct, each of the threads in the
generated parallel region’s team are child threads of the encountering thread.
The target or teams region’s initial thread is not a child thread of the thread that
encountered the target or teams construct.

For a given thread, its parent thread or one of its parent thread’s ancestor threads.

For a given thread, one of its child threads or one of its child threads’ descendent
threads.

A set of one or more threads participating in the execution of a parallel region.
COMMENTS:

For an active parallel region, the team comprises the master thread and at
least one additional thread.

For an inactive parallel region, the team comprises only the master thread.
The set of teams created by a teams construct.
An initial thread and its descendent threads.

An inactive parallel region that is not generated from a parallel construct.
Implicit parallel regions surround the whole OpenMP program, all target regions,
and all teams regions.

The thread that executes an implicit parallel region.

CHAPTER 1. INTRODUCTION 5

—_

O OW oOo~N o AW DN

- a4 a4 a4 a4 a4
a A 0 N =

—_ a4
@® N o

-
©

NN
- O

N NN
ESNNCC RN \V)

N N
o O

N N
©

W wnN
- O ©

w w
wWw N

initial team
nested construct

closely nested construct

nested region

closely nested region

strictly nested region
all threads

current team
encountering thread
all tasks

current team tasks

generating task

binding thread set

binding task set

The team that comprises an initial thread executing an implicit parallel region.
A construct (lexically) enclosed by another construct.

A construct nested inside another construct with no other construct nested between
them.

A region (dynamically) enclosed by another region. That is, a region generated from
the execution of another region or one of its nested regions.

COMMENT: Some nestings are conforming and some are not. See
Section 2.20 on page 328 for the restrictions on nesting.

A region nested inside another region with no parallel region nested between
them.

A region nested inside another region with no other region nested between them.
All OpenMP threads participating in the OpenMP program.

All threads in the team executing the innermost enclosing parallel region.
For a given region, the thread that encounters the corresponding construct.

All tasks participating in the OpenMP program.

All tasks encountered by the corresponding team. The implicit tasks constituting the
parallel region and any descendent tasks encountered during the execution of
these implicit tasks are included in this set of tasks.

For a given region, the task for which execution by a thread generated the region.
The set of threads that are affected by, or provide the context for, the execution of a
region.

The binding thread set for a given region can be all threads on a device, all threads
in a contention group, all master threads executing an enclosing teams region, the
current team, or the encountering thread.

COMMENT: The binding thread set for a particular region is described in
its corresponding subsection of this specification.

The set of tasks that are affected by, or provide the context for, the execution of a
region.

The binding task set for a given region can be all tasks, the current team tasks, all
tasks of the current team that are generated in the region, the binding implicit task, or
the generating task.

COMMENT: The binding task set for a particular region (if applicable) is
described in its corresponding subsection of this specification.

6 OpenMP API — Version 5.0 November 2018

o~N O O~ N =

11
12
13

14
15
16

17
18
19

20
21

22
23

24

25
26

27
28

29
30

31

32
33

34

binding region The enclosing region that determines the execution context and limits the scope of

the effects of the bound region is called the binding region.

Binding region is not defined for regions for which the binding thread set is all
threads or the encountering thread, nor is it defined for regions for which the binding
task set is all tasks.

COMMENTS:

The binding region for an ordered region is the innermost enclosing
loop region.

The binding region for a taskwait region is the innermost enclosing
task region.

The binding region for a cancel region is the innermost enclosing
region corresponding to the construct-type-clause of the cancel
construct.

The binding region for a cancellation point region is the
innermost enclosing region corresponding to the construct-type-clause of
the cancellation point construct.

For all other regions for which the binding thread set is the current team
or the binding task set is the current team tasks, the binding region is the
innermost enclosing parallel region.

For regions for which the binding task set is the generating task, the
binding region is the region of the generating task.

A parallel region need not be active nor explicit to be a binding
region.

A task region need not be explicit to be a binding region.

A region never binds to any region outside of the innermost enclosing
parallel region.

orphaned construct A construct that gives rise to a region for which the binding thread set is the current

worksharing construct

team, but is not nested within another construct giving rise to the binding region.

A construct that defines units of work, each of which is executed exactly once by one
of the threads in the team executing the construct.

For C/C++, worksharing constructs are for, sections, and single.

For Fortran, worksharing constructs are do, sections, single and
workshare.

device construct An OpenMP construct that accepts the device clause.

CHAPTER 1. INTRODUCTION 7

- OOV oOoONO O~ W N =

_ A
N

13

14
15

16
17

18

19
20

21
22

23

24

25
26

27

28
29

30

1.2.3

device routine

place

place list

place partition

place number

thread affinity
SIMD instruction
SIMD lane

SIMD chunk

memory

memory space

memory allocator

handle

loop-associated
directive

associated loop(s)

sequential loop

A function (for C/C+ and Fortran) or subroutine (for Fortran) that can be executed on
a target device, as part of a target region.

An unordered set of processors on a device.

The ordered list that describes all OpenMP places available to the execution
environment.

An ordered list that corresponds to a contiguous interval in the OpenMP place list. It
describes the places currently available to the execution environment for a given
parallel region.

A number that uniquely identifies a place in the place list, with zero identifying the
first place in the place list, and each consecutive whole number identifying the next
place in the place list.

A binding of threads to places within the current place partition.
A single machine instruction that can operate on multiple data elements.

A software or hardware mechanism capable of processing one data element from a
SIMD instruction.

A set of iterations executed concurrently, each by a SIMD lane, by a single thread by
means of SIMD instructions.

A storage resource to store and to retrieve variables accessible by OpenMP threads.

A representation of storage resources from which memory can be allocated or
deallocated. More than one memory space may exist.

An OpenMP object that fulfills requests to allocate and to deallocate memory for
program variables from the storage resources of its associated memory space.

An opaque reference that uniquely identifies an abstraction.

Loop Terminology

An OpenMP executable directive for which the associated user code must be a loop
nest that is a structured block.

The loop(s) controlled by a loop-associated directive.

COMMENT: If the loop-associated directive contains a collapse or an
ordered (n) clause then it may have more than one associated loop.

A loop that is not associated with any OpenMP loop-associated directive.

OpenMP API — Version 5.0 November 2018

—_

NoO gk~ WD

10
11
12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

SIMD loop

non-rectangular loop
nest

doacross loop nest

A loop that includes at least one SIMD chunk.

A loop nest for which the iteration count of a loop inside the loop nest is the not same
for all occurrences of the loop in the loop nest.

A loop nest that has cross-iteration dependence. An iteration is dependent on one or
more lexicographically earlier iterations.

COMMENT: The ordered clause parameter on a worksharing-loop
directive identifies the loop(s) associated with the doacross loop nest.

1.2.4 Synchronization Terminology

barrier

cancellation

cancellation point

flush

flush property

strong flush

A point in the execution of a program encountered by a feam of threads, beyond
which no thread in the team may execute until all threads in the feam have reached
the barrier and all explicit tasks generated by the team have executed to completion.
If cancellation has been requested, threads may proceed to the end of the canceled
region even if some threads in the team have not reached the barrier.

An action that cancels (that is, aborts) an OpenMP region and causes executing
implicit or explicit tasks to proceed to the end of the canceled region.

A point at which implicit and explicit tasks check if cancellation has been requested.
If cancellation has been observed, they perform the cancellation.

COMMENT: For a list of cancellation points, see Section 2.18.1 on
page 263.

An operation that a thread performs to enforce consistency between its view and
other threads’ view of memory.

Properties that determine the manner in which a flush operation enforces memory
consistency. These properties are:

o strong: flushes a set of variables from the current thread’s temporary view of the
memory to the memory;

e release: orders memory operations that precede the flush before memory
operations performed by a different thread with which it synchronizes;

e acquire: orders memory operations that follow the flush after memory operations
performed by a different thread that synchronizes with it.

COMMENT: Any flush operation has one or more flush properties.
A flush operation that has the strong flush property.

CHAPTER 1. INTRODUCTION 9

—_

ol OO MW N

11
12

13

14
15

16

17

18

19

20
21

22

23
24

25
26

release flush
acquire flush

atomic operation

atomic read

atomic write

atomic update

atomic captured
update

read-modify-write

sequentially consistent
atomic construct

non-sequentially
consistent atomic
construct

sequentially consistent
atomic operation

A flush operation that has the release flush property.
A flush operation that has the acquire flush property.

An operation that is specified by an atomiec construct and atomically accesses
and/or modifies a specific storage location.

An atomic operation that is specified by an atomic construct on which the read
clause is present.

An atomic operation that is specified by an atomic construct on which the write
clause is present.

An atomic operation that is specified by an atomic construct on which the
update clause is present.

An atomic operation that is specified by an atomiec construct on which the
capture clause is present.

An atomic operation that reads and writes to a given storage location.

COMMENT: All atomic update and atomic captured update operations
are read-modify-write operations.

An atomic construct for which the seq_cst clause is specified.

An atomic construct for which the seq_cst clause is not specified

An atomic operation that is specified by a sequentially consistent atomic construct.

1.2.5 Tasking Terminology

task

task region

implicit task

10 OpenMP API —

A specific instance of executable code and its data environment that the OpenMP
implementation can schedule for execution by threads.

A region consisting of all code encountered during the execution of a task.

COMMENT: A parallel region consists of one or more implicit task
regions.

A task generated by an implicit parallel region or generated when a parallel
construct is encountered during execution.

Version 5.0 November 2018

binding implicit task
explicit task

initial task

current task

child task

sibling tasks
descendent task

task completion

task scheduling point

task switching

tied task

untied task

undeferred task

included task

merged task

mergeable task

final task

The implicit task of the current thread team assigned to the encountering thread.

A task that is not an implicit task.

An implicit task associated with an implicit parallel region.

For a given thread, the task corresponding to the task region in which it is executing.

A task is a child task of its generating task region. A child task region is not part of
its generating task region.

Tasks that are child tasks of the same task region.
A task that is the child task of a task region or of one of its descendent task regions.

Task completion occurs when the end of the structured block associated with the
construct that generated the rask is reached.

COMMENT: Completion of the initial task that is generated when the
program begins occurs at program exit.

A point during the execution of the current task region at which it can be suspended
to be resumed later; or the point of task completion, after which the executing thread
may switch to a different rask region.

COMMENT: For a list of task scheduling points, see Section 2.10.6 on
page 149.

The act of a thread switching from the execution of one fask to another fask.

A task that, when its task region is suspended, can be resumed only by the same
thread that suspended it. That is, the task is tied to that thread.

A task that, when its task region is suspended, can be resumed by any thread in the
team. That is, the task is not tied to any thread.

A task for which execution is not deferred with respect to its generating task region.
That is, its generating task region is suspended until execution of the structured block
associated with the undeferred task is completed.

A task for which execution is sequentially included in the generating rask region.
That is, an included task is undeferred and executed by the encountering thread.

A task for which the data environment, inclusive of ICVs, is the same as that of its
generating task region.

A task that may be a merged task if it is an undeferred task or an included task.

A task that forces all of its child tasks to become final and included tasks.

CHAPTER 1. INTRODUCTION 11

o g WD =

~

10
11

12

13

14
15

16
17

18

19
20

21

22
23

24

25
26

task dependence

dependent task

mutually exclusive

tasks

predecessor task

task synchronization

construct

task generating
construct

target task

taskgroup set

An ordering relation between two sibling tasks: the dependent task and a previously
generated predecessor task. The task dependence is fulfilled when the predecessor
task has completed.

A task that because of a task dependence cannot be executed until its predecessor
tasks have completed.

Tasks that may be executed in any order, but not at the same time.

A task that must complete before its dependent tasks can be executed.

A taskwait, taskgroup, or a barrier construct.
A construct that generates one or more explicit tasks.
A mergeable and untied task that is generated by a target, target enter

data, target exit data, or target update construct.

A set of tasks that are logically grouped by a taskgroup region.

1.2.6 Data Terminology

variable

scalar variable

aggregate variable

12

array section

array item

shape-operator

OpenMP API -

A named data storage block, for which the value can be defined and redefined during
the execution of a program.

COMMENT: An array element or structure element is a variable that is
part of another variable.

For C/C++, a scalar variable, as defined by the base language.

For Fortran, a scalar variable with intrinsic type, as defined by the base language,
excluding character type.

A variable, such as an array or structure, composed of other variables.

A designated subset of the elements of an array that is specified using a subscript
notation that can select more than one element.

An array, an array section, or an array element.

For C/C++, an array shaping operator that reinterprets a pointer expression as an
array with one or more specified dimensions.

Version 5.0 November 2018

o~N OO0 A WODN =

©

-
N =+ O

Y
[e23é) I - b

—_
©

N —
o ©

NN NN
A ON =

NN N
~N O O

W NN
o ©

W Wwwww
a0 =

implicit array

base pointer

named pointer

containing array

For C/C++, the set of array elements of non-array type 7 that may be accessed by
applying a sequence of [] operators to a given pointer that is either a pointer to type T
or a pointer to a multidimensional array of elements of type 7.

For Fortran, the set of array elements for a given array pointer.

COMMENT: For C/C++, the implicit array for pointer p with type T
(*)[10] consists of all accessible elements p[i][j], for all i and j=0..9.

For C/C++, an Ivalue pointer expression that is used by a given lvalue expression or
array section to refer indirectly to its storage, where the Ivalue expression or array
section is part of the implicit array for that lvalue pointer expression.

For Fortran, a data pointer that appears last in the designator for a given variable or
array section, where the variable or array section is part of the pointer target for that
data pointer.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the base pointer is: (*p0).x0[k1].pl->p2.

For C/C++, the base pointer of a given lvalue expression or array section, or the base
pointer of one of its named pointers.

For Fortran, the base pointer of a given variable or array section, or the base pointer
of one of its named pointers.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the named pointers are: p0, (*p0).x0[k1].p1, and (*p0).x0[k1].p1->p2.

For C/C++, a non-subscripted array (a containing array) that appears in a given
Ivalue expression or array section, where the lvalue expression or array section is part
of that containing array.

For Fortran, an array (a containing array) without the POINTER attribute and
without a subscript list that appears in the designator of a given variable or array
section, where the variable or array section is part of that containing array.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the containing arrays are: (*p0).x0[k1].pl->p2[k2].x1 and
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.

CHAPTER 1. INTRODUCTION 13

o~NOoO Ol AW N =

11
12

13
14
15
16
17

18
19

20
21
22
23

24
25

26
27

28
29

30
31

32
33
34
35

14

base array

named array

base expression

attached pointer

For C/C++, a containing array of a given lvalue expression or array section that does
not appear in the expression of any of its other containing arrays.

For Fortran, a containing array of a given variable or array section that does not
appear in the designator of any of its other containing arrays.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the base array is: (*p0).x0[k1].pl->p2[k2].x1[k3].x2.

For C/C++, a containing array of a given lvalue expression or array section, or a
containing array of one of its named pointers.

For Fortran, a containing array of a given variable or array section, or a containing
array of one of its named pointers.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the named arrays are: (*p0).x0, (*p0).x0[k1].p1->p2[k2].x1, and
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.

The base array of a given array section or array element, if it exists; otherwise, the
base pointer of the array section or array element.

COMMENT: For the array section
(*p0).x0[k1].pl->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the base expression is: (*p0).x0[k1].p1->p2[k2].x1[k3].x2.

More examples for C/C++:
o The base expression for x[i] and for x[i:n] is X, if X is an array or pointer.

e The base expression for x[5][i] and for x[5][i:n] is X, if x is a pointer to
an array or x is 2-dimensional array.

o The base expression for y[5][i] and for y[S][i:n] is y[5], if y is an array
of pointers or y is a pointer to a pointer.

Examples for Fortran:
e The base expression for x(i) and for x(i:j) is X.

A pointer variable in a device data environment to which the effect of a map clause
assigns the address of an object, minus some offset, that is created in the device data
environment. The pointer is an attached pointer for the remainder of its lifetime in
the device data environment.

OpenMP API — Version 5.0 November 2018

N —

- -
A ODN - O OWoo~N O o » O

-
N O O

18

N —
o ©

D NN
W N =

24
25
26

27
28

29
30

31

simply contiguous
array section

structure

private variable

shared variable

threadprivate variable

threadprivate memory
data environment

device data
environment

device address
device pointer

mapped variable

An array section that statically can be determined to have contiguous storage or that,
in Fortran, has the CONTIGUOUS attribute.

A structure is a variable that contains one or more variables.
For C/C++: Implemented using struct types.

For C++: Implemented using class types.

For Fortran: Implemented using derived types.

With respect to a given set of task regions or SIMD lanes that bind to the same
parallel region, a variable for which the name provides access to a different
block of storage for each task region or SIMD lane.

A variable that is part of another variable (as an array or structure element) cannot be
made private independently of other components.

With respect to a given set of rask regions that bind to the same parallel region, a
variable for which the name provides access to the same block of storage for each
task region.

A variable that is part of another variable (as an array or structure element) cannot be
shared independently of the other components, except for static data members of
C++ classes.

A variable that is replicated, one instance per thread, by the OpenMP
implementation. Its name then provides access to a different block of storage for each
thread.

A variable that is part of another variable (as an array or structure element) cannot be
made threadprivate independently of the other components, except for static data
members of C++ classes.

The set of threadprivate variables associated with each thread.
The variables associated with the execution of a given region.

The initial data environment associated with a device.

An implementation-defined reference to an address in a device data environment.
A variable that contains a device address.

An original variable in a data environment with a corresponding variable in a device
data environment.

COMMENT: The original and corresponding variables may share storage.

CHAPTER 1. INTRODUCTION 15

O © oOoN OO0~ N =

—_
—_

—_
w N

-
N

—_
o O

_
o N

N =
o ©

[\" 2N \®]
N —

NN
A~ W

N N
[e)JN6,}

N
J

16

TABLE 1.1: Map-Type Decay of Map Type Combinations

map-type decay

mappable type

defined

class type

| alloc | to | from | tofrom | release | delete

alloc alloc | alloc | alloc alloc release | delete
to alloc to alloc to release | delete
from alloc | alloc | from | from | release | delete

tofrom | alloc to from | tofrom | release | delete

The process used to determine the final map type when mapping a variable with a
user defined mapper. Table 1.1 shows the final map type that the combination of the
two map types determines.

A type that is valid for a mapped variable. If a type is composed from other types
(such as the type of an array or structure element) and any of the other types are not
mappable then the type is not mappable.

COMMENT: Pointer types are mappable but the memory block to which
the pointer refers is not mapped.

For C, the type must be a complete type.
For C++, the type must be a complete type.
In addition, for class types:

e All member functions accessed in any target region must appear in a
declare target directive.

For Fortran, no restrictions on the type except that for derived types:

o All type-bound procedures accessed in any target region must appear in a
declare target directive.

For variables, the property of having a valid value.
For C, for the contents of variables, the property of having a valid value.

For C++, for the contents of variables of POD (plain old data) type, the property of
having a valid value.

For variables of non-POD class type, the property of having been constructed but not
subsequently destructed.

For Fortran, for the contents of variables, the property of having a valid value. For
the allocation or association status of variables, the property of having a valid status.

COMMENT: Programs that rely upon variables that are not defined are
non-conforming programs.

For C++, variables declared with one of the class, struct, or union keywords.

OpenMP API — Version 5.0 November 2018

1 1.2.7 Implementation Terminology

2 supporting n active Implies allowing an active parallel region to be enclosed by n-1 active parallel
3 levels of parallelism regions.
4 supporting the Supporting at least one active level of parallelism.
OpenMP API
5 supporting nested Supporting more than one active level of parallelism.
parallelism
6 internal control A conceptual variable that specifies runtime behavior of a set of threads or tasks in
7 variable an OpenMP program.
8 COMMENT: The acronym ICV is used interchangeably with the term
9 internal control variable in the remainder of this specification.
10 compliant An implementation of the OpenMP specification that compiles and executes any
11 implementation conforming program as defined by the specification.
12 COMMENT: A compliant implementation may exhibit unspecified
13 behavior when compiling or executing a non-conforming program.

14 unspecified behavior A behavior or result that is not specified by the OpenMP specification or not known

15 prior to the compilation or execution of an OpenMP program.

16 Such unspecified behavior may result from:

17 e Issues documented by the OpenMP specification as having unspecified behavior.
18 e A non-conforming program.

19 o A conforming program exhibiting an implementation-defined behavior.

20 implementation defined Behavior that must be documented by the implementation, and is allowed to vary

21 among different compliant implementations. An implementation is allowed to define
22 this behavior as unspecified.

23 COMMENT: All features that have implementation-defined behavior are

24 documented in Appendix A.

25 deprecated For a construct, clause, or other feature, the property that it is normative in the

26 current specification but is considered obsolescent and will be removed in the future.

27 1.2.8 Tool Terminology

28 tool Executable code, distinct from application or runtime code, that can observe and/or
29 modify the execution of an application.

CHAPTER 1. INTRODUCTION 17

- O © oOo~N O 0o o DN =

_ a4 a4
w N

—_ a
[o23Né I N

_ a4
© o N

N NN
N = O

NN
A~ ®

NN
[e)R}

N NN
© o N

w w w
N = O

first-party tool
third-party tool

activated tool
event
native thread

tool callback
registering a callback
dispatching a callback
at an event

thread state

wait identifier

frame

canonical frame
address

runtime entry point

trace record

native trace record
signal
signal handler

async signal safe

18 OpenMP API —

A tool that executes in the address space of the program that it is monitoring.

A tool that executes as a separate process from the process that it is monitoring and
potentially controlling.

A first-party tool that successfully completed its initialization.
A point of interest in the execution of a thread.
A thread defined by an underlying thread implementation.

A function that a tool provides to an OpenMP implementation to invoke when an
associated event occurs.

Providing a tool callback to an OpenMP implementation.

Processing a callback when an associated event occurs in a manner consistent with
the return code provided when a first-party tool registered the callback.

An enumeration type that describes the current OpenMP activity of a thread. A
thread can be in only one state at any time.

A unique opaque handle associated with each data object (for example, a lock) used
by the OpenMP runtime to enforce mutual exclusion that may cause a thread to wait
actively or passively.

A storage area on a thread’s stack associated with a procedure invocation. A frame
includes space for one or more saved registers and often also includes space for saved
arguments, local variables, and padding for alignment.

An address associated with a procedure frame on a call stack that was the value of the
stack pointer immediately prior to calling the procedure for which the invocation is
represented by the frame.

A function interface provided by an OpenMP runtime for use by a tool. A runtime
entry point is typically not associated with a global function symbol.

A data structure in which to store information associated with an occurrence of an
event.

A trace record for an OpenMP device that is in a device-specific format.
A software interrupt delivered to a thread.
A function called asynchronously when a signal is delivered to a thread.

The guarantee that interruption by signal delivery will not interfere with a set of
operations. An async signal safe runtime entry point is safe to call from a signal
handler.

Version 5.0 November 2018

0N OO H W N =

©

- a
N = O

- 4
A W

-
o O

_
o

DN =
— O ©

N NN
A~ W DN

NN N
N O O

W W NN
- O O o

w w
w N

code block

OMPT

OMPT interface state

OMPT active

OMPT pending

OMPT inactive

OMPD

OMPD library
image file

address space

segment
OpenMP architecture
tool architecture

OpenMP process

address space handle
thread handle
parallel handle

task handle

descendent handle

A contiguous region of memory that contains code of an OpenMP program to be
executed on a device.

An interface that helps a first-party tool monitor the execution of an OpenMP
program.

A state that indicates the permitted interactions between a first-party tool and the
OpenMP implementation.

An OMPT interface state in which the OpenMP implementation is prepared to accept
runtime calls from a first party tool and it dispatches any registered callbacks and in
which a first-party tool can invoke runtime entry points if not otherwise restricted.

An OMPT interface state in which the OpenMP implementation can only call
functions to initialize a first party tool and in which a first-party tool cannot invoke
runtime entry points.

An OMPT interface state in which the OpenMP implementation will not make any
callbacks and in which a first-party tool cannot invoke runtime entry points.

An interface that helps a third-party tool inspect the OpenMP state of a program that
has begun execution.

A dynamically loadable library that implements the OMPD interface.
An executable or shared library.

A collection of logical, virtual, or physical memory address ranges that contain code,
stack, and/or data. Address ranges within an address space need not be contiguous.
An address space consists of one or more segments.

A portion of an address space associated with a set of address ranges.
The architecture on which an OpenMP region executes.
The architecture on which an OMPD tool executes.

A collection of one or more threads and address spaces. A process may contain
threads and address spaces for multiple OpenMP architectures. At least one thread
in an OpenMP process is an OpenMP thread. A process may be live or a core file.

A handle that refers to an address space within an OpenMP process.
A handle that refers to an OpenMP thread.

A handle that refers to an OpenMP parallel region.

A handle that refers to an OpenMP task region.

An output handle that is returned from the OMPD library in a function that accepts
an input handle: the output handle is a descendent of the input handle.

CHAPTER 1. INTRODUCTION 19

OO © oOo~N ok~ N =

—_ -
—_

12

13
14
15
16
17
18
19
20
21
22
23

24
25
26

27
28
29
30
31
32

ancestor handle An input handle that is passed to the OMPD library in a function that returns an

output handle: the input handle is an ancestor of the output handle. For a given
handle, the ancestors of the handle are also the ancestors of the handle’s descendent.

COMMENT: A handle cannot be used by the tool in an OMPD call if any
ancestor of the handle has been released, except for OMPD calls that
release the handle.

tool context An opaque reference provided by a tool to an OMPD library. A tool context uniquely
identifies an abstraction.

address space context A tool context that refers to an address space within a process.

thread context A fool context that refers to a native thread.

native thread identifier An identifier for a native thread defined by a thread implementation.

1.3

20

Execution Model

The OpenMP API uses the fork-join model of parallel execution. Multiple threads of execution
perform tasks defined implicitly or explicitly by OpenMP directives. The OpenMP API is intended
to support programs that will execute correctly both as parallel programs (multiple threads of
execution and a full OpenMP support library) and as sequential programs (directives ignored and a
simple OpenMP stubs library). However, it is possible and permitted to develop a program that
executes correctly as a parallel program but not as a sequential program, or that produces different
results when executed as a parallel program compared to when it is executed as a sequential
program. Furthermore, using different numbers of threads may result in different numeric results
because of changes in the association of numeric operations. For example, a serial addition
reduction may have a different pattern of addition associations than a parallel reduction. These
different associations may change the results of floating-point addition.

An OpenMP program begins as a single thread of execution, called an initial thread. An initial
thread executes sequentially, as if the code encountered is part of an implicit task region, called an
initial task region, that is generated by the implicit parallel region surrounding the whole program.

The thread that executes the implicit parallel region that surrounds the whole program executes on
the host device. An implementation may support other target devices. If supported, one or more
devices are available to the host device for offloading code and data. Each device has its own
threads that are distinct from threads that execute on another device. Threads cannot migrate from
one device to another device. The execution model is host-centric such that the host device offloads
target regions to target devices.

OpenMP API — Version 5.0 November 2018

- —a a -
(62 IF ¢V B \V] - 0O0W o~NOoOCOG A~ WON =

—_ -
N O

-
o o

NDDNDDMNDNDNDDNDNDDN
NOoO Ok~ WDND—=2O

W WwwmMnN N
WN = O oo

W W WwWww
o No oA

When a target construct is encountered, a new target task is generated. The target task region
encloses the target region. The target task is complete after the execution of the target region
is complete.

When a target task executes, the enclosed target region is executed by an initial thread. The
initial thread may execute on a farget device. The initial thread executes sequentially, as if the target
region is part of an initial task region that is generated by an implicit parallel region. If the target
device does not exist or the implementation does not support the target device, all target regions
associated with that device execute on the host device.

The implementation must ensure that the target region executes as if it were executed in the data
environment of the target device unless an if clause is present and the i £ clause expression
evaluates to false.

The teams construct creates a league of teams, where each team is an initial team that comprises
an initial thread that executes the teams region. Each initial thread executes sequentially, as if the
code encountered is part of an initial task region that is generated by an implicit parallel region
associated with each team.

If a construct creates a data environment, the data environment is created at the time the construct is
encountered. The description of a construct defines whether it creates a data environment.

When any thread encounters a parallel construct, the thread creates a team of itself and zero or
more additional threads and becomes the master of the new team. A set of implicit tasks, one per
thread, is generated. The code for each task is defined by the code inside the parallel construct.
Each task is assigned to a different thread in the team and becomes tied; that is, it is always
executed by the thread to which it is initially assigned. The task region of the task being executed
by the encountering thread is suspended, and each member of the new team executes its implicit
task. There is an implicit barrier at the end of the parallel construct. Only the master thread
resumes execution beyond the end of the parallel construct, resuming the task region that was
suspended upon encountering the parallel construct. Any number of parallel constructs
can be specified in a single program.

parallel regions may be arbitrarily nested inside each other. If nested parallelism is disabled, or
is not supported by the OpenMP implementation, then the new team that is created by a thread
encountering a parallel construct inside a parallel region will consist only of the
encountering thread. However, if nested parallelism is supported and enabled, then the new team
can consist of more than one thread. A parallel construct may include a proc_bind clause to
specify the places to use for the threads in the team within the parallel region.

When any team encounters a worksharing construct, the work inside the construct is divided among
the members of the team, and executed cooperatively instead of being executed by every thread.
There is a default barrier at the end of each worksharing construct unless the nowait clause is
present. Redundant execution of code by every thread in the team resumes after the end of the
worksharing construct.

CHAPTER 1. INTRODUCTION 21

0oNOO O~ WN =

—_
N = O ©

—_
A~ W

N = — =
O O 00N O W],

NDMNDMNDNDDNDND
OO WD =

WWWwWwwNNN
A WON—= O O© 00N

W www
o N O

AW
o ©

22

When any thread encounters a fask generating construct, one or more explicit tasks are generated.
Execution of explicitly generated tasks is assigned to one of the threads in the current team, subject
to the thread’s availability to execute work. Thus, execution of the new task could be immediate, or
deferred until later according to task scheduling constraints and thread availability. Threads are
allowed to suspend the current task region at a task scheduling point in order to execute a different
task. If the suspended task region is for a tied task, the initially assigned thread later resumes
execution of the suspended task region. If the suspended task region is for an untied task, then any
thread may resume its execution. Completion of all explicit tasks bound to a given parallel region is
guaranteed before the master thread leaves the implicit barrier at the end of the region. Completion
of a subset of all explicit tasks bound to a given parallel region may be specified through the use of
task synchronization constructs. Completion of all explicit tasks bound to the implicit parallel
region is guaranteed by the time the program exits.

When any thread encounters a simd construct, the iterations of the loop associated with the
construct may be executed concurrently using the SIMD lanes that are available to the thread.

When a 1oop construct is encountered, the iterations of the loop associated with the construct are
executed in the context of its encountering thread(s), as determined according to its binding region.
If the 1oop region binds to a teams region, the region is encountered by the set of master threads
that execute the teams region. If the 1oop region binds to a parallel region, the region is
encountered by the team of threads executing the parallel region. Otherwise, the region is
encountered by a single thread.

If the 1loop region binds to a teams region, the encountering threads may continue execution
after the loop region without waiting for all iterations to complete; the iterations are guaranteed to
complete before the end of the teams region. Otherwise, all iterations must complete before the
encountering thread(s) continue execution after the 1oop region. All threads that encounter the
loop construct may participate in the execution of the iterations. Only one of these threads may
execute any given iteration.

The cancel construct can alter the previously described flow of execution in an OpenMP region.
The effect of the cancel construct depends on its construct-type-clause. If a task encounters a
cancel construct with a taskgroup construct-type-clause, then the task activates cancellation
and continues execution at the end of its task region, which implies completion of that task. Any
other task in that taskgroup that has begun executing completes execution unless it encounters a
cancellation point construct, in which case it continues execution at the end of its task
region, which implies its completion. Other tasks in that taskgroup region that have not begun
execution are aborted, which implies their completion.

For all other construct-type-clause values, if a thread encounters a cancel construct, it activates
cancellation of the innermost enclosing region of the type specified and the thread continues
execution at the end of that region. Threads check if cancellation has been activated for their region
at cancellation points and, if so, also resume execution at the end of the canceled region.

If cancellation has been activated regardless of construct-type-clause, threads that are waiting
inside a barrier other than an implicit barrier at the end of the canceled region exit the barrier and

OpenMP API — Version 5.0 November 2018

O OWoo~NO®” O~ N =

—_

11

12

13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34

1.4

1.4.1

resume execution at the end of the canceled region. This action can occur before the other threads
reach that barrier.

Synchronization constructs and library routines are available in the OpenMP API to coordinate
tasks and data access in parallel regions. In addition, library routines and environment
variables are available to control or to query the runtime environment of OpenMP programs.

The OpenMP specification makes no guarantee that input or output to the same file is synchronous
when executed in parallel. In this case, the programmer is responsible for synchronizing input and
output processing with the assistance of OpenMP synchronization constructs or library routines.
For the case where each thread accesses a different file, no synchronization by the programmer is
necessary.

Memory Model

Structure of the OpenMP Memory Model

The OpenMP API provides a relaxed-consistency, shared-memory model. All OpenMP threads
have access to a place to store and to retrieve variables, called the memory. In addition, each thread
is allowed to have its own femporary view of the memory. The temporary view of memory for each
thread is not a required part of the OpenMP memory model, but can represent any kind of
intervening structure, such as machine registers, cache, or other local storage, between the thread
and the memory. The temporary view of memory allows the thread to cache variables and thereby
to avoid going to memory for every reference to a variable. Each thread also has access to another
type of memory that must not be accessed by other threads, called threadprivate memory.

A directive that accepts data-sharing attribute clauses determines two kinds of access to variables
used in the directive’s associated structured block: shared and private. Each variable referenced in
the structured block has an original variable, which is the variable by the same name that exists in
the program immediately outside the construct. Each reference to a shared variable in the structured
block becomes a reference to the original variable. For each private variable referenced in the
structured block, a new version of the original variable (of the same type and size) is created in
memory for each task or SIMD lane that contains code associated with the directive. Creation of
the new version does not alter the value of the original variable. However, the impact of attempts to
access the original variable during the region corresponding to the directive is unspecified; see
Section 2.19.4.3 on page 285 for additional details. References to a private variable in the
structured block refer to the private version of the original variable for the current task or SIMD
lane. The relationship between the value of the original variable and the initial or final value of the
private version depends on the exact clause that specifies it. Details of this issue, as well as other
issues with privatization, are provided in Section 2.19 on page 269.

CHAPTER 1. INTRODUCTION 23

oNOO O WN =

11
12
13

14
15
16
17
18
19

20

21
22
23
24
25

26
27
28
29
30

31
32
33
34
35
36

1.4.2

24

The minimum size at which a memory update may also read and write back adjacent variables that
are part of another variable (as array or structure elements) is implementation defined but is no
larger than required by the base language.

A single access to a variable may be implemented with multiple load or store instructions and, thus,
is not guaranteed to be atomic with respect to other accesses to the same variable. Accesses to
variables smaller than the implementation defined minimum size or to C or C++ bit-fields may be
implemented by reading, modifying, and rewriting a larger unit of memory, and may thus interfere
with updates of variables or fields in the same unit of memory.

If multiple threads write without synchronization to the same memory unit, including cases due to
atomicity considerations as described above, then a data race occurs. Similarly, if at least one
thread reads from a memory unit and at least one thread writes without synchronization to that
same memory unit, including cases due to atomicity considerations as described above, then a data
race occurs. If a data race occurs then the result of the program is unspecified.

A private variable in a task region that subsequently generates an inner nested parallel region is
permitted to be made shared by implicit tasks in the inner parallel region. A private variable in
a task region can also be shared by an explicit task region generated during its execution. However,
it is the programmer’s responsibility to ensure through synchronization that the lifetime of the
variable does not end before completion of the explicit task region sharing it. Any other access by
one task to the private variables of another task results in unspecified behavior.

Device Data Environments

When an OpenMP program begins, an implicit target data region for each device surrounds
the whole program. Each device has a device data environment that is defined by its implicit
target data region. Any declare target directives and the directives that accept
data-mapping attribute clauses determine how an original variable in a data environment is mapped
to a corresponding variable in a device data environment.

When an original variable is mapped to a device data environment and a corresponding variable is
not present in the device data environment, a new corresponding variable (of the same type and size
as the original variable) is created in the device data environment. Conversely, the original variable
becomes the new variable’s corresponding variable in the device data environment of the device
that performs the mapping operation.

The corresponding variable in the device data environment may share storage with the original
variable. Writes to the corresponding variable may alter the value of the original variable. The
impact of this possibility on memory consistency is discussed in Section 1.4.6 on page 28. When a
task executes in the context of a device data environment, references to the original variable refer to
the corresponding variable in the device data environment. If an original variable is not currently
mapped and a corresponding variable does not exist in the device data environment then accesses to

OpenMP API — Version 5.0 November 2018

NOoO ok~ W NN =

10
11
12
13
14

15
16
17
18
19
20

21

22
23
24
25
26
27

28
29
30
31

1.4.3

1.4.4

the original variable result in unspecified behavior unless the unified_shared_memory
clause is specified on a requires directive for the compilation unit.

The relationship between the value of the original variable and the initial or final value of the
corresponding variable depends on the map-type. Details of this issue, as well as other issues with
mapping a variable, are provided in Section 2.19.7.1 on page 315.

The original variable in a data environment and the corresponding variable(s) in one or more device
data environments may share storage. Without intervening synchronization data races can occur.

Memory Management

The host device, and target devices that an implementation may support, have attached storage
resources where program variables are stored. These resources can have different traits. A memory
space in an OpenMP program represents a set of these storage resources. Memory spaces are
defined according to a set of traits, and a single resource may be exposed as multiple memory
spaces with different traits or may be part of multiple memory spaces. In any device, at least one
memory space is guaranteed to exist.

An OpenMP program can use a memory allocator to allocate memory in which to store variables.
This memory will be allocated from the storage resources of the memory space associated with the
memory allocator. Memory allocators are also used to deallocate previously allocated memory.
When an OpenMP memory allocator is not used to allocate memory, OpenMP does not prescribe
the storage resource for the allocation; the memory for the variables may be allocated in any storage
resource.

The Flush Operation

The memory model has relaxed-consistency because a thread’s temporary view of memory is not
required to be consistent with memory at all times. A value written to a variable can remain in the
thread’s temporary view until it is forced to memory at a later time. Likewise, a read from a
variable may retrieve the value from the thread’s temporary view, unless it is forced to read from
memory. OpenMP flush operations are used to enforce consistency between a thread’s temporary
view of memory and memory, or between multiple threads’ view of memory.

If a flush operation is a strong flush, it enforces consistency between a thread’s temporary view and
memory. A strong flush operation is applied to a set of variables called the flush-set. A strong flush
restricts reordering of memory operations that an implementation might otherwise do.

Implementations must not reorder the code for a memory operation for a given variable, or the code

CHAPTER 1. INTRODUCTION 25

oNOO O~ W N =

26

for a flush operation for the variable, with respect to a strong flush operation that refers to the same
variable.

If a thread has performed a write to its temporary view of a shared variable since its last strong flush
of that variable, then when it executes another strong flush of the variable, the strong flush does not
complete until the value of the variable has been written to the variable in memory. If a thread
performs multiple writes to the same variable between two strong flushes of that variable, the strong
flush ensures that the value of the last write is written to the variable in memory. A strong flush of a
variable executed by a thread also causes its temporary view of the variable to be discarded, so that
if its next memory operation for that variable is a read, then the thread will read from memory and
capture the value in its temporary view. When a thread executes a strong flush, no later memory
operation by that thread for a variable involved in that strong flush is allowed to start until the strong
flush completes. The completion of a strong flush executed by a thread is defined as the point at
which all writes to the flush-set performed by the thread before the strong flush are visible in
memory to all other threads, and at which that thread’s temporary view of the flush-set is discarded.

A strong flush operation provides a guarantee of consistency between a thread’s temporary view
and memory. Therefore, a strong flush can be used to guarantee that a value written to a variable by
one thread may be read by a second thread. To accomplish this, the programmer must ensure that
the second thread has not written to the variable since its last strong flush of the variable, and that
the following sequence of events are completed in this specific order:

1. The value is written to the variable by the first thread;

2. The variable is flushed, with a strong flush, by the first thread;

3. The variable is flushed, with a strong flush, by the second thread; and
4. The value is read from the variable by the second thread.

If a flush operation is a release flush or acquire flush, it can enforce consistency between the views
of memory of two synchronizing threads. A release flush guarantees that any prior operation that
writes or reads a shared variable will appear to be completed before any operation that writes or
reads the same shared variable and follows an acquire flush with which the release flush
synchronizes (see Section 1.4.5 on page 27 for more details on flush synchronization). A release
flush will propagate the values of all shared variables in its temporary view to memory prior to the
thread performing any subsequent atomic operation that may establish a synchronization. An
acquire flush will discard any value of a shared variable in its temporary view to which the thread
has not written since last performing a release flush, so that it may subsequently read a value
propagated by a release flush that synchronizes with it. Therefore, release and acquire flushes may
also be used to guarantee that a value written to a variable by one thread may be read by a second
thread. To accomplish this, the programmer must ensure that the second thread has not written to
the variable since its last acquire flush, and that the following sequence of events happen in this
specific order:

1. The value is written to the variable by the first thread;

2. The first thread performs a release flush;

OpenMP API — Version 5.0 November 2018

—_

- O © 0 NOoO ok~ WD

—_

12

13
14
15

16
17
18
19
20
21

22
23

24
25
26

27
28
29

30
31
32

33
34

1.4.5

3. The second thread performs an acquire flush; and

4. The value is read from the variable by the second thread.

v v
Note — OpenMP synchronization operations, described in Section 2.17 on page 223 and in
Section 3.3 on page 381, are recommended for enforcing this order. Synchronization through

variables is possible but is not recommended because the proper timing of flushes is difficult.
A A

The flush properties that define whether a flush operation is a strong flush, a release flush, or an
acquire flush are not mutually disjoint. A flush operation may be a strong flush and a release flush;
it may be a strong flush and an acquire flush; it may be a release flush and an acquire flush; or it
may be all three.

Flush Synchronization and Happens Before

OpenMP supports thread synchronization with the use of release flushes and acquire flushes. For
any such synchronization, a release flush is the source of the synchronization and an acquire flush is
the sink of the synchronization, such that the release flush synchronizes with the acquire flush.

A release flush has one or more associated release sequences that define the set of modifications
that may be used to establish a synchronization. A release sequence starts with an atomic operation
that follows the release flush and modifies a shared variable and additionally includes any
read-modify-write atomic operations that read a value taken from some modification in the release
sequence. The following rules determine the atomic operation that starts an associated release
sequence.

o If a release flush is performed on entry to an atomic operation, that atomic operation starts its
release sequence.

e If arelease flush is performed in an implicit £1ush region, an atomic operation that is provided
by the implementation and that modifies an internal synchronization variable, starts its release
sequence.

o If a release flush is performed by an explicit £1ush region, any atomic operation that modifies a
shared variable and follows the £1ush region in its thread’s program order starts an associated
release sequence.

An acquire flush is associated with one or more prior atomic operations that read a shared variable
and that may be used to establish a synchronization. The following rules determine the associated
atomic operation that may establish a synchronization.

e If an acquire flush is performed on exit from an atomic operation, that atomic operation is its
associated atomic operation.

CHAPTER 1. INTRODUCTION 27

- O ©WooN oOoOuhrd WN =

—_ a4 a4 o
A~ W N

—_
[e2RNé)}

_ a4
© o

N
o

N N
N =

23

24
25

26
27
28

29
30
31

32
33

1.4.6

28

e If an acquire flush is performed in an implicit £1ush region, an atomic operation that is
provided by the implementation and that reads an internal synchronization variable is its
associated atomic operation.

e If an acquire flush is performed by an explicit £1lush region, any atomic operation that reads a
shared variable and precedes the £1ush region in its thread’s program order is an associated
atomic operation.

A release flush synchronizes with an acquire flush if an atomic operation associated with the
acquire flush reads a value written by a modification from a release sequence associated with the
release flush.

An operation X simply happens before an operation Y if any of the following conditions are
satisfied:

1. X and Y are performed by the same thread, and X precedes Y in the thread’s program order;

2. X synchronizes with Y according to the flush synchronization conditions explained above or
according to the base language’s definition of synchronizes with, if such a definition exists; or

3. There exists another operation Z, such that X simply happens before Z and Z simply happens
before Y.

An operation X happens before an operation Y if any of the following conditions are satisfied:

1. X happens before Y according to the base language’s definition of happens before, if such a
definition exists; or

2. X simply happens before Y.

A variable with an initial value is treated as if the value is stored to the variable by an operation that
happens before all operations that access or modify the variable in the program.

OpenMP Memory Consistency

The following rules guarantee the observable completion order of memory operations, as seen by
all threads.

o If two operations performed by different threads are sequentially consistent atomic operations or
they are strong flushes that flush the same variable, then they must be completed as if in some
sequential order, seen by all threads.

o If two operations performed by the same thread are sequentially consistent atomic operations or
they access, modify, or, with a strong flush, flush the same variable, then they must be completed
as if in that thread’s program order, as seen by all threads.

e If two operations are performed by different threads and one happens before the other, then they
must be completed as if in that happens before order, as seen by all threads, if:

OpenMP API — Version 5.0 November 2018

- OO 00 ~NOoO a s~ W N =

_
N

- a
o~

—_
»

-
© 0

20

21
22
23

24

25
26

1.5

1.5.1

— both operations access or modify the same variable;
— both operations are strong flushes that flush the same variable; or
— both operations are sequentially consistent atomic operations.

e Any two atomic memory operations from different at omic regions must be completed as if in
the same order as the strong flushes implied in their respective regions, as seen by all threads.

The flush operation can be specified using the £1ush directive, and is also implied at various
locations in an OpenMP program: see Section 2.17.8 on page 242 for details.

v v
Note — Since flush operations by themselves cannot prevent data races, explicit flush operations are

only useful in combination with non-sequentially consistent atomic directives.
A A

OpenMP programs that:
e Do not use non-sequentially consistent atomic directives;

e Do not rely on the accuracy of a false result from omp_test_lock and
omp_test_nest_lock; and

e Correctly avoid data races as required in Section 1.4.1 on page 23,

behave as though operations on shared variables were simply interleaved in an order consistent with
the order in which they are performed by each thread. The relaxed consistency model is invisible
for such programs, and any explicit flush operations in such programs are redundant.

Tool Interfaces

The OpenMP API includes two tool interfaces, OMPT and OMPD, to enable development of
high-quality, portable, tools that support monitoring, performance, or correctness analysis and
debugging of OpenMP programs developed using any implementation of the OpenMP API,

OMPT

The OMPT interface, which is intended for first-party tools, provides the following:

e A mechanism to initialize a first-party tool;

CHAPTER 1. INTRODUCTION 29

—_

0o N o o AW DN

11
12
13
14
15
16

17
18
19

20
21
22
23

24

25
26
27
28

29
30

31
32

1.5.2

30

e Routines that enable a tool to determine the capabilities of an OpenMP implementation;
e Routines that enable a tool to examine OpenMP state information associated with a thread;

e Mechanisms that enable a tool to map implementation-level calling contexts back to their
source-level representations;

o A callback interface that enables a tool to receive notification of OpenMP events;
e A tracing interface that enables a tool to trace activity on OpenMP target devices; and
e A runtime library routine that an application can use to control a tool.

OpenMP implementations may differ with respect to the thread states that they support, the mutual
exclusion implementations that they employ, and the OpenMP events for which tool callbacks are
invoked. For some OpenMP events, OpenMP implementations must guarantee that a registered
callback will be invoked for each occurrence of the event. For other OpenMP events, OpenMP
implementations are permitted to invoke a registered callback for some or no occurrences of the
event; for such OpenMP events, however, OpenMP implementations are encouraged to invoke tool
callbacks on as many occurrences of the event as is practical. Section 4.2.4 specifies the subset of
OMPT callbacks that an OpenMP implementation must support for a minimal implementation of
the OMPT interface.

An implementation of the OpenMP API may differ from the abstract execution model described by
its specification. The ability of tools that use the OMPT interface to observe such differences does
not constrain implementations of the OpenMP API in any way.

With the exception of the omp_control_tool runtime library routine for tool control, all other
routines in the OMPT interface are intended for use only by tools and are not visible to
applications. For that reason, a Fortran binding is provided only for omp_control_ tool;all
other OMPT functionality is described with C syntax only.

OMPD

The OMPD interface is intended for third-party tools, which run as separate processes. An
OpenMP implementation must provide an OMPD library that can be dynamically loaded and used
by a third-party tool. A third-party tool, such as a debugger, uses the OMPD library to access
OpenMP state of a program that has begun execution. OMPD defines the following:

e An interface that an OMPD library exports, which a tool can use to access OpenMP state of a
program that has begun execution;

e A callback interface that a tool provides to the OMPD library so that the library can use it to
access the OpenMP state of a program that has begun execution; and

OpenMP API — Version 5.0 November 2018

A O =

1.6

o

0 N O

11
12
13
14
15

16
17
18
19
20
21

22
23
24

25
26

o7 1.7

28
29

o A small number of symbols that must be defined by an OpenMP implementation to help the tool
find the correct OMPD library to use for that OpenMP implementation and to facilitate
notification of events.

Section 5 describes OMPD in detail.

OpenMP Compliance

The OpenMP API defines constructs that operate in the context of the base language that is
supported by an implementation. If the implementation of the base language does not support a
language construct that appears in this document, a compliant OpenMP implementation is not
required to support it, with the exception that for Fortran, the implementation must allow case
insensitivity for directive and API routines names, and must allow identifiers of more than six
characters. An implementation of the OpenMP API is compliant if and only if it compiles and
executes all other conforming programs, and supports the tool interface, according to the syntax
and semantics laid out in Chapters 1, 2, 3, 4 and 5. Appendices A, B, C, and D, as well as sections
designated as Notes (see Section 1.8 on page 34) are for information purposes only and are not part
of the specification.

All library, intrinsic and built-in routines provided by the base language must be thread-safe in a
compliant implementation. In addition, the implementation of the base language must also be
thread-safe. For example, ALLOCATE and DEALLOCATE statements must be thread-safe in
Fortran. Unsynchronized concurrent use of such routines by different threads must produce correct
results (although not necessarily the same as serial execution results, as in the case of random
number generation routines).

Starting with Fortran 90, variables with explicit initialization have the SAVE attribute implicitly.
This is not the case in Fortran 77. However, a compliant OpenMP Fortran implementation must
give such a variable the SAVE attribute, regardless of the underlying base language version.

Appendix A lists certain aspects of the OpenMP API that are implementation defined. A compliant
implementation must define and document its behavior for each of the items in Appendix A.

Normative References

o ISO/IEC 9899:1990, Information Technology - Programming Languages - C.
This OpenMP API specification refers to ISO/IEC 9899:1990 as C90.

CHAPTER 1. INTRODUCTION 31

o © 0o N ook~ WwoNn =

- a4 a4 a4 a4 a4
(o2 & 1 B N O

N
© o N

N DD D NN DD D NN NN
© O N o a0 »~ W N = O

32

e ISO/IEC 9899:1999, Information Technology - Programming Languages - C.

This OpenMP API specification refers to ISO/IEC 9899:1999 as C99.
ISO/MEC 9899:2011, Information Technology - Programming Languages - C.

This OpenMP API specification refers to ISO/IEC 9899:2011 as C11. While future versions of
the OpenMP specification are expected to address the following features, currently their use may
result in unspecified behavior.

Supporting the noreturn property

Adding alignment support

Creation of complex value

Threads for the C standard library

Thread-local storage

Parallel memory sequencing model

Atomic

ISO/IEC 14882:1998, Information Technology - Programming Languages - C++.
This OpenMP API specification refers to ISO/IEC 14882:1998 as C++98.
ISO/IEC 14882:2011, Information Technology - Programming Languages - C++.

This OpenMP API specification refers to ISO/IEC 14882:2011 as C++11. While future versions
of the OpenMP specification are expected to address the following features, currently their use
may result in unspecified behavior.

Alignment support

Standard layout types

Allowing move constructs to throw

Defining move special member functions

Concurrency

Data-dependency ordering: atomics and memory model

Additions to the standard library

Thread-local storage

Dynamic initialization and destruction with concurrency

C++11 library

OpenMP API — Version 5.0 November 2018

o © ©o© N O o A~ ODN -

4 a4 a4 a4 a4 a4 a4
N o o AW =

N = =
o ©

W NN D DD DN DN DN
o © 00 N o o b v N =

ISO/IEC 14882:2014, Information Technology - Programming Languages - C++.

This OpenMP API specification refers to ISO/IEC 14882:2014 as C++14. While future versions
of the OpenMP specification are expected to address the following features, currently their use
may result in unspecified behavior.

— Sized deallocation

— What signal handlers can do

ISO/IEC 14882:2017, Information Technology - Programming Languages - C++.
This OpenMP API specification refers to ISO/IEC 14882:2017 as C++17.

ISO/IEC 1539:1980, Information Technology - Programming Languages - Fortran.
This OpenMP API specification refers to ISO/IEC 1539:1980 as Fortran 77.
ISO/IEC 1539:1991, Information Technology - Programming Languages - Fortran.
This OpenMP API specification refers to ISO/IEC 1539:1991 as Fortran 90.
ISO/IEC 1539-1:1997, Information Technology - Programming Languages - Fortran.
This OpenMP API specification refers to ISO/IEC 1539-1:1997 as Fortran 95.
ISO/IEC 1539-1:2004, Information Technology - Programming Languages - Fortran.
This OpenMP API specification refers to ISO/IEC 1539-1:2004 as Fortran 2003.
ISO/IEC 1539-1:2010, Information Technology - Programming Languages - Fortran.

This OpenMP API specification refers to ISO/IEC 1539-1:2010 as Fortran 2008. While future
versions of the OpenMP specification are expected to address the following features, currently
their use may result in unspecified behavior.

— Submodules

— Coarrays

— DO CONCURRENT

— Allocatable components of recursive type

— Pointer initialization

— Value attribute is permitted for any nonallocatable nonpointer nonarray
— Simply contiguous arrays rank remapping to rank>1 target

— Polymorphic assignment

— Accessing real and imaginary parts

— Pointer function reference is a variable

CHAPTER 1. INTRODUCTION 33

—_

O©W 0 N o g~ W DN

—_

11

12
13
14
15
16
17
18
19
20

21

22

23

24

1.8

34

Recursive I/0

The BLOCK construct

— EXIT statement (to terminate a non-DO construct)

ERROR STOP

Internal procedure as an actual argument

Generic resolution by procedureness

Generic resolution by pointer vs. allocatable

Impure elemental procedures

Where this OpenMP API specification refers to C, C++ or Fortran, reference is made to the base
language supported by the implementation.

Organization of this Document

The remainder of this document is structured as follows:

Chapter 2 “Directives”

Chapter 3 “Runtime Library Routines”

Chapter 4 “OMPT Interface”

Chapter 5 “OMPD Interface”

Chapter 6 “Environment Variables”

Appendix A “OpenMP Implementation-Defined Behaviors”
Appendix B “Features History”

Some sections of this document only apply to programs written in a certain base language. Text that
applies only to programs for which the base language is C or C++ is shown as follows:

C/C++
C/C++ specific text...
C/C++
Text that applies only to programs for which the base language is C only is shown as follows:
C
C specific text...
C

OpenMP API — Version 5.0 November 2018

11

12
13

14

15
16

Text that applies only to programs for which the base language is C90 only is shown as follows:

C90
C90 specific text...
C90
Text that applies only to programs for which the base language is C99 only is shown as follows:
C99
C99 specific text...
C99
Text that applies only to programs for which the base language is C++ only is shown as follows:
C++
C++ specific text...
C++
Text that applies only to programs for which the base language is Fortran is shown as follows:
Fortran
Fortran specific text......
Fortran

Where an entire page consists of base language specific text, a marker is shown at the top of the
page. For Fortran-specific text, the marker is:

Fortran (cont.)
For C/C++-specific text, the marker is:
C/C++ (cont.)

Some text is for information only, and is not part of the normative specification. Such text is
designated as a note, like this:

v v

Note — Non-normative text...

A A
CHAPTER 1. INTRODUCTION 35

This page intentionally left blank

10
11
12

13
14

15
16

17

CHAPTER 2

Directives

This chapter describes the syntax and behavior of OpenMP directives.

C/C++

In C/C++, OpenMP directives are specified by using the #pragma mechanism provided by the C
and C++ standards.

C/C++

Fortran
In Fortran, OpenMP directives are specified by using special comments that are identified by
unique sentinels. Also, a special comment form is available for conditional compilation.

Fortran

Compilers can therefore ignore OpenMP directives and conditionally compiled code if support of
the OpenMP API is not provided or enabled. A compliant implementation must provide an option
or interface that ensures that underlying support of all OpenMP directives and OpenMP conditional
compilation mechanisms is enabled. In the remainder of this document, the phrase OpenMP
compilation is used to mean a compilation with these OpenMP features enabled.

Fortran
Restrictions
The following restriction applies to all OpenMP directives:

e OpenMP directives, except simd and any declarative directive, may not appear in pure
procedures.

e OpenMP directives may not appear in the WHERE and FORALL constructs.
Fortran

CHAPTER 2. DIRECTIVES 37

1 2.1

w N

N

14
15
16

17
18

19
20
21

22
23

24
25

26
27

38

Directive Format

C/C++

OpenMP directives for C/C++ are specified with #pragma directives. The syntax of an OpenMP
directive is as follows:

I #pragma omp directive-name [clause[[, | clause] ... | new-line

Each directive starts with #pragma omp. The remainder of the directive follows the conventions
of the C and C++ standards for compiler directives. In particular, white space can be used before
and after the #, and sometimes white space must be used to separate the words in a directive.
Preprocessing tokens following #pragma omp are subject to macro replacement.

Some OpenMP directives may be composed of consecutive #pragma directives if specified in
their syntax.

Directives are case-sensitive.

Each of the expressions used in the OpenMP syntax inside of the clauses must be a valid
assignment-expression of the base language unless otherwise specified.

C/C++

C++

Directives may not appear in constexpr functions or in constant expressions. Variadic parameter
packs cannot be expanded into a directive or its clauses except as part of an expression argument to
be evaluated by the base language, such as into a function call inside an i £ clause.

C++
Fortran
OpenMP directives for Fortran are specified as follows:

I sentinel directive-name [clause[[, | clause]...]

All OpenMP compiler directives must begin with a directive sentinel. The format of a sentinel
differs between fixed form and free form source files, as described in Section 2.1.1 on page 41 and
Section 2.1.2 on page 41.

Directives are case insensitive. Directives cannot be embedded within continued statements, and
statements cannot be embedded within directives.

Each of the expressions used in the OpenMP syntax inside of the clauses must be a valid expression
of the base language unless otherwise specified.

In order to simplify the presentation, free form is used for the syntax of OpenMP directives for
Fortran in the remainder of this document, except as noted.

Fortran

OpenMP API — Version 5.0 November 2018

0 N o O A ODND =

11
12

13
14
15
16

17
18
19
20

21
22

23
24
25
26

27
28
29

30
31
32

Only one directive-name can be specified per directive (note that this includes combined directives,
see Section 2.13 on page 185). The order in which clauses appear on directives is not significant.
Clauses on directives may be repeated as needed, subject to the restrictions listed in the description
of each clause.

Some clauses accept a list, an extended-list, or a locator-list. A list consists of a comma-separated
collection of one or more list items. An extended-list consists of a comma-separated collection of
one or more extended list items. A locator-list consists of a comma-separated collection of one or
more locator list items.

C/C++

A list item is a variable or an array section. An extended list item is a list item or a function name. A
locator list item is any lvalue expression, including variables, or an array section.

C/C++
Fortran

A list item is a variable, array section or common block name (enclosed in slashes). An extended
list item is a list item or a procedure name. A locator list item is a list item.

When a named common block appears in a /ist, it has the same meaning as if every explicit member
of the common block appeared in the list. An explicit member of a common block is a variable that
is named in a COMMON statement that specifies the common block name and is declared in the same
scoping unit in which the clause appears.

Although variables in common blocks can be accessed by use association or host association,
common block names cannot. As a result, a common block name specified in a data-sharing
attribute, a data copying or a data-mapping attribute clause must be declared to be a common block
in the same scoping unit in which the clause appears.

If a list item that appears in a directive or clause is an optional dummy argument that is not present,
the directive or clause for that list item is ignored.

If the variable referenced inside a construct is an optional dummy argument that is not present, any
explicitly determined, implicitly determined, or predetermined data-sharing and data-mapping
attribute rules for that variable are ignored. Otherwise, if the variable is an optional dummy
argument that is present, it is present inside the construct.

Fortran

For all base languages, a list item, an extended list item, or a locator list item is subject to the
restrictions specified in Section 2.1.5 on page 44 and in each of the sections describing clauses and
directives for which the list, the extended-list, or the locator-list appears.

Some executable directives include a structured block. A structured block:
e may contain infinite loops where the point of exit is never reached;

e may halt due to an IEEE exception;

CHAPTER 2. DIRECTIVES 39

a b~ w D=

11
12

40

C/C++

e may contain calls to exit (), _Exit (), quick_exit (), abort () or functions with a
_Noreturn specifier (in C) or a noreturn attribute (in C/C++);

e may be an expression statement, iteration statement, selection statement, or try block, provided
that the corresponding compound statement obtained by enclosing it in { and } would be a
structured block; and

C/C++

Fortran
e may contain STOP statements.

Fortran

Restrictions
Restrictions to structured blocks are as follows:

e Entry to a structured block must not be the result of a branch.

The point of exit cannot be a branch out of the structured block.

C/C++

The point of entry to a structured block must not be a call to set jmp ().

longjmp () and throw () must not violate the entry/exit criteria.

C/C++

OpenMP API — Version 5.0 November 2018

1

w

—
- O O © N o oA

-
\V]

- a4 a4 a4 o
© oo ~NOoO O AW

NN
- O

\%
N

23

24
25

26
27
28
29
30
31

211

2.1.2

Fortran

Fixed Source Form Directives

The following sentinels are recognized in fixed form source files:

|!$omp | cSomp | *Somp

Sentinels must start in column 1 and appear as a single word with no intervening characters.
Fortran fixed form line length, white space, continuation, and column rules apply to the directive
line. Initial directive lines must have a space or a zero in column 6, and continuation directive lines
must have a character other than a space or a zero in column 6.

Comments may appear on the same line as a directive. The exclamation point initiates a comment

when it appears after column 6. The comment extends to the end of the source line and is ignored.
If the first non-blank character after the directive sentinel of an initial or continuation directive line
is an exclamation point, the line is ignored.

v v
Note — In the following example, the three formats for specifying the directive are equivalent (the
first line represents the position of the first 9 columns):

c23456789

!Somp parallel do shared(a,b,c)

cSomp parallel do
c$omp+shared(a, b, c)

c$omp paralleldoshared(a,b, c)

A A

Free Source Form Directives

The following sentinel is recognized in free form source files:
I ! Somp

The sentinel can appear in any column as long as it is preceded only by white space. It must appear
as a single word with no intervening white space. Fortran free form line length, white space, and
continuation rules apply to the directive line. Initial directive lines must have a space after the
sentinel. Continued directive lines must have an ampersand (&) as the last non-blank character on
the line, prior to any comment placed inside the directive. Continuation directive lines can have an
ampersand after the directive sentinel with optional white space before and after the ampersand.

CHAPTER 2. DIRECTIVES 41

o~N O OO WN =

a4
OO WON-—=-OO

—_
©

19

20
21

22

23
24
25
26
27

213

42

Comments may appear on the same line as a directive. The exclamation point (!) initiates a
comment. The comment extends to the end of the source line and is ignored. If the first non-blank
character after the directive sentinel is an exclamation point, the line is ignored.

One or more blanks or horizontal tabs are optional to separate adjacent keywords in
directive-names unless otherwise specified.

v v
Note — In the following example the three formats for specifying the directive are equivalent (the
first line represents the position of the first 9 columns):

123456789

!$omp parallel do &
!$omp shared(a,b, c)

!$omp parallel &
!$omp&do shared(a,b, c)

!Somp paralleldo shared(a,b,c)

A A

Fortran

Stand-Alone Directives

Summary

Stand-alone directives are executable directives that have no associated user code.

Description

Stand-alone directives do not have any associated executable user code. Instead, they represent
executable statements that typically do not have succinct equivalent statements in the base
language. There are some restrictions on the placement of a stand-alone directive within a program.
A stand-alone directive may be placed only at a point where a base language executable statement is
allowed.

OpenMP API — Version 5.0 November 2018

N

»

o © 00

11

12
13

14
15

16
17
18
19
20
21

22
23

214

Restrictions
C/C++

e A stand-alone directive may not be used in place of the statement following an i £, while, do,
switch, or 1label.

C/C++
Fortran

e A stand-alone directive may not be used as the action statement in an i £ statement or as the
executable statement following a label if the label is referenced in the program.

Fortran
C/C++

Array Shaping

If an expression has a type of pointer to 7, then a shape-operator can be used to specify the extent of
that pointer. In other words, the shape-operator is used to reinterpret, as an n-dimensional array, the
region of memory to which that expression points.

Formally, the syntax of the shape-operator is as follows:
I shaped-expression := ([s7]1[s2]...[s.]) cast-expression

The result of applying the shape-operator to an expression is an Ivalue expression with an
n-dimensional array type with dimensions s; X s, ... X s, and element type 7.

The precedence of the shape-operator is the same as a type cast.

Each s; is an integral type expression that must evaluate to a positive integer.

Restrictions
Restrictions to the shape-operator are as follows:

e The type T must be a complete type.

The shape-operator can appear only in clauses where it is explicitly allowed.

The result of a shape-operator must be a named array of a list item.

The type of the expression upon which a shape-operator is applied must be a pointer type.

C++

If the type T is a reference to a type 7", then the type will be considered to be 7~ for all purposes
of the designated array.

C++

C/C++

CHAPTER 2. DIRECTIVES 43

1

O © 00 N o o AW

- a4 a4 a4 a4 a4
o g~ W N =

17

18
19

20
21

22
23

24
25
26
27

28
29

30

2.1.5

44

Array Sections

An array section designates a subset of the elements in an array.

C/C++

To specify an array section in an OpenMP construct, array subscript expressions are extended with
the following syntax:

[lower-bound : length : stride] or
[lower-bound : length : 1 or
[lower-bound : length] or
[lower-bound : : stride] or
[lower-bound : : 1 or
[lower-bound : 1 or
[: length : stride] or
: length : 1 or
: length] or

.:]
2]

[
[
[: : stride]
[
[

The array section must be a subset of the original array.

Array sections are allowed on multidimensional arrays. Base language array subscript expressions
can be used to specify length-one dimensions of multidimensional array sections.

Each of the lower-bound, length, and stride expressions if specified must be an integral type
expression of the base language. When evaluated they represent a set of integer values as follows:

{ lower-bound, lower-bound + stride, lower-bound + 2 * stride,... , lower-bound + ((length - 1) *
stride) }

The length must evaluate to a non-negative integer.

The stride must evaluate to a positive integer.

When the size of the array dimension is not known, the length must be specified explicitly.
When the stride is absent it defaults to 1.

When the length is absent it defaults to [(size — lower-bound) /stride], where size is the size of the
array dimension.

When the lower-bound is absent it defaults to 0.

OpenMP API — Version 5.0 November 2018

19
20
21

22
23
24

25
26

27
28

29
30

C/C++ (cont.)

The precedence of a subscript operator that uses the array section syntax is the same as the
precedence of a subscript operator that does not use the array section syntax.

v v
Note — The following are examples of array sections:

af[0:6]

af[0:6:1]
a[l1:10]

af[l:]

a[:10:2]
b[10][:1[:]
b[10][:]1[:0]
c[42][0:6][:]
c[42][0:6:2][:]
c[1:10][42][0:6]
S.c[:100]
p—>yl[:10]
this->a[:N]
(p+10) [:N]

Assume a is declared to be a 1-dimensional array with dimension size 11. The first two examples
are equivalent, and the third and fourth examples are equivalent. The fifth example specifies a stride
of 2 and therefore is not contiguous.

Assume b is declared to be a pointer to a 2-dimensional array with dimension sizes 10 and 10. The
sixth example refers to all elements of the 2-dimensional array given by b[10]. The seventh
example is a zero-length array section.

Assume c is declared to be a 3-dimensional array with dimension sizes 50, 50, and 50. The eighth
example is contiguous, while the ninth and tenth examples are not contiguous.

The final four examples show array sections that are formed from more general base expressions.
The following are examples that are non-conforming array sections:

s[:10] .x

pl:10]->y

* (xp[:10])

CHAPTER 2. DIRECTIVES 45

a b=

10
11

12
13

14
15
16
17

18
19

20

21
22

23
24

25

46

For all three examples, a base language operator is applied in an undefined manner to an array
section. The only operator that may be applied to an array section is a subscript operator for which

the array section appears as the postfix expression.
A A

C/C++
Fortran

Fortran has built-in support for array sections although some restrictions apply to their use, as
enumerated in the following section.

Fortran

Restrictions
Restrictions to array sections are as follows:

e An array section can appear only in clauses where it is explicitly allowed.

A stride expression may not be specified unless otherwise stated.

C/C++

e An element of an array section with a non-zero size must have a complete type.
e The base expression of an array section must have an array or pointer type.

e If a consecutive sequence of array subscript expressions appears in an array section, and the first
subscript expression in the sequence uses the extended array section syntax defined in this
section, then only the last subscript expression in the sequence may select array elements that
have a pointer type.

C/C++
C++

o If the type of the base expression of an array section is a reference to a type 7, then the type will
be considered to be T for all purposes of the array section.

e An array section cannot be used in an overloaded [] operator.

C++
Fortran
e If a stride expression is specified, it must be positive.

e The upper bound for the last dimension of an assumed-size dummy array must be specified.

e If alist item is an array section with vector subscripts, the first array element must be the lowest
in the array element order of the array section.

e If alist item is an array section, the last part-ref of the list item must have a section subscript list.
Fortran

OpenMP API — Version 5.0 November 2018

1

N

»

11

12

13
14

15
16

17
18

19

20
21

22
23

lterators

Iterators are identifiers that expand to multiple values in the clause on which they appear.

The syntax of the iterator modifier is as follows:

I iterator (iterators-definition)
where iterators-definition is one of the following:
I iterator-specifier [, iterators-definition |
where iterator-specifier is one of the following:
I [iterator-type | identifier = range-specification
where:

e identifier is a base language identifier.

C/C++
e iterator-type is a type name.

C/C++

Fortran
e iterator-type is a type specifier.

Fortran

e range-specification is of the form begin : end| : step], where begin and end are expressions for
which their types can be converted to iterator-type and step is an integral expression.

C/C++

In an iterator-specifier, if the iterator-type is not specified then the type of that iterator is of int
type.
C/C++

Fortran
In an iterator-specifier, if the iterator-type is not specified then the type of that iterator is default
integer.

Fortran

In a range-specification, if the step is not specified its value is implicitly defined to be 1.

An iterator only exists in the context of the clause in which it appears. An iterator also hides all
accessible symbols with the same name in the context of the clause.

The use of a variable in an expression that appears in the range-specification causes an implicit
reference to the variable in all enclosing constructs.

CHAPTER 2. DIRECTIVES

47

o © 0o N o g A w0 DN =

—_
—_

12
13
14
15
16
17
18
19
20
21
22

C/C++

The values of the iterator are the set of values ig, ..., iy_1 Where:
e io = (iterator-type) begin,
e i; = (iterator-type) (i;_1 + step), and
o if step > 0,
— ig < (iterator-type) end,

- iny—1 < (iterator-type) end, and

(iterator-type) (in_1 + step) > (iterator-type) end,
e if step <0,

ig > (iterator-type) end,
- in—1 > (iterator-type) end, and

— (iterator-type) (in—1 + step) < (iterator-type) end.
C/C++

Fortran
The values of the iterator are the set of values i1, ..., 7y Where:

e i1 = begin,
® i; =1i;_1 + step, and
e if step > 0,

- 11 <end,

iy <end,and

iN + step > end;
e if step < 0,
- 11 > end,

— iy > end, and

iN + step < end.
Fortran

48 OpenMP API — Version 5.0 November 2018

No gk~ WD

10
11

12
13

14

15
16
17

18

19
20
21

22
23

24
25

2.2

The set of values will be empty if no possible value complies with the conditions above.

For those clauses that contain expressions that contain iterator identifiers, the effect is as if the list
item is instantiated within the clause for each value of the iterator in the set defined above,
substituting each occurrence of the iterator identifier in the expression with the iterator value. If the
set of values of the iterator is empty then the effect is as if the clause was not specified.

The behavior is unspecified if 7; + step cannot be represented in iterator-type in any of the
1; + step computations for any 0 < j < NV in C/C++ or 0 < j < N in Fortran.

Restrictions

e An expression that contains an iterator identifier can only appear in clauses that explicitly allow
expressions that contain iterators.

o The iterator-type must not declare a new type.

C/C++

o The iterator-type must be an integral or pointer type.

e The iterator-type must not be const qualified.

C/C++

Fortran
e The iterator-type must be an integer type.

Fortran

o If the step expression of a range-specification equals zero, the behavior is unspecified.
e Each iterator identifier can only be defined once in an iterators-definition.

e lterators cannot appear in the range-specification.

Conditional Compilation

In implementations that support a preprocessor, the _ OPENMP macro name is defined to have the
decimal value yyyymm where yyyy and mm are the year and month designations of the version of
the OpenMP API that the implementation supports.

If a #define or a #undef preprocessing directive in user code defines or undefines the

_OPENMP macro name, the behavior is unspecified.

Fortran

The OpenMP API requires Fortran lines to be compiled conditionally, as described in the following
sections.

CHAPTER 2. DIRECTIVES 49

1

25

26
27

28
29

30
31

2.2.1

2.2.2

50

Fortran (cont.)

Fixed Source Form Conditional Compilation Sentinels

The following conditional compilation sentinels are recognized in fixed form source files:

[!$ 1 *$ | c$

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the
following criteria:

e The sentinel must start in column 1 and appear as a single word with no intervening white space;

e After the sentinel is replaced with two spaces, initial lines must have a space or zero in column 6
and only white space and numbers in columns 1 through 5;

e After the sentinel is replaced with two spaces, continuation lines must have a character other than
a space or zero in column 6 and only white space in columns 1 through 5.

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not met, the line
is left unchanged.

v v
Note — In the following example, the two forms for specifying conditional compilation in fixed
source form are equivalent (the first line represents the position of the first 9 columns):

c23456789

!'$ 10 iam = omp_get_thread num() +

'8 & index

#ifdef _OPENMP
10 iam = omp_get_thread num() +
& index
#endif

A A

Free Source Form Conditional Compilation Sentinel

The following conditional compilation sentinel is recognized in free form source files:
R

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the
following criteria:

e The sentinel can appear in any column but must be preceded only by white space;

e The sentinel must appear as a single word with no intervening white space;

OpenMP API — Version 5.0 November 2018

—_

0o N oo~ Wb

11
12
13
14
15
16
17

18
19

20

21

22
23
24
25

26
27
28
29
30
31
32

2.3
2.3.1

o Initial lines must have a space after the sentinel;

e Continued lines must have an ampersand as the last non-blank character on the line, prior to any
comment appearing on the conditionally compiled line.

Continuation lines can have an ampersand after the sentinel, with optional white space before and
after the ampersand. If these criteria are met, the sentinel is replaced by two spaces. If these criteria
are not met, the line is left unchanged.

v v
Note — In the following example, the two forms for specifying conditional compilation in free
source form are equivalent (the first line represents the position of the first 9 columns):
c23456789
!'$ iam = omp_get_thread num() + &
158 index

#ifdef _ OPENMP
iam = omp_get_thread num() + &
index
#endif

A A

Fortran

Variant Directives

OpenMP Context

At any point in a program, an OpenMP context exists that defines traits that describe the active
OpenMP constructs, the execution devices, and functionality supported by the implementation. The
traits are grouped into trait sets. The following trait sets exist: construct, device and
implementation.

The construct set is composed of the directive names, each being a trait, of all enclosing constructs
at that point in the program up to a target construct. Combined and composite constructs are
added to the set as distinct constructs in the same nesting order specified by the original construct.
The set is ordered by nesting level in ascending order. Specifically, the ordering of the set of
constructs is cq, ..., ¢y, where c; is the construct at the outermost nesting level and cyy is the
construct at the innermost nesting level. In addition, if the point in the program is not enclosed by a
target construct, the following rules are applied in order:

CHAPTER 2. DIRECTIVES 51

_
- O©W oOoO~NO O~ wW N-=

- a4 a
a s~ WD

_ a a4
© oo N o

NN
- O

NN
w N

N N
a

N NN
w0 N o

W N
o ©

W w
N —

52

1. For functions with a declare simd directive, the simd trait is added to the beginning of the
set as ¢y for any generated SIMD versions so the total size of the set is increased by 1.

2. For functions that are determined to be function variants by a declare variant directive,
the selectors cq, ..., c¢ys of the construct selector set are added in the same order to the
beginning of the set as ¢y, ..., cps so the total size of the set is increased by M.

3. For functions within a declare target block, the target trait is added to the beginning of the
set as c; for any versions of the function that are generated for target regions so the total size
of the set is increased by 1.

The simd trait can be further defined with properties that match the clauses accepted by the
declare simd directive with the same name and semantics. The simd trait must define at least
the simdlen property and one of the inbranch or notinbranch properties.

The device set includes traits that define the characteristics of the device being targeted by the
compiler at that point in the program. At least the following traits must be defined:

e The kind(kind-name-list) trait specifies the general kind of the device. The following kind-name
values are defined:

— host, which specifies that the device is the host device;
— nohost, which specifies that the devices is not the host device; and

— the values defined in the “OpenMP Context Definitions” document, which is available at
http://www.openmp.org/.

o The isa(isa-name-list) trait specifies the Instruction Set Architectures supported by the device.
The accepted isa-name values are implementation defined.

e The arch(arch-name-list) trait specifies the architectures supported by the device. The accepted
arch-name values are implementation defined.

The implementation set includes traits that describe the functionality supported by the OpenMP
implementation at that point in the program. At least the following traits can be defined:

e The vendor(vendor-name-list) trait, which specifies the vendor identifiers of the implementation.
OpenMP defined values for vendor-name are defined in the “OpenMP Context Definitions”
document, which is available at http://www.openmp.org/.

o The extension(extension-name-list) trait, which specifies vendor specific extensions to the
OpenMP specification. The accepted extension-name values are implementation defined.

e A trait with a name that is identical to the name of any clause that can be supplied to the
requires directive.

OpenMP API - Version 5.0 November 2018

http://www.openmp.org/
http://www.openmp.org/

0N O W N2

-
W N = O

-
N

15

16
17

18

19
20
21
22
23
24
25
26
27
28

29
30
31
32
33

34
35

2.3.2

Implementations can define further traits in the device and implementation sets. All implementation
defined traits must follow the following syntax:

identifier[(context-element[, context-element[, ...]])]

context-element :
identifier[(context-element[, context-element[, ...]J])]
or
context-value

context-value :
constant string
or
constant integer expression

where identifier is a base language identifier.

Context Selectors

Context selectors are used to define the properties of an OpenMP context that a directive or clause
can match. OpenMP defines different sets of selectors, each containing different selectors.

The syntax to define a context-selector-specification is the following:

trait-set-selector(, trait-set-selector(, ...]]

trait-set-selector :
trait-set-selector-name= { trait-selector([, trait-selector[, ...]]}

trait-selector :
trait-selector-name[([trait-score: | trait-property[, trait-property[, ...J])]

trait-score :
score (score-expression)

The construct selector set defines the construct traits that should be active in the OpenMP
context. The following selectors can be defined in the construct set: target; teams;
parallel; for (in C/C++); do (in Fortran); and simd. The properties of each selector are the
same properties that are defined for the corresponding trait. The construct selector is an
ordered list ¢y, ..., cn.

The device and implementation selector sets define the traits that should be active in the
corresponding trait set of the OpenMP context. The same traits defined in the corresponding traits

CHAPTER 2. DIRECTIVES 53

[AW N =

~

11

12
13

14
15
16
17

54

sets can be used as selectors with the same properties. The kind selector of the device selector
set can also be set to the value any, which is as if no kind selector was specified.

The user selector set defines the condition selector that provides additional user-defined
conditions.

C

The condition (boolean-expr) selector defines a constant expression that must evaluate to true
for the selector to be true.

C
C++

The condition (boolean-expr) selector defines a constexpr expression that must evaluate to
true for the selector to be true.

C++

Fortran

The condition (logical-expr) selector defines a constant expression that must evaluate to true
for the selector to be true.

Fortran

A score-expression must be an constant integer expression.

Implementations can allow further selectors to be specified. Implementations can ignore specified
selectors that are not those described in this section.

Restrictions
e Each trait-set-selector-name can only be specified once.
e Each rrait-selector-name can only be specified once.

e A trait-score cannot be specified in traits from the construct or device trait-selector-sets.

OpenMP API — Version 5.0 November 2018

W oo OO M WM

—_ -
—_

—a a
w N

—_ -
o B~

—_
»

_ -
o

N =
o ©

N N
N =

NN
AW

n
[6)}

NN NN
© 0N

2.3.3

Matching and Scoring Context Selectors

A given context selector is compatible with a given OpenMP context if the following conditions are
satisfied:

All selectors in the user set of the context selector are true;

All selectors in the construct, device, and implementation sets of the context selector
appear in the corresponding trait set of the OpenMP context;

For each selector in the context selector, its properties are a subset of the properties of the
corresponding trait of the OpenMP context; and

Selectors in the construct set of the context selector appear in the same relative order as their
corresponding traits in the construct trait set of the OpenMP context.

Some properties of the simd selector have special rules to match the properties of the simd trait:

The simdlen (N) property of the selector matches the simdlen(M) trait of the OpenMP context
if M%N equals zero; and

The aligned (list:N) property of the selector matches the aligned(list:M) trait of the OpenMP
context if N%M equals zero.

Among compatible context selectors, a score is computed using the following algorithm:

1.

Each trait that appears in the construct trait set in the OpenMP context is given the value 27!
where p is the position of the construct trait, ¢, in the set;

The kind, arch, and isa selectors are given the values 2!, 2!T1 and 2!72, respectively, where
[is the number of traits in the construct set;

Traits for which a trait-score is specified are given the value specified by the trait-score
score-expression;

The values given to any additional selectors allowed by the implementation are implemented
defined;

Other selectors are given a value of zero; and

A context selector that is a strict subset of another context selector has a score of zero. For other
context selectors, the final score is the sum of the values of all specified selectors plus 1. If the
traits that correspond to the construct selectors appear multiple times in the OpenMP
context, the highest valued subset of traits that contains all selectors in the same order are used.

CHAPTER 2. DIRECTIVES 55

10
11

12

13
14

15
16

17

18
19
20

21

22
23

24

25
26

27

2.3.4

56

Metadirectives

Summary

A metadirective is a directive that can specify multiple directive variants of which one may be
conditionally selected to replace the metadirective based on the enclosing OpenMP context.

Syntax
C/C++

The syntax of a metadirective takes one of the following forms:

I #pragma omp metadirective [clause[[,] clause] ... | new-line

or

#pragma omp begin metadirective [clause[[,] clause] ... | new-line
stmt(s)
#pragma omp end metadirective

where clause is one of the following:

when (context-selector-specification : [directive-variant])
default (directive-variant)
C/C++
Fortran
The syntax of a metadirective takes one of the following forms:

I 'Somp metadirective [clause[[,] clause] ...]

or

!Somp begin metadirective [clause[[,] clause] ... |
stmt(s)
!Somp end metadirective

where clause is one of the following:
when (context-selector-specification : [directive-variant])
default (directive-variant)

Fortran

In the when clause, context-selector-specification specifies a context selector (see Section 2.3.2).

In the when and default clauses, directive-variant has the following form and specifies a
directive variant that specifies an OpenMP directive with clauses that apply to it.

I directive-name [clause[[, | clause] ... |

OpenMP API — Version 5.0 November 2018

—_

0N O~ WM

11
12

13
14
15

16
17

18
19
20
21
22
23
24

25
26

27
28

29
30

31
32

33
34
35
36

37

Description

A metadirective is a directive that behaves as if it is either ignored or replaced by the directive
variant specified in one of the when or default clauses that appears on the metadirective.

The OpenMP context for a given metadirective is defined according to Section 2.3.1. For each
when clause that appears on a metadirective, the specified directive variant, if present, is a
candidate to replace the metadirective if the corresponding context selector is compatible with the
OpenMP context according to the matching rules defined in Section 2.3.3. If only one compatible
context selector specified by a when clause has the highest score and it specifies a directive variant,
the directive variant will replace the metadirective. If more than one when clause specifies a
compatible context selector that has the highest computed score and at least one specifies a
directive variant, the first directive variant specified in the lexical order of those when clauses will
replace the metadirective.

If no context selector from any when clause is compatible with the OpenMP context and a
default clause is present, the directive variant specified in the default clause will replace the
metadirective.

If a directive variant is not selected to replace a metadirective according to the above rules, the
metadirective has no effect on the execution of the program.

The begin metadirective directive behaves identically to the metadirective directive,
except that the directive syntax for the specified directive variants must accept a paired

end directive. For any directive variant that is selected to replace the begin metadirective
directive, the end metadirective directive will be implicitly replaced by its paired

end directive to demarcate the statements that are affected by or are associated with the directive
variant. If no directive variant is selected to replace the begin metadirective directive, its
paired end metadirective directive is ignored.

Restrictions
Restrictions to metadirectives are as follows:

o The directive variant appearing in a when or default clause must not specify a
metadirective, begin metadirective, or end metadirective directive.

o The context selector that appears in a when clause must not specify any properties for the simd
selector.

e Any replacement that occurs for a metadirective must not result in a non-conforming OpenMP
program.

e Any directive variant that is specified by a when or default clause on a
begin metadirective directive must be an OpenMP directive that has a paired
end directive, and the begin metadirective directive must have a paired
end metadirective directive.

o The default clause may appear at most once on a metadirective.

CHAPTER 2. DIRECTIVES 57

a0 DN

10
11

12

13

14
15

16
17

18
19

20

21

22
23

2.3.5 declare variant Directive

Summary

The declare variant directive declares a specialized variant of a base function and specifies
the context in which that specialized variant is used. The declare variant directive is a
declarative directive.

Syntax
C/C++

The syntax of the declare variant directive is as follows:

#pragma omp declare variant (variant-func-id) clause new-line
[#pragma omp declare variant (variant-func-id) clause new-line]

[..]

function definition or declaration
where clause is one of the following:
I match (context-selector-specification)

and where variant-func-id is the name of a function variant that is either a base language identifier
or, for C++, a template-id.

C/C++
Fortran
The syntax of the declare wvariant directive is as follows:

I 'Somp declare variant ([base-proc-name: Jvariant-proc-name) clause

where clause is one of the following:
I match (context-selector-specification)

and where variant-proc-name is the name of a function variant that is a base language identifier.
Fortran

Description

The declare variant directive declares the base function to have the specified function
variant. The context selector in the match clause is associated with the variant.

58 OpenMP API — Version 5.0 November 2018

O N O~ WND =

11
12

13
14
15

16
17

18
19

20
21
22

23
24

25
26
27

28

29
30

The OpenMP context for a call to a given base function is defined according to Section 2.3.1. If the
context selector that is associated with a declared function variant is compatible with the OpenMP
context of a call to a base function according to the matching rules defined in Section 2.3.3 then a
call to the variant is a candidate to replace the base function call. For any call to the base function
for which candidate variants exist, the variant with the highest score is selected from all compatible
variants. If multiple variants have the highest score, the selected variant is implementation defined.
If a compatible variant exists, the call to the base function is replaced with a call to the selected
variant. If no compatible variants exist then the call to the base function is not changed.

Different declare variant directives may be specified for different declarations of the same
base function.

Any differences that the specific OpenMP context requires in the prototype of the variant from the
base function prototype are implementation defined.

C++

The function variant is determined by base language standard name lookup rules ([basic.lookup])
of variant-func-id with arguments that correspond to the argument types in the base function
declaration.

The variant-func-id and any expressions inside of the match clause are interpreted as if they
appeared at the scope of the trailing return type of the base function.

C++

Restrictions
Restrictions to the declare wvariant directive are as follows:

e Calling functions that a declare variant directive determined to be a function variant
directly in an OpenMP context that is different from the one that the construct selector set of
the context selector specifies is non-conforming.

e If a function is determined to be a function variant through more than one declare variant
directive then the construct selector set of their context selectors must be the same.

C/C++

o If the function has any declarations, then the declare variant directives for any declarations
that have one must be equivalent. If the function definition has a declare variant, it must
also be equivalent. Otherwise, the result is unspecified.

C/C++
C++

o The declare variant directive cannot be specified for a virtual function.

e The type of the function variant must be compatible with the type of the base function after the
implementation-defined transformation for its OpenMP context.

C++

CHAPTER 2. DIRECTIVES 59

Fortran

1 e base-proc-name must not be a generic name, procedure pointer, or entry name.

2 o If base-proc-name is omitted then the declare variant directive must appear in the

3 specification part of a subroutine subprogram or a function subprogram.

4 e Any declare variant directive must appear in the specification part of a subroutine,

5 subprogram, function subprogram, or interface body to which it applies.

6 e If a declare variant directive is specified in an interface block for a procedure then it must

7 match a declare variant directive in the definition of the procedure.

8 e If a procedure is declared via a procedure declaration statement then the procedure

9 base-proc-name should appear in the same specification.
10 e If a declare variant directive is specified for a procedure name with an explicit interface
11 and a declare variant directive is also specified for the definition of the procedure, the two
12 declare variant directives must match. Otherwise the result is unspecified.

Fortran

13 Cross References
14 e OpenMP Context Specification, see Section 2.3.1 on page 51.
15 e Context Selectors, see Section 2.3.2 on page 53.

16 2.4 requires Directive

17 Summary
18 The requires directive specifies the features that an implementation must provide in order for
19 the code to compile and to execute correctly. The requires directive is a declarative directive.
20 Syntax

C/C++
21 The syntax of the requires directive is as follows:
22 I #pragma omp requires clause[[[,] clause] ... | new-line

C/C++

60 OpenMP API — Version 5.0 November 2018

AW N

© 00 N O O

10

11
12
13
14

15
16

17

18
19
20

21
22
23
24

25
26
27
28
29
30
31
32
33

Fortran
The syntax of the requires directive is as follows:
I 'Somp requires clause[[[,] clause] ... |
Fortran
Where clause is either one of the requirement clauses listed below or a clause of the form
ext_implementation-defined-requirement for an implementation defined requirement clause.
reverse_offload
unified address
unified shared memory

atomic_default mem order(seq cst | acq rel | relaxed)

dynamic_allocators

Description

The requires directive specifies features that an implementation must support for correct
execution. The behavior that a requirement clause specifies may override the normal behavior
specified elsewhere in this document. Whether an implementation supports the feature that a given
requirement clause specifies is implementation defined.

The requires directive specifies requirements for the execution of all code in the current
compilation unit.

v v
Note — Use of this directive makes your code less portable. Users should be aware that not all

devices or implementations support all requirements.
A A

When the reverse_offload clause appears on a requires directive, the implementation
guarantees that a target region, for which the target construct specifies a device clause in
which the ancestor modifier appears, can execute on the parent device of an enclosing target
region.

When the unified address clause appears on a requires directive, the implementation
guarantees that all devices accessible through OpenMP API routines and directives use a unified
address space. In this address space, a pointer will always refer to the same location in memory
from all devices accessible through OpenMP. The pointers returned by omp_target_alloc and
accessed through use_device_ptr are guaranteed to be pointer values that can support pointer
arithmetic while still being native device pointers. The is_device_ptr clause is not necessary
for device pointers to be translated in target regions, and pointers found not present are not set to
null but keep their original value. Memory local to a specific execution context may be exempt
from this requirement, following the restrictions of locality to a given execution context, thread, or

CHAPTER 2. DIRECTIVES 61

oNOO O~ W N =

©

—_ 1 a
a b~ wWON-—=O

DN = =
- O © 0N

DN NN
oo WD

WwWwWwwMnhNDN
N = O © 0N

W w w
a B~ W

36
37
38

62

contention group. Target devices may still have discrete memories and dereferencing a device
pointer on the host device or host pointer on a target device remains unspecified behavior.

The unified_ shared_memory clause implies the unified_address requirement,
inheriting all of its behaviors. Additionally, memory in the device data environment of any device
visible to OpenMP, including but not limited to the host, is considered part of the device data
environment of all devices accessible through OpenMP except as noted below. Every device address
allocated through OpenMP device memory routines is a valid host pointer. Memory local to an
execution context as defined in unified_address above may remain part of distinct device data
environments as long as the execution context is local to the device containing that environment.

The unified_shared_memory clause makes the map clause optional on target constructs
and the declare target directive optional for static lifetime variables accessed inside
declare target functions. Scalar variables are still firstprivate by default when referenced
inside target constructs. Values stored into memory by one device may not be visible to another
device until those two devices synchronize with each other or both devices synchronize with the
host.

The atomic_default_mem_order clause specifies the default memory ordering behavior for
atomic constructs that must be provided by an implementation. If the default memory ordering is
specified as seq_cst, all atomic constructs on which memory-order-clause is not specified
behave as if the seq_ecst clause appears. If the default memory ordering is specified as
relaxed, all atomic constructs on which memory-order-clause is not specified behave as if the
relaxed clause appears.

If the default memory ordering is specified as acq_rel, atomic constructs on which
memory-order-clause is not specified behave as if the release clause appears if the atomic write
or atomic update operation is specified, as if the acquire clause appears if the atomic read
operation is specified, and as if the acq_rel clause appears if the atomic captured update
operation is specified.

The dynamic_allocators clause removes certain restrictions on the use of memory allocators
in target regions. It makes the uses_allocators clause optional on target constructs for
the purpose of using allocators in the corresponding target regions. It allows calls to the
omp_init_allocator and omp_destroy_allocator APIroutines in target regions.
Finally, it allows default allocators to be used by allocate directives, allocate clauses, and
omp_alloc API routines in target regions.

Implementers are allowed to include additional implementation defined requirement clauses. All
implementation defined requirements should begin with ext_. Requirement names that do not
start with ext__ are reserved.

Restrictions
The restrictions for the requires directive are as follows:

e Each of the clauses can appear at most once on the directive.

OpenMP API — Version 5.0 November 2018

0 NoOo O~ N =

10

11
12

13

14

15

16
17
18
19
20
21
22

23
24
25

2.5

e At most one requires directive with atomic_default_mem_order clause can appear in
a single compilation unit.

e A requires directive with aunified_address, unified_ shared_memory, or
reverse_offload clause must appear lexically before any device constructs or device
routines.

e A requires directive with any of the following clauses must appear in all compilation units of
a program that contain device constructs or device routines or in none of them:

— reverse_offload
— unified address
— unified_shared_memory

e The requires directive with atomic_default_mem order clause may not appear
lexically after any atomic construct on which memory-order-clause is not specified.

C
e The requires directive may only appear at file scope.

C
C++

e The requires directive may only appear at file or namespace scope.

C++

Internal Control Variables

An OpenMP implementation must act as if there are internal control variables (ICVs) that control
the behavior of an OpenMP program. These ICVs store information such as the number of threads
to use for future parallel regions, the schedule to use for worksharing loops and whether nested
parallelism is enabled or not. The ICVs are given values at various times (described below) during
the execution of the program. They are initialized by the implementation itself and may be given
values through OpenMP environment variables and through calls to OpenMP API routines. The
program can retrieve the values of these ICVs only through OpenMP API routines.

For purposes of exposition, this document refers to the ICVs by certain names, but an
implementation is not required to use these names or to offer any way to access the variables other
than through the ways shown in Section 2.5.2 on page 66.

CHAPTER 2. DIRECTIVES 63

2.5.1

64

ICV Descriptions

The following ICVs store values that affect the operation of parallel regions.

e dyn-var - controls whether dynamic adjustment of the number of threads is enabled for
encountered parallel regions. There is one copy of this ICV per data environment.

e nthreads-var - controls the number of threads requested for encountered parallel regions.
There is one copy of this ICV per data environment.

o thread-limit-var - controls the maximum number of threads participating in the contention
group. There is one copy of this ICV per data environment.

e max-active-levels-var - controls the maximum number of nested active parallel regions.
There is one copy of this ICV per device.

e place-partition-var - controls the place partition available to the execution environment for
encountered parallel regions. There is one copy of this ICV per implicit task.

e active-levels-var - the number of nested active parallel regions that enclose the current task
such that all of the parallel regions are enclosed by the outermost initial task region on the
current device. There is one copy of this ICV per data environment.

o levels-var - the number of nested parallel regions that enclose the current task such that all of the
parallel regions are enclosed by the outermost initial task region on the current device.
There is one copy of this ICV per data environment.

e bind-var - controls the binding of OpenMP threads to places. When binding is requested, the
variable indicates that the execution environment is advised not to move threads between places.
The variable can also provide default thread affinity policies. There is one copy of this ICV per
data environment.

The following ICVs store values that affect the operation of worksharing-loop regions.

e run-sched-var - controls the schedule that is used for worksharing-loop regions when the
runtime schedule kind is specified. There is one copy of this ICV per data environment.

o def-sched-var - controls the implementation defined default scheduling of worksharing-loop
regions. There is one copy of this ICV per device.

The following ICVs store values that affect program execution.

e stacksize-var - controls the stack size for threads that the OpenMP implementation creates. There
is one copy of this ICV per device.

e wait-policy-var - controls the desired behavior of waiting threads. There is one copy of this ICV
per device.

o display-affinity-var - controls whether to display thread affinity. There is one copy of this ICV for
the whole program.

OpenMP API — Version 5.0 November 2018

o © 0 N [e22Né; ! A~ W N =

—_ .
—_

—a
w N

_ -
(G20 N

—_
»

-
© 0

N
o

NN N
W N =

o affinity-format-var - controls the thread affinity format when displaying thread affinity. There is
one copy of this ICV per device.

e cancel-var - controls the desired behavior of the cancel construct and cancellation points.
There is one copy of this ICV for the whole program.

o default-device-var - controls the default target device. There is one copy of this ICV per data
environment.

o target-offload-var - controls the offloading behavior. There is one copy of this ICV for the whole
program.

e max-task-priority-var - controls the maximum priority value that can be specified in the
priority clause of the task construct. There is one copy of this ICV for the whole program.

The following ICVs store values that affect the operation of the OMPT tool interface.

e fool-var - controls whether an OpenMP implementation will try to register a tool. There is one
copy of this ICV for the whole program.

e tool-libraries-var - specifies a list of absolute paths to tool libraries for OpenMP devices. There
is one copy of this ICV for the whole program.

The following ICVs store values that affect the operation of the OMPD tool interface.

e debug-var - controls whether an OpenMP implementation will collect information that an
OMPD library can access to satisfy requests from a tool. There is one copy of this ICV for the
whole program.

The following ICVs store values that affect default memory allocation.

o def-allocator-var - controls the memory allocator to be used by memory allocation routines,
directives and clauses when a memory allocator is not specified by the user. There is one copy of
this ICV per implicit task.

CHAPTER 2. DIRECTIVES 65

ICV Initialization

TABLE 2.1: ICV Initial Values

ICV

Environment Variable

Initial value

dyn-var
nthreads-var
run-sched-var
def-sched-var
bind-var
stacksize-var
wait-policy-var
thread-limit-var

max-active-levels-var

active-levels-var
levels-var
place-partition-var
cancel-var
display-affinity-var
affinity-format-var
default-device-var
target-offload-var
max-task-priority-var
tool-var
tool-libraries-var
debug-var

def-allocator-var

OMP_DYNAMIC
OMP_NUM_THREADS
OMP__ SCHEDULE
(none)
OMP_PROC_BIND
OMP_STACKSIZE
OMP_WAIT_ POLICY
OMP_THREAD_LIMIT

OMP_MAX ACTIVE_LEVELS,
OMP_NESTED

(none)

(none)

OMP_PLACES
OMP__CANCELLATION
OMP_DISPLAY AFFINITY
OMP_AFFINITY_ FORMAT
OMP_DEFAULT_ DEVICE
OMP__TARGET_OFFLOAD
OMP_MAX TASK_PRIORITY
OMP__TOOL
OMP_TOOL_LIBRARIES
OMP_DEBUG

OMP_ALLOCATOR

See description below

Implementation defined
Implementation defined
Implementation defined
Implementation defined
Implementation defined
Implementation defined
Implementation defined

See description below

zero
zero

Implementation defined
false

false

Implementation defined
Implementation defined
DEFAULT

zero

enabled

empty string

disabled

Implementation defined

Table 2.1 shows the ICVs, associated environment variables, and initial values.

OpenMP API — Version 5.0 November 2018

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Description

e Each device has its own ICVs.

e The initial value of dyn-var is implementation defined if the implementation supports dynamic

adjustment of the number of threads; otherwise, the initial value is false.
o The value of the nthreads-var ICV is a list.

e The value of the bind-var ICV is a list.

o The initial value of max-active-levels-var is the number of active levels of parallelism that the

implementation supports if OMP_NUM_THREADS or OMP_PROC_BIND is set to a
comma-separated list of more than one value. Otherwise, the initial value of
max-active-levels-var is implementation defined.

The host and target device ICVs are initialized before any OpenMP API construct or OpenMP API

routine executes. After the initial values are assigned, the values of any OpenMP environment

variables that were set by the user are read and the associated ICVs for the host device are modified

accordingly. The method for initializing a target device’s ICVs is implementation defined.

Cross References

e OMP_SCHEDULE environment variable, see Section 6.1 on page 601.

e OMP_NUM_THREADS environment variable, see Section 6.2 on page 602.

e OMP_DYNAMIC environment variable, see Section 6.3 on page 603.

e OMP_PROC_BIND environment variable, see Section 6.4 on page 604.

e OMP_PLACES environment variable, see Section 6.5 on page 605.

e OMP_STACKSIZE environment variable, see Section 6.6 on page 607.

e OMP_WAIT POLICY environment variable, see Section 6.7 on page 608.

e OMP_MAX_ ACTIVE_LEVELS environment variable, see Section 6.8 on page 608.
e OMP_NESTED environment variable, see Section 6.9 on page 609.

e OMP_THREAD_LIMIT environment variable, see Section 6.10 on page 610.

e OMP_CANCELLATION environment variable, see Section 6.11 on page 610.

e OMP_DISPLAY AFFINITY environment variable, see Section 6.13 on page 612.
e OMP_AFFINITY_ FORMAT environment variable, see Section 6.14 on page 613.
e OMP_DEFAULT_DEVICE environment variable, see Section 6.15 on page 615.

e OMP_MAX_ TASK_PRIORITY environment variable, see Section 6.16 on page 615.

e OMP_TARGET_OFFLOAD environment variable, see Section 6.17 on page 615.

CHAPTER 2. DIRECTIVES

67

—_

£ NGO R o)

(2]

2.5.3

68

OMP_TOOL environment variable, see Section 6.18 on page 616.

e OMP_TOOL_LIBRARIES environment variable, see Section 6.19 on page 617.

e OMP_DEBUG environment variable, see Section 6.20 on page 617.

Modifying and Retrieving ICV Values

OMP_ALLOCATOR environment variable, see Section 6.21 on page 618.

Table 2.2 shows the method for modifying and retrieving the values of ICVs through OpenMP API

routines.

TABLE 2.2: Ways to Modify and to Retrieve ICV Values

ICV

Ways to Modify Value

Ways to Retrieve Value

dyn-var
nthreads-var
run-sched-var
def-sched-var
bind-var
stacksize-var
wait-policy-var
thread-limit-var

max-active-levels-var

active-levels-var
levels-var
place-partition-var
cancel-var
display-affinity-var

affinity-format-var

omp_set_dynamic ()
omp_set_num_ threads()
omp_set_schedule()
(none)

(none)

(none)

(none)

thread limit clause

omp_set_max_active_levels(),
omp_set_nested()

(none)
(none)
(none)
(none)
(none)

omp_set_affinity format ()

omp_get_dynamic ()
omp_get_max_ threads ()
omp_get_schedule()
(none)
omp_get_proc_bind()
(none)

(none)

omp_get_thread limit ()

omp_get_max_active_levels()

omp_get_active_level ()
omp_get_level ()

See description below
omp_get_cancellation ()
(none)

omp_get_affinity format ()

table continued on next page

OpenMP API — Version 5.0 November 2018

—_

© oo ~N OO A ODN

N 4 24 a4 4 a4 A A A a4
o © 0o N o o WO DD =+ O

table continued from previous page

ICV Ways to Modify Value Ways to Retrieve Value

default-device-var omp_set_default_device () omp_get_default_device ()

target-offload-var (none) (none)

max-task-priority-var (none) omp_get_max_task_priority()

tool-var (none) (none)

tool-libraries-var (none) (none)

debug-var (none) (none)

def-allocator-var omp_set_default_allocator() omp_get_default_allocator()
Description

The value of the nthreads-var ICV is a list. The runtime call omp_set_num_threads sets

the value of the first element of this list, and omp_get_max_threads retrieves the value of

the first element of this list.

The value of the bind-var ICV is a list. The runtime call omp_get_proc_bind retrieves the

value of the first element of this list.

Detailed values in the place-partition-var ICV are retrieved using the runtime calls
omp_get_partition_num_places, omp_get_partition_place_nums,
omp_get_place_num_procs, and omp_get_place_proc_ids.

Cross References

thread_1limit clause of the teams construct, see Section 2.7 on page 82.
omp_set_num_threads routine, see Section 3.2.1 on page 334.
omp_get_max_threads routine, see Section 3.2.3 on page 336.
omp_set_dynamic routine, see Section 3.2.7 on page 340.
omp_get_dynamic routine, see Section 3.2.8 on page 341.
omp_get_cancellation routine, see Section 3.2.9 on page 342.
omp_set_nested routine, see Section 3.2.10 on page 343.
omp_get_nested routine, see Section 3.2.11 on page 344.
omp_set_schedule routine, see Section 3.2.12 on page 345.

omp_get_schedule routine, see Section 3.2.13 on page 347.

CHAPTER 2. DIRECTIVES

69

o © 0o N o g H~ N =

—_ a4 4 a4 a4 a4 A A
0o N o o A~ 0N =

19

20

2.5.4

70

omp_get_thread_limit routine, see Section 3.2.14 on page 348.
omp_get_supported_active_levels, see Section 3.2.15 on page 349.
omp_set_max_active_levels routine, see Section 3.2.16 on page 350.
omp_get_max_active_levels routine, see Section 3.2.17 on page 351.
omp_get_level routine, see Section 3.2.18 on page 352.
omp_get_active_level routine, see Section 3.2.21 on page 355.
omp_get_proc_bind routine, see Section 3.2.23 on page 357.
omp_get_place_num_procs routine, see Section 3.2.25 on page 359.
omp_get_place_proc_ids routine, see Section 3.2.26 on page 360.
omp_get_partition_ num places routine, see Section 3.2.28 on page 362.
omp_get_partition_place_nums routine, see Section 3.2.29 on page 363.
omp_set_affinity format routine, see Section 3.2.30 on page 364.
omp_get_affinity format routine, see Section 3.2.31 on page 366.
omp_set_default_device routine, see Section 3.2.34 on page 369.
omp_get_default_device routine, see Section 3.2.35 on page 370.
omp_get_max_task_priority routine, see Section 3.2.42 on page 377.
omp_set_default_allocator routine, see Section 3.7.4 on page 411.

omp_get_default_allocator routine, see Section 3.7.5 on page 412.

How ICVs are Scoped

Table 2.3 shows the ICVs and their scope.

TABLE 2.3: Scopes of ICVs

IcV Scope
dyn-var data environment
nthreads-var data environment

table continued on next page

OpenMP API — Version 5.0 November 2018

o0 A W DN

table continued from previous page

ICV

Scope

run-sched-var
def-sched-var
bind-var
stacksize-var
wait-policy-var
thread-limit-var
max-active-levels-var
active-levels-var
levels-var
place-partition-var
cancel-var
display-affinity-var
affinity-format-var
default-device-var
target-offload-var
max-task-priority-var
tool-var
tool-libraries-var
debug-var

def-allocator-var

data environment
device

data environment
device

device

data environment
device

data environment
data environment
implicit task
global

global

device

data environment
global

global

global

global

global

implicit task

Description

e There is one copy per device of each ICV with device scope.
e FEach data environment has its own copies of ICVs with data environment scope.
e Each implicit task has its own copy of ICVs with implicit task scope.

Calls to OpenMP API routines retrieve or modify data environment scoped ICVs in the data

environment of their binding tasks.

CHAPTER 2. DIRECTIVES

1

o~N OO0~ WN

11
12
13

14
15
16

17
18
19

20
21
22

23

24

2.5.4.1

2.5.5

72

How the Per-Data Environment ICVs Work

When a task construct or parallel construct is encountered, the generated task(s) inherit the
values of the data environment scoped ICVs from the generating task’s ICV values.

When a parallel construct is encountered, the value of each ICV with implicit task scope is
inherited, unless otherwise specified, from the implicit binding task of the generating task unless
otherwise specified.

When a task construct is encountered, the generated task inherits the value of nthreads-var from
the generating task’s nthreads-var value. When a parallel construct is encountered, and the
generating task’s nthreads-var list contains a single element, the generated task(s) inherit that list as
the value of nthreads-var. When a parallel construct is encountered, and the generating task’s
nthreads-var list contains multiple elements, the generated task(s) inherit the value of nthreads-var
as the list obtained by deletion of the first element from the generating task’s nthreads-var value.
The bind-var ICV is handled in the same way as the nthreads-var ICV.

When a target task executes a target region, the generated initial task uses the values of the data
environment scoped ICVs from the device data environment ICV values of the device that will
execute the region.

If a teams construct with a thread_ limit clause is encountered, the thread-limit-var ICV
from the data environment of the initial task for each team is instead set to a value that is less than
or equal to the value specified in the clause.

When encountering a worksharing-loop region for which the runt ime schedule kind is specified,
all implicit task regions that constitute the binding parallel region must have the same value for
run-sched-var in their data environments. Otherwise, the behavior is unspecified.

ICV Override Relationships

Table 2.4 shows the override relationships among construct clauses and ICVs.

TABLE 2.4: ICV Override Relationships

ICV construct clause, if used
dyn-var (none)

nthreads-var num_threads
run-sched-var schedule

table continued on next page

OpenMP API — Version 5.0 November 2018

o0 AW N

table continued from previous page

ICV

construct clause, if used

def-sched-var
bind-var
stacksize-var
wait-policy-var
thread-limit-var
max-active-levels-var
active-levels-var
levels-var
place-partition-var
cancel-var
display-affinity-var
affinity-format-var
default-device-var
target-offload-var
max-task-priority-var
tool-var
tool-libraries-var
debug-var

def-allocator-var

schedule
proc_bind
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)

allocator

Description

e The num_threads clause overrides the value of the first element of the nthreads-var ICV.

e If a schedule clause specifies a modifier then that modifier overrides any modifier that is
specified in the run-sched-var ICV.

e If bind-var is not set to false then the proc_bind clause overrides the value of the first element
of the bind-var ICV; otherwise, the proc_bind clause has no effect.

Cross References

e parallel construct, see Section 2.6 on page 74.

e proc_bind clause, Section 2.6 on page 74.

e num_threads clause, see Section 2.6.1 on page 78.

CHAPTER 2. DIRECTIVES 73

10

11
12
13
14
15
16
17
18
19
20

2.6

74

e Worksharing-Loop construct, see Section

2.9.2 on page 101.

e schedule clause, see Section 2.9.2.1 on page 109.

parallel Construct

Summary

The parallel construct creates a team of OpenMP threads that execute the region.

Syntax

C/C++

The syntax of the parallel construct is as follows:

I #pragma omp parallel [clause[[,] clause] ... | new-line

structured-block

where clause is one of the following:

default (shared | none)
private (list)
firstprivate (list)
shared (/ist)

copyin (list)

proc_bind (master | close

allocate ([allocator :] list)

OpenMP API — Version 5.0 November 2018

reduction ([reduction-modifier ,

if (/parallel :] scalar-expression)

num_threads (infeger-expression)

| reduction-identifier : list)

| spread)

C/C++

16

17
18

19

20
21
22
23
24
25
26

27
28
29

30
31

Fortran
The syntax of the parallel construct is as follows:

'Somp parallel /[clause[[,] clause] ...]
structured-block
!Somp end parallel

where clause is one of the following:

if (/parallel :]scalar-logical-expression)

num_threads (scalar-integer-expression)

default (private | firstprivate | shared | none)
private (list)

firstprivate (/ist)

shared (list)

copyin (list)

reduction ([reduction-modifier , | reduction-identifier : list)

proc_bind (master | close | spread)

allocate ([allocator :] list)

Fortran

Binding

The binding thread set for a parallel region is the encountering thread. The encountering thread
becomes the master thread of the new team.

Description

When a thread encounters a parallel construct, a team of threads is created to execute the
parallel region (see Section 2.6.1 on page 78 for more information about how the number of
threads in the team is determined, including the evaluation of the i £ and num_threads clauses).
The thread that encountered the parallel construct becomes the master thread of the new team,
with a thread number of zero for the duration of the new parallel region. All threads in the new
team, including the master thread, execute the region. Once the team is created, the number of
threads in the team remains constant for the duration of that parallel region.

The optional proc_bind clause, described in Section 2.6.2 on page 80, specifies the mapping of
OpenMP threads to places within the current place partition, that is, within the places listed in the
place-partition-var ICV for the implicit task of the encountering thread.

Within a parallel region, thread numbers uniquely identify each thread. Thread numbers are
consecutive whole numbers ranging from zero for the master thread up to one less than the number

CHAPTER 2. DIRECTIVES 75

o~NOO O W N =

11
12

13
14

15
16
17

18
19
20
21

22

23
24

25
26
27

28
29

30
31

32
33

34
35
36

76

of threads in the team. A thread may obtain its own thread number by a call to the
omp_get_thread_num library routine.

A set of implicit tasks, equal in number to the number of threads in the team, is generated by the
encountering thread. The structured block of the parallel construct determines the code that
will be executed in each implicit task. Each task is assigned to a different thread in the team and
becomes tied. The task region of the task being executed by the encountering thread is suspended
and each thread in the team executes its implicit task. Each thread can execute a path of statements
that is different from that of the other threads.

The implementation may cause any thread to suspend execution of its implicit task at a task
scheduling point, and to switch to execution of any explicit task generated by any of the threads in
the team, before eventually resuming execution of the implicit task (for more details see

Section 2.10 on page 135).

There is an implied barrier at the end of a parallel region. After the end of a parallel
region, only the master thread of the team resumes execution of the enclosing task region.

If a thread in a team executing a parallel region encounters another parallel directive, it
creates a new team, according to the rules in Section 2.6.1 on page 78, and it becomes the master of
that new team.

If execution of a thread terminates while inside a parallel region, execution of all threads in all
teams terminates. The order of termination of threads is unspecified. All work done by a team prior
to any barrier that the team has passed in the program is guaranteed to be complete. The amount of
work done by each thread after the last barrier that it passed and before it terminates is unspecified.

Execution Model Events

The parallel-begin event occurs in a thread that encounters a parallel construct before any
implicit task is created for the corresponding parallel region.

Upon creation of each implicit task, an implicit-task-begin event occurs in the thread that executes
the implicit task after the implicit task is fully initialized but before the thread begins to execute the
structured block of the parallel construct.

If the parallel region creates a native thread, a native-thread-begin event occurs as the first
event in the context of the new thread prior to the implicit-task-begin event.

Events associated with implicit barriers occur at the end of a parallel region. Section 2.17.3
describes events associated with implicit barriers.

When a thread finishes an implicit task, an implicit-task-end event occurs in the thread after events
associated with implicit barrier synchronization in the implicit task.

The parallel-end event occurs in the thread that encounters the parallel construct after the
thread executes its implicit-task-end event but before the thread resumes execution of the
encountering task.

OpenMP API — Version 5.0 November 2018

N —

0N Ok~ W

11
12
13
14
15

16
17
18
19

20
21
22

23
24
25

26
27
28

29
30

31
32

33
34

If a native thread is destroyed at the end of a parallel region, a native thread-end event occurs
in the thread as the last event prior to destruction of the thread.

Tool Callbacks

A thread dispatches a registered ompt_callback_parallel_begin callback for each
occurrence of a parallel-begin event in that thread. The callback occurs in the task that encounters
the parallel construct. This callback has the type signature
ompt_callback_parallel_begin_t. In the dispatched callback,

(flags & ompt_parallel_team) evaluates to true.

A thread dispatches a registered ompt_callback_implicit_task callback with
ompt_scope_begin as its endpoint argument for each occurrence of an implicit-task-begin
event in that thread. Similarly, a thread dispatches a registered
ompt_callback_implicit_task callback with ompt_scope_end as its endpoint
argument for each occurrence of an implicit-task-end event in that thread. The callbacks occur in
the context of the implicit task and have type signature ompt_callback_implicit_task_t.
In the dispatched callback, (flags & ompt_task_implicit) evaluates to frue.

A thread dispatches a registered ompt_callback_parallel_end callback for each
occurrence of a parallel-end event in that thread. The callback occurs in the task that encounters
the parallel construct. This callback has the type signature
ompt_callback_parallel_end t.

A thread dispatches a registered ompt_callback_thread_begin callback for the
native-thread-begin event in that thread. The callback occurs in the context of the thread. The
callback has type signature ompt_callback_thread begin_t.

A thread dispatches a registered ompt_callback_thread_end callback for the
native-thread-end event in that thread. The callback occurs in the context of the thread. The
callback has type signature ompt_callback_thread_end_t.

Restrictions
Restrictions to the parallel construct are as follows:
e A program that branches into or out of a parallel region is non-conforming.

e A program must not depend on any ordering of the evaluations of the clauses of the parallel
directive, or on any side effects of the evaluations of the clauses.

At most one if clause can appear on the directive.

At most one proc_bind clause can appear on the directive.

At most one num_threads clause can appear on the directive. The num_threads
expression must evaluate to a positive integer value.

CHAPTER 2. DIRECTIVES 77

O©W 0o N o o &~ W

19

20
21
22
23

24
25
26

2.6.1

78

C++

e A throw executed inside a parallel region must cause execution to resume within the same
parallel region, and the same thread that threw the exception must catch it.

C++

Cross References

e OpenMP execution model, see Section 1.3 on page 20.
e num_threads clause, see Section 2.6 on page 74.

e proc_bind clause, see Section 2.6.2 on page 80.

e allocate clause, see Section 2.11.4 on page 158.

e if clause, see Section 2.15 on page 220.

e default, shared, private, firstprivate, and reduction clauses, see
Section 2.19.4 on page 282.

e copyin clause, see Section 2.19.6 on page 309.

e omp_get_thread_ num routine, see Section 3.2.4 on page 337.

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.
e ompt_callback_thread_begin_t, see Section 4.5.2.1 on page 459.

e ompt_callback_thread_end_t, see Section 4.5.2.2 on page 460.

e ompt_callback parallel begin_t, see Section 4.5.2.3 on page 461.

e ompt_callback_parallel_end_t, see Section 4.5.2.4 on page 463.

e ompt_callback_implicit_task_t, see Section 4.5.2.11 on page 471.

Determining the Number of Threads for a parallel Region

When execution encounters a parallel directive, the value of the i £ clause or num_threads
clause (if any) on the directive, the current parallel context, and the values of the nthreads-var,
dyn-var, thread-limit-var, and max-active-levels-var ICVs are used to determine the number of
threads to use in the region.

Using a variable in an 1 £ or num_threads clause expression of a parallel construct causes
an implicit reference to the variable in all enclosing constructs. The i £ clause expression and the
num_threads clause expression are evaluated in the context outside of the parallel construct,

OpenMP API — Version 5.0 November 2018

AW N =

o © oo NOoO O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30

and no ordering of those evaluations is specified. In what order or how many times any side effects

of the evaluation of the num_threads or if clause expressions occur is also unspecified.

When a thread encounters a parallel construct, the number of threads is determined according

to Algorithm 2.1.

Algorithm 2.1

let ThreadsBusy be the number of OpenMP threads currently executing in this contention group;

let ActiveParRegions be the number of enclosing active parallel regions;
if an if clause exists

then let [fClauseValue be the value of the i £ clause expression;

else let [fClauseValue = true;

if a num_threads clause exists

then let ThreadsRequested be the value of the num_threads clause expression;
else let ThreadsRequested = value of the first element of nthreads-var;
let ThreadsAvailable = (thread-limit-var - ThreadsBusy + 1);

if (IfClauseValue = false)

then number of threads = 1;

else if (ActiveParRegions = max-active-levels-var)

then number of threads = 1;

else if (dyn-var = true) and (ThreadsRequested < ThreadsAvailable)
then 1 < number of threads < ThreadsRequested,;

else if (dyn-var = true) and (ThreadsRequested > ThreadsAvailable)
then 1 < number of threads < ThreadsAvailable;

else if (dyn-var = false) and (ThreadsRequested < ThreadsAvailable)
then number of threads = ThreadsRequested,

else if (dyn-var = false) and (ThreadsRequested > ThreadsAvailable)

then behavior is implementation defined;

CHAPTER 2. DIRECTIVES

79

—_

a b~ wON

o © oo~N O

12

13
14
15
16
17
18
19

20
21
22

23
24
25
26
27

28
29
30

2.6.2

80

v v
Note — Since the initial value of the dyn-var ICV is implementation defined, programs that depend
on a specific number of threads for correct execution should explicitly disable dynamic adjustment

of the number of threads.
A A

Cross References

e nthreads-var, dyn-var, thread-limit-var, and max-active-levels-var ICVs, see Section 2.5 on
page 63.

e parallel construct, see Section 2.6 on page 74.
e num_threads clause, see Section 2.6 on page 74.

e if clause, see Section 2.15 on page 220.

Controlling OpenMP Thread Affinity

When a thread encounters a parallel directive without a proc_bind clause, the bind-var ICV
is used to determine the policy for assigning OpenMP threads to places within the current place
partition, that is, within the places listed in the place-partition-var ICV for the implicit task of the
encountering thread. If the parallel directive has a proc_bind clause then the binding policy
specified by the proc_bind clause overrides the policy specified by the first element of the
bind-var ICV. Once a thread in the team is assigned to a place, the OpenMP implementation should
not move it to another place.

The master thread affinity policy instructs the execution environment to assign every thread in the
team to the same place as the master thread. The place partition is not changed by this policy, and
each implicit task inherits the place-partition-var ICV of the parent implicit task.

The close thread affinity policy instructs the execution environment to assign the threads in the
team to places close to the place of the parent thread. The place partition is not changed by this
policy, and each implicit task inherits the place-partition-var ICV of the parent implicit task. If T’
is the number of threads in the team, and P is the number of places in the parent’s place partition,
then the assignment of threads in the team to places is as follows:

e T' < P: The master thread executes on the place of the parent thread. The thread with the next
smallest thread number executes on the next place in the place partition, and so on, with wrap
around with respect to the place partition of the master thread.

OpenMP API — Version 5.0 November 2018

o oo Ok N =

-
W N = O o

- 4
© 00N OB

NDNNDNDDNDNDDNDDND
OO WN—=O

N N
© N

N
©

W WWwWwwwow
OOk WON =2 O

e T > P: Each place p will contain S, threads with consecutive thread numbers where
|T/P] < S, < [T/P]. The first Sy threads (including the master thread) are assigned to the
place of the parent thread. The next S threads are assigned to the next place in the place
partition, and so on, with wrap around with respect to the place partition of the master thread.
When P does not divide 7" evenly, the exact number of threads in a particular place is
implementation defined.

The purpose of the spread thread affinity policy is to create a sparse distribution for a team of T’
threads among the P places of the parent’s place partition. A sparse distribution is achieved by first
subdividing the parent partition into 7" subpartitions if 7' < P, or P subpartitions if 7" > P. Then
one thread (' < P) or a set of threads (7" > P) is assigned to each subpartition. The
place-partition-var ICV of each implicit task is set to its subpartition. The subpartitioning is not
only a mechanism for achieving a sparse distribution, it also defines a subset of places for a thread
to use when creating a nested parallel region. The assignment of threads to places is as follows:

e T' < P: The parent thread’s place partition is split into " subpartitions, where each subpartition
contains | P/T'| or [P/T] consecutive places. A single thread is assigned to each subpartition.
The master thread executes on the place of the parent thread and is assigned to the subpartition
that includes that place. The thread with the next smallest thread number is assigned to the first
place in the next subpartition, and so on, with wrap around with respect to the original place
partition of the master thread.

e T' > P: The parent thread’s place partition is split into P subpartitions, each consisting of a
single place. Each subpartition is assigned S, threads with consecutive thread numbers, where
|T/P] < S, < [T/P]. The first Sy threads (including the master thread) are assigned to the
subpartition containing the place of the parent thread. The next S; threads are assigned to the
next subpartition, and so on, with wrap around with respect to the original place partition of the
master thread. When P does not divide 7" evenly, the exact number of threads in a particular
subpartition is implementation defined.

The determination of whether the affinity request can be fulfilled is implementation defined. If the
affinity request cannot be fulfilled, then the affinity of threads in the team is implementation defined.

v v
Note — Wrap around is needed if the end of a place partition is reached before all thread
assignments are done. For example, wrap around may be needed in the case of closeand T' < P,
if the master thread is assigned to a place other than the first place in the place partition. In this
case, thread 1 is assigned to the place after the place of the master place, thread 2 is assigned to the
place after that, and so on. The end of the place partition may be reached before all threads are

assigned. In this case, assignment of threads is resumed with the first place in the place partition.
A A

CHAPTER 2. DIRECTIVES 81

10
11
12
13
14
15
16
17

18

19
20
21

2.7 teams Construct

Summary

The teams construct creates a league of initial teams and the initial thread in each team executes
the region.

Syntax
C/C++

The syntax of the teams construct is as follows:

#pragma omp teams [clause/ [,] clause] ... | new-line
structured-block

where clause is one of the following:

num_teams (infeger-expression)

thread_ limit (infeger-expression)

default (shared | none)

private (list)

firstprivate (list)

shared (list)

reduction ([default |, | reduction-identifier : list)

allocate ([allocator :] list)

C/C++
Fortran
The syntax of the teams construct is as follows:

'$Somp teams [clause[[,] clause] ... |
structured-block
!Somp end teams

82 OpenMP API — Version 5.0 November 2018

—_

© 00 N O 0o b~ O DN

10
11

12

13
14

15
16
17

18
19
20

21
22
23

24
25

26
27
28
29
30
31

32
33

where clause is one of the following:

num_teams (scalar-integer-expression)

thread limit (scalar-integer-expression)

default (shared | firstprivate | private | none)
private (list)

firstprivate (list)

shared (list)

reduction ([default , | reduction-identifier : list)

allocate ([allocator :] list)

Fortran

Binding

The binding thread set for a teams region is the encountering thread.

Description

When a thread encounters a teams construct, a league of teams is created. Each team is an initial
team, and the initial thread in each team executes the teams region.

The number of teams created is implementation defined, but is less than or equal to the value
specified in the num_teams clause. A thread may obtain the number of initial teams created by
the construct by a call to the omp_get_num_teams routine.

The maximum number of threads participating in the contention group that each team initiates is
implementation defined, but is less than or equal to the value specified in the thread limit
clause.

On a combined or composite construct that includes target and teams constructs, the
expressions in num_teams and thread_limit clauses are evaluated on the host device on
entry to the target construct.

Once the teams are created, the number of initial teams remains constant for the duration of the
teams region.

Within a teams region, initial team numbers uniquely identify each initial team. Initial team
numbers are consecutive whole numbers ranging from zero to one less than the number of initial
teams. A thread may obtain its own initial team number by a call to the omp_get_team_num
library routine. The policy for assigning the initial threads to places is implementation defined. The
teams construct sets the place-partition-var and default-device-var ICVs for each initial thread to
an implementation-defined value.

After the teams have completed execution of the teams region, the encountering task resumes
execution of the enclosing task region.

CHAPTER 2. DIRECTIVES 83

- O © oOo~N OO0~ wWwNh =

—_

—_
w N

14

15
16
17
18
19

20
21
22
23
24
25
26

27
28
29

30
31
32

33
34
35

84

Execution Model Events

The teams-begin event occurs in a thread that encounters a teams construct before any initial task
is created for the corresponding teams region.

Upon creation of each initial task, an initial-task-begin event occurs in the thread that executes the
initial task after the initial task is fully initialized but before the thread begins to execute the
structured block of the teams construct.

If the teams region creates a native thread, a native-thread-begin event occurs as the first event in
the context of the new thread prior to the initial-task-begin event.

When a thread finishes an initial task, an initial-task-end event occurs in the thread.

The teams-end event occurs in the thread that encounters the teams construct after the thread
executes its initial-task-end event but before it resumes execution of the encountering task.

If a native thread is destroyed at the end of a teams region, a native-thread-end event occurs in the
thread as the last event prior to destruction of the thread.

Tool Callbacks

A thread dispatches a registered ompt_callback_parallel_begin callback for each
occurrence of a teams-begin event in that thread. The callback occurs in the task that encounters the
teams construct. This callback has the type signature
ompt_callback_parallel_begin_t. In the dispatched callback,

(flags & ompt_parallel_league) evaluates to true.

A thread dispatches a registered ompt_callback_implicit_task callback with
ompt_scope_begin as its endpoint argument for each occurrence of an initial-task-begin in
that thread. Similarly, a thread dispatches a registered ompt_callback_implicit_task
callback with ompt_scope_end as its endpoint argument for each occurrence of an
initial-task-end event in that thread. The callbacks occur in the context of the initial task and have
type signature ompt_callback_implicit_task_t. In the dispatched callback,

(flags & ompt_task_initial) evaluates to true.

A thread dispatches a registered ompt_callback_parallel_end callback for each
occurrence of a reams-end event in that thread. The callback occurs in the task that encounters the
teams construct. This callback has the type signature ompt_callback_parallel_end_t.

A thread dispatches a registered ompt_callback_thread_begin callback for the
native-thread-begin event in that thread. The callback occurs in the context of the thread. The
callback has type signature ompt_callback_ thread begin_t.

A thread dispatches a registered ompt_callback_thread_end callback for the
native-thread-end event in that thread. The callback occurs in the context of the thread. The
callback has type signature ompt_callback_thread_end_t.

OpenMP API — Version 5.0 November 2018

17
18
19
20
21
22

23
24

25
26
27
28
29
30
31

Restrictions

Restrictions to the teams construct are as follows:

A program that branches into or out of a teams region is non-conforming.

A program must not depend on any ordering of the evaluations of the clauses of the teams
directive, or on any side effects of the evaluation of the clauses.

At most one thread_limit clause can appear on the directive. The thread_limit
expression must evaluate to a positive integer value.

At most one num_teams clause can appear on the directive. The num_teams expression must
evaluate to a positive integer value.

A teams region can only be strictly nested within the implicit parallel region or a target
region. If a teams construct is nested within a target construct, that target construct must
contain no statements, declarations or directives outside of the teams construct.

distribute, distribute simd, distribute parallel worksharing-loop, distribute parallel
worksharing-loop SIMD, parallel regions, including any parallel regions arising from
combined constructs, omp_get_num_teams () regions, and omp_get_team_num ()
regions are the only OpenMP regions that may be strictly nested inside the teams region.

Cross References

parallel construct, see Section 2.6 on page 74.
distribute construct, see Section 2.9.4.1 on page 120.
distribute simd construct, see Section 2.9.4.2 on page 123.
allocate clause, see Section 2.11.4 on page 158.

target construct, see Section 2.12.5 on page 170.

default, shared, private, firstprivate, and reduction clauses, see
Section 2.19.4 on page 282.

omp_get_num_teams routine, see Section 3.2.38 on page 373.
omp_get_team_num routine, see Section 3.2.39 on page 374.
ompt_callback_thread begin_t, see Section 4.5.2.1 on page 459.
ompt_callback_thread end t, see Section 4.5.2.2 on page 460.
ompt_callback_parallel_begin_t, see Section 4.5.2.3 on page 461.
ompt_callback_parallel_end_t, see Section 4.5.2.4 on page 463.

ompt_callback_implicit_task_t, see Section 4.5.2.11 on page 471.

CHAPTER 2. DIRECTIVES 85

—_

- O OVWoOoO~NO® O WOWN

—_

—_
w N

14
15

16
17

18
19

20

21

22
23
24

N
(o)

2.8.1

86

Worksharing Constructs

A worksharing construct distributes the execution of the corresponding region among the members
of the team that encounters it. Threads execute portions of the region in the context of the implicit
tasks that each one is executing. If the team consists of only one thread then the worksharing region
is not executed in parallel.

A worksharing region has no barrier on entry; however, an implied barrier exists at the end of the
worksharing region, unless a nowait clause is specified. If a nowait clause is present, an
implementation may omit the barrier at the end of the worksharing region. In this case, threads that
finish early may proceed straight to the instructions that follow the worksharing region without
waiting for the other members of the team to finish the worksharing region, and without performing
a flush operation.

The OpenMP API defines the worksharing constructs that are described in this section as well as
the worksharing-loop construct, which is described in Section 2.9.2 on page 101.

Restrictions
The following restrictions apply to worksharing constructs:

e Each worksharing region must be encountered by all threads in a team or by none at all, unless
cancellation has been requested for the innermost enclosing parallel region.

e The sequence of worksharing regions and barrier regions encountered must be the same for
every thread in a team.

sections Construct

Summary

The sections construct is a non-iterative worksharing construct that contains a set of structured
blocks that are to be distributed among and executed by the threads in a team. Each structured
block is executed once by one of the threads in the team in the context of its implicit task.

OpenMP API — Version 5.0 November 2018

O ©W oo NO O~ WDN

—_

11

12
13
14
15
16
17

18

19
20
21
22
23
24
25

26

27
28
29
30
31

Syntax
C/C++

The syntax of the sections construct is as follows:

#pragma omp sections [clause[[,] clause] ... | new-line

{

[#pragma omp section new-line]
structured-block

[#pragma omp section new-line
structured-block]

}
where clause is one of the following:
private (list)
firstprivate (/ist)
lastprivate ([lastprivate-modifier : | list)

reduction ([reduction-modifier , | reduction-identifier : list)

allocate ([allocator :] list)

nowait

C/C++

Fortran
The syntax of the sections construct is as follows:

!Somp sections [clause[[,] clause] ... |
[!$omp section]
structured-block
[!$omp section
structured-block]

!Somp end sections [nowait]
where clause is one of the following:

private (list)

firstprivate (list)

lastprivate ([lastprivate-modifier: | list)

reduction ([reduction-modifier , | reduction-identifier : list)

allocate ([allocator :] list)

Fortran

CHAPTER 2. DIRECTIVES

87

—_

a b~ wON

o N O

11
12

13

14
15

16
17

18
19

20

21
22
23
24
25
26
27

28
29
30

88

Binding
The binding thread set for a sections region is the current team. A sections region binds to
the innermost enclosing parallel region. Only the threads of the team that executes the binding

parallel region participate in the execution of the structured blocks and the implied barrier of
the sections region if the barrier is not eliminated by a nowait clause.

Description

Each structured block in the sections construct is preceded by a section directive except
possibly the first block, for which a preceding section directive is optional.

The method of scheduling the structured blocks among the threads in the team is implementation
defined.

There is an implicit barrier at the end of a sections construct unless a nowait clause is
specified.

Execution Model Events

The section-begin event occurs after an implicit task encounters a sections construct but before
the task executes any structured block of the sections region.

The sections-end event occurs after an implicit task finishes execution of a sections region but
before it resumes execution of the enclosing context.

The section-begin event occurs before an implicit task starts to execute a structured block in the
sections construct for each of those structured blocks that the task executes.

Tool Callbacks

A thread dispatches a registered ompt__callback_work callback with ompt_scope_begin
as its endpoint argument and ompt_work_sections as its wstype argument for each
occurrence of a section-begin event in that thread. Similarly, a thread dispatches a registered
ompt_callback_work callback with ompt_scope_end as its endpoint argument and
ompt_work_sections as its wstype argument for each occurrence of a sections-end event in
that thread. The callbacks occur in the context of the implicit task. The callbacks have type
signature ompt_callback_work_t.

A thread dispatches a registered ompt_callback_dispatch callback for each occurrence of a
section-begin event in that thread. The callback occurs in the context of the implicit task. The
callback has type signature ompt_callback_dispatch_t.

OpenMP API — Version 5.0 November 2018

N o g w N

(oo}

10
11

12
13

14
15
16
17

18

19

20
21
22
23

2.8.2

Restrictions

Restrictions to the sections construct are as follows:

Orphaned section directives are prohibited. That is, the section directives must appear
within the sections construct and must not be encountered elsewhere in the sections
region.

The code enclosed in a sections construct must be a structured block.

Only a single nowait clause can appear on a sections directive.

C++

A throw executed inside a sections region must cause execution to resume within the same
section of the sections region, and the same thread that threw the exception must catch it.

C++

Cross References

allocate clause, see Section 2.11.4 on page 158.

private, firstprivate, lastprivate, and reduction clauses, see Section 2.19.4 on
page 282.

ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.
ompt_work_sections, see Section 4.4.4.15 on page 445.
ompt_callback_work_t, see Section 4.5.2.5 on page 464.
ompt_callback_dispatch_t, see Section 4.5.2.6 on page 465.

single Construct

Summary

The single construct specifies that the associated structured block is executed by only one of the
threads in the team (not necessarily the master thread), in the context of its implicit task. The other
threads in the team, which do not execute the block, wait at an implicit barrier at the end of the
single construct unless a nowait clause is specified.

CHAPTER 2. DIRECTIVES 89

A W

o ©W 00 N O O

11

12
13
14

15
16

17
18

19

20
21

22

23
24
25
26

Syntax
C/C++

The syntax of the single construct is as follows:

#pragma omp single [clause[[,] clause] ... | new-line
structured-block

where clause is one of the following:
private (list)
firstprivate (list)
copyprivate (list)
allocate ([allocator :] list)

nowait

C/C++

Fortran
The syntax of the single construct is as follows:

'$Somp single [clause[[,] clause] ... |
structured-block
'$Somp end single [end_clause[[,] end_clause] ... |

where clause is one of the following:

private (list)
firstprivate (list)

allocate ([allocator :] list)

and end_clause is one of the following:

copyprivate (list)

nowait

Fortran

Binding

The binding thread set for a single region is the current team. A single region binds to the
innermost enclosing parallel region. Only the threads of the team that executes the binding
parallel region participate in the execution of the structured block and the implied barrier of the
single region if the barrier is not eliminated by a nowait clause.

90 OpenMP API — Version 5.0 November 2018

a b~ wN

o © o »

11

12
13
14
15
16
17
18

19
20
21
22

23
24

Description

Only one of the encountering threads will execute the structured block associated with the single
construct. The method of choosing a thread to execute the structured block each time the team
encounters the construct is implementation defined. There is an implicit barrier at the end of the
single construct unless a nowait clause is specified.

Execution Model Events

The single-begin event occurs after an implicit task encounters a single construct but
before the task starts to execute the structured block of the single region.

The single-end event occurs after an implicit task finishes execution of a single region but before
it resumes execution of the enclosing region.

Tool Callbacks

A thread dispatches a registered ompt__callback_work callback with ompt_scope_begin
as its endpoint argument for each occurrence of a single-begin event in that thread. Similarly, a
thread dispatches a registered ompt_callback_work callback with ompt_scope_begin as
its endpoint argument for each occurrence of a single-end event in that thread. For each of these
callbacks, the wstype argument is ompt_work_single_executor if the thread executes the
structured block associated with the single region; otherwise, the wstype argument is
ompt_work_single_other. The callback has type signature ompt_callback_work_t.

Restrictions
Restrictions to the single construct are as follows:
e The copyprivate clause must not be used with the nowait clause.

e At most one nowait clause can appear on a single construct.

C++

e A throw executed inside a single region must cause execution to resume within the same
single region, and the same thread that threw the exception must catch it.

C++

CHAPTER 2. DIRECTIVES 91

—_

0 NOoO O B~ W DN

10

11
12
13

14

15

16
17
18

19

20
21
22
23

2.8.3

92

Cross References

e allocate clause, see Section 2.11.4 on page 158.

e private and firstprivate clauses, see Section 2.19.4 on page 282.

e copyprivate clause, see Section 2.19.6.2 on page 312.

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.

e ompt_work_single_executor and ompt_work_single_other, see Section 4.4.4.15
on page 445.

e ompt_callback_work_t, Section 4.5.2.5 on page 464.

Fortran
workshare Construct

Summary

The workshare construct divides the execution of the enclosed structured block into separate
units of work, and causes the threads of the team to share the work such that each unit is executed
only once by one thread, in the context of its implicit task.

Syntax

The syntax of the workshare construct is as follows:

!Somp workshare
structured-block
!Somp end workshare [nowait]

Binding
The binding thread set for a workshare region is the current team. A workshare region binds
to the innermost enclosing parallel region. Only the threads of the team that executes the

binding parallel region participate in the execution of the units of work and the implied barrier
of the workshare region if the barrier is not eliminated by a nowait clause.

OpenMP API — Version 5.0 November 2018

- O ©O© 00 ~NO O N w N =

—_

-4 a a4
a s~ wWN

o - -
O 0o ~ »

NN NN
N = O

NN
A~ W

N
(&)}

N NN
0 N O

w N
o ©

W ww
W N =

w
~

Fortran (cont.)

Description

There is an implicit barrier at the end of a workshare construct unless a nowait clause is
specified.

An implementation of the workshare construct must insert any synchronization that is required
to maintain standard Fortran semantics. For example, the effects of one statement within the
structured block must appear to occur before the execution of succeeding statements, and the
evaluation of the right hand side of an assignment must appear to complete prior to the effects of
assigning to the left hand side.

The statements in the workshare construct are divided into units of work as follows:

e For array expressions within each statement, including transformational array intrinsic functions
that compute scalar values from arrays:

— Evaluation of each element of the array expression, including any references to ELEMENTAL
functions, is a unit of work.

— Evaluation of transformational array intrinsic functions may be freely subdivided into any
number of units of work.

e For an array assignment statement, the assignment of each element is a unit of work.
e For a scalar assignment statement, the assignment operation is a unit of work.

e For a WHERE statement or construct, the evaluation of the mask expression and the masked
assignments are each a unit of work.

e For a FORALL statement or construct, the evaluation of the mask expression, expressions
occurring in the specification of the iteration space, and the masked assignments are each a unit
of work.

e For an atomic construct, the atomic operation on the storage location designated as x is a unit
of work.

e For a critical construct, the construct is a single unit of work.

e For a parallel construct, the construct is a unit of work with respect to the workshare
construct. The statements contained in the parallel construct are executed by a new thread
team.

o If none of the rules above apply to a portion of a statement in the structured block, then that
portion is a unit of work.

The transformational array intrinsic functions are MATMUL, DOT_PRODUCT, SUM, PRODUCT,
MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD, PACK, UNPACK, RESHAPE, TRANSPOSE,
EOSHIFT, CSHIFT, MINLOC, and MAXLOC.

It is unspecified how the units of work are assigned to the threads executing a workshare region.

CHAPTER 2. DIRECTIVES 93

No o~ W=

10

11
12

13

14
15
16
17
18
19
20

21
22

23
24

25
26
27

28
29
30
31
32

94

Fortran (cont.)

If an array expression in the block references the value, association status, or allocation status of
private variables, the value of the expression is undefined, unless the same value would be
computed by every thread.

If an array assignment, a scalar assignment, a masked array assignment, or a FORALL assignment
assigns to a private variable in the block, the result is unspecified.

The workshare directive causes the sharing of work to occur only in the workshare construct,
and not in the remainder of the workshare region.

Execution Model Events

The workshare-begin event occurs after an implicit task encounters a workshare construct but
before the task starts to execute the structured block of the workshare region.

The workshare-end event occurs after an implicit task finishes execution of a workshare region
but before it resumes execution of the enclosing context.

Tool Callbacks

A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin
as its endpoint argument and ompt_work_workshare as its wstype argument for each
occurrence of a workshare-begin event in that thread. Similarly, a thread dispatches a registered
ompt_callback_work callback with ompt_scope_end as its endpoint argument and
ompt_work_workshare as its wstype argument for each occurrence of a workshare-end event
in that thread. The callbacks occur in the context of the implicit task. The callbacks have type
signature ompt_callback_work_t.

Restrictions
The following restrictions apply to the workshare construct:

o The only OpenMP constructs that may be closely nested inside a workshare construct are the
atomic, critical, and parallel constructs.

e Base language statements that are encountered inside a workshare construct but that are not
enclosed within a parallel construct that is nested inside the workshare construct must
consist of only the following:

array assignments

scalar assignments
— FORALL statements

— FORALL constructs

WHERE statements

OpenMP API — Version 5.0 November 2018

NOoO o WD

10
11
12
13
14

15

16

17
18

2.9
2.9.1

— WHERE constructs

o All array assignments, scalar assignments, and masked array assignments that are encountered
inside a workshare construct but are not nested inside a parallel construct that is nested
inside the workshare construct must be intrinsic assignments.

o The construct must not contain any user defined function calls unless the function is
ELEMENTAL or the function call is contained inside a parallel construct that is nested inside
the workshare construct.

Cross References

e parallel construct, see Section 2.6 on page 74.

e critical construct, see Section 2.17.1 on page 223.

e atomic construct, see Section 2.17.7 on page 234.

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.
e ompt_work_workshare, see Section 4.4.4.15 on page 445.

e ompt_callback_work_t, see Section 4.5.2.5 on page 464.
Fortran

Loop-Related Directives

Canonical Loop Form
C/C++

The loops associated with a loop-associated directive have canonical loop form if they conform to
the following:

for (init-expr; test-expr; incr-expr) structured-block

init-expr One of the following:
var = Ib
integer-type var = Ib
random-access-iterator-type var = lb
pointer-type var = lb

continued on next page

CHAPTER 2. DIRECTIVES 95

96

C/C++ (cont.)

continued from previous page

test-expr

incr-expr

var

relational-op

Ib and b

One of the following:
var relational-op b
b relational-op var

One of the following:
++var

var++

- -var

var - -

var += incr

var - = incr

var = var + incr

var = incr + var

var = var - incr

One of the following:
A variable of a signed or unsigned integer type.
For C++, a variable of a random access iterator type.
For C, a variable of a pointer type.
This variable must not be modified during the execution of the for-loop other
than in incr-expr.
One of the following:

Expressions of a type compatible with the type of var that are loop invariant
with respect to the outermost associated loop or are one of the following (where
var-outer, al, and a2 have a type compatible with the type of var, var-outer

is var from an outer associated loop, and a/ and a2 are loop invariant integer
expressions with respect to the outermost loop):

continued on next page

OpenMP API — Version 5.0 November 2018

A WOWN =

continued from previous page

var-outer

var-outer + a2

a2 + var-outer
var-outer - a2

a2 - var-outer

al * var-outer

al * var-outer + a2
a2 + al * var-outer
al * var-outer - a2
a2 - al * var-outer
var-outer * al
var-outer * al + a2
a2 + var-outer * al
var-outer * al - a2
a2 - var-outer * al

incr An integer expression that is loop invariant with respect to the outermost
associated loop.

C/C++

Fortran
The loops associated with a loop-associated directive have canonical loop form if each of them is a
do-loop that is a do-construct or an inner-shared-do-construct as defined by the Fortran standard. If
an end do directive follows a do-construct in which several loop statements share a DO termination
statement, then the directive can only be specified for the outermost of these DO statements.

CHAPTER 2. DIRECTIVES 97

© O NOoO O~ WN

98

The do-stmt for any do-loop must conform to the following:

DO [label Jvar=1b, b [, incr]

var A variable of integer type.

Ib and b Expressions of a type compatible with the type of var that are loop invariant
with respect to the outermost associated loop or are one of the following (where
var-outer, al, and a2 have a type compatible with the type of var, var-outer
is var from an outer associated loop, and a/ and a2 are loop invariant integer
expressions with respect to the outermost loop):
var-outer
var-outer + a2
a2 + var-outer
var-outer - a2
a2 - var-outer
al * var-outer
al * var-outer + a2
a2 + al * var-outer
al * var-outer - a2
a2 - al * var-outer
var-outer * al
var-outer * al + a2
a2 + var-outer * al
var-outer * al - a2
a2 - var-outer * al

incr An integer expression that is loop invariant with respect to the outermost
associated loop. If it is not explicitly specified, its value is assumed to be 1.

Fortran

The canonical form allows the iteration count of all associated loops to be computed before
executing the outermost loop. The incr and range-expr are evaluated before executing the
loop-associated construct. If b or Ib is loop invariant with respect to the outermost associated loop,
it is evaluated before executing the loop-associated construct. If b or b is not loop invariant with
respect to the outermost associated loop, al and/or a2 are evaluated before executing the
loop-associated construct. The computation is performed for each loop in an integer type. This type
is derived from the type of var as follows:

e If var is of an integer type, then the type is the type of var.

OpenMP API — Version 5.0 November 2018

o ~NO®O O N

10
11
12
13

14
15
16

17

18
19
20
21

C++

e If var is of a random access iterator type, then the type is the type that would be used by
std::distance applied to variables of the type of var.

C++
C
e If var is of a pointer type, then the type is ptrdiff_t.

C

The behavior is unspecified if any intermediate result required to compute the iteration count
cannot be represented in the type determined above.

There is no implied synchronization during the evaluation of the /b, b, or incr expressions. It is
unspecified whether, in what order, or how many times any side effects within the [b, b, or incr
expressions occur.

v v
Note — Random access iterators are required to support random access to elements in constant
time. Other iterators are precluded by the restrictions since they can take linear time or offer limited

functionality. The use of tasks to parallelize those cases is therefore advisable.
A A

C++

A range-based for loop that is valid in the base language and has a begin value that satisfies the
random access iterator requirement has canonical loop form. Range-based for loops are of the
following form:

for (range-decl: range-expr) structured-block

The begin-expr and end-expr expressions are derived from range-expr by the base language and
assigned to variables to which this specification refers as __begin and ___end respectively. Both
__beginand __end are privatized. For the purpose of the rest of the standard __begin is the
iteration variable of the range-for loop.

C++

CHAPTER 2. DIRECTIVES 99

15
16

17
18

19

20
21

22
23
24

25
26
27
28

100

Restrictions

The following restrictions also apply:

C/C++

If test-expr is of the form var relational-op b and relational-op is < or <= then incr-expr must
cause var to increase on each iteration of the loop. If fest-expr is of the form var relational-op b
and relational-op is > or >= then incr-expr must cause var to decrease on each iteration of the
loop.

If test-expr is of the form b relational-op var and relational-op is < or <= then incr-expr must
cause var to decrease on each iteration of the loop. If test-expr is of the form b relational-op var
and relational-op is > or >= then incr-expr must cause var to increase on each iteration of the
loop.

If test-expr is of the form b != var or var != b then incr-expr must cause var either to increase on
each iteration of the loop or to decrease on each iteration of the loop.

If relational-op is = and incr-expr is of the form that has incr then incr must be a constant
expression and evaluate to -1 or 1.

C/C++
C++

In the simd construct the only random access iterator types that are allowed for var are pointer
types.

The range-expr of a range-for loop must be loop invariant with respect to the outermost
associated loop, and must not reference iteration variables of any associated loops.

The loops associated with an ordered clause with a parameter may not include range-for loops.
C++

The b, Ib, incr, and range-expr expressions may not reference any var or member of the
range-decl of any enclosed associated loop.

For any associated loop where the b or [b expression is not loop invariant with respect to the
outermost loop, the var-outer that appears in the expression may not have a random access
iterator type.

For any associated loop where b or /b is not loop invariant with respect to the outermost loop, the
expression b — Ib will have the form ¢ * var-outer + d, where ¢ and d are loop invariant integer
expressions. Let incr-outer be the incr expression of the outer loop referred to by var-outer. The
value of ¢ * incr-outer mod incr must be 0.

OpenMP API — Version 5.0 November 2018

(¢, A W D

O ©W ooN O

11

12

13
14

15

16
17
18
19
20
21
22
23
24
25
26

27
28

2.9.2

Cross References
e simd construct, see Section 2.9.3.1 on page 110.
e lastprivate clause, see Section 2.19.4.5 on page 288.

e linear clause, see Section 2.19.4.6 on page 290.

Worksharing-Loop Construct

Summary

The worksharing-loop construct specifies that the iterations of one or more associated loops will be
executed in parallel by threads in the team in the context of their implicit tasks. The iterations are
distributed across threads that already exist in the team that is executing the parallel region to
which the worksharing-loop region binds.

Syntax
C/C++

The syntax of the worksharing-loop construct is as follows:

#pragma omp for [clause[[,] clause] ... | new-line
for-loops

where clause is one of the following:

private (list)

firstprivate (/ist)

lastprivate ([lastprivate-modifier :] list)

linear (list[: linear-step])

reduction ([reduction-modifier, [reduction-identifier : list)
schedule ([modifier [, modifier]: Jkind[, chunk_size])
collapse (n)

ordered/ (n)]

nowait

allocate (/allocator :]list)

order (concurrent)

The for directive places restrictions on the structure of all associated for-loops. Specifically, all
associated for-loops must have canonical loop form (see Section 2.9.1 on page 95).

C/C++

CHAPTER 2. DIRECTIVES 101

AN =

o N o o

11
12
13
14
15

16

17
18

19

20
21
22
23

24

25
26

27
28

29
30

102

Fortran
The syntax of the worksharing-loop construct is as follows:

'Somp do [clause[[,] clause] ...]
do-loops
[!'$omp end do [nowait]]

where clause is one of the following:

private (list)

firstprivate (list)

lastprivate ([lastprivate-modifier: | list)

linear (list[: linear-step])

reduction ([reduction-modifier, Jreduction-identifier : list)
schedule ([modifier [, modifier]: Jkind[, chunk_size])
collapse (n)

ordered/ (n)]

allocate ([allocator :]list)

order (concurrent)

If an end do directive is not specified, an end do directive is assumed at the end of the do-loops.

The do directive places restrictions on the structure of all associated do-loops. Specifically, all
associated do-loops must have canonical loop form (see Section 2.9.1 on page 95).

Fortran

Binding

The binding thread set for a worksharing-loop region is the current team. A worksharing-loop
region binds to the innermost enclosing parallel region. Only the threads of the team executing
the binding parallel region participate in the execution of the loop iterations and the implied
barrier of the worksharing-loop region if the barrier is not eliminated by a nowait clause.

Description

The worksharing-loop construct is associated with a loop nest that consists of one or more loops
that follow the directive.

There is an implicit barrier at the end of a worksharing-loop construct unless a nowait clause is
specified.

The collapse clause may be used to specify how many loops are associated with the
worksharing-loop construct. The parameter of the collapse clause must be a constant positive

OpenMP API — Version 5.0 November 2018

O N O~ WN =

11
12
13
14

15
16

17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33

34
35

36

37
38
39
40

integer expression. If a collapse clause is specified with a parameter value greater than 1, then
the iterations of the associated loops to which the clause applies are collapsed into one larger
iteration space that is then divided according to the schedule clause. The sequential execution of
the iterations in these associated loops determines the order of the iterations in the collapsed
iteration space. If no collapse clause is present or its parameter is 1, the only loop that is
associated with the worksharing-loop construct for the purposes of determining how the iteration
space is divided according to the schedule clause is the one that immediately follows the
worksharing-loop directive.

If more than one loop is associated with the worksharing-loop construct then the number of times
that any intervening code between any two associated loops will be executed is unspecified but will
be at least once per iteration of the loop enclosing the intervening code and at most once per
iteration of the innermost loop associated with the construct. If the iteration count of any loop that
is associated with the worksharing-loop construct is zero and that loop does not enclose the
intervening code, the behavior is unspecified.

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is
implementation defined.

A worksharing-loop has logical iterations numbered 0, 1,...,N-1 where N is the number of loop
iterations, and the logical numbering denotes the sequence in which the iterations would be
executed if a set of associated loop(s) were executed sequentially. At the beginning of each logical
iteration, the loop iteration variable of each associated loop has the value that it would have if the
set of the associated loop(s) were executed sequentially. The schedule clause specifies how
iterations of these associated loops are divided into contiguous non-empty subsets, called chunks,
and how these chunks are distributed among threads of the team. Each thread executes its assigned
chunk(s) in the context of its implicit task. The iterations of a given chunk are executed in
sequential order by the assigned thread. The chunk_size expression is evaluated using the original
list items of any variables that are made private in the worksharing-loop construct. It is unspecified
whether, in what order, or how many times, any side effects of the evaluation of this expression
occur. The use of a variable in a schedule clause expression of a worksharing-loop construct
causes an implicit reference to the variable in all enclosing constructs.

Different worksharing-loop regions with the same schedule and iteration count, even if they occur
in the same parallel region, can distribute iterations among threads differently. The only exception
is for the static schedule as specified in Table 2.5. Programs that depend on which thread
executes a particular iteration under any other circumstances are non-conforming.

See Section 2.9.2.1 on page 109 for details of how the schedule for a worksharing-loop region is
determined.

The schedule kind can be one of those specified in Table 2.5.

The schedule modifier can be one of those specified in Table 2.6. If the static schedule kind is
specified or if the ordered clause is specified, and if the nonmonotonic modifier is not
specified, the effect is as if the monotonic modifier is specified. Otherwise, unless the
monotonic modifier is specified, the effect is as if the nonmonotonic modifier is specified. If

CHAPTER 2. DIRECTIVES 103

0 NOoO o~ W N-=

©

—_ a4
N = O

104

a schedule clause specifies a modifier then that modifier overrides any modifier that is specified
in the run-sched-var ICV.

The ordered clause with the parameter may also be used to specify how many loops are
associated with the worksharing-loop construct. The parameter of the ordered clause must be a
constant positive integer expression if specified. The parameter of the ordered clause does not
affect how the logical iteration space is then divided. If an ordered clause with the parameter is
specified for the worksharing-loop construct, then those associated loops form a doacross loop nest.

If the value of the parameter in the collapse or ordered clause is larger than the number of
nested loops following the construct, the behavior is unspecified.

If an order (concurrent) clause is present, then after assigning the iterations of the associated
loops to their respective threads, as specified in Table 2.5, the iterations may be executed in any
order, including concurrently.

TABLE 2.5: schedule Clause kind Values

static When kind is static, iterations are divided into chunks of size chunk_size,
and the chunks are assigned to the threads in the team in a round-robin
fashion in the order of the thread number. Each chunk contains chunk_size
iterations, except for the chunk that contains the sequentially last iteration,
which may have fewer iterations.
When no chunk_size is specified, the iteration space is divided into chunks
that are approximately equal in size, and at most one chunk is distributed to
each thread. The size of the chunks is unspecified in this case.
A compliant implementation of the static schedule must ensure that the
same assignment of logical iteration numbers to threads will be used in
two worksharing-loop regions if the following conditions are satisfied: 1)
both worksharing-loop regions have the same number of loop iterations, 2)
both worksharing-loop regions have the same value of chunk_size specified,
or both worksharing-loop regions have no chunk_size specified, 3) both
worksharing-loop regions bind to the same parallel region, and 4) neither
loop is associated with a SIMD construct. A data dependence between
the same logical iterations in two such loops is guaranteed to be satisfied
allowing safe use of the nowait clause.

table continued on next page

OpenMP API — Version 5.0 November 2018

table continued from previous page

dynamic When kind is dynamic, the iterations are distributed to threads in the team
in chunks. Each thread executes a chunk of iterations, then requests another
chunk, until no chunks remain to be distributed.
Each chunk contains chunk_size iterations, except for the chunk that contains
the sequentially last iteration, which may have fewer iterations.
When no chunk_size is specified, it defaults to 1.

guided When kind is guided, the iterations are assigned to threads in the team in
chunks. Each thread executes a chunk of iterations, then requests another
chunk, until no chunks remain to be assigned.
For a chunk_size of 1, the size of each chunk is proportional to the number
of unassigned iterations divided by the number of threads in the team,
decreasing to 1. For a chunk_size with value k (greater than 1), the size
of each chunk is determined in the same way, with the restriction that
the chunks do not contain fewer than k iterations (except for the chunk
that contains the sequentially last iteration, which may have fewer than &
iterations).
When no chunk_size is specified, it defaults to 1.

auto When kind is auto, the decision regarding scheduling is delegated to the
compiler and/or runtime system. The programmer gives the implementation
the freedom to choose any possible mapping of iterations to threads in the
team.

runtime When kind is runt ime, the decision regarding scheduling is deferred until
run time, and the schedule and chunk size are taken from the run-sched-var
ICV. If the ICV is set to auto, the schedule is implementation defined.

v v
Note — For a team of p threads and a loop of n iterations, let [n/p] be the integer ¢ that satisfies

n =px*xq—r,with 0 <=r < p. One compliant implementation of the static schedule (with no
specified chunk_size) would behave as though chunk_size had been specified with value g. Another
compliant implementation would assign g iterations to the first p — r threads, and ¢ — 1 iterations to
the remaining r threads. This illustrates why a conforming program must not rely on the details of a
particular implementation.

A compliant implementation of the guided schedule with a chunk_size value of k would assign

q = [n/p] iterations to the first available thread and set n to the larger of n — ¢ and p * k. It would
then repeat this process until g is greater than or equal to the number of remaining iterations, at
which time the remaining iterations form the final chunk. Another compliant implementation could

use the same method, except with ¢ = [n/(2p)], and set n to the larger of n — ¢ and 2 x p * k.
A A

CHAPTER 2. DIRECTIVES 105

o~N OO0 AW N

10
11
12
13
14
15
16

17
18
19

106

TABLE 2.6: schedule Clause modifier Values

monotonic

nonmonotonic

simd

When the monotonic modifier is specified then each thread executes
the chunks that it is assigned in increasing logical iteration order.
When the nonmonotonic modifier is specified then chunks are
assigned to threads in any order and the behavior of an application that
depends on any execution order of the chunks is unspecified.

When the simd modifier is specified and the loop is associated with

a SIMD construct, the chunk_size for all chunks except the first and
last chunks is new_chunk_size = [chunk_size/simd_width]
stmd_width where simd_width is an implementation-defined value.
The first chunk will have at least new_chunk_size iterations except if

it is also the last chunk. The last chunk may have fewer iterations than
new_chunk_size. If the simd modifier is specified and the loop is not
associated with a SIMD construct, the modifier is ignored.

Execution Model Events

The ws-loop-begin event occurs after an implicit task encounters a worksharing-loop construct but

before the task starts execution of the structured block of the worksharing-loop region.

The ws-loop-end event occurs after a worksharing-loop region finishes execution but before
resuming execution of the encountering task.

The ws-loop-iteration-begin event occurs once for each iteration of a worksharing-loop before the

iteration is executed by an implicit task.

Tool Callbacks

A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin

as its endpoint argument and work_loop as its wstype argument for each occurrence of a
ws-loop-begin event in that thread. Similarly, a thread dispatches a registered
ompt_callback_work callback with ompt_scope_end as its endpoint argument and

work_loop as its wstype argument for each occurrence of a ws-loop-end event in that thread. The

callbacks occur in the context of the implicit task. The callbacks have type signature
ompt_callback_work_t.

A thread dispatches a registered ompt__callback_dispatch callback for each occurrence of a
ws-loop-iteration-begin event in that thread. The callback occurs in the context of the implicit task.

The callback has type signature ompt_callback_dispatch_t.

OpenMP API — Version 5.0 November 2018

- O © 0o N O a s~ W N =

- a a4
AW N

N = =4 a4 a4
S © 00 N oo

N N
N —

NN
A~ ©

NN
o O

N NN
© o

w w
- O

Restrictions

Restrictions to the worksharing-loop construct are as follows:

No OpenMP directive may appear in the region between any associated loops.

If a collapse clause is specified, exactly one loop must occur in the region at each nesting
level up to the number of loops specified by the parameter of the collapse clause.

If the ordered clause is present, all loops associated with the construct must be perfectly
nested; that is there must be no intervening code between any two loops.

If a reduction clause with the inscan modifier is specified, neither the ordered nor
schedule clause may appear on the worksharing-loop directive.

The values of the loop control expressions of the loops associated with the worksharing-loop
construct must be the same for all threads in the team.

Only one schedule clause can appear on a worksharing-loop directive.

The schedule clause must not appear on the worksharing-loop directive if the associated
loop(s) form a non-rectangular loop nest.

The ordered clause must not appear on the worksharing-loop directive if the associated
loop(s) form a non-rectangular loop nest.

Only one collapse clause can appear on a worksharing-loop directive.
chunk_size must be a loop invariant integer expression with a positive value.

The value of the chunk_size expression must be the same for all threads in the team.
The value of the run-sched-var ICV must be the same for all threads in the team.

When schedule (runtime) or schedule (auto) is specified, chunk_size must not be
specified.

A modifier may not be specified on a 1inear clause.
Only one ordered clause can appear on a worksharing-loop directive.

The ordered clause must be present on the worksharing-loop construct if any ordered
region ever binds to a worksharing-loop region arising from the worksharing-loop construct.

The nonmonotonic modifier cannot be specified if an ordered clause is specified.

Either the monotonic modifier or the nonmonotoniec modifier can be specified but not both.

The loop iteration variable may not appear in a threadprivate directive.

If both the collapse and ordered clause with a parameter are specified, the parameter of the

ordered clause must be greater than or equal to the parameter of the collapse clause.

CHAPTER 2. DIRECTIVES

107

OO AW N =

10

11
12
13

14
15

16
17

18
19

20
21
22
23

24
25

26
27
28
29

108

A linear clause or an ordered clause with a parameter can be specified on a
worksharing-loop directive but not both.

e If an order (concurrent) clause is present, all restrictions from the 1oop construct with an
order (concurrent) clause also apply.

e If an order (concurrent) clause is present, an ordered clause may not appear on the
same directive.

C/C++

e The associated for-loops must be structured blocks.

e Only an iteration of the innermost associated loop may be curtailed by a cont inue statement.
e No statement can branch to any associated for statement.

e Only one nowait clause can appear on a for directive.

o A throw executed inside a worksharing-loop region must cause execution to resume within the
same iteration of the worksharing-loop region, and the same thread that threw the exception must
catch it.

C/C++
Fortran
e The associated do-loops must be structured blocks.

e Only an iteration of the innermost associated loop may be curtailed by a CYCLE statement.

e No statement in the associated loops other than the DO statements can cause a branch out of the
loops.

e The do-loop iteration variable must be of type integer.

e The do-loop cannot be a DO WHILE or a DO loop without loop control.
Fortran
Cross References

order (concurrent) clause, see Section 2.9.5 on page 128.
e ordered construct, see Section 2.17.9 on page 250.
e depend clause, see Section 2.17.11 on page 255.

e private, firstprivate, lastprivate, linear, and reduction clauses, see
Section 2.19.4 on page 282.

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.
e ompt_work_loop, see Section 4.4.4.15 on page 445.
e ompt_callback_work_t, see Section 4.5.2.5 on page 464.

e OMP_SCHEDULE environment variable, see Section 6.1 on page 601.

OpenMP API — Version 5.0 November 2018

—_

O ©W o0 ~NO O WN

—_

11
12

2.9.2.1

START

schedule

clause present? Use def-sched-var schedule kind

schedule
kind value is
runtime?

Use schedule kind specified in
schedule clause

> Use run-sched-var schedule kind

FIGURE 2.1: Determining the schedule for a Worksharing-Loop

Determining the Schedule of a Worksharing-Loop

When execution encounters a worksharing-loop directive, the schedule clause (if any) on the
directive, and the run-sched-var and def-sched-var ICVs are used to determine how loop iterations
are assigned to threads. See Section 2.5 on page 63 for details of how the values of the ICVs are
determined. If the worksharing-loop directive does not have a schedule clause then the current
value of the def-sched-var ICV determines the schedule. If the worksharing-loop directive has a
schedule clause that specifies the runtime schedule kind then the current value of the
run-sched-var ICV determines the schedule. Otherwise, the value of the schedule clause
determines the schedule. Figure 2.1 describes how the schedule for a worksharing-loop is
determined.

Cross References
e ICVs, see Section 2.5 on page 63.

CHAPTER 2. DIRECTIVES 109

o0k~ W \V]

~

11

12
13
14
15
16
17
18
19
20
21
22

23
24

2.9.3
2.9.3.1

110

SIMD Directives

simd Construct

Summary

The simd construct can be applied to a loop to indicate that the loop can be transformed into a
SIMD loop (that is, multiple iterations of the loop can be executed concurrently using SIMD
instructions).

Syntax

The syntax of the simd construct is as follows:

C/C++
#pragma omp simd [clause[[, | clause] ... | new-line
for-loops

where clause is one of the following:

if ([simd :] scalar-expression)

safelen (length)

simdlen (length)

linear (list[: linear-step])

aligned (list[: alignment])

nontemporal (/ist)

private (list)

lastprivate ([lastprivate-modifier: | list)

reduction ([reduction-modifier, Jreduction-identifier : list)

collapse (n)

order (concurrent)

The simd directive places restrictions on the structure of the associated for-loops. Specifically, all
associated for-loops must have canonical loop form (Section 2.9.1 on page 95).

C/C++

OpenMP API — Version 5.0 November 2018

16
17

18
19

20

21
22

23

24
25

26
27
28
29

Fortran
'Somp simd [clause[[,] clause ... |
do-loops
[!$omp end simd]

where clause is one of the following:

if ([simd :] scalar-logical-expression)

safelen (length)

simdlen (length)

linear (list[: linear-step])

aligned (list[: alignment])

nontemporal (list)

private (list)

lastprivate ([lastprivate-modifier : | list)

reduction ([reduction-modifier, [reduction-identifier : list)

collapse (n)

order (concurrent)

If an end simd directive is not specified, an end simd directive is assumed at the end of the
do-loops.

The simd directive places restrictions on the structure of all associated do-loops. Specifically, all
associated do-loops must have canonical loop form (see Section 2.9.1 on page 95).

Fortran

Binding

A simd region binds to the current task region. The binding thread set of the simd region is the
current team.

Description

The simd construct enables the execution of multiple iterations of the associated loops
concurrently by means of SIMD instructions.

The collapse clause may be used to specify how many loops are associated with the construct.
The parameter of the collapse clause must be a constant positive integer expression. If no
collapse clause is present, the only loop that is associated with the simd construct is the one
that immediately follows the directive.

CHAPTER 2. DIRECTIVES 111

oNoO Ol WO =

-
o ©

—_
N —

DN = =
- O OWoo~NOOh~W

NDNDDNDDNDNDDNDN
0N O~ WDN

29
30

31
32

112

If more than one loop is associated with the simd construct, then the iterations of all associated
loops are collapsed into one larger iteration space that is then executed with SIMD instructions.
The sequential execution of the iterations in all associated loops determines the order of the
iterations in the collapsed iteration space.

If more than one loop is associated with the simd construct then the number of times that any
intervening code between any two associated loops will be executed is unspecified but will be at
least once per iteration of the loop enclosing the intervening code and at most once per iteration of
the innermost loop associated with the construct. If the iteration count of any loop that is associated
with the simd construct is zero and that loop does not enclose the intervening code, the behavior is
unspecified.

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is
implementation defined.

A SIMD loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop iterations,
and the logical numbering denotes the sequence in which the iterations would be executed if the
associated loop(s) were executed with no SIMD instructions. At the beginning of each logical
iteration, the loop iteration variable of each associated loop has the value that it would have if the
set of the associated loop(s) were executed sequentially. The number of iterations that are executed
concurrently at any given time is implementation defined. Each concurrent iteration will be
executed by a different SIMD lane. Each set of concurrent iterations is a SIMD chunk. Lexical
forward dependencies in the iterations of the original loop must be preserved within each SIMD
chunk.

The safelen clause specifies that no two concurrent iterations within a SIMD chunk can have a
distance in the logical iteration space that is greater than or equal to the value given in the clause.
The parameter of the safelen clause must be a constant positive integer expression. The
simdlen clause specifies the preferred number of iterations to be executed concurrently unless an
if clause is present and evaluates to false, in which case the preferred number of iterations to be
executed concurrently is one. The parameter of the simdlen clause must be a constant positive
integer expression.

C/C++

The aligned clause declares that the object to which each list item points is aligned to the
number of bytes expressed in the optional parameter of the aligned clause.

C/C++
Fortran

The aligned clause declares that the location of each list item is aligned to the number of bytes
expressed in the optional parameter of the aligned clause.

Fortran

OpenMP API — Version 5.0 November 2018

a s~ W=

o © o0 N O

12
13
14
15
16

17
18

19

20
21
22

23
24

25

26

The optional parameter of the aligned clause, alignment, must be a constant positive integer
expression. If no optional parameter is specified, implementation-defined default alignments for
SIMD instructions on the target platforms are assumed.

The nontemporal clause specifies that accesses to the storage locations to which the list items
refer have low temporal locality across the iterations in which those storage locations are accessed.

Restrictions
e No OpenMP directive may appear in the region between any associated loops.

e If a collapse clause is specified, exactly one loop must occur in the region at each nesting
level up to the number of loops specified by the parameter of the collapse clause.

e The associated loops must be structured blocks.

e A program that branches into or out of a simd region is non-conforming.
e Only one collapse clause can appear on a simd directive.

o A list-item cannot appear in more than one aligned clause.

o A list-item cannot appear in more than one nontemporal clause.

e Only one safelen clause can appear on a simd directive.

e Only one simdlen clause can appear on a simd directive.

e If both simdlen and safelen clauses are specified, the value of the simdlen parameter
must be less than or equal to the value of the safelen parameter.

o A modifier may not be specified on a 1inear clause.

e The only OpenMP constructs that can be encountered during execution of a simd region are the
atomic construct, the loop construct, the simd construct and the ordered construct with
the simd clause.

e If an order (concurrent) clause is present, all restrictions from the 1oop construct with an
order (concurrent) clause also apply.

C/C++
e The simd region cannot contain calls to the longjmp or set jmp functions.

C/C++
C

e The type of list items appearing in the aligned clause must be array or pointer.

C

CHAPTER 2. DIRECTIVES 113

- O ©W o NoO o

—_

12
13
14
15

16

17

18
19
20
21

2.9.3.2

114

C++

e The type of list items appearing in the aligned clause must be array, pointer, reference to
array, or reference to pointer.

e No exception can be raised in the simd region.

C++
Fortran
e The do-loop iteration variable must be of type integer.

e The do-loop cannot be a DO WHILE or a DO loop without loop control.

e [f alist item on the aligned clause has the ALLOCATABLE attribute, the allocation status must
be allocated.

e If a list item on the aligned clause has the POINTER attribute, the association status must be
associated.

o If the type of a list item on the aligned clause is either C_PTR or Cray pointer, the list item
must be defined.

Fortran

Cross References
e order (concurrent) clause, see Section 2.9.5 on page 128.
e if Clause, see Section 2.15 on page 220.

e private, lastprivate, linear and reduction clauses, see Section 2.19.4 on page 282.

Worksharing-Loop SIMD Construct

Summary

The worksharing-loop SIMD construct specifies that the iterations of one or more associated loops
will be distributed across threads that already exist in the team and that the iterations executed by
each thread can also be executed concurrently using SIMD instructions. The worksharing-loop
SIMD construct is a composite construct.

OpenMP API — Version 5.0 November 2018

~

10

11
12

13

14
15
16
17

18
19

20
21

Syntax
C/C++

#pragma omp for simd [clause[[, | clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the for or simd directives with identical
meanings and restrictions.

C/C++

Fortran
'Somp do simd [clause[[,] clause] ... |
do-loops
[!$omp end do simd [nowait]]

where clause can be any of the clauses accepted by the simd or do directives, with identical
meanings and restrictions.

If an end do simd directive is not specified, an end do simd directive is assumed at the end of
the do-loops.

Fortran

Description

The worksharing-loop SIMD construct will first distribute the iterations of the associated loop(s)
across the implicit tasks of the parallel region in a manner consistent with any clauses that apply to
the worksharing-loop construct. The resulting chunks of iterations will then be converted to a
SIMD loop in a manner consistent with any clauses that apply to the simd construct.

Execution Model Events

This composite construct generates the same events as the worksharing-loop construct.

Tool Callbacks

This composite construct dispatches the same callbacks as the worksharing-loop construct.

CHAPTER 2. DIRECTIVES 115

—_

a B~ WD

© o0 N o

10

11

12
13
14
15
16

17
18

19
20
21
22

23

24
25
26
27
28
29

Restrictions

All restrictions to the worksharing-loop construct and the simd construct apply to the
worksharing-loop SIMD construct. In addition, the following restrictions apply:

e No ordered clause with a parameter can be specified.

e A list item may appear in a 1inear or firstprivate clause but not both.

Cross References
e worksharing-loop construct, see Section 2.9.2 on page 101.
e simd construct, see Section 2.9.3.1 on page 110.

o Data attribute clauses, see Section 2.19.4 on page 282.

2.9.3.3 declare simd Directive

Summary

The declare simd directive can be applied to a function (C, C++ and Fortran) or a subroutine
(Fortran) to enable the creation of one or more versions that can process multiple arguments using
SIMD instructions from a single invocation in a SIMD loop. The declare simd directive is a
declarative directive. There may be multiple declare simd directives for a function (C, C++,
Fortran) or subroutine (Fortran).

Syntax

The syntax of the declare simd directive is as follows:

C/C++

#pragma omp declare simd [clause[[,] clause] ... | new-line
[#pragma omp declare simd [clause[[, | clause] ... | new-line]

[..]

function definition or declaration

where clause is one of the following:

simdlen (length)

linear (linear-list[: linear-step])
aligned (argument-list[: alignment])
uniform (argument-list)

inbranch

notinbranch

C/C++

116 OpenMP API — Version 5.0 November 2018

'y

0 N o 0o b~ W N

10
11
12

13
14

15
16
17

18
19
20
21
22

23
24

25
26

Fortran
I 'Somp declare simd [(proc-name) | [clause[[, | clause] ... |

where clause is one of the following:

simdlen (length)
linear (linear-list[: linear-step])
aligned (argument-list[: alignment])

uniform (argument-list)

inbranch
notinbranch
Fortran
Description
C/C++

The use of one or more declare simd directives immediately prior to a function declaration or
definition enables the creation of corresponding SIMD versions of the associated function that can
be used to process multiple arguments from a single invocation in a SIMD loop concurrently.

The expressions appearing in the clauses of each directive are evaluated in the scope of the
arguments of the function declaration or definition.

C/C++
Fortran

The use of one or more declare simd directives for a specified subroutine or function enables
the creation of corresponding SIMD versions of the subroutine or function that can be used to
process multiple arguments from a single invocation in a SIMD loop concurrently.

Fortran

If a SIMD version is created, the number of concurrent arguments for the function is determined by
the simdlen clause. If the simdlen clause is used its value corresponds to the number of
concurrent arguments of the function. The parameter of the simdlen clause must be a constant
positive integer expression. Otherwise, the number of concurrent arguments for the function is
implementation defined.

C++

The special this pointer can be used as if it was one of the arguments to the function in any of the
linear, aligned, or uniform clauses.

C++

The uniform clause declares one or more arguments to have an invariant value for all concurrent
invocations of the function in the execution of a single SIMD loop.

CHAPTER 2. DIRECTIVES 117

N

0 NoO o,

11
12

13
14
15
16

17
18

19

20
21
22

23
24

25

26
27
28

29

118

C/C++

The aligned clause declares that the object to which each list item points is aligned to the
number of bytes expressed in the optional parameter of the aligned clause.

C/C++
Fortran

The aligned clause declares that the target of each list item is aligned to the number of bytes
expressed in the optional parameter of the aligned clause.

Fortran

The optional parameter of the aligned clause, alignment, must be a constant positive integer
expression. If no optional parameter is specified, implementation-defined default alignments for
SIMD instructions on the target platforms are assumed.

The inbranch clause specifies that the SIMD version of the function will always be called from
inside a conditional statement of a SIMD loop. The not inbranch clause specifies that the SIMD
version of the function will never be called from inside a conditional statement of a SIMD loop. If
neither clause is specified, then the SIMD version of the function may or may not be called from
inside a conditional statement of a SIMD loop.

Restrictions

e Each argument can appear in at most one uniform or 1inear clause.
e At most one simdlen clause can appear in a declare simd directive.
e Either inbranch or notinbranch may be specified, but not both.

e When a linear-step expression is specified in a 1inear clause it must be either a constant integer
expression or an integer-typed parameter that is specified in a uniform clause on the directive.

e The function or subroutine body must be a structured block.

e The execution of the function or subroutine, when called from a SIMD loop, cannot result in the
execution of an OpenMP construct except for an ordered construct with the simd clause or an
atomic construct.

e The execution of the function or subroutine cannot have any side effects that would alter its
execution for concurrent iterations of a SIMD chunk.

e A program that branches into or out of the function is non-conforming.

C/C++

o If the function has any declarations, then the declare simd construct for any declaration that
has one must be equivalent to the one specified for the definition. Otherwise, the result is
unspecified.

e The function cannot contain calls to the 1longjmp or set jmp functions.

C/C++

OpenMP API — Version 5.0 November 2018

w

21
22
23

C

o The type of list items appearing in the aligned clause must be array or pointer.

C
C++

o The function cannot contain any calls to throw.

e The type of list items appearing in the aligned clause must be array, pointer, reference to
array, or reference to pointer.
C++
Fortran
e proc-name must not be a generic name, procedure pointer or entry name.

o If proc-name is omitted, the declare simd directive must appear in the specification part of a
subroutine subprogram or a function subprogram for which creation of the SIMD versions is
enabled.

e Any declare simd directive must appear in the specification part of a subroutine subprogram,
function subprogram or interface body to which it applies.

e If a declare simd directive is specified in an interface block for a procedure, it must match a
declare simd directive in the definition of the procedure.

e If a procedure is declared via a procedure declaration statement, the procedure proc-name should
appear in the same specification.

e If a declare simd directive is specified for a procedure name with explicit interface and a
declare simd directive is also specified for the definition of the procedure then the two
declare simd directives must match. Otherwise the result is unspecified.

e Procedure pointers may not be used to access versions created by the declare simd directive.

e The type of list items appearing in the aligned clause must be C_PTR or Cray pointer, or the
list item must have the POINTER or ALLOCATABLE attribute.

Fortran

Cross References
e linear clause, see Section 2.19.4.6 on page 290.

e reduction clause, see Section 2.19.5.4 on page 300.

CHAPTER 2. DIRECTIVES 119

\V]

(o226 I N OV]

11

12
13
14
15
16
17

18
19

20
21
22
23

2.9.4
2.9.41

120

distribute Loop Constructs

distribute Construct

Summary

The distribute construct specifies that the iterations of one or more loops will be executed by
the initial teams in the context of their implicit tasks. The iterations are distributed across the initial
threads of all initial teams that execute the teams region to which the distribute region binds.

Syntax
C/C++

The syntax of the distribute construct is as follows:

#pragma omp distribute [clause[[, | clause] ... | new-line
for-loops

Where clause is one of the following:

private (list)

firstprivate (list)

lastprivate (list)

collapse (n)

dist_schedule (kind[, chunk_size])

allocate (/allocator :]list)

The distribute directive places restrictions on the structure of all associated for-loops.
Specifically, all associated for-loops must have canonical loop form (see Section 2.9.1 on page 95).

C/C++
Fortran
The syntax of the distribute construct is as follows:

'Somp distribute [clause[[,] clause] ... |
do-loops
[!'$omp end distribute]

OpenMP API — Version 5.0 November 2018

N o o A WD

10
11

12

13
14

15

16
17

18
19
20
21

22
23
24
25
26
27
28
29

30
31
32

Where clause is one of the following:

private (list)

firstprivate (list)

lastprivate (list)

collapse (n)

dist_schedule (kind[, chunk_size])

allocate ([allocator :]list)

If an end distribute directive is not specified, an end distribute directive is assumed at
the end of the do-loops.

The distribute directive places restrictions on the structure of all associated do-loops.
Specifically, all associated do-loops must have canonical loop form (see Section 2.9.1 on page 95).

Fortran

Binding

The binding thread set for a distribute region is the set of initial threads executing an
enclosing teams region. A distribute region binds to this teams region.

Description

The distribute construct is associated with a loop nest consisting of one or more loops that
follow the directive.

There is no implicit barrier at the end of a distribute construct. To avoid data races the
original list items modified due to lastprivate or linear clauses should not be accessed
between the end of the distribute construct and the end of the teams region to which the
distribute binds.

The collapse clause may be used to specify how many loops are associated with the
distribute construct. The parameter of the collapse clause must be a constant positive
integer expression. If no collapse clause is present or its parameter is 1, the only loop that is
associated with the distribute construct is the one that immediately follows the distribute
construct. If a collapse clause is specified with a parameter value greater than 1 and more than
one loop is associated with the distribute construct, then the iteration of all associated loops
are collapsed into one larger iteration space. The sequential execution of the iterations in all
associated loops determines the order of the iterations in the collapsed iteration space.

A distribute loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop
iterations, and the logical numbering denotes the sequence in which the iterations would be
executed if the set of associated loop(s) were executed sequentially. At the beginning of each

CHAPTER 2. DIRECTIVES 121

oNOO O~ W N =

11
12
13
14
15

16

17

18
19

20
21

22

23
24
25
26
27
28
29

30
31
32

33
34

122

logical iteration, the loop iteration variable of each associated loop has the value that it would have
if the set of the associated loop(s) were executed sequentially.

If more than one loop is associated with the distribute construct then the number of times that
any intervening code between any two associated loops will be executed is unspecified but will be
at least once per iteration of the loop enclosing the intervening code and at most once per iteration
of the innermost loop associated with the construct. If the iteration count of any loop that is
associated with the distribute construct is zero and that loop does not enclose the intervening
code, the behavior is unspecified.

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is
implementation defined.

If dist_schedule is specified, kind must be static. If specified, iterations are divided into
chunks of size chunk_size, chunks are assigned to the initial teams of the league in a round-robin
fashion in the order of the initial team number. When no chunk_size is specified, the iteration space
is divided into chunks that are approximately equal in size, and at most one chunk is distributed to
each initial team of the league. The size of the chunks is unspecified in this case.

When no dist_schedule clause is specified, the schedule is implementation defined.

Execution Model Events

The distribute-begin event occurs after an implicit task encounters a distribute construct but
before the task starts to execute the structured block of the distribute region.

The distribute-end event occurs after an implicit task finishes execution of a distribute region
but before it resumes execution of the enclosing context.

Tool Callbacks

A thread dispatches a registered ompt__callback_work callback with ompt_scope_begin
as its endpoint argument and ompt_work_distribute as its wstype argument for each
occurrence of a distribute-begin event in that thread. Similarly, a thread dispatches a registered
ompt_callback_work callback with ompt_scope_end as its endpoint argument and
ompt_work_distribute as its wstype argument for each occurrence of a distribute-end event
in that thread. The callbacks occur in the context of the implicit task. The callbacks have type
signature ompt_callback_work_t.

Restrictions
Restrictions to the distribute construct are as follows:
e The distribute construct inherits the restrictions of the worksharing-loop construct.

e Each distribute region must be encountered by the initial threads of all initial teams in a
league or by none at all.

OpenMP API — Version 5.0 November 2018

NOoO o b~ W NN =

10
11
12

13

14

15
16
17

18
19

20
21

22
23

2.9.4.2

e The sequence of the distribute regions encountered must be the same for every initial thread
of every initial team in a league.

o The region corresponding to the distribute construct must be strictly nested inside a teams
region.

o A list item may appear in a firstprivate or lastprivate clause but not both.

e The dist_schedule clause must not appear on the distribute directive if the associated
loop(s) form a non-rectangular loop nest.

Cross References

e teams construct, see Section 2.7 on page 82

worksharing-loop construct, see Section 2.9.2 on page 101.
e ompt_work distribute, see Section 4.4.4.15 on page 445.

e ompt_callback_work_t, see Section 4.5.2.5 on page 464.

distribute simd Construct

Summary

The distribute simd construct specifies a loop that will be distributed across the master
threads of the teams region and executed concurrently using SIMD instructions. The
distribute simd construct is a composite construct.

Syntax
The syntax of the distribute simd construct is as follows:
C/C++
#pragma omp distribute simd [clause[[, | clause] ... | newline

Jfor-loops

where clause can be any of the clauses accepted by the distribute or simd directives with
identical meanings and restrictions.

C/C++

CHAPTER 2. DIRECTIVES 123

w N

NOoO O b

10
11
12

13
14

15
16

17
18

19
20

21

22
23
24
25

124

Fortran
'Somp distribute simd [clause[[,] clause] ... |
do-loops
[!'$omp end distribute simd/

where clause can be any of the clauses accepted by the distribute or simd directives with
identical meanings and restrictions.

If an end distribute simd directive is not specified, an end distribute simd directive is
assumed at the end of the do-loops.

Fortran

Description

The distribute simd construct will first distribute the iterations of the associated loop(s)
according to the semantics of the distribute construct and any clauses that apply to the
distribute construct. The resulting chunks of iterations will then be converted to a SIMD loop in a
manner consistent with any clauses that apply to the simd construct.

Execution Model Events

This composite construct generates the same events as the distribute construct.

Tool Callbacks

This composite construct dispatches the same callbacks as the distribute construct.

Restrictions
e The restrictions for the distribute and simd constructs apply.

e A list item may not appear in a 1inear clause unless it is the loop iteration variable of a loop
that is associated with the construct.

e The conditional modifier may not appear in a lastprivate clause.

Cross References
e simd construct, see Section 2.9.3.1 on page 110.
e distribute construct, see Section 2.9.4.1 on page 120.

e Data attribute clauses, see Section 2.19.4 on page 282.

OpenMP API — Version 5.0 November 2018

a b~ w N

»

10
11

12
13
14

15
16

17
18

19

20
21
22
23
24
25

26

27
28

2.9.4.3

Distribute Parallel Worksharing-Loop Construct

Summary

The distribute parallel worksharing-loop construct specifies a loop that can be executed in parallel
by multiple threads that are members of multiple teams. The distribute parallel worksharing-loop
construct is a composite construct.

Syntax

The syntax of the distribute parallel worksharing-loop construct is as follows:

C/C++

#fpragma omp distribute parallel for [clause[[,] clause] ... | newline
for-loops

where clause can be any of the clauses accepted by the distribute or parallel worksharing-loop
directives with identical meanings and restrictions.

C/C++

Fortran
!Somp distribute parallel do /clause[[,] clause] ... |
do-loops
['$omp end distribute parallel do]

where clause can be any of the clauses accepted by the distribute or parallel worksharing-loop
directives with identical meanings and restrictions.

If an end distribute parallel do directive is not specified, an end distribute
parallel do directive is assumed at the end of the do-loops.

Fortran

Description

The distribute parallel worksharing-loop construct will first distribute the iterations of the
associated loop(s) into chunks according to the semantics of the distribute construct and any
clauses that apply to the distribute construct. Each of these chunks will form a loop. Each
resulting loop will then be distributed across the threads within the teams region to which the
distribute construct binds in a manner consistent with any clauses that apply to the parallel
worksharing-loop construct.

Execution Model Events

This composite construct generates the same events as the distribute and parallel
worksharing-loop constructs.

CHAPTER 2. DIRECTIVES 125

w

0o N o o &

10
11
12

13

14

15
16
17

18

19

20
21
22

23
24

29.4.4

126

Tool Callbacks

This composite construct dispatches the same callbacks as the distribute and parallel
worksharing-loop constructs.

Restrictions

e The restrictions for the distribute and parallel worksharing-loop constructs apply.
e No ordered clause can be specified.

e No linear clause can be specified.

e The conditional modifier may not appear in a lastprivate clause.

Cross References
e distribute construct, see Section 2.9.4.1 on page 120.
e Parallel worksharing-loop construct, see Section 2.13.1 on page 185.

e Data attribute clauses, see Section 2.19.4 on page 282.

Distribute Parallel Worksharing-Loop SIMD Construct

Summary

The distribute parallel worksharing-loop SIMD construct specifies a loop that can be executed
concurrently using SIMD instructions in parallel by multiple threads that are members of multiple
teams. The distribute parallel worksharing-loop SIMD construct is a composite construct.

Syntax
C/C++
The syntax of the distribute parallel worksharing-loop SIMD construct is as follows:

#pragma omp distribute parallel for simd \
[clause[[,] clause] ... | newline
for-loops

where clause can be any of the clauses accepted by the distribute or parallel worksharing-loop
SIMD directives with identical meanings and restrictions.

C/C++

OpenMP API — Version 5.0 November 2018

A ON =

o N o O

10
11
12
13
14
15
16

17

18
19

20

21
22

23
24
25

26
27

28

Fortran
The syntax of the distribute parallel worksharing-loop SIMD construct is as follows:

!Somp distribute parallel do simd [clause[[,] clause] ... |
do-loops
[!$omp end distribute parallel do simd/

where clause can be any of the clauses accepted by the distribute or parallel worksharing-loop
SIMD directives with identical meanings and restrictions.

If an end distribute parallel do simd directive is not specified, an end distribute
parallel do simd directive is assumed at the end of the do-loops.

Fortran

Description

The distribute parallel worksharing-loop SIMD construct will first distribute the iterations of the
associated loop(s) according to the semantics of the distribute construct and any clauses that
apply to the distribute construct. The resulting loops will then be distributed across the
threads contained within the teams region to which the distribute construct binds in a
manner consistent with any clauses that apply to the parallel worksharing-loop construct. The
resulting chunks of iterations will then be converted to a SIMD loop in a manner consistent with
any clauses that apply to the simd construct.

Execution Model Events

This composite construct generates the same events as the distribute and parallel
worksharing-loop SIMD constructs.

Tool Callbacks

This composite construct dispatches the same callbacks as the distribute and parallel
worksharing-loop SIMD constructs.

Restrictions
o The restrictions for the distribute and parallel worksharing-loop SIMD constructs apply.

e No ordered clause can be specified.

A list item may not appear in a 1inear clause unless it is the loop iteration variable of a loop
that is associated with the construct.

The conditional modifier may not appear in a lastprivate clause.

CHAPTER 2. DIRECTIVES 127

—_

£ NGO R o)

10

11
12

13

14
15
16
17
18
19

20
21
22
23

24
25

Cross References
e distribute construct, see Section 2.9.4.1 on page 120.
e Parallel worksharing-loop SIMD construct, see Section 2.13.5 on page 190.

e Data attribute clauses, see Section 2.19.4 on page 282.

2.9.5 1loop Construct

Summary

A loop construct specifies that the iterations of the associated loops may execute concurrently and
permits the encountering thread(s) to execute the loop accordingly.

Syntax
C/C++

The syntax of the 1oop construct is as follows:
I #pragma omp loop [clause[[,] clause] ... | new-line
for-loops
where clause is one of the following:
bind (binding)
collapse (n)
order (concurrent)
private (list)
lastprivate (list)

reduction (/default , [reduction-identifier : list)

where binding is one of the following:

teams

parallel

thread

The loop directive places restrictions on the structure of all associated for-loops. Specifically, all
associated for-loops must have canonical loop form (see Section 2.9.1 on page 95).

C/C++

128 OpenMP API — Version 5.0 November 2018

A WOND =

o ©W 00 N O o

12

13
14
15

16
17

18
19

20

21
22
23
24
25
26
27
28

29
30
31
32

Fortran
The syntax of the 1oop construct is as follows:

'Somp loop [clause[[,] clause] ... |
do-loops
[!$Somp end loop]

where clause is one of the following:
bind (binding)

collapse (n)

order (concurrent)
private (list)

lastprivate (list)

reduction ([default , Jreduction-identifier : list)

where binding is one of the following:

teams
parallel
thread

If an end loop directive is not specified, an end loop directive is assumed at the end of the
do-loops.

The loop directive places restrictions on the structure of all associated do-loops. Specifically, all
associated do-loops must have canonical loop form (see Section 2.9.1 on page 95).

Fortran

Binding

If the bind clause is present on the construct, the binding region is determined by binding.
Specifically, if binding is teams and there exists an innermost enclosing teams region then the
binding region is that teams region; if binding is parallel then the binding region is the
innermost enclosing parallel region, which may be an implicit parallel region; and if binding is
thread then the binding region is not defined. If the bind clause is not present on the construct
and the 1loop construct is closely nested inside a teams or parallel construct, the binding
region is the corresponding teams or parallel region. If none of those conditions hold, the
binding region is not defined.

If the binding region is a teams region, then the binding thread set is the set of master threads that
are executing that region. If the binding region is a parallel region, then the binding thread set is the
team of threads that are executing that region. If the binding region is not defined, then the binding
thread set is the encountering thread.

CHAPTER 2. DIRECTIVES 129

—_

oNOoO O WN

11
12
13
14
15

16
17
18
19
20

21
22

23
24
25

26
27

28
29
30

31
32

33
34

35
36

130

Description

The loop construct is associated with a loop nest that consists of one or more loops that follow the
directive. The directive asserts that the iterations may execute in any order, including concurrently.

The collapse clause may be used to specify how many loops are associated with the 1oop
construct. The parameter of the collapse clause must be a constant positive integer expression.
If a collapse clause is specified with a parameter value greater than 1, then the iterations of the
associated loops to which the clause applies are collapsed into one larger iteration space with
unspecified ordering. If no collapse clause is present or its parameter is 1, the only loop that is
associated with the Loop construct is the one that immediately follows the 1oop directive.

If more than one loop is associated with the 1oop construct then the number of times that any
intervening code between any two associated loops will be executed is unspecified but will be at
least once per iteration of the loop enclosing the intervening code and at most once per iteration of
the innermost loop associated with the construct. If the iteration count of any loop that is associated
with the 1oop construct is zero and that loop does not enclose the intervening code, the behavior is
unspecified.

The iteration space of the associated loops correspond to logical iterations numbered 0,1,...,N-1
where N is the number of loop iterations, and the logical numbering denotes the sequence in which
the iterations would be executed if a set of associated loop(s) were executed sequentially. At the
beginning of each logical iteration, the loop iteration variable of each associated loop has the value
that it would have if the set of the associated loop(s) were executed sequentially.

Each logical iteration is executed once per instance of the loop region that is encountered by the
binding thread set.

If the order (concurrent) clause appears on the 1oop construct, the iterations of the
associated loops may execute in any order, including concurrently. If the order clause is not
present, the behavior is as if the order (concurrent) clause appeared on the construct.

The set of threads that may execute the iterations of the Loop region is the binding thread set. Each
iteration is executed by one thread from this set.

If the 1loop region binds to a teams region, the threads in the binding thread set may continue
execution after the 1oop region without waiting for all iterations of the associated loop(s) to
complete. The iterations are guaranteed to complete before the end of the teams region.

If the 1oop region does not bind to a teams region, all iterations of the associated loop(s) must
complete before the encountering thread(s) continue execution after the 1oop region.

Restrictions
Restrictions to the Loop construct are as follows:

o If the collapse clause is specified then there may be no intervening OpenMP directives
between the associated loops.

OpenMP API — Version 5.0 November 2018

- O o © N O o~ w N =

a4 a4 a4 o
A~ W

- -
© o O

—_
©

NN
- O

22

23
24

25
26
27
28
29

At most one collapse clause can appear on a loop directive.

A list item may not appear in a lastprivate clause unless it is the loop iteration variable of a
loop that is associated with the construct.

If a 1oop construct is not nested inside another OpenMP construct and it appears in a procedure,
the bind clause must be present.

If a loop region binds to a teams or parallel region, it must be encountered by all threads in
the binding thread set or by none of them.

If the bind clause is present and binding is teams, the loop region corresponding to the
loop construct must be strictly nested inside a teams region.

If the bind clause is present and binding is parallel, the behavior is unspecified if the loop
region corresponding to a Loop construct is closely nested inside a simd region.

The only constructs that may be nested inside a 1oop region are the 1oop construct, the
parallel construct, the simd construct, and combined constructs for which the first construct
is a parallel construct.

A loop region corresponding to a 1loop construct may not contain calls to procedures that
contain OpenMP directives.

A loop region corresponding to a 1oop construct may not contain calls to the OpenMP
Runtime API.

If a threadprivate variable is referenced inside a 1oop region, the behavior is unspecified.

C/C++

The associated for-loops must be structured blocks.

No statement can branch to any associated £or statement.

C/C++

Fortran
The associated do-loops must be structured blocks.
No statement in the associated loops other than the DO statements can cause a branch out of the
loops.

Fortran

Cross References

The single construct, see Section 2.8.2 on page 8§9.
The Worksharing-Loop construct, see Section 2.9.2 on page 101.
SIMD directives, see Section 2.9.3 on page 110.

distribute construct, see Section 2.9.4.1 on page 120.

CHAPTER 2. DIRECTIVES 131

13

14
15

16

17

18
19
20
21
22
23
24

25

26
27

28
29

2.9.6

132

scan Directive

Summary

The scan directive specifies that scan computations update the list items on each iteration.

Syntax
C/C++
The syntax of the scan directive is as follows:

loop-associated-directive
for-loop-headers

{
structured-block
#pragma omp scan clause new-line
structured-block

}

where clause is one of the following:

inclusive (list)

exclusive (list)

and where loop-associated-directive is a for, for simd, or simd directive.

C/C++
Fortran
The syntax of the scan directive is as follows:

loop-associated-directive

do-loop-headers
structured-block
!Somp scan clause
structured-block

do-termination-stmts(s)

[end-loop-associated-directive |

where clause is one of the following:
inclusive (list)

exclusive (list)

and where loop-associated-directive (end-loop-associated-directive) is a do (end do), do simd
(end do simd), or simd (end simd) directive.

Fortran

OpenMP API — Version 5.0 November 2018

Description

The scan directive may appear in the body of a loop or loop nest associated with an enclosing
worksharing-loop, worksharing-loop SIMD, or simd construct, to specify that a scan computation
updates each list item on each loop iteration. The directive specifies that either an inclusive scan
computation is to be performed for each list item that appears in an inclusive clause on the
directive, or an exclusive scan computation is to be performed for each list item that appears in an
exclusive clause on the directive. For each list item for which a scan computation is specified,
statements that lexically precede or follow the directive constitute one of two phases for a given
logical iteration of the loop — an input phase or a scan phase.

If the list item appears in an inclusive clause, all statements in the structured block that
lexically precede the directive constitute the input phase and all statements in the structured block
that lexically follow the directive constitute the scan phase. If the list item appears in an
exclusive clause and the iteration is not the last iteration, all statements in the structured block
that lexically precede the directive constitute the scan phase and all statements in the structured
block that lexically follow the directive constitute the input phase. If the list item appears in an
exclusive clause and the iteration is the last iteration, the iteration does not have an input phase
and all statements that lexically precede or follow the directive constitute the scan phase for the
iteration. The input phase contains all computations that update the list item in the iteration, and the
scan phase ensures that any statement that reads the list item uses the result of the scan computation
for that iteration.

The result of a scan computation for a given iteration is calculated according to the last generalized
prefix sum (PRESUM; .) applied over the sequence of values given by the original value of the list
item prior to the loop and all preceding updates to the list item in the logical iteration space of the

loop. The operation PRESUM, 45+ (0p, ay, ..., an) is defined for a given binary operator op and a
sequence of N values ay, ..., ay as follows:

o ifN=1,ay

o if N> 1, op(PRESUM; .t (0p, ay, ..., ag), PRESUM; 4t (0p, ar, ..., aN)), where

1<K+1=L<N.

At the beginning of the input phase of each iteration, the list item is initialized with the initializer
value of the reduction-identifier specified by the reduction clause on the innermost enclosing
construct. The update value of a list item is, for a given iteration, the value of the list item on
completion of its input phase.

Let orig-val be the value of the original list item on entry to the enclosing worksharing-loop,
worksharing-loop SIMD, or simd construct. Let combiner be the combiner for the
reduction-identifier specified by the reduction clause on the construct. And let ; be the update
value of a list item for iteration /. For list items appearing in an inclusive clause on the scan
directive, at the beginning of the scan phase for iteration I the list item is assigned the result of the
operation PRESUM; 5+ (combiner, orig-val, uy, ..., ug). For list items appearing in an
exclusive clause on the scan directive, at the beginning of the scan phase for iteration I = 0

CHAPTER 2. DIRECTIVES 133

N —

0o No o A~ W

11
12

13
14
15

16
17
18
19
20

134

the list item is assigned the value orig-val, and at the beginning of the scan phase for iteration I > 0
the list item is assigned the result of the operation PRESUM; 55+ (combiner, orig-val, ug, ..., uy).

Restrictions
Restrictions to the scan directive are as follows:

e Exactly one scan directive must appear in the loop body of an enclosing worksharing-loop,
worksharing-loop SIMD, or simd construct on which a reduction clause with the inscan
modifier is present.

o A list item that appears in the inclusive or exclusive clause must appear in a
reduction clause with the inscan modifier on the enclosing worksharing-loop,
worksharing-loop SIMD, or simd construct.

e Cross-iteration dependences across different logical iterations must not exist, except for
dependences for the list items specified in an inclusive or exclusive clause.

o Intra-iteration dependences from a statement in the structured block preceding a scan directive
to a statement in the structured block following a scan directive must not exist, except for
dependences for the list items specified in an inclusive or exclusive clause.

Cross References
o worksharing-loop construct, see Section 2.9.2 on page 101.

e simd construct, see Section 2.9.3.1 on page 110.

worksharing-loop SIMD construct, see Section 2.9.3.2 on page 114.

reduction clause, see Section 2.19.5.4 on page 300.

OpenMP API — Version 5.0 November 2018

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25

26

2.10
2.10.1

Tasking Constructs

task Construct

Summary

The task construct defines an explicit task.

Syntax
C/C++

The syntax of the task construct is as follows:
#pragma omp task [clause[[,] clause] ... | new-line
structured-block

where clause is one of the following:

if ([task :]scalar-expression)

final (scalar-expression)

untied

default (shared | none)
mergeable

private (list)

firstprivate (list)

shared (list)

in_reduction (reduction-identifier : list)
depend (/depend-modifier, | dependence-type : locator-list)
priority (priority-value)

allocate ([allocator :] list)

affinity (/aff-modifier : | locator-list)
detach (event-handle)

where aff-modifier is one of the following:
I iterator (iterators-definition)

where event-handle is a variable of the omp_event_handle_t type.

C/C++

CHAPTER 2. DIRECTIVES

135

20
21

22

23

24
25

136

Fortran
The syntax of the task construct is as follows:

'$omp task [clause[[,] clause] ... |
structured-block
!Somp end task

where clause is one of the following:

if ([task :]scalar-logical-expression)

final (scalar-logical-expression)

untied

default (private | firstprivate | shared | none)
mergeable

private (list)

firstprivate (list)

shared (/ist)

in_reduction (reduction-identifier : list)

depend ([depend-modifier, | dependence-type : locator-list)
priority (priority-value)

allocate ([allocator :] list)

affinity (/aff-modifier : | locator-list)

detach (event-handle)

where aff-modifier is one of the following:
I iterator (iterators-definition)

where event-handle is an integer variable of omp_event_handle_kind kind.
Fortran

Binding

The binding thread set of the task region is the current team. A task region binds to the
innermost enclosing parallel region.

OpenMP API — Version 5.0 November 2018

- 4 4 o -
NOoO O~ WD - O © © o0k, WON =

-
o o

NN
- O

NDNDNDDNDN
[e2 26 B SUNGS I \V)

W WwMNNDN
N = O © 0o N

w W
> @

W W ww
0 N O O

Description

The task construct is a task generating construct. When a thread encounters a task construct, an
explicit task is generated from the code for the associated structured-block. The data environment
of the task is created according to the data-sharing attribute clauses on the task construct, per-data
environment ICVs, and any defaults that apply. The data environment of the task is destroyed when
the execution code of the associated structured-block is completed.

The encountering thread may immediately execute the task, or defer its execution. In the latter case,
any thread in the team may be assigned the task. Completion of the task can be guaranteed using
task synchronization constructs. If a task construct is encountered during execution of an outer
task, the generated task region corresponding to this construct is not a part of the outer task
region unless the generated task is an included task.

If a detach clause is present on a task construct a new event allow-completion-event is created.
The allow-completion-event is connected to the completion of the associated task region. The
original event-handle will be updated to represent the allow-completion-event event before the task
data environment is created. The event-handle will be considered as if it was specified on a
firstprivate clause. The use of a variable in a detach clause expression of a task
construct causes an implicit reference to the variable in all enclosing constructs.

If no detach clause is present on a task construct the generated task is completed when the
execution of its associated structured-block is completed. If a detach clause is present on a task
construct the task is completed when the execution of its associated structured-block is completed
and the allow-completion-event is fulfilled.

When an if clause is present on a task construct, and the i £ clause expression evaluates to false,
an undeferred task is generated, and the encountering thread must suspend the current task region,
for which execution cannot be resumed until execution of the structured block that is associated
with the generated task is completed. The use of a variable in an if clause expression of a task
construct causes an implicit reference to the variable in all enclosing constructs.

When a £inal clause is present on a task construct and the £inal clause expression evaluates
to true, the generated task will be a final task. All task constructs encountered during execution of
a final task will generate final and included tasks. The use of a variable in a £inal clause
expression of a task construct causes an implicit reference to the variable in all enclosing
constructs. Encountering a task construct with the detach clause during the execution of a final
task results in unspecified behavior.

The if clause expression and the £inal clause expression are evaluated in the context outside of
the task construct, and no ordering of those evaluations is specified..

A thread that encounters a task scheduling point within the task region may temporarily suspend
the task region. By default, a task is tied and its suspended task region can only be resumed by
the thread that started its execution. If the untied clause is present on a task construct, any

thread in the team can resume the task region after a suspension. The untied clause is ignored

CHAPTER 2. DIRECTIVES 137

0 NOoO OO~ W N =

—_ 1 a
g~ wWOWN-—= O

_ a4
@© N o

NN =
- O ©

22

23
24

25
26
27
28

29

30
31

138

if a £inal clause is present on the same task construct and the £inal clause expression
evaluates to true, or if a task is an included task.

The task construct includes a task scheduling point in the task region of its generating task,
immediately following the generation of the explicit task. Each explicit task region includes a
task scheduling point at the end of its associated structured-block.

When the mergeable clause is present on a task construct, the generated task is a mergeable
task.

The priority clause is a hint for the priority of the generated task. The priority-value is a
non-negative integer expression that provides a hint for task execution order. Among all tasks ready
to be executed, higher priority tasks (those with a higher numerical value in the priority clause
expression) are recommended to execute before lower priority ones. The default priority-value
when no priority clause is specified is zero (the lowest priority). If a value is specified in the
priority clause that is higher than the max-task-priority-var ICV then the implementation will
use the value of that ICV. A program that relies on task execution order being determined by this
priority-value may have unspecified behavior.

The affinity clause is a hint to indicate data affinity of the generated task. The task is
recommended to execute closely to the location of the list items. A program that relies on the task
execution location being determined by this list may have unspecified behavior.

The list items that appear in the af£inity clause may reference iterators defined by an
iterators-definition appearing in the same clause. The list items that appear in the affinity
clause may include array sections.

C/C++

The list items that appear in the affinity clause may use shape-operators.
C/C++

If a list item appears in an af£inity clause then data affinity refers to the original list item.

v v
Note — When storage is shared by an explicit task region, the programmer must ensure, by
adding proper synchronization, that the storage does not reach the end of its lifetime before the

explicit task region completes its execution.
A A

Execution Model Events

The task-create event occurs when a thread encounters a construct that causes a new task to be
created. The event occurs after the task is initialized but before it begins execution or is deferred.

OpenMP API — Version 5.0 November 2018

a b~ wN

o ©W 0 N o

12
13
14

15
16

17
18

Tool Callbacks

A thread dispatches a registered ompt__callback_task_create callback for each occurrence
of a task-create event in the context of the encountering task. This callback has the type signature
ompt_callback_task_create_t and the flags argument indicates the task types shown in
Table 2.7.

TABLE 2.7: ompt_callback_task_create callback flags evaluation

Operation Evaluates to true

(flags & ompt_task_explicit) Always in the dispatched callback
(flags & ompt_task_undeferred) If the task is an undeferred task
(flags & ompt_task_final) If the task is a final task

(flags & ompt_task_untied) If the task is an untied task

(flags & ompt_task_mergeable) If the task is a mergeable task

(flags & ompt_task_merged) If the task is a merged task

Restrictions

Restrictions to the task construct are as follows:

A program that branches into or out of a task region is non-conforming.

A program must not depend on any ordering of the evaluations of the clauses of the task
directive, or on any side effects of the evaluations of the clauses.

At most one if clause can appear on the directive.

At most one £inal clause can appear on the directive.

At most one priority clause can appear on the directive.
At most one detach clause can appear on the directive.

If a detach clause appears on the directive, then a mergeable clause cannot appear on the
same directive.

C/C++

A throw executed inside a task region must cause execution to resume within the same task
region, and the same thread that threw the exception must catch it.

C/C++

CHAPTER 2. DIRECTIVES 139

o © 0o N o g B~ N o=

—_

11

12

13
14
15

16

17

18
19

20

21
22
23
24
25
26
27

2.10.2

140

Cross References

e Task scheduling constraints, see Section 2.10.6 on page 149.

e allocate clause, see Section 2.11.4 on page 158.

e if clause, see Section 2.15 on page 220.

e depend clause, see Section 2.17.11 on page 255.

e Data-sharing attribute clauses, Section 2.19.4 on page 282.

e default clause, see Section 2.19.4.1 on page 282.

e in_reduction clause, see Section 2.19.5.6 on page 303.

e omp_fulfill event, see Section 3.5.1 on page 396.

e ompt_callback task_create_t, see Section 4.5.2.7 on page 467.

taskloop Construct

Summary

The taskloop construct specifies that the iterations of one or more associated loops will be
executed in parallel using explicit tasks. The iterations are distributed across tasks generated by the
construct and scheduled to be executed.

Syntax
C/C++

The syntax of the taskloop construct is as follows:

#pragma omp taskloop [clause[[,] clause] ...] new-line
for-loops

where clause is one of the following:

if (/[taskloop :]scalar-expression)
shared (list)

private (list)

firstprivate (list)

lastprivate (list)

reduction ([default , Jreduction-identifier : list)

in_reduction (reduction-identifier : list)

OpenMP API — Version 5.0 November 2018

—_

o ©O©W 00 N O o b~ W DN

13

14
15
16

17

18
19
20
21
22
23
24
25
26
27
28
29
30

default (shared | none)
grainsize (grain-size)
num_tasks (num-tasks)
collapse (n)

final (scalar-expr)
priority (priority-value)
untied

mergeable

nogroup

allocate ([allocator :] list)

The taskloop directive places restrictions on the structure of all associated for-loops.
Specifically, all associated for-loops must have canonical loop form (see Section 2.9.1 on page 95).

C/C++
Fortran
The syntax of the taskloop construct is as follows:

'Somp taskloop [clause[[,] clause] ...]
do-loops
[!$omp end taskloop]

where clause is one of the following:

if ([taskloop :]scalar-logical-expression)
shared (list)

private (list)

firstprivate (list)

lastprivate (list)

reduction ([default , Jreduction-identifier : list)
in_reduction (reduction-identifier : list)
default (private | firstprivate | shared | none)
grainsize (grain-size)

num_tasks (num-tasks)

collapse (n)

final (scalar-logical-expr)

priority (priority-value)

CHAPTER 2. DIRECTIVES 141

A W N =

o ~N OO

10
11

12

13
14
15
16
17
18

19
20
21
22

23
24
25
26
27
28
29

30
31
32
33

142

untied
mergeable
nogroup

allocate ([allocator :] list)

If an end taskloop directive is not specified, an end taskloop directive is assumed at the end
of the do-loops.

The taskloop directive places restrictions on the structure of all associated do-loops.
Specifically, all associated do-loops must have canonical loop form (see Section 2.9.1 on page 95).

Fortran

Binding

The binding thread set of the taskloop region is the current team. A taskloop region binds to
the innermost enclosing parallel region.

Description

The taskloop construct is a task generating construct. When a thread encounters a taskloop
construct, the construct partitions the iterations of the associated loops into explicit tasks for
parallel execution. The data environment of each generated task is created according to the
data-sharing attribute clauses on the taskloop construct, per-data environment ICVs, and any
defaults that apply. The order of the creation of the loop tasks is unspecified. Programs that rely on
any execution order of the logical loop iterations are non-conforming.

By default, the taskloop construct executes as if it was enclosed in a taskgroup construct
with no statements or directives outside of the taskloop construct. Thus, the taskloop
construct creates an implicit taskgroup region. If the nogroup clause is present, no implicit
taskgroup region is created.

If a reduction clause is present on the taskloop construct, the behavior is as if a
task_reduction clause with the same reduction operator and list items was applied to the
implicit taskgroup construct enclosing the taskloop construct. The taskloop construct
executes as if each generated task was defined by a task construct on which an in_reduction
clause with the same reduction operator and list items is present. Thus, the generated tasks are
participants of the reduction defined by the task_reduction clause that was applied to the
implicit taskgroup construct.

If an in_reduction clause is present on the taskloop construct, the behavior is as if each
generated task was defined by a task construct on which an in_reduction clause with the
same reduction operator and list items is present. Thus, the generated tasks are participants of a
reduction previously defined by a reduction scoping clause.

OpenMP API — Version 5.0 November 2018

0 N O O A ODND =

-
o ©

- 4 a4 4 a4 o
© O N O~ WN =

NDNDMNDDND NN
o ON—=O

WNNDNDDN
o © 00N O

W w w
W NN =

W Ww
o b~

W w w
0 N O

If a grainsize clause is present on the taskloop construct, the number of logical loop
iterations assigned to each generated task is greater than or equal to the minimum of the value of
the grain-size expression and the number of logical loop iterations, but less than two times the value
of the grain-size expression.

The parameter of the grainsize clause must be a positive integer expression. If num_tasks is
specified, the taskloop construct creates as many tasks as the minimum of the num-tasks
expression and the number of logical loop iterations. Each task must have at least one logical loop
iteration. The parameter of the num_tasks clause must be a positive integer expression. If neither
a grainsize nor num_tasks clause is present, the number of loop tasks generated and the
number of logical loop iterations assigned to these tasks is implementation defined.

The collapse clause may be used to specify how many loops are associated with the taskloop
construct. The parameter of the collapse clause must be a constant positive integer expression.
If no collapse clause is present or its parameter is 1, the only loop that is associated with the
taskloop construct is the one that immediately follows the taskloop directive. If a
collapse clause is specified with a parameter value greater than 1 and more than one loop is
associated with the taskloop construct, then the iterations of all associated loops are collapsed
into one larger iteration space that is then divided according to the grainsize and num_tasks
clauses. The sequential execution of the iterations in all associated loops determines the order of
the iterations in the collapsed iteration space.

If more than one loop is associated with the taskloop construct then the number of times that
any intervening code between any two associated loops will be executed is unspecified but will be
at least once per iteration of the loop enclosing the intervening code and at most once per iteration
of the innermost loop associated with the construct. If the iteration count of any loop that is
associated with the taskloop construct is zero and that loop does not enclose intervening code,
the behavior is unspecified.

A taskloop loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop
iterations, and the logical numbering denotes the sequence in which the iterations would be
executed if the set of associated loop(s) were executed sequentially. At the beginning of each
logical iteration, the loop iteration variable of each associated loop has the value that it would have
if the set of the associated loop(s) were executed sequentially.

The iteration count for each associated loop is computed before entry to the outermost loop. If
execution of any associated loop changes any of the values used to compute any of the iteration
counts, then the behavior is unspecified.

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is
implementation defined.

When an if clause is present on a taskloop construct, and if the i £ clause expression evaluates
to false, undeferred tasks are generated. The use of a variable in an i £ clause expression of a
taskloop construct causes an implicit reference to the variable in all enclosing constructs.

CHAPTER 2. DIRECTIVES 143

O W 0 NOoO O ~AWOWN =

—_

12

13

14
15
16
17

18

19
20
21
22
23

24
25

26
27

144

When a £inal clause is present on a taskloop construct and the £inal clause expression
evaluates to frue, the generated tasks will be final tasks. The use of a variable in a £inal clause
expression of a taskloop construct causes an implicit reference to the variable in all enclosing
constructs.

When a priority clause is present on a taskloop construct, the generated tasks use the
priority-value as if it was specified for each individual task. If the priority clause is not
specified, tasks generated by the taskloop construct have the default task priority (zero).

If the untied clause is specified, all tasks generated by the taskloop construct are untied tasks.

When the mergeable clause is present on a taskloop construct, each generated task is a
mergeable task.

C++

For firstprivate variables of class type, the number of invocations of copy constructors to
perform the initialization is implementation-defined.

C++

v v
Note — When storage is shared by a taskloop region, the programmer must ensure, by adding
proper synchronization, that the storage does not reach the end of its lifetime before the taskloop

region and its descendant tasks complete their execution.
A A

Execution Model Events

The taskloop-begin event occurs after a task encounters a taskloop construct but before any
other events that may trigger as a consequence of executing the taskloop. Specifically, a
taskloop-begin event for a taskloop will precede the taskgroup-begin that occurs unless a
nogroup clause is present. Regardless of whether an implicit taskgroup is present, a
taskloop-begin will always precede any fask-create events for generated tasks.

The taskloop-end event occurs after a taskloop region finishes execution but before resuming
execution of the encountering task.

The taskloop-iteration-begin event occurs before an explicit task executes each iteration of a
taskloop.

OpenMP API — Version 5.0 November 2018

—_

© 0 (o2 I &) BEE NGO I \V)

_ a4
w N = O

_ -
(620 %

RGN
~N O

N = =
o © o

N N
N =

N DN
(2 NG) I

27
28
29
30
31

Tool Callbacks

A thread dispatches a registered ompt__callback_work callback for each occurrence of a
taskloop-begin and taskloop-end event in that thread. The callback occurs in the context of the
encountering task. The callback has type signature ompt_callback_work_t. The callback
receives ompt__scope_begin or ompt_scope_end as its endpoint argument, as appropriate,
and ompt_work_taskloop as its wstype argument.

A thread dispatches a registered ompt__callback_dispatch callback for each occurrence of a
taskloop-iteration-begin event in that thread. The callback occurs in the context of the encountering
task. The callback has type signature ompt_callback_dispatch t.

Restrictions

The restrictions of the taskloop construct are as follows:

e A program that branches into or out of a taskloop region is non-conforming.
e No OpenMP directive may appear in the region between any associated loops.

e If a collapse clause is specified, exactly one loop must occur in the region at each nesting
level up to the number of loops specified by the parameter of the collapse clause.

e If a reduction clause is present on the taskloop directive, the nogroup clause must not
be specified.

o The same list item cannot appear in both a reduction and an in_reduction clause.
e At most one grainsize clause can appear on a taskloop directive.
e At most one num_tasks clause can appear on a taskloop directive.

e The grainsize clause and num_tasks clause are mutually exclusive and may not appear on
the same taskloop directive.

e At most one collapse clause can appear on a taskloop directive.
e At most one if clause can appear on the directive.
e At most one £inal clause can appear on the directive.

e At most one priority clause can appear on the directive.

Cross References
e task construct, Section 2.10.1 on page 135.

e if clause, see Section 2.15 on page 220.

taskgroup construct, Section 2.17.6 on page 232.

Data-sharing attribute clauses, Section 2.19.4 on page 282.

CHAPTER 2. DIRECTIVES 145

—_

a A~ W N

(o]

11

12

13
14

15
16

17
18

19
20

21
22

23
24

2.10.3

146

e default clause, see Section 2.19.4.1 on page 282.

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.
e ompt_work_ taskloop, see Section 4.4.4.15 on page 445.

e ompt_callback_work_t, see Section 4.5.2.5 on page 464.

e ompt_callback_dispatch_t, see Section 4.5.2.6 on page 465.

taskloop simd Construct

Summary

The taskloop simd construct specifies a loop that can be executed concurrently using SIMD
instructions and that those iterations will also be executed in parallel using explicit tasks. The
taskloop simd construct is a composite construct.

Syntax
C/C++
The syntax of the taskloop simd construct is as follows:
#pragma omp taskloop simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the taskloop or simd directives with
identical meanings and restrictions.

C/C++
Fortran
The syntax of the taskloop simd construct is as follows:

!'Somp taskloop simd [clause[[,] clause] ...]
do-loops
[!'$omp end taskloop simd]

where clause can be any of the clauses accepted by the taskloop or simd directives with
identical meanings and restrictions.

If an end taskloop simd directive is not specified, an end taskloop simd directive is
assumed at the end of the do-loops.

Fortran

OpenMP API — Version 5.0 November 2018

w

O © oo ~NOoO O M~

11
12

13
14

15
16
17

18
19
20
21

22

23

24
25

2.10.4

Binding

The binding thread set of the taskloop simd region is the current team. A taskloop simd
region binds to the innermost enclosing parallel region.

Description

The taskloop simd construct will first distribute the iterations of the associated loop(s) across
tasks in a manner consistent with any clauses that apply to the taskloop construct. The resulting
tasks will then be converted to a SIMD loop in a manner consistent with any clauses that apply to
the simd construct, except for the collapse clause. For the purposes of each task’s conversion to
a SIMD loop, the collapse clause is ignored and the effect of any in_reduction clause is as
if a reduction clause with the same reduction operator and list items is present on the construct.

Execution Model Events

This composite construct generates the same events as the taskloop construct.

Tool Callbacks

This composite construct dispatches the same callbacks as the taskloop construct.

Restrictions
e The restrictions for the taskloop and simd constructs apply.

e The conditional modifier may not appear in a lastprivate clause.

Cross References
e simd construct, see Section 2.9.3.1 on page 110.
e taskloop construct, see Section 2.10.2 on page 140.

e Data-sharing attribute clauses, see Section 2.19.4 on page 282.

taskyield Construct

Summary

The taskyield construct specifies that the current task can be suspended in favor of execution of
a different task. The taskyield construct is a stand-alone directive.

CHAPTER 2. DIRECTIVES 147

w

(&)

11
12

13

14
15

16
17

18
19

20
21

22
23

2.10.5

148

Syntax
C/C++

The syntax of the taskyield construct is as follows:
| #pragma omp taskyield new-line
C/C++
Fortran
The syntax of the taskyield construct is as follows:
I !$Somp taskyield
Fortran

Binding
A taskyield region binds to the current task region. The binding thread set of the taskyield
region is the current team.

Description

The taskyield region includes an explicit task scheduling point in the current task region.

Cross References

o Task scheduling, see Section 2.10.6 on page 149.

Initial Task

Execution Model Events
No events are associated with the implicit parallel region in each initial thread.

The initial-thread-begin event occurs in an initial thread after the OpenMP runtime invokes the tool
initializer but before the initial thread begins to execute the first OpenMP region in the initial task.

The initial-task-begin event occurs after an initial-thread-begin event but before the first OpenMP
region in the initial task begins to execute.

The initial-task-end event occurs before an initial-thread-end event but after the last OpenMP
region in the initial task finishes to execute.

The initial-thread-end event occurs as the final event in an initial thread at the end of an initial task
immediately prior to invocation of the tool finalizer.

OpenMP API — Version 5.0 November 2018

18
19
20
21
22
23
24
25

26

27
28
29

30
31

2.10.6

Tool Callbacks

A thread dispatches a registered ompt_callback_thread_begin callback for the
initial-thread-begin event in an initial thread. The callback occurs in the context of the initial
thread. The callback has type signature ompt_callback_thread_begin_t. The callback
receives ompt_thread_initial as its thread_type argument.

A thread dispatches a registered ompt_callback_implicit_task callback with
ompt_scope_begin as its endpoint argument for each occurrence of an initial-task-begin in
that thread. Similarly, a thread dispatches a registered ompt_callback_implicit_task
callback with ompt_ scope_end as its endpoint argument for each occurrence of an
initial-task-end event in that thread. The callbacks occur in the context of the initial task and have
type signature ompt_callback_implicit_task_t. In the dispatched callback,

(flag & ompt_task_initial) always evaluates to frue.

A thread dispatches a registered ompt_callback_thread_end callback for the
initial-thread-end event in that thread. The callback occurs in the context of the thread. The
callback has type signature ompt_callback_thread_end_t. The implicit parallel region
does not dispatch a ompt__callback_parallel_end callback; however, the implicit parallel
region can be finalized within this ompt__callback_thread_end callback.

Cross References

e ompt_thread_initial, see Section 4.4.4.10 on page 443.

e ompt_task_initial, see Section 4.4.4.18 on page 446.

e ompt_callback_thread begin_t, see Section 4.5.2.1 on page 459.

e ompt_callback thread end t, see Section 4.5.2.2 on page 460.

e ompt_callback_parallel_begin_t, see Section 4.5.2.3 on page 461.
e ompt_callback_parallel_end_t, see Section 4.5.2.4 on page 463.

e ompt_callback implicit_task_t, see Section 4.5.2.11 on page 471.

Task Scheduling

Whenever a thread reaches a task scheduling point, the implementation may cause it to perform a
task switch, beginning or resuming execution of a different task bound to the current team. Task
scheduling points are implied at the following locations:

e during the generation of an explicit task;

e the point immediately following the generation of an explicit task;

CHAPTER 2. DIRECTIVES 149

o © 0o N o g H~ N =

- a4 a4 a4
L R S

_
[e)INé)}

N N N = a4
N = O © o N

NN NN
o Ok~ W

*]
3

N N
©

150

When a thread encounters a task scheduling point it may do one of the following, subject to the

after the point of completion of the structured block associated with a task;
in a taskyield region;

in a taskwait region;

at the end of a taskgroup region;

in an implicit barrier region;

in an explicit barrier region;

during the generation of a target region;

the point immediately following the generation of a target region;
at the beginning and end of a target data region;

in a target update region;

in a target enter data region;

in a target exit data region;

in the omp_target_memcpy routine;

in the omp_target_memcpy rect routine;

Task Scheduling Constraints (below):

If more than one of the above choices is available, it is unspecified as to which will be chosen.

begin execution of a tied task bound to the current team;

resume any suspended task region, bound to the current team, to which it is tied;

begin execution of an untied task bound to the current team; or

resume any suspended untied task region bound to the current team.

Task Scheduling Constraints are as follows:

1.

Scheduling of new tied tasks is constrained by the set of task regions that are currently tied to the
thread and that are not suspended in a barrier region. If this set is empty, any new tied task may
be scheduled. Otherwise, a new tied task may be scheduled only if it is a descendent task of

every task in the set.

. A dependent task shall not start its execution until its task dependences are fulfilled.

. A task shall not be scheduled while any task with which it is mutually exclusive has been

scheduled, but has not yet completed.

OpenMP API — Version 5.0 November 2018

- a -
L B \V] - O OWoOoO~NOO OO A WON-=

- 4 a a o
© 00 N O O

DN NN
W N = O

24

25
26

27

28
29
30
31
32
33

34
35

4. When an explicit task is generated by a construct containing an i £ clause for which the
expression evaluated to false, and the previous constraints are already met, the task is executed
immediately after generation of the task.

A program relying on any other assumption about task scheduling is non-conforming.

v v
Note — Task scheduling points dynamically divide task regions into parts. Each part is executed
uninterrupted from start to end. Different parts of the same task region are executed in the order in
which they are encountered. In the absence of task synchronization constructs, the order in which a
thread executes parts of different schedulable tasks is unspecified.

A program must behave correctly and consistently with all conceivable scheduling sequences that
are compatible with the rules above.

For example, if threadprivate storage is accessed (explicitly in the source code or implicitly
in calls to library routines) in one part of a task region, its value cannot be assumed to be preserved
into the next part of the same task region if another schedulable task exists that modifies it.

As another example, if a lock acquire and release happen in different parts of a task region, no
attempt should be made to acquire the same lock in any part of another task that the executing
thread may schedule. Otherwise, a deadlock is possible. A similar situation can occur when a
critical region spans multiple parts of a task and another schedulable task contains a
critical region with the same name.

The use of threadprivate variables and the use of locks or critical sections in an explicit task with an
if clause must take into account that when the i £ clause evaluates to false, the task is executed

immediately, without regard to Task Scheduling Constraint 2.
A A

Execution Model Events

The task-schedule event occurs in a thread when the thread switches tasks at a task scheduling
point; no event occurs when switching to or from a merged task.

Tool Callbacks

A thread dispatches a registered ompt_callback_task_schedule callback for each
occurrence of a task-schedule event in the context of the task that begins or resumes. This callback
has the type signature ompt_callback_task_schedule_t. The argument prior_task_status
is used to indicate the cause for suspending the prior task. This cause may be the completion of the
prior task region, the encountering of a taskyield construct, or the encountering of an active
cancellation point.

Cross References

e ompt_callback task_schedule_t, see Section 4.5.2.10 on page 470.

CHAPTER 2. DIRECTIVES 151

1 2.11
2 2111

o O W

10
11
12

13
14

15

16
17
18
19
20

2.11.2

152

Memory Management Directives

Memory Spaces

OpenMP memory spaces represent storage resources where variables can be stored and retrieved.
Table 2.8 shows the list of predefined memory spaces. The selection of a given memory space
expresses an intent to use storage with certain traits for the allocations. The actual storage resources
that each memory space represents are implementation defined.

TABLE 2.8: Predefined Memory Spaces

Memory space name Storage selection intent
omp_default_mem_space Represents the system default storage.
omp_large cap_mem_ space Represents storage with large capacity.
omp_const_mem_space Represents storage optimized for variables with

constant values. The result of writing to this storage
is unspecified.

omp_high_bw_mem_space Represents storage with high bandwidth.
omp_low_lat_mem_ space Represents storage with low latency.
v v

Note — For variables allocated in the omp_const_mem_space memory space OpenMP
supports initializing constant memory either by means of the £irstprivate clause or through
initialization with compile time constants for static and constant variables. Implementation-defined

mechanisms to provide the constant value of these variables may also be supported.
A A

Cross References

e omp_init_allocator routine, see Section 3.7.2 on page 409.

Memory Allocators

OpenMP memory allocators can be used by a program to make allocation requests. When a
memory allocator receives a request to allocate storage of a certain size, an allocation of logically
consecutive memory in the resources of its associated memory space of at least the size that was
requested will be returned if possible. This allocation will not overlap with any other existing
allocation from an OpenMP memory allocator.

OpenMP API — Version 5.0 November 2018

—_

- O o o N O o >

a4 a4 a4 o
A~ W N

-
N O O

-
O 0o

N
o

The behavior of the allocation process can be affected by the allocator traits that the user specifies.
Table 2.9 shows the allowed allocators traits, their possible values and the default value of each trait.

TABLE 2.9: Allocator Traits

Allocator trait

Allowed values

Default value

sync_hint

alignment

access

pool_size

fallback

fb_data
pinned

partition

contended, uncontended,
serialized, private

A positive integer value that is a power of
2

all, cgroup, pteam, thread

Positive integer value

default_mem fb, null fb,
abort_ fb,allocator fb

an allocator handle
true, false

environment, nearest, blocked,
interleaved

contended

1 byte

all

Implementation
defined

default_mem_ fb

(none)
false

environment

The sync_hint trait describes the expected manner in which multiple threads may use the
allocator. The values and their description are:

e contended: high contention is expected on the allocator; that is, many threads are expected to
request allocations simultaneously.

e uncontended: low contention is expected on the allocator; that is, few threads are expected to
request allocations simultaneously.

e serialized: only one thread at a time will request allocations with the allocator. Requesting
two allocations simultaneously when specifying serialized results in unspecified behavior.

e private: the same thread will request allocations with the allocator every time. Requesting an
allocation from different threads, simultaneously or not, when specifying private results in

unspecified behavior.

Allocated memory will be byte aligned to at least the value specified for the alignment trait of
the allocator. Some directives and API routines can specify additional requirements on alignment
beyond those described in this section.

Memory allocated by allocators with the access trait defined to be all must be accessible by all
threads in the device where the allocation was requested. Memory allocated by allocators with the
access trait defined to be cgroup will be memory accessible by all threads in the same

CHAPTER 2. DIRECTIVES 153

ONOO O WN =

—_
N = O ©

N = — = o
O O oo ~NO O W

NDNDNDMNDMNDNDDNDND
ONOO O WD =

w N
o ©

W w w
W N =

w w
[N

w w
N O

w w
©

154

contention group as the thread that requested the allocation. Attempts to access the memory
returned by an allocator with the access trait defined to be cgroup from a thread that is not part
of the same contention group as the thread that allocated the memory result in unspecified behavior.
Memory allocated by allocators with the access trait defined to be pteam will be memory
accessible by all threads that bind to the same parallel region of the thread that requested the
allocation. Attempts to access the memory returned by an allocator with the access trait defined
to be pteam from a thread that does not bind to the same parallel region as the thread that
allocated the memory result in unspecified behavior. Memory allocated by allocator with the
access trait defined to be thread will be memory accessible by the thread that requested the
allocation. Attempts to access the memory returned by an allocator with the access trait defined
to be thread from a thread other than the one that allocated the memory result in unspecified
behavior.

The total amount of storage in bytes that an allocator can use is limited by the pool_size trait.
For allocators with the access trait defined to be all, this limit refers to allocations from all
threads that access the allocator. For allocators with the access trait defined to be egroup, this
limit refers to allocations from threads that access the allocator from the same contention group. For
allocators with the access trait defined to be pteam, this limit refers to allocations from threads
that access the allocator from the same parallel team. For allocators with the access trait defined
to be thread, this limit refers to allocations from each thread that access the allocator. Requests
that would result in using more storage than pool_size will not be fulfilled by the allocator.

The £allback trait specifies how the allocator behaves when it cannot fulfill an allocation
request. If the fallback trait is set to null_ £b, the allocator returns the value zero if it fails to
allocate the memory. If the fallback trait is set to abort_ £b, program execution will be
terminated if the allocation fails. If the £allback trait is set to allocator_£fb then when an
allocation fails the request will be delegated to the allocator specified in the £b_data trait. If the
fallback trait is set to default_mem f£b then when an allocation fails another allocation will
be tried in the omp_default_mem_space memory space, which assumes all allocator traits to
be set to their default values except for £allback trait which will be set to null_fb.

Allocators with the pinned trait defined to be true ensure that their allocations remain in the
same storage resource at the same location for their entire lifetime.

The partition trait describes the partitioning of allocated memory over the storage resources
represented by the memory space associated with the allocator. The partitioning will be done in
parts with a minimum size that is implementation defined. The values are:

e environment: the placement of allocated memory is determined by the execution
environment.

e nearest: allocated memory is placed in the storage resource that is nearest to the thread that
requests the allocation.

e blocked: allocated memory is partitioned into parts of approximately the same size with at
most one part per storage resource.

OpenMP API — Version 5.0 November 2018

(&) I~ @0) NN =

o

10
11
12
13
14
15

e interleaved: allocated memory parts are distributed in a round-robin fashion across the

storage resources.

Table 2.10 shows the list of predefined memory allocators and their associated memory spaces. The
predefined memory allocators have default values for their allocator traits unless otherwise

specified.

TABLE 2.10: Predefined Allocators

Allocator name Associated memory space

Non-default trait
values

omp_default_mem_alloc omp_default_mem_ space
omp_large_cap_mem _alloc omp_large_cap_mem_space
omp_const_mem alloc omp_const_mem_space
omp_high bw _mem_alloc omp_high bw_mem_ space

omp_low_lat_mem_alloc omp_low_lat_mem_ space

(none)
(none)
(none)
(none)

(none)

omp_cgroup_mem_alloc Implementation defined access:cgroup

omp_pteam_mem alloc Implementation defined access:pteam

omp_thread mem_alloc Implementation defined access:thread
Fortran

If any operation of the base language causes a reallocation of an array that is allocated with a
memory allocator then that memory allocator will be used to release the current memory and to

allocate the new memory.
Fortran

Cross References

e omp_init_allocator routine, see Section 3.7.2 on page 409.

e omp_destroy_allocator routine, see Section 3.7.3 on page 410.

omp_set_default_allocator routine, see Section 3.7.4 on page 411.

e omp_get_default_allocator routine, see Section 3.7.5 on page 412.

e OMP_ALLOCATOR environment variable, see Section 6.21 on page 618.

CHAPTER 2. DIRECTIVES 155

~

©

10

11
12

13

14
15
16
17

18
19

20

2.11.3 allocate Directive

Summary

The allocate directive specifies how a set of variables are allocated. The allocate directive
is a declarative directive if it is not associated with an allocation statement.

Syntax
C/C++
The syntax of the allocate directive is as follows:
I #pragma omp allocate (list) [clause] new-line

where clause is one of the following:

I allocator (allocator)

where allocator is an expression of omp_allocator_handle_t type.

C/C++

Fortran
The syntax of the allocate directive is as follows:

I 'Somp allocate (list) [clause]

or

!'Somp allocate/ (list) | clause
[!'$omp allocate (list) clause

[..1]

allocate statement

where clause is one of the following:

I allocator (allocator)

where allocator is an integer expression of omp_allocator_handle_kind kind.
Fortran

156 OpenMP API — Version 5.0 November 2018

—_

O @ NOoO O~ W

11
12
13

14
15

16

17
18

19
20

21

22
23
24

25
26

27
28

Description

If the directive is not associated with a statement, the storage for each list item that appears in the
directive will be provided by an allocation through a memory allocator. If no clause is specified
then the memory allocator specified by the def-allocator-var ICV will be used. If the allocator
clause is specified, the memory allocator specified in the clause will be used. The allocation of each
list item will be byte aligned to at least the alignment required by the base language for the type of
that list item.

The scope of this allocation is that of the list item in the base language. At the end of the scope for a
given list item the memory allocator used to allocate that list item deallocates the storage.

Fortran

If the directive is associated with an allocate statement, the same list items appearing in the
directive list and the allocate statement list are allocated with the memory allocator of the directive.
If no list items are specified then all variables listed in the allocate statement are allocated with the
memory allocator of the directive.

Fortran

For allocations that arise from this directive the null_ £b value of the fallback allocator trait will
behave as if the abort_ £b had been specified.

Restrictions

e A variable that is part of another variable (as an array or structure element) cannot appear in an
allocate directive.

e The allocate directive must appear in the same scope as the declarations of each of its list
items and must follow all such declarations.

e At most one allocator clause can appear on the allocate directive.

e allocate directives that appear in a target region must specify an allocator clause
unless a requires directive with the dynamic_allocators clause is present in the same
compilation unit.

C/C++

e If a list item has a static storage type, the allocator expression in the allocator clause must
be a constant expression that evaluates to one of the predefined memory allocator values.

e After a list item has been allocated, the scope that contains the allocate directive must not end
abnormally other than through C++ exceptions, such as through a call to the 1longjmp function.

C/C++

CHAPTER 2. DIRECTIVES 157

O ©Woo~N OO0 AW N =

—_

11
12
13

14
15

16

17

18
19

20

21
22

211.4

158

Fortran

e List items specified in the allocate directive must not have the ALLOCATABLE attribute
unless the directive is associated with an allocate statement.

e List items specified in an allocate directive that is associated with an allocate statement must
be variables that are allocated by the allocate statement.

e Multiple directives can only be associated with an allocate statement if list items are specified on
each allocate directive.

o If a list item has the SAVE attribute, is a common block name, or is declared in the scope of a
module, then only predefined memory allocator parameters can be used in the allocator
clause.

e A type parameter inquiry cannot appear in an allocate directive.
Fortran

Cross References
o def-allocator-var ICV, see Section 2.5.1 on page 64.
e Memory allocators, see Section 2.11.2 on page 152.

e omp_allocator_ handle_t and omp_allocator_ handle_kind, see Section 3.7.1 on
page 406.

allocate Clause

Summary

The allocate clause specifies the memory allocator to be used to obtain storage for private
variables of a directive.

Syntax

The syntax of the allocate clause is as follows:
I allocate ([allocator: | list)

OpenMP API — Version 5.0 November 2018

- O © oo NOoO O~ W

—_

12

13
14

15
16

17
18
19

20
21
22

23
24

C/C++

where allocator is an expression of the omp_allocator_handle_t type.

C/C++

Fortran
where allocator is an integer expression of the omp_allocator_handle_kind kind.
Fortran

Description

The storage for new list items that arise from list items that appear in the directive will be provided
through a memory allocator. If an allocator is specified in the clause, that allocator will be used for
allocations. For all directives except the target directive, if no allocator is specified in the clause
then the memory allocator that is specified by the def-allocator-var ICV will be used for the list
items that are specified in the allocate clause. The allocation of each list item will be byte
aligned to at least the alignment required by the base language for the type of that list item.

For allocations that arise from this clause the null_£b value of the fallback allocator trait will
behave as if the abort_ £b had been specified.

Restrictions

e For any list item that is specified in the allocate clause on a directive, a data-sharing attribute
clause that may create a private copy of that list item must be specified on the same directive.

e For task, taskloop or target directives, allocation requests to memory allocators with the
trait access set to thread result in unspecified behavior.

e allocate clauses that appear on a target construct or on constructs in a target region
must specify an allocator expression unless a requires directive with the
dynamic_allocators clause is present in the same compilation unit.

Cross References
o def-allocator-var ICV, see Section 2.5.1 on page 64.
e Memory allocators, see Section 2.11.2 on page 152.

e omp_allocator_handle_t and omp_allocator_ handle_kind, see Section 3.7.1 on
page 406.

CHAPTER 2. DIRECTIVES 159

1 2.12
2 2.12.1

- O ©W oo NO O~ W

—_

—_
w N

14

15
16
17

18
19
20

21
22
23

24
25
26

27

28
29

30
31

160

Device Directives

Device Initialization

Execution Model Events

The device-initialize event occurs in a thread that encounters the first target, target data, or
target enter data construct or a device memory routine that is associated with a particular
target device after the thread initiates initialization of OpenMP on the device and the device’s
OpenMP initialization, which may include device-side tool initialization, completes.

The device-load event for a code block for a target device occurs in some thread before any thread
executes code from that code block on that target device.

The device-unload event for a target device occurs in some thread whenever a code block is
unloaded from the device.

The device-finalize event for a target device that has been initialized occurs in some thread before
an OpenMP implementation shuts down.

Tool Callbacks

A thread dispatches a registered ompt_callback_device_initialize callback for each
occurrence of a device-initialize event in that thread. This callback has type signature
ompt_callback_device_initialize_t.

A thread dispatches a registered ompt_callback_device_load callback for each occurrence
of a device-load event in that thread. This callback has type signature
ompt_callback_device_ load t.

A thread dispatches a registered ompt_callback_device_unload callback for each
occurrence of a device-unload event in that thread. This callback has type signature
ompt_callback_device_unload_t.

A thread dispatches a registered ompt_callback_device_finalize callback for each
occurrence of a device-finalize event in that thread. This callback has type signature
ompt_callback_device_finalize_t.

Restrictions

No thread may offload execution of an OpenMP construct to a device until a dispatched
ompt_callback_device_initialize callback completes.

No thread may offload execution of an OpenMP construct to a device after a dispatched
ompt_callback_device_finalize callback occurs.

OpenMP API — Version 5.0 November 2018

a A~ W N

10

11
12

13

14
15
16
17
18

19

20
21
22

2.12.2

Cross References

e ompt_callback_device_load_t, see Section 4.5.2.21 on page 484.

e ompt_callback device_unload t, see Section 4.5.2.22 on page 486.

e ompt_callback_device_initialize_t, see Section 4.5.2.19 on page 482.

e ompt_callback_device_finalize_t, see Section 4.5.2.20 on page 484.

target data Construct

Summary

Map variables to a device data environment for the extent of the region.

Syntax
C/C++

The syntax of the target data construct is as follows:

#fpragma omp target data clause [[,] clause] ... | new-line
structured-block

where clause is one of the following:

if (/[target data :] scalar-expression)

device (integer-expression)

map ([[map-type-modifier[, | [map-type-modifier[, | ...] map-type : | locator-list)
use_device_ptr (ptr-list)

use_device_addr (list)

C/C++

Fortran
The syntax of the target data construct is as follows:

'Somp target data clause/ [[,] clause] ... |
structured-block
!Somp end target data

CHAPTER 2. DIRECTIVES

161

—_

D 00~ W N

10

11
12
13
14
15

16
17

18
19
20
21
22
23

24
25
26
27

28

29
30

31
32

162

where clause is one of the following:
if (/[target data :]scalar-logical-expression)
device (scalar-integer-expression)

map (/[map-type-modifier(, | [map-type-modifier(, | ...] map-type : | locator-list)
use_device_ptr (ptr-list)

use_device_addr (list)

Fortran

Binding

The binding task set for a target data region is the generating task. The target data region
binds to the region of the generating task.

Description

When a target data construct is encountered, the encountering task executes the region. If
there is no device clause, the default device is determined by the default-device-var ICV. When
an if clause is present and the i £ clause expression evaluates to false, the device is the host.
Variables are mapped for the extent of the region, according to any data-mapping attribute clauses,
from the data environment of the encountering task to the device data environment.

Pointers that appear in a use_device_ptr clause are privatized and the device pointers to the
corresponding list items in the device data environment are assigned into the private versions.

List items that appear in a use_device_addr clause have the address of the corresponding
object in the device data environment inside the construct. For objects, any reference to the value of
the object will be to the corresponding object on the device, while references to the address will
result in a valid device address that points to that object. Array sections privatize the base of the
array section and assign the private copy to the address of the corresponding array section in the
device data environment.

If one or more of the use_device_ptr or use_device_addr clauses and one or more map
clauses are present on the same construct, the address conversions of use_device_addr and
use_device_ptr clauses will occur as if performed after all variables are mapped according to
those map clauses.

Execution Model Events

The events associated with entering a target data region are the same events as associated with a
target enter data construct, described in Section 2.12.3 on page 164.

The events associated with exiting a target data region are the same events as associated with a
target exit data construct, described in Section 2.12.4 on page 166.

OpenMP API — Version 5.0 November 2018

OO0 A WN

10
11

12
13
14

15
16

17
18

19
20

21
22

23
24

25

26
27
28
29
30
31

Tool Callbacks

The tool callbacks dispatched when entering a target data region are the same as the tool callbacks
dispatched when encountering a target enter data construct, described in Section 2.12.3 on
page 164.

The tool callbacks dispatched when exiting a target data region are the same as the tool callbacks
dispatched when encountering a target exit data construct, described in Section 2.12.4 on page 166.

Restrictions

A program must not depend on any ordering of the evaluations of the clauses of the

target data directive, except as explicitly stated for map clauses relative to
use_device_ptr and use_device_addr clauses, or on any side effects of the evaluations
of the clauses.

At most one device clause can appear on the directive. The device clause expression must
evaluate to a non-negative integer value less than the value of omp_get_num_devices () or
to the value of omp_get_initial_ device().

At most one if clause can appear on the directive.
A map-type in a map clause must be to, from, tofromor alloc.

At least one map, use_device_addr or use_device_ptr clause must appear on the
directive.

A listitem in a use_device_ptr clause must hold the address of an object that has a
corresponding list item in the device data environment.

A listitem in a use_device_addr clause must have a corresponding list item in the device
data environment.

A list item that specifies a given variable may not appear in more than one use_device_ptr
clause.

A reference to a list item in a use_device_addr clause must be to the address of the list item.

Cross References

default-device-var, see Section 2.5 on page 63.

if Clause, see Section 2.15 on page 220.

map clause, see Section 2.19.7.1 on page 315.
omp_get_num_devices routine, see Section 3.2.36 on page 371.

ompt_callback_target_t, see Section 4.5.2.26 on page 490.

CHAPTER 2. DIRECTIVES 163

1 2.12.3 target enter data Construct

w

10
11
12
13

14
15

16

17
18
19
20
21

22

23
24
25

164

Summary

The target enter data directive specifies that variables are mapped to a device data
environment. The target enter data directive is a stand-alone directive.

Syntax
C/C++

The syntax of the target enter data construct is as follows:

I #pragma omp target enter data [clause[[,] clause]...] new-line

where clause is one of the following:

if (/[target enter data :] scalar-expression)

device (integer-expression)

map ([map-type-modifier[, | [map-type-modifier[, | ...] map-type: locator-list)
depend ([depend-modifier, | dependence-type : locator-list)

nowait

C/C++
Fortran
The syntax of the target enter data is as follows:
I 'Somp target enter data [clause[[,] clause]...]

where clause is one of the following:
if (/[target enter data :] scalar-logical-expression)
device (scalar-integer-expression)

map ([map-type-modifier[, | [map-type-modifier[, | ...] map-type: locator-list)
depend (/depend-modifier, | dependence-type : locator-list)

nowait

Fortran

Binding
The binding task set for a target enter data region is the generating task, which is the rarget

task generated by the target enter data construct. The target enter data region binds
to the corresponding target task region.

OpenMP API — Version 5.0 November 2018

—_

- -
w N - O © 00 N O® o~ ODN

_ -
o A~

- a
o N o

19

20
21

22
23

24

25
26
27

28
29
30
31
32
33

Description

When a target enter data construct is encountered, the list items are mapped to the device
data environment according to the map clause semantics.

The target enter data construct is a task generating construct. The generated task is a target
task. The generated task region encloses the target enter data region.

All clauses are evaluated when the target enter data construct is encountered. The data
environment of the rarget task is created according to the data-sharing attribute clauses on the
target enter data construct, per-data environment ICVs, and any default data-sharing
attribute rules that apply to the target enter data construct. A variable that is mapped in the
target enter data construct has a default data-sharing attribute of shared in the data
environment of the rarget task.

Assignment operations associated with mapping a variable (see Section 2.19.7.1 on page 315)
occur when the target task executes.

If the nowait clause is present, execution of the farget task may be deferred. If the nowait
clause is not present, the target rask is an included task.

If a depend clause is present, it is associated with the target task.
If no device clause is present, the default device is determined by the default-device-var ICV.

When an if clause is present and the i £ clause expression evaluates to false, the device is the host.

Execution Model Events

Events associated with a target task are the same as for the task construct defined in
Section 2.10.1 on page 135.

The target-enter-data-begin event occurs when a thread enters a target enter data region.

The target-enter-data-end event occurs when a thread exits a target enter data region.

Tool Callbacks

Callbacks associated with events for target tasks are the same as for the task construct defined in
Section 2.10.1 on page 135; (flags & ompt_task_target) always evaluates to frue in the
dispatched callback.

A thread dispatches a registered ompt_callback_target callback with
ompt_scope_begin as its endpoint argument and ompt_target_enter_data as its kind
argument for each occurrence of a rarget-enter-data-begin event in that thread in the context of the
target task on the host. Similarly, a thread dispatches a registered ompt_callback_target
callback with ompt_scope_end as its endpoint argument and ompt_target_enter_data
as its kind argument for each occurrence of a target-enter-data-end event in that thread in the

CHAPTER 2. DIRECTIVES 165

N —

O ©Woo~N O 0o~ W

13
14
15
16
17
18
19
20
21
22

23

24

25
26

2124

166

context of the target task on the host. These callbacks have type signature
ompt_callback_target_t.

Restrictions

e A program must not depend on any ordering of the evaluations of the clauses of the
target enter data directive, or on any side effects of the evaluations of the clauses.

e At least one map clause must appear on the directive.

e At most one device clause can appear on the directive. The device clause expression must
evaluate to a non-negative integer value less than the value of omp_get_num devices () or

to the value of omp_get_initial_ device().
e At most one if clause can appear on the directive.
o A map-type must be specified in all map clauses and must be either to or alloc.

e At most one nowait clause can appear on the directive.

Cross References

o default-device-var, see Section 2.5.1 on page 64.

e task, see Section 2.10.1 on page 135.

e task scheduling constraints, see Section 2.10.6 on page 149.
e target data, see Section 2.12.2 on page 161.

e target exit data, see Section 2.12.4 on page 166.

e if Clause, see Section 2.15 on page 220.

e map clause, see Section 2.19.7.1 on page 315.

e omp_get_num_devices routine, see Section 3.2.36 on page 371.

e ompt_callback_target_t, see Section 4.5.2.26 on page 490.

target exit data Construct

Summary

The target exit data directive specifies that list items are unmapped from a device data
environment. The target exit data directive is a stand-alone directive.

OpenMP API — Version 5.0 November 2018

w

N

© 00 N O O

10
11

12

13
14
15
16
17

18

19
20
21

Syntax
C/C++

The syntax of the target exit data construct is as follows:

I #pragma omp target exit data [clause[[,] clause]...] new-line

where clause is one of the following:

if (/[target exit data :]scalar-expression)

device (integer-expression)

map (/map-type-modifier[, | [map-type-modifier[, | ...] map-type : locator-list)
depend (/depend-modifier, | dependence-type : locator-list)

nowait

C/C++
Fortran
The syntax of the target exit data is as follows:

I 'Somp target exit data [clause/ [,] clause]...]

where clause is one of the following:

if (/[target exit data :]scalar-logical-expression)

device (scalar-integer-expression)

map ([/map-type-modifier[, | [map-type-modifier[,] ...] map-type: locator-list)
depend (/depend-modifier, | dependence-type : locator-list)

nowait

Fortran

Binding

The binding task set for a target exit data region is the generating task, which is the target
task generated by the target exit data construct. The target exit data region binds to

the corresponding farget task region.

CHAPTER 2. DIRECTIVES

167

—_

_
- O wWooONO®” O WN

- a4 4
a s~ WD

- a4
o N o

-
©

NN
- O

NN
w N

24

25
26
27

28
29
30
31
32
33
34

168

Description

When a target exit data construct is encountered, the list items in the map clauses are
unmapped from the device data environment according to the map clause semantics.

The target exit data construct is a task generating construct. The generated task is a rarget
task. The generated task region encloses the target exit data region.

All clauses are evaluated when the target exit data construct is encountered. The data
environment of the rarget task is created according to the data-sharing attribute clauses on the
target exit data construct, per-data environment ICVs, and any default data-sharing attribute
rules that apply to the target exit data construct. A variable that is mapped in the

target exit data construct has a default data-sharing attribute of shared in the data
environment of the rarget task.

Assignment operations associated with mapping a variable (see Section 2.19.7.1 on page 315)
occur when the target task executes.

If the nowait clause is present, execution of the farget task may be deferred. If the nowait
clause is not present, the target task is an included task.

If a depend clause is present, it is associated with the target task.
If no device clause is present, the default device is determined by the default-device-var ICV.

When an if clause is present and the i £ clause expression evaluates to false, the device is the host.

Execution Model Events

Events associated with a farget task are the same as for the task construct defined in
Section 2.10.1 on page 135.

The target-exit-data-begin event occurs when a thread enters a target exit data region.

The target-exit-data-end event occurs when a thread exits a target exit data region.

Tool Callbacks

Callbacks associated with events for farget tasks are the same as for the task construct defined in
Section 2.10.1 on page 135; (flags & ompt_task_target) always evaluates to true in the
dispatched callback.

A thread dispatches a registered ompt_callback_target callback with
ompt_scope_begin as its endpoint argument and ompt_target_exit_data as its kind
argument for each occurrence of a target-exit-data-begin event in that thread in the context of the
target task on the host. Similarly, a thread dispatches a registered ompt_callback_target
callback with ompt__scope_end as its endpoint argument and ompt_target_exit_data as
its kind argument for each occurrence of a farget-exit-data-end event in that thread in the context of
the target task on the host. These callbacks have type signature ompt_callback_ target_t.

OpenMP API — Version 5.0 November 2018

—_

W 00 NOoO O b WD

—_ .
—_

12
13
14
15
16
17
18
19
20
21

Restrictions

A program must not depend on any ordering of the evaluations of the clauses of the
target exit data directive, or on any side effects of the evaluations of the clauses.

At least one map clause must appear on the directive.

At most one device clause can appear on the directive. The device clause expression must
evaluate to a non-negative integer value less than the value of omp_get_num_devices () or
to the value of omp_get_initial_device().

At most one if clause can appear on the directive.

A map-type must be specified in all map clauses and must be either £rom, release, or
delete.

At most one nowait clause can appear on the directive.

Cross References

default-device-var, see Section 2.5.1 on page 64.

task, see Section 2.10.1 on page 135.

task scheduling constraints, see Section 2.10.6 on page 149.
target data, see Section 2.12.2 on page 161.

target enter data, see Section 2.12.3 on page 164.

if Clause, see Section 2.15 on page 220.

map clause, see Section 2.19.7.1 on page 315.
omp_get_num_devices routine, see Section 3.2.36 on page 371.

ompt_callback_target_t, see Section 4.5.2.26 on page 490.

CHAPTER 2. DIRECTIVES 169

1 2.12.5 target Construct

10
11
12
13
14
15
16
17
18
19
20
21

22

23
24

25
26

170

Summary

Map variables to a device data environment and execute the construct on that device.

Syntax

C/C++

The syntax of the target construct is as follows:

#pragma omp target [clause[[,] clause] ... | new-line

I structured-block

where clause is one of the following:

private (list)
firstprivate (list)
is_device_ptr (list)
nowait

allocate ([/allocator :] list)

if ([target :]scalar-expression)

in_reduction (reduction-identifier : list)

depend (/depend-modifier, | dependence-type :

and where device-modifier is one of the following:

ancestor

device_num

and where allocator is an identifier of omp_allocator_handle_t type and
allocator-traits-array is an identifier of const omp_alloctrait_t =* type.

OpenMP API — Version 5.0 November 2018

C/C++

device ([device-modifier : | integer-expression)

map ([[map-type-modifier(, | [map-type-modifier(, | ...] map-type: | locator-list)

defaultmap (implicit-behavior(:variable-category])

locator-list)

uses_allocators (allocator[(allocator-traits-array) |

[, allocator((allocator-traits-array) | ...])

19
20
21

22
23

24

25
26

Fortran
The syntax of the target construct is as follows:

'Somp target [clause[[,] clause]... |
structured-block
!Somp end target

where clause is one of the following:

if ([target :]scalar-logical-expression)

device (/[device-modifier :] scalar-integer-expression)
private (list)

firstprivate (list)

in_reduction (reduction-identifier : list)

map ([[map-type-modifier[, | [map-type-modifier([, | ...] map-type : | locator-list)
is_device_ptr (list)

defaultmap (implicit-behavior|:variable-category])
nowait

depend (/depend-modifier, | dependence-type : locator-list)
allocate ([allocator:]list)

uses_allocators (allocator[(allocator-traits-array) |

[, allocator[(allocator-traits-array) | ...])

and where device-modifier is one of the following:

ancestor

device_num

and where allocator is an integer expression of omp_allocator_handle_kind kind and
allocator-traits-array is an array of type (omp_alloctrait) type.

Fortran

Binding

The binding task set for a target region is the generating task, which is the farget task generated

by the target construct. The target region binds to the corresponding target task region.

CHAPTER 2. DIRECTIVES

171

172

Description

The target construct provides a superset of the functionality provided by the target data
directive, except for the use_device_ptr and use_device_addr clauses.

The functionality added to the target directive is the inclusion of an executable region to be
executed by a device. That is, the target directive is an executable directive.

The target construct is a task generating construct. The generated task is a target task. The
generated task region encloses the target region.

All clauses are evaluated when the target construct is encountered. The data environment of the
target task is created according to the data-sharing attribute clauses on the target construct,
per-data environment ICVs, and any default data-sharing attribute rules that apply to the target
construct. If a variable or part of a variable is mapped by the target construct and does not
appear as a list item in an in_reduction clause on the construct, the variable has a default
data-sharing attribute of shared in the data environment of the rarget task.

Assignment operations associated with mapping a variable (see Section 2.19.7.1 on page 315)
occur when the target task executes.

If a device clause in which the device_num device-modifier appears is present on the
construct, the device clause expression specifies the device number of the target device. If
device-modifier does not appear in the clause, the behavior of the clause is as if device-modifier is
device_ num.

If a device clause in which the ancestor device-modifier appears is present on the target
construct and the device clause expression evaluates to 1, execution of the target region occurs
on the parent device of the enclosing target region. If the target construct is not encountered
in a target region, the current device is treated as the parent device. The encountering thread
waits for completion of the target region on the parent device before resuming. For any list item
that appears in a map clause on the same construct, if the corresponding list item exists in the device
data environment of the parent device, it is treated as if it has a reference count of positive infinity.

If the nowait clause is present, execution of the target task may be deferred. If the nowait
clause is not present, the farget task is an included task.

If a depend clause is present, it is associated with the farget task.

When an if clause is present and the if clause expression evaluates to false, the target region
is executed by the host device in the host data environment.

The is_device_ptr clause is used to indicate that a list item is a device pointer already in the
device data environment and that it should be used directly. Support for device pointers created
outside of OpenMP, specifically outside of the omp_target_alloc routine and the
use_device_ptr clause, is implementation defined.

OpenMP API — Version 5.0 November 2018

O N O~ WON =

10
11

12
13
14

15
16
17
18

19

20
21

22
23

24
25

26
27

If a function (C, C++, Fortran) or subroutine (Fortran) is referenced in a target construct then
that function or subroutine is treated as if its name had appeared in a to clause on a
declare target directive.

Each memory allocator specified in the uses_allocators clause will be made available in the
target region. For each non-predefined allocator that is specified, a new allocator handle will be
associated with an allocator that is created with the specified traits as if by a call to
omp_init_allocator at the beginning of the target region. Each non-predefined allocator
will be destroyed as if by a call to omp_destroy_allocator at the end of the target region.

C/C++

If a list item in a map clause has a base pointer and it is a scalar variable with a predetermined
data-sharing attribute of firstprivate (see Section 2.19.1.1 on page 270), then on entry to the
target region:

o If the list item is not a zero-length array section, the corresponding private variable is initialized
such that the corresponding list item in the device data environment can be accessed through the
pointer in the target region.

o If the list item is a zero-length array section, the corresponding private variable is initialized such
that the corresponding storage location of the array section can be referenced through the pointer
in the target region. If the corresponding storage location is not present in the device data
environment, the corresponding private variable is initialized to NULL.

C/C++

Execution Model Events

Events associated with a target task are the same as for the task construct defined in
Section 2.10.1 on page 135.

Events associated with the initial task that executes the target region are defined in
Section 2.10.5 on page 148.

The target-begin event occurs when a thread enters a target region.
The target-end event occurs when a thread exits a target region.

The target-submit event occurs prior to creating an initial task on a target device for a target
region.

CHAPTER 2. DIRECTIVES 173

—_

- O OWooO~NOOT ~AWMN

—_

—_ a
A~ WON

15

16
17

18
19

20

21
22

23
24

25
26
27

28
29

30
31
32

33
34

174

Tool Callbacks

Callbacks associated with events for target tasks are the same as for the task construct defined in
Section 2.10.1 on page 135; (flags & ompt_task_target) always evaluates to true in the
dispatched callback.

A thread dispatches a registered ompt_callback_target callback with
ompt_scope_begin as its endpoint argument and ompt_target as its kind argument for
each occurrence of a target-begin event in that thread in the context of the target task on the host.
Similarly, a thread dispatches a registered ompt__callback_target callback with
ompt_scope_end as its endpoint argument and ompt_target as its kind argument for each
occurrence of a farget-end event in that thread in the context of the target task on the host. These
callbacks have type signature ompt_callback_target_t.

A thread dispatches a registered ompt_callback_target_submit callback for each
occurrence of a target-submit event in that thread. The callback has type signature
ompt_callback_target_submit_t.

Restrictions

e Ifa target update, target data, target enter data, or target exit data
construct is encountered during execution of a target region, the behavior is unspecified.

e The result of an omp_set_default_device, omp_get_default_device, or
omp_get_num_devices routine called within a target region is unspecified.

e The effect of an access to a threadprivate variable in a target region is unspecified.

e If a list item in a map clause is a structure element, any other element of that structure that is
referenced in the target construct must also appear as a list item in a map clause.

e A variable referenced in a target region but not the target construct that is not declared in
the target region must appear in a declare target directive.

e At most one defaultmap clause for each category can appear on the directive.
e At most one nowait clause can appear on the directive.
e A map-type in a map clause must be to, from, tofromor alloc.

e A list item that appears in an is_device_ptr clause must be a valid device pointer in the
device data environment.

e At most one device clause can appear on the directive. The device clause expression must
evaluate to a non-negative integer value less than the value of omp_get_num_devices () or
to the value of omp_get_initial_device().

e If a device clause in which the ancestor device-modifier appears is present on the
construct, then the following restrictions apply:

OpenMP API — Version 5.0 November 2018

- O © O (20N, A0 N =

_4 a4 a4 a4 a4 a4
o O W N

—_
©

N —
o ©

N
—

22

23
24

25
26

27
28

A requires directive with the reverse_offload clause must be specified;

— The device clause expression must evaluate to 1;

Only the device, firstprivate, private, defaultmap, and map clauses may
appear on the construct;

No OpenMP constructs or calls to OpenMP API runtime routines are allowed inside the
corresponding target region.

Memory allocators that do not appear in a uses_allocators clause cannot appear as an
allocator in an allocate clause or be used in the target region unless a requires
directive with the dynamic_allocators clause is present in the same compilation unit.

Memory allocators that appear in a uses_allocators clause cannot appear in other
data-sharing attribute clauses or data-mapping attribute clauses in the same construct.

Predefined allocators appearing in a uses_allocators clause cannot have traits specified.
Non-predefined allocators appearing in a uses_allocators clause must have traits specified.

Arrays that contain allocator traits that appear in a uses_allocators clause must be
constant arrays, have constant values and be defined in the same scope as the construct in which
the clause appears.

Any IEEE floating-point exception status flag, halting mode, or rounding mode set prior to a
target region is unspecified in the region.

Any IEEE floating-point exception status flag, halting mode, or rounding mode set in a target

region is unspecified upon exiting the region.

C/C++

An attached pointer must not be modified in a target region.

C/C++
C

A list item that appears in an is_device_ptr clause must have a type of pointer or array.

C
C++

A list item that appears in an is_device_ptr clause must have a type of pointer, array,
reference to pointer or reference to array.

The effect of invoking a virtual member function of an object on a device other than the device
on which the object was constructed is implementation defined.

A throw executed inside a target region must cause execution to resume within the same
target region, and the same thread that threw the exception must catch it.

C++

CHAPTER 2. DIRECTIVES 175

NOoO o W=

10
11
12
13
14
15
16
17
18
19
20
21
22

23

24

25
26
27

2.12.6

176

Fortran

e An attached pointer that is associated with a given pointer target must not become associated
with a different pointer target in a target region.

e A list item that appears in an is_device_ptr clause must be a dummy argument that does
not have the ALLOCATABLE, POINTER or VALUE attribute.

e If a list item in a map clause is an array section, and the array section is derived from a variable
with a POINTER or ALLOCATABLE attribute then the behavior is unspecified if the
corresponding list item’s variable is modified in the region.

Fortran

Cross References

o default-device-var, see Section 2.5 on page 63.

e task construct, see Section 2.10.1 on page 135.

e task scheduling constraints, see Section 2.10.6 on page 149

e Memory allocators, see Section 2.11.2 on page 152.

e target data construct, see Section 2.12.2 on page 161.

e if Clause, see Section 2.15 on page 220.

e private and firstprivate clauses, see Section 2.19.4 on page 282.

e Data-Mapping Attribute Rules and Clauses, see Section 2.19.7 on page 314.
e omp_get_num_devices routine, see Section 3.2.36 on page 371.

e omp_alloctrait_t and omp_alloctrait types, see Section 3.7.1 on page 406.
e omp_set_default_allocator routine, see Section 3.7.4 on page 411.
e omp_get_default_allocator routine, see Section 3.7.5 on page 412.
e ompt_callback_target_t, see Section 4.5.2.26 on page 490.

e ompt_callback target_submit_t, Section 4.5.2.28 on page 494.

target update Construct

Summary

The target update directive makes the corresponding list items in the device data environment

consistent with their original list items, according to the specified motion clauses. The
target update construct is a stand-alone directive.

OpenMP API — Version 5.0 November 2018

N

0 N O O

10
11

12
13

14

15
16
17
18

19

20
21

22

23
24
25

Syntax
C/C++

The syntax of the target update construct is as follows:

I #fpragma omp target update clausef [[,] clause] ... | new-line
where clause is either motion-clause or one of the following:

if (/[target update :]scalar-expression)
device (integer-expression)
nowait

depend (/depend-modifier, | dependence-type : locator-list)
and motion-clause is one of the following:

to ([mapper (mapper-identifier) : 1locator-list)
from ([mapper (mapper-identifier) : 1locator-list)
C/C++
Fortran
The syntax of the target update construct is as follows:
| !$omp target update clause/ [[,] clause] ...]

where clause is either motion-clause or one of the following:

if ([target update :] scalar-logical-expression)
device (scalar-integer-expression)
nowait

depend (/depend-modifier, | dependence-type : locator-list)

and motion-clause is one of the following:

to ([mapper (mapper-identifier) : 1locator-list)
from ([mapper (mapper-identifier) : 1locator-list)

Fortran

Binding

The binding task set for a target update region is the generating task, which is the target task

generated by the target update construct. The target update region binds to the

corresponding tfarget task region.

CHAPTER 2. DIRECTIVES

177

o o ~NOCOaR~AOND =

—_
—_

12
13

14
15

16
17

18
19

20

21
22

23
24

25

26
27

28
29

30

178

Description

For each list item in a to or £rom clause there is a corresponding list item and an original list item.
If the corresponding list item is not present in the device data environment then no assignment
occurs to or from the original list item. Otherwise, each corresponding list item in the device data
environment has an original list item in the current task’s data environment. If a mapper ()
modifier appears in a to clause, each list item is replaced with the list items that the given mapper
specifies are to be mapped with a to or tofrom map-type. If a mapper () modifier appears in a
from clause, each list item is replaced with the list items that the given mapper specifies are to be
mapped with a £rom or tofrom map-type.

For each list item in a £rom or a to clause:

e For each part of the list item that is an attached pointer:

C/C++

— On exit from the region that part of the original list item will have the value it had on entry to
the region;

— On exit from the region that part of the corresponding list item will have the value it had on
entry to the region;

C/C++
Fortran
— On exit from the region that part of the original list item, if associated, will be associated with
the same pointer target with which it was associated on entry to the region;
— On exit from the region that part of the corresponding list item, if associated, will be
associated with the same pointer target with which it was associated on entry to the region.
Fortran
e For each part of the list item that is not an attached pointer:

— If the clause is £rom, the value of that part of the corresponding list item is assigned to that
part of the original list item;

— If the clause is to, the value of that part of the original list item is assigned to that part of the
corresponding list item.

e To avoid data races:

— Concurrent reads or updates of any part of the original list item must be synchronized with the
update of the original list item that occurs as a result of the £rom clause;

— Concurrent reads or updates of any part of the corresponding list item must be synchronized
with the update of the corresponding list item that occurs as a result of the to clause.

C/C++

The list items that appear in the to or £rom clauses may use shape-operators.

C/C++

OpenMP API — Version 5.0 November 2018

0 N O O A W N =

-
o ©

-
nN =

—a a
A W

—_
o

- a
o0 N O

19

20
21

22
23

24

25
26
27

28
29
30
31
32
33
34

The list items that appear in the to or £rom clauses may include array sections with stride
expressions.

The target update construct is a task generating construct. The generated task is a target task.
The generated task region encloses the target update region.

All clauses are evaluated when the target update construct is encountered. The data
environment of the rarget task is created according to the data-sharing attribute clauses on the
target update construct, per-data environment ICVs, and any default data-sharing attribute
rules that apply to the target update construct. A variable that is mapped in the

target update construct has a default data-sharing attribute of shared in the data
environment of the rarget task.

Assignment operations associated with mapping a variable (see Section 2.19.7.1 on page 315)
occur when the farget task executes.

If the nowait clause is present, execution of the farget task may be deferred. If the nowait
clause is not present, the tfarget task is an included task.

If a depend clause is present, it is associated with the target task.

The device is specified in the device clause. If there is no device clause, the device is
determined by the default-device-var ICV. When an if clause is present and the i £ clause
expression evaluates to false then no assignments occur.

Execution Model Events

Events associated with a target task are the same as for the task construct defined in
Section 2.10.1 on page 135.

The target-update-begin event occurs when a thread enters a target update region.

The target-update-end event occurs when a thread exits a target update region.

Tool Callbacks

Callbacks associated with events for farget tasks are the same as for the task construct defined in
Section 2.10.1 on page 135; (flags & ompt_task_target) always evaluates to frue in the
dispatched callback.

A thread dispatches a registered ompt_callback_target callback with
ompt_scope_begin as its endpoint argument and ompt_target_update as its kind
argument for each occurrence of a target-update-begin event in that thread in the context of the
target task on the host. Similarly, a thread dispatches a registered ompt_callback_target
callback with ompt_ scope_end as its endpoint argument and ompt_target_update as its
kind argument for each occurrence of a target-update-end event in that thread in the context of the
target task on the host. These callbacks have type signature ompt_callback_target_t.

CHAPTER 2. DIRECTIVES 179

—_

-
O ©Woo~N O g B~ WD

—_
'y

12
13
14
15
16
17
18
19
20
21
22

23

24

25
26
27

2.12.7

180

Restrictions

e A program must not depend on any ordering of the evaluations of the clauses of the
target update directive, or on any side effects of the evaluations of the clauses.

e At least one motion-clause must be specified.
e A list item can only appear in a to or £rom clause, but not both.
e A listitem in a to or £rom clause must have a mappable type.

e At most one device clause can appear on the directive. The device clause expression must
evaluate to a non-negative integer value less than the value of omp_get_num_devices () or
to the value of omp_get_initial_device().

e At most one if clause can appear on the directive.

e At most one nowait clause can appear on the directive.

Cross References

e Array shaping, Section 2.1.4 on page 43

e Array sections, Section 2.1.5 on page 44

o default-device-var, see Section 2.5 on page 63.

e task construct, see Section 2.10.1 on page 135.

e task scheduling constraints, see Section 2.10.6 on page 149

e target data, see Section 2.12.2 on page 161.

e if Clause, see Section 2.15 on page 220.

e omp_get_num_devices routine, see Section 3.2.36 on page 371.

e ompt_callback_task_create_t, see Section 4.5.2.7 on page 467.

e ompt_callback_target_t, see Section 4.5.2.26 on page 490.

declare target Directive

Summary

The declare target directive specifies that variables, functions (C, C++ and Fortran), and
subroutines (Fortran) are mapped to a device. The declare target directive is a declarative
directive.

OpenMP API — Version 5.0 November 2018

a b~ W N

»

10
11
12
13

14
15

16
17
18

19
20
21

Syntax
C/C++

The syntax of the declare target directive takes either of the following forms:

#pragma omp declare target new-line
declaration-definition-seq
#fpragma omp end declare target new-line

or

I#pragma omp declare target (extended-list) new-line

or

I #fpragma omp declare target clause[[,] clause ... | new-line

where clause is one of the following:
to (extended-list)
link (list)
device_type (host | nohost | any)

C/C++

Fortran
The syntax of the declare target directive is as follows:

I !Somp declare target (extended-list)

or
I !Somp declare target [clause[[,] clause] ... |
where clause is one of the following:
to (extended-list)
link (list)
device_type (host | nohost | any)
Fortran

CHAPTER 2. DIRECTIVES

181

—_

© oo ~NOO OO ~AWOWN

11

12
13
14

15
16

17
18

19
20
21
22

23
24
25
26

182

Description

The declare target directive ensures that procedures and global variables can be executed or
accessed on a device. Variables are mapped for all device executions, or for specific device
executions through a 1ink clause.

If an extended-list is present with no clause then the to clause is assumed.

The device_type clause specifies if a version of the procedure should be made available on
host, device or both. If host is specified only a host version of the procedure is made available. If
nohost is specified then only a device version of the procedure is made available. If any is
specified then both device and host versions of the procedure are made available.

C/C++

If a function appears in a to clause in the same translation unit in which the definition of the
function occurs then a device-specific version of the function is created.

If a variable appears in a to clause in the same translation unit in which the definition of the
variable occurs then the original list item is allocated a corresponding list item in the device data
environment of all devices.

C/C++
Fortran

If an internal procedure appears in a to clause then a device-specific version of the procedure is
created.

If a variable that is host associated appears in a to clause then the original list item is allocated a
corresponding list item in the device data environment of all devices.

Fortran

If a variable appears in a to clause then the corresponding list item in the device data environment
of each device is initialized once, in the manner specified by the program, but at an unspecified
point in the program prior to the first reference to that list item. The list item is never removed from
those device data environments as if its reference count is initialized to positive infinity.

Including list items in a 1ink clause supports compilation of functions called in a target region
that refer to the list items. The list items are not mapped by the declare target directive.
Instead, they are mapped according to the data mapping rules described in Section 2.19.7 on

page 314.

OpenMP API — Version 5.0 November 2018

0o Nooohs~ wnNh =

-
N = O ©

-4 a4 a4
NOoO Ok~ W

18
19
20

21
22
23

24
25
26

27
28
29
30

31
32

C/C++

If a function is referenced in a function that appears as a list item in a to clause on a
declare target directive then the name of the referenced function is treated as if it had
appeared in a to clause on a declare target directive.

If a variable with static storage duration or a function (except lambda for C++) is referenced in the
initializer expression list of a variable with static storage duration that appears as a list item in a to
clause on a declare target directive then the name of the referenced variable or function is
treated as if it had appeared in a to clause on a declare target directive.

The form of the declare target directive that has no clauses and requires a matching

end declare target directive defines an implicit extended-list to an implicit to clause. The
implicit extended-list consists of the variable names of any variable declarations at file or
namespace scope that appear between the two directives and of the function names of any function
declarations at file, namespace or class scope that appear between the two directives.

The declaration-definition-seq defined by a declare target directive and an

end declare target directive may contain declare target directives. If a
device_type clause is present on the contained declare target directive, then its argument
determines which versions are made available. If a list item appears both in an implicit and explicit
list, the explicit list determines which versions are made available.

C/C++
Fortran

If a procedure is referenced in a procedure that appears as a list item in a to clause on a
declare target directive then the name of the procedure is treated as if it had appeared in a to
clause on a declare target directive.

If a declare target does not have any clauses then an implicit extended-list to an implicit to
clause of one item is formed from the name of the enclosing subroutine subprogram, function
subprogram or interface body to which it applies.

If a declare target directive has a device_type clause then any enclosed internal
procedures cannot contain any declare target directives. The enclosing device_type
clause implicitly applies to internal procedures.

Fortran

Restrictions

A threadprivate variable cannot appear in a declare target directive.

A variable declared in a declare target directive must have a mappable type.

The same list item must not appear multiple times in clauses on the same directive.

The same list item must not explicitly appear in both a to clause on one declare target
directive and a 1ink clause on another declare target directive.

CHAPTER 2. DIRECTIVES 183

a b~ w D=

oy O

11
12

13
14
15

16
17
18

19
20

21
22

23
24
25

26
27

28

29
30

31
32

184

C++

The function names of overloaded functions or template functions may only be specified within
an implicit extended-list.

If a lambda declaration and definition appears between a declare target directive and the
matching end declare target directive, all variables that are captured by the lambda
expression must also appear in a to clause.

C++

Fortran
If a list item is a procedure name, it must not be a generic name, procedure pointer or entry name.

Any declare target directive with clauses must appear in a specification part of a
subroutine subprogram, function subprogram, program or module.

Any declare target directive without clauses must appear in a specification part of a
subroutine subprogram, function subprogram or interface body to which it applies.

If a declare target directive is specified in an interface block for a procedure, it must match
a declare target directive in the definition of the procedure.

If an external procedure is a type-bound procedure of a derived type and a declare target
directive is specified in the definition of the external procedure, such a directive must appear in
the interface block that is accessible to the derived type definition.

If any procedure is declared via a procedure declaration statement that is not in the type-bound
procedure part of a derived-type definition, any declare target with the procedure name
must appear in the same specification part.

A variable that is part of another variable (as an array, structure element or type parameter
inquiry) cannot appear in a declare target directive.

The declare target directive must appear in the declaration section of a scoping unit in
which the common block or variable is declared.

If a declare target directive that specifies a common block name appears in one program
unit, then such a directive must also appear in every other program unit that contains a COMMON
statement that specifies the same name, after the last such COMMON statement in the program unit.

If a list item is declared with the BIND attribute, the corresponding C entities must also be
specified in a declare target directive in the C program.

A blank common block cannot appear in a declare target directive.

A variable can only appear in a declare target directive in the scope in which it is declared.
It must not be an element of a common block or appear in an EQUIVALENCE statement.

A variable that appears in a declare target directive must be declared in the Fortran scope
of a module or have the SAVE attribute, either explicitly or implicitly.

Fortran

OpenMP API — Version 5.0 November 2018

N

(oo} ~N O O

10

11
12

13

14

15
16

17
18

2.13

2.13.1

Cross References
e target data construct, see Section 2.12.2 on page 161.

e target construct, see Section 2.12.5 on page 170.

Combined Constructs

Combined constructs are shortcuts for specifying one construct immediately nested inside another
construct. The semantics of the combined constructs are identical to that of explicitly specifying
the first construct containing one instance of the second construct and no other statements.

For combined constructs, tool callbacks are invoked as if the constructs were explicitly nested.

Parallel Worksharing-Loop Construct

Summary

The parallel worksharing-loop construct is a shortcut for specifying a parallel construct
containing a worksharing-loop construct with one or more associated loops and no other statements.

Syntax
C/C++
The syntax of the parallel worksharing-loop construct is as follows:
#pragma omp parallel for [clause[[,] clause] ... | new-line

for-loops

where clause can be any of the clauses accepted by the parallel or for directives, except the
nowait clause, with identical meanings and restrictions.

C/C++

CHAPTER 2. DIRECTIVES 185

AN =

o ~N OO

10
11

12
13

14
15
16
17

18

19

20
21

2.13.2

186

Fortran
The syntax of the parallel worksharing-loop construct is as follows:

'Somp parallel do [clause[[,] clause] ...]
do-loops
[!'$omp end parallel doj

where clause can be any of the clauses accepted by the parallel or do directives, with identical
meanings and restrictions.

If an end parallel do directive is not specified, an end parallel do directive is assumed at
the end of the do-loops. nowait may not be specified on an end parallel do directive.

Fortran

Description

The semantics are identical to explicitly specifying a parallel directive immediately followed
by a worksharing-loop directive.

Restrictions

o The restrictions for the parallel construct and the worksharing-loop construct apply.

Cross References
e parallel construct, see Section 2.6 on page 74.
e Worksharing-loop construct, see Section 2.9.2 on page 101.

e Data attribute clauses, see Section 2.19.4 on page 282.

parallel loop Construct

Summary

The parallel loop construct is a shortcut for specifying a parallel construct containing a
loop construct with one or more associated loops and no other statements.

OpenMP API — Version 5.0 November 2018

© 0o

11
12

13
14
15

16

17
18

19
20

21
22
23
24

Syntax
C/C++

The syntax of the parallel loop construct is as follows:

#pragma omp parallel loop [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the parallel or loop directives, with
identical meanings and restrictions.

C/C++
Fortran
The syntax of the parallel loop construct is as follows:

'Somp parallel loop /[clause[[,] clause] ...]
do-loops
[!$omp end parallel loop]/

where clause can be any of the clauses accepted by the parallel or loop directives, with
identical meanings and restrictions.

If an end parallel loop directive is not specified, an end parallel loop directive is
assumed at the end of the do-loops. nowait may not be specified on an end parallel loop
directive.

Fortran

Description

The semantics are identical to explicitly specifying a parallel directive immediately followed
by a loop directive.

Restrictions

e The restrictions for the parallel construct and the loop construct apply.

Cross References
e parallel construct, see Section 2.6 on page 74.
e loop construct, see Section 2.9.5 on page 128.

e Data attribute clauses, see Section 2.19.4 on page 282.

CHAPTER 2. DIRECTIVES 187

1

w

17

18
19
20
21
22
23
24

25
26

27
28

2.13.3

188

parallel sections Construct

Summary

The parallel sections construct is a shortcut for specifying a parallel construct
containing a sections construct and no other statements.

Syntax
C/C++

The syntax of the parallel sections construct is as follows:

#pragma omp parallel sections [clause[[,] clause] ... | new-line
{
[#pragma omp section new-line]
structured-block
[#pragma omp section new-line
structured-block]

}
where clause can be any of the clauses accepted by the parallel or sections directives,
except the nowait clause, with identical meanings and restrictions.

C/C++
Fortran
The syntax of the parallel sections construct is as follows:
'Somp parallel sections [clause[[, | clause] ... |
[!'$omp section]
structured-block
[!'$omp section
structured-block]

!Somp end parallel sections

where clause can be any of the clauses accepted by the parallel or sections directives, with
identical meanings and restrictions.

The last section ends at the end parallel sections directive. nowait cannot be specified
on an end parallel sections directive.

Fortran

OpenMP API — Version 5.0 November 2018

N

()]

10
11
12

13

14

15
16

17

18

19
20
21

22
23
24

2.13.4

Description
C/C++

The semantics are identical to explicitly specifying a parallel directive immediately followed
by a sections directive.

C/C++
Fortran

The semantics are identical to explicitly specifying a parallel directive immediately followed
by a sections directive, and an end sections directive immediately followed by an
end parallel directive.

Fortran

Restrictions

The restrictions for the parallel construct and the sections construct apply.

Cross References
e parallel construct, see Section 2.6 on page 74.
e sections construct, see Section 2.8.1 on page 86.

e Data attribute clauses, see Section 2.19.4 on page 282.

Fortran
parallel workshare Construct

Summary

The parallel workshare construct is a shortcut for specifying a parallel construct
containing a workshare construct and no other statements.

Syntax

The syntax of the parallel workshare construct is as follows:

!Somp parallel workshare [clause[[,] clause] ... |
structured-block
!Somp end parallel workshare

where clause can be any of the clauses accepted by the parallel directive, with identical
meanings and restrictions. nowait may not be specified on an end parallel workshare
directive.

CHAPTER 2. DIRECTIVES 189

—_

A WOMN

()}

11

12

13
14

15

16

17
18

19
20

2.13.5

190

Description

The semantics are identical to explicitly specifying a parallel directive immediately followed
by a workshare directive, and an end workshare directive immediately followed by an
end parallel directive.

Restrictions

The restrictions for the parallel construct and the workshare construct apply.

Cross References
e parallel construct, see Section 2.6 on page 74.
e workshare construct, see Section 2.8.3 on page 92.

e Data attribute clauses, see Section 2.19.4 on page 282.
Fortran

Parallel Worksharing-Loop SIMD Construct

Summary

The parallel worksharing-loop SIMD construct is a shortcut for specifying a parallel construct
containing a worksharing-loop SIMD construct and no other statements.

Syntax
C/C++

The syntax of the parallel worksharing-loop SIMD construct is as follows:

I #pragma omp parallel for simd [clause[[,] clause] ... | new-line

for-loops

where clause can be any of the clauses accepted by the parallel or for simd directives, except
the nowait clause, with identical meanings and restrictions.

C/C++

OpenMP API — Version 5.0 November 2018

A ON =

© 00 o O

10

11
12

13
14

15
16
17
18

19

20

21
22

2.13.6

Fortran
The syntax of the parallel worksharing-loop SIMD construct is as follows:

!Somp parallel do simd [clause[[,] clause] ... |
do-loops
[!$omp end parallel do simd/

where clause can be any of the clauses accepted by the parallel or do simd directives, with
identical meanings and restrictions.

If an end parallel do simd directive is not specified, an end parallel do simd directive
is assumed at the end of the do-loops. nowait may not be specified on an end parallel
do simd directive.

Fortran

Description

The semantics of the parallel worksharing-loop SIMD construct are identical to explicitly
specifying a parallel directive immediately followed by a worksharing-loop SIMD directive.

Restrictions

The restrictions for the parallel construct and the worksharing-loop SIMD construct apply.

Cross References
e parallel construct, see Section 2.6 on page 74.
e Worksharing-loop SIMD construct, see Section 2.9.3.2 on page 114.

e Data attribute clauses, see Section 2.19.4 on page 282.

parallel master Construct

Summary

The parallel master construct is a shortcut for specifying a parallel construct containing
amaster construct and no other statements.

CHAPTER 2. DIRECTIVES 191

11
12

13

14
15

16
17

18
19
20
21

22

23

24
25

2.13.7

192

Syntax
C/C++

The syntax of the parallel master construct is as follows:

#pragma omp parallel master [clause[[,] clause] ... | new-line
structured-block

where clause can be any of the clauses accepted by the parallel or master directives, with
identical meanings and restrictions.

C/C++
Fortran
The syntax of the parallel master construct is as follows:

!'Somp parallel master [clause[[,] clause] ... |
structured-block
!Somp end parallel master

where clause can be any of the clauses accepted by the parallel or master directives, with
identical meanings and restrictions.

Fortran

Description

The semantics are identical to explicitly specifying a parallel directive immediately followed
by a master directive.

Restrictions

The restrictions for the parallel construct and the master construct apply.

Cross References
e parallel construct, see Section 2.6 on page 74.
e master construct, see Section 2.16 on page 221.

o Data attribute clauses, see Section 2.19.4 on page 282.

master taskloop Construct

Summary

The master taskloop construct is a shortcut for specifying a master construct containing a
taskloop construct and no other statements.

OpenMP API — Version 5.0 November 2018

© 0o

11
12

13
14

15

16
17

18
19

20
21
22
23

Syntax
C/C++

The syntax of the master taskloop construct is as follows:

#pragma omp master taskloop [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the master or taskloop directives with
identical meanings and restrictions.

C/C++
Fortran
The syntax of the master taskloop construct is as follows:

!Somp master taskloop [clause[[,] clause] ... |
do-loops
[!$Somp end master taskloop/

where clause can be any of the clauses accepted by the master or taskloop directives with
identical meanings and restrictions.

If an end master taskloop directive is not specified, an end master taskloop directive is
assumed at the end of the do-loops.

Fortran

Description

The semantics are identical to explicitly specifying a master directive immediately followed by a
taskloop directive.

Restrictions

The restrictions for the master and taskloop constructs apply.

Cross References
e taskloop construct, see Section 2.10.2 on page 140.
e master construct, see Section 2.16 on page 221.

e Data attribute clauses, see Section 2.19.4 on page 282.

CHAPTER 2. DIRECTIVES 193

1 2.13.8 master taskloop simd Construct

w

11

12
13
14

15
16

17
18

19

20
21

22
23

194

Summary

The master taskloop simd construct is a shortcut for specifying a master construct
containing a taskloop simd construct and no other statements.

Syntax
C/C++
The syntax of the master taskloop simd construct is as follows:
#pragma omp master taskloop simd [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the master or taskloop simd directives
with identical meanings and restrictions.

C/C++
Fortran
The syntax of the master taskloop simd construct is as follows:

!'Somp master taskloop simd [clause/ [,] clause] ... |
do-loops
[!'$omp end master taskloop simd]

where clause can be any of the clauses accepted by the master or taskloop simd directives
with identical meanings and restrictions.

If an end master taskloop simd directive is not specified, an end master
taskloop simd directive is assumed at the end of the do-loops.

Fortran
Description

The semantics are identical to explicitly specifying a master directive immediately followed by a
taskloop simd directive.

Restrictions

The restrictions for the master and taskloop simd constructs apply.

OpenMP API — Version 5.0 November 2018

A W D

10

11
12

13
14

15

16
17
18

19
20

21
22

23

24
25

Cross References
e taskloop simd construct, see Section 2.10.3 on page 146.
e master construct, see Section 2.16 on page 221.

e Data attribute clauses, see Section 2.19.4 on page 282.

2.13.9 parallel master taskloop Construct

Summary

The parallel master taskloop construct is a shortcut for specifying a parallel
construct containing a master taskloop construct and no other statements.

Syntax
C/C++
The syntax of the parallel master taskloop construct is as follows:
#fpragma omp parallel master taskloop /[clause[[,] clause] ... | new-line

for-loops

where clause can be any of the clauses accepted by the parallel or master taskloop
directives, except the in_reduction clause, with identical meanings and restrictions.

C/C++
Fortran
The syntax of the parallel master taskloop construct is as follows:

!Somp parallel master taskloop [clause[[,] clause] ... |
do-loops
[!'$omp end parallel master taskloop]/

where clause can be any of the clauses accepted by the parallel or master taskloop
directives, except the in_reduction clause, with identical meanings and restrictions.

If an end parallel master taskloop directive is not specified, an
end parallel master taskloop directive is assumed at the end of the do-loops.

Fortran

Description

The semantics are identical to explicitly specifying a parallel directive immediately followed

by amaster taskloop directive.

CHAPTER 2. DIRECTIVES

o 0 b~ W

N

11

12

13
14

15
16

17
18

19
20

21
22

23
24

Restrictions

The restrictions for the parallel construct and the master taskloop construct apply.

Cross References
e parallel construct, see Section 2.6 on page 74.
e master taskloop construct, see Section 2.13.7 on page 192.

e Data attribute clauses, see Section 2.19.4 on page 282.

2.13.10 parallel master taskloop simd Construct

196

Summary

The parallel master taskloop simd construct is a shortcut for specifying a parallel
construct containing a master taskloop simd construct and no other statements.

Syntax
C/C++
The syntax of the parallel master taskloop simd construct is as follows:
#pragma omp parallel master taskloop simd [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the parallel or master taskloop simd
directives, except the in_reduction clause, with identical meanings and restrictions.

C/C++
Fortran
The syntax of the parallel master taskloop simd construct is as follows:

!Somp parallel master taskloop simd [clause[[,] clause] ... |
do-loops
[!'$omp end parallel master taskloop simd/

where clause can be any of the clauses accepted by the parallel or master taskloop simd
directives, except the in_reduction clause, with identical meanings and restrictions.

If an end parallel master taskloop simd directive is not specified, an end parallel
master taskloop simd directive is assumed at the end of the do-loops.

Fortran

OpenMP API — Version 5.0 November 2018

o

© 0o N o

10

11

12
13

14

15

16
17

18
19

2.13.11

Description

The semantics are identical to explicitly specifying a parallel directive immediately followed
by amaster taskloop simd directive.

Restrictions

The restrictions for the parallel construct and the master taskloop simd construct apply.

Cross References
e parallel construct, see Section 2.6 on page 74.
e master taskloop simd construct, see Section 2.13.8 on page 194.

e Data attribute clauses, see Section 2.19.4 on page 282.

teams distribute Construct

Summary

The teams distribute construct is a shortcut for specifying a teams construct containing a
distribute construct and no other statements.

Syntax
C/C++
The syntax of the teams distribute construct is as follows:
#fpragma omp teams distribute [clause[[, | clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the teams or distribute directives with
identical meanings and restrictions.

C/C++

CHAPTER 2. DIRECTIVES 197

AN =

o ~N OO

10
11

12
13

14
15
16
17

18

19

20
21

Fortran
The syntax of the teams distribute construct is as follows:

'Somp teams distribute [clause[[,] clause] ... |
do-loops
[!'$omp end teams distribute]

where clause can be any of the clauses accepted by the teams or distribute directives with
identical meanings and restrictions.

If an end teams distribute directive is not specified, an end teams distribute
directive is assumed at the end of the do-loops.

Fortran

Description

The semantics are identical to explicitly specifying a teams directive immediately followed by a
distribute directive.

Restrictions

The restrictions for the teams and distribute constructs apply.

Cross References
e teams construct, see Section 2.7 on page 82.
e distribute construct, see Section 2.9.4.1 on page 120.

e Data attribute clauses, see Section 2.19.4 on page 282.

2.13.12 teams distribute simd Construct

198

Summary

The teams distribute simd construct is a shortcut for specifying a teams construct
containing a distribute simd construct and no other statements.

OpenMP API — Version 5.0 November 2018

© 0o

11
12

13
14

15

16
17

18
19

20
21
22
23

Syntax
C/C++

The syntax of the teams distribute simd construct is as follows:

#pragma omp teams distribute simd [clause[[, | clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the teams or distribute simd directives
with identical meanings and restrictions.

C/C++
Fortran
The syntax of the teams distribute simd construct is as follows:

!Somp teams distribute simd [clause[[,] clause] ... |
do-loops
[!$omp end teams distribute simd/

where clause can be any of the clauses accepted by the teams or distribute simd directives
with identical meanings and restrictions.

If an end teams distribute simd directive is not specified, an end teams
distribute simd directive is assumed at the end of the do-loops.

Fortran

Description

The semantics are identical to explicitly specifying a teams directive immediately followed by a
distribute simd directive.

Restrictions

The restrictions for the teams and distribute simd constructs apply.

Cross References
e teams construct, see Section 2.7 on page 82.
e distribute simd construct, see Section 2.9.4.2 on page 123.

e Data attribute clauses, see Section 2.19.4 on page 282.

CHAPTER 2. DIRECTIVES 199

1 2.13.13 Teams Distribute Parallel Worksharing-Loop Construct

© 0N O

10
11

12

13
14
15

16
17

18
19

20

21
22

23
24

200

Summary

The teams distribute parallel worksharing-loop construct is a shortcut for specifying a teams
construct containing a distribute parallel worksharing-loop construct and no other statements.

Syntax
C/C++
The syntax of the teams distribute parallel worksharing-loop construct is as follows:

#pragma omp teams distribute parallel for \
[clause[[, | clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the teams or distribute parallel for
directives with identical meanings and restrictions.

C/C++

Fortran
The syntax of the teams distribute parallel worksharing-loop construct is as follows:

!Somp teams distribute parallel do [clause[[,] clause] ... |
do-loops
['$omp end teams distribute parallel do]|

where clause can be any of the clauses accepted by the teams or distribute parallel do
directives with identical meanings and restrictions.

If an end teams distribute parallel do directive is not specified, an end teams
distribute parallel do directive is assumed at the end of the do-loops.

Fortran
Description

The semantics are identical to explicitly specifying a teams directive immediately followed by a
distribute parallel worksharing-loop directive.

Restrictions

The restrictions for the teams and distribute parallel worksharing-loop constructs apply.

OpenMP API — Version 5.0 November 2018

A WD

(&)

11

12

13
14
15

16
17

18

19
20
21

22
23

24
25

Cross References
e teams construct, see Section 2.7 on page 82.
o Distribute parallel worksharing-loop construct, see Section 2.9.4.3 on page 125.

e Data attribute clauses, see Section 2.19.4 on page 282.

2.13.14 Teams Distribute Parallel Worksharing-Loop SIMD

Construct

Summary

The teams distribute parallel worksharing-loop SIMD construct is a shortcut for specifying a
teams construct containing a distribute parallel worksharing-loop SIMD construct and no other
statements.

Syntax
C/C++
The syntax of the teams distribute parallel worksharing-loop SIMD construct is as follows:

#pragma omp teams distribute parallel for simd \
[clause[[, | clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the teams or distribute parallel
for simd directives with identical meanings and restrictions.

C/C++
Fortran
The syntax of the teams distribute parallel worksharing-loop SIMD construct is as follows:

!Somp teams distribute parallel do simd [clause[[,] clause] ... |
do-loops
[!'$Somp end teams distribute parallel do simd]

where clause can be any of the clauses accepted by the teams or distribute parallel
do simd directives with identical meanings and restrictions.

If an end teams distribute parallel do simd directive is not specified, an end teams
distribute parallel do simd directive is assumed at the end of the do-loops.

Fortran

CHAPTER 2. DIRECTIVES 201

(&)

© oo N o

10

11

12
13

14

15

16
17

18
19

Description

The semantics are identical to explicitly specifying a teams directive immediately followed by a
distribute parallel worksharing-loop SIMD directive.

Restrictions

The restrictions for the teams and distribute parallel worksharing-loop SIMD constructs apply.

Cross References
e teams construct, see Section 2.7 on page 82.
o Distribute parallel worksharing-loop SIMD construct, see Section 2.9.4.4 on page 126.

e Data attribute clauses, see Section 2.19.4 on page 282.

2.13.15 teams loop Construct

Summary

The teams loop construct is a shortcut for specifying a teams construct containing a 1oop
construct and no other statements.

Syntax
C/C++
The syntax of the teams loop construct is as follows:
#pragma omp teams loop [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the teams or loop directives with identical
meanings and restrictions.

C/C++

OpenMP API — Version 5.0 November 2018

A OND =

o o O

10
11

12
13

14
15
16
17

18

19

20
21

Fortran
The syntax of the teams loop construct is as follows:

!Somp teams loop [clause[[,] clause] ...]
do-loops
[!$omp end teams loop]/

where clause can be any of the clauses accepted by the teams or loop directives with identical
meanings and restrictions.

If an end teams loop directive is not specified, an end teams loop directive is assumed at the
end of the do-loops.

Fortran

Description

The semantics are identical to explicitly specifying a teams directive immediately followed by a
loop directive.

Restrictions

The restrictions for the teams and loop constructs apply.

Cross References
e teams construct, see Section 2.7 on page 82.
e loop construct, see Section 2.9.5 on page 128.

e Data attribute clauses, see Section 2.19.4 on page 282.

2.13.16 target parallel Construct

Summary

The target parallel construct is a shortcut for specifying a target construct containing a
parallel construct and no other statements.

CHAPTER 2. DIRECTIVES 203

11
12

13

14
15

16

17
18

19
20

21
22
23

204

Syntax
C/C++
The syntax of the target parallel construct is as follows:
I #pragma omp target parallel [clause[[,] clause] ... | new-line

structured-block

where clause can be any of the clauses accepted by the target or parallel directives, except
for copyin, with identical meanings and restrictions.

C/C++
Fortran
The syntax of the target parallel construct is as follows:

'Somp target parallel [clause[[,] clause] ... |
structured-block
!Somp end target parallel

where clause can be any of the clauses accepted by the target or parallel directives, except
for copyin, with identical meanings and restrictions.

Fortran

Description

The semantics are identical to explicitly specifying a target directive immediately followed by a
parallel directive.

Restrictions

The restrictions for the target and parallel constructs apply except for the following explicit
modifications:

e If any if clause on the directive includes a directive-name-modifier then all 1 £ clauses on the
directive must include a directive-name-modifier.

e At most one if clause without a directive-name-modifier can appear on the directive.
e At most one if clause with the parallel directive-name-modifier can appear on the directive.

e At most one if clause with the target directive-name-modifier can appear on the directive.

OpenMP API — Version 5.0 November 2018

a A W N

»

10

11

12
13

14
15

16

17
18
19

20
21

22
23

Cross References
e parallel construct, see Section 2.6 on page 74.

e target construct, see Section 2.12.5 on page 170.

if Clause, see Section 2.15 on page 220.

Data attribute clauses, see Section 2.19.4 on page 282.

2.13.17 Target Parallel Worksharing-Loop Construct

Summary

The target parallel worksharing-loop construct is a shortcut for specifying a target construct
containing a parallel worksharing-loop construct and no other statements.

Syntax
C/C++
The syntax of the target parallel worksharing-loop construct is as follows:
#pragma omp target parallel for [clausel [,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the target or parallel for directives,
except for copyin, with identical meanings and restrictions.

C/C++
Fortran
The syntax of the target parallel worksharing-loop construct is as follows:

!Somp target parallel do [clause[[,] clause] ... |
do-loops
[!$omp end target parallel do/

where clause can be any of the clauses accepted by the target or parallel do directives,
except for copyin, with identical meanings and restrictions.

If an end target parallel do directive is not specified, an end target parallel do
directive is assumed at the end of the do-loops.

Fortran

CHAPTER 2. DIRECTIVES 205

w

o © oo~N oo M

12
13
14
15
16

17

18

19
20

Description

The semantics are identical to explicitly specifying a target directive immediately followed by a
parallel worksharing-loop directive.

Restrictions

The restrictions for the target and parallel worksharing-loop constructs apply except for the
following explicit modifications:

e If any if clause on the directive includes a directive-name-modifier then all i £ clauses on the
directive must include a directive-name-modifier.

e At most one if clause without a directive-name-modifier can appear on the directive.
e At most one if clause with the parallel directive-name-modifier can appear on the directive.

e At most one if clause with the target directive-name-modifier can appear on the directive.

Cross References

e target construct, see Section 2.12.5 on page 170.

e Parallel Worksharing-Loop construct, see Section 2.13.1 on page 185.
e if Clause, see Section 2.15 on page 220.

e Data attribute clauses, see Section 2.19.4 on page 282.

2.13.18 Target Parallel Worksharing-Loop SIMD Construct

206

Summary

The target parallel worksharing-loop SIMD construct is a shortcut for specifying a target
construct containing a parallel worksharing-loop SIMD construct and no other statements.

OpenMP API — Version 5.0 November 2018

g~ W N

~N O

10
11

12
13

14
15

16

17
18

19

20
21

22
23

24
25
26

Syntax
C/C++
The syntax of the target parallel worksharing-loop SIMD construct is as follows:

#pragma omp target parallel for simd \
[clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the target or parallel for simd
directives, except for copyin, with identical meanings and restrictions.

C/C++
Fortran
The syntax of the target parallel worksharing-loop SIMD construct is as follows:

!Somp target parallel do simd [clause[[,] clause] ... |
do-loops
[!'$omp end target parallel do simd/

where clause can be any of the clauses accepted by the target or parallel do simd
directives, except for copyin, with identical meanings and restrictions.

If an end target parallel do simd directive is not specified, an end target parallel
do simd directive is assumed at the end of the do-loops.

Fortran

Description

The semantics are identical to explicitly specifying a target directive immediately followed by a
parallel worksharing-loop SIMD directive.

Restrictions

The restrictions for the target and parallel worksharing-loop SIMD constructs apply except for
the following explicit modifications:

e If any if clause on the directive includes a directive-name-modifier then all 1 £ clauses on the
directive must include a directive-name-modifier.

e At most one if clause without a directive-name-modifier can appear on the directive.
o At most one if clause with the parallel directive-name-modifier can appear on the directive.

e At most one if clause with the target directive-name-modifier can appear on the directive.

CHAPTER 2. DIRECTIVES 207

—_

a A~ W N

10

11

12
13

14
15

16

17
18
19

20
21

22
23
24

Cross References
e target construct, see Section 2.12.5 on page 170.
e Parallel worksharing-loop SIMD construct, see Section 2.13.5 on page 190.

e if Clause, see Section 2.15 on page 220.

Data attribute clauses, see Section 2.19.4 on page 282.

2.13.19 target parallel loop Construct

208

Summary

The target parallel loop construct is a shortcut for specifying a target construct
containing a parallel loop construct and no other statements.

Syntax
C/C++
The syntax of the target parallel loop construct is as follows:
#pragma omp target parallel loop [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the target or parallel loop directives
with identical meanings and restrictions.

C/C++
Fortran
The syntax of the target parallel loop construct is as follows:

'Somp target parallel loop [clause[[,] clause] ... |
do-loops
[!'$omp end target parallel loop/

where clause can be any of the clauses accepted by the teams or parallel loop directives

with identical meanings and restrictions.

If an end target parallel loop directive is not specified, an end target parallel
loop directive is assumed at the end of the do-loops. nowait may not be specified on an
end target parallel loop directive.

Fortran

OpenMP API — Version 5.0 November 2018

o

© o N o

10

11

12
13

14

15

16
17

18
19

Description

The semantics are identical to explicitly specifying a target directive immediately followed by a
parallel loop directive.

Restrictions

The restrictions for the target and parallel loop constructs apply.

Cross References
e target construct, see Section 2.12.5 on page 170.
e parallel loop construct, see Section 2.13.2 on page 186.

e Data attribute clauses, see Section 2.19.4 on page 282.

2.13.20 target simd Construct

Summary

The target simd construct is a shortcut for specifying a target construct containing a simd
construct and no other statements.

Syntax
C/C++
The syntax of the target simd construct is as follows:
#fpragma omp target simd [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the target or simd directives with identical
meanings and restrictions.

C/C++

CHAPTER 2. DIRECTIVES 209

Fortran

1 The syntax of the target simd construct is as follows:
2 'Somp target simd [clause/[[,] clause] ... |
3 do-loops
4 [!'$omp end target simd]
5 where clause can be any of the clauses accepted by the target or simd directives with identical
6 meanings and restrictions.
7 If an end target simd directive is not specified, an end target simd directive is assumed at
8 the end of the do-loops.
Fortran
9 Description
10 The semantics are identical to explicitly specifying a target directive immediately followed by a
11 simd directive.
12 Restrictions
13 The restrictions for the target and simd constructs apply.
14 Cross References
15 e simd construct, see Section 2.9.3.1 on page 110.
16 e target construct, see Section 2.12.5 on page 170.
17 e Data attribute clauses, see Section 2.19.4 on page 282.
18 2.13.21 target teams Construct
19 Summary
20 The target teams construct is a shortcut for specifying a target construct containing a
21 teams construct and no other statements.

210 OpenMP API — Version 5.0 November 2018

© 0o

11
12

13

14
15

16
17

18
19
20
21

22

23

24
25

Syntax
C/C++

The syntax of the target teams construct is as follows:

#fpragma omp target teams [clause[[,] clause] ... | new-line
structured-block

where clause can be any of the clauses accepted by the target or teams directives with identical
meanings and restrictions.

C/C++
Fortran
The syntax of the target teams construct is as follows:

!Somp target teams [clause[[,] clause] ... |
structured-block
!Somp end target teams

where clause can be any of the clauses accepted by the target or teams directives with identical
meanings and restrictions.

Fortran

Description

The semantics are identical to explicitly specifying a target directive immediately followed by a
teams directive.

Restrictions

The restrictions for the target and teams constructs apply.

Cross References
e teams construct, see Section 2.7 on page 82.
e target construct, see Section 2.12.5 on page 170.

e Data attribute clauses, see Section 2.19.4 on page 282.

2.13.22 target teams distribute Construct

Summary

The target teams distribute construct is a shortcut for specifying a target construct
containing a teams distribute construct and no other statements.

CHAPTER 2. DIRECTIVES 211

A W

11
12

13
14

15

16
17

18
19

20
21
22
23

Syntax
C/C++

The syntax of the target teams distribute construct is as follows:

#pragma omp target teams distribute [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the target or teams distribute
directives with identical meanings and restrictions.

C/C++
Fortran
The syntax of the target teams distribute construct is as follows:

!'Somp target teams distribute [clause/ [,]| clause] ...]
do-loops
[!'$omp end target teams distribute]

where clause can be any of the clauses accepted by the target or teams distribute
directives with identical meanings and restrictions.

If an end target teams distribute directive is not specified, an end target teams
distribute directive is assumed at the end of the do-loops.

Fortran

Description

The semantics are identical to explicitly specifying a target directive immediately followed by a
teams distribute directive.

Restrictions

The restrictions for the target and teams distribute constructs.

Cross References
e target construct, see Section 2.12.2 on page 161.
e teams distribute construct, see Section 2.13.11 on page 197.

e Data attribute clauses, see Section 2.19.4 on page 282.

212 OpenMP API — Version 5.0 November 2018

1 2.13.23 target teams distribute simd Construct

w

© 00N O

11

12

13
14
15

16
17

18
19

20

21
22

23
24

Summary

The target teams distribute simd construct is a shortcut for specifying a target
construct containing a teams distribute simd construct and no other statements.

Syntax
C/C++
The syntax of the target teams distribute simd construct is as follows:

#pragma omp target teams distribute simd \
[clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the target or teams distribute simd
directives with identical meanings and restrictions.

C/C++
Fortran
The syntax of the target teams distribute simd construct is as follows:

!Somp target teams distribute simd [clause[[, | clause] ... |
do-loops
[!'$omp end target teams distribute simd]

where clause can be any of the clauses accepted by the target or teams distribute simd
directives with identical meanings and restrictions.

If an end target teams distribute simd directive is not specified, an end target
teams distribute simd directive is assumed at the end of the do-loops.

Fortran
Description

The semantics are identical to explicitly specifying a target directive immediately followed by a
teams distribute simd directive.

Restrictions

The restrictions for the target and teams distribute simd constructs apply.

CHAPTER 2. DIRECTIVES 213

—_

£ NGO R o)

10

11
12

13
14

15

16
17
18

19
20

21
22

23

24
25

Cross References
e target construct, see Section 2.12.2 on page 161.
e teams distribute simd construct, see Section 2.13.12 on page 198.

e Data attribute clauses, see Section 2.19.4 on page 282.

2.13.24 target teams loop Construct

214

Summary

The target teams loop construct is a shortcut for specifying a target construct containing a
teams loop construct and no other statements.

Syntax
C/C++

The syntax of the target teams loop construct is as follows:

I #pragma omp target teams loop [clause[[,] clause] ... | new-line

for-loops

where clause can be any of the clauses accepted by the target or teams loop directives with
identical meanings and restrictions.

C/C++
Fortran
The syntax of the target teams loop construct is as follows:

!Somp target teams loop [clause[[,] clause] ... |
do-loops
[!$omp end target teams loop]

where clause can be any of the clauses accepted by the target or teams loop directives with
identical meanings and restrictions.

If an end target teams loop directive is not specified, an end target teams loop
directive is assumed at the end of the do-loops.

Fortran
Description

The semantics are identical to explicitly specifying a target directive immediately followed by a
teams loop directive.

OpenMP API — Version 5.0 November 2018

(o> NG N

Restrictions

The restrictions for the target and teams loop constructs.

Cross References
e target construct, see Section 2.12.5 on page 170.
e Teams loop construct, see Section 2.13.15 on page 202.

e Data attribute clauses, see Section 2.19.4 on page 282.

7 2.13.25 Target Teams Distribute Parallel Worksharing-Loop

8

10
11
12

13

14
15
16
17

18
19

20
21
22
23

24
25

26
27
28

Construct

Summary

The target teams distribute parallel worksharing-loop construct is a shortcut for specifying a
target construct containing a teams distribute parallel worksharing-loop construct and no other
statements.

Syntax
C/C++

The syntax of the target teams distribute parallel worksharing-loop construct is as follows:

#fpragma omp target teams distribute parallel for \
[clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the target or teams distribute
parallel for directives with identical meanings and restrictions.

C/C++
Fortran
The syntax of the target teams distribute parallel worksharing-loop construct is as follows:

!Somp target teams distribute parallel do [clause[[,] clause] ... |
do-loops
[!$Somp end target teams distribute parallel do]

where clause can be any of the clauses accepted by the target or teams distribute

parallel do directives with identical meanings and restrictions.

If an end target teams distribute parallel do directive is not specified, an
end target teams distribute parallel do directive is assumed at the end of the
do-loops.

Fortran

CHAPTER 2. DIRECTIVES 215

w

o © oo~N oo M

12
13
14
15
16

17
18

19

20
21
22

Description

The semantics are identical to explicitly specifying a target directive immediately followed by a
teams distribute parallel worksharing-loop directive.

Restrictions

The restrictions for the target and teams distribute parallel worksharing-loop constructs apply
except for the following explicit modifications:

e If any if clause on the directive includes a directive-name-modifier then all i £ clauses on the
directive must include a directive-name-modifier.

e At most one if clause without a directive-name-modifier can appear on the directive.
e At most one if clause with the parallel directive-name-modifier can appear on the directive.

e At most one if clause with the target directive-name-modifier can appear on the directive.

Cross References

e target construct, see Section 2.12.5 on page 170.

e Teams distribute parallel worksharing-loop construct, see Section 2.13.13 on page 200.
e if Clause, see Section 2.15 on page 220.

e Data attribute clauses, see Section 2.19.4 on page 282.

2.13.26 Target Teams Distribute Parallel Worksharing-Loop SIMD

216

Construct

Summary

The target teams distribute parallel worksharing-loop SIMD construct is a shortcut for specifying a
target construct containing a teams distribute parallel worksharing-loop SIMD construct and no
other statements.

OpenMP API — Version 5.0 November 2018

g~ W N

~N O

10
11

12
13

14
15
16

17

18
19

20

21
22

23
24

25
26
27

Syntax
C/C++
The syntax of the target teams distribute parallel worksharing-loop SIMD construct is as follows:

#pragma omp target teams distribute parallel for simd \
[clause[[, | clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the target or teams distribute
parallel for simd directives with identical meanings and restrictions.

C/C++
Fortran
The syntax of the target teams distribute parallel worksharing-loop SIMD construct is as follows:

!Somp target teams distribute parallel do simd [clause[[,] clause] ... |
do-loops
[!'$omp end target teams distribute parallel do simd]

where clause can be any of the clauses accepted by the target or teams distribute
parallel do simd directives with identical meanings and restrictions.

If an end target teams distribute parallel do simd directive is not specified, an
end target teams distribute parallel do simd directive is assumed at the end of the
do-loops.

Fortran

Description

The semantics are identical to explicitly specifying a target directive immediately followed by a
teams distribute parallel worksharing-loop SIMD directive.

Restrictions

The restrictions for the target and teams distribute parallel worksharing-loop SIMD constructs
apply except for the following explicit modifications:

e If any if clause on the directive includes a directive-name-modifier then all 1 £ clauses on the
directive must include a directive-name-modifier.

e At most one if clause without a directive-name-modifier can appear on the directive.
e At most one if clause with the parallel directive-name-modifier can appear on the directive.

e At most one if clause with the target directive-name-modifier can appear on the directive.

CHAPTER 2. DIRECTIVES 217

—_

a A~ W N

10
11
12

13

14
15

16
17

18
19

20
21

22
23

24
25
26

27
28

214

218

Cross References
e target construct, see Section 2.12.5 on page 170.
e Teams distribute parallel worksharing-loop SIMD construct, see Section 2.13.14 on page 201.

e if Clause, see Section 2.15 on page 220.

Data attribute clauses, see Section 2.19.4 on page 282.

Clauses on Combined and Composite Constructs

This section specifies the handling of clauses on combined or composite constructs and the
handling of implicit clauses from variables with predetermined data sharing if they are not
predetermined only on a particular construct. Some clauses are permitted only on a single construct
of the constructs that constitute the combined or composite construct, in which case the effect is as
if the clause is applied to that specific construct. As detailed in this section, other clauses have the
effect as if they are applied to one or more constituent constructs.

The collapse clause is applied once to the combined or composite construct.

The effect of the private clause is as if it is applied only to the innermost constituent construct
that permits it.

The effect of the firstprivate clause is as if it is applied to one or more constructs as follows:
e To the distribute construct if it is among the constituent constructs;

o To the teams construct if it is among the constituent constructs and the distribute
construct is not;

e To the worksharing-loop construct if it is among the constituent constructs;
e To the taskloop construct if it is among the constituent constructs;

e To the parallel construct if it is among the constituent constructs and the worksharing-loop
construct or the taskloop construct is not;

o To the outermost constituent construct if not already applied to it by the above rules and the
outermost constituent construct is not a teams construct, a parallel construct, a master
construct, or a target construct; and

o To the target construct if it is among the constituent constructs and the same list item does not
appear in a lastprivate or map clause.

OpenMP API — Version 5.0 November 2018

0 N o~ W=

10

11
12

13
14
15
16
17
18
19
20

21
22

23
24

25
26

27

28
29
30
31
32
33
34
35
36
37

If the parallel construct is among the constituent constructs and the effect is not as if the
firstprivate clause is applied to it by the above rules, then the effect is as if the shared
clause with the same list item is applied to the parallel construct. If the teams construct is
among the constituent constructs and the effect is not as if the firstprivate clause is applied to
it by the above rules, then the effect is as if the shared clause with the same list item is applied to
the teams construct.

The effect of the lastprivate clause is as if it is applied to one or more constructs as follows:
e To the worksharing-loop construct if it is among the constituent constructs;

e To the taskloop construct if it is among the constituent constructs;

e To the distribute construct if it is among the constituent constructs; and

o To the innermost constituent construct that permits it unless it is a worksharing-loop or
distribute construct.

If the parallel construct is among the constituent constructs and the list item is not also specified
in the firstprivate clause, then the effect of the lastprivate clause is as if the shared
clause with the same list item is applied to the parallel construct. If the teams construct is
among the constituent constructs and the list item is not also specified in the firstprivate
clause, then the effect of the l1astprivate clause is as if the shared clause with the same list
item is applied to the teams construct. If the target construct is among the constituent
constructs and the list item is not specified in a map clause, the effect of the lastprivate clause
is as if the same list item appears in a map clause with a map-type of tofrom.

The effect of the shared, default, order, or allocate clause is as if it is applied to all
constituent constructs that permit the clause.

The effect of the reduction clause is as if it is applied to all constructs that permit the clause,
except for the following constructs:

e The parallel construct, when combined with the sections, worksharing-loop, 1oop, or
taskloop construct; and

e The teams construct, when combined with the Loop construct.

For the parallel and teams constructs above, the effect of the reduction clause instead is as
if each list item or, for any list item that is an array item, its corresponding base array or base
pointer appears in a shared clause for the construct. If the task reduction-modifier is specified,
the effect is as if it only modifies the behavior of the reduction clause on the innermost
construct that constitutes the combined construct and that accepts the modifier (see Section 2.19.5.4
on page 300). If the inscan reduction-modifier is specified, the effect is as if it modifies the
behavior of the reduction clause on all constructs of the combined construct to which the clause
is applied and that accept the modifier. If a construct to which the inscan reduction-modifier is
applied is combined with the target construct, the effect is as if the same list item also appears in
a map clause with a map-type of tofrom.

CHAPTER 2. DIRECTIVES 219

oNO O AN =

_ a4
wWw N = O oo

—_
(G20

ND NN = = o
N = OO oo~N®»

N NN
g~ W

26

27

28
29
30

2.15

220

The in_reduction clause is permitted on a single construct among those that constitute the
combined or composite construct and the effect is as if the clause is applied to that construct, but if
that construct is a target construct, the effect is also as if the same list item appears in a map
clause with a map-type of tofrom and a map-type-modifier of always.

The effect of the i £ clause is described in Section 2.15 on page 220.

The effect of the 1inear clause is as if it is applied to the innermost constituent construct.
Additionally, if the list item is not the iteration variable of a simd or worksharing-loop SIMD
construct, the effect on the outer constituent constructs is as if the list item was specified in
firstprivate and lastprivate clauses on the combined or composite construct, with the
rules specified above applied. If a list item of the 1inear clause is the iteration variable of a
simd or worksharing-loop SIMD construct and it is not declared in the construct, the effect on the
outer constituent constructs is as if the list item was specified in a lastprivate clause on the
combined or composite construct with the rules specified above applied.

The effect of the nowait clause is as if it is applied to the outermost constituent construct that
permits it.

If the clauses have expressions on them, such as for various clauses where the argument of the
clause is an expression, or lower-bound, length, or stride expressions inside array sections (or
subscript and stride expressions in subscript-triplet for Fortran), or linear-step or alignment
expressions, the expressions are evaluated immediately before the construct to which the clause has
been split or duplicated per the above rules (therefore inside of the outer constituent constructs).
However, the expressions inside the num_teams and thread_1limit clauses are always
evaluated before the outermost constituent construct.

The restriction that a list item may not appear in more than one data sharing clause with the
exception of specifying a variable in both firstprivate and lastprivate clauses applies
after the clauses are split or duplicated per the above rules.

if Clause

Summary

The semantics of an i f clause are described in the section on the construct to which it applies. The
if clause directive-name-modifier names the associated construct to which an expression applies,
and is particularly useful for composite and combined constructs.

OpenMP API — Version 5.0 November 2018

(62 w

- OwWwoo-~N O

—_ -

12

13
14

15

16

17
18

19

20
21
22

2.16

Syntax
C/C++

The syntax of the i £ clause is as follows:

I if ([directive-name-modifier : | scalar-expression)
C/C++
Fortran

The syntax of the i £ clause is as follows:

I if ([directive-name-modifier : | scalar-logical-expression)

Fortran

Description

The effect of the i £ clause depends on the construct to which it is applied. For combined or
composite constructs, the i £ clause only applies to the semantics of the construct named in the
directive-name-modifier if one is specified. If no directive-name-modifier is specified for a
combined or composite construct then the i £ clause applies to all constructs to which an i £ clause

can apply.

master Construct

Summary

The master construct specifies a structured block that is executed by the master thread of the team.

Syntax
C/C++
The syntax of the master construct is as follows:

#pragma omp master new-line
structured-block

C/C++
Fortran
The syntax of the master construct is as follows:

!Somp master
structured-block
!Somp end master

Fortran

CHAPTER 2. DIRECTIVES 221

w

o ~NOoO O A

10
11

12
13

14

15
16
17
18
19
20

21

22
23

24
25
26
27

222

Binding

The binding thread set for a master region is the current team. A master region binds to the
innermost enclosing parallel region.

Description

Only the master thread of the team that executes the binding parallel region participates in the
execution of the structured block of the master region. Other threads in the team do not execute
the associated structured block. There is no implied barrier either on entry to, or exit from, the
master construct.

Execution Model Events

The master-begin event occurs in the master thread of a team that encounters the master construct
on entry to the master region.

The master-end event occurs in the master thread of a team that encounters the master construct
on exit from the master region.

Tool Callbacks

A thread dispatches a registered ompt_callback_master callback with
ompt__scope_begin as its endpoint argument for each occurrence of a master-begin event in
that thread. Similarly, a thread dispatches a registered ompt_callback_master callback with
ompt_scope_end as its endpoint argument for each occurrence of a master-end event in that
thread. These callbacks occur in the context of the task executed by the master thread and have the
type signature ompt_callback_master_t.

Restrictions
C++

e A throw executed inside a master region must cause execution to resume within the same
master region, and the same thread that threw the exception must catch it

C++

Cross References
e parallel construct, see Section 2.6 on page 74.
e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.

e ompt_callback master_t, see Section 4.5.2.12 on page 473.

OpenMP API — Version 5.0 November 2018

1

0N O A WO

10

11
12

13

14

15
16

17
18

19

20
21
22

23
24
25

2.17

2.17.1

Synchronization Constructs and Clauses

A synchronization construct orders the completion of code executed by different threads. This
ordering is imposed by synchronizing flush operations that are executed as part of the region that
corresponds to the construct.

Synchronization through the use of synchronizing flush operations and atomic operations is
described in Section 1.4.4 on page 25 and Section 1.4.6 on page 28. Section 2.17.8.1 on page 246
defines the behavior of synchronizing flush operations that are implied at various other locations in
an OpenMP program.

critical Construct

Summary

The critical construct restricts execution of the associated structured block to a single thread at
a time.

Syntax
C/C++
The syntax of the critical construct is as follows:

#pragma omp critical [(name) [[,] hint (hint-expression) | | new-line
structured-block

where hint-expression is an integer constant expression that evaluates to a valid synchronization
hint (as described in Section 2.17.12 on page 260).

C/C++
Fortran
The syntax of the critical construct is as follows:

'Somp critical [(name) [[,] hint (hint-expression)] |
structured-block
!Somp end critical [(name)]

where hint-expression is a constant expression that evaluates to a scalar value with kind
omp_sync_hint_kind and a value that is a valid synchronization hint (as described
in Section 2.17.12 on page 260).

Fortran

CHAPTER 2. DIRECTIVES 223

o NoO Ok W

11
12

13
14
15
16

17
18
19
20
21

22

23
24

25
26

27
28

224

Binding

The binding thread set for a critical region is all threads in the contention group.

Description

The region that corresponds to a critical construct is executed as if only a single thread at a
time among all threads in the contention group enters the region for execution, without regard to the
team(s) to which the threads belong. An optional name may be used to identify the critical
construct. All ecritical constructs without a name are considered to have the same unspecified
name.

C/C++

Identifiers used to identify a critical construct have external linkage and are in a name space
that is separate from the name spaces used by labels, tags, members, and ordinary identifiers.

C/C++
Fortran

The names of critical constructs are global entities of the program. If a name conflicts with
any other entity, the behavior of the program is unspecified.

Fortran

The threads of a contention group execute the critical region as if only one thread of the
contention group executes the critical region at a time. The eritical construct enforces
these execution semantics with respect to all critical constructs with the same name in all
threads in the contention group.

If present, the hint clause gives the implementation additional information about the expected
runtime properties of the eritical region that can optionally be used to optimize the
implementation. The presence of a hint clause does not affect the isolation guarantees provided
by the critical construct. If no hint clause is specified, the effect is as if

hint (omp_sync_hint_none) had been specified.

Execution Model Events

The critical-acquiring event occurs in a thread that encounters the eritical construct on entry
to the critical region before initiating synchronization for the region.

The critical-acquired event occurs in a thread that encounters the critical construct after it
enters the region, but before it executes the structured block of the eritical region.

The critical-released event occurs in a thread that encounters the eritical construct after it
completes any synchronization on exit from the critical region.

OpenMP API — Version 5.0 November 2018

14
15

16
17

18
19

20
21

22
23

24
25

Tool Callbacks

A thread dispatches a registered ompt_callback_mutex_acquire callback for each
occurrence of a critical-acquiring event in that thread. This callback has the type signature
ompt_callback mutex acquire_t.

A thread dispatches a registered ompt_callback_mutex_acquired callback for each
occurrence of a critical-acquired event in that thread. This callback has the type signature
ompt_callback mutex t.

A thread dispatches a registered ompt_callback_mutex_released callback for each
occurrence of a critical-released event in that thread. This callback has the type signature
ompt_callback_mutex_ t.

The callbacks occur in the task that encounters the critical construct. The callbacks should receive
ompt_mutex_critical as their kind argument if practical, but a less specific kind is
acceptable.

Restrictions
The following restrictions apply to the critical construct:

e Unless the effect is as if hint(omp_sync_hint_none) was specified, the critical
construct must specify a name.

o If the hint clause is specified, each of the critical constructs with the same name must
have a hint clause for which the hint-expression evaluates to the same value.

C++

o A throw executed inside a critical region must cause execution to resume within the same
critical region, and the same thread that threw the exception must catch it.

C++
Fortran

o If a name is specified on a critical directive, the same name must also be specified on the
end critical directive.

o If no name appears on the critical directive, no name can appear on the end critical
directive.

Fortran

CHAPTER 2. DIRECTIVES 225

—_

a A~ W N

10

11
12

13
14

15

16
17

18

19
20
21

22

2.17.2

226

Cross References

e Synchronization Hints, see Section 2.17.12 on page 260.

e ompt_mutex_critical, see Section 4.4.4.16 on page 445.

e ompt_callback _mutex_acquire_t, see Section 4.5.2.14 on page 476.
e ompt_callback_mutex_t, see Section 4.5.2.15 on page 477.

barrier Construct

Summary

The barrier construct specifies an explicit barrier at the point at which the construct appears.
The barrier construct is a stand-alone directive.

Syntax
C/C++

The syntax of the barrier construct is as follows:

I #pragma omp barrier new-line

C/C++
Fortran
The syntax of the barrier construct is as follows:

I !Somp barrier

Fortran

Binding
The binding thread set for a barrier region is the current team. A barrier region binds to the
innermost enclosing parallel region.

Description

All threads of the team that is executing the binding parallel region must execute the barrier
region and complete execution of all explicit tasks bound to this parallel region before any are
allowed to continue execution beyond the barrier.

The barrier region includes an implicit task scheduling point in the current task region.

OpenMP API — Version 5.0 November 2018

- O o © N O o~ w N =

—_

12

13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33

34
35
36
37

Execution Model Events

The explicit-barrier-begin event occurs in each thread that encounters the barrier construct on
entry to the barrier region.

The explicit-barrier-wait-begin event occurs when a task begins an interval of active or passive
waiting in a barrier region.

The explicit-barrier-wait-end event occurs when a task ends an interval of active or passive waiting
and resumes execution in a barrier region.

The explicit-barrier-end event occurs in each thread that encounters the barrier construct after
the barrier synchronization on exit from the barrier region.

A cancellation event occurs if cancellation is activated at an implicit cancellation point in a
barrier region.

Tool Callbacks

A thread dispatches a registered ompt_callback_sync_region callback with
ompt_sync_region_barrier_explicit — or ompt_sync_region_barrier, if the
implementation cannot make a distinction — as its kind argument and ompt_scope_begin as
its endpoint argument for each occurrence of an explicit-barrier-begin event in the task that
encounters the barrier construct. Similarly, a thread dispatches a registered
ompt_callback_sync_region callback with
ompt_sync_region_barrier_explicit — or ompt_sync_region_barrier, if the
implementation cannot make a distinction — as its kind argument and ompt_scope_end as its
endpoint argument for each occurrence of an explicit-barrier-end event in the task that encounters
the barrier construct. These callbacks occur in the task that encounters the barrier construct
and have the type signature ompt_callback_sync_region_t.

A thread dispatches a registered ompt_callback_sync_region_wait callback with
ompt_sync_region_barrier_explicit — or ompt_sync_region_barrier, if the
implementation cannot make a distinction — as its kind argument and ompt_scope_begin as
its endpoint argument for each occurrence of an explicit-barrier-wait-begin event. Similarly, a
thread dispatches a registered ompt_callback_sync_region_wait callback with
ompt_sync_region_barrier_explicit — or ompt_sync_region_barrier, if the
implementation cannot make a distinction — as its kind argument and ompt_scope_end as its
endpoint argument for each occurrence of an explicit-barrier-wait-end event. These callbacks
occur in the context of the task that encountered the barrier construct and have type signature
ompt_callback_sync_region_t.

A thread dispatches a registered ompt_callback_cancel callback with
ompt_cancel_detected as its flags argument for each occurrence of a cancellation event in
that thread. The callback occurs in the context of the encountering task. The callback has type
signature ompt_callback_cancel_t.

CHAPTER 2. DIRECTIVES 227

o0 AW N =

~

12

13
14
15
16

17

18
19

20
21

22
23

24
25

26
27

2.17.3

228

Restrictions
The following restrictions apply to the barrier construct:

e Each barrier region must be encountered by all threads in a team or by none at all, unless
cancellation has been requested for the innermost enclosing parallel region.

e The sequence of worksharing regions and barrier regions encountered must be the same for
every thread in a team.

Cross References

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.
e ompt_sync_region_barrier, see Section 4.4.4.13 on page 444.

e ompt_callback_sync_region_t, see Section 4.5.2.13 on page 474.

e ompt_callback_cancel_t, see Section 4.5.2.18 on page 481.

Implicit Barriers

This section describes the OMPT events and tool callbacks associated with implicit barriers, which
occur at the end of various regions as defined in the description of the constructs to which they
correspond. Implicit barriers are task scheduling points. For a description of task scheduling
points, associated events, and tool callbacks, see Section 2.10.6 on page 149.

Execution Model Events

The implicit-barrier-begin event occurs in each implicit task at the beginning of an implicit barrier
region.

The implicit-barrier-wait-begin event occurs when a task begins an interval of active or passive
waiting in an implicit barrier region.

The implicit-barrier-wait-end event occurs when a task ends an interval of active or waiting and
resumes execution of an implicit barrier region.

The implicit-barrier-end event occurs in each implicit task after the barrier synchronization on exit
from an implicit barrier region.

A cancellation event occurs if cancellation is activated at an implicit cancellation point in an
implicit barrier region.

OpenMP API — Version 5.0 November 2018

—_

- O ©W 0O NO O~ WN

- 4 a4 . a -
© 00N O~ WN

NN
— O

DN NN
[6) B¢ ¢V RN \V]

26

27
28
29
30
31
32
33
34
35
36

37

Tool Callbacks

A thread dispatches a registered ompt_callback_sync_region callback with
ompt_sync_region_barrier_implicit — or ompt_sync_region_barrier, if the
implementation cannot make a distinction — as its kind argument and ompt_scope_begin as
its endpoint argument for each occurrence of an implicit-barrier-begin event in that thread.
Similarly, a thread dispatches a registered ompt__callback_sync_region callback with
ompt_sync_region_barrier_implicit — or ompt_sync_region_barrier, if the
implementation cannot make a distinction — as its kind argument and ompt_scope_end as its
endpoint argument for each occurrence of an implicit-barrier-end event in that thread. These
callbacks occur in the implicit task that executes the parallel region and have the type signature
ompt_callback_sync_region_t.

A thread dispatches a registered ompt_callback_sync_region_wait callback with
ompt_sync_region_barrier_implicit — or ompt_sync_region_barrier, if the
implementation cannot make a distinction — as its kind argument and ompt_scope_begin as
its endpoint argument for each occurrence of a implicit-barrier-wait-begin event in that thread.
Similarly, a thread dispatches a registered ompt__callback_sync_region_wait callback
with ompt_sync_region_barrier explicit — or ompt_sync_region_barrier,
if the implementation cannot make a distinction — as its kind argument and ompt_scope_end
as its endpoint argument for each occurrence of an implicit-barrier-wait-end event in that thread.
These callbacks occur in the implicit task that executes the parallel region and have type signature
ompt_callback_sync_region_t.

A thread dispatches a registered ompt_callback_cancel callback with
ompt_cancel_detected as its flags argument for each occurrence of a cancellation event in
that thread. The callback occurs in the context of the encountering task. The callback has type
signature ompt_callback_cancel_t.

Restrictions

If a thread is in the state ompt_state_wait_barrier implicit_parallel,acallto
ompt_get_parallel_info may return a pointer to a copy of the data object associated with
the parallel region rather than a pointer to the associated data object itself. Writing to the data
object returned by omp_get_parallel_info when a thread is in the
ompt_state_wait_barrier implicit_parallel results in unspecified behavior.
Cross References

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.

e ompt_sync_region_barrier, see Section 4.4.4.13 on page 444

e ompt_cancel_detected, see Section 4.4.4.24 on page 450.

e ompt_callback_sync_region_t, see Section 4.5.2.13 on page 474.

e ompt_callback cancel_t, see Section 4.5.2.18 on page 481.

CHAPTER 2. DIRECTIVES 229

1 2.17.4 Implementation-Specific Barriers

0N O~ WN

10

11
12

13

14
15

16
17

18
19

20
21

22

23
24

An OpenMP implementation can execute implementation-specific barriers that are not implied by
the OpenMP specification; therefore, no execution model events are bound to these barriers. The
implementation can handle these barriers like implicit barriers and dispatch all events as for
implicit barriers. These callbacks are dispatched with

ompt_sync_region_barrier_ implementation —or
ompt_sync_region_barrier, if the implementation cannot make a distinction — as the kind
argument.

2.17.5 taskwait Construct

230

Summary

The taskwait construct specifies a wait on the completion of child tasks of the current task. The
taskwait construct is a stand-alone directive.

Syntax
C/C++

The syntax of the taskwait construct is as follows:

I #pragma omp taskwait [clause[[,] clause] ... | new-line
where clause is one of the following:

I depend (/depend-modifier, |[dependence-type : locator-list)

C/C++

Fortran
The syntax of the taskwait construct is as follows:
I 'Somp taskwait [clause[[,] clause] ...]

where clause is one of the following:

I depend (/depend-modifier, |[dependence-type : locator-list)
Fortran

Binding

The taskwait region binds to the current task region. The binding thread set of the taskwait
region is the current team.

OpenMP API — Version 5.0 November 2018

0 N O O A~ ODN

10
11

12
13

14
15

16
17

18

19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35

Description

If no depend clause is present on the taskwait construct, the current task region is suspended
at an implicit task scheduling point associated with the construct. The current task region remains
suspended until all child tasks that it generated before the taskwait region complete execution.

Otherwise, if one or more depend clauses are present on the taskwait construct, the behavior
is as if these clauses were applied to a task construct with an empty associated structured block

that generates a mergeable and included task. Thus, the current task region is suspended until the

predecessor tasks of this task complete execution.

Execution Model Events

The taskwait-begin event occurs in each thread that encounters the taskwait construct on entry
to the taskwait region.

The taskwait-wait-begin event occurs when a task begins an interval of active or passive waiting in
a taskwait region.

The taskwait-wait-end event occurs when a task ends an interval of active or passive waiting and
resumes execution in a taskwait region.

The taskwait-end event occurs in each thread that encounters the taskwait construct after the
taskwait synchronization on exit from the taskwait region.

Tool Callbacks

A thread dispatches a registered ompt_callback_sync_region callback with
ompt_sync_region_taskwait as its kind argument and ompt_scope_begin as its
endpoint argument for each occurrence of a taskwait-begin event in the task that encounters the
taskwait construct. Similarly, a thread dispatches a registered
ompt_callback_sync_region callback with ompt_sync_region_taskwait as its
kind argument and ompt_ scope_end as its endpoint argument for each occurrence of a
taskwait-end event in the task that encounters the taskwait construct. These callbacks occur in
the task that encounters the taskwait construct and have the type signature
ompt_callback_ sync_region_t.

A thread dispatches a registered ompt_callback_sync_region_wait callback with
ompt_sync_region_taskwait as its kind argument and ompt_scope_begin as its
endpoint argument for each occurrence of a taskwait-wait-begin event. Similarly, a thread
dispatches a registered ompt_callback_sync_region_wait callback with
ompt_sync_region_taskwait as its kind argument and ompt__scope_end as its endpoint
argument for each occurrence of a taskwait-wait-end event. These callbacks occur in the context of
the task that encounters the taskwait construct and have type signature
ompt_callback_sync_region_t.

CHAPTER 2. DIRECTIVES 231

o0 AW N =

~

14

15

16
17

18

19

20
21

22

23
24

2.17.6

232

Restrictions
The following restrictions apply to the taskwait construct:

o The mutexinoutset dependence-type may not appear in a depend clause on a taskwait
construct.

o If the dependence-type of a depend clause is depob3j then the dependence objects cannot
represent dependences of the mutexinoutset dependence type.

Cross References

e task construct, see Section 2.10.1 on page 135.

e Task scheduling, see Section 2.10.6 on page 149.

e depend clause, see Section 2.17.11 on page 255.

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.
e ompt_sync_region_taskwait, see Section 4.4.4.13 on page 444.

e ompt_callback_sync_region_t, see Section 4.5.2.13 on page 474.

taskgroup Construct

Summary

The taskgroup construct specifies a wait on completion of child tasks of the current task and
their descendent tasks.

Syntax
C/C++

The syntax of the taskgroup construct is as follows:

#pragma omp taskgroup [clause[[,] clause]...] new-line
structured-block

where clause is one of the following:

task_reduction (reduction-identifier : list)
allocate ([allocator:]list)

C/C++

OpenMP API — Version 5.0 November 2018

A ON =

ol

11

12
13
14
15

16
17

18

19
20

21
22

23
24

25
26

Fortran
The syntax of the taskgroup construct is as follows:

!Somp taskgroup [clause [[,] clause]...]
structured-block
!Somp end taskgroup

where clause is one of the following:
task_reduction (reduction-identifier : list)

allocate ([allocator:]list)

Fortran

Binding

The binding task set of a taskgroup region is all tasks of the current team that are generated in
the region. A taskgroup region binds to the innermost enclosing parallel region.

Description

When a thread encounters a taskgroup construct, it starts executing the region. All child tasks
generated in the taskgroup region and all of their descendants that bind to the same parallel
region as the taskgroup region are part of the taskgroup set associated with the taskgroup
region.

There is an implicit task scheduling point at the end of the taskgroup region. The current task is
suspended at the task scheduling point until all tasks in the taskgroup set complete execution.

Execution Model Events

The taskgroup-begin event occurs in each thread that encounters the taskgroup construct on
entry to the taskgroup region.

The taskgroup-wait-begin event occurs when a task begins an interval of active or passive waiting
in a taskgroup region.

The taskgroup-wait-end event occurs when a task ends an interval of active or passive waiting and
resumes execution in a taskgroup region.

The taskgroup-end event occurs in each thread that encounters the taskgroup construct after the
taskgroup synchronization on exit from the taskgroup region.

CHAPTER 2. DIRECTIVES 233

—_

0N O~ WN

11
12
13
14
15
16
17
18

19
20
21
22
23
24

25

26

27
28
29

2.17.7

234

Tool Callbacks

A thread dispatches a registered ompt_callback_sync_region callback with
ompt_sync_region_taskgroup as its kind argument and ompt_ scope_begin as its
endpoint argument for each occurrence of a raskgroup-begin event in the task that encounters the
taskgroup construct. Similarly, a thread dispatches a registered
ompt_callback_sync_region callback with ompt_sync_region_taskgroup as its
kind argument and ompt__scope_end as its endpoint argument for each occurrence of a
taskgroup-end event in the task that encounters the taskgroup construct. These callbacks occur
in the task that encounters the taskgroup construct and have the type signature
ompt_callback_sync_region_t.

A thread dispatches a registered ompt_callback_sync_region_wait callback with
ompt_sync_region_taskgroup as its kind argument and ompt_scope_begin as its
endpoint argument for each occurrence of a raskgroup-wait-begin event. Similarly, a thread
dispatches a registered ompt_callback_sync_region_wait callback with
ompt_sync_region_taskgroup as its kind argument and ompt_scope_end as its
endpoint argument for each occurrence of a raskgroup-wait-end event. These callbacks occur in the
context of the task that encounters the taskgroup construct and have type signature
ompt_callback_sync_region_t.

Cross References

e Task scheduling, see Section 2.10.6 on page 149.

e task_reduction Clause, see Section 2.19.5.5 on page 303.

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.
e ompt_sync_region_taskgroup, see Section 4.4.4.13 on page 444.

e ompt_callback_sync_region_t, see Section 4.5.2.13 on page 474.

atomic Construct

Summary

The atomic construct ensures that a specific storage location is accessed atomically, rather than
exposing it to the possibility of multiple, simultaneous reading and writing threads that may result
in indeterminate values.

OpenMP API — Version 5.0 November 2018

—_

© 0 N O [62 I ¢V B \V]

—_
o

11
12
13
14
15

16
17

18

19
20
21

22

23
24

25

26
27
28

29

30
31

Syntax

In the following syntax, atomic-clause is a clause that indicates the semantics for which atomicity is

enforced, memory-order-clause is a clause that indicates the memory ordering behavior of the

construct and clause is a clause other than atomic-clause. Specifically, atomic-clause is one of the

following:

read
write
update

capture
memory-order-clause is one of the following:

seq_cst
acq rel
release

acquire

relaxed

and clause is either memory-order-clause or one of the following:
I hint (hint-expression)

C/C++
The syntax of the atomic construct takes one of the following forms:

#pragma omp atomic [clause[[[,] clause] ... | [,]] atomic-clause
[[,] clause [[[,] clause] ...]] new-line

expression-stmt
or
#fpragma omp atomic [clause[[, | clause] ... | new-line

expression-stmt

or

#pragma omp atomic [clause[[[,] clause] ...][,]] capture
[[,] clause [[[,] clause] ...]] new-line
structured-block

where expression-stmt is an expression statement with one of the following forms:

o If atomic-clause is read:

|v=x;

CHAPTER 2. DIRECTIVES

235

N

O O©Woo~NO O~ W

35
36

37
38

236

C/C++ (cont.)

o If atomic-clause is write:

Ix = expr;

o If atomic-clause is update or not present:

x++;

x==;

++x;

——x;

x binop= expr;

X = x binop expr;
X expr binop x;

If atomic-clause is capture:

[
=
|
|

++x;

——x;

x binop= expr;

Xx = x binop expr;
X = expr binop x;

SERSEECEESHESERS IS
I]

-~

= x; x binop= expr; }
binop= expr; v = x; }
= x; x = x binop expr;
= X; Xx = expr binop x;
x binop expr; v = Xx;
expr binop x; v = Xx;
X; x = expr; }
xX; x++;
x; ++x;
vV = X;
X++; v = Xx;
Vv = X; X——;

AR S O k2 T - - T
o nouwon
ot gt

<+
<+
&

Vv = X; ——X;
-——X; vV = X;

e i e e e e e R e e e e)

e o o o o o o

X==; Vv = Xx;

In the preceding expressions:

e x and v (as applicable) are both /-value expressions with scalar type.

e During the execution of an atomic region, multiple syntactic occurrences of x must designate the

same storage location.

OpenMP API — Version 5.0 November 2018

and where structured-block is a structured block with one of the following forms:

—_

-
- 0O©O©W oONOO OO B~ W N

- 4
A WOMN

15

16
17
18

19

20
21
22

23

24
25
26

27

28
29
30

31

e Neither of v and expr (as applicable) may access the storage location designated by x.
e Neither of x and expr (as applicable) may access the storage location designated by v.
e expr is an expression with scalar type.

e binopisoneof +, x,—, /, & *, |, <<, or >>.

e binop, binop=, ++, and —— are not overloaded operators.

e The expression x binop expr must be numerically equivalent to x binop (expr). This requirement
is satisfied if the operators in expr have precedence greater than binop, or by using parentheses
around expr or subexpressions of expr.

e The expression expr binop x must be numerically equivalent to (expr) binop x. This requirement
is satisfied if the operators in expr have precedence equal to or greater than binop, or by using
parentheses around expr or subexpressions of expr.

e For forms that allow multiple occurrences of x, the number of times that x is evaluated is
unspecified.

e hint-expression is a constant integer expression that evaluates to a valid synchronization hint.

C/C++
Fortran
The syntax of the atomic construct takes any of the following forms:

'Somp atomic [clause[[[,] clause] ...] [,]] read [[,] clause [[[,] clause] ...]]
capture-statement
[!$omp end atomic]/

or

'Somp atomic [clause[[[,] clause] ...][,]] write [[,] clause [[[,] clause] ...]]
write-statement
[!$omp end atomic/

or
'Somp atomic [clause[[[,] clause] ... | [,]] update [[,] clause [[[,] clause] ... |]
update-statement
[!$omp end atomic]
or

'Somp atomic [clause[[, | clause] ... |
update-statement
[!$omp end atomic/

or

CHAPTER 2. DIRECTIVES 237

A OWN =

© oo NO O

10

11
12
13
14

15
16
17
18

19
20

21
22
23
24
25
26
27

28
29
30

31
32

33

238

Fortran (cont.)

'Somp atomic [clause[[[,] clause]... [[,]] capture [[,]clause [[[,] clause] ...]]
update-statement
capture-statement

!Somp end atomic

or

'Somp atomic [clause[[[,] clause]... | [,]] capture [[,]clause [[[,] clause] ...]]
capture-statement
update-statement

!$Somp end atomic

or

'Somp atomic [clause[[[,] clause]... | [,]] capture [[,]clause [[[,] clause] ...]]
capture-statement
write-statement

!Somp end atomic

where write-statement has the following form (if atomic-clause is capture or write):
I X = expr

where capture-statement has the following form (if atomic-clause is capture or read):
I -

and where update-statement has one of the following forms (if atomic-clause is update,
capture, or not present):

X = X operator expr
X = expr operator x
Xx = intrinsic_procedure_name (x, expr_list)
x = intrinsic_procedure_name (expr_list, x)

In the preceding statements:
e x and v (as applicable) are both scalar variables of intrinsic type.
e x must not have the ALLOCATABLE attribute.

e During the execution of an atomic region, multiple syntactic occurrences of x must designate the
same storage location.

e None of v, expr, and expr_list (as applicable) may access the same storage location as x.

OpenMP API — Version 5.0 November 2018

22

23
24
25
26
27

28
29

30
31

e None of x, expr, and expr_list (as applicable) may access the same storage location as v.
e expr is a scalar expression.

e expr_list is a comma-separated, non-empty list of scalar expressions. If
intrinsic_procedure_name refers to IAND, IOR, or IEOR, exactly one expression must appear in
expr_list.

e intrinsic_procedure_name is one of MAX, MIN, IAND, IOR, or IEOR.
e operatorisoneof +, x,—, /, .AND., .OR., .EQV., or .NEQV..

e The expression x operator expr must be numerically equivalent to x operator (expr). This
requirement is satisfied if the operators in expr have precedence greater than operator, or by
using parentheses around expr or subexpressions of expr.

e The expression expr operator x must be numerically equivalent to (expr) operator x. This
requirement is satisfied if the operators in expr have precedence equal to or greater than
operator, or by using parentheses around expr or subexpressions of expr.

e intrinsic_procedure_name must refer to the intrinsic procedure name and not to other program
entities.

e operator must refer to the intrinsic operator and not to a user-defined operator.
o All assignments must be intrinsic assignments.

e For forms that allow multiple occurrences of x, the number of times that x is evaluated is
unspecified.

e hint-expression is a constant expression that evaluates to a scalar value with kind
omp_sync_hint_kind and a value that is a valid synchronization hint.

Fortran

Binding

If the size of x is 8, 16, 32, or 64 bits and x is aligned to a multiple of its size, the binding thread set
for the atomic region is all threads on the device. Otherwise, the binding thread set for the
atomic region is all threads in the contention group. atomic regions enforce exclusive access
with respect to other atomic regions that access the same storage location x among all threads in
the binding thread set without regard to the teams to which the threads belong.

Description
If atomic-clause is not present on the construct, the behavior is as if the update clause is specified.

The atomic construct with the read clause results in an atomic read of the location designated
by x regardless of the native machine word size.

CHAPTER 2. DIRECTIVES 239

0 NOoO O~ W N-=

[Gy
OOk WN = O

NDNDMNMNDMNDNDNDODN = = =
NOoO OO~ WN = O © 0N

W wnNn N
- O © ©

W www
a b~ wWwN

W w w
@© N o

A W
o ©

240

The atomic construct with the write clause results in an atomic write of the location designated
by x regardless of the native machine word size.

The atomic construct with the update clause results in an atomic update of the location
designated by x using the designated operator or intrinsic. Only the read and write of the location
designated by x are performed mutually atomically. The evaluation of expr or expr_list need not be
atomic with respect to the read or write of the location designated by x. No task scheduling points
are allowed between the read and the write of the location designated by x.

The atomic construct with the capture clause results in an atomic captured update — an
atomic update of the location designated by x using the designated operator or intrinsic while also
capturing the original or final value of the location designated by x with respect to the atomic
update. The original or final value of the location designated by x is written in the location
designated by v based on the base language semantics of structured block or statements of the
atomic construct. Only the read and write of the location designated by x are performed mutually
atomically. Neither the evaluation of expr or expr_list, nor the write to the location designated by v,
need be atomic with respect to the read or write of the location designated by x. No task scheduling
points are allowed between the read and the write of the location designated by x.

The atomic construct may be used to enforce memory consistency between threads, based on the
guarantees provided by Section 1.4.6 on page 28. A strong flush on the location designated by x is
performed on entry to and exit from the atomic operation, ensuring that the set of all atomic
operations in the program applied to the same location has a total completion order. If the write,
update, or capture clause is specified and the release, acq_rel, or seq_cst clause is
specified then the strong flush on entry to the atomic operation is also a release flush. If the read
or capture clause is specified and the acquire, acq_rel, or seq_cst clause is specified
then the strong flush on exit from the atomic operation is also an acquire flush. Therefore, if
memory-order-clause is specified and is not relaxed, release and/or acquire flush operations are
implied and permit synchronization between the threads without the use of explicit £1lush
directives.

For all forms of the atomic construct, any combination of two or more of these atomic
constructs enforces mutually exclusive access to the locations designated by x among threads in the
binding thread set. To avoid data races, all accesses of the locations designated by x that could
potentially occur in parallel must be protected with an atomic construct.

atomic regions do not guarantee exclusive access with respect to any accesses outside of
atomic regions to the same storage location x even if those accesses occur during a critical
or ordered region, while an OpenMP lock is owned by the executing task, or during the
execution of a reduction clause.

However, other OpenMP synchronization can ensure the desired exclusive access. For example, a
barrier that follows a series of atomic updates to x guarantees that subsequent accesses do not form
arace with the atomic accesses.

A compliant implementation may enforce exclusive access between atomic regions that update
different storage locations. The circumstances under which this occurs are implementation defined.

OpenMP API — Version 5.0 November 2018

NOoO O~ W NN =

10

11
12

13
14

15

16
17
18

19
20
21

22
23
24
25
26

27
28
29
30
31
32

If the storage location designated by x is not size-aligned (that is, if the byte alignment of x is not a
multiple of the size of x), then the behavior of the atomic region is implementation defined.

If present, the hint clause gives the implementation additional information about the expected
properties of the atomic operation that can optionally be used to optimize the implementation. The
presence of a hint clause does not affect the semantics of the atomic construct, and all hints
may be ignored. If no hint clause is specified, the effect is as if

hint (omp_sync_hint_none) had been specified.

Execution Model Events

The atomic-acquiring event occurs in the thread that encounters the atomic construct on entry to
the atomic region before initiating synchronization for the region.

The atomic-acquired event occurs in the thread that encounters the atomic construct after it
enters the region, but before it executes the structured block of the atomic region.

The atomic-released event occurs in the thread that encounters the atomic construct after it
completes any synchronization on exit from the atomic region.

Tool Callbacks

A thread dispatches a registered ompt_callback_mutex_acquire callback for each
occurrence of an atomic-acquiring event in that thread. This callback has the type signature
ompt_callback mutex acquire_t.

A thread dispatches a registered ompt_callback_mutex_acquired callback for each
occurrence of an atomic-acquired event in that thread. This callback has the type signature
ompt_callback_mutex_t.

A thread dispatches a registered ompt_callback_mutex_released callback with
ompt_mutex_atomic as the kind argument if practical, although a less specific kind may be
used, for each occurrence of an atomic-released event in that thread. This callback has the type
signature ompt_callback_mutex_t and occurs in the task that encounters the atomic
construct.

Restrictions

The following restrictions apply to the atomiec construct:

e OpenMP constructs may not be encountered during execution of an atomiec region.
e At most one memory-order-clause may appear on the construct.

e At most one hint clause may appear on the construct.

e If atomic-clause is read then memory-order-clause must not be acq_rel or release.

CHAPTER 2. DIRECTIVES 241

10
11
12
13
14
15
16
17
18

19

20

21
22
23
24

2.17.8

242

o If atomic-clause is write then memory-order-clause must not be acq_rel or acquire.

o If atomic-clause is update or not present then memory-order-clause must not be acq_rel or
acquire.

C/C++

e All atomic accesses to the storage locations designated by x throughout the program are required
to have a compatible type.

C/C++
Fortran

e All atomic accesses to the storage locations designated by x throughout the program are required
to have the same type and type parameters.

Fortran

Cross References

e critical construct, see Section 2.17.1 on page 223.

e barrier construct, see Section 2.17.2 on page 226.

e flush construct, see Section 2.17.8 on page 242.

e ordered construct, see Section 2.17.9 on page 250.

e Synchronization Hints, see Section 2.17.12 on page 260.

e reduction clause, see Section 2.19.5.4 on page 300.

e lock routines, see Section 3.3 on page 381.

e ompt_mutex_atomic, see Section 4.4.4.16 on page 445.

e ompt_callback_mutex_acquire_t, see Section 4.5.2.14 on page 476.

e ompt_callback mutex_t, see Section 4.5.2.15 on page 477.

flush Construct

Summary

The £1lush construct executes the OpenMP flush operation. This operation makes a thread’s
temporary view of memory consistent with memory and enforces an order on the memory
operations of the variables explicitly specified or implied. See the memory model description in
Section 1.4 on page 23 for more details. The £1ush construct is a stand-alone directive.

OpenMP API — Version 5.0 November 2018

w

N OO O

©

10

11
12
13

14

15
16
17
18
19

20

21
22
23
24
25
26
27

Syntax
C/C++

The syntax of the £1ush construct is as follows:

I#pragma omp flush [memory-order-clause] [(list) | new-line

where memory-order-clause is one of the following:

acq _rel

release

acquire
C/C++
Fortran

The syntax of the £1ush construct is as follows:

I 'Somp flush [memory-order-clause] [(list)]

where memory-order-clause is one of the following:

acq rel
release
acquire

Fortran

Binding

The binding thread set for a £1ush region is the encountering thread. Execution of a £lush
region affects the memory and the temporary view of memory of only the thread that executes the
region. It does not affect the temporary view of other threads. Other threads must themselves

execute a flush operation in order to be guaranteed to observe the effects of the flush operation of
the encountering thread.

Description

If memory-order-clause is not specified then the £1ush construct results in a strong flush operation
with the following behavior. A £1lush construct without a list, executed on a given thread, operates
as if the whole thread-visible data state of the program, as defined by the base language, is flushed.
A f£1lush construct with a list applies the flush operation to the items in the list, and the flush
operation does not complete until the operation is complete for all specified list items. An
implementation may implement a £1ush with a list by ignoring the list, and treating it the same as
a £lush without a list.

CHAPTER 2. DIRECTIVES 243

a A~ WO =

»

10
11
12
13

14

15
16
17
18
19
20
21
22
23
24

244

If no list items are specified, the flush operation has the release and/or acquire flush properties:

o If memory-order-clause is not specified or is acq_rel, the flush operation is both a release
flush and an acquire flush.

o If memory-order-clause is release, the flush operation is a release flush.

o If memory-order-clause is acquire, the flush operation is an acquire flush.

C/C++

If a pointer is present in the list, the pointer itself is flushed, not the memory block to which the
pointer refers.

C/C++

Fortran
If the list item or a subobject of the list item has the POINTER attribute, the allocation or
association status of the POINTER item is flushed, but the pointer target is not. If the list item is a
Cray pointer, the pointer is flushed, but the object to which it points is not. If the list item is of type
C_PTR, the variable is flushed, but the storage that corresponds to that address is not flushed. If the
list item or the subobject of the list item has the ALLOCATABLE attribute and has an allocation
status of allocated, the allocated variable is flushed; otherwise the allocation status is flushed.

Fortran

v v
Note — Use of a £1lush construct with a list is extremely error prone and users are strongly
discouraged from attempting it. The following examples illustrate the ordering properties of the
flush operation. In the following incorrect pseudocode example, the programmer intends to prevent
simultaneous execution of the protected section by the two threads, but the program does not work
properly because it does not enforce the proper ordering of the operations on variables a and b.
Any shared data accessed in the protected section is not guaranteed to be current or consistent
during or after the protected section. The atomic notation in the pseudocode in the following two
examples indicates that the accesses to a and b are atomic write and atomic read operations.
Otherwise both examples would contain data races and automatically result in unspecified behavior.
The flush operations are strong flushes that are applied to the specified flush lists

OpenMP API — Version 5.0 November 2018

- O © @ NOoO ok~ WD

—_

12

Incorrect example:

thread 1

atomic(b = 1)

Sflush (b)

flush (a)

atomic (tmp = a)

if (tmp == 0) then
protected section

end if

thread 2

atomic(a = 1)

flush (a)

flush (b)

atomic (tmp = b)

if (tmp == 0) then
protected section

end if

The problem with this example is that operations on variables a and b are not ordered with respect
to each other. For instance, nothing prevents the compiler from moving the flush of b on thread 1 or
the flush of a on thread 2 to a position completely after the protected section (assuming that the
protected section on thread 1 does not reference b and the protected section on thread 2 does not
reference a). If either re-ordering happens, both threads can simultaneously execute the protected

section.

The following pseudocode example correctly ensures that the protected section is executed by not
more than one of the two threads at any one time. Execution of the protected section by neither
thread is considered correct in this example. This occurs if both flushes complete prior to either

thread executing its i £ statement.

Correct example:

thread 1

atomic(b = 1)

flush (a, b)

atomic (tmp = a)

if (tmp == 0) then
protected section

end if

thread 2

atomic(a = 1)

flush (a, b)

atomic (tmp = b)

if (tmp == 0) then
protected section

end if

CHAPTER 2. DIRECTIVES 245

A ON =

©

10
11

12
13

14
15

16

17

18
19

20
21
22
23
24
25
26

2.17.8.1

246

The compiler is prohibited from moving the flush at all for either thread, ensuring that the

respective assignment is complete and the data is flushed before the i £ statement is executed.
A A

Execution Model Events

The flush event occurs in a thread that encounters the £1ush construct.

Tool Callbacks

A thread dispatches a registered ompt__callback_f£flush callback for each occurrence of a
flush event in that thread. This callback has the type signature ompt_callback_flush_t.

Restrictions
The following restrictions apply to the £1ush construct:

o If memory-order-clause is release, acquire, or acq_rel, list items must not be specified
on the £1lush directive.

Cross References
e ompt_callback_flush_t, see Section 4.5.2.17 on page 480.

Implicit Flushes

Flush operations implied when executing an atomic region are described in Section 2.17.7.

A flush region that corresponds to a £1ush directive with the release clause present is
implied at the following locations:

e During a barrier region;

e Atentry to a parallel region;

e Atentry to a teams region;

e Atexit from a critical region;

e During an omp_unset_lock region;

e During an omp_unset_nest_1lock region;

e Immediately before every task scheduling point;

OpenMP API — Version 5.0 November 2018

o © 0o N oo A N =

_ A A a
D o B~ WO ND =

—_ -
o

N —
o ©

N DN
o O b~ WO DN =

W WM NN
— O © 0 N

At exit from the task region of each implicit task;

At exit from an ordered region, if a threads clause or a depend clause with a source
dependence type is present, or if no clauses are present; and

During a cancel region, if the cancel-var ICV is true.

A flush region that corresponds to a £1lush directive with the acquire clause present is
implied at the following locations:

During a barrier region;

At exit from a teams region;

Atentry to a critical region;

If the region causes the lock to be set, during:

— an omp_set_lock region;

an omp_test_lock region;

— an omp_set_nest_lock region; and

an omp_test_nest_1lock region;
Immediately after every task scheduling point;
At entry to the task region of each implicit task;

At entry to an ordered region, if a threads clause or a depend clause with a sink
dependence type is present, or if no clauses are present; and

Immediately before a cancellation point, if the cancel-var ICV is true and cancellation has been
activated.

v v
Note — A flush region is not implied at the following locations:

e At entry to worksharing regions; and

e At entry to or exit from master regions.

A A

The synchronization behavior of implicit flushes is as follows:

When a thread executes an atomie region for which the corresponding construct has the
release, acq_rel, or seq_cst clause and specifies an atomic operation that starts a given
release sequence, the release flush that is performed on entry to the atomic operation
synchronizes with an acquire flush that is performed by a different thread and has an associated
atomic operation that reads a value written by a modification in the release sequence.

CHAPTER 2. DIRECTIVES 247

oNO O~ ON =

©

—_ —a
N = O

- . a a
o Ok W

—_ a4
© o

NN NN
wnNn = O

NN NN
NOo Oobh

W NN
o ©

W W W w
2N =

W www
o N o O

248

When a thread executes an atomic region for which the corresponding construct has the
acquire, acq_rel, or seq_cst clause and specifies an atomic operation that reads a value
written by a given modification, a release flush that is performed by a different thread and has an
associated release sequence that contains that modification synchronizes with the acquire flush
that is performed on exit from the atomic operation.

When a thread executes a critical region that has a given name, the behavior is as if the
release flush performed on exit from the region synchronizes with the acquire flush performed on
entry to the next critical region with the same name that is performed by a different thread,
if it exists.

When a thread team executes a barrier region, the behavior is as if the release flush
performed by each thread within the region synchronizes with the acquire flush performed by all
other threads within the region.

When a thread executes a taskwait region that does not result in the creation of a dependent
task, the behavior is as if each thread that executes a remaining child task performs a release flush
upon completion of the child task that synchronizes with an acquire flush performed in the
taskwait region.

When a thread executes a taskgroup region, the behavior is as if each thread that executes a
remaining descendant task performs a release flush upon completion of the descendant task that
synchronizes with an acquire flush performed on exit from the taskgroup region.

When a thread executes an ordered region that does not arise from a stand-alone ordered
directive, the behavior is as if the release flush performed on exit from the region synchronizes
with the acquire flush performed on entry to an ordered region encountered in the next logical
iteration to be executed by a different thread, if it exists.

When a thread executes an ordered region that arises from a stand-alone ordered directive,
the behavior is as if the release flush performed in the ordered region from a given source
iteration synchronizes with the acquire flush performed in all ordered regions executed by a
different thread that are waiting for dependences on that iteration to be satisfied.

When a thread team begins execution of a parallel region, the behavior is as if the release
flush performed by the master thread on entry to the parallel region synchronizes with the
acquire flush performed on entry to each implicit task that is assigned to a different thread.

When an initial thread begins execution of a target region that is generated by a different
thread from a target task, the behavior is as if the release flush performed by the generating
thread in the target task synchronizes with the acquire flush performed by the initial thread on
entry to its initial task region.

When an initial thread completes execution of a target region that is generated by a different
thread from a target task, the behavior is as if the release flush performed by the initial thread on
exit from its initial task region synchronizes with the acquire flush performed by the generating
thread in the target task.

OpenMP API — Version 5.0 November 2018

- —a a -
[62 I~ ¢V B \V] - OO 00 ~NO O, A ODND =

-
©O© 0N

DN NN
W N = O

DN NN
o ~NOo 0N

W W wwnNn
W N = O o

W W W W W
o No oA

When a thread encounters a teams construct, the behavior is as if the release flush performed by
the thread on entry to the teams region synchronizes with the acquire flush performed on entry
to each initial task that is executed by a different initial thread that participates in the execution of
the teams region.

When a thread that encounters a teams construct reaches the end of the teams region, the
behavior is as if the release flush performed by each different participating initial thread at exit
from its initial task synchronizes with the acquire flush performed by the thread at exit from the
teams region.

When a task generates an explicit task that begins execution on a different thread, the behavior is
as if the thread that is executing the generating task performs a release flush that synchronizes
with the acquire flush performed by the thread that begins to execute the explicit task.

When an undeferred task completes execution on a given thread that is different from the thread
on which its generating task is suspended, the behavior is as if a release flush performed by the
thread that completes execution of the undeferred task synchronizes with an acquire flush
performed by the thread that resumes execution of the generating task.

When a dependent task with one or more predecessor tasks begins execution on a given thread,
the behavior is as if each release flush performed by a different thread on completion of a
predecessor task synchronizes with the acquire flush performed by the thread that begins to
execute the dependent task.

When a task begins execution on a given thread and it is mutually exclusive with respect to
another sibling task that is executed by a different thread, the behavior is as if each release flush
performed on completion of the sibling task synchronizes with the acquire flush performed by
the thread that begins to execute the task.

When a thread executes a cancel region, the cancel-var ICV is true, and cancellation is not
already activated for the specified region, the behavior is as if the release flush performed during
the cancel region synchronizes with the acquire flush performed by a different thread
immediately before a cancellation point in which that thread observes cancellation was activated
for the region.

When a thread executes an omp_unset_lock region that causes the specified lock to be unset,
the behavior is as if a release flush is performed during the omp_unset_lock region that
synchronizes with an acquire flush that is performed during the next omp_set_1lock or
omp_test_lock region to be executed by a different thread that causes the specified lock to be
set.

When a thread executes an omp_unset_nest_lock region that causes the specified nested
lock to be unset, the behavior is as if a release flush is performed during the
omp_unset_nest_lock region that synchronizes with an acquire flush that is performed
during the next omp_set_nest_lock or omp_test_nest_lock region to be executed by
a different thread that causes the specified nested lock to be set.

CHAPTER 2. DIRECTIVES 249

—_

NOoO kAW N

10
11

12

13
14

15
16

17

18
19

20

21
22
23

24

25
26

27
28

2.17.9 ordered Construct

Summary

The ordered construct either specifies a structured block in a worksharing-loop, simd, or
worksharing-loop SIMD region that will be executed in the order of the loop iterations, or it is a
stand-alone directive that specifies cross-iteration dependences in a doacross loop nest. The
ordered construct sequentializes and orders the execution of ordered regions while allowing
code outside the region to run in parallel.

Syntax
C/C++

The syntax of the ordered construct is as follows:

#pragma omp ordered [clause[[,] clause] | new-line
structured-block

where clause is one of the following:

threads
simd

or

I #pragma omp ordered clause [[[,] clause] ...] new-line

where clause is one of the following:

depend (source)
depend (sink : vec)

C/C++
Fortran
The syntax of the ordered construct is as follows:

'$Somp ordered [clause[[,] clause] |
structured-block
!$Somp end ordered

where clause is one of the following:
threads
simd

or

I '$Somp ordered clause [[[,] clause] ... |

250 OpenMP API — Version 5.0 November 2018

© 00N O

11
12
13
14
15
16

17
18
19
20
21
22
23
24
25

26

27
28

29
30

31
32

where clause is one of the following:

depend (source)
depend (sink : vec)
Fortran

If the depend clause is specified, the ordered construct is a stand-alone directive.

Binding
The binding thread set for an ordered region is the current team. An ordered region binds to
the innermost enclosing simd or worksharing-loop SIMD region if the simd clause is present, and

otherwise it binds to the innermost enclosing worksharing-loop region. ordered regions that bind
to different regions execute independently of each other.

Description

If no clause is specified, the ordered construct behaves as if the threads clause had been
specified. If the threads clause is specified, the threads in the team that is executing the
worksharing-loop region execute ordered regions sequentially in the order of the loop iterations.
If any depend clauses are specified then those clauses specify the order in which the threads in the
team execute ordered regions. If the simd clause is specified, the ordered regions
encountered by any thread will execute one at a time in the order of the loop iterations.

When the thread that is executing the first iteration of the loop encounters an ordered construct,
it can enter the ordered region without waiting. When a thread that is executing any subsequent
iteration encounters an ordered construct without a depend clause, it waits at the beginning of
the ordered region until execution of all ordered regions belonging to all previous iterations
has completed. When a thread that is executing any subsequent iteration encounters an ordered
construct with one or more depend (sink:vec) clauses, it waits until its dependences on all
valid iterations specified by the depend clauses are satisfied before it completes execution of the
ordered region. A specific dependence is satisfied when a thread that is executing the
corresponding iteration encounters an ordered construct with a depend (source) clause.

Execution Model Events

The ordered-acquiring event occurs in the task that encounters the ordered construct on entry to
the ordered region before it initiates synchronization for the region.

The ordered-acquired event occurs in the task that encounters the ordered construct after it
enters the region, but before it executes the structured block of the ordered region.

The ordered-released event occurs in the task that encounters the ordered construct after it
completes any synchronization on exit from the ordered region.

CHAPTER 2. DIRECTIVES 251

AW N =

- O©W oOo~NO® O

—_

13
14
15
16

17
18
19
20
21
22
23

24
25
26
27
28

29
30

31
32

252

The doacross-sink event occurs in the task that encounters a ordered construct for each
depend (sink:vec) clause after the dependence is fulfilled.

The doacross-source event occurs in the task that encounters a ordered construct with a
depend (source:vec) clause before signaling the dependence to be fulfilled.

Tool Callbacks

A thread dispatches a registered ompt_callback_mutex_acquire callback for each
occurrence of an ordered-acquiring event in that thread. This callback has the type signature
ompt_callback_mutex acquire_t.

A thread dispatches a registered ompt_callback_mutex_acquired callback for each
occurrence of an ordered-acquired event in that thread. This callback has the type signature
ompt_callback_mutex_t.

A thread dispatches a registered ompt__callback_mutex_released callback with
ompt_mutex_ordered as the kind argument if practical, although a less specific kind may be
used, for each occurrence of an ordered-released event in that thread. This callback has the type
signature ompt__callback_mutex_t and occurs in the task that encounters the atomic
construct.

A thread dispatches a registered ompt_callback_dependences callback with all vector
entries listed as ompt__dependence_type_sink in the deps argument for each occurrence of a
doacross-sink event in that thread. A thread dispatches a registered
ompt_callback_dependences callback with all vector entries listed as
ompt__dependence_type_source in the deps argument for each occurrence of a
doacross-source event in that thread. These callbacks have the type signature
ompt_callback_dependences_t.

Restrictions

Restrictions to the ordered construct are as follows:

e At most one threads clause can appear on an ordered construct.

e At most one simd clause can appear on an ordered construct.

e At most one depend (source) clause can appear on an ordered construct.

e The construct corresponding to the binding region of an ordered region must not specify a
reduction clause with the inscan modifier.

e Either depend (sink:vec) clauses or depend (source) clauses may appear on an
ordered construct, but not both.

OpenMP API — Version 5.0 November 2018

- O O @ N O O A ODND =

- a a4
w N

-
[epIé) IE N

- a
© 00

20
21

22
23
24
25
26
27
28
29

The worksharing-loop or worksharing-loop SIMD region to which an ordered region
corresponding to an ordered construct without a depend clause binds must have an
ordered clause without the parameter specified on the corresponding worksharing-loop or
worksharing-loop SIMD directive.

The worksharing-loop region to which an ordered region corresponding to an ordered
construct with any depend clauses binds must have an ordered clause with the parameter
specified on the corresponding worksharing-loop directive.

An ordered construct with the depend clause specified must be closely nested inside a
worksharing-loop (or parallel worksharing-loop) construct.

An ordered region corresponding to an ordered construct without the simd clause
specified must be closely nested inside a loop region.

An ordered region corresponding to an ordered construct with the simd clause specified
must be closely nested inside a simd or worksharing-loop SIMD region.

An ordered region corresponding to an ordered construct with both the simd and
threads clauses must be closely nested inside a worksharing-loop SIMD region or must be
closely nested inside a worksharing-loop and simd region.

During execution of an iteration of a worksharing-loop or a loop nest within a worksharing-loop,
simd, or worksharing-loop SIMD region, a thread must not execute more than one ordered
region corresponding to an ordered construct without a depend clause.

C++

A throw executed inside a ordered region must cause execution to resume within the same
ordered region, and the same thread that threw the exception must catch it.

C++

Cross References

worksharing-loop construct, see Section 2.9.2 on page 101.

simd construct, see Section 2.9.3.1 on page 110.

parallel Worksharing-loop construct, see Section 2.13.1 on page 185.
depend Clause, see Section 2.17.11 on page 255

ompt_mutex_ordered, see Section 4.4.4.16 on page 445.
ompt_callback_mutex_acquire_t, see Section 4.5.2.14 on page 476.
ompt_callback_mutex_t, see Section 4.5.2.15 on page 477.

CHAPTER 2. DIRECTIVES 253

—_

No g~ 0N

10
11

12

13
14

15
16

17
18
19

20
21

22
23

24
25
26

2.17.10 Depend Objects

This section describes constructs that support OpenMP depend objects that can be used to supply
user-computed dependences to depend clauses. OpenMP depend objects must be accessed only
through the depobj construct or through the depend clause; programs that otherwise access
OpenMP depend objects are non-conforming.

An OpenMP depend object can be in one of the following states: uninitialized or initialized.
Initially OpenMP depend objects are in the uninitialized state.

2.17.10.1depobj Construct

Summary

The depobj construct initializes, updates or destroys an OpenMP depend object. The depob j
construct is a stand-alone directive.

Syntax
C/C++
The syntax of the depob3j construct is as follows:
I #pragma omp depobj (depobj) clause new-line
where depobj is an lvalue expression of type omp_depend._t.

where clause is one of the following:

depend (dependence-type : locator)
destroy
update (dependence-type)

C/C++
Fortran
The syntax of the depob3j construct is as follows:
| !$omp depobj (depob)) clause
where depobj is a scalar integer variable of the omp_depend_kind kind.

where clause is one of the following:

depend (dependence-type : locator)
destroy
update (dependence-type)

Fortran

254 OpenMP API — Version 5.0 November 2018

o © N O o~ O

11
12

13

14
15

16
17

18
19

20
21

22

23

24
25

2.17.11

Binding

The binding thread set for depobj regions is the encountering thread.

Description

A depobj construct with a depend clause present sets the state of depobj to initialized. The
depobj is initialized to represent the dependence that the depend clause specifies.

A depobj construct with a destroy clause present changes the state of the depobj to
uninitialized.

A depobj construct with an update clause present changes the dependence type of the
dependence represented by depobj to the one specified by the update clause.

Restrictions

e A depend clause on a depobj construct must not have source, sink or depobj as
dependence-type.

e A depend clause on a depob3j construct can only specify one locator.

e The depobj of a depobj construct with the depend clause present must be in the uninitialized
state.

o The depobj of a depobj construct with the dest roy clause present must be in the initialized
state.

o The depobj of a depobj construct with the update clause present must be in the initialized
state.

Cross References

e depend clause, see Section 2.17.11 on page 255.

depend Clause

Summary

The depend clause enforces additional constraints on the scheduling of tasks or loop iterations.
These constraints establish dependences only between sibling tasks or between loop iterations.

CHAPTER 2. DIRECTIVES 255

© 0o N o O @ »

11

12
13

14
15

16
17
18
19

20
21

22
23
24

25

26
27
28
29
30

256

Syntax

The syntax of the depend clause is as follows:

I depend (/depend-modifier, |dependence-type : locator-list)
where dependence-type is one of the following:

in

out

inout

mutexinoutset

depobj
where depend-modifier is one of the following:
I iterator (iterators-definition)

or
I depend (dependence-type)
where dependence-type is:
I source
or
I depend (dependence-type : vec)
where dependence-type is:
I sink
and where vec is the iteration vector, which has the form:
x; [£di], %0 [£da], ..., X, [dy]

where n is the value specified by the ordered clause in the worksharing-loop directive, x; denotes
the loop iteration variable of the i-th nested loop associated with the worksharing-loop directive,
and d; is a constant non-negative integer.

Description

Task dependences are derived from the dependence-type of a depend clause and its list items
when dependence-type is in, out, inout, or mutexinoutset. When the dependence-type is
depobj, the task dependences are derived from the dependences represented by the depend
objects specified in the depend clause as if the depend clauses of the depobj constructs were
specified in the current construct.

OpenMP API — Version 5.0 November 2018

0 N O O A O =

11
12

13
14
15
16

17
18

19

20
21
22

23

24

25
26
27
28
29

30
31

32
33

For the in dependence-type, if the storage location of at least one of the list items is the same as the
storage location of a list item appearing in a depend clause with an out, inout, or
mutexinoutset dependence-type on a construct from which a sibling task was previously
generated, then the generated task will be a dependent task of that sibling task.

For the out and inout dependence-types, if the storage location of at least one of the list items is
the same as the storage location of a list item appearing in a depend clause with an in, out,
inout, or mutexinoutset dependence-type on a construct from which a sibling task was
previously generated, then the generated task will be a dependent task of that sibling task.

For the mutexinoutset dependence-type, if the storage location of at least one of the list items
is the same as the storage location of a list item appearing in a depend clause with an in, out, or
inout dependence-type on a construct from which a sibling task was previously generated, then
the generated task will be a dependent task of that sibling task.

If a list item appearing in a depend clause with a mutexinoutset dependence-type on a
task-generating construct has the same storage location as a list item appearing in a depend clause
with a mutexinoutset dependence-type on a different task generating construct, and both
constructs generate sibling tasks, the sibling tasks will be mutually exclusive tasks.

The list items that appear in the depend clause may reference iterators defined by an
iterators-definition appearing on an iterator modifier.

The list items that appear in the depend clause may include array sections.

Fortran
If a list item has the ALLOCATABLE attribute and its allocation status is unallocated, the behavior
is unspecified. If a list item has the POINTER attribute and its association status is disassociated or
undefined, the behavior is unspecified.

Fortran
C/C++
The list items that appear in a depend clause may use shape-operators.
C/C++
v v

Note — The enforced task dependence establishes a synchronization of memory accesses
performed by a dependent task with respect to accesses performed by the predecessor tasks.
However, it is the responsibility of the programmer to synchronize properly with respect to other

concurrent accesses that occur outside of those tasks.
A A

The source dependence-type specifies the satisfaction of cross-iteration dependences that arise
from the current iteration.

The sink dependence-type specifies a cross-iteration dependence, where the iteration vector vec
indicates the iteration that satisfies the dependence.

CHAPTER 2. DIRECTIVES 257

OO W N =

10

11
12

13

14
15
16

17
18
19

20
21

22
23

24
25

26
27

28
29

30
31

258

If the iteration vector vec does not occur in the iteration space, the depend clause is ignored. If all
depend clauses on an ordered construct are ignored then the construct is ignored.

v v
Note — An iteration vector vec that does not indicate a lexicographically earlier iteration may cause
a deadlock.

A A

Execution Model Events

The task-dependences event occurs in a thread that encounters a task generating construct or a
taskwait construct with a depend clause immediately after the task-create event for the new
task or the taskwait-begin event.

The task-dependence event indicates an unfulfilled dependence for the generated task. This event
occurs in a thread that observes the unfulfilled dependence before it is satisfied.

Tool Callbacks

A thread dispatches the ompt_callback_dependences callback for each occurrence of the
task-dependences event to announce its dependences with respect to the list items in the depend
clause. This callback has type signature ompt_callback_dependences_t.

A thread dispatches the ompt__callback_task_dependence callback for a task-dependence
event to report a dependence between a predecessor task (src_task_data) and a dependent task
(sink_task_data). This callback has type signature ompt_callback_task_ dependence_t.

Restrictions
Restrictions to the depend clause are as follows:

e List items used in depend clauses of the same task or sibling tasks must indicate identical
storage locations or disjoint storage locations.

e List items used in depend clauses cannot be zero-length array sections.
e Array sections cannot be specified in depend clauses with the depobj dependence type.

e List items used in depend clauses with the depobj dependence type must be depend objects
in the initialized state.

C/C++

e List items used in depend clauses with the depobj dependence type must be expressions of
the omp_depend_t type.

e List items used in depend clauses with the in, out, inout or mutexinoutset
dependence types cannot be expressions of the omp_depend_t type.

C/C++

OpenMP API — Version 5.0 November 2018

w N

N o O A

10
11
12

13

14
15
16
17
18
19
20
21
22
23
24
25
26

Fortran
A common block name cannot appear in a depend clause.

List items used in depend clauses with the depobj dependence type must be integer
expressions of the omp_depend_kind kind.

Fortran

For a vec element of sink dependence-type of the form x; 4 d; or x; — d; if the loop iteration
variable x; has an integral or pointer type, the expression x; + d; or X; — d; for any value of the
loop iteration variable x; that can encounter the ordered construct must be computable without

overflow in the type of the loop iteration variable.

C++

For a vec element of sink dependence-type of the form x; 4 d; or x; — d; if the loop iteration

variable x; is of a random access iterator type other than pointer type, the expression
(xi —Ib;) + dj or (x; — Ib;) — d; for any value of the loop iteration variable x; that can

encounter the ordered construct must be computable without overflow in the type that would

be used by std::distance applied to variables of the type of x;.

C++
C/C++

A bit-field cannot appear in a depend clause.

C/C++

Cross References

Array sections, see Section 2.1.5 on page 44.

Iterators, see Section 2.1.6 on page 47.

task construct, see Section 2.10.1 on page 135.

Task scheduling constraints, see Section 2.10.6 on page 149.
target enter data construct, see Section 2.12.3 on page 164.
target exit data construct, see Section 2.12.4 on page 166.
target construct, see Section 2.12.5 on page 170.

target update construct, see Section 2.12.6 on page 176.
ordered construct, see Section 2.17.9 on page 250.

depobj construct, see Section 2.17.10.1 on page 254.
ompt_callback_dependences_t, see Section 4.5.2.8 on page 468.

ompt_callback_task_dependence_t, see Section 4.5.2.9 on page 470.

CHAPTER 2. DIRECTIVES

259

1 2.17.12 Synchronization Hints

O W NOOHA~WNMN

—_

12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38

260

Hints about the expected dynamic behavior or suggested implementation can be provided by the
programmer to locks (by using the omp_init_lock_with_hint or
omp_init_nest_lock_with_ hint functions to initialize the lock), and to atomic and

critical directives by using the hint clause. The effect of a hint does not change the semantics

of the associated construct; if ignoring the hint changes the program semantics, the result is
unspecified.

The C/C++ header file (omp . h) and the Fortran include file (omp_1ib . h) and/or Fortran 90
module file (omp_1ib) define the valid hint constants. The valid constants must include the
following, which can be extended with implementation-defined values:

C/C++
typedef enum omp_sync_hint_t {
omp_sync_hint_none = 0x0,
omp_lock_hint none = omp_sync_hint_ none,
omp_sync_hint_uncontended = 0x1,
omp_lock_hint_uncontended omp_sync_hint_uncontended,
omp_sync_hint_contended = 0x2,
omp_lock_hint_ contended = omp_sync_hint_contended,
omp_sync_hint nonspeculative = 0x4,
omp_lock_hint_nonspeculative = omp_sync_hint_ nonspeculative,
omp_sync_hint_speculative = 0x8
omp_lock_hint_speculative = omp_sync_hint_speculative
} omp_sync_hint_t;

typedef omp sync_hint t omp_lock_hint t;

C/C++

Fortran
integer, parameter :: omp_lock hint_kind = omp_sync_hint_kind

integer (kind=omp_sync_hint_kind), &

parameter :: omp_sync_hint none = &
int (2’ 0’, kind=omp_sync_hint_kind)

integer (kind=omp_lock_hint_kind), &

parameter :: omp_lock hint_none = omp_sync_hint_none
integer (kind=omp_sync_hint_kind), &
parameter :: omp_sync_hint_uncontended = &

int (2’1’, kind=omp_sync_hint kind)
integer (kind=omp_lock hint_kind), &
parameter :: omp_lock hint_uncontended = &
omp_sync_hint_uncontended
integer (kind=omp_sync_hint_kind), &

OpenMP API — Version 5.0 November 2018

O N O~ WN =

- 4 a4 4 o
NOoO ok wON =+ OO0

18
19

20

21
22
23

24
25
26

27
28

29
30

31

32
33
34
35
36
37

parameter :: omp_sync_hint_contended = &
int (2’'2’, kind=omp_sync_hint_kind)
integer (kind=omp_lock_hint_kind), &
parameter :: omp_lock hint contended = &
omp_sync_hint_contended
integer (kind=omp_sync_hint_kind), &
parameter :: omp_sync_hint nonspeculative = &
int(Z’'4’, kind=omp_sync_hint_kind)
integer (kind=omp_lock_hint_kind), &
parameter :: omp_lock hint_ nonspeculative = &
omp_sync_hint_nonspeculative
integer (kind=omp_sync_hint_kind), &
parameter :: omp_sync_hint_ speculative = &
int (Z'8’, kind=omp_sync_hint_kind)
integer (kind=omp_lock_hint_kind), &

parameter :: omp_lock hint_speculative = &
omp_sync_hint_speculative
Fortran

The hints can be combined by using the + or | operators in C/C++ or the + operator in Fortran.
Combining omp_sync_hint_none with any other hint is equivalent to specifying the other hint.

The intended meaning of each hint is:

e omp_sync_hint_uncontended: low contention is expected in this operation, that is, few
threads are expected to perform the operation simultaneously in a manner that requires
synchronization;

e omp_sync_hint_contended: high contention is expected in this operation, that is, many
threads are expected to perform the operation simultaneously in a manner that requires
synchronization;

e omp_sync_hint_speculative: the programmer suggests that the operation should be
implemented using speculative techniques such as transactional memory; and

e omp_sync_hint_nonspeculative: the programmer suggests that the operation should
not be implemented using speculative techniques such as transactional memory.

v v
Note — Future OpenMP specifications may add additional hints to the omp_sync_hint_t type
and the omp_sync_hint_kind kind. Implementers are advised to add implementation-defined
hints starting from the most significant bit of the omp_sync_hint_t type and

omp_sync_hint_kind kind and to include the name of the implementation in the name of the

added hint to avoid name conflicts with other OpenMP implementations.
A A

CHAPTER 2. DIRECTIVES 261

N —

W oOo~N OO0 A W

—_

11
12
13

14
15

262

The omp_sync_hint_t and omp_lock_hint_t enumeration types and the equivalent types
in Fortran are synonyms for each other. The type omp_lock_hint_t has been deprecated.

Restrictions
Restrictions to the synchronization hints are as follows:

e The hints omp_sync_hint_uncontended and omp_sync_hint_contended cannot
be combined.

e The hints omp_sync_hint_nonspeculative and omp_sync_hint_speculative
cannot be combined.

The restrictions for combining multiple values of omp_sync_hint apply equally to the
corresponding values of omp_lock_hint, and expressions that mix the two types.

Cross References
e critical construct, see Section 2.17.1 on page 223.
e atomic construct, see Section 2.17.7 on page 234

e omp_init_lock_with_hint and omp_init_nest_lock_with_hint, see
Section 3.3.2 on page 385.

OpenMP API — Version 5.0 November 2018

1 2.18
2 2.18.1

10
11
12
13
14

15

16
17

18

19
20
21
22

23
24

Cancellation Constructs

cancel Construct

Summary

The cancel construct activates cancellation of the innermost enclosing region of the type
specified. The cancel construct is a stand-alone directive.

Syntax

C/C++

The syntax of the cancel construct is as follows:

I #fpragma omp cancel construct-type-clause [[,] if-clause] new-line

where construct-type-clause is one of the following:

parallel
sections
for

taskgroup

and if-clause is

Iif (/[cancel

: | scalar-expression)

C/C++
Fortran

The syntax of the cancel construct is as follows:

I 'Somp cancel construct-type-clause [[, | if-clause]

where construct-type-clause is one of the following:

parallel
sections
do
taskgroup

and if-clause is

Iif (/[cancel

: [scalar-logical-expression)

Fortran

CHAPTER 2. DIRECTIVES

263

—_

a b~ wON

264

Binding
The binding thread set of the cancel region is the current team. The binding region of the
cancel region is the innermost enclosing region of the type corresponding to the

construct-type-clause specified in the directive (that is, the innermost parallel, sections,
worksharing-loop, or taskgroup region).

Description

The cancel construct activates cancellation of the binding region only if the cancel-var ICV is
true, in which case the cancel construct causes the encountering task to continue execution at the
end of the binding region if construct-type-clause is parallel, for, do, or sections. If the
cancel-var ICV is true and construct-type-clause is taskgroup, the encountering task continues
execution at the end of the current task region. If the cancel-var ICV is false, the cancel
construct is ignored.

Threads check for active cancellation only at cancellation points that are implied at the following
locations:

e cancel regions;

e cancellation point regions;

e barrier regions;

e implicit barriers regions.

When a thread reaches one of the above cancellation points and if the cancel-var ICV is true, then:

o If the thread is at a cancel or cancellation point region and construct-type-clause is
parallel, for, do, or sections, the thread continues execution at the end of the canceled
region if cancellation has been activated for the innermost enclosing region of the type specified.

o If the thread is at a cancel or cancellation point region and construct-type-clause is
taskgroup, the encountering task checks for active cancellation of all of the taskgroup sets to
which the encountering task belongs, and continues execution at the end of the current task
region if cancellation has been activated for any of the raskgroup sets.

o If the encountering task is at a barrier region, the encountering task checks for active cancellation
of the innermost enclosing parallel region. If cancellation has been activated, then the
encountering task continues execution at the end of the canceled region.

v v
Note — If one thread activates cancellation and another thread encounters a cancellation point, the
order of execution between the two threads is non-deterministic. Whether the thread that
encounters a cancellation point detects the activated cancellation depends on the underlying

hardware and operating system.
A A

OpenMP API — Version 5.0 November 2018

O N O~ WN =

©

—_
a s ON—=O

—_
»

17
18

19
20

21
22
23

24

25
26
27
28
29
30

31
32
33

When cancellation of tasks is activated through a cancel construct with the taskgroup
construct-type-clause, the tasks that belong to the taskgroup set of the innermost enclosing
taskgroup region will be canceled. The task that encountered that construct continues execution
at the end of its task region, which implies completion of that task. Any task that belongs to the
innermost enclosing taskgroup and has already begun execution must run to completion or until
a cancellation point is reached. Upon reaching a cancellation point and if cancellation is active, the
task continues execution at the end of its task region, which implies the task’s completion. Any task
that belongs to the innermost enclosing taskgroup and that has not begun execution may be
discarded, which implies its completion.

When cancellation is active for a parallel, sections, or worksharing-loop region, each
thread of the binding thread set resumes execution at the end of the canceled region if a cancellation
point is encountered. If the canceled region is a parallel region, any tasks that have been
created by a task or a taskloop construct and their descendent tasks are canceled according to
the above taskgroup cancellation semantics. If the canceled region is a sections, or
worksharing-loop region, no task cancellation occurs.

C++
The usual C++ rules for object destruction are followed when cancellation is performed.
C++
Fortran
All private objects or subobjects with ALLOCATABLE attribute that are allocated inside the
canceled construct are deallocated.
Fortran

If the canceled construct contains a reduction, task_reduction or lastprivate clause,
the final value of the list items that appeared in those clauses are undefined.

When an if clause is present on a cancel construct and the i £ expression evaluates to false, the
cancel construct does not activate cancellation. The cancellation point associated with the
cancel construct is always encountered regardless of the value of the i £ expression.

v v
Note — The programmer is responsible for releasing locks and other synchronization data
structures that might cause a deadlock when a cancel construct is encountered and blocked
threads cannot be canceled. The programmer is also responsible for ensuring proper
synchronizations to avoid deadlocks that might arise from cancellation of OpenMP regions that

contain OpenMP synchronization constructs.
A A

Execution Model Events
If a task encounters a cancel construct that will activate cancellation then a cancel event occurs.

A discarded-task event occurs for any discarded tasks.

CHAPTER 2. DIRECTIVES 265

—_
- O OW oo ~NOOOA~,WND =

—_ a4
ook~ WD

17
18
19

20
21
22
23
24
25

26
27

28
29
30

31
32
33
34

266

Tool Callbacks

A thread dispatches a registered ompt__callback_cancel callback for each occurrence of a
cancel event in the context of the encountering task. This callback has type signature
ompt_callback_cancel_t; (flags & ompt_cancel_activated) always evaluates to
true in the dispatched callback; (flags & ompt_cancel_parallel) evaluates to frue in the
dispatched callback if construct-type-clause is parallel,;

(flags & ompt_cancel_sections) evaluates to true in the dispatched callback if
construct-type-clause is sections; (flags & ompt_cancel_loop) evaluates to true in the
dispatched callback if construct-type-clause is £or or do; and

(flags & ompt_cancel_taskgroup) evaluates to frue in the dispatched callback if
construct-type-clause is taskgroup.

A thread dispatches a registered ompt_callback_cancel callback with the ompt_data_t
associated with the discarded task as its task_data argument and
ompt_cancel_discarded_task as its flags argument for each occurrence of a
discarded-task event. The callback occurs in the context of the task that discards the task and has
type signature ompt_callback_cancel_t.

Restrictions
The restrictions to the cancel construct are as follows:
e The behavior for concurrent cancellation of a region and a region nested within it is unspecified.

o If construct-type-clause is taskgroup, the cancel construct must be closely nested inside a
task or a taskloop construct and the cancel region must be closely nested inside a
taskgroup region. If construct-type-clause is sections, the cancel construct must be
closely nested inside a sections or section construct. Otherwise, the cancel construct
must be closely nested inside an OpenMP construct that matches the type specified in
construct-type-clause of the cancel construct.

o A worksharing construct that is canceled must not have a nowait clause.
o A worksharing-loop construct that is canceled must not have an ordered clause.

e During execution of a construct that may be subject to cancellation, a thread must not encounter
an orphaned cancellation point. That is, a cancellation point must only be encountered within
that construct and must not be encountered elsewhere in its region.

Cross References
o cancel-var ICV, see Section 2.5.1 on page 64.
e if clause, see Section 2.15 on page 220.

e cancellation point construct, see Section 2.18.2 on page 267.

OpenMP API — Version 5.0 November 2018

4 2.18.2

0N O

10
11

12

13
14
15
16

17
18

19

20
21
22
23

e omp_get_cancellation routine, see Section 3.2.9 on page 342.
e omp_cancel_flag_t enumeration type, see Section 4.4.4.24 on page 450.

e ompt_callback cancel_t, see Section 4.5.2.18 on page 481.

cancellation point Construct

Summary

The cancellation point construct introduces a user-defined cancellation point at which
implicit or explicit tasks check if cancellation of the innermost enclosing region of the type
specified has been activated. The cancellation point construct is a stand-alone directive.

Syntax
C/C++

The syntax of the cancellation point construct is as follows:

I#pragma omp cancellation point construct-type-clause new-line

where construct-type-clause is one of the following:

parallel

sections

for

taskgroup
C/C++
Fortran

The syntax of the cancellation point construct is as follows:

I !Somp cancellation point construct-type-clause
where construct-type-clause is one of the following:

parallel
sections
do
taskgroup
Fortran

CHAPTER 2. DIRECTIVES

267

—_

a b~ wON

- O ©WooN O

—_

13
14

15
16
17
18

19

20
21

22

23
24
25
26
27
28
29
30
31
32
33

268

Binding
The binding thread set of the cancellation point construct is the current team. The binding
region of the cancellation point region is the innermost enclosing region of the type

corresponding to the construct-type-clause specified in the directive (that is, the innermost
parallel, sections, worksharing-loop, or taskgroup region).

Description

This directive introduces a user-defined cancellation point at which an implicit or explicit task must
check if cancellation of the innermost enclosing region of the type specified in the clause has been
requested. This construct does not implement any synchronization between threads or tasks.

When an implicit or explicit task reaches a user-defined cancellation point and if the cancel-var
ICV is true, then:

o If the construct-type-clause of the encountered cancellation point construct is
parallel, for, do, or sections, the thread continues execution at the end of the canceled
region if cancellation has been activated for the innermost enclosing region of the type specified.

o If the construct-type-clause of the encountered cancellation point construct is
taskgroup, the encountering task checks for active cancellation of all raskgroup sets to which
the encountering task belongs and continues execution at the end of the current task region if
cancellation has been activated for any of them.

Execution Model Events

The cancellation event occurs if a task encounters a cancellation point and detected the activation
of cancellation.

Tool Callbacks

A thread dispatches a registered ompt_callback_cancel callback for each occurrence of a
cancel event in the context of the encountering task. This callback has type signature
ompt_callback_cancel_t; (flags & ompt_cancel_detected) always evaluates to true
in the dispatched callback; (flags & ompt_cancel_parallel) evaluates to true in the
dispatched callback if construct-type-clause of the encountered cancellation point
construct is parallel; (flags & ompt_cancel_sections) evaluates to frue in the
dispatched callback if construct-type-clause of the encountered cancellation point
construct is sections; (flags & ompt_cancel_loop) evaluates to frue in the dispatched
callback if construct-type-clause of the encountered cancellation point constructis for or
do; and (flags & ompt_cancel_taskgroup) evaluates to true in the dispatched callback if
construct-type-clause of the encountered cancellation point constructis taskgroup.

OpenMP API — Version 5.0 November 2018

—_

© 0 [e22Né, ! A~ ODN

- a4 a4 a4
A W P =+ O

15 2.19

16

17 2.19.1

18
19

20
21

22
23

Restrictions

e A cancellation point construct for which construct-type-clause is taskgroup must be
closely nested inside a task or taskloop construct, and the cancellation point region
must be closely nested inside a taskgroup region.

e A cancellation point construct for which construct-type-clause is sect ions must be
closely nested inside a sections or section construct.

e A cancellation point construct for which construct-type-clause is neither sections nor
taskgroup must be closely nested inside an OpenMP construct that matches the type specified
in construct-type-clause.

Cross References
e cancel-var ICV, see Section 2.5.1 on page 64.
e cancel construct, see Section 2.18.1 on page 263.

e omp_get_cancellation routine, see Section 3.2.9 on page 342.

ompt_callback_cancel_t, see Section 4.5.2.18 on page 481.

Data Environment

This section presents directives and clauses for controlling data environments.

Data-Sharing Attribute Rules

This section describes how the data-sharing attributes of variables referenced in data environments
are determined. The following two cases are described separately:

e Section 2.19.1.1 on page 270 describes the data-sharing attribute rules for variables referenced in
a construct.

e Section 2.19.1.2 on page 273 describes the data-sharing attribute rules for variables referenced in
a region, but outside any construct.

CHAPTER 2. DIRECTIVES 269

1

© oOoONOoO O~ WN

11
12

13
14

15
16

17
18

19
20

21
22

23
24
25

26
27

28

29
30

2.19.11

270

Variables Referenced in a Construct
The data-sharing attributes of variables that are referenced in a construct can be predetermined,
explicitly determined, or implicitly determined, according to the rules outlined in this section.

Specifying a variable in a data-sharing attribute clause, except for the private clause, or
copyprivate clause of an enclosed construct causes an implicit reference to the variable in the
enclosing construct. Specifying a variable in a map clause of an enclosed construct may cause an
implicit reference to the variable in the enclosing construct. Such implicit references are also
subject to the data-sharing attribute rules outlined in this section.

Certain variables and objects have predetermined data-sharing attributes as follows:

C/C++

e Variables that appear in threadprivate directives are threadprivate.

e Variables with automatic storage duration that are declared in a scope inside the construct are
private.

e Objects with dynamic storage duration are shared.
e Static data members are shared.

e The loop iteration variable(s) in the associated for-loop(s) of a for, parallel for,
taskloop, or distribute construct is (are) private.

e The loop iteration variable in the associated for-loop of a simd construct with just one
associated for-loop is linear with a linear-step that is the increment of the associated for-loop.

e The loop iteration variables in the associated for-loops of a simd construct with multiple
associated for-loops are lastprivate.

e The loop iteration variable(s) in the associated for-loop(s) of a Loop construct is (are) lastprivate.
e Variables with static storage duration that are declared in a scope inside the construct are shared.

e If a list item in a map clause on the target construct has a base pointer, and the base pointer is
a scalar variable that does not appear in a map clause on the construct, the base pointer is
firstprivate.

e If alist item in a reduction or in_reduction clause on a construct has a base pointer then
the base pointer is private.

C/C++
Fortran
e Variables and common blocks that appear in threadprivate directives are threadprivate.

e The loop iteration variable(s) in the associated do-loop(s) of a do, parallel do, taskloop,
or distribute construct is (are) private.

OpenMP API — Version 5.0 November 2018

W 00 NOoO o bW N =

—_ .
—_

o a
w N

14
15
16
17

18
19
20

21
22
23

24
25

26
27

o The loop iteration variable in the associated do-loop of a simd construct with just one
associated do-loop is linear with a linear-step that is the increment of the associated do-loop.

o The loop iteration variables in the associated do-loops of a simd construct with multiple
associated do-loops are lastprivate.

o The loop iteration variable(s) in the associated do-loop(s) of a 1loop construct is (are) lastprivate.

e A loop iteration variable for a sequential loop in a parallel or task generating construct is
private in the innermost such construct that encloses the loop.

o Implied-do indices and forall indices are private.

e Cray pointees have the same data-sharing attribute as the storage with which their Cray pointers
are associated.

e Assumed-size arrays are shared.

e An associate name preserves the association with the selector established at the ASSOCIATE or
SELECT TYPE statement.

Fortran

Variables with predetermined data-sharing attributes may not be listed in data-sharing attribute
clauses, except for the cases listed below. For these exceptions only, listing a predetermined
variable in a data-sharing attribute clause is allowed and overrides the variable’s predetermined
data-sharing attributes.

C/C++

o The loop iteration variable(s) in the associated for-loop(s) of a for, parallel for,
taskloop, distribute, or loop construct may be listed in a private or
lastprivate clause.

e The loop iteration variable in the associated for-loop of a simd construct with just one
associated for-loop may be listed in a private, lastprivate, or linear clause with a
linear-step that is the increment of the associated for-loop.

e The loop iteration variables in the associated for-loops of a simd construct with multiple
associated for-loops may be listed in a private or lastprivate clause.

e Variables with const-qualified type with no mutable members may be listed in a
firstprivate clause, even if they are static data members.

C/C++

CHAPTER 2. DIRECTIVES 271

O W NO aprw®W N-—=

—_ -
—_

12
13

14
15

16
17
18

19

20
21

22

23
24

25
26

27
28

29
30

272

Fortran
e The loop iteration variable(s) in the associated do-loop(s) of a do, parallel do, taskloop,
distribute, or loop construct may be listed in a private or lastprivate clause.

e The loop iteration variable in the associated do-loop of a simd construct with just one
associated do-loop may be listed in a private, lastprivate, or 1inear clause with a
linear-step that is the increment of the associated loop.

e The loop iteration variables in the associated do-loops of a simd construct with multiple
associated do-loops may be listed in a private or lastprivate clause.

e Variables used as loop iteration variables in sequential loops in a parallel or task generating
construct may be listed in data-sharing attribute clauses on the construct itself, and on enclosed
constructs, subject to other restrictions.

o Assumed-size arrays may be listed in a shared clause.

Fortran
Additional restrictions on the variables that may appear in individual clauses are described with
each clause in Section 2.19.4 on page 282.

Variables with explicitly determined data-sharing attributes are those that are referenced in a given
construct and are listed in a data-sharing attribute clause on the construct.

Variables with implicitly determined data-sharing attributes are those that are referenced in a given
construct, do not have predetermined data-sharing attributes, and are not listed in a data-sharing
attribute clause on the construct.

Rules for variables with implicitly determined data-sharing attributes are as follows:

e Inaparallel, teams, or task generating construct, the data-sharing attributes of these
variables are determined by the default clause, if present (see Section 2.19.4.1 on page 282).

e Inaparallel construct, if no default clause is present, these variables are shared.

e For constructs other than task generating constructs, if no default clause is present, these
variables reference the variables with the same names that exist in the enclosing context.

e In a target construct, variables that are not mapped after applying data-mapping attribute
rules (see Section 2.19.7 on page 314) are firstprivate.
C++

e In an orphaned task generating construct, if no default clause is present, formal arguments
passed by reference are firstprivate.

C++
Fortran

e In an orphaned task generating construct, if no default clause is present, dummy arguments
are firstprivate.

Fortran

OpenMP API — Version 5.0 November 2018

No ok~ wNn =

11

12
13

14
15

16
17

18

19
20

21
22

23

24
25

26
27
28
29
30

2.19.1.2

o In a task generating construct, if no default clause is present, a variable for which the
data-sharing attribute is not determined by the rules above and that in the enclosing context is
determined to be shared by all implicit tasks bound to the current team is shared.

e In a task generating construct, if no default clause is present, a variable for which the
data-sharing attribute is not determined by the rules above is firstprivate.

Additional restrictions on the variables for which data-sharing attributes cannot be implicitly
determined in a task generating construct are described in Section 2.19.4.4 on page 286.

Variables Referenced in a Region but not in a Construct

The data-sharing attributes of variables that are referenced in a region, but not in a construct, are
determined as follows:

C/C++

e Variables with static storage duration that are declared in called routines in the region are shared.

e File-scope or namespace-scope variables referenced in called routines in the region are shared
unless they appear in a threadprivate directive.

e Objects with dynamic storage duration are shared.
e Static data members are shared unless they appear in a threadprivate directive.

e In C++, formal arguments of called routines in the region that are passed by reference have the
same data-sharing attributes as the associated actual arguments.

e Other variables declared in called routines in the region are private.

C/C++
Fortran
e [ocal variables declared in called routines in the region and that have the save attribute, or that

are data initialized, are shared unless they appear in a threadprivate directive.

e Variables belonging to common blocks, or accessed by host or use association, and referenced in
called routines in the region are shared unless they appear in a threadprivate directive.

e Dummy arguments of called routines in the region that have the VALUE attribute are private.

o Dummy arguments of called routines in the region that do not have the VALUE attribute are
private if the associated actual argument is not shared.

e Dummy arguments of called routines in the region that do not have the VALUE attribute are
shared if the actual argument is shared and it is a scalar variable, structure, an array that is not a
pointer or assumed-shape array, or a simply contiguous array section. Otherwise, the
data-sharing attribute of the dummy argument is implementation-defined if the associated actual
argument is shared.

CHAPTER 2. DIRECTIVES 273

AW N =

10
11

12
13

14
15

16
17

18

19
20
21
22

2.19.2

274

e Cray pointees have the same data-sharing attribute as the storage with which their Cray pointers
are associated.

e Implied-do indices, forall indices, and other local variables declared in called routines in the
region are private.
Fortran

threadprivate Directive

Summary

The threadprivate directive specifies that variables are replicated, with each thread having its
own copy. The threadprivate directive is a declarative directive.

Syntax
C/C++
The syntax of the threadprivate directive is as follows:
| #pragma omp threadprivate (list) new-line

where [ist is a comma-separated list of file-scope, namespace-scope, or static block-scope variables
that do not have incomplete types.

C/C++
Fortran
The syntax of the threadprivate directive is as follows:
| !$omp threadprivate (list)
where [ist is a comma-separated list of named variables and named common blocks. Common
block names must appear between slashes.
Fortran

Description

Each copy of a threadprivate variable is initialized once, in the manner specified by the program,
but at an unspecified point in the program prior to the first reference to that copy. The storage of all
copies of a threadprivate variable is freed according to how static variables are handled in the base
language, but at an unspecified point in the program.

OpenMP API — Version 5.0 November 2018

0 NoOo O~ N =

_ s
A WODMN-—=+OO0

-
N O O

N 2 =
o ©O© o©

N N
N —

NN
A W

N
(&)

NN NN
o s N)]

29
30
31
32

A program in which a thread references another thread’s copy of a threadprivate variable is
non-conforming.

The content of a threadprivate variable can change across a task scheduling point if the executing
thread switches to another task that modifies the variable. For more details on task scheduling, see
Section 1.3 on page 20 and Section 2.10 on page 135.

In parallel regions, references by the master thread will be to the copy of the variable in the
thread that encountered the parallel region.

During a sequential part references will be to the initial thread’s copy of the variable. The values of
data in the initial thread’s copy of a threadprivate variable are guaranteed to persist between any
two consecutive references to the variable in the program provided that no teams construct that is
not nested inside of a target construct is encountered between the references and that the initial
thread is not nested inside of a teams region. For initial threads nested inside of a teams region,
the values of data in the copies of a threadprivate variable of those initial threads are guaranteed to
persist between any two consecutive references to the variable inside of that teams region.

The values of data in the threadprivate variables of threads that are not initial threads are
guaranteed to persist between two consecutive active parallel regions only if all of the
following conditions hold:

o Neither parallel region is nested inside another explicit parallel region;
o The number of threads used to execute both parallel regions is the same;
o The thread affinity policies used to execute both parallel regions are the same;

o The value of the dyn-var internal control variable in the enclosing task region is false at entry to
both parallel regions; and

e No teams construct that is not nested inside of a target construct is encountered between
both parallel regions.

o Neither the omp_pause_resource nor omp_pause_resource_all routine is called.

If these conditions all hold, and if a threadprivate variable is referenced in both regions, then
threads with the same thread number in their respective regions will reference the same copy of that
variable.

C/C++
If the above conditions hold, the storage duration, lifetime, and value of a thread’s copy of a
threadprivate variable that does not appear in any copyin clause on the second region will be
retained. Otherwise, the storage duration, lifetime, and value of a thread’s copy of the variable in
the second region is unspecified.

C/C++

CHAPTER 2. DIRECTIVES 275

0 NOoO O~ ON =

23

24
25
26

276

Fortran
If the above conditions hold, the definition, association, or allocation status of a thread’s copy of a
threadprivate variable or a variable in a threadprivate common block that is not affected by any
copyin clause that appears on the second region (a variable is affected by a copyin clause if the
variable appears in the copyin clause or it is in a common block that appears in the copyin
clause) will be retained. Otherwise, the definition and association status of a thread’s copy of the
variable in the second region are undefined, and the allocation status of an allocatable variable will
be implementation defined.

If a threadprivate variable or a variable in a threadprivate common block is not affected by any
copyin clause that appears on the first parallel region in which it is referenced, the thread’s
copy of the variable inherits the declared type parameter and the default parameter values from the
original variable. The variable or any subobject of the variable is initially defined or undefined
according to the following rules:

e If it has the ALLOCATABLE attribute, each copy created will have an initial allocation status of
unallocated;

e If it has the POINTER attribute:

If it has an initial association status of disassociated, either through explicit initialization or
default initialization, each copy created will have an association status of disassociated;

— Otherwise, each copy created will have an association status of undefined.

e If it does not have either the POINTER or the ALLOCATABLE attribute:

If it is initially defined, either through explicit initialization or default initialization, each copy
created is so defined;

Otherwise, each copy created is undefined.
Fortran
C/C++

The address of a threadprivate variable is not an address constant.

C/C++
C++

The order in which any constructors for different threadprivate variables of class type are called is
unspecified. The order in which any destructors for different threadprivate variables of class type
are called is unspecified.

C++

OpenMP API — Version 5.0 November 2018

a A~ wOW D

(oo NI 0)]

11
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26

27
28
29

30
31

32
33

Restrictions
The restrictions to the threadprivate directive are as follows:

o A threadprivate variable must not appear in any clause except the copyin, copyprivate,
schedule, num threads, thread limit, and if clauses.

e A program in which an untied task accesses threadprivate storage is non-conforming.

C/C++

o If the value of a variable referenced in an explicit initializer of a threadprivate variable is
modified prior to the first reference to any instance of the threadprivate variable, then the
behavior is unspecified.

e A variable that is part of another variable (as an array or structure element) cannot appear in a
threadprivate clause unless it is a static data member of a C++ class.

e A threadprivate directive for file-scope variables must appear outside any definition or
declaration, and must lexically precede all references to any of the variables in its list.

e A threadprivate directive for namespace-scope variables must appear outside any
definition or declaration other than the namespace definition itself, and must lexically precede all
references to any of the variables in its list.

e Each variable in the list of a threadprivate directive at file, namespace, or class scope must
refer to a variable declaration at file, namespace, or class scope that lexically precedes the
directive.

e A threadprivate directive for static block-scope variables must appear in the scope of the
variable and not in a nested scope. The directive must lexically precede all references to any of
the variables in its list.

e Each variable in the list of a threadprivate directive in block scope must refer to a variable
declaration in the same scope that lexically precedes the directive. The variable declaration must
use the static storage-class specifier.

e If a variable is specified in a threadprivate directive in one translation unit, it must be
specified in a threadprivate directive in every translation unit in which it is declared.

C/C++
C++

o A threadprivate directive for static class member variables must appear in the class
definition, in the same scope in which the member variables are declared, and must lexically
precede all references to any of the variables in its list.

e A threadprivate variable must not have an incomplete type or a reference type.
o A threadprivate variable with class type must have:

— An accessible, unambiguous default constructor in the case of default initialization without a
given initializer;

CHAPTER 2. DIRECTIVES 277

AW N =

o ~N OO

11
12

13
14
15

16

17
18

19
20

21
22
23
24

278

— An accessible, unambiguous constructor that accepts the given argument in the case of direct
initialization; and
— An accessible, unambiguous copy constructor in the case of copy initialization with an explicit
initializer.
C++
Fortran

e A variable that is part of another variable (as an array, structure element or type parameter
inquiry) cannot appear in a threadprivate clause.

e The threadprivate directive must appear in the declaration section of a scoping unit in
which the common block or variable is declared.

e If a threadprivate directive that specifies a common block name appears in one program
unit, then such a directive must also appear in every other program unit that contains a COMMON
statement that specifies the same name. It must appear after the last such COMMON statement in
the program unit.

o If a threadprivate variable or a threadprivate common block is declared with the BIND attribute,
the corresponding C entities must also be specified in a threadprivate directive in the C
program.

e A blank common block cannot appear in a threadprivate directive.

e A variable can only appear in a threadprivate directive in the scope in which it is declared.
It must not be an element of a common block or appear in an EQUIVALENCE statement.

e A variable that appears in a threadprivate directive must be declared in the scope of a
module or have the SAVE attribute, either explicitly or implicitly.

Fortran

Cross References
e dyn-var ICV, see Section 2.5 on page 63.
e Number of threads used to execute a parallel region, see Section 2.6.1 on page 78.

e copyin clause, see Section 2.19.6.1 on page 310.

OpenMP API — Version 5.0 November 2018

22

23
24

25
26
27
28
29

30
31

2.19.3

List Item Privatization

For any construct, a list item that appears in a data-sharing attribute clause, including a reduction
clause, may be privatized. Each task that references a privatized list item in any statement in the
construct receives at least one new list item if the construct has one or more associated loops, and
otherwise each such task receives one new list item. Each SIMD lane used in a simd construct that
references a privatized list item in any statement in the construct receives at least one new list item.
Language-specific attributes for new list items are derived from the corresponding original list item.
Inside the construct, all references to the original list item are replaced by references to a new list
item received by the task or SIMD lane.

If the construct has one or more associated loops, within the same logical iteration of the loop(s)
the same new list item replaces all references to the original list item. For any two logical iterations,
if the references to the original list item are replaced by the same list item then the logical iterations
must execute in some sequential order.

In the rest of the region, it is unspecified whether references are to a new list item or the original list
item. Therefore, if an attempt is made to reference the original item, its value after the region is also
unspecified. If a task or a SIMD lane does not reference a privatized list item, it is unspecified
whether the task or SIMD lane receives a new list item.

The value and/or allocation status of the original list item will change only:
e If accessed and modified via pointer;
e If possibly accessed in the region but outside of the construct;

e As a side effect of directives or clauses; or

Fortran
e If accessed and modified via construct association.
Fortran
C++

If the construct is contained in a member function, it is unspecified anywhere in the region if
accesses through the implicit this pointer refer to the new list item or the original list item.

C++
C/C++

A new list item of the same type, with automatic storage duration, is allocated for the construct.
The storage and thus lifetime of these list items last until the block in which they are created exits.
The size and alignment of the new list item are determined by the type of the variable. This
allocation occurs once for each task generated by the construct and once for each SIMD lane used
by the construct.

The new list item is initialized, or has an undefined initial value, as if it had been locally declared
without an initializer.

C/C++

CHAPTER 2. DIRECTIVES 279

a b~ w D=

o N o

©

11
12

13
14

15
16

17
18
19
20

21

22
23

24
25

26
27
28

29
30
31

280

C++

If the type of a list item is a reference to a type T then the type will be considered to be T for all
purposes of this clause.

The order in which any default constructors for different private variables of class type are called is
unspecified. The order in which any destructors for different private variables of class type are
called is unspecified.

C++

Fortran
If any statement of the construct references a list item, a new list item of the same type and type
parameters is allocated. This allocation occurs once for each task generated by the construct and
once for each SIMD lane used by the construct. The initial value of the new list item is undefined.
The initial status of a private pointer is undefined.

For a list item or the subobject of a list item with the ALLOCATABLE attribute:

o [f the allocation status is unallocated, the new list item or the subobject of the new list item will
have an initial allocation status of unallocated;

o If the allocation status is allocated, the new list item or the subobject of the new list item will
have an initial allocation status of allocated; and

o If the new list item or the subobject of the new list item is an array, its bounds will be the same as
those of the original list item or the subobject of the original list item.

A privatized list item may be storage-associated with other variables when the data-sharing
attribute clause is encountered. Storage association may exist because of constructs such as
EQUIVALENCE or COMMON. If A is a variable that is privatized by a construct and B is a variable
that is storage-associated with A, then:

e The contents, allocation, and association status of B are undefined on entry to the region;

e Any definition of A, or of its allocation or association status, causes the contents, allocation, and
association status of B to become undefined; and

e Any definition of B, or of its allocation or association status, causes the contents, allocation, and
association status of A to become undefined.

A privatized list item clause may be a selector of an ASSOCIATE or SELECT TYPE construct. If
the construct association is established prior to a parallel region, the association between the
associate name and the original list item will be retained in the region.

Finalization of a list item of a finalizable type or subobjects of a list item of a finalizable type
occurs at the end of the region. The order in which any final subroutines for different variables of a
finalizable type are called is unspecified.

Fortran

OpenMP API — Version 5.0 November 2018

—_

©

11
12

13
14

15
16

17

18
19

20
21

22
23

24

If a list item appears in both firstprivate and lastprivate clauses, the update required
for the lastprivate clause occurs after all initializations for the firstprivate clause.

Restrictions

The following restrictions apply to any list item that is privatized unless otherwise stated for a given
data-sharing attribute clause:

C

A variable that is part of another variable (as an array or structure element) cannot be privatized.

C
C++

A variable that is part of another variable (as an array or structure element) cannot be privatized
except if the data-sharing attribute clause is associated with a construct within a class non-static
member function and the variable is an accessible data member of the object for which the
non-static member function is invoked.

A variable of class type (or array thereof) that is privatized requires an accessible, unambiguous
default constructor for the class type.

C++
C/C++

A variable that is privatized must not have a const-qualified type unless it is of class type with
amutable member. This restriction does not apply to the firstprivate clause.

A variable that is privatized must not have an incomplete type or be a reference to an incomplete
type.

C/C++

Fortran
A variable that is part of another variable (as an array or structure element) cannot be privatized.

A variable that is privatized must either be definable, or an allocatable variable. This restriction
does not apply to the £irstprivate clause.

Variables that appear in namelist statements, in variable format expressions, and in expressions
for statement function definitions, may not be privatized.

Pointers with the INTENT (IN) attribute may not be privatized. This restriction does not apply
to the firstprivate clause.

Assumed-size arrays may not be privatized in a target, teams, or distribute construct.
Fortran

CHAPTER 2. DIRECTIVES 281

1 2.19.4 Data-Sharing Attribute Clauses

O ©WoOo~NOOT ~AWN

—_

12
13

14
15
16
17
18
19

20

21

22
23
24

2.19.4.1

282

Several constructs accept clauses that allow a user to control the data-sharing attributes of variables
referenced in the construct. Not all of the clauses listed in this section are valid on all directives.
The set of clauses that is valid on a particular directive is described with the directive.

Most of the clauses accept a comma-separated list of list items (see Section 2.1 on page 38). All list
items that appear in a clause must be visible, according to the scoping rules of the base language.
With the exception of the default clause, clauses may be repeated as needed. A list item may not
appear in more than one clause on the same directive, except that it may be specified in both
firstprivate and lastprivate clauses.

The reduction data-sharing attribute clauses are explained in Section 2.19.5 on page 293.

C++

If a variable referenced in a data-sharing attribute clause has a type derived from a template, and
the program does not otherwise reference that variable then any behavior related to that variable is
unspecified.
C++

Fortran
When a named common block appears in a private, firstprivate, lastprivate, or
shared clause of a directive, none of its members may be declared in another data-sharing
attribute clause in that directive. When individual members of a common block appear in a
private, firstprivate, lastprivate, reduction, or linear clause of a directive,
the storage of the specified variables is no longer Fortran associated with the storage of the common
block itself.

Fortran

default Clause

Summary

The default clause explicitly determines the data-sharing attributes of variables that are
referenced in a parallel, teams, or task generating construct and would otherwise be implicitly
determined (see Section 2.19.1.1 on page 270).

OpenMP API — Version 5.0 November 2018

w

o

10

11
12

13
14
15

16
17

18
19

20

21

22
23

2.19.4.2

Syntax
C/C++

The syntax of the default clause is as follows:
| default (shared | none)
C/C++
Fortran
The syntax of the default clause is as follows:

Idefault (private | firstprivate | shared | none)

Fortran

Description

The default (shared) clause causes all variables referenced in the construct that have
implicitly determined data-sharing attributes to be shared.

Fortran

The default (firstprivate) clause causes all variables in the construct that have implicitly
determined data-sharing attributes to be firstprivate.

The default (private) clause causes all variables referenced in the construct that have
implicitly determined data-sharing attributes to be private.

Fortran

The default (none) clause requires that each variable that is referenced in the construct, and
that does not have a predetermined data-sharing attribute, must have its data-sharing attribute
explicitly determined by being listed in a data-sharing attribute clause.

Restrictions
The restrictions to the default clause are as follows:

e Only a single default clause may be specified on a parallel, task, taskloop or
teams directive.

shared Clause

Summary

The shared clause declares one or more list items to be shared by tasks generated by a
parallel, teams, or task generating construct.

CHAPTER 2. DIRECTIVES 283

w

© oo~N OO, b

11
12

13

14
15
16
17
18
19
20
21
22
23
24
25

26

27

28
29

284

Syntax

The syntax of the shared clause is as follows:
I shared (list)

Description

All references to a list item within a task refer to the storage area of the original variable at the point
the directive was encountered.

The programmer must ensure, by adding proper synchronization, that storage shared by an explicit
task region does not reach the end of its lifetime before the explicit task region completes its
execution.

Fortran

The association status of a shared pointer becomes undefined upon entry to and exit from the
parallel, teams, or task generating construct if it is associated with a target or a subobject of a
target that appears as a privatized list item in a data-sharing attribute clause on the construct.

v v
Note — Passing a shared variable to a procedure may result in the use of temporary storage in place
of the actual argument when the corresponding dummy argument does not have the VALUE or
CONTIGUOUS attribute and its data-sharing attribute is implementation-defined as per the rules in
Section 2.19.1.2 on page 273. These conditions effectively result in references to, and definitions of,
the temporary storage during the procedure reference. Furthermore, the value of the shared variable
is copied into the intervening temporary storage before the procedure reference when the dummy
argument does not have the INTENT (OUT) attribute, and is copied out of the temporary storage
into the shared variable when the dummy argument does not have the INTENT (IN) attribute. Any
references to (or definitions of) the shared storage that is associated with the dummy argument by

any other task must be synchronized with the procedure reference to avoid possible data races.
A A

Fortran

Restrictions

The restrictions for the shared clause are as follows:

C

e A variable that is part of another variable (as an array or structure element) cannot appear in a
shared clause.

C

OpenMP API — Version 5.0 November 2018

A WD =

10

11
12

13

14
15
16
17

18
19
20

21
22
23

24
25
26

27
28

C++

e A variable that is part of another variable (as an array or structure element) cannot appear in a
shared clause except if the shared clause is associated with a construct within a class
non-static member function and the variable is an accessible data member of the object for which
the non-static member function is invoked.

C++
Fortran

e A variable that is part of another variable (as an array, structure element or type parameter
inquiry) cannot appear in a shared clause.

Fortran

2.19.4.3 private Clause

Summary

The private clause declares one or more list items to be private to a task or to a SIMD lane.

Syntax

The syntax of the private clause is as follows:
| private (list)

Description

The private clause specifies that its list items are to be privatized according to Section 2.19.3 on
page 279. Each task or SIMD lane that references a list item in the construct receives only one new
list item, unless the construct has one or more associated loops and the order (concurrent)
clause is also present.

List items that appear in a private, firstprivate, or reduction clause in a parallel
construct may also appear in a private clause in an enclosed parallel, worksharing, loop,
task, taskloop, simd, or target construct.

List items that appear in a private or firstprivate clause in a task or taskloop
construct may also appear in a private clause in an enclosed parallel, loop, task,
taskloop, simd, or target construct.

List items that appear in a private, firstprivate, lastprivate, or reduction clause
in a worksharing construct may also appear in a private clause in an enclosed parallel,
loop, task, simd, or target construct.

List items that appear in a private clause on a loop construct may also appear in a private
clause in an enclosed 1oop, parallel, or simd construct.

CHAPTER 2. DIRECTIVES 285

(¢}

© oo~N O

11
12

13

14
15

16
17
18
19
20

21
22
23
24
25
26
27

28
29

2.19.4.4

286

Restrictions

The restrictions to the private clause are as specified in Section 2.19.3.

Cross References

o List Item Privatization, see Section 2.19.3 on page 279.

firstprivate Clause

Summary

The firstprivate clause declares one or more list items to be private to a task, and initializes
each of them with the value that the corresponding original item has when the construct is
encountered.

Syntax

The syntax of the firstprivate clause is as follows:

I firstprivate (list)

Description

The £irstprivate clause provides a superset of the functionality provided by the private
clause.

A list item that appears in a firstprivate clause is subject to the private clause semantics
described in Section 2.19.4.3 on page 285, except as noted. In addition, the new list item is
initialized from the original list item existing before the construct. The initialization of the new list
item is done once for each task that references the list item in any statement in the construct. The
initialization is done prior to the execution of the construct.

Fora firstprivate clause on a parallel, task, taskloop, target, or teams
construct, the initial value of the new list item is the value of the original list item that exists
immediately prior to the construct in the task region where the construct is encountered unless
otherwise specified. For a £irstprivate clause on a worksharing construct, the initial value of
the new list item for each implicit task of the threads that execute the worksharing construct is the
value of the original list item that exists in the implicit task immediately prior to the point in time
that the worksharing construct is encountered unless otherwise specified.

To avoid data races, concurrent updates of the original list item must be synchronized with the read
of the original list item that occurs as a result of the firstprivate clause.

OpenMP API — Version 5.0 November 2018

o © o (2262 BN N

11
12
13
14

15
16

17
18

19
20
21

22
23
24
25

26
27
28
29

C/C++

For variables of non-array type, the initialization occurs by copy assignment. For an array of
elements of non-array type, each element is initialized as if by assignment from an element of the
original array to the corresponding element of the new array.

C/C++
C++

For each variable of class type:

e Ifthe firstprivate clause is not on a target construct then a copy constructor is invoked
to perform the initialization; and

e Ifthe firstprivate clause is on a target construct then it is unspecified how many copy
constructors, if any, are invoked.

If copy constructors are called, the order in which copy constructors for different variables of class
type are called is unspecified.

C++

Fortran
If the original list item does not have the POINTER attribute, initialization of the new list items
occurs as if by intrinsic assignment unless the list item has a type bound procedure as a defined
assignment. If the original list item that does not have the POINTER attribute has the allocation
status of unallocated, the new list items will have the same status.

If the original list item has the POINTER attribute, the new list items receive the same association
status of the original list item as if by pointer assignment.

Fortran

Restrictions
The restrictions to the £irstprivate clause are as follows:

o A list item that is private within a parallel region must not appear in a firstprivate
clause on a worksharing construct if any of the worksharing regions arising from the worksharing
construct ever bind to any of the parallel regions arising from the parallel construct.

o A list item that is private within a teams region must not appear in a firstprivate clause
on a distribute construct if any of the distribute regions arising from the
distribute construct ever bind to any of the teams regions arising from the teams
construct.

o A list item that appears in a reduction clause of a parallel construct must not appear in a
firstprivate clause on a worksharing, task, or taskloop construct if any of the
worksharing or task regions arising from the worksharing, task, or taskloop construct
ever bind to any of the parallel regions arising from the parallel construct.

CHAPTER 2. DIRECTIVES 287

No o AW =

oo

10
11

12
13

14

15

16
17

18

19
20

21
22

e A list item that appears in a reduction clause of a teams construct must not appear in a
firstprivate clause on a distribute construct if any of the distribute regions
arising from the distribute construct ever bind to any of the teams regions arising from the
teams construct.

e A list item that appears in a reduction clause of a worksharing construct must not appear in a
firstprivate clause in a task construct encountered during execution of any of the
worksharing regions arising from the worksharing construct.

C++

e A variable of class type (or array thereof) that appears in a £irstprivate clause requires an
accessible, unambiguous copy constructor for the class type.

C++
C/C++

e Ifalistitem in a firstprivate clause on a worksharing construct has a reference type then it
must bind to the same object for all threads of the team.

C/C++
Fortran

o If the list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is
unspecified.

Fortran

2.19.4.5 lastprivate Clause

288

Summary

The lastprivate clause declares one or more list items to be private to an implicit task or to a
SIMD lane, and causes the corresponding original list item to be updated after the end of the region.

Syntax

The syntax of the lastprivate clause is as follows:

I lastprivate ([lastprivate-modifier : | list)
where lastprivate-modifier is:

I conditional

OpenMP API — Version 5.0 November 2018

—_

-
- O VW ooO~NOOOA~ WM

—a A
w N

14
15

16

17
18
19
20

21
22
23
24

25
26
27
28

29
30
31

Description

The lastprivate clause provides a superset of the functionality provided by the private
clause.

A list item that appears in a lastprivate clause is subject to the private clause semantics
described in Section 2.19.4.3 on page 285. In addition, when a 1lastprivate clause without the
conditional modifier appears on a directive, the value of each new list item from the
sequentially last iteration of the associated loops, or the lexically last section construct, is
assigned to the original list item. When the conditional modifier appears on the clause, if an
assignment to a list item is encountered in the construct then the original list item is assigned the
value that is assigned to the new list item in the sequentially last iteration or lexically last section in
which such an assignment is encountered.

C/C++

For an array of elements of non-array type, each element is assigned to the corresponding element
of the original array.

C/C++

Fortran

If the original list item does not have the POINTER attribute, its update occurs as if by intrinsic
assignment unless it has a type bound procedure as a defined assignment.

If the original list item has the POINTER attribute, its update occurs as if by pointer assignment.
Fortran

When the conditional modifier does not appear on the lastprivate clause, list items that
are not assigned a value by the sequentially last iteration of the loops, or by the lexically last
section construct, have unspecified values after the construct. Unassigned subcomponents also
have unspecified values after the construct.

If the lastprivate clause is used on a construct to which neither the nowait nor the
nogroup clauses are applied, the original list item becomes defined at the end of the construct. To
avoid data races, concurrent reads or updates of the original list item must be synchronized with the
update of the original list item that occurs as a result of the lastprivate clause.

Otherwise, If the lastprivate clause is used on a construct to which the nowait or the
nogroup clauses are applied, accesses to the original list item may create a data race. To avoid
this data race, if an assignment to the original list item occurs then synchronization must be inserted
to ensure that the assignment completes and the original list item is flushed to memory.

If a list item that appears in a lastprivate clause with the conditional modifier is
modified in the region by an assignment outside the construct or not to the list item then the value
assigned to the original list item is unspecified.

CHAPTER 2. DIRECTIVES 289

—_

oO~N OO0~ W N

10
11

12
13
14

15
16

17

18
19
20

21
22

23

24

25
26
27

2.19.4.6

290

Restrictions
The restrictions to the lastprivate clause are as follows:

o A list item that is private within a parallel region, or that appears in the reduction clause
of a parallel construct, must not appear in a lastprivate clause on a worksharing
construct if any of the corresponding worksharing regions ever binds to any of the corresponding
parallel regions.

o A list item that appears in a lastprivate clause with the conditional modifier must be a
scalar variable.

C++

e A variable of class type (or array thereof) that appears in a lastprivate clause requires an
accessible, unambiguous default constructor for the class type, unless the list item is also
specified in a firstprivate clause.

e A variable of class type (or array thereof) that appears in a lastprivate clause requires an
accessible, unambiguous copy assignment operator for the class type. The order in which copy
assignment operators for different variables of class type are called is unspecified.

C++
C/C++

e If alistitem in a lastprivate clause on a worksharing construct has a reference type then it
must bind to the same object for all threads of the team.

C/C++
Fortran
e A variable that appears in a lastprivate clause must be definable.

o If the original list item has the ALLOCATABLE attribute, the corresponding list item whose value
is assigned to the original list item must have an allocation status of allocated upon exit from the
sequentially last iteration or lexically last section construct.

o If the list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is
unspecified.

Fortran

linear Clause

Summary

The 1inear clause declares one or more list items to be private and to have a linear relationship
with respect to the iteration space of a loop associated with the construct on which the clause
appears.

OpenMP API — Version 5.0 November 2018

11
12
13
14

15
16
17

18
19

20

21
22

Syntax

C
The syntax of the 1inear clause is as follows:
I linear (linear-list[: linear-step])

where linear-list is one of the following

list

modifier (list)
where modifier is one of the following:

I val
C
C++
The syntax of the 1inear clause is as follows:
I linear (linear-list[: linear-step])

where linear-list is one of the following

list

modifier (list)
where modifier is one of the following:

ref

val

uval

C++
Fortran

The syntax of the 1inear clause is as follows:

I linear (linear-list[: linear-step])
where linear-list is one of the following
list
modifier (list)

CHAPTER 2. DIRECTIVES

291

—_

A~ WO D

o ~NO O

11
12

13
14
15
16
17
18
19
20
21

22

23
24

25
26
27

28

292

where modifier is one of the following:

ref
val

uval

Fortran

Description

The linear clause provides a superset of the functionality provided by the private clause. A
list item that appears in a 1inear clause is subject to the private clause semantics described in
Section 2.19.4.3 on page 285 except as noted. If linear-step is not specified, it is assumed to be 1.

When a 1inear clause is specified on a construct, the value of the new list item on each iteration
of the associated loop(s) corresponds to the value of the original list item before entering the
construct plus the logical number of the iteration times linear-step. The value corresponding to the
sequentially last iteration of the associated loop(s) is assigned to the original list item.

When a 1inear clause is specified on a declarative directive, all list items must be formal
parameters (or, in Fortran, dummy arguments) of a function that will be invoked concurrently on
each SIMD lane. If no modifier is specified or the val or uval modifier is specified, the value of
each list item on each lane corresponds to the value of the list item upon entry to the function plus
the logical number of the lane times linear-step. If the uval modifier is specified, each invocation
uses the same storage location for each SIMD lane; this storage location is updated with the final
value of the logically last lane. If the ref modifier is specified, the storage location of each list
item on each lane corresponds to an array at the storage location upon entry to the function indexed
by the logical number of the lane times linear-step.

Restrictions

e The linear-step expression must be invariant during the execution of the region that corresponds
to the construct. Otherwise, the execution results in unspecified behavior.

e Only a loop iteration variable of a loop that is associated with the construct may appear as a
list-item in a 1inear clause if a reduction clause with the inscan modifier also appears
on the construct.

C
o A list-item that appears in a 1inear clause must be of integral or pointer type.

C

OpenMP API — Version 5.0 November 2018

NoO gk W NN =

10
11

12
13

14
15
16

17
18

19
20
21

22

23

24
25
26
27
28

2.19.5

C++

o A list-item that appears in a 1inear clause without the ref modifier must be of integral or
pointer type, or must be a reference to an integral or pointer type.

e The ref or uval modifier can only be used if the /ist-item is of a reference type.

e If alist item in a 1inear clause on a worksharing construct has a reference type then it must
bind to the same object for all threads of the team.

o If the list item is of a reference type and the ref modifier is not specified and if any write to the
list item occurs before any read of the list item then the result is unspecified.

C++
Fortran

o A list-item that appears in a 1inear clause without the ref modifier must be of type
integer.

e The ref or uval modifier can only be used if the list-item is a dummy argument without the
VALUE attribute.

e Variables that have the POINTER attribute and Cray pointers may not appear in a 1inear
clause.

o If the list item has the ALLOCATABLE attribute and the ref modifier is not specified, the
allocation status of the list item in the sequentially last iteration must be allocated upon exit from
that iteration.

o If the ref modifier is specified, variables with the ALLOCATABLE attribute, assumed-shape
arrays and polymorphic variables may not appear in the 1inear clause.

o If the list item is a dummy argument without the VALUE attribute and the ref modifier is not
specified and if any write to the list item occurs before any read of the list item then the result is
unspecified.

e A common block name cannot appear in a 1inear clause.
Fortran

Reduction Clauses and Directives

The reduction clauses are data-sharing attribute clauses that can be used to perform some forms of
recurrence calculations in parallel. Reduction clauses include reduction scoping clauses and
reduction participating clauses. Reduction scoping clauses define the region in which a reduction is
computed. Reduction participating clauses define the participants in the reduction. Reduction
clauses specify a reduction-identifier and one or more list items.

CHAPTER 2. DIRECTIVES 293

1

11
12
13

2.19.5.1 Properties Common To All Reduction Clauses

294

Syntax

The syntax of a reduction-identifier is defined as follows:

C

A reduction-identifier is either an identifier or one of the following operators: +, —, *, &, |, *, &&
and | |.

C

C++

A reduction-identifier is either an id-expression or one of the following operators: +, —, *, &, |, *,
&&and | |.

C++
Fortran
A reduction-identifier is either a base language identifier, or a user-defined operator, or one of the
following operators: +, —, *, .and., .or., .eqv., .neqv., or one of the following intrinsic
procedure names: max, min, iand, ior, ieor.

Fortran
C/C++

Table 2.11 lists each reduction-identifier that is implicitly declared at every scope for arithmetic
types and its semantic initializer value. The actual initializer value is that value as expressed in the
data type of the reduction list item.

TABLE 2.11: Implicitly Declared C/C++ reduction-identifiers

Identifier Initializer Combiner

+ omp_priv = 0 omp_out += omp_in

- omp_priv = 0 omp_out += omp_in

* omp_priv =1 omp_out *= omp_in

& omp_priv = ~ 0 omp_out &= omp_in

| omp_priv = 0 omp_out |= omp_in

~ omp_priv = 0 omp_out “= omp_in

&& omp_priv =1 omp_out = omp_in && omp_out

table continued on next page

OpenMP API — Version 5.0 November 2018

—_

table continued from previous page

Identifier Initializer Combiner
|| omp_priv = 0 omp_out = omp_in || omp_out
max omp_priv = Least omp_out = omp_in > omp_out ?
representable number in the omp_in omp_out
reduction list item type
min omp_priv = Largest omp_out = omp_in < omp_out ?
representable number in the omp_in omp_out
reduction list item type
C/C++
Fortran

Table 2.12 lists each reduction-identifier that is implicitly declared for numeric and logical types
and its semantic initializer value. The actual initializer value is that value as expressed in the data
type of the reduction list item.

TABLE 2.12: Implicitly Declared Fortran reduction-identifiers

Identifier Initializer Combiner
+ omp_priv = 0 omp_out = omp_in + omp_out
- omp_priv = 0 omp_out = omp_in + omp_out
* omp_priv =1 omp_out = omp_in * omp_out
.and. omp_priv = .true. omp_out = omp_in .and. omp_out
.or. omp_priv = .false. omp_out = omp_in .or. omp_out
.eqv. omp_priv = .true. omp_out = omp_in .eqv. omp_out
.neqv. omp_priv = .false. omp_out = omp_in .neqv. omp_out
max omp_priv = Least omp_out = max(omp_in, omp_out)
representable number in the
reduction list item type
min omp_priv = Largest omp_out = min(omp_in, omp_out)

representable number in the
reduction list item type

table continued on next page

CHAPTER 2. DIRECTIVES

295

a s~ w D=

O OWwow N o

12
13

14
15

16

17
18

19
20

21
22

296

table continued from previous page

Identifier Initializer Combiner

iand omp_priv = All bits on omp_out = iand(omp_in, omp_out)

jor omp_priv = 0 omp_out = ior (omp_in, omp_out)

jeor omp_priv = 0 omp_out = ieor(omp_in, omp_out)
Fortran

In the above tables, omp_in and omp_out correspond to two identifiers that refer to storage of the
type of the list item. omp_out holds the final value of the combiner operation.

Any reduction-identifier that is defined with the declare reduction directive is also valid. In
that case, the initializer and combiner of the reduction-identifier are specified by the
initializer-clause and the combiner in the declare reduction directive.

Description
A reduction clause specifies a reduction-identifier and one or more list items.

The reduction-identifier specified in a reduction clause must match a previously declared
reduction-identifier of the same name and type for each of the list items. This match is done by
means of a name lookup in the base language.

The list items that appear in a reduction clause may include array sections.

C++

If the type is a derived class, then any reduction-identifier that matches its base classes is also a
match, if there is no specific match for the type.

If the reduction-identifier is not an id-expression, then it is implicitly converted to one by
prepending the keyword operator (for example, + becomes operator+).

If the reduction-identifier is qualified then a qualified name lookup is used to find the declaration.

If the reduction-identifier is unqualified then an argument-dependent name lookup must be
performed using the type of each list item.

C++

If the list item is an array or array section, it will be treated as if a reduction clause would be applied
to each separate element of the array section.

If the list item is an array section, the elements of any copy of the array section will be allocated
contiguously.

OpenMP API — Version 5.0 November 2018

13

14
15
16
17
18
19
20
21

22
23

24
25

26
27

28
29

30
31

Fortran

If the original list item has the POINTER attribute, any copies of the list item are associated with
private targets.

Fortran

Any copies associated with the reduction are initialized with the initializer value of the
reduction-identifier.

Any copies are combined using the combiner associated with the reduction-identifier.

Execution Model Events

The reduction-begin event occurs before a task begins to perform loads and stores that belong to the
implementation of a reduction and the reduction-end event occurs after the task has completed
loads and stores associated with the reduction. If a task participates in multiple reductions, each
reduction may be bracketed by its own pair of reduction-begin/reduction-end events or multiple
reductions may be bracketed by a single pair of events. The interval defined by a pair of
reduction-begin/reduction-end events may not contain a task scheduling point.

Tool Callbacks

A thread dispatches a registered ompt_callback_reduction with
ompt_sync_region_reduction in its kind argument and ompt_scope_begin as its
endpoint argument for each occurrence of a reduction-begin event in that thread. Similarly, a thread
dispatches a registered ompt_callback_reduction with
ompt_sync_region_reduction in its kind argument and ompt_scope_end as its
endpoint argument for each occurrence of a reduction-end event in that thread. These callbacks
occur in the context of the task that performs the reduction and has the type signature
ompt_callback_sync_region_t.

Restrictions
The restrictions common to reduction clauses are as follows:

e Any number of reduction clauses can be specified on the directive, but a list item (or any array
element in an array section) can appear only once in reduction clauses for that directive.

e For a reduction-identifier declared with the declare reduction construct, the directive must
appear before its use in a reduction clause.

e If alistitem is an array section or an array element, its base expression must be a base language
identifier.

e If a list item is an array section, it must specify contiguous storage and it cannot be a zero-length
array section.

CHAPTER 2. DIRECTIVES 297

—_

o N O

10
11
12
13
14

15
16

17
18

19

20
21

22
23
24

25
26
27
28

298

If a list item is an array section or an array element, accesses to the elements of the array outside
the specified array section or array element result in unspecified behavior.

C

A variable that is part of another variable, with the exception of array elements, cannot appear in
a reduction clause.

C
C++

A variable that is part of another variable, with the exception of array elements, cannot appear in
a reduction clause except if the reduction clause is associated with a construct within a class
non-static member function and the variable is an accessible data member of the object for which
the non-static member function is invoked.

C++

C/C++

The type of a list item that appears in a reduction clause must be valid for the
reduction-identifier. For a max or min reduction in C, the type of the list item must be an
allowed arithmetic data type: char, int, f£loat, double, or _Bool, possibly modified with
long, short, signed, or unsigned. For a max or min reduction in C++, the type of the
list item must be an allowed arithmetic data type: char, wchar_t, int, float, double, or
bool, possibly modified with long, short, signed, or unsigned.

A list item that appears in a reduction clause must not be const-qualified.

The reduction-identifier for any list item must be unambiguous and accessible.

C/C++
Fortran

A variable that is part of another variable, with the exception of array elements, cannot appear in
a reduction clause.

A type parameter inquiry cannot appear in a reduction clause.

The type, type parameters and rank of a list item that appears in a reduction clause must be valid
for the combiner and initializer.

A list item that appears in a reduction clause must be definable.
A procedure pointer may not appear in a reduction clause.
A pointer with the INTENT (IN) attribute may not appear in the reduction clause.

An original list item with the POINTER attribute or any pointer component of an original list
item that is referenced in the combiner must be associated at entry to the construct that contains
the reduction clause. Additionally, the list item or the pointer component of the list item must not
be deallocated, allocated, or pointer assigned within the region.

OpenMP API — Version 5.0 November 2018

ONOO OO OWN =

11
12
13
14

15
16
17
18

19

20
21
22

23
24

25
26

27
28
29
30
31

32
33

2.19.5.2

e An original list item with the ALLOCATABLE attribute or any allocatable component of an
original list item that corresponds to the special variable identifier in the combiner or the
initializer must be in the allocated state at entry to the construct that contains the reduction
clause. Additionally, the list item or the allocatable component of the list item must be neither
deallocated nor allocated, explicitly or implicitly, within the region.

o If the reduction-identifier is defined in a declare reduction directive, the
declare reduction directive must be in the same subprogram, or accessible by host or use
association.

o If the reduction-identifier is a user-defined operator, the same explicit interface for that operator
must be accessible as at the declare reduction directive.

o If the reduction-identifier is defined in a declare reduction directive, any subroutine or
function referenced in the initializer clause or combiner expression must be an intrinsic function,
or must have an explicit interface where the same explicit interface is accessible as at the
declare reduction directive.

Fortran

Cross References
e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.
e ompt_sync_region_reduction, see Section 4.4.4.13 on page 444.

e ompt_callback_sync_region_t, see Section 4.5.2.13 on page 474.

Reduction Scoping Clauses

Reduction scoping clauses define the region in which a reduction is computed by tasks or SIMD
lanes. All properties common to all reduction clauses, which are defined in Section 2.19.5.1 on
page 294, apply to reduction scoping clauses.

The number of copies created for each list item and the time at which those copies are initialized
are determined by the particular reduction scoping clause that appears on the construct.

The time at which the original list item contains the result of the reduction is determined by the
particular reduction scoping clause.

The location in the OpenMP program at which values are combined and the order in which values
are combined are unspecified. Therefore, when comparing sequential and parallel runs, or when
comparing one parallel run to another (even if the number of threads used is the same), there is no
guarantee that bitwise-identical results will be obtained or that side effects (such as floating-point
exceptions) will be identical or take place at the same location in the OpenMP program.

To avoid data races, concurrent reads or updates of the original list item must be synchronized with
the update of the original list item that occurs as a result of the reduction computation.

CHAPTER 2. DIRECTIVES 299

1

o~N OO0 MAWOWN

10

11
12
13
14
15

16

18
19

20
21
22

23

24
25

26
27
28
29
30
31

2.19.5.3

2.19.5.4

300

Reduction Participating Clauses

A reduction participating clause specifies a task or a SIMD lane as a participant in a reduction
defined by a reduction scoping clause. All properties common to all reduction clauses, which are
defined in Section 2.19.5.1 on page 294, apply to reduction participating clauses.

Accesses to the original list item may be replaced by accesses to copies of the original list item
created by a region that corresponds to a construct with a reduction scoping clause.

In any case, the final value of the reduction must be determined as if all tasks or SIMD lanes that
participate in the reduction are executed sequentially in some arbitrary order.

reduction Clause

Summary

The reduction clause specifies a reduction-identifier and one or more list items. For each list
item, a private copy is created in each implicit task or SIMD lane and is initialized with the
initializer value of the reduction-identifier. After the end of the region, the original list item is
updated with the values of the private copies using the combiner associated with the
reduction-identifier.

Syntax
I reduction ([reduction-modifier, [reduction-identifier : list)
Where reduction-identifier is defined in Section 2.19.5.1 on page 294, and reduction-modifier is
one of the following:
inscan
task
default

Description

The reduction clause is a reduction scoping clause and a reduction participating clause, as
described in Section 2.19.5.2 on page 299 and Section 2.19.5.3 on page 300.

If reduction-modifier is not present or the default reduction-modifier is present, the behavior is
as follows. For parallel and worksharing constructs, one or more private copies of each list
item are created for each implicit task, as if the private clause had been used. For the simd
construct, one or more private copies of each list item are created for each SIMD lane, as if the
private clause had been used. For the taskloop construct, private copies are created
according to the rules of the reduction scoping clauses. For the teams construct, one or more

OpenMP API — Version 5.0 November 2018

o oo O W=

-
N = O ©

- 4 a4
© O NO O~ W

DN NN
o ON-—=O

26
27

28
29

30
31

32
33
34

35
36
37

private copies of each list item are created for the initial task of each team in the league, as if the
private clause had been used. For the loop construct, private copies are created and used in the
construct according to the description and restrictions in Section 2.19.3 on page 279. At the end of
a region that corresponds to a construct for which the reduction clause was specified, the
original list item is updated by combining its original value with the final value of each of the
private copies, using the combiner of the specified reduction-identifier.

If the inscan reduction-modifier is present, a scan computation is performed over updates to the
list item performed in each logical iteration of the loop associated with the worksharing-loop,
worksharing-loop SIMD, or simd construct (see Section 2.9.6 on page 132). The list items are
privatized in the construct according to the description and restrictions in Section 2.19.3 on

page 279. At the end of the region, each original list item is assigned the value of the private copy
from the last logical iteration of the loops associated with the construct.

If the task reduction-modifier is present for a parallel or worksharing construct, then each list
item is privatized according to the description and restrictions in Section 2.19.3 on page 279, and
an unspecified number of additional private copies are created to support task reductions. Any
copies associated with the reduction are initialized before they are accessed by the tasks that
participate in the reduction, which include all implicit tasks in the corresponding region and all
participating explicit tasks that specify an in_reduction clause (see Section 2.19.5.6 on

page 303). After the end of the region, the original list item contains the result of the reduction.

If nowait is not specified for the construct, the reduction computation will be complete at the end
of the construct; however, if the reduction clause is used on a construct to which nowait is
also applied, accesses to the original list item will create a race and, thus, have unspecified effect
unless synchronization ensures that they occur after all threads have executed all of their iterations
or section constructs, and the reduction computation has completed and stored the computed
value of that list item. This can most simply be ensured through a barrier synchronization.

Restrictions
The restrictions to the reduction clause are as follows:

e All restrictions common to all reduction clauses, which are listed in Section 2.19.5.1 on
page 294, apply to this clause.

o A list item that appears in a reduction clause of a worksharing construct must be shared in
the parallel region to which a corresponding worksharing region binds.

o If a list item that appears in a reduction clause of a worksharing construct or 1oop construct
for which the corresponding region binds to a parallel region is an array section or an array
element, all threads that participate in the reduction must specify the same storage location.

e A list item that appears in a reduction clause with the inscan reduction-modifier must
appear as a list item in an inclusive or exclusive clause on a scan directive enclosed by
the construct.

CHAPTER 2. DIRECTIVES 301

o~N OO0~ W N-=

©

—_ a4
N = O

—_
A~ W

15
16
17

18
19
20

21
22
23
24

25
26
27
28

29
30
31
32

302

A reduction clause without the inscan reduction-modifier may not appear on a construct
on which a reduction clause with the inscan reduction-modifier appears.

A reduction clause with the task reduction-modifier may only appear on a parallel
construct, a worksharing construct or a combined or composite construct for which any of the
aforementioned constructs is a constituent construct and simd or loop are not constituent
constructs.

A reduction clause with the inscan reduction-modifier may only appear on a
worksharing-loop construct, a worksharing-loop SIMD construct, a simd construct, a parallel
worksharing-loop construct or a parallel worksharing-loop SIMD construct.

A list item that appears in a reduction clause of the innermost enclosing worksharing or
parallel construct may not be accessed in an explicit task generated by a construct for which
an in_reduction clause over the same list item does not appear.

The task reduction-modifier may not appear in a reduction clause if the nowait clause is
specified on the same construct.

C/C++

If a list item in a reduction clause on a worksharing construct or Loop construct for which
the corresponding region binds to a parallel region has a reference type then it must bind to the
same object for all threads of the team.

If a list item in a reduction clause on a worksharing construct or Loop construct for which
the corresponding region binds to a parallel region is an array section or an array element then
the base pointer must point to the same variable for all threads of the team.

A variable of class type (or array thereof) that appears in a reduction clause with the
inscan reduction-modifier requires an accessible, unambiguous default constructor for the
class type. The number of calls to the default constructor while performing the scan computation
is unspecified.

A variable of class type (or array thereof) that appears in a reduction clause with the
inscan reduction-modifier requires an accessible, unambiguous copy assignment operator for
the class type. The number of calls to the copy assignment operator while performing the scan
computation is unspecified.

C/C++

Cross References

scan directive, see Section 2.9.6 on page 132.
List Item Privatization, see Section 2.19.3 on page 279.

private clause, see Section 2.19.4.3 on page 285.

OpenMP API — Version 5.0 November 2018

1

(62 BN

- O © (o] N O

—_

12
13

14
15

16

17
18

19
20

21
22

23
24
25
26

2.19.5.5

2.19.5.6

task_reduction Clause

Summary

The task_reduction clause specifies a reduction among tasks.

Syntax
I task_reduction (reduction-identifier : list)
Where reduction-identifier is defined in Section 2.19.5.1.
Description
The task_reduction clause is a reduction scoping clause, as described in 2.19.5.2.

For each list item, the number of copies is unspecified. Any copies associated with the reduction
are initialized before they are accessed by the tasks participating in the reduction. After the end of
the region, the original list item contains the result of the reduction.

Restrictions
The restrictions to the task_reduction clause are as follows:

e All restrictions common to all reduction clauses, which are listed in Section 2.19.5.1 on
page 294, apply to this clause.

in_reduction Clause

Summary

The in_reduction clause specifies that a task participates in a reduction.

Syntax

I in_reduction (reduction-identifier : list)
where reduction-identifier is defined in Section 2.19.5.1 on page 294.
Description

The in_reduction clause is a reduction participating clause, as described in Section 2.19.5.3
on page 300. For a given a list item, the in_reduction clause defines a task to be a participant
in a task reduction that is defined by an enclosing region for a matching list item that appears in a
task_reduction clause or a reduction clause with the task modifier, where either:

CHAPTER 2. DIRECTIVES 303

oO~N OO0 AW N =

—_
o ©

—_
N —

13
14

15
16

17
18
19
20
21

22

23

24
25
26

2.19.5.7

304

1. The matching list item has the same storage location as the list item in the in_reduction
clause; or

2. A private copy, derived from the matching list item, that is used to perform the task reduction
has the same storage location as the list item in the in_reduction clause.

For the task construct, the generated task becomes the participating task. For each list item, a
private copy may be created as if the private clause had been used.

For the target construct, the target task becomes the participating task. For each list item, a
private copy will be created in the data environment of the target task as if the private clause had
been used, and this private copy will be implicitly mapped into the device data environment of the
target device.

At the end of the task region, if a private copy was created its value is combined with a copy created
by a reduction scoping clause or with the original list item.

Restrictions
The restrictions to the in_reduction clause are as follows:

e All restrictions common to all reduction clauses, which are listed in Section 2.19.5.1 on
page 294, apply to this clause.

o A list item that appears in a task_reduction clause or a reduction clause with the task
modifier that is specified on a construct that corresponds to a region in which the region of the
participating task is closely nested must match each list item. The construct that corresponds to
the innermost enclosing region that meets this condition must specify the same
reduction-identifier for the matching list item as the in_reduction clause.

declare reduction Directive

Summary

The following section describes the directive for declaring user-defined reductions. The
declare reduction directive declares a reduction-identifier that can be used in a reduction
clause. The declare reduction directive is a declarative directive.

OpenMP API — Version 5.0 November 2018

w N

o © (oo} ~ o O ~

11
12

13

14
15

16
17

18
19

20
21

22

23
24
25

26
27

28
29

Syntax

C

#pragma omp declare reduction (reduction-identifier : typename-list :
combiner) [initializer-clause] new-line

where:

reduction-identifier is either a base language identifier or one of the following operators: +, —, *,
& |, &&and | |

typename-list is a list of type names
combiner is an expression

initializer-clause is initializer (initializer-expr) where initializer-expr is
omp_priv = initializer or function-name (argument-list)
C++

#pragma omp declare reduction (reduction-identifier : typename-list :
combiner) [initializer-clause] new-line

where:

reduction-identifier is either an id-expression or one of the following operators: +, —, *, &, |, %,
&&or ||

typename-list is a list of type names
combiner is an expression

initializer-clause is initializer (initializer-expr) where initializer-expr is
omp_priv initializer or function-name (argument-list)
C++

Fortran
!Somp declare reduction (reduction-identifier : type-list : combiner)

[initializer-clause]

where:

reduction-identifier is either a base language identifier, or a user-defined operator, or one of the
following operators: +, —, *, .and., .or., .eqv., .neqv., or one of the following intrinsic
procedure names: max, min, iand, ior, ieor.

type-list is a list of type specifiers that must not be CLASS () and abstract type
combiner is either an assignment statement or a subroutine name followed by an argument list

initializer-clause is initializer (initializer-expr) , where initializer-expr is
omp_priv = expression or subroutine-name (argument-list)
Fortran

CHAPTER 2. DIRECTIVES 305

—_

ook WD

o © o N

12
13
14

15
16
17
18
19

20
21
22
23

24
25
26

27
28
29
30
31

32
33

306

Description

Custom reductions can be defined using the declare reduction directive; the
reduction-identifier and the type identify the declare reduction directive. The
reduction-identifier can later be used in a reduction clause that uses variables of the type or
types specified in the declare reduction directive. If the directive applies to several types
then it is considered as if there were multiple declare reduction directives, one for each type.

Fortran
If a type with deferred or assumed length type parameter is specified in a declare reduction
directive, the reduction-identifier of that directive can be used in a reduction clause with any
variable of the same type and the same kind parameter, regardless of the length type Fortran
parameters with which the variable is declared.

Fortran

The visibility and accessibility of this declaration are the same as those of a variable declared at the
same point in the program. The enclosing context of the combiner and of the initializer-expr is that
of the declare reduction directive. The combiner and the initializer-expr must be correct in
the base language as if they were the body of a function defined at the same point in the program.

Fortran
If the reduction-identifier is the same as the name of a user-defined operator or an extended
operator, or the same as a generic name that is one of the allowed intrinsic procedures, and if the
operator or procedure name appears in an accessibility statement in the same module, the
accessibility of the corresponding declare reduction directive is determined by the
accessibility attribute of the statement.

If the reduction-identifier is the same as a generic name that is one of the allowed intrinsic
procedures and is accessible, and if it has the same name as a derived type in the same module, the
accessibility of the corresponding declare reduction directive is determined by the
accessibility of the generic name according to the base language.

Fortran
C++

The declare reduction directive can also appear at points in the program at which a static
data member could be declared. In this case, the visibility and accessibility of the declaration are
the same as those of a static data member declared at the same point in the program.

C++

The combiner specifies how partial results can be combined into a single value. The combiner can
use the special variable identifiers omp_in and omp_out that are of the type of the variables that
this reduction-identifier reduces. Each of them will denote one of the values to be combined before
executing the combiner. The special omp_out identifier refers to the storage that holds the
resulting combined value after executing the combiner.

The number of times that the combiner is executed, and the order of these executions, for any
reduction clause is unspecified.

OpenMP API — Version 5.0 November 2018

AW N =

- O ©O© 00 ~NOoO O,

—_

12
13
14

15
16

17
18

19
20

21
22

23
24
25

Fortran

If the combiner is a subroutine name with an argument list, the combiner is evaluated by calling the
subroutine with the specified argument list.

If the combiner is an assignment statement, the combiner is evaluated by executing the assignment
statement.

Fortran
As the initializer-expr value of a user-defined reduction is not known a priori the initializer-clause
can be used to specify one. Then the contents of the initializer-clause will be used as the initializer
for private copies of reduction list items where the omp_priv identifier will refer to the storage to

be initialized. The special identifier omp_orig can also appear in the initializer-clause and it will
refer to the storage of the original variable to be reduced.

The number of times that the initializer-expr is evaluated, and the order of these evaluations, is
unspecified.

C/C++

If the initializer-expr is a function name with an argument list, the initializer-expr is evaluated by
calling the function with the specified argument list. Otherwise, the initializer-expr specifies how
omp_priv is declared and initialized.

C/C++
C

If no initializer-clause is specified, the private variables will be initialized following the rules for
initialization of objects with static storage duration.

C
C++

If no initializer-expr is specified, the private variables will be initialized following the rules for
default-initialization.

C++

Fortran

If the initializer-expr is a subroutine name with an argument list, the initializer-expr is evaluated by
calling the subroutine with the specified argument list.

If the initializer-expr is an assignment statement, the initializer-expr is evaluated by executing the
assignment statement.

If no initializer-clause is specified, the private variables will be initialized as follows:
e For complex, real, or integer types, the value 0 will be used.

e For logical types, the value . false. will be used.

CHAPTER 2. DIRECTIVES 307

(o]

10
11

12
13

14
15

16
17

18
19

20
21

22
23

308

e For derived types for which default initialization is specified, default initialization will be used.

e Otherwise, not specifying an initializer-clause results in unspecified behavior.
Fortran
C/C++

If reduction-identifier is used in a target region then a declare target construct must be
specified for any function that can be accessed through the combiner and initializer-expr.

C/C++

Fortran
If reduction-identifier is used in a target region then a declare target construct must be
specified for any function or subroutine that can be accessed through the combiner and
initializer-expr.

Fortran

Restrictions

o The only variables allowed in the combiner are omp_in and omp_out.

e The only variables allowed in the initializer-clause are omp_priv and omp_orig.

e If the variable omp_orig is modified in the initializer-clause, the behavior is unspecified.

o If execution of the combiner or the initializer-expr results in the execution of an OpenMP
construct or an OpenMP API call, then the behavior is unspecified.

o A reduction-identifier may not be re-declared in the current scope for the same type or for a type
that is compatible according to the base language rules.

e At most one initializer-clause can be specified.

e The typename-list must not declare new types.

C/C++

e A type name in a declare reduction directive cannot be a function type, an array type, a
reference type, or a type qualified with const, volatile or restrict.

C/C++
C

o If the initializer-expr is a function name with an argument list, then one of the arguments must be
the address of omp_priv.

C
C++

o If the initializer-expr is a function name with an argument list, then one of the arguments must be
omp_priv or the address of omp_priv.

C++

OpenMP API — Version 5.0 November 2018

oN OO0k W N =

-
N = O ©

a A
A~ W

-
o O

-
© 0

N
o

N NN
W N =

NN
[6) e

26
27

28

29
30
31

2.19.6

Fortran

o If the initializer-expr is a subroutine name with an argument list, then one of the arguments must
be omp_priv.

e If the declare reduction directive appears in the specification part of a module and the
corresponding reduction clause does not appear in the same module, the reduction-identifier must
be the same as the name of a user-defined operator, one of the allowed operators that is extended
or a generic name that is the same as the name of one of the allowed intrinsic procedures.

o If the declare reduction directive appears in the specification of a module, if the
corresponding reduction clause does not appear in the same module, and if the
reduction-identifier is the same as the name of a user-defined operator or an extended operator, or
the same as a generic name that is the same as one of the allowed intrinsic procedures then the
interface for that operator or the generic name must be defined in the specification of the same
module, or must be accessible by use association.

e Any subroutine or function used in the initializer clause or combiner expression must be
an intrinsic function, or must have an accessible interface.

o Any user-defined operator, defined assignment or extended operator used in the initializer
clause or combiner expression must have an accessible interface.

e If any subroutine, function, user-defined operator, defined assignment or extended operator is
used in the initializer clause or combiner expression, it must be accessible to the
subprogram in which the corresponding reduction clause is specified.

o If the length type parameter is specified for a type, it must be a constant, a colon or an *.

o If a type with deferred or assumed length parameter is specified in a declare reduction
directive, no other declare reduction directive with the same type, the same kind
parameters and the same reduction-identifier is allowed in the same scope.

e Any subroutine used in the initializer clause or combiner expression must not have any
alternate returns appear in the argument list.

Fortran

Cross References

e Properties Common To All Reduction Clauses, see Section 2.19.5.1 on page 294.

Data Copying Clauses

This section describes the copyin clause (allowed on the parallel construct and combined
parallel worksharing constructs) and the copyprivate clause (allowed on the single
construct).

CHAPTER 2. DIRECTIVES 309

OO W N=

o © o N

11

12

13
14
15

16

17
18

19

20
21
22
23

24
25

2.19.6.1

310

These clauses support the copying of data values from private or threadprivate variables on one
implicit task or thread to the corresponding variables on other implicit tasks or threads in the team.

The clauses accept a comma-separated list of list items (see Section 2.1 on page 38). All list items
appearing in a clause must be visible, according to the scoping rules of the base language. Clauses
may be repeated as needed, but a list item that specifies a given variable may not appear in more
than one clause on the same directive.

Fortran

An associate name preserves the association with the selector established at the ASSOCIATE
statement. A list item that appears in a data copying clause may be a selector of an ASSOCIATE
construct. If the construct association is established prior to a parallel region, the association
between the associate name and the original list item will be retained in the region.

Fortran

copyin Clause

Summary

The copyin clause provides a mechanism to copy the value of a threadprivate variable of the
master thread to the threadprivate variable of each other member of the team that is executing the
parallel region.

Syntax

The syntax of the copyin clause is as follows:

I copyin (list)

Description
C/C++

The copy is done after the team is formed and prior to the start of execution of the associated
structured block. For variables of non-array type, the copy occurs by copy assignment. For an array
of elements of non-array type, each element is copied as if by assignment from an element of the
array of the master thread to the corresponding element of the array of the other thread.

C/C++
C++

For class types, the copy assignment operator is invoked. The order in which copy assignment
operators for different variables of class type are called is unspecified.

C++

OpenMP API — Version 5.0 November 2018

- O © N O o b~ W N =

—_ -

o a
w N

14
15

16

17
18

19
20
21

22
23

24
25

Fortran

The copy is done, as if by assignment, after the team is formed and prior to the start of execution of
the associated structured block.

On entry to any parallel region, each thread’s copy of a variable that is affected by a copyin
clause for the parallel region will acquire the type parameters, allocation, association, and
definition status of the copy of the master thread, according to the following rules:

If the original list item has the POINTER attribute, each copy receives the same association
status as that of the copy of the master thread as if by pointer assignment.

If the original list item does not have the POINTER attribute, each copy becomes defined with
the value of the copy of the master thread as if by intrinsic assignment unless the list item has a
type bound procedure as a defined assignment. If the original list item that does not have the
POINTER attribute has the allocation status of unallocated, each copy will have the same status.

If the original list item is unallocated or unassociated, the copy of the other thread inherits the
declared type parameters and the default type parameter values from the original list item.

Fortran

Restrictions

The restrictions to the copyin clause are as follows:

C/C++

A list item that appears in a copyin clause must be threadprivate.

A variable of class type (or array thereof) that appears in a copyin clause requires an
accessible, unambiguous copy assignment operator for the class type.

C/C++

Fortran

A list item that appears in a copyin clause must be threadprivate. Named variables that appear
in a threadprivate common block may be specified: it is not necessary to specify the whole
common block.

A common block name that appears in a copyin clause must be declared to be a common block
in the same scoping unit in which the copyin clause appears.

If the list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is
unspecified.

Fortran

CHAPTER 2. DIRECTIVES 311

N

O W oOo~NO O

11

12
13

14

15
16
17

18
19
20
21
22
23
24

25
26

2.19.6.2

312

Cross References
e parallel construct, see Section 2.6 on page 74.

e threadprivate directive, see Section 2.19.2 on page 274.

copyprivate Clause

Summary

The copyprivate clause provides a mechanism to use a private variable to broadcast a value
from the data environment of one implicit task to the data environments of the other implicit tasks
that belong to the parallel region.

To avoid data races, concurrent reads or updates of the list item must be synchronized with the
update of the list item that occurs as a result of the copyprivate clause.

Syntax

The syntax of the copyprivate clause is as follows:

| copyprivate (list)

Description

The effect of the copyprivate clause on the specified list items occurs after the execution of the
structured block associated with the single construct (see Section 2.8.2 on page 89), and before
any of the threads in the team have left the barrier at the end of the construct.

C/C++

In all other implicit tasks that belong to the parallel region, each specified list item becomes
defined with the value of the corresponding list item in the implicit task associated with the thread
that executed the structured block. For variables of non-array type, the definition occurs by copy
assignment. For an array of elements of non-array type, each element is copied by copy assignment
from an element of the array in the data environment of the implicit task that is associated with the
thread that executed the structured block to the corresponding element of the array in the data
environment of the other implicit tasks

C/C++
C++

For class types, a copy assignment operator is invoked. The order in which copy assignment
operators for different variables of class type are called is unspecified.

C++

OpenMP API — Version 5.0 November 2018

- O ©O© 0O N a s~ O =

—_

12

13
14
15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

Fortran
If a list item does not have the POINTER attribute, then in all other implicit tasks that belong to the
parallel region, the list item becomes defined as if by intrinsic assignment with the value of the
corresponding list item in the implicit task that is associated with the thread that executed the
structured block. If the list item has a type bound procedure as a defined assignment, the
assignment is performed by the defined assignment.

If the list item has the POINTER attribute, then, in all other implicit tasks that belong to the
parallel region, the list item receives, as if by pointer assignment, the same association status of
the corresponding list item in the implicit task that is associated with the thread that executed the
structured block.

The order in which any final subroutines for different variables of a finalizable type are called is
unspecified.

Fortran

v v
Note — The copyprivate clause is an alternative to using a shared variable for the value when
providing such a shared variable would be difficult (for example, in a recursion requiring a different

variable at each level).
A A

Restrictions
The restrictions to the copyprivate clause are as follows:

o All list items that appear in the copyprivate clause must be either threadprivate or private in
the enclosing context.

e A list item that appears in a copyprivate clause may not appear in a private or
firstprivate clause on the single construct.

C++

e A variable of class type (or array thereof) that appears in a copyprivate clause requires an
accessible unambiguous copy assignment operator for the class type.

C++
Fortran
e A common block that appears in a copyprivate clause must be threadprivate.

e Pointers with the INTENT (IN) attribute may not appear in the copyprivate clause.

o The list item with the ALLOCATABLE attribute must have the allocation status of allocated when
the intrinsic assignment is performed.

o If the list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is
unspecified.

Fortran

CHAPTER 2. DIRECTIVES 313

(63} N R S

- O © 0N

—_

13

14
15
16

17
18
19

20
21

22
23
24
25
26

27
28
29

2.19.7

314

Cross References

parallel construct, see Section 2.6 on page 74.
threadprivate directive, see Section 2.19.2 on page 274.

private clause, see Section 2.19.4.3 on page 285.

Data-Mapping Attribute Rules, Clauses, and Directives

This section describes how the data-mapping and data-sharing attributes of any variable referenced
in a target region are determined. When specified, explicit data-sharing attributes, map or
is_device_ptr clauses on target directives determine these attributes. Otherwise, the first
matching rule from the following implicit data-mapping rules applies for variables referenced in a
target construct that are not declared in the construct and do not appear in data-sharing attribute,
map or is_device_ptr clauses.

If a variable appears in a to or 1ink clause on a declare target directive then it is treated
as if it had appeared in a map clause with a map-type of tofrom.

If a list item appears in a reduction, lastprivate or linear clause on a combined
target construct then it is treated as if it also appears in a map clause with a map-type of
tofrom.

If a list item appears in an in_reduction clause on a target construct then it is treated as if
it also appears in a map clause with a map-type of tofrom and a map-type-modifier of
always.

If a defaultmap clause is present for the category of the variable and specifies an implicit
behavior other than default, the data-mapping attribute is determined by that clause.

C++

If the target construct is within a class non-static member function, and a variable is an
accessible data member of the object for which the non-static data member function is invoked,
the variable is treated as if the this[:1] expression had appeared in a map clause with a
map-type of tofrom. Additionally, if the variable is of a type pointer or reference to pointer, it
is also treated as if it has appeared in a map clause as a zero-length array section.

If the this keyword is referenced inside a target construct within a class non-static member
function, it is treated as if the this [:1] expression had appeared in a map clause with a
map-type of tofrom.

C++

OpenMP API — Version 5.0 November 2018

10
11

12

13

14
15
16

17

18
19

20

21
22
23
24
25
26

C/C++

e A variable that is of type pointer is treated as if it is the base pointer of a zero-length array
section that appeared as a list item in a map clause.

C/C++
C++

e A variable that is of type reference to pointer is treated as if it had appeared in a map clause as a
zero-length array section.

C++
e If a variable is not a scalar then it is treated as if it had appeared in a map clause with a map-type
of tofrom.
Fortran

e If a scalar variable has the TARGET, ALLOCATABLE or POINTER attribute then it is treated as
if it has appeared in a map clause with a map-type of tofrom.

Fortran

e If none of the above rules applies then a scalar variable is not mapped, but instead has an implicit
data-sharing attribute of mapped, but instead has an implicit data-sharing attribute of firstprivate
(see Section 2.19.1.1 on page 270).

2.19.7.1 map Clause

Summary

The map clause specifies how an original list item is mapped from the current task’s data
environment to a corresponding list item in the device data environment of the device identified by
the construct.

Syntax
The syntax of the map clause is as follows:

I map ([[map-type-modifier[, | [map-type-modifier[, | ...] map-type : | locator-list)
where map-type is one of the following:

to
from
tofrom
alloc
release

delete

CHAPTER 2. DIRECTIVES 315

—_

A~ WO D

o N o O

11
12

13
14
15
16
17

18
19

20
21

22
23
24

25
26
27
28

316

and map-type-modifier is one of the following:

always
close

mapper (mapper-identifier)

Description
The list items that appear in a map clause may include array sections and structure elements.
The map-type and map-type-modifier specify the effect of the map clause, as described below.

For a given construct, the effect of a map clause with the to, £rom, or tofrom map-type is
ordered before the effect of a map clause with the alloc, release, or delete map-type. If a
mapper is specified for the type being mapped, or explicitly specified with the mapper
map-type-modifier, then the effective map—type of a list item will be determined according to the
rules of map-type decay.

If a mapper is specified for the type being mapped, or explicitly specified with the mapper
map-type-modifier, then all map clauses that appear on the declare mapper directive are
treated as though they appeared on the construct with the map clause. Array sections of a mapper
type are mapped as normal, then each element in the array section is mapped according to the rules
of the mapper.

C/C++

If a list item in a map clause is a variable of structure type then it is treated as if each structure
element contained in the variable is a list item in the clause.

C/C++
Fortran

If a list item in a map clause is a derived type variable then it is treated as if each component is a
list item in the clause.

Each pointer component that is a list item that results from a mapped derived type variable is
treated as if its association status is undefined, unless the pointer component appears as another list
item or as the base pointer of another list item in a map clause on the same construct.

Fortran
If a list item in a map clause is a structure element then all other structure elements of the
containing structure variable form a structure sibling list. The map clause and the structure sibling

list are associated with the same construct. If a corresponding list item of the structure sibling list
item is present in the device data environment when the construct is encountered then:

OpenMP API — Version 5.0 November 2018

OO A WN

0

10
11
12
13

14
15

16
17
18

19
20
21

22
23
24
25

26
27
28
29

30
31

o If the structure sibling list item does not appear in a map clause on the construct then:

— If the construct is a target, target data, or target enter data construct then the
structure sibling list item is treated as if it is a list item in a map clause on the construct with a
map-type of alloc.

— If the construct is target exit data construct, then the structure sibling list item is treated
as if it is a list item in a map clause on the construct with a map-type of release.

Fortran
— If the structure sibling list item is a pointer then it is treated as if its association status is
undefined, unless it appears as the base pointer of another list item in a map clause on the
same construct.

Fortran

o If the map clause in which the structure element appears as a list item has a map-type of
delete and the structure sibling list item does not appear as a list item in a map clause on the
construct with a map-type of delete then the structure sibling list item is treated as if it is a list
item in a map clause on the construct with a map-type of delete.

If item, is a list item in a map clause, and item; is another list item in a map clause on the same
construct that has a base pointer that is, or is part of, item,, then:

o If the map clause(s) appear on a target, target data, or target enter data construct,
then on entry to the corresponding region the effect of the map clause on item, is ordered to
occur before the effect of the map clause on item;.

o If the map clause(s) appear on a target, target data, or target exit data construct
then on exit from the corresponding region the effect of the map clause on item, is ordered to
occur before the effect of the map clause on item;.

Fortran
If a list item in a map clause is an associated pointer and the pointer is not the base pointer of
another list item in a map clause on the same construct, then it is treated as if its pointer target is
implicitly mapped in the same clause. For the purposes of the map clause, the mapped pointer
target is treated as if its base pointer is the associated pointer.

Fortran
If a list item in a map clause has a base pointer, and a pointer variable is present in the device data
environment that corresponds to the base pointer when the effect of the map clause occurs, then if

the corresponding pointer or the corresponding list item is created in the device data environment
on entry to the construct, then:

C/C++

1. The corresponding pointer variable is assigned an address such that the corresponding list item
can be accessed through the pointer in a target region.

C/C++

CHAPTER 2. DIRECTIVES 317

15
16
17

18
19
20

21
22

23
24

25
26

27
28

29
30

31

Fortran

1. The corresponding pointer variable is associated with a pointer target that has the same rank and
bounds as the pointer target of the original pointer, such that the corresponding list item can be
accessed through the pointer in a target region.

Fortran

2. The corresponding pointer variable becomes an attached pointer for the corresponding list item.

3. If the original base pointer and the corresponding attached pointer share storage, then the
original list item and the corresponding list item must share storage.

C++

If a lambda is mapped explicitly or implicitly, variables that are captured by the lambda behave as
follows:

e the variables that are of pointer type are treated as if they had appeared in a map clause as
zero-length array sections; and

o the variables that are of reference type are treated as if they had appeared in a map clause.

If a member variable is captured by a lambda in class scope, and the lambda is later mapped
explicitly or implicitly with its full static type, the this pointer is treated as if it had appeared on a
map clause.

C++

The original and corresponding list items may share storage such that writes to either item by one
task followed by a read or write of the other item by another task without intervening
synchronization can result in data races.

If the map clause appears on a target, target data, or target enter data construct then
on entry to the region the following sequence of steps occurs as if performed as a single atomic
operation:

1. If a corresponding list item of the original list item is not present in the device data environment,
then:

a) A new list item with language-specific attributes is derived from the original list item and
created in the device data environment;

b) The new list item becomes the corresponding list item of the original list item in the device
data environment;

¢) The corresponding list item has a reference count that is initialized to zero; and
d) The value of the corresponding list item is undefined;

2. If the corresponding list item’s reference count was not already incremented because of the
effect of a map clause on the construct then:

a) The corresponding list item’s reference count is incremented by one;

OpenMP API — Version 5.0 November 2018

—_

w

»

10

11
12
13
14

15
16
17

18
19
20
21
22
23

24
25

26
27
28

29
30

3. If the corresponding list item’s reference count is one or the always map-type-modifier is
present, and if the map-type is to or tofrom, then:

C/C++

a) For each part of the list item that is an attached pointer, that part of the corresponding list
item will have the value that it had immediately prior to the effect of the map clause; and

C/C++

Fortran

a) For each part of the list item that is an attached pointer, that part of the corresponding list
item, if associated, will be associated with the same pointer target that it was associated with
immediately prior to the effect of the map clause.

Fortran

b) For each part of the list item that is not an attached pointer, the value of that part of the
original list item is assigned to that part of the corresponding list item.

v v
Note — If the effect of the map clauses on a construct would assign the value of an original list
item to a corresponding list item more than once, then an implementation is allowed to ignore

additional assignments of the same value to the corresponding list item.
A A

In all cases on entry to the region, concurrent reads or updates of any part of the corresponding list
item must be synchronized with any update of the corresponding list item that occurs as a result of
the map clause to avoid data races.

If the map clause appears on a target, target data, or target exit data construct and a
corresponding list item of the original list item is not present in the device data environment on exit
from the region then the list item is ignored. Alternatively, if the map clause appears on a target,
target data, or target exit data construct and a corresponding list item of the original list
item is present in the device data environment on exit from the region, then the following sequence

of steps occurs as if performed as a single atomic operation:

1. If the map-type is not delete and the corresponding list item’s reference count is finite and
was not already decremented because of the effect of a map clause on the construct then:

a) The corresponding list item’s reference count is decremented by one;
2. If the map-type is delete and the corresponding list item’s reference count is finite then:
a) The corresponding list item’s reference count is set to zero;

3. If the map-type is £rom or tofrom and if the corresponding list item’s reference count is zero
or the always map-type-modifier is present then:

CHAPTER 2. DIRECTIVES 319

(620 5

o NOo

11
12
13
14

15
16
17

18
19
20
21

22
23
24
25
26
27

28
29
30
31

320

C/C++

a) For each part of the list item that is an attached pointer, that part of the original list item will
have the value that it had immediately prior to the effect of the map clause;

C/C++
Fortran

a) For each part of the list item that is an attached pointer, that part of the corresponding list
item, if associated, will be associated with the same pointer target with which it was
associated immediately prior to the effect of the map clause; and

Fortran
b) For each part of the list item that is not an attached pointer, the value of that part of the
corresponding list item is assigned to that part of the original list item; and

4. If the corresponding list item’s reference count is zero then the corresponding list item is
removed from the device data environment.

v v
Note — If the effect of the map clauses on a construct would assign the value of a corresponding
list item to an original list item more than once, then an implementation is allowed to ignore

additional assignments of the same value to the original list item.
A A

In all cases on exit from the region, concurrent reads or updates of any part of the original list item
must be synchronized with any update of the original list item that occurs as a result of the map
clause to avoid data races.

If a single contiguous part of the original storage of a list item with an implicit data-mapping
attribute has corresponding storage in the device data environment prior to a task encountering the
construct that is associated with the map clause, only that part of the original storage will have
corresponding storage in the device data environment as a result of the map clause.

If a list item with an implicit data-mapping attribute does not have any corresponding storage in the
device data environment prior to a task encountering the construct associated with the map clause,
and one or more contiguous parts of the original storage are either list items or base pointers to list
items that are explicitly mapped on the construct, only those parts of the original storage will have
corresponding storage in the device data environment as a result of the map clauses on the
construct.

C/C++

If a new list item is created then a new list item of the same type, with automatic storage duration, is
allocated for the construct. The size and alignment of the new list item are determined by the static
type of the variable. This allocation occurs if the region references the list item in any statement.
Initialization and assignment of the new list item are through bitwise copy.

C/C++

OpenMP API — Version 5.0 November 2018

© 0O NO O A O =

- a4
n =+ O

13
14
15

16

17
18
19

20
21
22

23
24

25
26

27

Fortran

If a new list item is created then a new list item of the same type, type parameter, and rank is
allocated. The new list item inherits all default values for the type parameters from the original list
item. The value of the new list item becomes that of the original list item in the map initialization
and assignment.

If the allocation status of the original list item with the ALLOCATABLE attribute is changed in the
host device data environment and the corresponding list item is already present in the device data
environment, the allocation status of the corresponding list item is unspecified until a mapping
operation is performed with a map clause on entry to a target, target data, or

target enter data region.

Fortran

The map-type determines how the new list item is initialized.
If a map-type is not specified, the map-type defaults to tofrom.

The close map-type-modifier is a hint to the runtime to allocate memory close to the target device.

Execution Model Events
The target-map event occurs when a thread maps data to or from a target device.

The target-data-op event occurs when a thread initiates a data operation on a target device.

Tool Callbacks

A thread dispatches a registered ompt_callback_target_map callback for each occurrence
of a rarget-map event in that thread. The callback occurs in the context of the target task and has
type signature ompt_callback target_map_t.

A thread dispatches a registered ompt_callback_target_data_op callback for each
occurrence of a target-data-op event in that thread. The callback occurs in the context of the target
task and has type signature ompt_callback_target_data_op_t.

Restrictions
The restrictions to the map clause are as follows:

e A list item cannot appear in both a map clause and a data-sharing attribute clause on the same
construct unless the construct is a combined construct.

e Each of the map-type-modifier modifiers can appear at most once on the map clause.

CHAPTER 2. DIRECTIVES 321

\V]

o NOoO O W

11
12

13
14
15
16

17
18

19
20

21

22
23
24
25

26
27

28
29
30

322

C/C++

List items of the map clauses on the same construct must not share original storage unless they
are the same lvalue expression or array section.

C/C++

If a list item is an array section, it must specify contiguous storage.

If multiple list items are explicitly mapped on the same construct and have the same containing
array or have base pointers that share original storage, and if any of the list items do not have
corresponding list items that are present in the device data environment prior to a task
encountering the construct, then the list items must refer to the same array elements of either the
containing array or the implicit array of the base pointers.

If any part of the original storage of a list item with an explicit data-mapping attribute has
corresponding storage in the device data environment prior to a task encountering the construct
associated with the map clause, all of the original storage must have corresponding storage in the
device data environment prior to the task encountering the construct.

If a list item is an element of a structure, and a different element of the structure has a
corresponding list item in the device data environment prior to a task encountering the construct
associated with the map clause, then the list item must also have a corresponding list item in the
device data environment prior to the task encountering the construct.

A list item must have a mappable type.
threadprivate variables cannot appear in a map clause.

If a mapper map-type-modifier is specified, its type must match the type of the list-items passed
to that map clause.

Memory spaces and memory allocators cannot appear as a list item in a map clause.

C++

If the type of a list item is a reference to a type T then the reference in the device data
environment is initialized to refer to the object in the device data environment that corresponds to
the object referenced by the list item. If mapping occurs, it occurs as though the object were
mapped through a pointer with an array section of type T and length one.

No type mapped through a reference can contain a reference to its own type, or any references to
types that could produce a cycle of references.

If the list item is a lambda, any pointers and references captured by the lambda must have the
corresponding list item in the device data environment prior to the task encountering the
construct.

C++

OpenMP API — Version 5.0 November 2018

a b~ w D

o N O

11
12
13

14
15
16
17

18
19

20

21
22
23

24
25

26
27

28
29
30

C/C++

A list item cannot be a variable that is a member of a structure with a union type.
A bit-field cannot appear in a map clause.

A pointer that has a corresponding attached pointer must not be modified for the duration of the
lifetime of the list item to which the corresponding pointer is attached in the device data
environment.

C/C++

Fortran
List items of the map clauses on the same construct must not share original storage unless they
are the same variable or array section.

A pointer that has a corresponding attached pointer and is associated with a given pointer target
must not become associated with a different pointer target for the duration of the lifetime of the
list item to which the corresponding pointer is attached in the device data environment.

If the allocation status of a list item or any subobject of the list item with the ALLOCATABLE
attribute is unallocated upon entry to a target region, the list item or any subobject of the
corresponding list item must be unallocated upon exit from the region.

If the allocation status of a list item or any subobject of the list item with the ALLOCATABLE
attribute is allocated upon entry to a target region, the allocation status of the corresponding
list item or any subobject of the corresponding list item must not be changed and must not be
reshaped in the region.

If an array section is mapped and the size of the section is smaller than that of the whole array,
the behavior of referencing the whole array in the target region is unspecified.

A list item must not be a whole array of an assumed-size array.

If the association status of a list item with the POINTER attribute is associated upon entry to a
target region, the list item must be associated with the same pointer target upon exit from the
region.

If the association status of a list item with the POINTER attribute is disassociated upon entry to a
target region, the list item must be disassociated upon exit from the region.

If the association status of a list item with the POINTER attribute is undefined upon entry to a
target region, the list item must be undefined upon exit from the region.

If the association status of a list item with the POINTER attribute is disassociated or undefined
on entry and if the list item is associated with a pointer target inside a target region, then the
pointer association status must become disassociated before the end of the region.

Fortran

CHAPTER 2. DIRECTIVES 323

N

o NO O

10
11

12

13
14
15
16
17
18
19

20

21
22
23

Cross References
e ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 488.
e ompt_callback target_map_t, see Section 4.5.2.27 on page 492.

2.19.7.2 defaultmap Clause

Summary

The defaultmap clause explicitly determines the data-mapping attributes of variables that are
referenced in a target construct for which the data-mapping attributes would otherwise be
implicitly determined (see Section 2.19.7 on page 314).

Syntax

The syntax of the defaultmap clause is as follows:
I defaultmap (implicit-behavior|:variable-category])

Where implicit-behavior is one of:

alloc

to

from

tofrom
firstprivate
none

default

C/C++

and variable-category is one of:

scalar
aggregate
pointer

C/C++

324 OpenMP API — Version 5.0 November 2018

a ~ W N

—- O © oo N O

—_

13
14

15
16
17
18
19

20
21
22
23
24
25
26
27
28

Fortran
and variable-category is one of:

scalar
aggregate
allocatable

pointer

Fortran

Description

The defaultmap clause sets the implicit data-mapping attribute for all variables referenced in the
construct. If variable-category is specified, the effect of the defaultmap clause is as follows:

o If variable-category is scalar, all scalar variables of non-pointer type or all non-pointer
non-allocatable scalar variables that have an implicitly determined data-mapping or data-sharing
attribute will have a data-mapping or data-sharing attribute specified by implicit-behavior.

o If variable-category is aggregate or allocatable, all aggregate or allocatable variables
that have an implicitly determined data-mapping or data-sharing attribute will have a
data-mapping or data-sharing attribute specified by implicit-behavior.

o If variable-category is pointer, all variables of pointer type or with the POINTER attribute
that have implicitly determined data-mapping or data-sharing attributes will have a data-mapping
or data-sharing attribute specified by implicit-behavior. The zero-length array section and
attachment that are otherwise applied to an implicitly mapped pointer are only provided for the
default behavior.

If no variable-category is specified in the clause then implicit-behavior specifies the implicitly
determined data-mapping or data-sharing attribute for all variables referenced in the construct. If
implicit-behavior is none, each variable referenced in the construct that does not have a
predetermined data-sharing attribute and does not appear in a to or 1ink clause on a

declare target directive must be listed in a data-mapping attribute clause, a data-sharing
attribute clause (including a data-sharing attribute clause on a combined construct where target
is one of the constituent constructs), or an is_device_ptr clause. If implicit-behavior is
default, then the clause has no effect for the variables in the category specified by
variable-category.

CHAPTER 2. DIRECTIVES 325

1

a b~ w N

10

11
12

13
14
15
16

17
18

19
20
21
22
23
24
25

2.19.7.3 declare mapper Directive

326

Summary

The declare mapper directive declares a user-defined mapper for a given type, and may define

a

mapper-identifier that can be used in a map clause. The declare mapper directive is a

declarative directive.

Syntax

C/C++

The syntax of the declare mapper directive is as follows:

I #pragma omp declare mapper (/mapper-identifier: Jtype var) \

[clause[[, | clause] ... | new-line

C/C++
Fortran

The syntax of the declare mapper directive is as follows:

!'Somp declare mapper ([mapper-identifier: | type :: var) &
[clause[[,] clause] ... |

Fortran

where:

mapper-identifier is a base-language identifier or default
type is a valid type in scope
var is a valid base-language identifier

clause is map ([[map-type-modifier[, | [map-type-modifier([, | ...]] map-type:] list) , where
map-type is one of the following:

— alloc
- to

from

- tofrom
and where map-type-modifier is one of the following:
— always

— close

OpenMP API — Version 5.0 November 2018

—_

o O NOoO ok WD

17
18
19

20
21

22
23
24

25
26
27

28
29

30

Description

User-defined mappers can be defined using the declare mapper directive. The type and the
mapper-identifier uniquely identify the mapper for use in a map clause later in the program. If the
mapper-identifier is not specified, then default is used. The visibility and accessibility of this
declaration are the same as those of a variable declared at the same point in the program.

The variable declared by var is available for use in all map clauses on the directive, and no part of
the variable to be mapped is mapped by default.

The default mapper for all types 7, designated by the pre-defined mapper-identifier default, is as
follows unless a user-defined mapper is specified for that type.

| declare mapper (7 v) map(tofrom: v)

Using the default mapper-identifier overrides the pre-defined default mapper for the given type,
making it the default for all variables of rype. All map clauses with this construct in scope that map
a list item of type will use this mapper unless another is explicitly specified.

All map clauses on the directive are expanded into corresponding map clauses wherever this
mapper is invoked, either by matching type or by being explicitly named in a map clause. A map
clause with list item var maps var as though no mapper were specified.

C++

The declare mapper directive can also appear at points in the program at which a static data
member could be declared. In this case, the visibility and accessibility of the declaration are the
same as those of a static data member declared at the same point in the program.

C++

Restrictions
The restrictions to the declare mapper directive are as follows:

e No instance of type can be mapped as part of the mapper, either directly or indirectly through
another type, except the instance passed as the list item. If a set of declare mapper directives
results in a cyclic definition then the behavior is unspecified.

e The type must be of struct, union or class type in C and C++ or a non-intrinsic type in Fortran.
e The type must not declare a new type.
o At least one map clause that maps var or at least one element of var is required.

e List-items in map clauses on this construct may only refer to the declared variable var and
entities that could be referenced by a procedure defined at the same location.

e Each map-type-modifier can appear at most once on the map clause.

CHAPTER 2. DIRECTIVES 327

—_

N

o OO,

11
12

13
14
15

16
17

18
19

20
21
22

23
24

25

26
27
28

2.20

328

o A mapper-identifier may not be redeclared in the current scope for the same type or for a type
that is compatible according to the base language rules.

Fortran
e type must not be an abstract type.
Fortran

Nesting of Regions

This section describes a set of restrictions on the nesting of regions. The restrictions on nesting are
as follows:

e A worksharing region may not be closely nested inside a worksharing, 1oop, task,
taskloop, critical, ordered, atomic, or master region.

e A barrier region may not be closely nested inside a worksharing, 1loop, task, taskloop,
critical, ordered, atomic, or master region.

e A master region may not be closely nested inside a worksharing, 1oop, atomic, task, or
taskloop region.

e An ordered region corresponding to an ordered construct without any clause or with the
threads or depend clause may not be closely nested inside a critical, ordered, loop,
atomic, task, or taskloop region.

e An ordered region corresponding to an ordered construct without the simd clause
specified must be closely nested inside a worksharing-loop region.

e An ordered region corresponding to an ordered construct with the simd clause specified
must be closely nested inside a simd or worksharing-loop SIMD region.

e An ordered region corresponding to an ordered construct with both the simd and
threads clauses must be closely nested inside a worksharing-loop SIMD region or closely
nested inside a worksharing-loop and simd region.

e A critical region may not be nested (closely or otherwise) inside a critical region with
the same name. This restriction is not sufficient to prevent deadlock.

e OpenMP constructs may not be encountered during execution of an atomiec region.

e The only OpenMP constructs that can be encountered during execution of a simd (or
worksharing-loop SIMD) region are the atomic construct, the 1oop construct, the simd
construct and the ordered construct with the simd clause.

OpenMP API — Version 5.0 November 2018

O NOO O~ W N =

11
12

13
14

15
16
17
18
19
20

21
22
23
24
25
26

27
28
29

30
31

If a target update, target data, target enter data, or target exit data
construct is encountered during execution of a target region, the behavior is unspecified.

If a target construct is encountered during execution of a target region and a device
clause in which the ancestor device-modifier appears is not present on the construct, the
behavior is unspecified.

A teams region can only be strictly nested within the implicit parallel region or a target
region. If a teams construct is nested within a target construct, that target construct must
contain no statements, declarations or directives outside of the teams construct.

distribute, distribute simd, distribute parallel worksharing-loop, distribute parallel
worksharing-loop SIMD, loop, parallel regions, including any parallel regions arising
from combined constructs, omp_get_num_teams () regions, and omp_get_team_num()
regions are the only OpenMP regions that may be strictly nested inside the teams region.

The region corresponding to the distribute construct must be strictly nested inside a teams
region.

If construct-type-clause is taskgroup, the cancel construct must be closely nested inside a
task construct and the cancel region must be closely nested inside a taskgroup region. If
construct-type-clause is sections, the cancel construct must be closely nested inside a
sections or section construct. Otherwise, the cancel construct must be closely nested
inside an OpenMP construct that matches the type specified in construct-type-clause of the
cancel construct.

A cancellation point construct for which construct-type-clause is taskgroup must be
closely nested inside a task construct, and the cancellation point region must be closely
nested inside a taskgroup region. A cancellation point construct for which
construct-type-clause is sections must be closely nested inside a sections or section
construct. Otherwise, a cancellation point construct must be closely nested inside an
OpenMP construct that matches the type specified in construct-type-clause.

The only constructs that may be nested inside a 1oop region are the 1oop construct, the
parallel construct, the simd construct, and combined constructs for which the first construct
is a parallel construct.

A loop region may not contain calls to procedures that contain OpenMP directives or calls to
the OpenMP Runtime API.

CHAPTER 2. DIRECTIVES 329

This page intentionally left blank

CHAPTER 3

Runtime Library Routines

This chapter describes the OpenMP API runtime library routines and queryable runtime states. In
this chapter, true and false are used as generic terms to simplify the description of the routines.

C/C++
true means a nonzero integer value and false means an integer value of zero.

C/C++

Fortran
true means a logical value of . TRUE. and false means a logical value of .FALSE..
Fortran

Fortran
Restrictions

The following restriction applies to all OpenMP runtime library routines:

e OpenMP runtime library routines may not be called from PURE or ELEMENTAL procedures.
Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 331

1 3.1

o O~ WD

~

332

Runtime Library Definitions

For each base language, a compliant implementation must supply a set of definitions for the
OpenMP API runtime library routines and the special data types of their parameters. The set of
definitions must contain a declaration for each OpenMP API runtime library routine and variable
and a definition of each required data type listed below. In addition, each set of definitions may
specify other implementation specific values.

C/C++

The library routines are external functions with “C” linkage.

Prototypes for the C/C++ runtime library routines described in this chapter shall be provided in a
header file named omp . h. This file also defines the following:

e The type omp_lock_t;

e The type omp_nest_lock_t;

o The type omp_sync_hint_t;

e The type omp_lock_hint_t (deprecated);
e The type omp_sched_t;

e The type omp_proc_bind t;

e The type omp_control_tool_t;

e The type omp_control_tool_result_t;
e The type omp_depend_t;

e The type omp_memspace_handle_t, which must be an implementation-defined enum type
with an enumerator for at least each predefined memory space in Table 2.8 on page 152;

e The type omp_allocator_handle_t, which must be an implementation-defined enum type
with at least the omp_null_allocator enumerator with the value zero and an enumerator
for each predefined memory allocator in Table 2.10 on page 155;

e The type omp_uintptr_t, which is an unsigned integer type capable of holding a pointer on
any device;

e The type omp_pause_resource_t; and

o The type omp_event_handle_t, which must be an implementation-defined enum type.

C/C++

OpenMP API — Version 5.0 November 2018

o © 0o NO» o~

12
13
14
15
16
17
18
19
20
21
22
23

24
25

26
27

28
29

C++

The omp . h header file also defines a class template that models the Allocator concept in the
omp: :allocator namespace for each predefined memory allocator in Table 2.10 on page 155
for which the name includes neither the omp__ prefix nor the _alloc suffix.

C++
Fortran

The OpenMP Fortran API runtime library routines are external procedures. The return values of
these routines are of default kind, unless otherwise specified.

Interface declarations for the OpenMP Fortran runtime library routines described in this chapter
shall be provided in the form of a Fortran include file named omp_1ib.h or a Fortran 90
module named omp_1ib. It is implementation defined whether the include file or the
module file (or both) is provided.

These files also define the following:

o The integer parameter omp_lock_kind;

e The integer parameter omp_nest_lock_kind;

e The integer parameter omp_sync_hint_kind;

e The integer parameter omp_lock_hint_kind (deprecated);
e The integer parameter omp_sched kind;

e The integer parameter omp_proc_bind_kind;

e The integer parameter omp_control_tool_kind;

o The integer parameter omp_control_ tool_result_kind;
e The integer parameter omp_depend_kind;

e The integer parameter omp_memspace_handle_kind;

e The integer parameter omp_allocator_handle_kind;

e The integer parameter omp_alloctrait_key_kind,

e The integer parameter omp_alloctrait_wval_kind,

e An integer parameter of kind omp_memspace_handle_kind for each predefined
memory space in Table 2.8 on page 152;

e An integer parameter of kind omp_allocator_handle_kind for each predefined
memory allocator in Table 2.10 on page 155;

e The integer parameter omp_pause_resource_kind,

o The integer parameter omp_event_handle_kind; and

CHAPTER 3. RUNTIME LIBRARY ROUTINES 333

No o AW =

11

12

13
14
15

16

17

18
19

20

21
22

3.2

3.2.1

334

e The integer parameter openmp_version with a value yyyymm where yyyy and mm are

the year and month designations of the version of the OpenMP Fortran API that the
implementation supports; this value matches that of the C preprocessor macro _ OPENMP, when
a macro preprocessor is supported (see Section 2.2 on page 49).

It is implementation defined whether any of the OpenMP runtime library routines that take an
argument are extended with a generic interface so arguments of different KIND type can be
accommodated.

Fortran

Execution Environment Routines

This section describes routines that affect and monitor threads, processors, and the parallel
environment.

omp_set_num_threads

Summary

The omp_set_num_threads routine affects the number of threads to be used for subsequent
parallel regions that do not specify a num_threads clause, by setting the value of the first
element of the nthreads-var ICV of the current task.

Format
C/C++

| void omp_set_num threads (int num_threads) ;
C/C++
Fortran

subroutine omp_set_num_threads (num_threads)
integer num_threads

Fortran
Constraints on Arguments

The value of the argument passed to this routine must evaluate to a positive integer, or else the
behavior of this routine is implementation defined.

OpenMP API — Version 5.0 November 2018

o

o © 0o N o

12

13

14
15

16

17

18

19

20
21

3.2.2

Binding

The binding task set for an omp_set_num_threads region is the generating task.

Effect

The effect of this routine is to set the value of the first element of the nthreads-var ICV of the
current task to the value specified in the argument.

Cross References

nthreads-var ICV, see Section 2.5 on page 63.

e parallel construct and num_threads clause, see Section 2.6 on page 74.

Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.

e omp_get_num_threads routine, see Section 3.2.2 on page 335.

omp_get_max_threads routine, see Section 3.2.3 on page 336.

e OMP_NUM_THREADS environment variable, see Section 6.2 on page 602.

omp_get_num_threads

Summary

The omp_get_num_threads routine returns the number of threads in the current team.

Format
C/C++
I int omp_get_num_ threads (void);
C/C++
Fortran
I integer function omp_get_num_threads ()
Fortran
Binding

The binding region for an omp_get_num_threads region is the innermost enclosing
parallel region.

CHAPTER 3. RUNTIME LIBRARY ROUTINES

335

—_

A WOMN

o © 0o N o o

11

12

13
14
15

16

17

18

19
20

Effect

The omp_get_num_threads routine returns the number of threads in the team that is executing
the parallel region to which the routine region binds. If called from the sequential part of a
program, this routine returns 1.

Cross References

e nthreads-var ICV, see Section 2.5 on page 63.

parallel construct and num_threads clause, see Section 2.6 on page 74.
e Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.
e omp_set_num_threads routine, see Section 3.2.1 on page 334.

e OMP_NUM_THREADS environment variable, see Section 6.2 on page 602.

3.23 omp_get_max threads

Summary

The omp_get_max_threads routine returns an upper bound on the number of threads that
could be used to form a new team if a parallel construct without a num_threads clause were
encountered after execution returns from this routine.

Format
C/C++
| int omp_get_max threads (void);
C/C++
Fortran
I integer function omp_get_max_threads ()
Fortran
Binding

The binding task set for an omp_get_max_threads region is the generating task.

336 OpenMP API — Version 5.0 November 2018

—_

QO OWowo~N O O~ wWN

—_

11
12
13
14
15
16
17
18

19

20

21
22

23

24

25

3.2.4

Effect

The value returned by omp_get_max_threads is the value of the first element of the
nthreads-var ICV of the current task. This value is also an upper bound on the number of threads
that could be used to form a new team if a parallel region without a num_threads clause were
encountered after execution returns from this routine.

v v
Note — The return value of the omp_get_max_threads routine can be used to allocate
sufficient storage dynamically for all threads in the team formed at the subsequent active

parallel region.
A A

Cross References

nthreads-var ICV, see Section 2.5 on page 63.

e parallel construct and num_threads clause, see Section 2.6 on page 74.

e Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.
e omp_set_num_threads routine, see Section 3.2.1 on page 334.

e omp_get_num_threads routine, see Section 3.2.2 on page 335.

e omp_get_thread num routine, see Section 3.2.4 on page 337.

e OMP_NUM_THREADS environment variable, see Section 6.2 on page 602.

omp_get_thread_ num

Summary

The omp_get_thread_numroutine returns the thread number, within the current team, of the
calling thread.

Format
C/C++

| int omp_get_thread num(void);

C/C++

Fortran
Iinteger function omp_get_thread num()

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 337

w N

o NOoO O A

11
12
13

14
15
16
17
18
19
20

21

22
23

24

25

26

3.2.5

338

Binding

The binding thread set for an omp_get_thread_num region is the current team. The binding
region for an omp_get_thread_ num region is the innermost enclosing parallel region.

Effect

The omp_get_thread_num routine returns the thread number of the calling thread, within the
team that is executing the parallel region to which the routine region binds. The thread number
is an integer between 0 and one less than the value returned by omp_get_num_threads,
inclusive. The thread number of the master thread of the team is 0. The routine returns O if it is
called from the sequential part of a program.

v v
Note — The thread number may change during the execution of an untied task. The value returned

by omp_get_thread_num is not generally useful during the execution of such a task region.
A A

Cross References

e nthreads-var ICV, see Section 2.5 on page 63.

e parallel construct and num_threads clause, see Section 2.6 on page 74.

e Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.
e omp_set_num_threads routine, see Section 3.2.1 on page 334.

e omp_get_num threads routine, see Section 3.2.2 on page 335.

e OMP_NUM THREADS environment variable, see Section 6.2 on page 602.

omp_get_num_ procs

Summary

The omp_get_num_procs routine returns the number of processors available to the device.

Format
C/C++
| int omp_get_num procs (void);
C/C++
Fortran

I integer function omp_get_num procs()

Fortran

OpenMP API — Version 5.0 November 2018

A WOWN

© 0o ~NO O

11
12
13
14

15

16

17
18

19

20

21

22
23

3.2.6

Binding

The binding thread set for an omp_get_num_procs region is all threads on a device. The effect
of executing this routine is not related to any specific region corresponding to any construct or API
routine.

Effect

The omp_get_num_procs routine returns the number of processors that are available to the
device at the time the routine is called. This value may change between the time that it is
determined by the omp_get_num_procs routine and the time that it is read in the calling
context due to system actions outside the control of the OpenMP implementation.

Cross References
e omp_get_num_places routine, see Section 3.2.24 on page 358.
e omp_get_place_num_procs routine, see Section 3.2.25 on page 359.

e omp_get_place_proc_ids routine, see Section 3.2.26 on page 360.

omp_get_place_numroutine, see Section 3.2.27 on page 362.

omp_in_parallel

Summary

The omp_in_parallel routine returns true if the active-levels-var ICV is greater than zero;
otherwise, it returns false.

Format
C/C++
I int omp_in parallel (void);
C/C++
Fortran
I logical function omp_in parallel ()
Fortran

Binding

The binding task set for an omp_in_parallel region is the generating task.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 339

—_

A WOMN

© 00 N o o

10

11

12
13
14

15

16

17
18

19
20

Effect

The effect of the omp_in_parallel routine is to return true if the current task is enclosed by an
active parallel region, and the parallel region is enclosed by the outermost initial task
region on the device; otherwise it returns false.

Cross References

active-levels-var, see Section 2.5 on page 63.

parallel construct, see Section 2.6 on page 74.
e omp_get_num threads routine, see Section 3.2.2 on page 335.

e omp_get_active_level routine, see Section 3.2.21 on page 355.

3.2.7 omp_set_dynamic

Summary

The omp_set_dynamic routine enables or disables dynamic adjustment of the number of
threads available for the execution of subsequent parallel regions by setting the value of the

dyn-var ICV.
Format
C/C++
I void omp_set_dynamic (int dynamic_threads) ;
C/C++
Fortran

subroutine omp_set_dynamic (dynamic_threads)
logical dynamic_threads

Fortran

Binding

The binding task set for an omp_set_dynamic region is the generating task.

340 OpenMP API — Version 5.0 November 2018

(o2 I &) IEE NGO I \V)

13

14

15
16

17

18

19

20
21

3.2.8

Effect

For implementations that support dynamic adjustment of the number of threads, if the argument to
omp_set_dynamic evaluates to frue, dynamic adjustment is enabled for the current task;
otherwise, dynamic adjustment is disabled for the current task. For implementations that do not
support dynamic adjustment of the number of threads, this routine has no effect: the value of
dyn-var remains false.

Cross References

dyn-var ICV, see Section 2.5 on page 63.

Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.

e omp_get_num_threads routine, see Section 3.2.2 on page 335.

omp_get_dynamic routine, see Section 3.2.8 on page 341.

OMP_DYNAMIC environment variable, see Section 6.3 on page 603.

omp_get_dynamic

Summary

The omp_get_dynamic routine returns the value of the dyn-var ICV, which determines whether
dynamic adjustment of the number of threads is enabled or disabled.

Format
C/C++
I int omp_get_dynamic (void) ;
C/C++
Fortran
I logical function omp_get_dynamic ()
Fortran

Binding

The binding task set for an omp_get_dynamic region is the generating task.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 341

—_

A WOMN

© 00 N o o

10

11

12
13

14

15

16

17
18

19
20

3.2.9

342

Effect

This routine returns true if dynamic adjustment of the number of threads is enabled for the current
task; it returns false, otherwise. If an implementation does not support dynamic adjustment of the
number of threads, then this routine always returns false.

Cross References

dyn-var ICV, see Section 2.5 on page 63.
e Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.
e omp_set_dynamic routine, see Section 3.2.7 on page 340.

e OMP_DYNAMIC environment variable, see Section 6.3 on page 603.

omp_get_cancellation

Summary

The omp_get_cancellation routine returns the value of the cancel-var ICV, which
determines if cancellation is enabled or disabled.

Format
C/C++
I int omp_get_cancellation (void);
C/C++
Fortran
Ilogical function omp_get_cancellation()
Fortran
Binding

The binding task set for an omp_get_cancellation region is the whole program.

Effect

This routine returns true if cancellation is enabled. It returns false otherwise.

OpenMP API — Version 5.0 November 2018

A W D

10

11
12

13
14

15

16
17
18
19

3.2.10

Cross References
e cancel-var ICV, see Section 2.5.1 on page 64.
e cancel construct, see Section 2.18.1 on page 263.

e OMP_CANCELLATION environment variable, see Section 6.11 on page 610.

omp_set_nested

Summary

The deprecated omp_set_nested routine enables or disables nested parallelism by setting the
max-active-levels-var ICV.

Format
C/C++
I void omp_set_nested (int nested) ;
C/C++
Fortran

subroutine omp_set_nested (nested)
logical nested

Fortran

Binding

The binding task set for an omp_set_nested region is the generating task.

Effect

If the argument to omp_set_nested evaluates to true, the value of the max-active-levels-var
ICV is set to the number of active levels of parallelism that the implementation supports; otherwise,
if the value of max-active-levels-var is greater than 1 then it is set to 1. This routine has been
deprecated.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 343

—_

N o o WD

10
11

12

13

14

15
16

17

18
19
20

3.2.11

344

Cross References

max-active-levels-var ICV, see Section 2.5 on page 63.

Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.
omp_get_nested routine, see Section 3.2.11 on page 344.
omp_set_max_active_levels routine, see Section 3.2.16 on page 350.
omp_get_max_active_levels routine, see Section 3.2.17 on page 351.

OMP_ NESTED environment variable, see Section 6.9 on page 609.

omp_get_nested

Summary

The deprecated omp_get_nested routine returns whether nested parallelism is enabled or
disabled, according to the value of the max-active-levels-var ICV.

Format
C/C++
I int omp_get_nested(void);
C/C++
Fortran

Ilogical function omp_get_nested()

Fortran

Binding

The binding task set for an omp_get_nested region is the generating task.

Effect

This routine returns true if max-active-levels-var is greater than 1 for the current task; it returns

false, otherwise. If an implementation does not support nested parallelism, this routine always
returns false. This routine has been deprecated.

OpenMP API — Version 5.0 November 2018

N o o~ wWwoN

10
11

12

13

14

15
16

3.2.12

Cross References

e max-active-levels-var ICV, see Section 2.5 on page 63.

e Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.

e omp_set_nested routine, see Section 3.2.10 on page 343.
e omp_set_max_active_levels routine, see Section 3.2.16 on page 350.
e omp_get_max active_levels routine, see Section 3.2.17 on page 351.

e OMP_NESTED environment variable, see Section 6.9 on page 609.

omp_set_schedule

Summary

The omp_set_schedule routine affects the schedule that is applied when runtime is used as

schedule kind, by setting the value of the run-sched-var ICV.

Format
C/C++

Ivoid omp_set_schedule (omp_sched_t kind, int chunk_size) ;
C/C++
Fortran

subroutine omp_set_schedule (kind, chunk_size)
integer (kind=omp_sched kind) kind
integer chunk_size

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES

345

—_

Constraints on Arguments

The first argument passed to this routine can be one of the valid OpenMP schedule kinds (except for
runtime) or any implementation specific schedule. The C/C++ header file (omp . h) and the
Fortran include file (omp_1ib.h) and/or Fortran 90 module file (omp_1ib) define the valid

OO WD

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36

constants. The valid constants must include the following, which can be extended with
implementation specific values:

C/C++

typedef enum omp_sched t {
// schedule kinds
omp_sched_static = 0x1,
omp_sched dynamic = 0x2,
omp_sched_guided = 0x3,
omp_sched_auto = 0x4,

// schedule modifier
omp_sched monotonic = 0x80000000u

} omp_sched t;

C/C++
Fortran
! schedule kinds
integer (kind=omp_sched kind), &
parameter :: omp_sched static = &
int (2’1’, kind=omp_sched_kind)
integer (kind=omp_sched_kind), &
parameter :: omp_sched _dynamic = &
int (2’'2’, kind=omp_sched kind)
integer (kind=omp_sched kind), &
parameter :: omp_sched guided = &
int (2’ 3’, kind=omp_sched_kind)
integer (kind=omp_sched_kind), &
parameter :: omp_sched auto = &
int (2’'4’, kind=omp_sched kind)

! schedule modifier
integer (kind=omp_sched_kind), &

parameter :: omp_sched monotonic = &
int (2’ 80000000’ , kind=omp_sched kind)
Fortran
Binding

The binding task set for an omp_set_schedule region is the generating task.

OpenMP API — Version 5.0 November 2018

14
15
16
17
18
19

20

21

22
23

24

25

26

27
28

3.2.13

Effect

The effect of this routine is to set the value of the run-sched-var ICV of the current task to the
values specified in the two arguments. The schedule is set to the schedule kind that is specified by
the first argument kind. It can be any of the standard schedule kinds or any other implementation
specific one. For the schedule kinds static, dynamic, and guided the chunk_size is set to the
value of the second argument, or to the default chunk_size if the value of the second argument is
less than 1; for the schedule kind auto the second argument has no meaning; for implementation
specific schedule kinds, the values and associated meanings of the second argument are
implementation defined.

Each of the schedule kinds can be combined with the omp_ sched_monotonic modifier by
using the + or | operators in C/C++ or the + operator in Fortran. If the schedule kind is combined
with the omp_sched_monotonic modifier, the schedule is modified as if the monotonic
schedule modifier was specified. Otherwise, the schedule modifier is nonmonotonic.

Cross References

o run-sched-var ICV, see Section 2.5 on page 63.

o Determining the schedule of a worksharing-loop, see Section 2.9.2.1 on page 109.
e omp_set_schedule routine, see Section 3.2.12 on page 345.

e omp_get_schedule routine, see Section 3.2.13 on page 347.

OMP__ SCHEDULE environment variable, see Section 6.1 on page 601.

omp_get_schedule

Summary

The omp_get_schedule routine returns the schedule that is applied when the runtime schedule
is used.

Format
C/C++

Ivoid omp_get_schedule (omp_sched_t =xkind, int *xchunk_size) ;
C/C++
Fortran

subroutine omp_get_schedule (kind, chunk_size)
integer (kind=omp_sched_kind) kind
integer chunk_size

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 347

© oo NOoO O~ W

11
12
13
14

15 3.2.14

16

17
18

19

20

21

348

Binding

The binding task set for an omp_get_schedule region is the generating task.

Effect

This routine returns the run-sched-var ICV in the task to which the routine binds. The first
argument kind returns the schedule to be used. It can be any of the standard schedule kinds as
defined in Section 3.2.12 on page 345, or any implementation specific schedule kind. The second
argument chunk_size returns the chunk size to be used, or a value less than 1 if the default chunk
size is to be used, if the returned schedule kind is static, dynamic, or guided. The value
returned by the second argument is implementation defined for any other schedule kinds.

Cross References

e run-sched-var ICV, see Section 2.5 on page 63.

e Determining the schedule of a worksharing-loop, see Section 2.9.2.1 on page 109.
e omp_set_schedule routine, see Section 3.2.12 on page 345.

e OMP_SCHEDULE environment variable, see Section 6.1 on page 601.

omp_get_thread_limit

Summary

The omp_get_thread_limit routine returns the maximum number of OpenMP threads
available to participate in the current contention group.

Format
C/C++
I int omp_get_thread limit (void);
C/C++
Fortran
Iinteger function omp_get_thread limit ()
Fortran

OpenMP API — Version 5.0 November 2018

A WOWN

(&)

12

13

14
15

16

17

18

19

20
21

3.2.15

Binding

The binding thread set for an omp_get_thread limit region is all threads on the device. The
effect of executing this routine is not related to any specific region corresponding to any construct
or API routine.

Effect

The omp_get_thread_1limit routine returns the value of the thread-limit-var ICV.

Cross References

thread-limit-var ICV, see Section 2.5 on page 63.

e omp_get_num_threads routine, see Section 3.2.2 on page 335.

OMP_THREAD_LIMIT environment variable, see Section 6.10 on page 610.

e OMP_NUM_THREADS environment variable, see Section 6.2 on page 602.

omp_get_supported_active_levels

Summary

The omp_get_supported_active_levels routine returns the number of active levels of
parallelism supported by the implementation.

Format
C/C++
I int omp_get_ supported active_levels (void);
C/C++
Fortran
I integer function omp_get_supported active_levels ()
Fortran
Binding

The binding task set for an omp_get_supported_active_levels region is the generating
task.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 349

—_

oo WD

N

11

12

13
14

15

16

17
18

19

20
21

3.2.16

350

Effect

The omp_get_supported_active_levels routine returns the number of active levels of
parallelism supported by the implementation. The max-active-levels-var ICV may not have a value
that is greater than this number. The value returned by the
omp_get_supported_active_levels routine is implementation defined, but it must be
greater than 0.

Cross References
e max-active-levels-var ICV, see Section 2.5 on page 63.
e omp_get_max_active_levels routine, see Section 3.2.17 on page 351.

e omp_set_max_active_levels routine, see Section 3.2.16 on page 350.

omp_set_max active_levels

Summary

The omp_set_max_active_levels routine limits the number of nested active parallel
regions on the device, by setting the max-active-levels-var ICV

Format
C/C++

I void omp_set_max_active_levels (int max_levels) ;
C/C++
Fortran

subroutine omp_set_max_active_levels (max_levels)
integer max_levels

Fortran
Constraints on Arguments

The value of the argument passed to this routine must evaluate to a non-negative integer, otherwise
the behavior of this routine is implementation defined.

OpenMP API — Version 5.0 November 2018

a b~ wN

—- O © o N O

—_ -

13
14

15
16
17
18
19
20

21

22

23
24

25

26

27

3.2.17

Binding

When called from a sequential part of the program, the binding thread set for an
omp_set_max_active_levels region is the encountering thread. When called from within
any parallel or teams region, the binding thread set (and binding region, if required) for the
omp_set_max_active_levels region is implementation defined.

Effect

The effect of this routine is to set the value of the max-active-levels-var ICV to the value specified
in the argument.

If the number of active levels requested exceeds the number of active levels of parallelism
supported by the implementation, the value of the max-active-levels-var ICV will be set to the
number of active levels supported by the implementation.

This routine has the described effect only when called from a sequential part of the program. When
called from within a parallel or teams region, the effect of this routine is implementation
defined.

Cross References

e max-active-levels-var ICV, see Section 2.5 on page 63.

e parallel construct, see Section 2.6 on page 74.

e omp_get_supported_active_levels routine, see Section 3.2.15 on page 349.
e omp_get_max_active_levels routine, see Section 3.2.17 on page 351.

e OMP_MAX_ ACTIVE_LEVELS environment variable, see Section 6.8 on page 608.

omp_get_max_active_levels

Summary

The omp_get_max_active_levels routine returns the value of the max-active-levels-var
ICV, which determines the maximum number of nested active parallel regions on the device.

Format
C/C++
I int omp_get_max active_levels (void);
C/C++
Fortran
Iinteger function omp_get_max active_levels ()
Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 351

a0 =

(o]

10
11
12
13
14

15

16
17

18

19

20

21
22

3.2.18

352

Binding

When called from a sequential part of the program, the binding thread set for an
omp_get_max_active_levels region is the encountering thread. When called from within
any parallel or teams region, the binding thread set (and binding region, if required) for the
omp_get_max_active_levels region is implementation defined.

Effect

The omp_get_max_active_levels routine returns the value of the max-active-levels-var
ICV, which determines the maximum number of nested active parallel regions on the device.

Cross References

e max-active-levels-var ICV, see Section 2.5 on page 63.

e parallel construct, see Section 2.6 on page 74.

e omp_get_supported_active_levels routine, see Section 3.2.15 on page 349.
e omp_set_max_active_levels routine, see Section 3.2.16 on page 350.

e OMP_MAX ACTIVE_LEVELS environment variable, see Section 6.8 on page 608.

omp_get_level

Summary

The omp_get_level routine returns the value of the levels-var ICV.

Format
C/C++
I int omp_get_level (void);
C/C++
Fortran

| integer function omp_get_level ()

Fortran

Binding

The binding task set for an omp_get_level region is the generating task.

OpenMP API — Version 5.0 November 2018

A WOWN

© O N o o

10

11

12
13

14

15

16
17

18

19
20
21

3.2.19

Effect

The effect of the omp_get_level routine is to return the number of nested parallel regions
(whether active or inactive) that enclose the current task such that all of the parallel regions are
enclosed by the outermost initial task region on the current device.

Cross References

e [evels-var ICV, see Section 2.5 on page 63.

e parallel construct, see Section 2.6 on page 74.

e omp_get_active_level routine, see Section 3.2.21 on page 355.

e OMP_MAX ACTIVE_LEVELS environment variable, see Section 6.8 on page 608.

omp_get_ancestor_ thread_num

Summary

The omp_get_ancestor_thread_num routine returns, for a given nested level of the current
thread, the thread number of the ancestor of the current thread.

Format
C/C++

I int omp_get_ancestor_thread num(int level) ;
C/C++
Fortran

integer function omp_get_ancestor_ thread_ num (level)
integer level

Fortran

Binding

The binding thread set for an omp_get_ancestor_thread_num region is the encountering
thread. The binding region for an omp_get_ancestor_thread_numregion is the innermost
enclosing parallel region.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 353

—_

SO OWoo~N O O wWN

—_

11
12
13
14
15
16

17

18

19
20

21

22

23
24

3.2.20

354

Effect

The omp_get_ancestor_thread_num routine returns the thread number of the ancestor at a
given nest level of the current thread or the thread number of the current thread. If the requested
nest level is outside the range of 0 and the nest level of the current thread, as returned by the
omp_get_level routine, the routine returns -1.

v v
Note — When the omp_get_ancestor_thread_num routine is called with a value of
level=0, the routine always returns 0. If level=omp_get_1level (), the routine has the

same effect as the omp_get_thread_num routine.
A A

Cross References

e parallel construct, see Section 2.6 on page 74.

e omp_get_num threads routine, see Section 3.2.2 on page 335.
e omp_get_thread_num routine, see Section 3.2.4 on page 337.
e omp_get_level routine, see Section 3.2.18 on page 352.

e omp_get_team_size routine, see Section 3.2.20 on page 354.

omp_get_team_size

Summary

The omp_get_team_size routine returns, for a given nested level of the current thread, the size
of the thread team to which the ancestor or the current thread belongs.

Format
C/C++
| int omp_get_team size (int level);
C/C++
Fortran

Iinteger function omp_get_team size (level)

integer level

Fortran

OpenMP API — Version 5.0 November 2018

A WOWN

0N O

11
12
13
14

15
16
17
18

19

20
21

22

23

24

3.2.21

Binding
The binding thread set for an omp_get_team_ size region is the encountering thread. The

binding region for an omp_get_team_size region is the innermost enclosing parallel
region.

Effect

The omp_get_team_size routine returns the size of the thread team to which the ancestor or
the current thread belongs. If the requested nested level is outside the range of 0 and the nested
level of the current thread, as returned by the omp_get_level routine, the routine returns -1.
Inactive parallel regions are regarded like active parallel regions executed with one thread.

v v
Note — When the omp_get_team_size routine is called with a value of 1evel=0, the routine
always returns 1. If level=omp_get_1level (), the routine has the same effect as the

omp_get_num_threads routine.
A A

Cross References
e omp_get_num_threads routine, see Section 3.2.2 on page 335.
e omp_get_level routine, see Section 3.2.18 on page 352.

e omp_get_ancestor_thread_num routine, see Section 3.2.19 on page 353.

omp_get_active_level

Summary

The omp_get_active_level routine returns the value of the active-level-vars ICV..

Format
C/C++

| int omp_get_active_level (void);
C/C++
Fortran

I integer function omp_get_active_level ()
Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 355

1 Binding

2 The binding task set for the an omp_get_active_level region is the generating task.
3 Effect
4 The effect of the omp_get_active_level routine is to return the number of nested active
5 parallel regions enclosing the current task such that all of the parallel regions are enclosed
6 by the outermost initial task region on the current device.
7 Cross References
8 o active-levels-var ICV, see Section 2.5 on page 63.
9 e omp_get_level routine, see Section 3.2.18 on page 352.
10 e omp_set_max_active_levels routine, see Section 3.2.16 on page 350.
11 e omp_get_max_ active_levels routine, see Section 3.2.17 on page 351.
12 e OMP_MAX_ ACTIVE_LEVELS environment variable, see Section 6.8 on page 608.

13 3.2.22 omp_in_final

14 Summary
15 The omp_in_final routine returns true if the routine is executed in a final task region;
16 otherwise, it returns false.
17 Format
C/C++
18 I int omp_in_final (void);
C/C++
Fortran
19 I logical function omp_in_final ()
Fortran
20 Binding
21 The binding task set for an omp_in_final region is the generating task.

356 OpenMP API — Version 5.0 November 2018

10

11

12

13
14
15

16
17
18
19
20
21
22

3.2.23

Effect

omp_in_final returns true if the enclosing task region is final. Otherwise, it returns false.

Cross References

e task construct, see Section 2.10.1 on page 135.

omp_get_proc_bind

Summary

The omp_get_proc_bind routine returns the thread affinity policy to be used for the
subsequent nested parallel regions that do not specify a proc_bind clause.

Format
C/C++
Iomp _proc_bind t omp_get_proc_bind(void);
C/C++
Fortran
Iinteger (kind=omp_proc_bind kind) function omp_get_proc_ bind()
Fortran

Constraints on Arguments

The value returned by this routine must be one of the valid affinity policy kinds. The C/C++ header
file (omp . h) and the Fortran include file (omp_1ib . h) and/or Fortran 90 module file (omp_1ib)
define the valid constants. The valid constants must include the following:

C/C++
typedef enum omp_proc bind t ({
omp_proc_bind false = 0,
omp_proc_bind true = 1,
omp_proc_bind master = 2,
omp_proc_bind _close = 3,
omp_proc_bind_spread = 4
} omp_proc bind t;

C/C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 357

O ©W oo ~NO O~ WN =

—_

11
12

13

14
15

16
17
18
19
20
21

22

23

24
25

3.2.24

358

Fortran
integer (kind=omp_ proc_bind kind), &

parameter :: omp_proc_bind false = 0
integer (kind=omp_proc_bind kind), &
parameter :: omp_proc_bind true =1
integer (kind=omp_proc_bind kind), &
parameter :: omp_proc_bind master = 2
integer (kind=omp_proc_bind_kind), &
parameter :: omp_proc_bind close = 3
integer (kind=omp_proc_bind kind), &
parameter :: omp_proc_bind spread = 4
Fortran

Binding

The binding task set for an omp_get_proc_bind region is the generating task.

Effect

The effect of this routine is to return the value of the first element of the bind-var ICV of the current
task. See Section 2.6.2 on page 80 for the rules that govern the thread affinity policy.

Cross References

e bind-var ICV, see Section 2.5 on page 63.

e Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.

e omp_get_num_places routine, see Section 3.2.24 on page 358.

e OMP_PROC_BIND environment variable, see Section 6.4 on page 604.

e OMP_PLACES environment variable, see Section 6.5 on page 605.

omp_get_num_places

Summary

The omp_get_num_places routine returns the number of places available to the execution
environment in the place list.

OpenMP API — Version 5.0 November 2018

NOoO o b

10
11

12
13
14
15
16

17

18

19
20

3.2.25

Format
C/C++

I int omp_get_ num places (void);

C/C++

Fortran
I integer function omp_get num places|()

Fortran

Binding

The binding thread set for an omp_get_num_places region is all threads on a device. The
effect of executing this routine is not related to any specific region corresponding to any construct
or API routine.

Effect

The omp_get_num_places routine returns the number of places in the place list. This value is
equivalent to the number of places in the place-partition-var ICV in the execution environment of
the initial task.

Cross References

e place-partition-var ICV, see Section 2.5 on page 63.

Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.
e omp_get_place_numroutine, see Section 3.2.27 on page 362.

e OMP_PLACES environment variable, see Section 6.5 on page 605.

omp_get_place_num_procs

Summary

The omp_get_place_num_ procs routine returns the number of processors available to the
execution environment in the specified place.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 359

w

o NO O

10
11
12

13
14
15
16
17
18

19

20

21
22

3.2.26

360

Format
C/C++

I int omp_get_place_num procs (int place_num) ;

C/C++

Fortran
integer function omp_get_place_num_procs (place_num)
integer place_num

Fortran

Binding

The binding thread set for an omp_get_place_num_procs region is all threads on a device.
The effect of executing this routine is not related to any specific region corresponding to any
construct or API routine.

Effect

The omp_get_place_num_procs routine returns the number of processors associated with
the place numbered place_num. The routine returns zero when place_num is negative, or is greater
than or equal to the value returned by omp_get_num places ().

Cross References

e place-partition-var ICV, see Section 2.5 on page 63.

e Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.

e omp_get_num places routine, see Section 3.2.24 on page 358.

e omp_get_place_proc_ids routine, see Section 3.2.26 on page 360.

e OMP_PLACES environment variable, see Section 6.5 on page 605.

omp_get_place_proc_ids

Summary

The omp_get_place_proc_ids routine returns the numerical identifiers of the processors
available to the execution environment in the specified place.

OpenMP API — Version 5.0 November 2018

AW

© o »

11
12
13
14
15
16
17

18
19
20
21
22
23

Format
C/C++

Ivoid omp_get_place_proc_ids (int place_num, int =xids) ;

C/C++

Fortran
subroutine omp_get_place_proc_ids (place_num, ids)
integer place_num
integer ids(*)

Fortran

Binding
The binding thread set for an omp_get_place_proc_ids region is all threads on a device.

The effect of executing this routine is not related to any specific region corresponding to any
construct or API routine.

Effect

The omp_get_place_proc_ids routine returns the numerical identifiers of each processor
associated with the place numbered place_num. The numerical identifiers are non-negative, and
their meaning is implementation defined. The numerical identifiers are returned in the array ids and
their order in the array is implementation defined. The array must be sufficiently large to contain
omp_get_place_num_procs (place_num) integers; otherwise, the behavior is unspecified.
The routine has no effect when place_num has a negative value, or a value greater than or equal to
omp_get_num_places().

Cross References

o place-partition-var ICV, see Section 2.5 on page 63.

Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.

omp_get_num_places routine, see Section 3.2.24 on page 358.

omp_get_place_num_procs routine, see Section 3.2.25 on page 359.

e OMP_PLACES environment variable, see Section 6.5 on page 605.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 361

1 3.2.27 omp_get_place_num

10

11
12
13
14

15
16
17
18
19

20

21

22
23

3.2.28

362

Summary

The omp_get_place_num routine returns the place number of the place to which the
encountering thread is bound.

Format
C/C++
| int omp_get_place num(void);
C/C++
Fortran
| integer function omp_get_place num()
Fortran
Binding

The binding thread set for an omp_get_place_num region is the encountering thread.

Effect

When the encountering thread is bound to a place, the omp_get_place_num routine returns the
place number associated with the thread. The returned value is between 0 and one less than the
value returned by omp_get_num_places (), inclusive. When the encountering thread is not
bound to a place, the routine returns -1.

Cross References

e place-partition-var ICV, see Section 2.5 on page 63.

e Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.
e omp_get_num_places routine, see Section 3.2.24 on page 358.

e OMP_PLACES environment variable, see Section 6.5 on page 605.

omp_get_partition_num_ places

Summary

The omp_get_partition_num_places routine returns the number of places in the place
partition of the innermost implicit task.

OpenMP API — Version 5.0 November 2018

10
11
12
13
14

15

16

17
18

3.2.29

Format
C/C++

I int omp_get_partition_num_places (void) ;

C/C++

Fortran
Iinteger function omp_get partition num places ()

Fortran

Binding

The binding task set for an omp_get_partition_num_places region is the encountering
implicit task.

Effect

The omp_get_partition_num places routine returns the number of places in the
place-partition-var ICV.

Cross References

o place-partition-var ICV, see Section 2.5 on page 63.

Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.
e omp_get_num_places routine, see Section 3.2.24 on page 358.

e OMP_PLACES environment variable, see Section 6.5 on page 605.

omp_get_partition_place_nums

Summary

The omp_get_partition_place_nums routine returns the list of place numbers
corresponding to the places in the place-partition-var ICV of the innermost implicit task.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 363

A~ W

10
11
12

13
14
15
16
17

18

19

20
21

3.2.30

364

Format
C/C++

I void omp_get_partition_place_nums (int =*place_nums) ;

C/C++

Fortran
subroutine omp_get_partition_place_nums (place_nums)
integer place_nums (*)

Fortran

Binding

The binding task set for an omp_get_partition_place_nums region is the encountering
implicit task.

Effect

The omp_get_partition_place_nums routine returns the list of place numbers that
correspond to the places in the place-partition-var ICV of the innermost implicit task. The array
must be sufficiently large to contain omp_get_partition_num places () integers;
otherwise, the behavior is unspecified.

Cross References

e place-partition-var ICV, see Section 2.5 on page 63.

e Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.

e omp_get_partition num places routine, see Section 3.2.28 on page 362.

e OMP_PLACES environment variable, see Section 6.5 on page 605.

omp_set_affinity format

Summary

The omp_set_affinity format routine sets the affinity format to be used on the device by
setting the value of the affinity-format-var ICV.

OpenMP API — Version 5.0 November 2018

w

©O© O N O

11
12

13
14
15

16
17
18
19
20
21
22

Format
C/C++

I void omp_set_affinity format (const char =xformat) ;

C/C++

Fortran
subroutine omp_set_affinity format (format)
character (len=x),intent (in) :: format

Fortran

Binding

When called from a sequential part of the program, the binding thread set for an
omp_set_affinity format region is the encountering thread. When called from within any
parallel or teams region, the binding thread set (and binding region, if required) for the
omp_set_affinity format region is implementation defined.

Effect

The effect of omp_set_affinity_ format routine is to copy the character string specified by
the format argument into the affinity-format-var ICV on the current device.

This routine has the described effect only when called from a sequential part of the program. When
called from within a parallel or teams region, the effect of this routine is implementation
defined.

Cross References

o Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.

e omp_get_affinity_ format routine, see Section 3.2.31 on page 366.

e omp_display_ affinity routine, see Section 3.2.32 on page 367.

e omp_capture_affinity routine, see Section 3.2.33 on page 368.

e OMP_DISPLAY AFFINITY environment variable, see Section 6.13 on page 612.

e OMP_AFFINITY_ FORMAT environment variable, see Section 6.14 on page 613.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 365

1

10
11
12
13

14

15
16
17
18
19
20

21
22
23
24

25
26

3.2.31

366

omp_get_affinity format

Summary

The omp_get_affinity format routine returns the value of the affinity-format-var ICV on
the device.

Format
C/C++
I size t omp_get_affinity format (char =*buffer, size_t size) ;
C/C++
Fortran
integer function omp_get_affinity format (buffer)
character (len=*) , intent (out) :: buffer
Fortran
Binding

When called from a sequential part of the program, the binding thread set for an
omp_get_affinity format region is the encountering thread. When called from within any
parallel or teams region, the binding thread set (and binding region, if required) for the
omp_get_affinity format region is implementation defined.

Effect
C/C++

The omp_get_affinity_ format routine returns the number of characters in the
affinity-format-var ICV on the current device, excluding the terminating null byte (\0’) and if
size is non-zero, writes the value of the affinity-format-var ICV on the current device to buffer
followed by a null byte. If the return value is larger or equal to size, the affinity format specification
is truncated, with the terminating null byte stored to buffer [size—1]. If size is zero, nothing is
stored and buffer may be NULL.

C/C++

Fortran
The omp_get_affinity format routine returns the number of characters that are required to
hold the affinity-format-var ICV on the current device and writes the value of the
affinity-format-var ICV on the current device to buffer. If the return value is larger than
len (buffer), the affinity format specification is truncated.

Fortran

If the buffer argument does not conform to the specified format then the result is implementation
defined.

OpenMP API — Version 5.0 November 2018

N o o WD

10
11

12

13

14
15

16
17

18

19
20
21
22
23

3.2.32

Cross References

e Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.

e omp_set_affinity format routine, see Section 3.2.30 on page 364.

e omp_display_affinity routine, see Section 3.2.32 on page 367.

e omp_capture_affinity routine, see Section 3.2.33 on page 368.

e OMP_DISPLAY AFFINITY environment variable, see Section 6.13 on page 612.

e OMP_AFFINITY_ FORMAT environment variable, see Section 6.14 on page 613.

omp_display_affinity

Summary

The omp_display_affinity routine prints the OpenMP thread affinity information using the
format specification provided.

Format
C/C++
Ivoid omp_display affinity(const char =xformat) ;
C/C++
Fortran
subroutine omp_display affinity (formar)
character (len=+) ,intent (in) :: format
Fortran
Binding

The binding thread set for an omp_display_affinity region is the encountering thread.

Effect

The omp_display_affinity routine prints the thread affinity information of the current
thread in the format specified by the format argument, followed by a new-line. If the format is
NULL (for C/C++) or a zero-length string (for Fortran and C/C++), the value of the
affinity-format-var ICV is used. If the format argument does not conform to the specified format
then the result is implementation defined.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 367

—_

N o o A WwN

10
11

12

13
14
15
16
17

18
19
20

21
22

3.2.33

368

Cross References

e Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.

e omp_set_affinity format routine, see Section 3.2.30 on page 364.

e omp_get_affinity_ format routine, see Section 3.2.31 on page 366.

e omp_capture_affinity routine, see Section 3.2.33 on page 368.

e OMP_DISPLAY AFFINITY environment variable, see Section 6.13 on page 612.

e OMP_AFFINITY_ FORMAT environment variable, see Section 6.14 on page 613.

omp_capture_affinity

Summary

The omp_capture_affinity routine prints the OpenMP thread affinity information into a
buffer using the format specification provided.

Format
C/C++
size_t omp_capture_affinity(
char =*buffer,
size_t size,
const char x*format
);
C/C++
Fortran
integer function omp_capture_affinity (buffer, format)
character (len=*) , intent (out) :: buffer
character (len=+*) ,intent (in) :: format
Fortran

Binding

The binding thread set for an omp_capture_affinity region is the encountering thread.

OpenMP API — Version 5.0 November 2018

O N O~ WN

10
11
12
13
14

15
16

17
18
19
20
21
22
23

24

25

26
27

3.2.34

Effect
C/C++

The omp_capture_affinity routine returns the number of characters in the entire thread
affinity information string excluding the terminating null byte (* \0’) and if size is non-zero, writes
the thread affinity information of the current thread in the format specified by the format argument
into the character string buf fer followed by a null byte. If the return value is larger or equal to
size, the thread affinity information string is truncated, with the terminating null byte stored to
buffer [size—1]. If size is zero, nothing is stored and buffer may be NULL. If the format is NULL or
a zero-length string, the value of the affinity-format-var ICV is used.

C/C++
Fortran

The omp_capture_affinity routine returns the number of characters required to hold the
entire thread affinity information string and prints the thread affinity information of the current
thread into the character string buf fer with the size of 1en (buffer) in the format specified by
the format argument. If the format is a zero-length string, the value of the affinity-format-var ICV
is used. If the return value is larger than 1en (buffer) , the thread affinity information string is
truncated. If the format is a zero-length string, the value of the affinity-format-var ICV is used.

Fortran

If the format argument does not conform to the specified format then the result is implementation
defined.

Cross References

o Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.

e omp_set_affinity_ format routine, see Section 3.2.30 on page 364.

e omp_get_affinity format routine, see Section 3.2.31 on page 366.

e omp_display affinity routine, see Section 3.2.32 on page 367.

e OMP_DISPLAY AFFINITY environment variable, see Section 6.13 on page 612.

e OMP_AFFINITY_ FORMAT environment variable, see Section 6.14 on page 613.

omp_set_default_device

Summary

The omp_set_default_device routine controls the default target device by assigning the
value of the default-device-var ICV.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 369

A~ W

11
12
13
14
15

16

17
18

Format
C/C++

I void omp_set_default_device (int device_num) ;

C/C++

Fortran
subroutine omp_set_default_device (device_num)
integer device_num

Fortran

Binding

The binding task set for an omp_set_default_device region is the generating task.

Effect

The effect of this routine is to set the value of the default-device-var ICV of the current task to the
value specified in the argument. When called from within a target region the effect of this
routine is unspecified.

Cross References

o default-device-var, see Section 2.5 on page 63.

e target construct, see Section 2.12.5 on page 170

e omp_get_default_device, see Section 3.2.35 on page 370.

e OMP_DEFAULT_DEVICE environment variable, see Section 6.15 on page 615

3.2.35 omp_get_default_device

Summary

The omp_get_default_device routine returns the default target device.

370 OpenMP API — Version 5.0 November 2018

10
11
12
13

14

15
16

17

18

19

3.2.36

Format
C/C++

| int omp_get_default_device (void);

C/C++

Fortran
Iinteger function omp_get_default_device ()

Fortran

Binding

The binding task set for an omp_get_default_device region is the generating task.

Effect

The omp_get_default_device routine returns the value of the default-device-var ICV of the
current task. When called from within a target region the effect of this routine is unspecified.

Cross References

default-device-var, see Section 2.5 on page 63.
e target construct, see Section 2.12.5 on page 170

e omp_set_default_device, see Section 3.2.34 on page 369.

OMP_DEFAULT_DEVICE environment variable, see Section 6.15 on page 615.

omp_get_num_devices

Summary

The omp_get_num_devices routine returns the number of target devices.

Format
C/C++
I int omp_get_num devices (void);
C/C++
Fortran
Iinteger function omp_get_num devices ()
Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES

371

(&)

© o N o

10

11

12
13

14

15

16

17
18

19

20
21
22

3.2.37

372

Binding

The binding task set for an omp_get_num_devices region is the generating task.

Effect

The omp_get_num_devices routine returns the number of available target devices. When
called from within a target region the effect of this routine is unspecified.

Cross References
e target construct, see Section 2.12.5 on page 170
e omp_get_default_device, see Section 3.2.35 on page 370.

e omp_get_device_num, see Section 3.2.37 on page 372.

omp_get_device_num

Summary

The omp_get_device_num routine returns the device number of the device on which the
calling thread is executing.

Format
C/C++

I int omp_get_device_num(void);

C/C++

Fortran
Iinteger function omp_get_device_num()

Fortran

Binding

The binding task set for an omp_get_devices_num region is the generating task.

Effect

The omp_get_device_num routine returns the device number of the device on which the
calling thread is executing. When called on the host device, it will return the same value as the
omp_get_initial_device routine.

OpenMP API — Version 5.0 November 2018

a A W N

»

10

11

12

13
14

15

16
17

18
19
20
21

3.2.38

Cross References

e target construct, see Section 2.12.5 on page 170

e omp_get_default_device, see Section 3.2.35 on page 370.

e omp_get_num_devices, see Section 3.2.36 on page 371.

e omp_get_initial_device routine, see Section 3.2.41 on page 376.

omp_get_num teams

Summary

The omp_get_num_teams routine returns the number of initial teams in the current teams

region.

Format

C/C++

I int omp_get_ num teams (void);

C/C++
Fortran

Iinteger function omp_get num teams ()

Binding

Fortran

The binding task set for an omp_get_num_teams region is the generating task

Effect

The effect of this routine is to return the number of initial teams in the current teams region. The
routine returns 1 if it is called from outside of a teams region.

Cross References

e teams construct, see Section 2.7 on page 82.

e target construct, see Section 2.12.5 on page 170.

e omp_get_team_num routine, see Section 3.2.39 on page 374.

CHAPTER 3. RUNTIME LIBRARY ROUTINES

373

1 3.2.39 omp_get_team_ num

10
11
12
13

14
15
16
17

374

Summary

The omp_get_team_num routine returns the initial team number of the calling thread.

Format
C/C++
I int omp_get_team_ num(void);
C/C++
Fortran
Iinteger function omp_get_team num()
Fortran

Binding

The binding task set for an omp_get_team_num region is the generating task.

Effect

The omp_get_team_ num routine returns the initial team number of the calling thread. The
initial team number is an integer between O and one less than the value returned by
omp_get_num_teams (), inclusive. The routine returns 0 if it is called outside of a teams
region.

Cross References
e teams construct, see Section 2.7 on page 82.
e target construct, see Section 2.12.5 on page 170

e omp_get_num_teams routine, see Section 3.2.38 on page 373.

OpenMP API — Version 5.0 November 2018

1 3.240 omp_is_initial device

w

10

11
12

13
14
15

Summary

The omp_is_initial_device routine returns true if the current task is executing on the host

device; otherwise, it returns false.

Format
C/C++
I int omp_is_initial_ device (void);
C/C++
Fortran
Ilogical function omp_is_initial device()
Fortran
Binding

The binding task set for an omp_is_initial_device region is the generating task.

Effect

The effect of this routine is to return frue if the current task is executing on the host device;
otherwise, it returns false.

Cross References
e omp_get_get_initial_device routine, see Section 3.2.41 on page 376.

e Device memory routines, see Section 3.6 on page 397.

CHAPTER 3. RUNTIME LIBRARY ROUTINES

375

1 3.2.41 omp_get_initial device

10

11
12
13

14
15
16
17

376

Summary

The omp_get_initial_device routine returns a device number that represents the host
device.

Format
C/C++
I int omp_get_initial_ device (void);
C/C++
Fortran
| integer function omp_get_initial device()
Fortran
Binding

The binding task set for an omp_get_initial_device region is the generating task.

Effect

The effect of this routine is to return the device number of the host device. The value of the device
number is implementation defined. When called from within a target region the effect of this
routine is unspecified.

Cross References
e target construct, see Section 2.12.5 on page 170.
e omp_is_initial_ device routine, see Section 3.2.40 on page 375.

e Device memory routines, see Section 3.6 on page 397.

OpenMP API — Version 5.0 November 2018

1 3.2.42 omp_get_max_ task priority

w

10
11

12

13
14

15
16
17

Summary

The omp_get_max_ task_priority routine returns the maximum value that can be specified
in the priority clause.

Format
C/C++
I int omp_get_max task_priority (void);
C/C++
Fortran
I integer function omp_get _max task priority()
Fortran
Binding

The binding thread set for an omp_get_max_task_priority region is all threads on the
device. The effect of executing this routine is not related to any specific region that corresponds to
any construct or API routine.

Effect

The omp_get_max_task_priority routine returns the value of the max-task-priority-var
ICV, which determines the maximum value that can be specified in the priority clause.

Cross References
e max-task-priority-var, see Section 2.5 on page 63.

e task construct, see Section 2.10.1 on page 135.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 377

1

© 0N

10
11
12

13

14
15
16
17

18

19
20
21
22

23
24
25
26

3.2.43

378

omp_pause_resource

Summary

The omp_pause_resource routine allows the runtime to relinquish resources used by OpenMP
on the specified device.

Format
C/C++
int omp_pause_resource (
omp_pause_resource_t kind,
int device_num
)i
C/C++
Fortran

integer function omp_pause_resource (kind, device_ num)
integer (kind=omp_pause_resource_kind) kind
integer device_num

Fortran

Constraints on Arguments

The first argument passed to this routine can be one of the valid OpenMP pause kind, or any
implementation specific pause kind. The C/C++ header file (omp . h) and the Fortran include file
(omp_1ib.h) and/or Fortran 90 module file (omp_1ib) define the valid constants. The valid
constants must include the following, which can be extended with implementation specific values:

Format
C/C++

typedef enum omp_pause_resource_t {
omp_pause_soft = 1,
omp_pause_hard = 2

} omp_pause_resource_t;

C/C++
Fortran
integer (kind=omp_pause_resource_kind), parameter :: &
omp_pause_soft = 1
integer (kind=omp_pause_resource_kind), parameter :: &
omp_pause_hard = 2
Fortran

OpenMP API — Version 5.0 November 2018

A OWND =

(6]

10
11
12
13
14
15
16
17

18
19
20
21

22

23
24
25
26
27
28
29

30

31

32
33

The second argument passed to this routine indicates the device that will be paused. The
device_num parameter must be greater than or equal to zero and less than the result of
omp_get_num_devices () or equal to the result of a call to

omp_get_initial device().

Binding

The binding task set for an omp_pause_resource region is the whole program.

Effect

The omp_pause_resource routine allows the runtime to relinquish resources used by OpenMP
on the specified device.

If successful, the omp_pause_hard value results in a hard pause for which the OpenMP state is
not guaranteed to persist across the omp_pause_resource call. A hard pause may relinquish
any data allocated by OpenMP on a given device, including data allocated by memory routines for
that device as well as data present on the device as a result of a declare target or target
data construct. A hard pause may also relinquish any data associated with a threadprivate
directive. When relinquished and when applicable, base language appropriate
deallocation/finalization is performed. When relinquished and when applicable, mapped data on a
device will not be copied back from the device to the host.

If successful, the omp_pause_soft value results in a soft pause for which the OpenMP state is
guaranteed to persist across the call, with the exception of any data associated with a
threadprivate directive, which may be relinquished across the call. When relinquished and
when applicable, base language appropriate deallocation/finalization is performed.

v v
Note — A hard pause may relinquish more resources, but may resume processing OpenMP regions
more slowly. A soft pause allows OpenMP regions to restart more quickly, but may relinquish fewer
resources. An OpenMP implementation will reclaim resources as needed for OpenMP regions
encountered after the omp_pause_resource region. Since a hard pause may unmap data on the
specified device, appropriate data mapping is required before using data on the specified device

after the omp_pause_region region.
A A

The routine returns zero in case of success, and nonzero otherwise.

Tool Callbacks

If the tool is not allowed to interact with the specified device after encountering this call, then the
runtime must call the tool finalizer for that device.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 379

—_

as~ W DN

13

14

15
16

17

18

19
20

21
22

3.2.44

380

Restrictions
The omp_pause_resource routine has the following restrictions:
e The omp_pause_resource region may not be nested in any explicit OpenMP region.

e The routine may only be called when all explicit tasks have finalized execution. Calling the
routine in any other circumstances may result in unspecified behavior.

Cross References

e target construct, see Section 2.12.5 on page 170

e declare target directive, see Section 2.12.7 on page 180

e threadprivate directives, see Section 2.19.2 on page 274.

e omp_get_num_devices, see Section 3.2.36 on page 371.

e omp_get_get_initial_device routine, see Section 3.2.41 on page 376.

e To pause resources on all devices at once, see Section 3.2.44 on page 380.

omp_pause_resource_all

Summary

The omp_pause_resource_all routine allows the runtime to relinquish resources used by
OpenMP on all devices.

Format
C/C++

I int omp_pause_resource_all (omp_pause_resource_t kind);
C/C++
Fortran

integer function omp_pause_ resource_all (kind)
integer (kind=omp_pause_resource_kind) kind

Fortran

Binding

The binding task set for an omp_pause_resource_all region is the whole program.

OpenMP API — Version 5.0 November 2018

OO0 A WN

10
11
12

13
14

15
16
17
18
19
20

21

22
23
24
25
26

3.3

Effect

The omp_pause_resource_all routine allows the runtime to relinquish resources used by
OpenMP on all devices. It is equivalent to calling the omp_pause_resource routine once for
each available device, including the host device.

The argument kind passed to this routine can be one of the valid OpenMP pause kind as defined in
Section 3.2.43 on page 378, or any implementation specific pause kind.

Tool Callbacks

If the tool is not allowed to interact with a given device after encountering this call, then the
runtime must call the tool finalizer for that device.

Restrictions
The omp_pause_resource_all routine has the following restrictions:
o The omp_pause_resource_all region may not be nested in any explicit OpenMP region.

o The routine may only be called when all explicit tasks have finalized execution. Calling the
routine in any other circumstances may result in unspecified behavior.

Cross References

e target construct, see Section 2.12.5 on page 170

e declare target directive, see Section 2.12.7 on page 180

e omp_get_num_devices, see Section 3.2.36 on page 371.

e omp_get_get_initial_device routine, see Section 3.2.41 on page 376.

o To pause resources on a specific device only, see Section 3.2.43 on page 378.

Lock Routines

The OpenMP runtime library includes a set of general-purpose lock routines that can be used for
synchronization. These general-purpose lock routines operate on OpenMP locks that are
represented by OpenMP lock variables. OpenMP lock variables must be accessed only through the
routines described in this section; programs that otherwise access OpenMP lock variables are
non-conforming.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 381

oNO O~ ON =

-
o ©

_
A OWN =

—_ —a
N o O

N = —
O ©

21

22
23
24
25

26

27
28
29

30
31

382

An OpenMP lock can be in one of the following states: uninitialized; unlocked; or locked. If a lock
is in the unlocked state, a task can set the lock, which changes its state to locked. The task that sets
the lock is then said to own the lock. A task that owns a lock can unset that lock, returning it to the
unlocked state. A program in which a task unsets a lock that is owned by another task is
non-conforming.

Two types of locks are supported: simple locks and nestable locks. A nestable lock can be set
multiple times by the same task before being unset; a simple lock cannot be set if it is already
owned by the task trying to set it. Simple lock variables are associated with simple locks and can
only be passed to simple lock routines. Nestable lock variables are associated with nestable locks
and can only be passed to nestable lock routines.

Each type of lock can also have a synchronization hint that contains information about the intended
usage of the lock by the application code. The effect of the hint is implementation defined. An
OpenMP implementation can use this hint to select a usage-specific lock, but hints do not change
the mutual exclusion semantics of locks. A conforming implementation can safely ignore the hint.

Constraints on the state and ownership of the lock accessed by each of the lock routines are
described with the routine. If these constraints are not met, the behavior of the routine is
unspecified.

The OpenMP lock routines access a lock variable such that they always read and update the most
current value of the lock variable. It is not necessary for an OpenMP program to include explicit
flush directives to ensure that the lock variable’s value is consistent among different tasks.

Binding

The binding thread set for all lock routine regions is all threads in the contention group. As a
consequence, for each OpenMP lock, the lock routine effects relate to all tasks that call the routines,
without regard to which teams the threads in the contention group that are executing the tasks
belong.

Simple Lock Routines
C/C++

The type omp_lock_t represents a simple lock. For the following routines, a simple lock variable
must be of omp_lock_t type. All simple lock routines require an argument that is a pointer to a
variable of type omp_lock_t.

C/C++
Fortran

For the following routines, a simple lock variable must be an integer variable of
kind=omp_lock_kind.

Fortran

OpenMP API — Version 5.0 November 2018

N o o WD

10
11

12
13

14
15

16
17

18
19
20
21

22
23
24

The simple lock routines are as follows:

e The omp_init_lock routine initializes a simple lock;

e The omp_init_lock_with_hint routine initializes a simple lock and attaches a hint to it;
o The omp_destroy_lock routine uninitializes a simple lock;

e The omp_set_lock routine waits until a simple lock is available and then sets it;

e The omp_unset_lock routine unsets a simple lock; and

e The omp_test_lock routine tests a simple lock and sets it if it is available.

Nestable Lock Routines
C/C++

The type omp_nest_lock_t represents a nestable lock. For the following routines, a nestable
lock variable must be of omp_nest_lock_t type. All nestable lock routines require an
argument that is a pointer to a variable of type omp_nest_lock_t.

C/C++
Fortran

For the following routines, a nestable lock variable must be an integer variable of
kind=omp_nest_lock_ kind.

Fortran

The nestable lock routines are as follows:
e The omp_init_nest_lock routine initializes a nestable lock;

e The omp_init_nest_lock_with_hint routine initializes a nestable lock and attaches a
hint to it;

e The omp_destroy_nest_lock routine uninitializes a nestable lock;
e The omp_set_nest_lock routine waits until a nestable lock is available and then sets it;
e The omp_unset_nest_lock routine unsets a nestable lock; and

e The omp_test_nest_lock routine tests a nestable lock and sets it if it is available.

Restrictions
OpenMP lock routines have the following restriction:

o The use of the same OpenMP lock in different contention groups results in unspecified behavior.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 383

1

(&)

_
- O © 00

12

13
14

15

16
17

18

19
20
21

3.3.1

384

omp_init_lock and omp_init_nest_lock

Summary

These routines initialize an OpenMP lock without a hint.

Format
C/C++

void omp_init_lock (omp_lock_t =*lock) ;
void omp_init_nest_lock (omp_nest_lock_t =xlock) ;

C/C++

Fortran
subroutine omp_init_1lock (svar)
integer (kind=omp_ lock_ kind) svar

subroutine omp_init_nest_lock (nvar)
integer (kind=omp_nest_lock_kind) nvar

Fortran

Constraints on Arguments

A program that accesses a lock that is not in the uninitialized state through either routine is
non-conforming.

Effect

The effect of these routines is to initialize the lock to the unlocked state; that is, no task owns the
lock. In addition, the nesting count for a nestable lock is set to zero.

Execution Model Events

The lock-init event occurs in a thread that executes an omp_init_lock region after initialization
of the lock, but before it finishes the region. The nest-lock-init event occurs in a thread that executes
an omp_init_nest_lock region after initialization of the lock, but before it finishes the region.

OpenMP API — Version 5.0 November 2018

11
12

13

14
15
16

17

18
19
20
21
22
23
24
25

3.3.2

Tool Callbacks

A thread dispatches a registered ompt_callback_lock_init callback with
omp_sync_hint_none as the hint argument and ompt_mutex_lock as the kind argument
for each occurrence of a lock-init event in that thread. Similarly, a thread dispatches a registered
ompt_callback_lock_init callback with omp_sync_hint_none as the hint argument
and ompt_mutex_nest_lock as the kind argument for each occurrence of a nest-lock-init
event in that thread. These callbacks have the type signature
ompt_callback_mutex_acquire_t and occur in the task that encounters the routine.

Cross References

e ompt_callback_mutex_acquire_t, see Section 4.5.2.14 on page 476.

omp_init_lock_with_hint and
omp_init_nest_lock_with_hint

Summary

These routines initialize an OpenMP lock with a hint. The effect of the hint is
implementation-defined. The OpenMP implementation can ignore the hint without changing
program semantics.

Format
C/C++

void omp_init_lock_with_hint (
omp_lock_t =xlock,
omp_sync_hint_t hint

)i

void omp_init_nest_lock_with_hint (
omp_nest_lock_t =*lock,
omp_sync_hint_t hint

)i

C/C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 385

NO Ok WD =

10

11
12

13

14
15
16

17

18
19
20
21

22

23
24
25
26
27
28
29
30

386

Fortran
subroutine omp_init_lock_ with_hint (svar, hint)
integer (kind=omp_lock_kind) svar
integer (kind=omp_sync_hint_kind) hint

subroutine omp_init_nest_lock_with_hint (nvar, hint)
integer (kind=omp_nest_lock_kind) nvar

integer (kind=omp_sync_hint_kind) hint
Fortran

Constraints on Arguments

A program that accesses a lock that is not in the uninitialized state through either routine is
non-conforming.

The second argument passed to these routines (hint) is a hint as described in Section 2.17.12 on
page 260.

Effect

The effect of these routines is to initialize the lock to the unlocked state and, optionally, to choose a
specific lock implementation based on the hint. After initialization no task owns the lock. In
addition, the nesting count for a nestable lock is set to zero.

Execution Model Events

The lock-init event occurs in a thread that executes an omp_init_lock_with_hint region
after initialization of the lock, but before it finishes the region. The nest-lock-init_with_hint event
occurs in a thread that executes an omp_init_nest_lock region after initialization of the lock,
but before it finishes the region.

Tool Callbacks

A thread dispatches a registered ompt__callback_lock_init callback with the same value
for its hint argument as the hint argument of the call to omp_init_lock_with_hint and
ompt_mutex_lock as the kind argument for each occurrence of a lock-init event in that thread.
Similarly, a thread dispatches a registered ompt_callback_lock_init callback with the
same value for its hint argument as the hint argument of the call to
omp_init_nest_lock_with_hint and ompt_mutex_ nest_lock as the kind argument
for each occurrence of a nest-lock-init event in that thread. These callbacks have the type signature
ompt_callback_mutex acquire_t and occur in the task that encounters the routine.

OpenMP API — Version 5.0 November 2018

N

11
12
13
14
15

16

17
18

19
20

21

22
23
24

3.3.3

Cross References
e Synchronization Hints, see Section 2.17.12 on page 260.

e ompt_callback mutex acquire_t, see Section 4.5.2.14 on page 476.

omp_destroy_ lock and
omp_destroy nest_lock

Summary

These routines ensure that the OpenMP lock is uninitialized.

Format

C/C++
void omp_destroy lock (omp_lock_t =*lock) ;
void omp_destroy nest_lock (omp_nest_lock_t =xlock) ;

C/C++

Fortran
subroutine omp_destroy lock (svar)
integer (kind=omp_lock_kind) svar

subroutine omp_destroy nest_lock (nvar)
integer (kind=omp_nest_lock_kind) nvar

Fortran

Constraints on Arguments

A program that accesses a lock that is not in the unlocked state through either routine is
non-conforming.

Effect

The effect of these routines is to change the state of the lock to uninitialized.

Execution Model Events

The lock-destroy event occurs in a thread that executes an omp_destroy_lock region before it
finishes the region. The nest-lock-destroy_with_hint event occurs in a thread that executes an
omp_destroy_nest_lock region before it finishes the region.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 387

No ok~ =

o]

10

11

12
13

14

15
16

17
18
19
20
21

22

23
24
25

3.3.4

388

Tool Callbacks

A thread dispatches a registered ompt_callback_lock_destroy callback with
ompt_mutex_lock as the kind argument for each occurrence of a lock-destroy event in that
thread. Similarly, a thread dispatches a registered ompt_callback_lock_destroy callback
with ompt_mutex_nest_lock as the kind argument for each occurrence of a nest-lock-destroy
event in that thread. These callbacks have the type signature
ompt_callback_mutex_acquire_t and occur in the task that encounters the routine.

Cross References

e ompt_callback mutex_t, see Section 4.5.2.15 on page 477.

omp_set_lock and omp_set_nest_lock

Summary

These routines provide a means of setting an OpenMP lock. The calling task region behaves as if it
was suspended until the lock can be set by this task.

Format

C/C++
void omp_set_lock (omp_lock_t =xlock) ;
void omp_set_nest_lock (omp_nest_lock_t =*lock) ;

C/C++

Fortran
subroutine omp_set_1lock (svar)
integer (kind=omp_lock_kind) svar

subroutine omp_set_nest_lock (nvar)
integer (kind=omp_nest_lock_kind) nvar

Fortran

Constraints on Arguments

A program that accesses a lock that is in the uninitialized state through either routine is
non-conforming. A simple lock accessed by omp_set_lock that is in the locked state must not
be owned by the task that contains the call or deadlock will result.

OpenMP API — Version 5.0 November 2018

—_

—
- O OWoo~NOOG M WN

a4 a
A~ W N

15

16
17
18

19
20
21
22

23
24
25

26

27
28
29

30
31
32

33
34
35

Effect

Each of these routines has an effect equivalent to suspension of the task that is executing the routine
until the specified lock is available.

v v
Note — The semantics of these routines is specified as if they serialize execution of the region
guarded by the lock. However, implementations may implement them in other ways provided that
the isolation properties are respected so that the actual execution delivers a result that could arise

from some serialization.
A A

A simple lock is available if it is unlocked. Ownership of the lock is granted to the task that
executes the routine.

A nestable lock is available if it is unlocked or if it is already owned by the task that executes the
routine. The task that executes the routine is granted, or retains, ownership of the lock, and the
nesting count for the lock is incremented.

Execution Model Events

The lock-acquire event occurs in a thread that executes an omp_set_ lock region before the
associated lock is requested. The nest-lock-acquire event occurs in a thread that executes an
omp_set_nest_lock region before the associated lock is requested.

The lock-acquired event occurs in a thread that executes an omp_set_lock region after it
acquires the associated lock but before it finishes the region. The nest-lock-acquired event occurs in
a thread that executes an omp_set_nest_lock region if the thread did not already own the
lock, after it acquires the associated lock but before it finishes the region.

The nest-lock-owned event occurs in a thread when it already owns the lock and executes an
omp_set_nest_lock region. The event occurs after the nesting count is incremented but
before the thread finishes the region.

Tool Callbacks

A thread dispatches a registered ompt_callback_mutex_acquire callback for each
occurrence of a lock-acquire or nest-lock-acquire event in that thread. This callback has the type
signature ompt_callback_mutex_acquire_t.

A thread dispatches a registered ompt__callback_mutex_acquired callback for each
occurrence of a lock-acquired or nest-lock-acquired event in that thread. This callback has the type
signature ompt_callback_mutex_t.

A thread dispatches a registered ompt_callback_nest_lock callback with
ompt_scope_begin as its endpoint argument for each occurrence of a nest-lock-owned event in
that thread. This callback has the type signature ompt_callback_nest_lock_t.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 389

—_

w

N o o b~

11

12
13

14
15
16
17
18

19

20
21

3.3.5

390

The above callbacks occur in the task that encounters the lock function. The kind argument of these
callbacks is ompt_mutex_lock when the events arise from an omp_set_lock region while it
is ompt_mutex_nest_lock when the events arise from an omp_set_nest_lock region.

Cross References
e ompt_callback_mutex_acquire_t, see Section 4.5.2.14 on page 476.
e ompt_callback_mutex_t, see Section 4.5.2.15 on page 477.

e ompt_callback_nest_lock_t, see Section 4.5.2.16 on page 479.

omp_unset_lock and omp_unset_nest_lock
Summary

These routines provide the means of unsetting an OpenMP lock.

Format
C/C++

I void omp_unset_lock (omp_lock t =*lock) ;

void omp_unset_nest_lock (omp_nest_lock_t =*lock) ;

C/C++

Fortran
subroutine omp_unset_1lock (svar)
integer (kind=omp_lock_kind) svar

subroutine omp_unset_nest_lock (nvar)
integer (kind=omp_nest_lock_ kind) nvar

Fortran
Constraints on Arguments

A program that accesses a lock that is not in the locked state or that is not owned by the task that
contains the call through either routine is non-conforming.

OpenMP API — Version 5.0 November 2018

NOoO o AW DN

10
11
12

13
14
15

16

17
18
19
20
21
22

23
24
25

26
27
28

Effect
For a simple lock, the omp_unset_ lock routine causes the lock to become unlocked.

For a nestable lock, the omp_unset_nest_lock routine decrements the nesting count, and
causes the lock to become unlocked if the resulting nesting count is zero.

For either routine, if the lock becomes unlocked, and if one or more task regions were effectively
suspended because the lock was unavailable, the effect is that one task is chosen and given
ownership of the lock.

Execution Model Events

The lock-release event occurs in a thread that executes an omp_unset_lock region after it
releases the associated lock but before it finishes the region. The nest-lock-release event occurs in a
thread that executes an omp_unset_nest_lock region after it releases the associated lock but
before it finishes the region.

The nest-lock-held event occurs in a thread that executes an omp_unset_nest_lock region
before it finishes the region when the thread still owns the lock after the nesting count is
decremented.

Tool Callbacks

A thread dispatches a registered ompt_callback_mutex_released callback with
ompt_mutex_lock as the kind argument for each occurrence of a lock-release event in that
thread. Similarly, a thread dispatches a registered ompt_callback_mutex_released
callback with ompt_mutex_nest_1lock as the kind argument for each occurrence of a
nest-lock-release event in that thread. These callbacks have the type signature
ompt_callback_mutex_t and occur in the task that encounters the routine.

A thread dispatches a registered ompt_callback_nest_1lock callback with
ompt_scope_end as its endpoint argument for each occurrence of a nest-lock-held event in that
thread. This callback has the type signature ompt_callback_nest_lock_t.

Cross References
e ompt_callback mutex_t, see Section 4.5.2.15 on page 477.
e ompt_callback_nest_lock_t, see Section 4.5.2.16 on page 479.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 391

1

10
11

12

13
14
15

16

17
18
19

20
21

22
23

3.3.6

392

omp_test_lock and omp_test_nest_lock

Summary

These routines attempt to set an OpenMP lock but do not suspend execution of the task that
executes the routine.

Format
C/C++

int omp_test_lock (omp_lock_t =*lock) ;
int omp_test_nest_lock (omp_nest_lock_t =lock);

C/C++

Fortran
logical function omp_test_1lock (svar)
integer (kind=omp_lock_kind) svar
integer function omp_test_nest_lock (nvar)
integer (kind=omp_nest_lock_kind) nvar

Fortran

Constraints on Arguments

A program that accesses a lock that is in the uninitialized state through either routine is
non-conforming. The behavior is unspecified if a simple lock accessed by omp_test_1lock is in
the locked state and is owned by the task that contains the call.

Effect

These routines attempt to set a lock in the same manner as omp_set_lock and
omp_set_nest_lock, except that they do not suspend execution of the task that executes the
routine.

For a simple lock, the omp_test_lock routine returns true if the lock is successfully set;
otherwise, it returns false.

For a nestable lock, the omp_test_nest_lock routine returns the new nesting count if the lock
is successfully set; otherwise, it returns zero.

OpenMP API — Version 5.0 November 2018

—_

- OO 00 ~NO O, LSO I \V]

—_ -

12

13
14
15

16
17
18

19
20
21

22
23
24
25

26
27
28
29

Execution Model Events

The lock-test event occurs in a thread that executes an omp_test_lock region before the
associated lock is tested. The nest-lock-test event occurs in a thread that executes an
omp_test_nest_lock region before the associated lock is tested.

The lock-test-acquired event occurs in a thread that executes an omp_test_lock region before it
finishes the region if the associated lock was acquired. The nest-lock-test-acquired event occurs in a
thread that executes an omp_test_nest_lock region before it finishes the region if the
associated lock was acquired and the thread did not already own the lock.

The nest-lock-owned event occurs in a thread that executes an omp_test_nest_lock region
before it finishes the region after the nesting count is incremented if the thread already owned the
lock.

Tool Callbacks

A thread dispatches a registered ompt_callback_mutex_acquire callback for each
occurrence of a lock-test or nest-lock-test event in that thread. This callback has the type signature
ompt_callback_mutex acquire_t.

A thread dispatches a registered ompt_callback_mutex_acquired callback for each
occurrence of a lock-test-acquired or nest-lock-test-acquired event in that thread. This callback has
the type signature ompt_callback_mutex_t.

A thread dispatches a registered ompt_callback_nest_1lock callback with
ompt_scope_begin as its endpoint argument for each occurrence of a nest-lock-owned event in
that thread. This callback has the type signature ompt_callback_nest_lock_t.

The above callbacks occur in the task that encounters the lock function. The kind argument of these
callbacks is ompt_mutex_test_lock when the events arise from an omp_test_lock
region while it is ompt_mutex_test_nest_lock when the events arise from an
omp_test_nest_lock region.

Cross References
e ompt_callback mutex acquire_t, see Section 4.5.2.14 on page 476.
e ompt_callback_mutex_t, see Section 4.5.2.15 on page 477.

e ompt_callback_nest_lock_t, see Section 4.5.2.16 on page 479.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 393

1

10
11

12

13
14
15
16

17

18
19

3.4

3.4.1

394

Timing Routines

This section describes routines that support a portable wall clock timer.

omp_get_wtime

Summary

The omp_get_wtime routine returns elapsed wall clock time in seconds.

Format
C/C++
I double omp_get_wtime (void) ;
C/C++
Fortran
Idouble precision function omp_get_wtime ()
Fortran

Binding

The binding thread set for an omp_get_wtime region is the encountering thread. The routine’s
return value is not guaranteed to be consistent across any set of threads.

Effect

The omp_get_wtime routine returns a value equal to the elapsed wall clock time in seconds
since some time-in-the-past. The actual time-in-the-past is arbitrary, but it is guaranteed not to
change during the execution of the application program. The time returned is a per-thread time, so
it is not required to be globally consistent across all threads that participate in an application.

v v
Note — The routine is anticipated to be used to measure elapsed times as shown in the following
example:

OpenMP API — Version 5.0 November 2018

OO WD =

-
— O O 0 N

12

13

14
15

16

17

18

19

20
21

3.4.2

C/C++
double start;
double end;
start = omp_get_wtime();
... work to be timed ...
end = omp_get_ wtime();
printf ("Work took %f seconds\n", end - start);

C/C++

Fortran
DOUBLE PRECISION START, END
START = omp_get_wtime ()
... work to be timed ...
END = omp_get_ wtime ()
PRINT x, "Work took", END - START, "seconds"

Fortran

omp_get_wtick

Summary

The omp_get_wtick routine returns the precision of the timer used by omp_get_wtime.

Format
C/C++
I double omp_get_wtick (void) ;
C/C++
Fortran
Idouble precision function omp_get_wtick ()
Fortran

Binding

The binding thread set for an omp_get_wtick region is the encountering thread. The routine’s

return value is not guaranteed to be consistent across any set of threads.

CHAPTER 3. RUNTIME LIBRARY ROUTINES

395

11

12

13
14

15

16
17
18

3.5

3.5.1

396

Effect

The omp_get_wtick routine returns a value equal to the number of seconds between successive
clock ticks of the timer used by omp_get_wtime.

Event Routine

This section describes a routine that supports OpenMP event objects.

Binding

The binding thread set for all event routine regions is the encountering thread.

omp_fulfill event

Summary

This routine fulfills and destroys an OpenMP event.

Format
C/C++

I void omp_fulfill event (omp_event handle t event);
C/C++
Fortran

subroutine omp_fulfill event (event)
integer (kind=omp_event_handle_kind) event

Fortran

Constraints on Arguments

A program that calls this routine on an event that was already fulfilled is non-conforming. A
program that calls this routine with an event handle that was not created by the detach clause is
non-conforming.

OpenMP API — Version 5.0 November 2018

A WOWN

(&)

10
11
12
13
14
15

16
17
18

19

20
21

22

23
24

3.6

3.6.1

Effect

The effect of this routine is to fulfill the event associated with the event handle argument. The effect
of fulfilling the event will depend on how the event was created. The event is destroyed and cannot
be accessed after calling this routine, and the event handle becomes unassociated with any event.

Execution Model Events

The task-fulfill event occurs in a thread that executes an omp_fulfill_event region before the
event is fulfilled if the OpenMP event object was created by a detach clause on a task.

Tool Callbacks

A thread dispatches a registered ompt_callback_task_schedule callback with NULL as its
next_task_data argument while the argument prior_task_data binds to the detached task for each
occurrence of a task-fulfill event. If the rask-fulfill event occurs before the detached task finished the
execution of the associated structured-block, the callback has ompt_task_early fulfill as
its prior_task_status argument; otherwise the callback has ompt_task_late_fulfill asits
prior_task_status argument. This callback has type signature
ompt_callback_task_schedule_t.

Cross References
e detach clause, see Section 2.10.1 on page 135.

e ompt_callback task_schedule_t, see Section 4.5.2.10 on page 470.

C/C++
Device Memory Routines

This section describes routines that support allocation of memory and management of pointers in
the data environments of target devices.

omp_target_alloc

Summary

The omp_target_alloc routine allocates memory in a device data environment.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 397

N =

0N O W

11
12

13
14

15
16

17
18

19

20
21
22

23
24
25
26
27
28

398

C/C++ (cont.)

Format
Ivoid* omp_target_alloc(size_t size, int device_num) ;

Effect

The omp_target_alloc routine returns the device address of a storage location of size bytes.
The storage location is dynamically allocated in the device data environment of the device specified
by device_num, which must be greater than or equal to zero and less than the result of
omp_get_num devices () or the result of a call to omp_get_initial_device (). When
called from within a target region the effect of this routine is unspecified.

The omp_target_alloc routine returns NULL if it cannot dynamically allocate the memory in
the device data environment.

The device address returned by omp_target_alloc can be used in an is_device_ptr
clause, Section 2.12.5 on page 170.

Unless unified_address clause appears on a requires directive in the compilation unit,
pointer arithmetic is not supported on the device address returned by omp_target_alloc.

Freeing the storage returned by omp_target_alloc with any routine other than
omp_target_free results in unspecified behavior.

Execution Model Events

The target-data-allocation event occurs when a thread allocates data on a target device.

Tool Callbacks

A thread invokes a registered ompt_callback_target_data_op callback for each
occurrence of a target-data-allocation event in that thread. The callback occurs in the context of the
target task and has type signature ompt_callback_target_data_op_t.

Cross References

e target construct, see Section 2.12.5 on page 170

e omp_get_num_devices routine, see Section 3.2.36 on page 371

e omp_get_initial_device routine, see Section 3.2.41 on page 376
e omp_target_free routine, see Section 3.6.2 on page 399

e ompt_callback target_data op_t, see Section 4.5.2.25 on page 488.

OpenMP API — Version 5.0 November 2018

1

w

10
11

12

13
14

15
16

17

18
19

20

21
22
23

24
25
26
27
28
29

3.6.2

C/C++ (cont.)
omp_target_free

Summary

The omp_target_ free routine frees the device memory allocated by the
omp_target_alloc routine.

Format
Ivoid omp_target_free (void =xdevice_ptr, int device_num) ;
Constraints on Arguments

A program that calls omp_target_free with a non-null pointer that does not have a value
returned from omp_target_alloc is non-conforming. The device_num must be greater than or
equal to zero and less than the result of omp_get_num_devices () or the result of a call to
omp_get_initial_device().

Effect

The omp_target_free routine frees the memory in the device data environment associated
with device_ptr. If device_ptr is NULL, the operation is ignored.

Synchronization must be inserted to ensure that all accesses to device_ptr are completed before the
call to omp_target_free.

When called from within a target region the effect of this routine is unspecified.

Execution Model Events

The target-data-free event occurs when a thread frees data on a target device.

Tool Callbacks

A thread invokes a registered ompt_callback_target_data_op callback for each
occurrence of a target-data-free event in that thread. The callback occurs in the context of the target
task and has type signature ompt_callback target_data op_t.

Cross References

e target construct, see Section 2.12.5 on page 170

e omp_get_num_devices routine, see Section 3.2.36 on page 371

e omp_get_initial_device routine, see Section 3.2.41 on page 376
e omp_target_alloc routine, see Section 3.6.1 on page 397

e ompt_callback target_data op_t, see Section 4.5.2.25 on page 488.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 399

1

11

12
13

14

15
16
17
18
19

20

21

22
23

3.6.3

3.6.4

400

C/C++ (cont.)
omp_target_is_present

Summary

The omp_target_is_present routine tests whether a host pointer has corresponding storage
on a given device.

Format
Iint omp_target_is_present (const void xptr, int device_num) ;
Constraints on Arguments

The value of ptr must be a valid host pointer or NULL. The device_num must be greater than or
equal to zero and less than the result of omp_get_num_devices () or the result of a call to
omp_get_initial device().

Effect

This routine returns non-zero if the specified pointer would be found present on device device_num
by a map clause; otherwise, it returns zero.

When called from within a target region the effect of this routine is unspecified.

Cross References

e target construct, see Section 2.12.5 on page 170.

e map clause, see Section 2.19.7.1 on page 315.

e omp_get_num devices routine, see Section 3.2.36 on page 371

e omp_get_initial_device routine, see Section 3.2.41 on page 376

omp_target_memcpy

Summary

The omp_target_memcpy routine copies memory between any combination of host and device
pointers.

OpenMP API — Version 5.0 November 2018

O WO NOOSWN =

—_

11

12
13
14
15

16

17
18
19
20
21

22

23
24

25

26
27
28

29
30
31
32
33

C/C++ (cont.)

Format

int omp_target_memcpy (
void =xdst,
const void =*src,
size_t length,
size_t dst_offset,
size_t src_offset,
int dst_device_num,
int src_device_num

)i
Constraints on Arguments

Each device must be compatible with the device pointer specified on the same side of the copy. The
dst_device_num and src_device_num must be greater than or equal to zero and less than the result
of omp_get_num_devices () or equal to the result of a call to

omp_get_initial device().

Effect

length bytes of memory at offset src_offset from src in the device data environment of device
src_device_num are copied to dst starting at offset dsz_offset in the device data environment of
device dst_device_num. The return value is zero on success and non-zero on failure. The host
device and host device data environment can be referenced with the device number returned by
omp_get_initial_ device. This routine contains a task scheduling point.

When called from within a target region the effect of this routine is unspecified.

Execution Model Events

The target-data-op event occurs when a thread transfers data on a target device.

Tool Callbacks

A thread invokes a registered ompt_callback_target_data_op callback for each
occurrence of a target-data-op event in that thread. The callback occurs in the context of the target
task and has type signature ompt_callback_ target_data op_t.

Cross References

e target construct, see Section 2.12.5 on page 170.

e omp_get_initial_device routine, see Section 3.2.41 on page 376
e omp_target_alloc routine, see Section 3.6.1 on page 397.

e ompt_callback target_data op_t, see Section 4.5.2.25 on page 488.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 401

a s~ W DN

20

21
22
23
24

25
26

27

28
29
30
31
32
33
34
35

3.6.5

402

C/C++ (cont.)
omp_target_memcpy_rect

Summary

The omp_target_memcpy_rect routine copies a rectangular subvolume from a
multi-dimensional array to another multi-dimensional array. The copies can use any combination of
host and device pointers.

Format

int omp_target_memcpy_rect (
void =*dst,
const void =*src,
size_t element_size,
int num_dims,
const size_t *volume,
const size_t =*dst_offsets,
const size_t xsrc_offsets,
const size_t xdst_dimensions,
const size_t =*src_dimensions,
int dst_device_num,
int src_device_num

)i

Constraints on Arguments

The length of the offset and dimension arrays must be at least the value of num_dims. The
dst_device_numand src_device_num must be greater than or equal to zero and less than
the result of omp_get_num_devices () or equal to the result of a call to
omp_get_initial_device().

The value of num_dims must be between 1 and the implementation-defined limit, which must be at
least three.

Effect

This routine copies a rectangular subvolume of src, in the device data environment of device
src_device_num, to dst, in the device data environment of device dst_device_num. The volume is
specified in terms of the size of an element, number of dimensions, and constant arrays of length
num_dims. The maximum number of dimensions supported is at least three, support for higher
dimensionality is implementation defined. The volume array specifies the length, in number of
elements, to copy in each dimension from src to dst. The dst_offsets (src_offsets) parameter
specifies number of elements from the origin of dst (src) in elements. The dst_dimensions
(src_dimensions) parameter specifies the length of each dimension of dst (src)

OpenMP API — Version 5.0 November 2018

D g~ OND =

10
11
12

13
14
15
16
17

18

19

20
21

3.6.6

C/C++ (cont.)

The routine returns zero if successful. If both dst and src are NULL pointers, the routine returns the
number of dimensions supported by the implementation for the specified device numbers. The host
device and host device data environment can be referenced with the device number returned by
omp_get_initial_device. Otherwise, it returns a non-zero value. The routine contains a
task scheduling point.

When called from within a target region the effect of this routine is unspecified.

Execution Model Events

The target-data-op event occurs when a thread transfers data on a target device.

Tool Callbacks

A thread invokes a registered ompt_callback_target_data_op callback for each
occurrence of a target-data-op event in that thread. The callback occurs in the context of the target
task and has type signature ompt_callback_target_data_op_t.

Cross References

e target construct, see Section 2.12.5 on page 170.

e omp_get_initial_device routine, see Section 3.2.41 on page 376
e omp_target_alloc routine, see Section 3.6.1 on page 397.

e ompt_callback target_data op_t, see Section 4.5.2.25 on page 488.

omp_target_associate_ptr

Summary

The omp_target_associate_ptr routine maps a device pointer, which may be returned
from omp_target_alloc or implementation-defined runtime routines, to a host pointer.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 403

0N O WN =

10
11
12
13

14

15
16
17
18
19
20
21
22
23

24

25
26
27
28
29
30

31
32

33

34
35
36

404

C/C++ (cont.)

Format

int omp_target_associate_ptr(
const void *host ptr,
const void =device_ptr,
size_t size,
size_t device_offset,
int device_num

);
Constraints on Arguments

The value of device_ptr value must be a valid pointer to device memory for the device denoted by
the value of device_num. The device_num argument must be greater than or equal to zero and less
than the result of omp_get_num_devices () or equal to the result of a call to
omp_get_initial_device().

Effect

The omp_target_associate_ptr routine associates a device pointer in the device data
environment of device device_num with a host pointer such that when the host pointer appears in a
subsequent map clause, the associated device pointer is used as the target for data motion
associated with that host pointer. The device_offset parameter specifies the offset into device_ptr
that is used as the base address for the device side of the mapping. The reference count of the
resulting mapping will be infinite. After being successfully associated, the buffer to which the
device pointer points is invalidated and accessing data directly through the device pointer results in
unspecified behavior. The pointer can be retrieved for other uses by disassociating it. When called
from within a target region the effect of this routine is unspecified.

The routine returns zero if successful. Otherwise it returns a non-zero value.

Only one device buffer can be associated with a given host pointer value and device number pair.
Attempting to associate a second buffer will return non-zero. Associating the same pair of pointers
on the same device with the same offset has no effect and returns zero. Associating pointers that
share underlying storage will result in unspecified behavior. The omp_target_is_present
function can be used to test whether a given host pointer has a corresponding variable in the device
data environment.

Execution Model Events

The target-data-associate event occurs when a thread associates data on a target device.

Tool Callbacks

A thread invokes a registered ompt__callback_target_data_op callback for each
occurrence of a target-data-associate event in that thread. The callback occurs in the context of the
target task and has type signature ompt_callback_target_data op_t.

OpenMP API — Version 5.0 November 2018

(>IN G) N L% A \ V]

11
12
13

14
15
16

17

18
19
20
21

22
23

24
25

26
27

3.6.7

C/C++ (cont.)

Cross References

e target construct, see Section 2.12.5 on page 170.

e map clause, see Section 2.19.7.1 on page 315.

e omp_target_alloc routine, see Section 3.6.1 on page 397.

e omp_target_disassociate_ptr routine, see Section 3.6.6 on page 403

e ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 488.

omp_target_disassociate_ptr

Summary

The omp_target_disassociate_ptr removes the associated pointer for a given device
from a host pointer.

Format
Iint omp_target_disassociate_ptr (const void =*pfr, int device_num) ;
Constraints on Arguments

The device_num must be greater than or equal to zero and less than the result of
omp_get_num_devices () or equal to the result of a call to
omp_get_initial device().

Effect

The omp_target_disassociate_ptr removes the associated device data on device
device_num from the presence table for host pointer ptr. A call to this routine on a pointer that is
not NULL and does not have associated data on the given device results in unspecified behavior.
The reference count of the mapping is reduced to zero, regardless of its current value.

When called from within a target region the effect of this routine is unspecified.
The routine returns zero if successful. Otherwise it returns a non-zero value.

After a call to omp_target_disassociate_ptr, the contents of the device buffer are
invalidated.

Execution Model Events

The target-data-disassociate event occurs when a thread disassociates data on a target device.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 405

—_

A WOMN

o N o O

10

11
12

13

14

15
16
17
18
19
20
21
22
23
24
25
26

3.7

3.7.1

406

Tool Callbacks

A thread invokes a registered ompt_callback_target_data_op callback for each
occurrence of a target-data-disassociate event in that thread. The callback occurs in the context of
the target task and has type signature ompt_callback_target_data op_t.

Cross References
e target construct, see Section 2.12.5 on page 170
e omp_target_associate_ptr routine, see Section 3.6.6 on page 403

e ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 488.
C/C++

Memory Management Routines

This section describes routines that support memory management on the current device.

Instances of memory management types must be accessed only through the routines described in
this section; programs that otherwise access instances of these types are non-conforming.

Memory Management Types

The following type definitions are used by the memory management routines:

C/C++
typedef enum omp_alloctrait_key t {
omp_atk _sync_hint = 1,
omp_atk_alignment = 2,
omp_atk_access = 3,
omp_atk_pool_size = 4,
omp_atk_fallback = 5,
omp_atk fb data = 6,
omp_atk pinned = 7,
omp_atk_partition = 8
} omp_alloctrait_key t;

typedef enum omp_alloctrait_value_t {

OpenMP API — Version 5.0 November 2018

O N O~ WN =

(NSNS T O T LS T O N) I Qi G G G G G G G G g
OO ODN 22O O0ONOOOOGPA,WN—=O O

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

omp_atv_false = 0,
omp_atv_true = 1,
omp_atv_default = 2,
omp_atv_contended = 3,
omp_atv_uncontended = 4,
omp_atv_sequential = 5,
omp_atv_private = 6,
omp_atv_all = 7,
omp_atv_thread = 8,
omp_atv_pteam = 9,
omp_atv_cgroup = 10,
omp_atv_default _mem fb = 11,
omp_atv_null fb = 12,
omp_atv_abort_fb = 13,
omp_atv_allocator fb = 14,
omp_atv_environment = 15,
omp_atv_nearest = 16,
omp_atv_blocked = 17,
omp_atv_interleaved = 18

} omp_alloctrait_value_t;

typedef struct omp_alloctrait_t {
omp_alloctrait_key t key;
omp_uintptr_t wvalue;

} omp_alloctrait_t;

C/C++
Fortran

integer (kind=omp_alloctrait_key_ _kind), &

parameter :: omp_atk_sync hint =1
integer (kind=omp_alloctrait_key kind), &
parameter :: omp_atk alignment = 2
integer (kind=omp_alloctrait_key kind), &
parameter :: omp_atk_access = 3
integer (kind=omp_alloctrait_key_kind), &
parameter :: omp_atk_pool_size = 4

integer (kind=omp_alloctrait_key kind), &
parameter :: omp_atk fallback = 5
integer (kind=omp_alloctrait_key_ _kind), &

parameter :: omp_atk_fb data = 6
integer (kind=omp_alloctrait_key_ kind), &
parameter :: omp_atk _pinned = 7

integer (kind=omp_alloctrait_key kind), &

CHAPTER 3. RUNTIME LIBRARY ROUTINES

407

oNOO O WN =

A BEA DA DWWWWWWWWWWMNMNDMNDNDMNDNMNODNDNDMNODND =2 =2 22
WN -0 O0WoOoONOODAPRWN—-O0OVONODAPRWN-—-LOOOLONOOOOGODN,WN-—LOO

408

Fortran (cont.)
parameter :: omp_atk_partition = 8

integer (kind=omp_alloctrait_val kind), &
parameter :: omp_atv_false = 0

integer (kind=omp_alloctrait_wval_kind), &
parameter :: omp_atv_true =1

integer (kind=omp_alloctrait_val_kind), &
parameter :: omp_atv_default = 2

integer (kind=omp_alloctrait_val kind), &
parameter :: omp_atv_contended = 3

integer (kind=omp_alloctrait_val_kind), &
parameter :: omp_atv_uncontended = 4

integer (kind=omp_alloctrait_val_kind), &
parameter :: omp_atv_sequential = 5

integer (kind=omp_alloctrait_wval_kind), &
parameter :: omp_atv_private = 6

integer (kind=omp_alloctrait_val_kind), &
parameter :: omp_atv_all = 7

integer (kind=omp_alloctrait_val kind), &
parameter :: omp_atv_thread = 8

integer (kind=omp_alloctrait_val_kind), &
parameter :: omp_atv_pteam = 9

integer (kind=omp_alloctrait_val_kind), &
parameter :: omp_atv_cgroup = 10

integer (kind=omp_alloctratit_val kind), &
parameter :: omp_atv_default _mem fb = 11

integer (kind=omp_alloctratit_wval_kind), &
parameter :: omp_atv_null fb = 12

integer (kind=omp_alloctratit_val_kind), &
parameter :: omp_atv_abort_fb = 13

integer (kind=omp_alloctratit_wval_kind), &
parameter :: omp_atv_allocator fb = 14

integer (kind=omp_alloctrait_val_kind), &
parameter :: omp_atv_environment = 15

integer (kind=omp_alloctrait_val kind), &
parameter :: omp_atv_nearest = 16

integer (kind=omp_alloctrait_wval_kind), &
parameter :: omp_atv_blocked = 17

integer (kind=omp_alloctrait_val_kind), &
parameter :: omp_atv_interleaved = 18

type omp_alloctrait
integer (kind=omp_alloctrait_key_ kind) key

OpenMP API — Version 5.0 November 2018

a0 =

10

11
12
13
14
15

16
17
18
19
20

21
22

23
24

25
26

3.7.2

integer (kind=omp_alloctrait_val_kind) value
end type omp_alloctrait

integer (kind=omp_allocator_handle_kind), &
parameter :: omp_null allocator = 0

Fortran

omp_init_allocator

Summary

The omp_init_allocator routine initializes an allocator and associates it with a memory
space.

Format
C/C++

omp_allocator_handle_t omp_init_allocator (
omp_memspace_handle_t memspace,
int ntraits,
const omp_alloctrait_t ftraits[]

);
C/C++

Fortran
integer (kind=omp_allocator_handle_kind) &
function omp_init_allocator (memspace, ntraits, traits)
integer (kind=omp_memspace_handle kind), intent (in) :: memspace
integer, intent (in) :: ntraits
type (omp_alloctrait), intent (in) :: fraits (*)

Fortran

Constraints on Arguments

The memspace argument must be one of the predefined memory spaces defined in Table 2.8.

If the ntraits argument is greater than zero then the traits argument must specify at least that many

traits. If it specifies fewer than ntraits traits the behavior is unspecified.

Unless a requires directive with the dynamic_allocators clause is present in the same
compilation unit, using this routine in a target region results in unspecified behavior.

CHAPTER 3. RUNTIME LIBRARY ROUTINES

—_

A WOMN

18
19
20

21

22
23

24

25

26
27

3.7.3

410

Binding

The binding thread set for an omp_init_allocator region is all threads on a device. The
effect of executing this routine is not related to any specific region that corresponds to any construct
or API routine.

Effect

The omp_init_allocator routine creates a new allocator that is associated with the
memspace memory space and returns a handle to it. All allocations through the created allocator
will behave according to the allocator traits specified in the traits argument. The number of traits in
the traits argument is specified by the ntraits argument. Specifying the same allocator trait more
than once results in unspecified behavior. The routine returns a handle for the created allocator. If
the special omp_atv_default value is used for a given trait, then its value will be the default
value specified in Table 2.9 for that given trait.

If memspace is omp_default_mem_space and the traits argument is an empty set this
routine will always return a handle to an allocator. Otherwise if an allocator based on the
requirements cannot be created then the special omp_null_allocator handle is returned.

The use of an allocator returned by this routine on a device other than the one on which it was
created results in unspecified behavior.

Cross References
e Memory Spaces, see Section 2.11.1 on page 152.

e Memory Allocators, see Section 2.11.2 on page 152.

omp_destroy_allocator

Summary

The omp_destroy_allocator routine releases all resources used by the allocator handle.

Format
C/C++
Ivoid omp_destroy allocator (omp_allocator handle_t allocator) ;
C/C++
Fortran
subroutine omp_destroy allocator (allocator)
integer (kind=omp_allocator_handle_kind), intent (in) :: allocator
Fortran

OpenMP API — Version 5.0 November 2018

AW N

[oc NN o)) ()]

10
11
12

13

14
15

16

17

18
19

20

21

22
23

3.7.4

Constraints on Arguments
The allocator argument must not represent a predefined memory allocator.

Unless a requires directive with the dynamic_allocators clause is present in the same
compilation unit, using this routine in a target region results in unspecified behavior.

Binding

The binding thread set for an omp_destroy_allocator region is all threads on a device. The
effect of executing this routine is not related to any specific region that corresponds to any construct
or API routine.

Effect

The omp_destroy_allocator routine releases all resources used to implement the allocator
handle. Accessing any memory allocated by the allocator after this call results in unspecified
behavior.

If allocator is omp_null_allocator then this routine will have no effect.

Cross References

e Memory Allocators, see Section 2.11.2 on page 152.

omp_set_default_allocator

Summary

The omp_set_default_allocator routine sets the default memory allocator to be used by
allocation calls, allocate directives and allocate clauses that do not specify an allocator.

Format
C/C++
Ivoid omp_set_default_allocator (omp_allocator_handle_t allocator) ;
C/C++
Fortran
subroutine omp_set_default_allocator (allocator)
integer (kind=omp_allocator_handle_kind), intent (in) :: allocator
Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 411

10
11

12

13

14
15
16

17

18

19
20

21
22

3.7.5

412

Constraints on Arguments

The allocator argument must be a valid memory allocator handle.

Binding

The binding task set for an omp_set_default_allocator region is the binding implicit task.

Effect

The effect of this routine is to set the value of the def-allocator-var ICV of the binding implicit task
to the value specified in the allocator argument.

Cross References
o def-allocator-var ICV, see Section 2.5 on page 63.
e Memory Allocators, see Section 2.11.2 on page 152.

e omp_alloc routine, see Section 3.7.6 on page 413.

omp_get_default_allocator

Summary

The omp_get_default_allocator routine returns a handle to the memory allocator to be
used by allocation calls, allocate directives and allocate clauses that do not specify an
allocator.

Format
C/C++

I omp_allocator_handle_t omp_get_default_allocator (void);
C/C++
Fortran

integer (kind=omp_allocator_ handle_kind) &
function omp_get_default_allocator ()

Fortran
Binding

The binding task set for an omp_get_default_allocator region is the binding implicit task.

OpenMP API — Version 5.0 November 2018

w

N OO o M

11

12

13
14
15
16

17

18
19
20
21

3.7.6

Effect

The effect of this routine is to return the value of the def-allocator-var ICV of the binding implicit
task.

Cross References
o def-allocator-var ICV, see Section 2.5 on page 63.
e Memory Allocators, see Section 2.11.2 on page 152.

e omp_alloc routine, see Section 3.7.6 on page 413.

C/C++
omp_alloc

Summary

The omp_alloc routine requests a memory allocation from a memory allocator.

Format
C

Ivoid *omp_alloc (size_t size, omp_allocator_ handle_ t allocator) ;
C
C++

void *omp_alloc(
size_t size,
omp_allocator_handle_t allocator=omp_null allocator

)i
C++

Constraints on Arguments

Unless dynamic_allocators appears on a requires directive in the same compilation unit,
omp_alloc invocations that appear in target regions must not pass omp_null_allocator
as the allocator argument, which must be a constant expression that evaluates to one of the
predefined memory allocator values.

CHAPTER 3. RUNTIME LIBRARY ROUTINES 413

N oo~ =

o)

10

11
12

13

14

15
16
17
18

19

20
21
22
23
24
25

3.7.7

414

C/C++ (cont.)

Effect

The omp_alloc routine requests a memory allocation of size bytes from the specified memory
allocator. If the allocator argument is omp_null_allocator the memory allocator used by the
routine will be the one specified by the def-allocator-var ICV of the binding implicit task. Upon
success it returns a pointer to the allocated memory. Otherwise, the behavior specified by the
fallback trait will be followed.

Allocated memory will be byte aligned to at least the alignment required by malloc.

Cross References

e Memory allocators, see Section 2.11.2 on page 152.

omp_free

Summary

The omp_ free routine deallocates previously allocated memory.

Format
C

Ivoid omp_free (void xptr, omp_allocator handle_t allocator) ;
C
C++

void omp_free (
void =xpir,
omp_allocator_handle_t allocator=omp_null allocator

);
C++

Effect

The omp_ free routine deallocates the memory to which ptr points. The ptr argument must point
to memory previously allocated with a memory allocator. If the allocator argument is specified it
must be the memory allocator to which the allocation request was made. If the allocator argument
isomp_null_ allocator the implementation will determine that value automatically. Using
omp_ free on memory that was already deallocated or that was allocated by an allocator that has
already been destroyed with omp_destroy_allocator results in unspecified behavior.

OpenMP API — Version 5.0 November 2018

11

12
13
14
15
16
17

18

19
20
21
22
23
24

3.8

Cross References

e Memory allocators, see Section 2.11.2 on page 152.

C/C++

Tool Control Routine

Summary

The omp_control_tool routine enables a program to pass commands to an active tool.

Format
C/C++

Iint omp_control_tool (int command, int modifier, void =*arg) ;
C/C++
Fortran

integer function omp_control_tool (command, modifier)
integer (kind=omp_control_tool_kind) command
integer modifier

Fortran

Description

An OpenMP program may use omp_control_tool to pass commands to a tool. An application
can use omp_control_tool to request that a tool starts or restarts data collection when a code
region of interest is encountered, that a tool pauses data collection when leaving the region of
interest, that a tool flushes any data that it has collected so far, or that a tool ends data collection.
Additionally, omp_control_tool can be used to pass tool-specific commands to a particular
tool.

The following types correspond to return values from omp_control_tool:

C/C++

typedef enum omp_control tool result_t {
omp_control_tool_notool = -2,
omp_control_tool_nocallback = -1,
omp_control_tool_success = 0,
omp_control tool ignored =1

} omp_control tool_result_t;

C/C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 415

oNOO O WN =

10
11
12
13
14
15
16
17

18

19
20

21
22
23
24
25
26

27
28
29
30
31
32
33
34

416

Fortran

integer (kind=omp_control_tool_result_kind), &
parameter :: omp_control tool_notool = -2

integer (kind=omp_control tool_ result_kind), &
parameter :: omp_control tool nocallback = -1

integer (kind=omp_control_tool_result_kind), &
parameter :: omp_control_ tool_success = 0

integer (kind=omp_control_tool_result_kind), &
parameter :: omp_control tool_ ignored =1

Fortran

If the OMPT interface state is inactive, the OpenMP implementation returns
omp_control_tool_notool. If the OMPT interface state is active, but no callback is
registered for the tool-control event, the OpenMP implementation returns
omp_control_tool_nocallback. An OpenMP implementation may return other
implementation-defined negative values strictly smaller than -64; an application may assume that
any negative return value indicates that a tool has not received the command. A return value of
omp_control_tool_success indicates that the tool has performed the specified command. A
return value of omp_control_tool_ignored indicates that the tool has ignored the specified
command. A tool may return other positive values strictly greater than 64 that are tool-defined.

Constraints on Arguments

The following enumeration type defines four standard commands. Table 3.1 describes the actions
that these commands request from a tool.

C/C++

typedef enum omp_control tool t {
omp_control tool_start = 1,
omp_control_tool_pause = 2,

omp_control_tool_flush = 3,
omp_control_tool_end = 4
} omp_control tool_t;
C/C++
Fortran
integer (kind=omp_control_tool_kind), &
parameter :: omp_control tool_start =1
integer (kind=omp_control_tool_kind), &
parameter :: omp_control tool pause = 2
integer (kind=omp_control_tool_kind), &
parameter :: omp_control tool_ flush = 3
integer (kind=omp_control_tool_kind), &
parameter :: omp_control tool_end = 4
Fortran

OpenMP API — Version 5.0 November 2018

—_

10
11
12

13
14
15
16

17
18
19

Tool-specific values for command must be greater or equal to 64. Tools must ignore command
values that they are not explicitly designed to handle. Other values accepted by a tool for command,
and any values for modifier and arg are tool-defined.

TABLE 3.1: Standard Tool Control Commands

Command Action

omp_control_tool_start Start or restart monitoring if it is off. If monitoring
is already on, this command is idempotent. If
monitoring has already been turned off permanently,
this command will have no effect.

omp_control_tool_pause Temporarily turn monitoring off. If monitoring is
already off, it is idempotent.

omp_control_tool_flush Flush any data buffered by a tool. This command may
be applied whether monitoring is on or off.

omp_control_tool_end Turn monitoring off permanently; the tool finalizes
itself and flushes all output.

Execution Model Events

The tool-control event occurs in the thread that encounters a call to omp_control_tool ata
point inside its corresponding OpenMP region.

Tool Callbacks

A thread dispatches a registered ompt_callback_control_tool callback for each
occurrence of a tool-control event. The callback executes in the context of the call that occurs in the
user program and has type signature ompt_callback control_ tool_t. The callback may
return any non-negative value, which will be returned to the application by the OpenMP
implementation as the return value of the omp_control_tool call that triggered the callback.

Arguments passed to the callback are those passed by the user to omp_control_tool. If the
call is made in Fortran, the tool will be passed NULL as the third argument to the callback. If any of
the four standard commands is presented to a tool, the tool will ignore the modifier and arg
argument values.

Cross References
o OMPT Interface, see Chapter 4 on page 419
e ompt_callback control tool_t, see Section 4.5.2.29 on page 495

CHAPTER 3. RUNTIME LIBRARY ROUTINES 417

This page intentionally left blank

0N O~ W

10
11
12
13
14

15

CHAPTER 4

4.1

OMPT Interface

This chapter describes OMPT, which is an interface for first-party tools. First-party tools are linked
or loaded directly into the OpenMP program. OMPT defines mechanisms to initialize a tool, to
examine OpenMP state associated with an OpenMP thread, to interpret the call stack of an OpenMP
thread, to receive notification about OpenMP events, to trace activity on OpenMP target devices, to
assess implementation-dependent details of an OpenMP implementation (such as supported states
and mutual exclusion implementations), and to control a tool from an OpenMP application.

OMPT Interfaces Definitions

C/C++

A compliant implementation must supply a set of definitions for the OMPT runtime entry points,
OMPT callback signatures, and the special data types of their parameters and return values. These
definitions, which are listed throughout this chapter, and their associated declarations shall be
provided in a header file named omp—tools.h. In addition, the set of definitions may specify
other implementation-specific values.

The ompt_start_tool function is an external function with C linkage.

C/C++

CHAPTER 4. OMPT INTERFACE 419

1

o O~ WD

11

12
13
14
15

16

17
18
19
20
21
22
23
24

25
26

4.2

4.2.1

420

Activating a First-Party Tool

To activate a tool, an OpenMP implementation first determines whether the tool should be
initialized. If so, the OpenMP implementation invokes the initializer of the tool, which enables the
tool to prepare to monitor execution on the host. The tool may then also arrange to monitor
computation that executes on target devices. This section explains how the tool and an OpenMP
implementation interact to accomplish these tasks.

ompt_start_tool

Summary

In order to use the OMPT interface provided by an OpenMP implementation, a tool must implement
the ompt_start_tool function, through which the OpenMP implementation initializes the tool.

Format

C
ompt_start_tool_result_t *ompt_start_ tool (
unsigned int omp_version,
const char *runtime_version

),

Description

For a tool to use the OMPT interface that an OpenMP implementation provides, the tool must define
a globally-visible implementation of the function ompt_start_tool. The tool indicates that it
will use the OMPT interface that an OpenMP implementation provides by returning a non-null
pointer to an ompt_start_tool_result_t structure from the ompt_start_tool
implementation that it provides. The ompt_start_tool_result_t structure contains
pointers to tool initialization and finalization callbacks as well as a tool data word that an OpenMP
implementation must pass by reference to these callbacks. A tool may return NULL from
ompt_start_tool to indicate that it will not use the OMPT interface in a particular execution.

A tool may use the omp_version argument to determine if it is compatible with the OMPT interface
that the OpenMP implementation provides.

OpenMP API — Version 5.0 November 2018

OO0 A WN

10

11
12
13
14
15

16
17

18

19
20
21
22

23
24
25

26

27
28

4.2.2

Description of Arguments

The argument omp_version is the value of the _ OPENMP version macro associated with the
OpenMP API implementation. This value identifies the OpenMP API version that an OpenMP
implementation supports, which specifies the version of the OMPT interface that it supports.

The argument runtime_version is a version string that unambiguously identifies the OpenMP
implementation.

Constraints on Arguments

The argument runtime_version must be an immutable string that is defined for the lifetime of a
program execution.

Effect

If a tool returns a non-null pointer to an ompt_start_tool_result_t structure, an OpenMP
implementation will call the tool initializer specified by the initialize field in this structure before
beginning execution of any OpenMP construct or completing execution of any environment routine
invocation; the OpenMP implementation will call the tool finalizer specified by the finalize field in
this structure when the OpenMP implementation shuts down.

Cross References

e ompt_start_tool_result_t, see Section 4.4.1 on page 433.

Determining Whether a First-Party Tool Should be Initialized

An OpenMP implementation examines the fool-var ICV as one of its first initialization steps. If the
value of rool-var is disabled, the initialization continues without a check for the presence of a tool
and the functionality of the OMPT interface will be unavailable as the program executes. In this
case, the OMPT interface state remains inactive.

Otherwise, the OMPT interface state changes to pending and the OpenMP implementation activates
any first-party tool that it finds. A tool can provide a definition of ompt_start_tool to an
OpenMP implementation in three ways:

e By statically-linking its definition of ompt_start_tool into an OpenMP application;

e By introducing a dynamically-linked library that includes its definition of ompt_start_tool
into the application’s address space; or

CHAPTER 4. OMPT INTERFACE 421

oNOoO O~ WN =

©

—_ a4 a g
A~ OWOWDN—=O

—_
o O

422

enabled Pending

| Runtime
Inactive >
(re)start

/

disabled

Runtime shutdown
or pause

A

Inactive

Y

A

r=NULL
Call Return
ompt_start_tool value r

r=non-null

Y
1 Return Call .
< s Active
N\ value / r->initialize

FIGURE 4.1: First-Party Tool Activation Flow Chart

e By providing, in the tool-libraries-var ICV, the name of a dynamically-linked library that is
appropriate for the architecture and operating system used by the application and that includes a
definition of ompt_start_tool.

If the value of rool-var is enabled, the OpenMP implementation must check if a tool has provided
an implementation of ompt_start_tool. The OpenMP implementation first checks if a
tool-provided implementation of ompt_start_tool is available in the address space, either
statically-linked into the application or in a dynamically-linked library loaded in the address space.
If multiple implementations of ompt_start_tool are available, the OpenMP implementation
will use the first tool-provided implementation of ompt_start_tool that it finds.

If the implementation does not find a tool-provided implementation of ompt_start_tool in the
address space, it consults the tool-libraries-var ICV, which contains a (possibly empty) list of
dynamically-linked libraries. As described in detail in Section 6.19 on page 617, the libraries in
tool-libraries-var are then searched for the first usable implementation of ompt_start_tool
that one of the libraries in the list provides.

If the implementation finds a tool-provided definition of ompt_start_tool, it invokes that
method; if a NULL pointer is returned, the OMPT interface state remains pending and the

OpenMP API — Version 5.0 November 2018

D g~ OND =

12

13
14
15
16

17
18
19
20
21
22

23
24
25
26
27

28
29

4.2.3

implementation continues to look for implementations of ompt_start_tool; otherwise a
non-null pointer to an ompt_start_tool_result_t structure is returned, the OMPT
interface state changes to active and the OpenMP implementation makes the OMPT interface
available as the program executes. In this case, as the OpenMP implementation completes its
initialization, it initializes the OMPT interface.

If no tool can be found, the OMPT interface state changes to inactive.

Cross References

tool-libraries-var ICV, see Section 2.5 on page 63.

tool-var ICV, see Section 2.5 on page 63.

e ompt_start_tool function, see Section 4.2.1 on page 420.

ompt_start_tool_result_t type, see Section 4.4.1 on page 433.

Initializing a First-Party Tool

To initialize the OMPT interface, the OpenMP implementation invokes the tool initializer that is
specified in the ompt_start_tool_result_t structure that is indicated by the non-null
pointer that ompt_start_tool returns. The initializer is invoked prior to the occurrence of any
OpenMP event.

A tool initializer, described in Section 4.5.1.1 on page 457, uses the function specified in its lookup
argument to look up pointers to OMPT interface runtime entry points that the OpenMP
implementation provides; this process is described in Section 4.2.3.1 on page 424. Typically, a tool
initializer obtains a pointer to the ompt_set_callback runtime entry point with type signature
ompt_set_callback_t and then uses this runtime entry point to register tool callbacks for
OpenMP events, as described in Section 4.2.4 on page 425.

A tool initializer may use the ompt_enumerate_states runtime entry point, which has type
signature ompt_enumerate_states_t, to determine the thread states that an OpenMP
implementation employs. Similarly, it may use the ompt_enumerate_mutex_impls runtime
entry point, which has type signature ompt_enumerate_mutex_impls_t, to determine the
mutual exclusion implementations that the OpenMP implementation employs.

If a tool initializer returns a non-zero value, the OMPT interface state remains active for the
execution; otherwise, the OMPT interface state changes to inactive.

CHAPTER 4. OMPT INTERFACE 423

—_

© 0o N o 0o »~ O DN

10

11
12
13
14
15
16
17

18
19
20
21

22
23
24
25
26
27

28
29

30
31
32

4.2.3.1

424

Cross References

e ompt_start_tool function, see Section 4.2.1 on page 420.

e ompt_start_tool_result_t type, see Section 4.4.1 on page 433.

e ompt_initialize_t type, see Section 4.5.1.1 on page 457.

e ompt_callback_thread_begin_t type, see Section 4.5.2.1 on page 459.
e ompt_enumerate_states_t type, see Section 4.6.1.1 on page 498.

e ompt_enumerate_mutex_impls_t type, see Section 4.6.1.2 on page 499.
e ompt_set_callback_t type, see Section 4.6.1.3 on page 500.

e ompt_function_lookup_t type, see Section 4.6.3 on page 531.

Binding Entry Points in the OMPT Callback Interface

Functions that an OpenMP implementation provides to support the OMPT interface are not defined
as global function symbols. Instead, they are defined as runtime entry points that a tool can only
identify through the lookup function that is provided as an argument with type signature
ompt_function_lookup_t to the tool initializer. A tool can use this function to obtain a
pointer to each of the runtime entry points that an OpenMP implementation provides to support the
OMPT interface. Once a tool has obtained a lookup function, it may employ it at any point in the
future.

For each runtime entry point in the OMPT interface for the host device, Table 4.1 provides the
string name by which it is known and its associated type signature. Implementations can provide
additional implementation-specific names and corresponding entry points. Any names that begin
with ompt__ are reserved names.

During initialization, a tool should look up each runtime entry point in the OMPT interface by
name and bind a pointer maintained by the tool that can later be used to invoke the entry point. The
entry points described in Table 4.1 enable a tool to assess the thread states and mutual exclusion
implementations that an OpenMP implementation supports, to register tool callbacks, to inspect
registered callbacks, to introspect OpenMP state associated with threads, and to use tracing to
monitor computations that execute on target devices.

Detailed information about each runtime entry point listed in Table 4.1 is included as part of the
description of its type signature.

Cross References
e ompt_enumerate_states_t type, see Section 4.6.1.1 on page 498.

e ompt_enumerate_mutex_impls_t type, see Section 4.6.1.2 on page 499.

OpenMP API — Version 5.0 November 2018

o © 0o N o o b W N =

- a4 4 a4 a4 a4 a a4
0o N o o A W N =

19

20
21
22
23
24
25

26
27

28
29

424

e ompt_set_callback_t type, see Section 4.6.1.3 on page 500.

e ompt_get_callback_t type, see Section 4.6.1.4 on page 502.

e ompt_get_thread data_t type, see Section 4.6.1.5 on page 503.

e ompt_get_num_procs_t type, see Section 4.6.1.6 on page 503.

e ompt_get_num_places_t type, see Section 4.6.1.7 on page 504.

e ompt_get_place_proc_ids_t type, see Section 4.6.1.8 on page 505.
e ompt_get_place_num_t type, see Section 4.6.1.9 on page 506.

e ompt_get_partition_place_nums_t type, see Section 4.6.1.10 on page 507.
e ompt_get_proc_id_t type, see Section 4.6.1.11 on page 508.

e ompt_get_state_t type, see Section 4.6.1.12 on page 508.

e ompt_get_parallel_info_t type, see Section 4.6.1.13 on page 510.
e ompt_get_task_info_t type, see Section 4.6.1.14 on page 512.

e ompt_get_task_memory_t type, see Section 4.6.1.15 on page 514.

e ompt_get_target_info_t type, see Section 4.6.1.16 on page 515.

e ompt_get_num_devices_t type, see Section 4.6.1.17 on page 516.

e ompt_get_unique_id_t type, see Section 4.6.1.18 on page 517.

e ompt_finalize tool_t type, see Section 4.6.1.19 on page 517.

e ompt_function_lookup_t type, see Section 4.6.3 on page 531.

Monitoring Activity on the Host with OMPT

To monitor the execution of an OpenMP program on the host device, a tool initializer must register
to receive notification of events that occur as an OpenMP program executes. A tool can use the
ompt_set_callback runtime entry point to register callbacks for OpenMP events. The return
codes for ompt_set_callback use the ompt_set_result_t enumeration type. If the
ompt_set_callback runtime entry point is called outside a tool initializer, registration of
supported callbacks may fail with a return value of ompt_set_error.

All callbacks registered with ompt_set_callback or returned by ompt_get_callback use
the dummy type signature ompt_callback_t.

Table 4.2 shows the valid registration return codes of the ompt_set_callback runtime entry
point with specific values of its event argument. For callbacks for which ompt_set_always is

CHAPTER 4. OMPT INTERFACE 425

TABLE 4.1: OMPT Callback Interface Runtime Entry Point Names and Their Type Signatures

Entry Point String Name Type signature
“ompt_enumerate_states” ompt_enumerate_states_t
“ompt_enumerate_mutex_impls” ompt_enumerate_mutex_impls_t
“ompt_set_callback” ompt_set_callback_t
“ompt_get_callback” ompt_get_callback_t
“ompt_get_thread data” ompt_get_thread data_t
“ompt_get_num_places” ompt_get_num_places_t
“ompt_get_place_proc_ids” ompt_get_place_proc_ids_t
“ompt_get_place_num”’ ompt_get_place_num_t

“ompt_get_partition_place_nums” ompt_get_partition_place_nums_t

“ompt_get_proc_id” ompt_get_proc_id_t
“ompt_get_state” ompt_get_state_t
“ompt_get_parallel_info” ompt_get_parallel_info_t
“ompt_get_task_info” ompt_get_task_info_t
“ompt_get_task_memory” ompt_get_task_memory_t
“ompt_get_num devices” ompt_get_num devices_t
“ompt_get_num_procs” ompt_get_num_procs_t
“ompt_get_target_info” ompt_get_target_info_t
“ompt_get_unique_id” ompt_get_unique_id_t
“ompt_finalize_tool” ompt_finalize_tool_t

426 OpenMP API — Version 5.0 November 2018

O N O~ WN =

©

- 4 4 4 4
O NO O~ WN-—=O

19
20
21
22

23

24
25
26
27

28
29
30
31
32
33

4.2.5

the only registration return code that is allowed, an OpenMP implementation must guarantee that
the callback will be invoked every time that a runtime event that is associated with it occurs.
Support for such callbacks is required in a minimal implementation of the OMPT interface. For
callbacks for which the ompt_set_callback runtime entry may return values other than
ompt_set_always, whether an OpenMP implementation invokes a registered callback never,
sometimes, or always is implementation-defined. If registration for a callback allows a return code
of omp_set_never, support for invoking such a callback may not be present in a minimal
implementation of the OMPT interface. The return code from registering a callback indicates the
implementation-defined level of support for the callback.

Two techniques reduce the size of the OMPT interface. First, in cases where events are naturally
paired, for example, the beginning and end of a region, and the arguments needed by the callback at
each endpoint are identical, a tool registers a single callback for the pair of events, with
ompt_scope_begin or ompt_scope_end provided as an argument to identify for which
endpoint the callback is invoked. Second, when a class of events is amenable to uniform treatment,
OMPT provides a single callback for that class of events, for example, an
ompt_callback_sync_region_wait callback is used for multiple kinds of synchronization
regions, such as barrier, taskwait, and taskgroup regions. Some events, for example,
ompt_callback_sync_region_wait, use both techniques.

Cross References

e ompt_set_result_t type, see Section 4.4.4.2 on page 438.

e ompt_set_callback_t type, see Section 4.6.1.3 on page 500.
e ompt_get_callback_t type, see Section 4.6.1.4 on page 502.

Tracing Activity on Target Devices with OMPT

A target device may or may not initialize a full OpenMP runtime system. Unless it does, it may not
be possible to monitor activity on a device using a tool interface based on callbacks. To
accommodate such cases, the OMPT interface defines a monitoring interface for tracing activity on
target devices. Tracing activity on a target device involves the following steps:

e To prepare to trace activity on a target device, a tool must register for an
ompt_callback_device_initialize callback. A tool may also register for an
ompt_callback_device_load callback to be notified when code is loaded onto a target
device or an ompt_callback_ device_unload callback to be notified when code is
unloaded from a target device. A tool may also optionally register an
ompt_callback_device_finalize callback.

CHAPTER 4. OMPT INTERFACE 427

TABLE 4.2: Valid Return Codes of ompt_set_callback for Each Callback

Return code abbreviation N S/P A
ompt_callback_thread begin *
ompt_callback_thread end *
ompt_callback_parallel_begin *
ompt_callback_parallel_end *
ompt_callback_task_create *
ompt_callback_task_schedule *
ompt_callback_implicit_task *
ompt_callback_target *
ompt_callback_target_data_ op *
ompt_callback_target_submit *
ompt_callback_control_tool *
ompt_callback_device_initialize *
ompt_callback_device_finalize *
ompt_callback_device_load *
ompt_callback_device_unload *
ompt_callback_sync_region_wait * * *
ompt_callback_mutex_ released * * *
ompt_callback_dependences * * *
ompt_callback_task_dependence * * *
ompt_callback_work * * ®
ompt_callback_master * * *
ompt_callback_target_map * * *
ompt_callback_sync_region * * *
ompt_callback_reduction * * *
ompt_callback_lock_ init * * *
ompt_callback_lock_ destroy * * *
ompt_callback_mutex_acquire * * *
ompt_callback_mutex_acquired * * *
ompt_callback_nest_lock * * *
ompt_callback_flush * * *
ompt_callback_cancel * * *
ompt_callback_dispatch * * *
N = ompt_set_never S = ompt_set_sometimes
P = ompt_set_sometimes_paired A = ompt_set_always

428 OpenMP API — Version 5.0 November 2018

o oo Ok W=

NN = = ot ol o
- O OVWoONOOPA~,WN-—=OO

DN DN
NOoO ok WD

W WM N
— O ©O ©

W w
W N

A DA WWWWWw
- O ©W 0N O &

¢ When an OpenMP implementation initializes a target device, the OpenMP implementation

dispatches the device initialization callback of the tool on the host device. If the OpenMP
implementation or target device does not support tracing, the OpenMP implementation passes
NULL to the device initializer of the tool for its lookup argument; otherwise, the OpenMP
implementation passes a pointer to a device-specific runtime entry point with type signature
ompt_function_lookup_t to the device initializer of the tool.

If a non-null lookup pointer is provided to the device initializer of the tool, the tool may use it to
determine the runtime entry points in the tracing interface that are available for the device and
may bind the returned function pointers to tool variables. Table 4.3 indicates the names of
runtime entry points that may be available for a device; an implementations may provide
additional implementation-defined names and corresponding entry points. The driver for the
device provides the runtime entry points that enable a tool to control the trace collection interface
of the device. The native trace format that the interface uses may be device specific and the
available kinds of trace records are implementation-defined. Some devices may allow a tool to
collect traces of records in a standard format known as OMPT trace records. Each OMPT trace
record serves as a substitute for an OMPT callback that cannot be made on the device. The fields
in each trace record type are defined in the description of the callback that the record represents.
If this type of record is provided then the lookup function returns values for the runtime entry
points ompt_set_trace_ompt and ompt_get_record_ompt, which support collecting
and decoding OMPT traces. If the native tracing format for a device is the OMPT format then
tracing can be controlled using the runtime entry points for native or OMPT tracing.

The tool uses the ompt__set_trace_native and/or the ompt_set_trace_ompt
runtime entry point to specify what types of events or activities to monitor on the device. The
return codes for ompt_set_trace_ompt and ompt_set_trace_native use the
ompt_set_result_t enumeration type. If the ompt_set_trace_native /or the
ompt_set_trace_ompt runtime entry point is called outside a device initializer, registration
of supported callbacks may fail with a return code of ompt_set_error.

The tool initiates tracing on the device by invoking ompt__start_trace. Arguments to
ompt_start_trace include two tool callbacks through which the OpenMP implementation
can manage traces associated with the device. One allocates a buffer in which the device can
deposit trace events. The second callback processes a buffer of trace events from the device.

If the device requires a trace buffer, the OpenMP implementation invokes the tool-supplied
callback function on the host device to request a new buffer.

The OpenMP implementation monitors the execution of OpenMP constructs on the device and
records a trace of events or activities into a trace buffer. If possible, device trace records are
marked with a host_op_id—an identifier that associates device activities with the target operation
that the host initiated to cause these activities. To correlate activities on the host with activities
on a device, a tool can register a ompt_callback_target_submit callback. Before the
host initiates each distinct activity associated with a structured block for a target construct on
a device, the OpenMP implementation dispatches the ompt_callback_target_submit
callback on the host in the thread that is executing the task that encounters the target construct.

CHAPTER 4. OMPT INTERFACE 429

TABLE 4.3: OMPT Tracing Interface Runtime Entry Point Names and Their Type Signatures

Entry Point String Name Type Signature
“ompt_get_device_num_procs” ompt_get_device_num_procs_t
“ompt_get_device_time” ompt_get_device_time_t
“ompt_translate_time” ompt_translate_time_t
“ompt_set_trace_ompt” ompt_set_trace_ompt_t
“ompt_set_trace_native” ompt_set_trace_native_t
“ompt_start_trace” ompt_start_trace_t
“ompt_pause_trace” ompt_pause_trace_t
“ompt_flush_trace” ompt_flush trace_t
“ompt_stop_trace” ompt_stop_trace_t

“ompt_advance_buffer_cursor”’” ompt_advance_buffer_ cursor_t

“ompt_get_record_type” ompt_get_record_type_t
“ompt_get_record_ompt” ompt_get_record_ompt_t
“ompt_get_record_native” ompt_get_record_native_t
“ompt_get_record_abstract” ompt_get_record abstract_t

430 OpenMP API — Version 5.0 November 2018

ONOO OO WOWN =

11
12
13
14
15
16
17
18
19

20
21

22
23

24
25
26
27

28

29
30
31
32
33
34

35
36

37
38

Examples of activities that could cause an ompt_callback_target_submit callback to
be dispatched include an explicit data copy between a host and target device or execution of a
computation. This callback provides the tool with a pair of identifiers: one that identifies the
target region and a second that uniquely identifies an activity associated with that region. These
identifiers help the tool correlate activities on the target device with their target region.

When appropriate, for example, when a trace buffer fills or needs to be flushed, the OpenMP
implementation invokes the tool-supplied buffer completion callback to process a non-empty
sequence of records in a trace buffer that is associated with the device.

The tool-supplied buffer completion callback may return immediately, ignoring records in the
trace buffer, or it may iterate through them using the ompt_advance_buffer_cursor
entry point to inspect each record. A tool may use the ompt_get_record_type runtime
entry point to inspect the type of the record at the current cursor position. Three runtime entry
points (ompt_get_record_ompt, ompt_get_record natiwve, and
ompt_get_record_abstract) allow tools to inspect the contents of some or all records in
a trace buffer. The ompt_get_record native runtime entry point uses the native trace
format of the device. The ompt_get_record_abstract runtime entry point decodes the
contents of a native trace record and summarizes them as an ompt_record_abstract_t
record. The ompt_get_record_ompt runtime entry point can only be used to retrieve
records in OMPT format.

Once tracing has been started on a device, a tool may pause or resume tracing on the device at
any time by invoking ompt_pause_trace with an appropriate flag value as an argument.

A tool may invoke the ompt_flush_trace runtime entry point for a device at any time
between device initialization and finalization to cause the device to flush pending trace records.

At any time, a tool may use the ompt_start_trace runtime entry point to start tracing or the
ompt_stop_trace runtime entry point to stop tracing on a device. When tracing is stopped
on a device, the OpenMP implementation eventually gathers all trace records already collected
on the device and presents them to the tool using the buffer completion callback.

An OpenMP implementation can be shut down while device tracing is in progress.

When an OpenMP implementation is shut down, it finalize each device. Device finalization
occurs in three steps. First, the OpenMP implementation halts any tracing in progress for the
device. Second, the OpenMP implementation flushes all trace records collected for the device
and uses the buffer completion callback associated with that device to present them to the tool.
Finally, the OpenMP implementation dispatches any ompt_callback_device_finalize
callback registered for the device.

Restrictions

Tracing activity on devices has the following restriction:

Implementation-defined names must not start with the prefix ompt_, which is reserved for the
OpenMP specification.

CHAPTER 4. OMPT INTERFACE 431

o © 0o N o a0~ N =

_ a4 4 a4 a4 a4 a4 a4
0o N o o B~ 0N =

19

20
21
22
23

24
25

4.3

432

Cross References

e ompt_callback_device_initialize_t callback type, see Section 4.5.2.19 on
page 482.

e ompt_callback_device_finalize_t callback type, see Section 4.5.2.20 on page 484.
e ompt_get_device_num_procs runtime entry point, see Section 4.6.2.1 on page 518.

e ompt_get_device_time runtime entry point, see Section 4.6.2.2 on page 519.

e ompt_translate_time runtime entry point, see Section 4.6.2.3 on page 520.

e ompt_set_trace_ompt runtime entry point, see Section 4.6.2.4 on page 521.

e ompt_set_trace_native runtime entry point, see Section 4.6.2.5 on page 522.

e ompt_start_trace runtime entry point, see Section 4.6.2.6 on page 523.

e ompt_pause_trace runtime entry point, see Section 4.6.2.7 on page 524.

e ompt_flush_trace runtime entry point, see Section 4.6.2.8 on page 525.

e ompt_stop_trace runtime entry point, see Section 4.6.2.9 on page 526.

e ompt_advance_buffer cursor runtime entry point, see Section 4.6.2.10 on page 527.
e ompt_get_record_type runtime entry point, see Section 4.6.2.11 on page 528.

e ompt_get_record_ompt runtime entry point, see Section 4.6.2.12 on page 529.

e ompt_get_record_native runtime entry point, see Section 4.6.2.13 on page 530.

e ompt_get_record abstract runtime entry point, see Section 4.6.2.14 on page 531.

Finalizing a First-Party Tool

If the OMPT interface state is active, the tool finalizer, which has type signature
ompt_finalize_t and is specified by the finalize field in the
ompt_start_tool_result_t structure returned from the ompt_start_tool function, is
called when the OpenMP implementation shuts down.

Cross References

e ompt_finalize t callback type, see Section 4.5.1.2 on page 458

OpenMP API — Version 5.0 November 2018

N

4 441

o0 N o ()]

10
11
12
13
14

15
16

17
18

19
20
21
22
23

OMPT Data Types

The C/C++ header file (omp-tools.h) provides the definitions of the types that are specified

throughout this subsection.

Tool Initialization and Finalization

Summary

A tool’s implementation of ompt_start_tool returns a pointer to an
ompt_start_tool_result_t structure, which contains pointers to the tool’s initialization
and finalization callbacks as well as an ompt_data_t object for use by the tool.

Format

C/C++

typedef struct ompt_start_ tool_ result_t {

ompt_initialize_t initialize;
ompt_finalize_ t finalize;
ompt_data_t fool_data;

} ompt_start_tool_result_t;

C/C++

Restrictions

The ompt_start_tool_result_t type has the following restriction:

o The initialize and finalize callback pointer values in an ompt_start_tool_result_t

structure that ompt__start_tool returns must be non-null.

Cross References

ompt_start_tool function, see Section 4.2.1 on page 420.
ompt_data_t type, see Section 4.4.4.4 on page 440.
ompt_initialize_t callback type, see Section 4.5.1.1 on page 457.

ompt_finalize_t callback type, see Section 4.5.1.2 on page 458.

CHAPTER 4. OMPT INTERFACE

433

1

w

4.4.2

434

Callbacks

Summary

The ompt_callbacks_t enumeration type indicates the integer codes used to identify OpenMP

callbacks when registering or querying them.

Format

C/C++

typedef enum ompt_callbacks_t {
ompt_callback thread begin
ompt_callback_thread end
ompt_callback_parallel_begin
ompt_callback_parallel_end
ompt_callback task create
ompt_callback task schedule
ompt callback implicit_task
ompt_callback_ target
ompt_callback_target_data_op
ompt_callback_ target_submit
ompt_callback control_tool

ompt_callback_device_ finalize
ompt_callback_device_ load
ompt_callback_ device_unload

ompt_callback mutex released
ompt_callback dependences
ompt_callback_task_dependence
ompt_callback_ work
ompt_callback master
ompt_callback target_map
ompt_callback_ sync_region
ompt_callback_lock_init
ompt_callback_lock_ destroy
ompt_callback mutex_ acquire
ompt_callback mutex acquired
ompt_callback nest_lock
ompt_callback_flush
ompt_callback_cancel
ompt_callback_ reduction
ompt_callback_ dispatch

} ompt_callbacks_t;

C/C++

OpenMP API — Version 5.0 November 2018

ompt_callback device initialize

ompt_callback_ sync_ region_wait

00 Jo Ul WDN K

~

~

~

~

~

~

~

1

10
11
12

13

14

15
16

17

18
19
20
21

44.3

4.4.3.1

4.4.3.2

Tracing

OpenMP provides type definitions that support tracing with OMPT.

Record Type

Summary

The ompt_record_t enumeration type indicates the integer codes used to identify OpenMP

trace record formats.

Format
C/C++
typedef enum ompt_ record t ({
ompt_record_ompt =1,
ompt_record_native = 2,
ompt_record_invalid =3
} ompt_record t;
C/C++

Native Record Kind

Summary

The ompt_record_native_t enumeration type indicates the integer codes used to identify

OpenMP native trace record contents.

Format
C/C++
typedef enum ompt_ record native_t {
ompt_record_native_info =1,

ompt_record_native_event = 2
} ompt_record native_t;

C/C++

CHAPTER 4

. OMPT INTERFACE

435

1

13

14
15
16
17
18
19
20
21
22
23
24

25

26
27

4.4.3.3

4.4.3.4

436

Native Record Abstract Type

Summary

The ompt_record_abstract_t type provides an abstract trace record format that is used to
summarize native device trace records.

Format

C/C++
typedef struct ompt record abstract_t {
ompt_record native_t rclass;
const char =xfype;
ompt_device_time_t start_time;
ompt_device_time_ t end_time;
ompt_hwid t hwid;

} ompt_record abstract_t;

C/C++

Description

An ompt_record_abstract_t record contains information that a tool can use to process a
native record that it may not fully understand. The rclass field indicates that the record is
informational or that it represents an event; this information can help a tool determine how to
present the record. The record type field points to a statically-allocated, immutable character string
that provides a meaningful name that a tool can use to describe the event to a user. The start_time
and end_time fields are used to place an event in time. The times are relative to the device clock. If
an event does not have an associated start_time (end_time), the value of the start_time (end_time)
field is ompt_time_none. The hardware identifier field, Awid, indicates the location on the
device where the event occurred. A hwid may represent a hardware abstraction such as a core or a
hardware thread identifier. The meaning of a hwid value for a device is implementation defined. If
no hardware abstraction is associated with the record then the value of hwid is ompt_hwid_none.

Record Type

Summary

The ompt_record_ompt_t type provides an standard complete trace record format.

OpenMP API — Version 5.0 November 2018

Format

C/C++
typedef struct ompt_record ompt_ t {

ompt_callbacks_t rype;
ompt_device_time_t ftime;
ompt_id_t thread_id;
ompt_id_t targer id;
union {

32

33
34

35
36
37

ompt_record thread_begin_t thread begin;
ompt_record_parallel_begin_t parallel_begin;
ompt_record_parallel_end_t parallel_end;
ompt_record_work_t work;

ompt_record dispatch_t dispatch;
ompt_record_task create_t task_create;
ompt_record_dependences_t dependences;
ompt_record_task_dependence_t task_dependence;
ompt_record_task_schedule_ t fask_schedule;
ompt_record implicit_task_t implicit_task;
ompt_record master_ t master;
ompt_record_sync_region_t sync_region;
ompt_record_mutex_acquire_t mutex_acquire;
ompt_record _mutex_t mutex;

ompt_record nest_lock_t nest_lock;
ompt_record_ flush_t flush;
ompt_record_cancel_t cancel;
ompt_record_target_t rarget;
ompt_record_target_data_op_t target_data_op;
ompt_record_target_map_t rargetr_map;
ompt_record_target_kernel_t rarget_kernel;
ompt_record_control_tool_t control_tool;

} record;
} ompt_record ompt_t;

C/C++

Description

Restrictions
The ompt_record_ompt_t type has the following restriction:

e If type is set to ompt_callback_thread_end_t then the value of record is undefined.

CHAPTER 4. OMPT INTERFACE

The field rype specifies the type of record provided by this structure. According to the type, event
specific information is stored in the matching record entry.

437

1

w

o N O M

10

11

12

13
14

15

16
17
18
19
20
21
22
23

4.4.4

4.4.4.1

4.4.4.2

438

Miscellaneous Type Definitions

This section describes miscellaneous types and enumerations used by the tool interface.

ompt_callback_t

Summary

Pointers to tool callback functions with different type signatures are passed to the
ompt_set_callback runtime entry point and returned by the ompt_get_callback
runtime entry point. For convenience, these runtime entry points expect all type signatures to be
cast to a dummy type ompt_callback_t.

Format
C/C++
Itypedef void (*xompt_callback_t) (void);
C/C++

ompt_set_result_t

Summary

The ompt_result_t enumeration type corresponds to values that the ompt_set_callback,
ompt_set_trace_ompt and ompt_set_trace_native runtime entry points return.

Format
C/C++
typedef enum ompt_set_result_t {
ompt_set_error =0,
ompt_set_never =1,
ompt_set_impossible = 2,
ompt_set_sometimes = 3,
ompt_set_sometimes_paired = 4,
ompt_set_always =5
} ompt_set_result_t;
C/C++

OpenMP API — Version 5.0 November 2018

15
16
17
18
19
20

21

22
23

24

25

4.4.4.3

Description

Values of ompt_set_result_t, may indicate several possible outcomes. The
omp_set_error value indicates that the associated call failed. Otherwise, the value indicates
when an event may occur and, when appropriate, dispatching a callback event leads to the
invocation of the callback. The ompt_set_never value indicates that the event will never occur
or that the callback will never be invoked at runtime. The ompt_set_impossible value
indicates that the event may occur but that tracing of it is not possible. The
ompt_set_sometimes value indicates that the event may occur and, for an
implementation-defined subset of associated event occurrences, will be traced or the callback will
be invoked at runtime. The ompt_set_sometimes_paired value indicates the same result as
ompt_set_sometimes and, in addition, that a callback with an endpoint value of
ompt_scope_begin will be invoked if and only if the same callback with an endpoint value of
ompt_scope_end will also be invoked sometime in the future. The ompt_set_always value
indicates that, whenever an associated event occurs, it will be traced or the callback will be invoked.

Cross References

e Monitoring activity on the host with OMPT, see Section 4.2.4 on page 425.

e Tracing activity on target devices with OMPT, see Section 4.2.5 on page 427.

e ompt_set_callback runtime entry point, see Section 4.6.1.3 on page 500.

e ompt_set_trace_ompt runtime entry point, see Section 4.6.2.4 on page 521.

e ompt_set_trace_native runtime entry point, see Section 4.6.2.5 on page 522.

ompt_id t

Summary

The ompt_id_t type is used to provide various identifiers to tools.

Format

C/C++
Itypedef uint64_t ompt_id t;

C/C++

CHAPTER 4. OMPT INTERFACE 439

—_

D b wWN

10
11
12

13

14
15

16

17
18
19
20

21

22
23
24
25

4444

440

Description

When tracing asynchronous activity on devices, identifiers enable tools to correlate target regions
and operations that the host initiates with associated activities on a target device. In addition,
OMPT provides identifiers to refer to parallel regions and tasks that execute on a device. These
various identifiers are of type ompt_id_t.

ompt_id_none is defined as an instance of type ompt_id_t with the value 0.

Restrictions
The ompt_id_t type has the following restriction:

o Identifiers created on each device must be unique from the time an OpenMP implementation is
initialized until it is shut down. Identifiers for each target region and target operation instance
that the host device initiates must be unique over time on the host. Identifiers for parallel and task
region instances that execute on a device must be unique over time within that device.

ompt_data_t

Summary

The ompt_data_t type represents data associated with threads and with parallel and task regions.

Format
C/C++
typedef union ompt data t {
uint64_t value;
void xpir;
} ompt_data_t;
C/C++

Description

The ompt_data_t type represents data that is reserved for tool use and that is related to a thread
or to a parallel or task region. When an OpenMP implementation creates a thread or an instance of
a parallel or task region, it initializes the associated ompt_data_t object with the value
ompt_data_none, which is an instance of the type with the data and pointer fields equal to 0.

OpenMP API — Version 5.0 November 2018

1

10

11

12
13
14

15

16
17

18

19

4.4.4.5

4.4.4.6

4.4.4.7

ompt_device_t

Summary

The ompt_device_t opaque object type represents a device.

Format

C/C++
Itypedef void ompt_device_t;

C/C++

ompt_device_time_t

Summary

The ompt_device_time_t type represents raw device time values.

Format
C/C++
| typedef uint64_t ompt_device_time_t;
C/C++
Description

The ompt_device_time_t opaque object type represents raw device time values.
ompt_time_none refers to an unknown or unspecified time and is defined as an instance of type
ompt_device_time_t with the value O.

ompt_buffer t

Summary

The ompt_buffer_t opaque object type is a handle for a target buffer.

Format

C/C++
| typedef void ompt_buffer t;

C/C++

CHAPTER 4. OMPT INTERFACE 441

1

10
11
12
13

14

15
16
17
18

19
20

4.4.4.8

4.4.4.9

442

ompt_buffer_ cursor_t

Summary

The ompt_buffer_cursor_t opaque type is a handle for a position in a target buffer.

Format
C/C++
Itypedef uint64_t ompt_ buffer cursor t;
C/C++

ompt_dependence_t

Summary

The ompt_dependence_t type represents a task dependence.

Format

C/C++
typedef struct ompt_ dependence t {
ompt_data_t variable;
ompt_dependence_type_t dependence_type;
} ompt_dependence_t;

C/C++

Description

The ompt__dependence_t type is a structure that holds information about a depend clause. For
task dependences, the variable field points to the storage location of the dependence. For doacross
dependences, the variable field contains the value of a vector element that describes the
dependence. The dependence_type field indicates the type of the dependence.

Cross References
e ompt_dependence_type_t type, see Section 4.4.4.23 on page 450.

OpenMP API — Version 5.0 November 2018

1

O © 0o NO O,

11

12
13
14
15
16

17

18
19

20

21
22
23
24

4.4.4.10 ompt_thread_t

4.4.411

Summary

The ompt_thread_t enumeration type defines the valid thread type values.

Format
C/C++

typedef enum ompt_thread t ({
ompt_ thread initial =
ompt_thread worker
ompt_thread_other
ompt_thread_unknown =
} ompt_thread t;

~

nn
w» WK

~

~

C/C++

Description

Any initial thread has thread type ompt_thread_initial. All OpenMP threads that are not

initial threads have thread type ompt_thread_worker. A thread that an OpenMP

implementation uses but that does not execute user code has thread type ompt_thread_other.
Any thread that is created outside an OpenMP implementation and that is not an initial thread has

thread type ompt_thread unknown.

ompt_scope_endpoint_t

Summary

The ompt_scope_endpoint_t enumeration type defines valid scope endpoint values.

Format

C/C++
typedef enum ompt_ scope_endpoint_t {
ompt_scope_begin =
ompt_scope_end = 2
} ompt_scope_endpoint_t;

[}

C/C++

CHAPTER 4. OMPT INTERFACE

443

e BN N> NNG)|

10

11
12

13

14
15
16
17
18
19
20
21
22

23

24
25

4.4.4.12

4.4.4.13

44414

444

ompt_dispatch_t

Summary

The ompt_dispatch_t enumeration type defines the valid dispatch kind values.

Format

C/C++
typedef enum ompt_dispatch_t {
ompt_dispatch iteration =
ompt_dispatch_section = 2
} ompt_dispatch_t;

(X

C/C++

ompt_sync_region_t

Summary

The ompt_sync_region_t enumeration type defines the valid synchronization region kind
values.

Format
C/C++

typedef enum ompt_sync_region_t {
ompt_sync_region barrier =
ompt_sync_region_barrier implicit
ompt_sync_region_ barrier explicit
ompt_sync_region_barrier implementation
ompt_sync_region_taskwait
ompt_sync_region_taskgroup
ompt_sync_region_reduction =

~ 0~ 0~

~

[}
SJo b WD PR

~

} ompt_sync_region_t;

C/C++

ompt_target_data_op_t

Summary

The ompt_target_data_op_t enumeration type defines the valid target data operation values.

OpenMP API — Version 5.0 November 2018

—_

© 00N O~ WN

10

11
12

13

14
15
16
17
18
19
20
21
22

23

24
25

Format
C/C++

typedef enum ompt_target_data op_t {
ompt_target_data_ alloc =
ompt_target_data transfer to_device
ompt_target_data_ transfer from device
ompt_target_data_delete
ompt_target_data_ associate
ompt_target_data_ disassociate =

} ompt_ target_data op_ t;

~

~

~

]
ok WbhPR

~

C/C++

4.4.415 ompt_work_t

Summary

The ompt_work_t enumeration type defines the valid work type values.

Format
C/C++

typedef enum ompt_ work_t {
ompt_work_loop =
ompt_work_sections
ompt_work_single executor
ompt_work_ single_other
ompt work_workshare
ompt_work_ distribute
ompt_work_taskloop =

} ompt_work_t;

]
~

~

~

~

]
SJo s WM R

~

C/C++

44416 ompt_mutex_t

Summary

The ompt_mutex_t enumeration type defines the valid mutex kind values.

CHAPTER 4. OMPT INTERFACE

445

—_

O ©W oo ~NO O~ WN

—_

11

12

13
14

15

16
17
18
19
20
21
22
23
24
25

26

27
28

Format

typedef enum ompt_mutex t {
ompt_mutex_ lock
ompt_mutex test_lock
ompt_mutex nest_lock
ompt_mutex test_nest_lock
ompt_mutex_critical
ompt_mutex_ atomic
ompt_mutex_ordered

} ompt_mutex t;

4.4.417 ompt_native_mon_flag t

Summary

The ompt_native_mon_flag t enumeration type defines the valid native monitoring flag

values.

Format

ompt_native_driver
ompt_native_ runtime
ompt_native_overhead
ompt _native idleness

} ompt_native_mon_flag t;

44418 ompt_task_flag t

446

Summary

The ompt_task_flag t enumeration type defines valid task types.

OpenMP API — Version 5.0 November 2018

C/C++

C/C++

C/C++

typedef enum ompt_native_mon_flag t {
ompt_native data motion_explicit
ompt_native data motion_implicit
ompt_native_kernel_ invocation
ompt_native_kernel_execution

C/C++

SJouobd WD R
~

~

~

~

~

~

0x01,
0x02,
0x04,
0x08,
0x10,
0x20,
0x40,
0x80

—_

O N O~ WDN

11
12

13

14
15
16

17

18

19
20

21

22
23
24
25
26
27
28
29
30

4.4.4.19

Format

typedef enum ompt_task flag t ({

ompt_task_initial
ompt_task_ implicit
ompt_task_explicit
ompt_task_ target
ompt_task_undeferred
ompt_task_untied
ompt_task_final
ompt_task mergeable
ompt_task merged

} ompt_task_ flag t;

Description

C/C++

= 0x00000001,
0x00000002,
0x00000004,
0x00000008,
0x08000000,
0x10000000,
0x20000000,
0x40000000,
= 0x80000000

C/C++

The ompt_task_ flag t enumeration type defines valid task type values. The least significant

byte provides information about the general classification of the task. The other bits represent

properties of the task.

ompt_task_status_t

Summary

The ompt_task_status_t enumeration type indicates the reason that a task was switched

when it reached a task scheduling point.

Format

typedef enum ompt_task_ status_t ({

ompt_task_complete
ompt_task_yield
ompt_task_ cancel
ompt_task_detach
ompt_task_early fulfill
ompt_task_late fulfill
ompt_task_switch

} ompt_task_ status_t;

SJo b WD

C/C++

1,
4
4
4
4

4

C/C++

CHAPTER 4. OMPT INTERFACE

447

14

15
16

17

18
19
20
21
22
23

24

25
26

4.4.4.20

4.4.4.21

448

Description

The value ompt_task_complete of the ompt_task_status_t type indicates that the task
that encountered the task scheduling point completed execution of the associated structured-block
and an associated allow-completion-event was fulfilled. The value ompt_task_yield indicates
that the task encountered a taskyield construct. The value ompt_task_cancel indicates
that the task was canceled when it encountered an active cancellation point. The value
ompt_task_detach indicates that a task with detach clause completed execution of the
associated structured-block and is waiting for an allow-completion-event to be fulfilled. The value
ompt_task_ early fulfill indicates that the allow-completion-event of the task is fulfilled
before the task completed execution of the associated structured-block. The value
ompt_task_late_fulfill indicates that the allow-completion-event of the task is fulfilled
after the task completed execution of the associated structured-block. The value
ompt_task_switch is used for all other cases that a task was switched.

ompt_target_t

Summary

The ompt_target_t enumeration type defines the valid target type values.

Format

C/C++
typedef enum ompt_ target_t ({
ompt_target =
ompt_target_enter data
ompt_target_exit_data
ompt_target_update =
} ompt_target_t;

~

nu
[N OV S
~

~

C/C++

ompt_parallel_ flag t

Summary

The ompt_parallel_flag_ t enumeration type defines valid invoker values.

OpenMP API — Version 5.0 November 2018

—_

No ok~ wND

10

11
12
13

14
15
16

17
18

19
20

21

22
23

4.4.4.22

Format

C/C++
typedef enum ompt_parallel_ flag t {
ompt_parallel invoker program = 0x00000001,

ompt_parallel invoker runtime = 0x00000002,
ompt_parallel_ league = 0x40000000,
ompt_parallel_team = 0x80000000
} ompt_parallel_ flag t;
C/C++

Description

The ompt_parallel_ flag_ t enumeration type defines valid invoker values, which indicate
how an outlined function is invoked.

The value ompt_parallel_invoker_ program indicates that the outlined function
associated with implicit tasks for the region is invoked directly by the application on the master
thread for a parallel region.

The value ompt_parallel_invoker_ runtime indicates that the outlined function
associated with implicit tasks for the region is invoked by the runtime on the master thread for a
parallel region.

The value ompt_parallel_league indicates that the callback is invoked due to the creation of
a league of teams by a teams construct.

The value ompt_parallel_team indicates that the callback is invoked due to the creation of a
team of threads by a parallel construct.

ompt_target_map_flag t

Summary

The ompt_target_map_flag_t enumeration type defines the valid target map flag values.

CHAPTER 4. OMPT INTERFACE 449

—_

© 0O NO O~ WN

10

11

12
13

14

15
16
17
18
19
20
21
22

23

24
25

Format

ompt_target map_ flag to
ompt_target_map_ flag from
ompt_target_map flag alloc

} ompt_target map flag t;

4.4.4.23 ompt_dependence_type_t

Summary

The ompt_dependence_type_t enumeration type defines the valid task dependence type

values.

Format

ompt_dependence_type_in
ompt_dependence_type out
ompt_dependence_type_ inout

ompt_dependence_type_sink

} ompt_dependence_type_t;

4.4.4.24 ompt_cancel_flag t

450

Summary

The ompt_cancel_flag_t enumeration type defines the valid cancel flag values.

OpenMP API — Version 5.0 November 2018

C/C++

typedef enum ompt_target_map flag t {

ompt_target_map_ flag release
ompt_target_map_flag delete
ompt_target _map_ flag implicit

C/C++

C/C++

typedef enum ompt_dependence_type t {

ompt_dependence type mutexinoutset
ompt_dependence_type_source

C/C++

0x01,
0x02,
0x04,
0x08,
0x10,

= 0x20

ol WDNBKE

~

~

~

~

—_

O ©W 0o ~NO O WN

—_

11

12
13

14

15

16

17
18
19
20

21
22

Format

C/C++
typedef enum ompt_cancel flag t {
ompt_cancel_ parallel = 0x01,
ompt_cancel_sections = 0x02,
ompt_cancel_loop = 0x04,
ompt_cancel_taskgroup = 0x08,
ompt_cancel_activated = 0x10,
ompt_cancel_detected = 0x20,
ompt_cancel discarded_task = 0x40
} ompt_cancel flag t;
C/C++

4.4.4.25 ompt_hwid_t

Summary

The ompt_hwid_t opaque type is a handle for a hardware identifier for a target device.

Format
C/C++
Itypedef uint64_t ompt_hwid_t;
C/C++
Description

The ompt_hwid_t opaque type is a handle for a hardware identifier for a target device.
ompt_hwid_none is an instance of the type that refers to an unknown or unspecified hardware
identifier and that has the value 0. If no Awid is associated with an
ompt_record_abstract_t then the value of iwid is ompt_hwid_none.

Cross References

e ompt_record_abstract_t type, see Section 4.4.3.3 on page 436.

CHAPTER 4. OMPT INTERFACE 451

1 4.4.4.26 ompt_state_t

2 Summary

3 If the OMPT interface is in the active state then an OpenMP implementation must maintain thread

4 state information for each thread. The thread state maintained is an approximation of the

5 instantaneous state of a thread.

6 Format

C/C++

7 A thread state must be one of the values of the enumeration type ompt_state_t or an

8 implementation-defined state value of 512 or higher.

9 typedef enum ompt_state_t {
10 ompt_state_ work_serial = 0x000,
11 ompt_state_work_ parallel = 0x001,
12 ompt_state_work_ reduction = 0x002,
13
14 ompt_state wait_barrier = 0x010,
15 ompt_state _wait_barrier implicit parallel = 0x011,
16 ompt_state_wait_barrier implicit_workshare = 0x012,
17 ompt_state_wait_barrier implicit = 0x013,
18 ompt_state_wait_barrier explicit = 0x014,
19
20 ompt_state_wait_taskwait = 0x020,
21 ompt_state_wait_taskgroup = 0x021,
22
23 ompt_state_wait_mutex = 0x040,
24 ompt_state_wait_lock = 0x041,
25 ompt_state_wait_critical = 0x042,
26 ompt_state_wait_atomic = 0x043,
27 ompt_state_wait_ordered = 0x044,
28
29 ompt_state_wait_target = 0x080,
30 ompt_state_wait_target_map = 0x081,
31 ompt_state_wait_target_update = 0x082,
32
33 ompt_state_idle = 0x100,
34 ompt_state_overhead = 0x101,
35 ompt_state_undefined = 0x102
36 } ompt_state_t;

C/C++

OpenMP API — Version 5.0 November 2018

Description

A tool can query the OpenMP state of a thread at any time. If a tool queries the state of a thread that
is not associated with OpenMP then the implementation reports the state as
ompt_state_undefined.

The value ompt_state_work_serial indicates that the thread is executing code outside all
parallel regions.

The value ompt_state_work_parallel indicates that the thread is executing code within the
scope of a parallel region.

The value ompt_state_work_reduction indicates that the thread is combining partial
reduction results from threads in its team. An OpenMP implementation may never report a thread
in this state; a thread that is combining partial reduction results may have its state reported as
ompt_state_work parallel or ompt_state_overhead.

The value ompt_state_wait_barrier indicates that the thread is waiting at either an
implicit or explicit barrier. An implementation may never report a thread in this state; instead, a
thread may have its state reported as ompt_state_wait_barrier implicit or
ompt_state_wait_barrier explicit, as appropriate.

The value ompt_state_wait_barrier_implicit indicates that the thread is waiting at an
implicit barrier in a parallel region. An OpenMP implementation may report
ompt_state_wait_barrier for implicit barriers.

The value ompt_state_wait_barrier_implicit_parallel indicates that the thread is
waiting at an implicit barrier at the end of a parallel region. An OpenMP implementation may
report ompt_state_wait_barrier or ompt_state_wait barrier_ implicit for
these barriers.

The value ompt_state_wait_barrier_implicit_workshare indicates that the thread
is waiting at an implicit barrier at the end of a worksharing construct. An OpenMP implementation
may report ompt_state_wait_barrier or ompt_state wait_barrier_implicit
for these barriers.

The value ompt_state_wait_barrier_ explicit indicates that the thread is waiting in a
barrier region. An OpenMP implementation may report ompt_state_wait_barrier for
these barriers.

The value ompt_state_wait_taskwait indicates that the thread is waiting at a taskwait
construct.

The value ompt_state_wait_taskgroup indicates that the thread is waiting at the end of a
taskgroup construct.

The value ompt_state_wait_mutex indicates that the thread is waiting for a mutex of an
unspecified type.

CHAPTER 4. OMPT INTERFACE 453

o~N OO0 AW N =

11
12
13

14
15
16

17
18

19
20

21
22

23

24
25

26

27
28
29
30
31
32

4.4.4.27

454

The value ompt_state_wait_lock indicates that the thread is waiting for a lock or nestable
lock.

The value ompt_state_wait_critical indicates that the thread is waiting to enter a
critical region.

The value ompt_state_wait_atomic indicates that the thread is waiting to enter an atomic
region.

The value ompt_state_wait_ordered indicates that the thread is waiting to enter an
ordered region.

The value ompt_state_wait_target indicates that the thread is waiting for a target
region to complete.

The value ompt_state_wait_target_map indicates that the thread is waiting for a target
data mapping operation to complete. An implementation may report
ompt_state_wait_target for target data constructs.

The value ompt_state_wait_target_update indicates that the thread is waiting for a
target update operation to complete. An implementation may report
ompt_state_wait_target for target update constructs.

The value ompt_state_idle indicates that the thread is idle, that is, it is not part of an
OpenMP team.

The value ompt_state_overhead indicates that the thread is in the overhead state at any point
while executing within the OpenMP runtime, except while waiting at a synchronization point.

The value ompt_state_undefined indicates that the native thread is not created by the
OpenMP implementation.

ompt_frame_t

Summary

The ompt_ frame_t type describes procedure frame information for an OpenMP task.

Format
C/C++

typedef struct ompt_frame_ t ({
ompt_data_t exit_frame;
ompt_data_t enter_frame;
int exit_frame_flags;
int enter_frame_flags;

} ompt_frame_ t;

C/C++

OpenMP API — Version 5.0 November 2018

29

30
31

4.4.4.28

Description

Each ompt_frame_t object is associated with the task to which the procedure frames belong.
Each non-merged initial, implicit, explicit, or target task with one or more frames on the stack of a
native thread has an associated ompt_ frame_t object.

The exit_frame field of an ompt_ frame_t object contains information to identify the first
procedure frame executing the task region. The exit_frame for the ompt_frame_t object
associated with the initial task that is not nested inside any OpenMP construct is NULL.

The enter_frame field of an ompt_frame_t object contains information to identify the latest still
active procedure frame executing the task region before entering the OpenMP runtime
implementation or before executing a different task. If a task with frames on the stack has not been
suspended, the value of enter_frame for the ompt_frame_t object associated with the task may
contain NULL.

For exit_frame, the exit_frame_flags and, for enter_frame, the enter_frame_flags field indicates that
the provided frame information points to a runtime or an application frame address. The same
fields also specify the kind of information that is provided to identify the frame, These fields are a
disjunction of values in the ompt_frame_flag_t enumeration type.

The lifetime of an ompt_ frame_t object begins when a task is created and ends when the task is
destroyed. Tools should not assume that a frame structure remains at a constant location in memory
throughout the lifetime of the task. A pointer to an ompt_ frame_t object is passed to some
callbacks; a pointer to the ompt_ frame_t object of a task can also be retrieved by a tool at any
time, including in a signal handler, by invoking the ompt_get_task_info runtime entry point
(described in Section 4.6.1.14). A pointer to an ompt_ frame_t object that a tool retrieved is
valid as long as the tool does not pass back control to the OpenMP implementation.

v v
Note — A monitoring tool that uses asynchronous sampling can observe values of exit_frame and
enter_frame at inconvenient times. Tools must be prepared to handle ompt_ frame_t objects

observed just prior to when their field values will be set or cleared.
A A

ompt_frame_flag t

Summary

The ompt_frame_flag_ t enumeration type defines valid frame information flags.

CHAPTER 4. OMPT INTERFACE 455

—_

0N O~ WN

10
11
12
13

14
15
16
17
18

19

20
21

22

23

Format

C/C++
typedef enum ompt_frame flag t {
ompt_frame runtime = 0x00,
ompt_frame_application = 0x01,
ompt_frame_cfa = 0x10,
ompt_frame_framepointer = 0x20,
ompt_frame_stackaddress = 0x30
} ompt_frame flag t;
C/C++

Description

The value ompt_ frame_runtime of the ompt_frame_ flag_t type indicates that a frame
address is a procedure frame in the OpenMP runtime implementation. The value
ompt_frame_application of the ompt_frame_flag t type indicates that an exit frame
address is a procedure frame in the OpenMP application.

Higher order bits indicate the kind of provided information that is unique for the particular frame
pointer. The value ompt_ frame_cfa indicates that a frame address specifies a canonical frame
address. The value ompt_frame_framepointer indicates that a frame address provides the
value of the frame pointer register. The value ompt_frame_stackaddress indicates that a
frame address specifies a pointer address that is contained in the current stack frame.

4.4.4.29 ompt_wait_id t

Summary

The ompt_wait_id_t type describes wait identifiers for an OpenMP thread.

Format
C/C++
| typedef uint64_t ompt_wait_id t;
C/C++

OpenMP API — Version 5.0 November 2018

0 NOoO Ok~ WM

10
11

12

13
14

15

16

17
18

19

20
21
22
23
24

4.5

4.5.1
4.5.1.1

Description

Each thread maintains a wait identifier of type ompt_wait_id_t. When a task that a thread
executes is waiting for mutual exclusion, the wait identifier of the thread indicates the reason that
the thread is waiting. A wait identifier may represent a critical section name, a lock, a program
variable accessed in an atomic region, or a synchronization object that is internal to an OpenMP
implementation. When a thread is not in a wait state then the value of the wait identifier of the
thread is undefined.

ompt_wait_id none is defined as an instance of type ompt_wait_id_t with the value 0.

OMPT Tool Callback Signatures and Trace Records

The C/C++ header file (omp-tools.h) provides the definitions of the types that are specified
throughout this subsection.

Restrictions

e Tool callbacks may not use OpenMP directives or call any runtime library routines described in
Section 3.

Initialization and Finalization Callback Signature

ompt_initialize_t

Summary

A callback with type signature ompt_initialize_t initializes use of the OMPT interface.

Format
C/C++
typedef int (*ompt_initialize t) (
ompt_function_lookup_t lookup,
int initial_device_num,
ompt_data_t =tool_data
)i

C/C++

CHAPTER 4. OMPT INTERFACE 457

—_

N oD

10
11
12
13

14
15
16
17
18
19

20

21

22
23

24

25
26
27

4.5.1.2

458

Description

To use the OMPT interface, an implementation of ompt_start_tool must return a non-null
pointer to an ompt_start_tool_result_t structure that contains a non-null pointer to a tool
initializer with type signature ompt_initialize_t. An OpenMP implementation will call the
initializer after fully initializing itself but before beginning execution of any OpenMP construct or
completing execution of any environment routine invocation.

The initializer returns a non-zero value if it succeeds.

Description of Arguments

The lookup argument is a callback to an OpenMP runtime routine that must be used to obtain a
pointer to each runtime entry point in the OMPT interface. The initial_device_num argument
provides the value of omp_get_initial_device (). The tool_data argument is a pointer to
the fool_data field in the ompt_start_tool_result_t structure that ompt_start_tool
returned. The expected actions of an initializer are described in Section 4.2.3.

Cross References

e omp_get_initial_device routine, see Section 3.2.41 on page 376.
e ompt_start_tool function, see Section 4.2.1 on page 420.

e ompt_start_tool_result_t type, see Section 4.4.1 on page 433.
e ompt_data_t type, see Section 4.4.4.4 on page 440.

e ompt_function_lookup_t type, see Section 4.6.3 on page 531.

ompt_finalize_ t

Summary

A tool implements a finalizer with the type signature ompt_finalize_t to finalize the tool’s
use of the OMPT interface.

Format
C/C++

typedef void (*ompt_finalize t) (
ompt_data_t =*tool_data
);

C/C++

OpenMP API — Version 5.0 November 2018

a b~ wN

»

10
11
12

13

14
15
16
17
18
19

20
21
22

23

24

25
26

4.5.2

4.5.2.1

Description

To use the OMPT interface, an implementation ofompt_start_tool must return a non-null
pointer to an ompt_start_tool_result_t structure that contains a non-null pointer to a tool
finalizer with type signature ompt_finalize t. An OpenMP implementation will call the tool
finalizer after the last OMPT event as the OpenMP implementation shuts down.

Description of Arguments

The tool_data argument is a pointer to the tool_data field in the
ompt_start_tool_result_t structure returned by ompt_start_tool.

Cross References

e ompt_start_tool function, see Section 4.2.1 on page 420.

e ompt_start_tool_result_t type, see Section 4.4.1 on page 433.
e ompt_data_t type, see Section 4.4.4.4 on page 440.

Event Callback Signatures and Trace Records

This section describes the signatures of tool callback functions that an OMPT tool may register and
that are called during runtime of an OpenMP program. An implementation may also provide a trace
of events per device. Along with the callbacks, the following defines standard trace records. For the
trace records, tool data arguments are replaced by an ID, which must be initialized by the OpenMP
implementation. Each of parallel_id, task_id, and thread_id must be unique per target region. Tool
implementations of callbacks are not required to be async signal safe.

Cross References
e ompt_id_t type, see Section 4.4.4.3 on page 439.
e ompt_data_t type, see Section 4.4.4.4 on page 440.

ompt_callback_ thread begin_t

Summary

The ompt_callback_thread begin_t type is used for callbacks that are dispatched when
native threads are created.

CHAPTER 4. OMPT INTERFACE 459

a b~ wWwN

o)

10

11
12

13
14
15
16
17
18

19

20

21
22

4.5.2.2

460

Format

C/C++
typedef void (*ompt_callback_thread begin_t) (
ompt_thread t thread_type,
ompt_data_t =*thread_data
)i

C/C++

Trace Record
C/C++

typedef struct ompt_record thread begin_t {
ompt_thread_ t thread_type;
} ompt_record thread begin_t;

C/C++

Description of Arguments

The thread_type argument indicates the type of the new thread: initial, worker, or other. The
binding of the thread_data argument is the new thread.

Cross References

e parallel construct, see Section 2.6 on page 74.

e teams construct, see Section 2.7 on page 82.

o Initial task, see Section 2.10.5 on page 148.

e ompt_data_t type, see Section 4.4.4.4 on page 440.

e ompt_thread_t type, see Section 4.4.4.10 on page 443.

ompt_callback_thread end t

Summary

The ompt_callback_thread_end_t type is used for callbacks that are dispatched when
native threads are destroyed.

OpenMP API — Version 5.0 November 2018

w

13

14

15
16

17

18
19
20
21
22
23
24
25

4.5.2.3

Format

C/C++
typedef void (*ompt_callback_ thread end t) (
ompt_data_t =*thread_data

);
C/C++

Description of Arguments

The binding of the thread_data argument is the thread that will be destroyed.

Cross References
e parallel construct, see Section 2.6 on page 74.

e teams construct, see Section 2.7 on page 82.

Initial task, see Section 2.10.5 on page 148.

e ompt_record_ompt_t type, see Section 4.4.3.4 on page 436.

ompt_data_t type, see Section 4.4.4.4 on page 440.

ompt_callback_parallel_begin_t

Summary

The ompt_callback_parallel_begin_t type is used for callbacks that are dispatched
when parallel and teams regions start.

Format

C/C++
typedef void (xompt_callback parallel_begin_t) (
ompt_data_t =*encountering_task_data,
const ompt_frame_ t xencountering_task_frame,
ompt_data_t =*parallel_data,
unsigned int requested_parallelism,
int flags,
const void =*codeptr_ra

)i
C/C++

CHAPTER 4. OMPT INTERFACE 461

—_

0N O~ WN

10

11
12

13

14
15

16
17
18

19
20
21
22
23
24

25
26
27
28
29
30

462

Trace Record
C/C++

typedef struct ompt_record parallel begin_t {
ompt_id t encountering task_id;
ompt_id_t parallel_id;
unsigned int requested_parallelism;
int flags;
const void =*codeptr_ra;

} ompt_record parallel begin_t;

C/C++

Description of Arguments
The binding of the encountering_task_data argument is the encountering task.

The encountering_task_frame argument points to the frame object that is associated with the
encountering task.

The binding of the parallel_data argument is the parallel or teams region that is beginning.

The requested_parallelism argument indicates the number of threads or teams that the user
requested.

The flags argument indicates whether the code for the region is inlined into the application or
invoked by the runtime and also whether the region is a parallel or teams region. Valid values
for flags are a disjunction of elements in the enum ompt_parallel_flag t.

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a
runtime routine implements the region associated with a callback that has type signature
ompt_callback_parallel begin_t then codeptr_ra contains the return address of the call
to that runtime routine. If the implementation the region is inlined then codeptr_ra contains the
return address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

Cross References

parallel construct, see Section 2.6 on page 74.

e teams construct, see Section 2.7 on page 82.

e ompt_data_t type, see Section 4.4.4.4 on page 440.

e ompt_parallel_ flag_t type, see Section 4.4.4.21 on page 448.
e ompt_frame_t type, see Section 4.4.4.27 on page 454.

OpenMP API — Version 5.0 November 2018

1

w

- O © O N O

—_

12

13
14
15
16
17
18

19
20
21

22
23
24

25
26
27
28
29
30

4.5.2.4

ompt_callback_parallel_end_t

Summary

The ompt_callback_parallel_end_t type is used for callbacks that are dispatched when
parallel and teams regions ends.

Format

C/C++
typedef void (*ompt_ callback parallel end t) (
ompt_data_t =*parallel_data,
ompt_data_t =*encountering_task_data,
int flags,
const void =*codeptr_ra

)i
C/C++

Trace Record
C/C++

typedef struct ompt_record parallel _end t {
ompt_id_t parallel_id;
ompt_id_t encountering_task_id;
int flags;
const void =*codeptr_ra;
} ompt_record parallel_end t;

C/C++

Description of Arguments
The binding of the parallel_data argument is the parallel or teams region that is ending.
The binding of the encountering_task_data argument is the encountering task.

The flags argument indicates whether the execution of the region is inlined into the application or
invoked by the runtime and also whether it is a parallel or teams region. Values for flags are a
disjunction of elements in the enum ompt_parallel_flag t.

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a
runtime routine implements the region associated with a callback that has type signature
ompt_callback_parallel_end_t then codeptr_ra contains the return address of the call to
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the
return address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

CHAPTER 4. OMPT INTERFACE 463

—_

a A~ W N

10

11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27

4.5.2.5

464

Cross References

e parallel construct, see Section 2.6 on page 74.

e teams construct, see Section 2.7 on page 82.

e ompt_data_t type, see Section 4.4.4.4 on page 440.

e ompt_parallel_ flag_t type, see Section 4.4.4.21 on page 448.

ompt_callback_work_t

Summary

The ompt_callback_work_t type is used for callbacks that are dispatched when worksharing
regions, loop-related regions, and taskloop regions begin and end.

Format

C/C++

typedef void (*ompt_callback work_ t) (

ompt_work_t wstype,

ompt_scope_endpoint_t endpoint,

ompt_data_t =*parallel_data,

ompt_data_t =*task_data,

uinté64_t count,

const void =*codeptr_ra

C/C++

Trace Record
C/C++

typedef struct ompt_record work_t {
ompt_work_t wstype;
ompt_scope_endpoint_t endpoint;
ompt_id_t parallel_id;
ompt_id_t task_id;
uint64_t count;
const void =*codeptr_ra;

} ompt_ record work_ t;

C/C++

OpenMP API — Version 5.0 November 2018

21
22
23
24
25
26
27

28

29

30
31

4.5.2.6

Description of Arguments
The wstype argument indicates the kind of region.

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a
scope.

The binding of the parallel_data argument is the current parallel region.
The binding of the task_data argument is the current task.

The count argument is a measure of the quantity of work involved in the construct. For a
worksharing-loop construct, count represents the number of iterations of the loop. For a
taskloop construct, count represents the number of iterations in the iteration space, which may
be the result of collapsing several associated loops. For a sections construct, count represents
the number of sections. For a workshare construct, count represents the units of work, as defined
by the workshare construct. For a single construct, count is always 1. When the endpoint
argument signals the end of a scope, a count value of 0 indicates that the actual count value is not
available.

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a
runtime routine implements the region associated with a callback that has type signature
ompt_callback_work_t then codeptr_ra contains the return address of the call to that
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return
address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

Cross References

e Worksharing constructs, see Section 2.8 on page 86 and Section 2.9.2 on page 101.
e Loop-related constructs, see Section 2.9 on page 95.

e taskloop construct, see Section 2.10.2 on page 140.

e ompt_data_t type, see Section 4.4.4.4 on page 440.

e ompt_scope_endpoint_t type, see Section 4.4.4.11 on page 443.

e ompt_work_t type, see Section 4.4.4.15 on page 445.

ompt_callback_dispatch_t

Summary

The ompt_callback_dispatch_t type is used for callbacks that are dispatched when a
thread begins to execute a section or loop iteration.

CHAPTER 4. OMPT INTERFACE 465

—_

No ok~ WD

10
11
12
13
14

15
16

17
18

19

20
21
22
23
24
25

466

Format

C/C++
typedef void (*ompt_callback_dispatch_t) (
ompt_data_t =parallel_data,
ompt_data_t =*task_data,
ompt_dispatch_t kind,
ompt_data_t instance

C/C++

Trace Record

C/C++
typedef struct ompt_record dispatch t {
ompt_id_t parallel_id;
ompt_id_t task_id;
ompt_dispatch_t kind;
ompt_data_t instance;
} ompt_record dispatch_t;

C/C++

Description of Arguments
The binding of the parallel_data argument is the current parallel region.

The binding of the task_data argument is the implicit task that executes the structured block of the
parallel region.

The kind argument indicates whether a loop iteration or a section is being dispatched.

For a loop iteration, the instance.value argument contains the iteration variable value. For a
structured block in the sections construct, instance.ptr contains a code address that identifies
the structured block. In cases where a runtime routine implements the structured block associated
with this callback, instance.ptr contains the return address of the call to the runtime routine. In
cases where the implementation of the structured block is inlined, instance.ptr contains the return
address of the invocation of this callback.

OpenMP API — Version 5.0 November 2018

[2BNNNG) N L% A \¢]

11

12
13
14
15
16
17
18
19

20

21
22
23
24
25
26
27

4.5.2.7

Cross References

sections and section constructs, see Section 2.8.1 on page 86.
Worksharing-loop construct, see Section 2.9.2 on page 101.
taskloop construct, see Section 2.10.2 on page 140.
ompt_data_t type, see Section 4.4.4.4 on page 440.
ompt_dispatch_t type, see Section 4.4.4.12 on page 444.

ompt_callback_task_create_t

Summary

The ompt_callback_task_create_t type is used for callbacks that are dispatched when
task regions or initial tasks are generated.

Format

C/C++

typedef void (xompt_callback_task create_t) (

ompt_data_t =*encountering_task_data,

const ompt_frame_ t xencountering_task_frame,
ompt_data_t =*new_task_data,

int flags,

int has_dependences,

const void =*codeptr_ra

)i
C/C++

Trace Record

C/C++

typedef struct ompt_record task create_ t {

ompt_id_t encountering_task_id;
ompt_id_t new_task_id;
int flags;
int has_dependences;
const void =*codeptr_ra;
} ompt_record task_create_t;

C/C++

CHAPTER 4. OMPT INTERFACE 467

—_

o~N O OO~ WN

11
12
13
14
15

16
17
18
19
20
21

22

23

24
25
26

4.5.2.8

468

Description of Arguments

The binding of the encountering_task_data argument is the encountering task. This argument is
NULL for an initial task.

The encountering_task_frame argument points to the frame object associated with the encountering
task. This argument is NULL for an initial task.

The binding of the new_task_data argument is the generated task.

The flags argument indicates the kind of the task (initial, explicit, or target) that is generated.
Values for flags are a disjunction of elements in the ompt_task_flag_t enumeration type.

The has_dependences argument is true if the generated task has dependences and false otherwise.

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a
runtime routine implements the region associated with a callback that has type signature
ompt_callback_task_create_t then codeptr_ra contains the return address of the call to
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the
return address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

Cross References

e task construct, see Section 2.10.1 on page 135.

o Initial task, see Section 2.10.5 on page 148.

e ompt_data_t type, see Section 4.4.4.4 on page 440.

e ompt_task_ flag_t type, see Section 4.4.4.18 on page 446.
e ompt_frame_t type, see Section 4.4.4.27 on page 454.

ompt_callback_dependences_t

Summary

The ompt_callback_dependences_t type is used for callbacks that are related to
dependences and that are dispatched when new tasks are generated and when ordered constructs
are encountered.

OpenMP API — Version 5.0 November 2018

—_

(o226 BEF NGO I \V)

10
11
12

13
14

15
16

17
18

19
20

21
22
23
24
25

Format

C/C++
typedef void (*ompt_callback_ dependences_t) (
ompt_data_t =task_data,
const ompt_dependence_t =*deps,
int ndeps

)i
C/C++

Trace Record
C/C++

typedef struct ompt_ record dependences_t {
ompt_id_t task_id;
ompt_dependence_t dep;
int ndeps;

} ompt_record dependences_t;

C/C++

Description of Arguments
The binding of the task_data argument is the generated task.

The deps argument lists dependences of the new task or the dependence vector of the ordered
construct.

The ndeps argument specifies the length of the list passed by the deps argument. The memory for
deps is owned by the caller; the tool cannot rely on the data after the callback returns.

The performance monitor interface for tracing activity on target devices provides one record per
dependence.

Cross References

ordered construct, see Section 2.17.9 on page 250.

depend clause, see Section 2.17.11 on page 255.

ompt_data_t type, see Section 4.4.4.4 on page 440.

ompt_dependence_t type, see Section 4.4.4.9 on page 442.

CHAPTER 4. OMPT INTERFACE 469

© o NO®

10

11
12
13
14

15
16
17

18
19
20

21

22

23
24

4.5.2.9

4.5.2.10

470

ompt_callback_task_dependence_t

Summary

The ompt_callback_task_dependence_t type is used for callbacks that are dispatched
when unfulfilled task dependences are encountered.

Format

C/C++
typedef void (*ompt_callback task_dependence t) (
ompt_data_t =*src_task_data,
ompt_data_t =*sink_task_data
)i

C/C++

Trace Record

C/C++
typedef struct ompt_record task_dependence_t {
ompt_id_t src_task_id;
ompt_id_t sink_task_id;
} ompt_record task_dependence_t;

C/C++

Description of Arguments
The binding of the src_task_data argument is a running task with an outgoing dependence.

The binding of the sink_task_data argument is a task with an unsatisfied incoming dependence.

Cross References
e depend clause, see Section 2.17.11 on page 255.

e ompt_data_t type, see Section 4.4.4.4 on page 440.

ompt_callback_task_schedule_t

Summary

The ompt_callback_task_schedule_t type is used for callbacks that are dispatched when
task scheduling decisions are made.

OpenMP API — Version 5.0 November 2018

—_

(o2 I &) IEF NGO I \V)

10
11
12

13

14
15

16

17
18

19
20
21
22

23

24

25
26

4.5.2.11

Format

C/C++
typedef void (*ompt_callback_ task_schedule t) (
ompt_data_t =*prior_task_data,
ompt_task_status_t prior_task_status,
ompt_data_t =*next task_data
)i

C/C++

Trace Record

C/C++
typedef struct ompt_record task_ schedule t {

ompt_id_t prior_task_id;
ompt_task_status_t prior_task_status;
ompt_id_t next_task_id;

} ompt_record task_schedule_t;

C/C++

Description of Arguments

The prior_task_status argument indicates the status of the task that arrived at a task scheduling
point.

The binding of the prior_task_data argument is the task that arrived at the scheduling point.

The binding of the next_task_data argument is the task that is resumed at the scheduling point.
This argument is NULL if the callback is dispatched for a task-fulfill event.

Cross References

e Task scheduling, see Section 2.10.6 on page 149.

e ompt_data_t type, see Section 4.4.4.4 on page 440.

e ompt_task_ status_t type, see Section 4.4.4.19 on page 447.

ompt_callback_implicit_task_t

Summary

The ompt_callback_implicit_task_t type is used for callbacks that are dispatched when
initial tasks and implicit tasks are generated and completed.

CHAPTER 4. OMPT INTERFACE 471

—_

© oo NOoO O~ WN

10

11
12
13
14
15
16
17
18

19

20
21

22
23

24
25

26
27
28
29

30
31
32

33

472

Format

C/C++
typedef void (*ompt_callback_implicit_task t) (
ompt_scope_endpoint_t endpoint,
ompt_data_t =*parallel_data,
ompt_data_t =*task_data,
unsigned int actual_parallelism,
unsigned int index,
int flags

C/C++

Trace Record
C/C++

typedef struct ompt_record implicit_task_t {
ompt_scope_endpoint_t endpoint;
ompt_id_t parallel_id;
ompt_id_t task_id;
unsigned int actual_parallelism;
unsigned int index;
int flags;

} ompt_record implicit_task_t;

C/C++

Description of Arguments

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a
scope.

The binding of the parallel_data argument is the current parallel region. For the implicit-task-end
event, this argument is NULL.

The binding of the task_data argument is the implicit task that executes the structured block of the
parallel region.

The actual_parallelism argument indicates the number of threads in the parallel region or the
number of teams in the teams region. For initial tasks, that are not closely nested in a teams
construct, this argument is 1. For the implicit-task-end and the initial-task-end events, this
argument is 0.

The index argument indicates the thread number or team number of the calling thread, within the
team or league that is executing the parallel or teams region to which the implicit task region
binds. For initial tasks, that are not created by a teams construct, this argument is 1.

The flags argument indicates the kind of the task (initial or implicit).

OpenMP API — Version 5.0 November 2018

a A~ W N

10

11
12
13
14
15
16

17

18
19
20
21
22
23

4.5.2.12

Cross References

e parallel construct, see Section 2.6 on page 74.

e teams construct, see Section 2.7 on page 82.

e ompt_data_t type, see Section 4.4.4.4 on page 440.

e ompt_scope_endpoint_t enumeration type, see Section 4.4.4.11 on page 443.

ompt_callback_master_t

Summary

The ompt_callback_master_t type is used for callbacks that are dispatched when master
regions start and end.

Format
C/C++

typedef void (*ompt_ callback master_t) (
ompt_scope_endpoint_t endpoint,
ompt_data_t =*parallel_data,
ompt_data_t =*task_data,
const void =*codeptr_ra

)i
C/C++

Trace Record
C/C++

typedef struct ompt_record master t {
ompt_scope_endpoint_t endpoint;
ompt_id_t parallel_id;
ompt_id_t task_id;
const void =*codeptr_ra;

} ompt_record master_t;

C/C++

CHAPTER 4. OMPT INTERFACE 473

—_

- 0O0VWoo~NO®” OO~ WON

—_

12
13
14
15

16

17

18
19
20

21

22
23
24
25
26
27
28

4.5.2.13

474

Description of Arguments

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a
scope.

The binding of the parallel_data argument is the current parallel region.
The binding of the task_data argument is the encountering task.

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a
runtime routine implements the region associated with a callback that has type signature
ompt_callback_master_t then codeptr_ra contains the return address of the call to that
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return
address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

Cross References
e master construct, see Section 2.16 on page 221.
e ompt_data_t type, see Section 4.4.4.4 on page 440.

e ompt_scope_endpoint_t type, see Section 4.4.4.11 on page 443.

ompt_callback_sync_region_t

Summary

The ompt_callback_sync_region_t type is used for callbacks that are dispatched when
barrier regions, taskwait regions, and taskgroup regions begin and end and when waiting
begins and ends for them as well as for when reductions are performed.

Format
C/C++

typedef void (*ompt_callback_sync_region_t) (
ompt_sync_region_t kind,
ompt_scope_endpoint_t endpoint,
ompt_data_t =*parallel_data,
ompt_data_t =*task_data,
const void =*codeptr_ra

C/C++

OpenMP API — Version 5.0 November 2018

—_

O NO O~ WDN

10

11
12

13
14

15

16
17
18
19
20
21

22
23
24
25
26
27
28
29
30

Trace Record
C/C++

typedef struct ompt_record sync region_t {
ompt_sync_region_t kind;
ompt_scope_endpoint_t endpoint;
ompt_id_t parallel_id;
ompt_id_t task_id;
const void =xcodeptr_ra;

} ompt_record sync_region_t;

C/C++

Description of Arguments
The kind argument indicates the kind of synchronization.

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a
scope.

The binding of the parallel_data argument is the current parallel region. For the barrier-end event
at the end of a parallel region this argument is NULL.

The binding of the task_data argument is the current task.

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a
runtime routine implements the region associated with a callback that has type signature
ompt_callback_sync_region_t then codeptr_ra contains the return address of the call to
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the
return address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

Cross References

e barrier construct, see Section 2.17.2 on page 226.

o Implicit barriers, see Section 2.17.3 on page 228.

e taskwait construct, see Section 2.17.5 on page 230.

e taskgroup construct, see Section 2.17.6 on page 232.

e Properties common to all reduction clauses, see Section 2.19.5.1 on page 294.
e ompt_data_t type, see Section 4.4.4.4 on page 440.

e ompt_scope_endpoint_t type, see Section 4.4.4.11 on page 443.

e ompt_sync_region_t type, see Section 4.4.4.13 on page 444.

CHAPTER 4. OMPT INTERFACE 475

1

a b~ w N

10
11
12
13

14

15
16
17
18
19
20
21

22
23

24
25
26

27
28

4.5.2.14 ompt_callback_mutex_acquire_t

476

Summary

The ompt_callback_mutex_acquire_t type is used for callbacks that are dispatched when
locks are initialized, acquired and tested and when critical regions, atomic regions, and
ordered regions are begun.

Format
C/C++

typedef void (*ompt_callback _mutex_acquire_t) (
ompt_mutex_t kind,
unsigned int hint,
unsigned int impl,
ompt_wait_id_ t wait_id,
const void =*codeptr_ra

C/C++

Trace Record
C/C++

typedef struct ompt_record mutex_ acquire t {
ompt_mutex_t kind;
unsigned int hint;
unsigned int impl;
ompt_wait_id_t wait_id;
const void =*codeptr_ra;
} ompt_record mutex_ acquire t;

C/C++

Description of Arguments
The kind argument indicates the kind of the lock involved.

The hint argument indicates the hint that was provided when initializing an implementation of
mutual exclusion. If no hint is available when a thread initiates acquisition of mutual exclusion, the
runtime may supply omp_sync_hint_none as the value for hint.

The impl argument indicates the mechanism chosen by the runtime to implement the mutual
exclusion.

OpenMP API — Version 5.0 November 2018

No ok~ wND

10
11
12
13
14

15

16

17
18

19

20
21
22
23
24

4.5.2.15

The wait_id argument indicates the object being awaited.

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a

runtime routine implements the region associated with a callback that has type signature

ompt_callback_mutex_acquire_t then codeptr_ra contains the return address of the call
to that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the

return address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

Cross References

e critical construct, see Section 2.17.1 on page 223.

e atomic construct, see Section 2.17.7 on page 234.

e ordered construct, see Section 2.17.9 on page 250.

e omp_init_lock and omp_init_nest_lock routines, see Section 3.3.1 on page 384.
e ompt_mutex_t type, see Section 4.4.4.16 on page 445.

e ompt_wait_id_t type, see Section 4.4.4.29 on page 456.

ompt_callback mutex t

Summary

The ompt_callback_mutex_t type is used for callbacks that indicate important
synchronization events.

Format

C/C++
typedef void (*ompt_callback mutex_t) (
ompt_mutex t kind,
ompt_wait_id_t wait_id,
const void =*codeptr_ra

)
C/C++

CHAPTER 4. OMPT INTERFACE

477

—_

ook WD

10
11
12
13
14
15

16
17
18
19

20
21

22
23
24
25
26

478

Trace Record

C/C++

typedef struct ompt_record mutex_t {

ompt_mutex_t kind;

ompt_wait_id t wait_id;

const void =xcodeptr_ra;
} ompt_record mutex_t;

C/C++

Description of Arguments

The kind argument indicates the kind of mutual exclusion event.

The wait_id argument indicates the object being awaited.

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a
runtime routine implements the region associated with a callback that has type signature
ompt_callback_mutex_t then codeptr_ra contains the return address of the call to that
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return
address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

Cross References

critical construct, see Section 2.17.1 on page 223.
atomic construct, see Section 2.17.7 on page 234.
ordered construct, see Section 2.17.9 on page 250.

omp_destroy_lock and omp_destroy_nest_lock routines, see Section 3.3.3 on
page 387.

omp_set_lock and omp_set_nest_lock routines, see Section 3.3.4 on page 388.
omp_unset_lock and omp_unset_nest_lock routines, see Section 3.3.5 on page 390.
omp_test_lock and omp_test_nest_lock routines, see Section 3.3.6 on page 392.
ompt_mutex_t type, see Section 4.4.4.16 on page 445.

ompt_wait_id_t type, see Section 4.4.4.29 on page 456.

OpenMP API — Version 5.0 November 2018

1

» a s~ w0 N

- O O o

—_

12

13
14
15
16
17

18

19
20

21

22
23
24
25
26
27

4.5.2.16 ompt_callback_nest_lock_t

Summary

The ompt_callback_nest_lock_t type is used for callbacks that indicate that a thread that
owns a nested lock has performed an action related to the lock but has not relinquished ownership
of it.

Format

C/C++
typedef void (xompt_callback_nest_lock_t) (
ompt_scope_endpoint_t endpoint,
ompt_wait_id_t wait_id,
const void =*codeptr_ra

)i
C/C++

Trace Record
C/C++

typedef struct ompt_record nest_lock_t {
ompt_scope_endpoint_t endpoint;
ompt_wait_id t wait _id;
const void =*codeptr_ra;

} ompt_record nest_lock_t;

C/C++

Description of Arguments

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a
scope.

The wait_id argument indicates the object being awaited.

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a
runtime routine implements the region associated with a callback that has type signature
ompt_callback_nest_lock_t then codeptr_ra contains the return address of the call to that
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return
address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

CHAPTER 4. OMPT INTERFACE 479

—_

o g~ WD

11

12
13
14
15

16

17
18
19

20
21

22
23
24
25
26
27

4.5.2.17

480

Cross References

e omp_set_nest_lock routine, see Section 3.3.4 on page 388.

e omp_unset_nest_lock routine, see Section 3.3.5 on page 390.

e omp_test_nest_lock routine, see Section 3.3.6 on page 392.

e ompt_scope_endpoint_t type, see Section 4.4.4.11 on page 443.

e ompt_wait_id_t type, see Section 4.4.4.29 on page 456.

ompt_callback_flush t

Summary

The ompt_callback_flush_t type is used for callbacks that are dispatched when £1lush
constructs are encountered.

Format

C/C++
typedef void (xompt_callback_flush_t) (
ompt_data_t =*thread_data,
const void =*codeptr_ra

),
C/C++

Trace Record
C/C++
typedef struct ompt_record flush t {
const void =*codeptr_ra;
} ompt_record flush_t;

C/C++

Description of Arguments
The binding of the thread_data argument is the executing thread.

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a
runtime routine implements the region associated with a callback that has type signature
ompt_callback_f£flush_t then codeptr_ra contains the return address of the call to that
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return
address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

OpenMP API — Version 5.0 November 2018

10
11
12
13

14

15
16
17
18
19

20

21
22
23

24
25
26
27

4.5.2.18

Cross References
e flush construct, see Section 2.17.8 on page 242.

e ompt_data_t type, see Section 4.4.4.4 on page 440.

ompt_callback_cancel_t

Summary

The ompt_callback_cancel_t type is used for callbacks that are dispatched for cancellation,
cancel and discarded-task events.

Format

C/C++
typedef void (*ompt_callback_cancel_t) (
ompt_data_t =*task_data,
int flags,
const void =*codeptr_ra

);
C/C++

Trace Record
C/C++

typedef struct ompt_record cancel_t {
ompt_id_t task_id;
int flags;
const void =*codeptr_ra;

} ompt_record cancel_t;

C/C++

Description of Arguments

The binding of the task_data argument is the task that encounters a cancel construct, a
cancellation point construct, or a construct defined as having an implicit cancellation
point.

The flags argument, defined by the ompt_cancel_f£lag_t enumeration type, indicates whether
cancellation is activated by the current task, or detected as being activated by another task. The
construct that is being canceled is also described in the flags argument. When several constructs are
detected as being concurrently canceled, each corresponding bit in the argument will be set.

CHAPTER 4. OMPT INTERFACE 481

OO WD =

N

10

11
12

13

14
15
16
17
18
19
20

21

22
23
24
25

4.5.2.19

482

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a
runtime routine implements the region associated with a callback that has type signature
ompt_callback_cancel_t then codeptr_ra contains the return address of the call to that
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return
address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

Cross References

e omp_cancel_flag_t enumeration type, see Section 4.4.4.24 on page 450.

ompt_callback_device_initialize_t

Summary

The ompt_callback_device_initialize_t type is used for callbacks that initialize
device tracing interfaces.

Format
C/C++

typedef void (*ompt_callback_device_ initialize_t) (
int device_num,
const char =xtype,
ompt_device_t =xdevice,
ompt_function_lookup_t lookup,
const char xdocumentation

C/C++

Description

Registration of a callback with type signature ompt_callback_device_initialize_t for
the ompt_callback_device_initialize event enables asynchronous collection of a trace
for a device. The OpenMP implementation invokes this callback after OpenMP is initialized for the
device but before execution of any OpenMP construct is started on the device.

OpenMP API — Version 5.0 November 2018

19

20
21

22

23
24
25
26
27

28

29
30

Description of Arguments
The device_num argument identifies the logical device that is being initialized.

The type argument is a character string that indicates the type of the device. A device type string is
a semicolon separated character string that includes at a minimum the vendor and model name of
the device. These names may be followed by a semicolon-separated sequence of properties that
describe the hardware or software of the device.

The device argument is a pointer to an opaque object that represents the target device instance.
Functions in the device tracing interface use this pointer to identify the device that is being
addressed.

The lookup argument points to a runtime callback that a tool must use to obtain pointers to runtime
entry points in the device’s OMPT tracing interface. If a device does not support tracing then
lookup is NULL.

The documentation argument is a string that describes how to use any device-specific runtime entry
points that can be obtained through the lookup argument. This documentation string may be a
pointer to external documentation, or it may be inline descriptions that include names and type
signatures for any device-specific interfaces that are available through the lookup argument along
with descriptions of how to use these interface functions to control monitoring and analysis of
device traces.

Constraints on Arguments

The type and documentation arguments must be immutable strings that are defined for the lifetime
of a program execution.

Effect

A device initializer must fulfill several duties. First, the fype argument should be used to determine
if any special knowledge about the hardware and/or software of a device is employed. Second, the
lookup argument should be used to look up pointers to runtime entry points in the OMPT tracing
interface for the device. Finally, these runtime entry points should be used to set up tracing for the
device.

Initialization of tracing for a target device is described in Section 4.2.5 on page 427.

Cross References
e ompt_function_lookup_t type, see Section 4.6.3 on page 531.

CHAPTER 4. OMPT INTERFACE 483

1

N O

11

12
13
14
15
16
17
18

19
20

21

22

23
24

4.5.2.20 ompt_callback_device_ finalize_t

4.5.2.21

484

Summary

The ompt_callback_device_initialize_t type is used for callbacks that finalize device
tracing interfaces.

Format

C/C++
typedef void (*ompt_ callback device finalize t) (
int device_num

)i
C/C++

Description of Arguments

The device_num argument identifies the logical device that is being finalized.

Description

A registered callback with type signature ompt_callback_device_finalize_t is
dispatched for a device immediately prior to finalizing the device. Prior to dispatching a finalization
callback for a device on which tracing is active, the OpenMP implementation stops tracing on the
device and synchronously flushes all trace records for the device that have not yet been reported.
These trace records are flushed through one or more buffer completion callbacks with type
signature ompt_callback_buffer complete_t asneeded prior to the dispatch of the
callback with type signature ompt_callback_device_finalize_t.

Cross References
e ompt_callback buffer_complete_t callback type, see Section 4.5.2.24 on page 487.

ompt_callback_device_load t

Summary

The ompt_callback_device_load_t type is used for callbacks that the OpenMP runtime
invokes to indicate that it has just loaded code onto the specified device.

OpenMP API — Version 5.0 November 2018

—_

- O ©W 0O NO OB~ WN

—_

12
13

14
15

16
17

18

19
20

21

22
23

24
25

26

27
28

Format

C/C++
typedef void (*ompt_callback _device_load t) (
int device_num,
const char xfilename,
int64_t offset_in_file,
void *vma_in_file,
size_t bytes,
void xhost_addr,
void =xdevice_addr,
uint64_t module_id

)i
C/C++

Description of Arguments
The device_num argument specifies the device.

The filename argument indicates the name of a file in which the device code can be found. A NULL
filename indicates that the code is not available in a file in the file system.

The offset_in_file argument indicates an offset into filename at which the code can be found. A
value of -1 indicates that no offset is provided.

ompt_addr_none is defined as a pointer with the value ~0.

The vma_in_file argument indicates an virtual address in filename at which the code can be found.
A value of ompt_addr_none indicates that a virtual address in the file is not available.

The bytes argument indicates the size of the device code object in bytes.

The host_addr argument indicates the address at which a copy of the device code is available in
host memory. A value of ompt_addr_none indicates that a host code address is not available.

The device_addr argument indicates the address at which the device code has been loaded in device
memory. A value of ompt_addr_none indicates that a device code address is not available.

The module_id argument is an identifier that is associated with the device code object.

Cross References

e Device directives, see Section 2.12 on page 160.

CHAPTER 4. OMPT INTERFACE 485

© o NO®

10
11
12

13
14

15

16

17
18

19

20
21
22
23
24

4.5.2.22 ompt_callback_device_unload_t

Summary

The ompt_callback_device_unload_t type is used for callbacks that the OpenMP
runtime invokes to indicate that it is about to unload code from the specified device.

Format

C/C++
typedef void (*ompt_ callback _device_unload t) (
int device_num,
uint64_t module_id

)i
C/C++

Description of Arguments
The device_num argument specifies the device.

The module_id argument is an identifier that is associated with the device code object.

Cross References

e Device directives, see Section 2.12 on page 160.

4.5.2.23 ompt_callback_buffer request_t

Summary

The ompt_callback_buffer request_t type is used for callbacks that are dispatched
when a buffer to store event records for a device is requested.

Format

C/C++
typedef void (*ompt_callback_buffer request_t) (
int device_num,
ompt_buffer t =xxbuffer,
size_t =*bytes

)
C/C++

486 OpenMP API — Version 5.0 November 2018

(o2& BEE NGO I \V)

11
12

13

14

15
16
17

18

19
20
21
22
23
24
25

4.5.2.24

Description

A callback with type signature ompt_callback_buffer request_t requests a buffer to
store trace records for the specified device. A buffer request callback may set *bytes to O if it does
not provide a buffer. If a callback sets *byftes to 0, further recording of events for the device is
disabled until the next invocation of ompt_start_trace. This action causes the device to drop
future trace records until recording is restarted.

Description of Arguments
The device_num argument specifies the device.

The *buffer argument points to a buffer where device events may be recorded. The *bytes argument
indicates the length of that buffer.

Cross References
e ompt_buffer_ t type, see Section 4.4.4.7 on page 441.

ompt_callback buffer_complete_t

Summary

The ompt_callback_buffer complete_t type is used for callbacks that are dispatched
when devices will not record any more trace records in an event buffer and all records written to the
buffer are valid.

Format

C/C++
typedef void (xompt_callback buffer complete_t) (

int device_num,
ompt_buffer t xbuffer,
size_t bytes,

ompt_buffer cursor_t begin,
int buffer_owned

)i
C/C++

CHAPTER 4. OMPT INTERFACE 487

—_

o N o0 ~AWOWN

10

11
12

13

14
15

16
17
18
19

20
21
22

23

24

25
26

4.5.2.25

488

Description

A callback with type signature ompt_callback_buffer complete_t provides a buffer that
contains trace records for the specified device. Typically, a tool will iterate through the records in
the buffer and process them.

The OpenMP implementation makes these callbacks on a thread that is not an OpenMP master or
worker thread.

The callee may not delete the buffer if the buffer_owned argument is 0.

The buffer completion callback is not required to be async signal safe.

Description of Arguments
The device_num argument indicates the device which the buffer contains events.

The buffer argument is the address of a buffer that was previously allocated by a buffer request
callback.

The bytes argument indicates the full size of the buffer.

The begin argument is an opaque cursor that indicates the position of the beginning of the first
record in the buffer.

The buffer_owned argument is 1 if the data to which the buffer points can be deleted by the callback
and 0 otherwise. If multiple devices accumulate trace events into a single buffer, this callback may
be invoked with a pointer to one or more trace records in a shared buffer with buffer_owned = 0. In
this case, the callback may not delete the buffer.

Cross References
e ompt_buffer t type, see Section 4.4.4.7 on page 441.

e ompt_buffer cursor_t type, see Section 4.4.4.8 on page 442.

ompt_callback_target_data_op_t

Summary

The ompt_callback_target_data_op_t type is used for callbacks that are dispatched
when a thread maps data to a device.

OpenMP API — Version 5.0 November 2018

—_

0N O~ WM

11
12

13

14
15
16
17
18
19
20
21
22
23
24

25

26
27

28

29
30
31
32
33
34

Format

C/C++

typedef void (*ompt_callback target_data op t) (

ompt_id_t target id,

ompt_id_t host op_id,

ompt_target_data_op_t oprype,

void *src_addr,

int src_device_num,

void x*dest_addr,

int dest_device_num,

size_t bytes,

const void =*codeptr_ra

)i
C/C++

Trace Record
C/C++

typedef struct ompt_record target_data_op_t {
ompt_id_t host_op_id;
ompt_target_data op_t oprype;
void *src_addr;
int src_device_num;
void =dest_addr;
int dest_device_num;
size_t bytes;
ompt_device_time_t end time;
const void =*codeptr_ra;

} ompt_record target_data_op_t;

C/C++

Description

A registered ompt_callback_target_data_op callback is dispatched when device memory
is allocated or freed, as well as when data is copied to or from a device.

v v
Note — An OpenMP implementation may aggregate program variables and data operations upon
them. For instance, an OpenMP implementation may synthesize a composite to represent multiple
scalars and then allocate, free, or copy this composite as a whole rather than performing data
operations on each scalar individually. Thus, callbacks may not be dispatched as separate data

operations on each variable.
A A

CHAPTER 4. OMPT INTERFACE 489

OOW 00 N oo A~ O N =

—_ -
—_

—_ 1 a4
NO O WD

18
19
20
21

22

23

24
25

4.5.2.26

490

Description of Arguments

The host_op_id argument is a unique identifier for a data operations on a target device.
The optype argument indicates the kind of data mapping.

The src_addr argument indicates the data address before the operation, where applicable.

The src_device_num argument indicates the source device number for the data operation, where
applicable.

The dest_addr argument indicates the data address after the operation.
The dest_device_num argument indicates the destination device number for the data operation.

It is implementation defined whether in some operations src_addr or dest_addr may point to an
intermediate buffer.

The bytes argument indicates the size of data.

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a
runtime routine implements the region associated with a callback that has type signature
ompt_callback_target_data_op_t then codeptr_ra contains the return address of the call
to that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the
return address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

Cross References

e map clause, see Section 2.19.7.1 on page 315.

e ompt_id t type, see Section 4.4.4.3 on page 439.

e ompt_target_data_op_t type, see Section 4.4.4.14 on page 444.

ompt_callback_target_t

Summary

The ompt_callback_target_t type is used for callbacks that are dispatched when a thread
begins to execute a device construct.

OpenMP API — Version 5.0 November 2018

—_

© 00N O~ WN

10

11
12
13
14
15
16
17
18

19
20

21
22

23
24
25

26
27
28
29
30
31

Format

C/C++

typedef void (*ompt_callback_target_t)

)i

ompt_target_ t kind,
ompt_scope_endpoint_t endpoint,
int device_num,

ompt_data_t =*task_data,
ompt_id_t target id,

const void =xcodeptr_ra

C/C++

Trace Record

C/C++

typedef struct ompt_record target_t {

}

ompt_target_t kind;
ompt_scope_endpoint_t endpoint;
int device_num;

ompt_id_t task_id;

ompt_id_t target id;

const void =*codeptr_ra;
ompt_record_target_t;

C/C++

Description of Arguments

The kind argument indicates the kind of target region.

(

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a
scope.

The device_num argument indicates the id of the device that will execute the target region.

The binding of the task_data argument is the generating task.

The binding of the target_id argument is the target region.

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a

runtime routine implements the region associated with a callback that has type signature

ompt_callback_target_t then codeptr_ra contains the return address of the call to that

runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return

address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

CHAPTER 4. OMPT INTERFACE 491

o © 0o N o g H~ N =

—_

11

12

13
14

15

16
17
18
19
20
21
22
23
24

Cross References

target data construct, see Section 2.12.2 on page 161.

target enter data construct, see Section 2.12.3 on page 164.
target exit data construct, see Section 2.12.4 on page 166.
target construct, see Section 2.12.5 on page 170.

target update construct, see Section 2.12.6 on page 176.
ompt_id_t type, see Section 4.4.4.3 on page 439.

ompt_data_t type, see Section 4.4.4.4 on page 440.
ompt_scope_endpoint_t type, see Section 4.4.4.11 on page 443.
ompt_target_t type, see Section 4.4.4.20 on page 448.

4.5.2.27 ompt_callback_target_map t

Summary

The ompt_callback_target_map_t type is used for callbacks that are dispatched to indicate

data mapping relationships.

Format

492 O

C/C++

typedef void (xompt_callback_target_map_t) (

ompt_id_t target_id,
unsigned int nitems,

void xxhost_addr,

void xxdevice_addr,

size_t =*bytes,

unsigned int =*mapping_flags,
const void =*codeptr_ra

C/C++

penMP API — Version 5.0 November 2018

—_

O ©W oo NOO O hWDN

—_

11

12
13
14
15
16
17
18
19
20

21
22
23
24
25
26

27
28

29
30
31
32
33
34

Trace Record

C/C++

typedef struct ompt_record target map t {

ompt_id_t target id;

unsigned int nitems;

void *x*host_addr;

void *x*device_addr;

size_t xbytes;

unsigned int =*mapping flags;

const void =*codeptr_ra;
} ompt_record target_map t;

C/C++

Description

An instance of a target, target data,target enter data, or target exit data
construct may contain one or more map clauses. An OpenMP implementation may report the set of
mappings associated with map clauses for a construct with a single
ompt_callback_target_map callback to report the effect of all mappings or multiple
ompt_callback_target_map callbacks with each reporting a subset of the mappings.
Furthermore, an OpenMP implementation may omit mappings that it determines are unnecessary.
If an OpenMP implementation issues multiple ompt_callback_target_map callbacks, these
callbacks may be interleaved with ompt_callback_target_data_op callbacks used to
report data operations associated with the mappings.

Description of Arguments

The binding of the target_id argument is the target region.

The nitems argument indicates the number of data mappings that this callback reports.
The host_addr argument indicates an array of host data addresses.

The device_addr argument indicates an array of device data addresses.

The bytes argument indicates an array of size of data.

The mapping_flags argument indicates the kind of data mapping. Flags for a mapping include one
or more values specified by the ompt_target_map_flag_t type.

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a
runtime routine implements the region associated with a callback that has type signature
ompt_callback_target_map_t then codeptr_ra contains the return address of the call to
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the
return address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

CHAPTER 4. OMPT INTERFACE 493

—_

o N o 0 b~ W N

10

11
12

13

14
15
16
17
18

19

20
21
22
23
24
25

Cross References

e target data construct, see Section 2.12.2 on page 161.

e target enter data construct, see Section 2.12.3 on page 164.

e target exit data construct, see Section 2.12.4 on page 166.

e target construct, see Section 2.12.5 on page 170.

e ompt_id_t type, see Section 4.4.4.3 on page 439.

e ompt_target_map_flag_t type, see Section 4.4.4.22 on page 449.

e ompt_callback_target_data_op_t callback type, see Section 4.5.2.25 on page 488.

4.5.2.28 ompt_callback_target_submit_t

494

Summary

The ompt_callback_target_submit_t type is used for callbacks that are dispatched when
an initial task is created on a device.

Format

C/C++
typedef void (*ompt_callback_target_submit t) (
ompt_id_t target id,
ompt_id_t host op_id,
unsigned int requested_num_teams

)i
C/C++

Trace Record
C/C++

typedef struct ompt_ record target_kernel t ({
ompt_id_t host _op_id;
unsigned int requested_num_teams;
unsigned int granted_num_teams;
ompt_device_time_t end_time;

} ompt_record target_kernel t;

C/C++

OpenMP API — Version 5.0 November 2018

w

o~N O o A

11
12

13
14
15

16
17

18
19

20
21

22
23

24
25
26

27

28

29
30

4.5.2.29

Description

A thread dispatches a registered ompt_callback_target_submit callback on the host when
a target task creates an initial task on a target device.

Description of Arguments
The target_id argument is a unique identifier for the associated target region.
The host_op_id argument is a unique identifier for the initial task on the target device.

The requested_num_teams argument is the number of teams that the host requested to execute the
kernel. The actual number of teams that execute the kernel may be smaller and generally will not be
known until the kernel begins to execute on the device.

If ompt_set_trace_ompt has configured the device to trace kernel execution then the device
will log a ompt_record_target_kernel_t record in a trace. The fields in the record are as
follows:

e The host_op_id field contains a unique identifier that can be used to correlate a
ompt_record_target_kernel_t record with its associated
ompt_callback_target_submit callback on the host;

o The requested_num_teams field contains the number of teams that the host requested to execute
the kernel;

o The granted_num_teams field contains the number of teams that the device actually used to
execute the kernel;

e The time when the initial task began execution on the device is recorded in the time field of an
enclosing ompt_record_t structure; and

e The time when the initial task completed execution on the device is recorded in the end_time
field.

Cross References
e target construct, see Section 2.12.5 on page 170.

e ompt_id t type, see Section 4.4.4.3 on page 439.

ompt_callback_control_tool_t

Summary

The ompt_callback_control_tool_t type is used for callbacks that dispatch fool-control
events.

CHAPTER 4. OMPT INTERFACE 495

—_

NOoO O WD

10
11
12
13

14

15
16
17

18

19
20

21

22
23

24
25

26
27
28
29
30
31

496

Format

C/C++
typedef int (*ompt_callback_control tool_t) (

uint64_t command,
uint64_t modifier,
void =*arg,

const void =*codeptr_ra

C/C++

Trace Record

C/C++
typedef struct ompt_record control tool_t {

uint64_t command;
uint64_t modifier;
const void =*codeptr_ra;
} ompt_record control tool t;

C/C++

Description

Callbacks with type signature ompt_callback_control_tool_t may return any
non-negative value, which will be returned to the application as the return value of the
omp_control_tool call that triggered the callback.

Description of Arguments

The command argument passes a command from an application to a tool. Standard values for
command are defined by omp_control_tool_t in Section 3.8 on page 415.

The modifier argument passes a command modifier from an application to a tool.

The command and modifier arguments may have tool-specific values. Tools must ignore command
values that they are not designed to handle.

The arg argument is a void pointer that enables a tool and an application to exchange arbitrary state.
The arg argument may be NULL.

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a
runtime routine implements the region associated with a callback that has type signature
ompt_callback_control_tool_t then codeptr_ra contains the return address of the call to
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the
return address of the invocation of the callback. If attribution to source code is impossible or
inappropriate, codeptr_ra may be NULL.

OpenMP API — Version 5.0 November 2018

4.6

(&)

o N

11
12

13
14
15
16

17
18

19
20

21
22

23

24 4.6.1

25
26
27
28

Constraints on Arguments

Tool-specific values for command must be > 64.

Cross References

e omp_control_tool_t enumeration type, see Section 3.8 on page 415.

OMPT Runtime Entry Points for Tools

OMPT supports two principal sets of runtime entry points for tools. One set of runtime entry points
enables a tool to register callbacks for OpenMP events and to inspect the state of an OpenMP thread
while executing in a tool callback or a signal handler. The second set of runtime entry points
enables a tool to trace activities on a device. When directed by the tracing interface, an OpenMP
implementation will trace activities on a device, collect buffers of trace records, and invoke
callbacks on the host to process these records. OMPT runtime entry points should not be global
symbols since tools cannot rely on the visibility of such symbols.

OMPT also supports runtime entry points for two classes of lookup routines. The first class of
lookup routines contains a single member: a routine that returns runtime entry points in the OMPT
callback interface. The second class of lookup routines includes a unique lookup routine for each
kind of device that can return runtime entry points in a device’s OMPT tracing interface.

The C/C++ header file (omp-tools.h) provides the definitions of the types that are specified
throughout this subsection.

Restrictions
OMPT runtime entry points have the following restrictions:

e OMPT runtime entry points must not be called from a signal handler on a native thread before a
native-thread-begin or after a native-thread-end event.

e OMPT device runtime entry points must not be called after a device-finalize event for that device.

Entry Points in the OMPT Callback Interface

Entry points in the OMPT callback interface enable a tool to register callbacks for OpenMP events
and to inspect the state of an OpenMP thread while executing in a tool callback or a signal handler.
Pointers to these runtime entry points are obtained through the lookup function that is provided
through the OMPT initializer.

CHAPTER 4. OMPT INTERFACE 497

1

(2] a b~ w N

—_
- O © 0 N

12

13
14
15
16
17

18
19
20

21
22
23

24

25
26
27
28

29
30

31
32

4.6.1.1

498

ompt_enumerate_states_t

Summary

The ompt_enumerate_states_t type is the type signature of the
ompt_enumerate_states runtime entry point, which enumerates the thread states that an
OpenMP implementation supports.

Format
C/C++

typedef int (*ompt_enumerate_states_t) (
int current_state,
int =xnext_state,
const char =xxnext_state_name

)i
C/C++

Description

An OpenMP implementation may support only a subset of the states defined by the
ompt_state_t enumeration type. An OpenMP implementation may also support
implementation-specific states. The ompt_enumerate_states runtime entry point, which has
type signature ompt_enumerate_states_t, enables a tool to enumerate the supported thread
states.

When a supported thread state is passed as current_state, the runtime entry point assigns the next
thread state in the enumeration to the variable passed by reference in next_state and assigns the
name associated with that state to the character pointer passed by reference in next_state_name.

Whenever one or more states are left in the enumeration, the ompt_enumerate_states
runtime entry point returns 1. When the last state in the enumeration is passed as current_state,
ompt_enumerate_states returns 0, which indicates that the enumeration is complete.

Description of Arguments

The current_state argument must be a thread state that the OpenMP implementation supports. To
begin enumerating the supported states, a tool should pass ompt_state_undefined as
current_state. Subsequent invocations of ompt_enumerate_states should pass the value
assigned to the variable passed by reference in next_state to the previous call.

The value ompt_state_undefined is reserved to indicate an invalid thread state.
ompt_state_undefined is defined as an integer with the value 0.

The next_state argument is a pointer to an integer in which ompt_enumerate_states returns
the value of the next state in the enumeration.

OpenMP API — Version 5.0 November 2018

—_

10
11
12

13

14
15
16
17
18

19

20
21
22
23

24
25
26
27

4.6.1.2

The next_state_name argument is a pointer to a character string pointer through which
ompt_enumerate_states returns a string that describes the next state.

Constraints on Arguments

Any string returned through the next_state_name argument must be immutable and defined for the
lifetime of a program execution.

Cross References
e ompt_state_t type, see Section 4.4.4.26 on page 452.

ompt_enumerate_mutex_impls_t

Summary

The ompt_enumerate_mutex_impls_t type is the type signature of the
ompt_enumerate_mutex_impls runtime entry point, which enumerates the kinds of mutual
exclusion implementations that an OpenMP implementation employs.

Format
C/C++

typedef int (*ompt_enumerate_mutex_impls_t) (
int current_impl,
int xnext_impl,
const char *xnext_impl_name

)i
C/C++

Description

Mutual exclusion for locks, critiecal sections, and atomic regions may be implemented in
several ways. The ompt_enumerate_mutex_impls runtime entry point, which has type
signature ompt_enumerate_mutex_impls_t, enables a tool to enumerate the supported
mutual exclusion implementations.

When a supported mutex implementation is passed as current_impl, the runtime entry point assigns
the next mutex implementation in the enumeration to the variable passed by reference in next_impl
and assigns the name associated with that mutex implementation to the character pointer passed by
reference in next_impl_name.

CHAPTER 4. OMPT INTERFACE 499

A ON =

o N O

11
12

13
14

15
16
17

18

19
20

21
22

23

24

25
26
27

4.6.1.3

500

Whenever one or more mutex implementations are left in the enumeration, the
ompt_enumerate_mutex_impls runtime entry point returns 1. When the last mutex
implementation in the enumeration is passed as current_impl, the runtime entry point returns 0,
which indicates that the enumeration is complete.

Description of Arguments

The current_impl argument must be a mutex implementation that an OpenMP implementation
supports. To begin enumerating the supported mutex implementations, a tool should pass
ompt_mutex_impl_none as current_impl. Subsequent invocations of
ompt_enumerate_mutex impls should pass the value assigned to the variable passed in
next_impl to the previous call.

The value ompt_mutex_impl_none is reserved to indicate an invalid mutex implementation.
ompt_mutex_impl_none is defined as an integer with the value 0.

The next_impl argument is a pointer to an integer in which ompt_enumerate_mutex_impls
returns the value of the next mutex implementation in the enumeration.

The next_impl_name argument is a pointer to a character string pointer in which
ompt_enumerate_mutex_impls returns a string that describes the next mutex
implementation.

Constraints on Arguments

Any string returned through the next_impl_name argument must be immutable and defined for the
lifetime of a program execution.

Cross References

e ompt_mutex_t type, see Section 4.4.4.16 on page 445.

ompt_set_callback_t

Summary

The ompt_set_callback_t type is the type signature of the ompt_set_callback runtime
entry point, which registers a pointer to a tool callback that an OpenMP implementation invokes
when a host OpenMP event occurs.

OpenMP API — Version 5.0 November 2018

—_

(6, “NEGS I V)

- O wWwoo~N O

—_ -

12
13

14
15
16

17

18
19

20
21
22

23
24
25
26
27
28

Format
C/C++

typedef ompt_set result t (xompt_set callback t) (
ompt_callbacks_t event,
ompt_callback_t callback

)
C/C++

Description

OpenMP implementations can use callbacks to indicate the occurrence of events during the
execution of an OpenMP program. The ompt_set_callback runtime entry point, which has
type signature ompt_set_callback_t, registers a callback for an OpenMP event on the
current device, The return value of ompt_set_callback indicates the outcome of registering
the callback.

Description of Arguments
The event argument indicates the event for which the callback is being registered.

The callback argument is a tool callback function. If callback is NULL then callbacks associated
with event are disabled. If callbacks are successfully disabled then ompt_set_always is
returned.

Constraints on Arguments

When a tool registers a callback for an event, the type signature for the callback must match the
type signature appropriate for the event.

Restrictions
The ompt_set_callback runtime entry point has the following restriction:

o The entry point must not return ompt_set_impossible.

Cross References

e Monitoring activity on the host with OMPT, see Section 4.2.4 on page 425.

e ompt_callbacks_t enumeration type, see Section 4.4.2 on page 434.

e ompt_callback_t type, see Section 4.4.4.1 on page 438.

e ompt_set_result_t type, see Section 4.4.4.2 on page 438.

e ompt_get_callback_t host callback type signature, see Section 4.6.1.4 on page 502.

CHAPTER 4. OMPT INTERFACE 501

1

D a b~ w N

o © o N

11

12
13
14
15
16
17
18

19
20
21

22
23

24
25
26
27

4.6.1.4

502

ompt_get_callback_t

Summary

The ompt_get_callback_t type is the type signature of the ompt_get_callback runtime
entry point, which retrieves a pointer to a registered tool callback routine (if any) that an OpenMP
implementation invokes when a host OpenMP event occurs.

Format

C/C++
typedef int (xompt_get_callback_t) (
ompt_callbacks_t event,
ompt_callback_t =xcallback

);
C/C++

Description

The ompt_get_callback runtime entry point, which has type signature
ompt_get_callback_t, retrieves a pointer to the tool callback that an OpenMP
implementation may invoke when a host OpenMP event occurs. If a non-null tool callback is
registered for the specified event, the pointer to the tool callback is assigned to the variable passed
by reference in callback and ompt__get_callback returns 1; otherwise, it returns 0. If
ompt_get_callback returns 0, the value of the variable passed by reference as callback is
undefined.

Description of Arguments
The event argument indicates the event for which the callback would be invoked.

The callback argument returns a pointer to the callback associated with event.

Constraints on Arguments

The callback argument must be a reference to a variable of specified type.

Cross References

e ompt_callbacks_t enumeration type, see Section 4.4.2 on page 434.

e ompt_callback_t type, see Section 4.4.4.1 on page 438.

e ompt_set_callback_t type signature, see Section 4.6.1.3 on page 500.

OpenMP API — Version 5.0 November 2018

a b~ w D

10

11
12
13
14
15
16

17

18
19

20

21

22
23
24

4.6.1.5

4.6.1.6

ompt_get_thread_data_t

Summary

The ompt_get_thread_data_t type is the type signature of the
ompt_get_thread_data runtime entry point, which returns the address of the thread data
object for the current thread.

Format
C/C++

I typedef ompt_data_t * (xompt_get_thread data_t) (void);
C/C++

Binding

The binding thread for the ompt_get_thread_data runtime entry point is the current thread.

Description

Each OpenMP thread can have an associated thread data object of type ompt_data_t. The
ompt_get_thread_data runtime entry point, which has type signature
ompt_get_thread_data_t, retrieves a pointer to the thread data object, if any, that is
associated with the current thread. A tool may use a pointer to an OpenMP thread’s data object that
ompt_get_thread_data retrieves to inspect or to modify the value of the data object. When
an OpenMP thread is created, its data object is initialized with value ompt_data_none.

This runtime entry point is async signal safe.

Cross References
e ompt_data_t type, see Section 4.4.4.4 on page 440.

ompt_get_num_ procs_t

Summary

The ompt_get_num_procs_t type is the type signature of the ompt_get_num procs
runtime entry point, which returns the number of processors currently available to the execution
environment on the host device.

CHAPTER 4. OMPT INTERFACE 503

(&)

_
- O wOWooN O

-
\V]

13

14

15
16
17

18

19

20

21
22

4.6.1.7

504

Format
C/C++

Itypedef int (*ompt_get_num procs_t) (void);

C/C++

Binding

The binding thread set for the ompt_get_num_procs runtime entry point is all threads on the
host device.

Description

The ompt_get_num_procs runtime entry point, which has type signature
ompt_get_num procs_t, returns the number of processors that are available on the host
device at the time the routine is called. This value may change between the time that it is
determined and the time that it is read in the calling context due to system actions outside the
control of the OpenMP implementation.

This runtime entry point is async signal safe.

ompt_get_num_places_t

Summary

The ompt_get_num _places_t type is the type signature of the ompt_get_num places
runtime entry point, which returns the number of places currently available to the execution
environment in the place list.

Format
C/C++
Itypedef int (*ompt_get_num places_t) (void);
C/C++
Binding

The binding thread set for the ompt__get_num_ places runtime entry point is all threads on a
device.

OpenMP API — Version 5.0 November 2018

D O~ W

~

10

11

12
13
14

15

16
17
18
19
20

21

22
23

24

25
26
27
28

4.6.1.8

Description

The ompt_get_num_places runtime entry point, which has type signature
ompt_get_num_places_t, returns the number of places in the place list. This value is
equivalent to the number of places in the place-partition-var ICV in the execution environment of
the initial task.

This runtime entry point is async signal safe.

Cross References
e place-partition-var ICV, see Section 2.5 on page 63.

e OMP_PLACES environment variable, see Section 6.5 on page 605.

ompt_get_place_proc_ids_t

Summary

The ompt_get_place_procs_ids_t type is the type signature of the
ompt_get_num_place_procs_ids runtime entry point, which returns the numerical
identifiers of the processors that are available to the execution environment in the specified place.

Format
C/C++
typedef int (xompt_get_place_proc_ids_t) (
int place_num,
int ids_size,
int *ids
)i
C/C++

Binding

The binding thread set for the ompt_get_place_proc_ids runtime entry point is all threads
on a device.

Description

The ompt_get_place_proc_ids runtime entry point, which has type signature
ompt_get_place_proc_ids_t, returns the numerical identifiers of each processor that is
associated with the specified place. These numerical identifiers are non-negative and their meaning
is implementation defined.

CHAPTER 4. OMPT INTERFACE 505

—_

a AW DN

- O ©OWooN O

—_

12

13

14
15
16

17

18

19
20

21

22
23
24
25

26

4.6.1.9

506

Description of Arguments
The place_num argument specifies the place that is being queried.

The ids argument is an array in which the routine can return a vector of processor identifiers in the
specified place.

The ids_size argument indicates the size of the result array that is specified by ids.

Effect

If the ids array of size ids_size is large enough to contain all identifiers then they are returned in ids
and their order in the array is implementation defined. Otherwise, if the ids array is too small the
values in ids when the function returns are unspecified. The routine always returns the number of
numerical identifiers of the processors that are available to the execution environment in the
specified place.

ompt_get_place_num_t

Summary

The ompt_get_place_num_t type is the type signature of the ompt_get_place_num
runtime entry point, which returns the place number of the place to which the current thread is
bound.

Format
C/C++
| typedef int (xompt_get_place_num t) (void);
C/C++
Binding

The binding thread set of the ompt_get_place_num runtime entry point is the current thread.

Description

When the current thread is bound to a place, ompt_get_place_num returns the place number
associated with the thread. The returned value is between 0 and one less than the value returned by
ompt_get_num_places, inclusive. When the current thread is not bound to a place, the routine
returns -1.

This runtime entry point is async signal safe.

OpenMP API — Version 5.0 November 2018

1

a b~ w D

»

o © 00 N

11

12
13

14

15
16
17

18

19
20

21
22

23

24
25
26
27
28

4.6.1.10 ompt_get_partition_place_nums_t

Summary

The ompt_get_partition_place_nums_t type is the type signature of the
ompt_get_partition_place_nums runtime entry point, which returns a list of place
numbers that correspond to the places in the place-partition-var ICV of the innermost implicit task.

Format
C/C++

typedef int (xompt_get_ partition_place_nums_t) (
int place_nums_size,
int =*place_nums

)i
C/C++

Binding
The binding task set for the ompt_get_partition_place_nums runtime entry point is the
current implicit task.

Description

The ompt_get_partition_place_nums runtime entry point, which has type signature
ompt_get_partition_place_nums_t, returns a list of place numbers that correspond to
the places in the place-partition-var ICV of the innermost implicit task.

This runtime entry point is async signal safe.

Description of Arguments
The place_nums argument is an array in which the routine can return a vector of place identifiers.

The place_nums_size argument indicates the size of the result array that the place_nums argument
specifies.

Effect

If the place_nums array of size place_nums_size is large enough to contain all identifiers then they
are returned in place_nums and their order in the array is implementation defined. Otherwise, if the
place_nums array is too small, the values in place_nums when the function returns are unspecified.
The routine always returns the number of places in the place-partition-var ICV of the innermost
implicit task.

CHAPTER 4. OMPT INTERFACE 507

10
11

12

13
14
15
16

17

18

19

20
21

4.6.1.11

4.6.1.12

508

Cross References
e place-partition-var ICV, see Section 2.5 on page 63.

e OMP_PLACES environment variable, see Section 6.5 on page 605.

ompt_get_proc_id t

Summary

The ompt_get_proc_id_t type is the type signature of the ompt_get_proc_id runtime
entry point, which returns the numerical identifier of the processor of the current thread.

Format
C/C++
Itypedef int (xompt_get_proc_id t) (void);
C/C++
Binding

The binding thread set for the ompt_get_proc_id runtime entry point is the current thread.

Description

The ompt_get_proc_id runtime entry point, which has type signature
ompt_get_proc_id_t, returns the numerical identifier of the processor of the current thread.
A defined numerical identifier is non-negative and its meaning is implementation defined. A
negative number indicates a failure to retrieve the numerical identifier.

This runtime entry point is async signal safe.

ompt_get_state_t

Summary

The ompt_get_state_t type is the type signature of the ompt_get_state runtime entry
point, which returns the state and the wait identifier of the current thread.

OpenMP API — Version 5.0 November 2018

w

10
11
12
13
14

15
16
17

18

19

20
21
22
23

24

25
26

Format
C/C++
typedef int (xompt_get_state_t) (
ompt_wait_id t xwait_id
)i
C/C++

Binding

The binding thread for the ompt_get_state runtime entry point is the current thread.

Description

Each OpenMP thread has an associated state and a wait identifier. If a thread’s state indicates that
the thread is waiting for mutual exclusion then its wait identifier contains an opaque handle that
indicates the data object upon which the thread is waiting. The ompt_get_state runtime entry
point, which has type signature ompt_get_state_t, retrieves the state and wait identifier of the
current thread. The returned value may be any one of the states predefined by ompt_state_t or
a value that represents any implementation specific state. The tool may obtain a string
representation for each state with the ompt_enumerate_states function.

If the returned state indicates that the thread is waiting for a lock, nest lock, critical section, atomic
region, or ordered region then the value of the thread’s wait identifier is assigned to a non-null wait
identifier passed as the wait_id argument.

This runtime entry point is async signal safe.

Description of Arguments

The wait_id argument is a pointer to an opaque handle that is available to receive the value of the
thread’s wait identifier. If wait_id is not NULL then the entry point assigns the value of the thread’s
wait identifier to the object to which wait_id points. If the returned state is not one of the specified
wait states then the value of opaque object to which wait_id points is undefined after the call.

Constraints on Arguments

The argument passed to the entry point must be a reference to a variable of the specified type or
NULL.

CHAPTER 4. OMPT INTERFACE 509

—_

(3} £ NGO R o)

© ooN O

10

11
12
13
14
15

16

17
18
19
20
21
22

23
24
25

26

4.6.1.13

510

Cross References
e ompt_state_t type, see Section 4.4.4.26 on page 452.
e ompt_wait_id_t type, see Section 4.4.4.29 on page 456.

e ompt_enumerate_states_t type, see Section 4.6.1.1 on page 498.

ompt_get_parallel_ info_t

Summary

The ompt_get_parallel_ info_t type is the type signature of the
ompt_get_parallel_info runtime entry point, which returns information about the parallel
region, if any, at the specified ancestor level for the current execution context.

Format

C/C++
typedef int (*ompt_get_parallel_info_t) (
int ancestor_level,
ompt_data_t =*x*parallel data,
I int xteam_size
) 14

C/C++

Description

During execution, an OpenMP program may employ nested parallel regions. The
ompt_get_parallel_info runtime entry point known, which has type signature
ompt_get_parallel_info_t, retrieves information, about the current parallel region and any
enclosing parallel regions for the current execution context. The entry point returns 2 if there is a
parallel region at the specified ancestor level and the information is available, 1 if there is a parallel
region at the specified ancestor level but the information is currently unavailable, and 0 otherwise.

A tool may use the pointer to a parallel region’s data object that it obtains from this runtime entry
point to inspect or to modify the value of the data object. When a parallel region is created, its data
object will be initialized with the value ompt_data_none.

This runtime entry point is async signal safe.

OpenMP API — Version 5.0 November 2018

O© o NOOOr WN =

11
12
13

14
15

16

17
18

19
20

21
22

23

24
25

26
27

Between a parallel-begin event and an implicit-task-begin event, a call to
ompt_get_parallel_info (0, ...) may return information about the outer parallel team,
the new parallel team or an inconsistent state.

If a thread is in the state ompt_state_wait_barrier_implicit_parallel thenacallto
ompt_get_parallel_info may return a pointer to a copy of the specified parallel region’s
parallel_data rather than a pointer to the data word for the region itself. This convention enables
the master thread for a parallel region to free storage for the region immediately after the region
ends, yet avoid having some other thread in the region’s team potentially reference the region’s
parallel_data object after it has been freed.

Description of Arguments

The ancestor_level argument specifies the parallel region of interest by its ancestor level. Ancestor
level O refers to the innermost parallel region; information about enclosing parallel regions may be
obtained using larger values for ancestor_level.

The parallel_data argument returns the parallel data if the argument is not NULL.

The team_size argument returns the team size if the argument is not NULL.

Effect

If the runtime entry point returns O or 1, no argument is modified. Otherwise,
ompt_get_parallel_info has the following effects:

o If a non-null value was passed for parallel_data, the value returned in parallel_data is a pointer
to a data word that is associated with the parallel region at the specified level; and

e If a non-null value was passed for feam_size, the value returned in the integer to which team_size
point is the number of threads in the team that is associated with the parallel region.

Constraints on Arguments
While argument ancestor_level is passed by value, all other arguments to the entry point must be

pointers to variables of the specified types or NULL.

Cross References

e ompt_data_t type, see Section 4.4.4.4 on page 440.

CHAPTER 4. OMPT INTERFACE 511

1

a b~ w N

10
11
12
13
14

15

16
17
18
19
20

21
22

23
24
25

26
27
28
29

30
31
32
33

34

4.6.1.14 ompt_get_task_info_ t

512

Summary

The ompt_get_task_info_t type is the type signature of the ompt_get_task_info
runtime entry point, which returns information about the task, if any, at the specified ancestor level
in the current execution context.

Format

C/C++

typedef int (xompt_get_task_info_t) (

int ancestor_level,

int =xflags,

ompt_data_t =*xtask_data,

ompt_frame_t =xxtask_frame,

ompt_data_t *#*parallel_data,

int *thread num

C/C++

Description

During execution, an OpenMP thread may be executing an OpenMP task. Additionally, the thread’s
stack may contain procedure frames that are associated with suspended OpenMP tasks or OpenMP
runtime system routines. To obtain information about any task on the current thread’s stack, a tool
uses the ompt_get_task_info runtime entry point, which has type signature
ompt_get_task_info_t.

Ancestor level O refers to the active task; information about other tasks with associated frames
present on the stack in the current execution context may be queried at higher ancestor levels.

The ompt_get_task_info runtime entry point returns 2 if there is a task region at the
specified ancestor level and the information is available, 1 if there is a task region at the specified
ancestor level but the information is currently unavailable, and O otherwise.

If a task exists at the specified ancestor level and the information is available then information is
returned in the variables passed by reference to the entry point. If no task region exists at the
specified ancestor level or the information is unavailable then the values of variables passed by
reference to the entry point are undefined when ompt_get_task_info returns.

A tool may use a pointer to a data object for a task or parallel region that it obtains from
ompt_get_task_info to inspect or to modify the value of the data object. When either a
parallel region or a task region is created, its data object will be initialized with the value
ompt_data_none.

This runtime entry point is async signal safe.

OpenMP API — Version 5.0 November 2018

—_

© ©o© N O o A~ ODN

11
12

13
14
15

16
17

18
19
20

21
22
23
24

25
26
27

28

29
30

Description of Arguments

The ancestor_level argument specifies the task region of interest by its ancestor level. Ancestor
level O refers to the active task; information about ancestor tasks found in the current execution
context may be queried at higher ancestor levels.

The flags argument returns the task type if the argument is not NULL.

The task_data argument returns the task data if the argument is not NULL.

The task_frame argument returns the task frame pointer if the argument is not NULL.
The parallel_data argument returns the parallel data if the argument is not NULL.

The thread_num argument returns the thread number if the argument is not NULL.

Effect

If the runtime entry point returns O or 1, no argument is modified. Otherwise,
ompt_get_task_info has the following effects:

o If a non-null value was passed for flags then the value returned in the integer to which flags
points represents the type of the task at the specified level; possible task types include initial,
implicit, explicit, and target tasks;

o If a non-null value was passed for fask_data then the value that is returned in the object to which
it points is a pointer to a data word that is associated with the task at the specified level;

o If a non-null value was passed for task_frame then the value that is returned in the object to
which task_frame points is a pointer to the ompt_frame_t structure that is associated with the
task at the specified level,;

e If a non-null value was passed for parallel_data then the value that is returned in the object to
which parallel_data points is a pointer to a data word that is associated with the parallel region
that contains the task at the specified level or, if the task at the specified level is an initial task,
NULL; and

e If a non-null value was passed for thread_num then the value that is returned in the object to
which thread_num points indicates the number of the thread in the parallel region that is
executing the task at the specified level.

Constraints on Arguments

While argument ancestor_level is passed by value, all other arguments to
ompt_get_task_info must be pointers to variables of the specified types or NULL.

CHAPTER 4. OMPT INTERFACE 513

—_

(3} A W DN

© ooN O

10

11
12
13
14
15

16

17
18
19
20
21

22
23

24
25
26

27

4.6.1.15

514

Cross References

e ompt_data_t type, see Section 4.4.4.4 on page 440.

e ompt_task flag_ t type, see Section 4.4.4.18 on page 446.
e ompt_frame_t type, see Section 4.4.4.27 on page 454.

ompt_get_task_memory_ t

Summary

The ompt_get_task_memory_t type is the type signature of the
ompt_get_task_memory runtime entry point, which returns information about memory ranges
that are associated with the task.

Format
C/C++

typedef int (*ompt_get_ task memory t) (
void x*xaddr,
size_t =*size,
I int block
);

C/C++

Description

During execution, an OpenMP thread may be executing an OpenMP task. The OpenMP
implementation must preserve the data environment from the creation of the task for the execution
of the task. The ompt_get_task_memory runtime entry point, which has type signature
ompt_get_task_memory_t, provides information about the memory ranges used to store the
data environment for the current task.

Multiple memory ranges may be used to store these data. The block argument supports iteration
over these memory ranges.

The ompt_get_task_memory runtime entry point returns 1 if there are more memory ranges
available, and O otherwise. If no memory is used for a task, size is set to 0. In this case, addr is
unspecified.

This runtime entry point is async signal safe.

OpenMP API — Version 5.0 November 2018

—_

a A~ WD

11

12
13
14
15
16

17

18
19
20
21

22
23

24

4.6.1.16

Description of Arguments

The addr argument is a pointer to a void pointer return value to provide the start address of a
memory block.

The size argument is a pointer to a size type return value to provide the size of the memory block.

The block argument is an integer value to specify the memory block of interest.

ompt_get_target_info_t

Summary

The ompt_get_target_info_t type is the type signature of the
ompt_get_target_info runtime entry point, which returns identifiers that specify a thread’s
current target region and target operation ID, if any.

Format
C/C++
typedef int (*ompt_ get target info t) (
uint64_t =device_num,
ompt_id_t =xtarget_id,
ompt_id_t xhost_op_id
)i

C/C++

Description

The ompt_get_target_info entry point, which has type signature
ompt_get_target_info_t, returns 1 if the current thread is in a target region and 0
otherwise. If the entry point returns O then the values of the variables passed by reference as its
arguments are undefined.

If the current thread is in a target region then ompt_get_target_info returns information
about the current device, active target region, and active host operation, if any.

This runtime entry point is async signal safe.

CHAPTER 4. OMPT INTERFACE 515

—_

No o AW DN

o

10
11

12

13

14
15

16

17

18

19
20

21

4.6.1.17

516

Description of Arguments
The device_num argument returns the device number if the current thread is in a target region.

Th target_id argument returns the target region identifier if the current thread is in a target
region.

If the current thread is in the process of initiating an operation on a target device (for example,
copying data to or from an accelerator or launching a kernel) then host_op_id returns the identifier
for the operation; otherwise, host_op_id returns ompt_id_none.

Constraints on Arguments

Arguments passed to the entry point must be valid references to variables of the specified types.

Cross References
e ompt_id_t type, see Section 4.4.4.3 on page 439.

ompt_get_num_devices_t

Summary

The ompt_get_num_devices_t type is the type signature of the
ompt_get_num_devices runtime entry point, which returns the number of available devices.

Format
C/C++
I typedef int (*ompt_get_ num devices_t) (void);
C/C++
Description

The ompt_get_num_devices runtime entry point, which has type signature
ompt_get_num_devices_t, returns the number of devices available to an OpenMP program.

This runtime entry point is async signal safe.

OpenMP API — Version 5.0 November 2018

1

w

12

13

14
15

16

17

18

19
20
21
22
23

4.6.1.18

4.6.1.19

ompt_get_unique_id t

Summary

The ompt_get_unique_id_t type is the type signature of the ompt_get_unique_id
runtime entry point, which returns a unique number.

Format
C/C++

Itypedef uint64_t (xompt _get_unique_id t) (void);
C/C++

Description

The ompt_get_unique_id runtime entry point, which has type signature
ompt_get_unique_id_t, returns a number that is unique for the duration of an OpenMP
program. Successive invocations may not result in consecutive or even increasing numbers.

This runtime entry point is async signal safe.

ompt_finalize_tool_t

Summary

The ompt_finalize_tool_t type is the type signature of the ompt_finalize_tool
runtime entry point, which enables a tool to finalize itself.

Format
C/C++
Itypedef void (xompt_finalize tool_t) (void);
C/C++
Description

A tool may detect that the execution of an OpenMP program is ending before the OpenMP
implementation does. To facilitate clean termination of the tool, the tool may invoke the
ompt_finalize_tool runtime entry point, which has type signature
ompt_finalize_ tool_t. Upon completion of ompt_finalize_ tool, no OMPT
callbacks are dispatched.

CHAPTER 4. OMPT INTERFACE

517

—_

No o AW

11

12

13
14
15

16

17
18
19

20

21
22
23
24
25

4.6.2

4.6.2.1

518

Effect

The ompt_finalize_tool routine detaches the tool from the runtime, unregisters all callbacks
and invalidates all OMPT entry points passed to the tool in the lookup-function. Upon completion
of ompt_finalize_tool, no further callbacks will be issued on any thread.

Before the callbacks are unregistered, the OpenMP runtime should attempt to dispatch all
outstanding registered callbacks as well as the callbacks that would be encountered during
shutdown of the runtime, if possible in the current execution context.

Entry Points in the OMPT Device Tracing Interface

The runtime entry points with type signatures of the types that are specified in this section enable a
tool to trace activities on a device.

ompt_get_device_num_ procs_t

Summary

The ompt_get_device_num_procs_t type is the type signature of the
ompt_get_device_num_procs runtime entry point, which returns the number of processors
currently available to the execution environment on the specified device.

Format
C/C++

typedef int (*ompt_get_device_num procs_t) (
ompt_device_t =*device

),
C/C++

Description

The ompt_get_device_num_procs runtime entry point, which has type signature
ompt_get_device_num procs_t, returns the number of processors that are available on the
device at the time the routine is called. This value may change between the time that it is
determined and the time that it is read in the calling context due to system actions outside the
control of the OpenMP implementation.

OpenMP API — Version 5.0 November 2018

A WOWN

(&)

10
11

12

13
14
15

16

17
18
19

20
21
22

23

24
25
26

4.6.2.2

Description of Arguments

The device argument is a pointer to an opaque object that represents the target device instance. The
pointer to the device instance object is used by functions in the device tracing interface to identify
the device being addressed.

Cross References
e ompt_device_t type, see Section 4.4.4.5 on page 441.

ompt_get_device_time_t

Summary

The ompt_get_device_time_t type is the type signature of the
ompt_get_device_time runtime entry point, which returns the current time on the specified
device.

Format

C/C++
typedef ompt_device_time_t (*ompt_get_device_time_t) (
ompt_device_t =*device

)i
C/C++

Description

Host and target devices are typically distinct and run independently. If host and target devices are
different hardware components, they may use different clock generators. For this reason, a common
time base for ordering host-side and device-side events may not be available.

The ompt_get_device_time runtime entry point, which has type signature
ompt_get_device_time_t, returns the current time on the specified device. A tool can use
this information to align time stamps from different devices.

Description of Arguments

The device argument is a pointer to an opaque object that represents the target device instance. The
pointer to the device instance object is used by functions in the device tracing interface to identify
the device being addressed.

CHAPTER 4. OMPT INTERFACE 519

N

o NO O

10
11
12
13

14

15
16
17
18

19

20
21
22
23

24

25
26
27

28

4.6.2.3

520

Cross References
e ompt_device_t type, see Section 4.4.4.5 on page 441.

e ompt_device_time_t type, see Section 4.4.4.6 on page 441.

ompt_translate_time_t

Summary

The ompt_translate_time_t type is the type signature of the ompt_translate_time
runtime entry point, which translates a time value that is obtained from the specified device to a
corresponding time value on the host device.

Format
C/C++

typedef double (*xompt_translate_time_t) (
ompt_device_t =*device,
ompt_device_time_t time

)
C/C++

Description

The ompt_translate_time runtime entry point, which has type signature
ompt_translate_time_t, translates a time value obtained from the specified device to a
corresponding time value on the host device. The returned value for the host time has the same
meaning as the value returned from omp_get_wtime.

v v
Note — The accuracy of time translations may degrade if they are not performed promptly after a
device time value is received and if either the host or device vary their clock speeds. Prompt

translation of device times to host times is recommended.
A A

Description of Arguments

The device argument is a pointer to an opaque object that represents the target device instance. The
pointer to the device instance object is used by functions in the device tracing interface to identify
the device being addressed.

The time argument is a time from the specified device.

OpenMP API — Version 5.0 November 2018

A WD

(6]

© 00 »

10

11
12
13
14
15

16

17
18

19
20
21

22
23
24

25
26
27

4.6.2.4

Cross References
e omp_get_wtime routine, see Section 3.4.1 on page 394.
e ompt_device_t type, see Section 4.4.4.5 on page 441.

e ompt_device_time_t type, see Section 4.4.4.6 on page 441.

ompt_set_trace_ompt_t

Summary

The ompt_set_trace_ompt_t type is the type signature of the ompt_set_trace_ompt
runtime entry point, which enables or disables the recording of trace records for one or more types
of OMPT events.

Format
C/C++

typedef ompt_set_ result_t (xompt_set_trace ompt_t) (
ompt_device_t =*device,
unsigned int enable,
unsigned int efype

)i
C/C++

Description of Arguments

The device argument points to an opaque object that represents the target device instance. Functions
in the device tracing interface use this pointer to identify the device that is being addressed.

The etype argument indicates the events to which the invocation of ompt_set_trace_ompt
applies. If the value of etype is O then the invocation applies to all events. If etype is positive then it
applies to the event in ompt_callbacks_t that matches that value.

The enable argument indicates whether tracing should be enabled or disabled for the event or events
that the efype argument specifies. A positive value for enable indicates that recording should be
enabled; a value of O for enable indicates that recording should be disabled.

Restrictions
The ompt_set_trace_ompt runtime entry point has the following restriction:

e The entry point must not return ompt_set_sometimes_paired.

CHAPTER 4. OMPT INTERFACE 521

—_

a A~ W N

11

12
13
14
15
16

17

18
19
20
21

22

23
24

25

4.6.2.5

522

Cross References

e Tracing activity on target devices with OMPT, see Section 4.2.5 on page 427.
e ompt_callbacks_t type, see Section 4.4.2 on page 434.

e ompt_set_result_t type, see Section 4.4.4.2 on page 438.

e ompt_device_t type, see Section 4.4.4.5 on page 441.

ompt_set_trace_native_t

Summary

The ompt_set_trace_native_t type is the type signature of the
ompt_set_trace_native runtime entry point, which enables or disables the recording of
native trace records for a device.

Format

C/C++
typedef ompt_set_result_t (*ompt_set_trace native_t) (
ompt_device_ t =*device,
int enable,
int flags
)i

C/C++

Description

This interface is designed for use by a tool that cannot directly use native control functions for the
device. If a tool can directly use the native control functions then it can invoke native control
functions directly using pointers that the lookup function associated with the device provides and
that are described in the documentation string that is provided to the device initializer callback.

Description of Arguments

The device argument points to an opaque object that represents the target device instance. Functions
in the device tracing interface use this pointer to identify the device that is being addressed.

The enable argument indicates whether this invocation should enable or disable recording of events.

OpenMP API — Version 5.0 November 2018

o0k, WD =

10
11
12
13

14

15

16
17

18

19
20
21
22
23

4.6.2.6

The flags argument specifies the kinds of native device monitoring to enable or to disable. Each
kind of monitoring is specified by a flag bit. Flags can be composed by using logical or to combine
enumeration values from type ompt_native_mon_flag t.

To start, to pause, to flush, or to stop tracing for a specific target device associated with device, a
tool invokes the ompt_start_trace, ompt_pause_trace, ompt_flush_trace, or
ompt_stop_trace runtime entry point for the device.

Restrictions
The ompt_set_trace_native runtime entry point has the following restriction:

e The entry point must not return ompt_set_sometimes_paired.

Cross References
e Tracing activity on target devices with OMPT, see Section 4.2.5 on page 427.
e ompt_set_result_t type, see Section 4.4.4.2 on page 438.

e ompt_device_t type, see Section 4.4.4.5 on page 441.

ompt_start_trace_t

Summary

The ompt_start_trace_t type is the type signature of the ompt_start_trace runtime
entry point, which starts tracing of activity on a specific device.

Format
C/C++

typedef int (xompt_start_trace_t) (
ompt_device_t =*device,
ompt_callback buffer request_t request,
ompt_callback_buffer complete_t complete
)i

C/C++

CHAPTER 4. OMPT INTERFACE 523

—_

N oD

10
11

12
13

14
15
16
17

18

19

20
21

22

23
24
25
26

4.6.2.7

524

Description

A device’s ompt_start_trace runtime entry point, which has type signature
ompt_start_trace_t, initiates tracing on the device. Under normal operating conditions,
every event buffer provided to a device by a tool callback is returned to the tool before the OpenMP
runtime shuts down. If an exceptional condition terminates execution of an OpenMP program, the
OpenMP runtime may not return buffers provided to the device.

An invocation of ompt_start_trace returns 1 if the command succeeds and O otherwise.

Description of Arguments

The device argument points to an opaque object that represents the target device instance. Functions
in the device tracing interface use this pointer to identify the device that is being addressed.

The request argument specifies a tool callback that supplies a device with a buffer to deposit events.

The complete argument specifies a tool callback that is invoked by the OpenMP implementation to
empty a buffer that contains event records.

Cross References

e ompt_device_t type, see Section 4.4.4.5 on page 441.

e ompt_callback_buffer_ request_t callback type, see Section 4.5.2.23 on page 486.
e ompt_callback buffer_ complete_t callback type, see Section 4.5.2.24 on page 487.

ompt_pause_trace_t

Summary

The ompt_pause_trace_t type is the type signature of the ompt_pause_trace runtime
entry point, which pauses or restarts activity tracing on a specific device.

Format
C/C++

typedef int (xompt_pause_trace_t) (
ompt_device_t =*device,
int begin_pause

)
C/C++

OpenMP API — Version 5.0 November 2018

a b~ wN

o © o »

11
12

13

14

15
16

17

18
19
20

21

22
23
24
25

4.6.2.8

Description

A device’s ompt_pause_trace runtime entry point, which has type signature
ompt_pause_trace_t, pauses or resumes tracing on a device. An invocation of
ompt_pause_trace returns 1 if the command succeeds and 0 otherwise. Redundant pause or
resume commands are idempotent and will return the same value as the prior command.

Description of Arguments

The device argument points to an opaque object that represents the target device instance. Functions
in the device tracing interface use this pointer to identify the device that is being addressed.

The begin_pause argument indicates whether to pause or to resume tracing. To resume tracing,
zero should be supplied for begin_pause; To pause tracing, any other value should be supplied.

Cross References

e ompt_device_t type, see Section 4.4.4.5 on page 441.

ompt_flush_trace_t

Summary

The ompt_flush_trace_t type is the type signature of the ompt_flush_trace runtime
entry point, which causes all pending trace records for the specified device to be delivered.

Format

C/C++
typedef int (xompt_flush trace_t) (
ompt_device_t =*device

)i
C/C++

Description

A device’s ompt_flush_trace runtime entry point, which has type signature
ompt_flush_trace_t, causes the OpenMP implementation to issue a sequence of zero or more
buffer completion callbacks to deliver all trace records that have been collected prior to the flush.
An invocation of ompt_flush_trace returns 1 if the command succeeds and 0 otherwise.

CHAPTER 4. OMPT INTERFACE 525

10

11
12
13

14

15
16
17
18

19

20
21

22
23

4.6.2.9

526

Description of Arguments

The device argument points to an opaque object that represents the target device instance. Functions
in the device tracing interface use this pointer to identify the device that is being addressed.

Cross References
e ompt_device_t type, see Section 4.4.4.5 on page 441.

ompt_stop_trace_t

Summary

The ompt_stop_trace_t type is the type signature of the ompt_stop_trace runtime entry
point, which stops tracing for a device.

Format
C/C++

typedef int (xompt_stop_trace_t) (
ompt_device_t =xdevice

)
C/C++

Description

A device’s ompt_stop_trace runtime entry point, which has type signature
ompt_stop_trace_t, halts tracing on the device and requests that any pending trace records
are flushed. An invocation of ompt_stop_trace returns 1 if the command succeeds and 0
otherwise.

Description of Arguments

The device argument points to an opaque object that represents the target device instance. Functions
in the device tracing interface use this pointer to identify the device that is being addressed.

Cross References

e ompt_device_t type, see Section 4.4.4.5 on page 441.

OpenMP API — Version 5.0 November 2018

1

a b~ w D

10
11
12
13

14

15
16
17
18

19

20
21

22
23
24
25

26
27
28

4.6.2.10 ompt_advance_buffer cursor_t

Summary

The ompt_advance_buffer_ cursor_t type is the type signature of the
ompt_advance_buffer cursor runtime entry point, which advances a trace buffer cursor to
the next record.

Format
C/C++

typedef int (*ompt_advance_buffer cursor_t) (
ompt_device_t =*device,
ompt_buffer t xbuffer,
size t size,
ompt_buffer cursor_ t current,
ompt_buffer cursor t x*next

)
C/C++

Description

A device’s ompt_advance_buffer_cursor runtime entry point, which has type signature
ompt_advance_buffer cursor_t, advances a trace buffer pointer to the next trace record.
An invocation of ompt_advance_buffer_cursor returns true if the advance is successful
and the next position in the buffer is valid.

Description of Arguments

The device argument points to an opaque object that represents the target device instance. Functions
in the device tracing interface use this pointer to identify the device that is being addressed.

The buffer argument indicates a trace buffer that is associated with the cursors.
The argument size indicates the size of buffer in bytes.
The current argument is an opaque buffer cursor.

The next argument returns the next value of an opaque buffer cursor.

Cross References
e ompt_device_t type, see Section 4.4.4.5 on page 441.

e ompt_buffer cursor_t type, see Section 4.4.4.8 on page 442.

CHAPTER 4. OMPT INTERFACE 527

1

© o NO®

10

11
12
13
14

15
16
17
18

19
20
21

22
23
24
25

4.6.2.11 ompt_get_record_type_t

528

Summary

The ompt_get_record_type_t type is the type signature of the
ompt_get_record_type runtime entry point, which inspects the type of a trace record.

Format

C/C++
typedef ompt record t (xompt get record type t) (
ompt_buffer t =xbuffer,
ompt_buffer_ cursor_t current

)i
C/C++

Description

Trace records for a device may be in one of two forms: native record format, which may be
device-specific, or OMPT record format, in which each trace record corresponds to an OpenMP
event and most fields in the record structure are the arguments that would be passed to the OMPT
callback for the event.

A device’s ompt_get_record_ type runtime entry point, which has type signature
ompt_get_record_type_t, inspects the type of a trace record and indicates whether the
record at the current position in the trace buffer is an OMPT record, a native record, or an invalid
record. An invalid record type is returned if the cursor is out of bounds.

Description of Arguments
The buffer argument indicates a trace buffer.

The current argument is an opaque buffer cursor.

Cross References

e ompt_record_t type, see Section 4.4.3.1 on page 435.

e ompt_buffer t type, see Section 4.4.4.7 on page 441.

e ompt_buffer cursor_t type, see Section 4.4.4.8 on page 442.

OpenMP API — Version 5.0 November 2018

1

a b~ w D

»

o © 00 N

11

12
13
14
15

16
17
18

19
20
21

22
23
24
25

4.6.2.12 ompt_get_record_ompt_t

Summary

The ompt_get_record_ompt_t type is the type signature of the
ompt_get_record_ompt runtime entry point, which obtains a pointer to an OMPT trace
record from a trace buffer associated with a device.

Format
C/C++

typedef ompt_record ompt_t =* (xompt_get_ record ompt_t) (
ompt_buffer t =*buffer,
ompt_buffer_ cursor_t current

)i
C/C++

Description

A device’s ompt_get_record_ompt runtime entry point, which has type signature
ompt_get_record_ompt_t, returns a pointer that may point to a record in the trace buffer, or
it may point to a record in thread local storage in which the information extracted from a record was
assembled. The information available for an event depends upon its type.

The return value of the ompt_record_ompt_t type includes a field of a union type that can
represent information for any OMPT event record type. Another call to the runtime entry point may
overwrite the contents of the fields in a record returned by a prior invocation.

Description of Arguments
The buffer argument indicates a trace buffer.

The current argument is an opaque buffer cursor.

Cross References
e ompt_record_ompt_t type, see Section 4.4.3.4 on page 436.
e ompt_device_t type, see Section 4.4.4.5 on page 441.

e ompt_buffer cursor_t type, see Section 4.4.4.8 on page 442.

CHAPTER 4. OMPT INTERFACE 529

1

(o] a b~ w N

—_ 4
- O © 00

12

13
14
15
16
17
18
19
20

21
22
23

24
25
26

27
28
29
30

4.6.2.13 ompt_get_record_native_t

530

Summary

The ompt_get_record_native_t type is the type signature of the
ompt_get_record_native runtime entry point, which obtains a pointer to a native trace
record from a trace buffer associated with a device.

Format

C/C++
typedef void * (xompt_get_ record native_t) (
ompt_buffer t =xbuffer,
ompt_buffer_ cursor_t current,
ompt_id_t xhost_op_id
)i

C/C++

Description

A device’s ompt_get_record_native runtime entry point, which has type signature
ompt_get_record_native_t, returns a pointer that may point may point into the specified
trace buffer, or into thread local storage in which the information extracted from a trace record was
assembled. The information available for a native event depends upon its type. If the function
returns a non-null result, it will also set the object to which host_op_id points to a host-side
identifier for the operation that is associated with the record. A subsequent call to
ompt_get_record_native may overwrite the contents of the fields in a record returned by a
prior invocation.

Description of Arguments
The buffer argument indicates a trace buffer.
The current argument is an opaque buffer cursor.

The host_op_id argument is a pointer to an identifier that is returned by the function. The entry
point sets the identifier to which host_op_id points to the value of a host-side identifier for an
operation on a target device that was created when the operation was initiated by the host.

Cross References

e ompt_id_t type, see Section 4.4.4.3 on page 439.

e ompt_buffer t type, see Section 4.4.4.7 on page 441.

e ompt_buffer cursor_t type, see Section 4.4.4.8 on page 442.

OpenMP API — Version 5.0 November 2018

1

a b~ w D

»

o © 00 N

11

12
13
14
15

16
17

18
19

20

21

22
23

4.6.2.14 ompt_get_record_abstract_t

4.6.3

Summary

The ompt_get_record_abstract_t type is the type signature of the
ompt_get_record_abstract runtime entry point, which summarizes the context of a native
(device-specific) trace record.

Format
C/C++

typedef ompt_ record abstract_t =x
(*ompt_get_record abstract_t) (
void =xnative_record

)i
C/C++

Description

An OpenMP implementation may execute on a device that logs trace records in a native
(device-specific) format that a tool cannot interpret directly. A device’s
ompt_get_record_abstract runtime entry point, which has type signature
ompt_get_record_abstract_t, translates a native trace record into a standard form.

Description of Arguments

The native_record argument is a pointer to a native trace record.

Cross References
e ompt_record_abstract_t type, see Section 4.4.3.3 on page 436.

Lookup Entry Points: ompt_ function_lookup_t

Summary

The ompt_function_lookup_t type is the type signature of the lookup runtime entry points
that provide pointers to runtime entry points that are part of the OMPT interface.

CHAPTER 4. OMPT INTERFACE 531

—_

ook WD

10
11
12
13
14

15

16
17

18
19
20

21
22

23
24

532

Format
C/C++

typedef void (*ompt_interface_fn_t) (void);

typedef ompt_interface fn t (*ompt_function lookup_t) (
const char xinterface_function_name

),
C/C++

Description

An OpenMP implementation provides a pointer to a lookup routine that provides pointers to OMPT
runtime entry points. When the implementation invokes a tool initializer to configure the OMPT
callback interface, it provides a lookup function that provides pointers to runtime entry points that
implement routines that are part of the OMPT callback interface. Alternatively, when it invokes a
tool initializer to configure the OMPT tracing interface for a device, it provides a lookup function
that provides pointers to runtime entry points that implement tracing control routines appropriate
for that device.

Description of Arguments

The interface_function_name argument is a C string that represents the name of a runtime entry
point.

Cross References
e Tool initializer for a device’s OMPT tracing interface, see Section 4.2.5 on page 427.
e Tool initializer for the OMPT callback interface, see Section 4.5.1.1 on page 457.

e Entry points in the OMPT callback interface, see Table 4.1 on page 426 for a list and
Section 4.6.1 on page 497 for detailed definitions.

e Entry points in the OMPT tracing interface, see Table 4.3 on page 430 for a list and Section 4.6.2
on page 518 for detailed definitions.

OpenMP API — Version 5.0 November 2018

CHAPTER 5

OMPD Interface

This chapter describes OMPD, which is an interface for third-party tools. Third-party tools exist in
separate processes from the OpenMP program. To provide OMPD support, an OpenMP
implementation must provide an OMPD library to be loaded by the third-party tool. An OpenMP
implementation does not need to maintain any extra information to support OMPD inquiries from
third-party tools unless it is explicitly instructed to do so.

OMPD allows third-party tools such as a debuggers to inspect the OpenMP state of a live program
or core file in an implementation-agnostic manner. That is, a tool that uses OMPD should work
with any conforming OpenMP implementation. An OpenMP implementor provides a library for
OMPD that a third-party tool can dynamically load. Using the interface exported by the OMPD
library, the external tool can inspect the OpenMP state of a program. In order to satisfy requests
from the third-party tool, the OMPD library may need to read data from, or to find the addresses of
symbols in the OpenMP program. The OMPD library provides this functionality through a callback
interface that the third-party tool must instantiate for the OMPD library.

To use OMPD, the third-party tool loads the OMPD library. The OMPD library exports the API
that is defined throughout this section and that the tool uses to determine OpenMP information
about the OpenMP program. The OMPD library must look up the symbols and read data out of the
program. It does not perform these operations directly, but instead it uses the callback interface that
the tool exports to cause the tool to perform them.

The OMPD architecture insulates tools from the internal structure of the OpenMP runtime while
the OMPD library is insulated from the details of how to access the OpenMP program. This
decoupled design allows for flexibility in how the OpenMP program and tool are deployed, so that,
for example, the tool and the OpenMP program are not required to execute on the same machine.

Generally the tool does not interact directly with the OpenMP runtime and, instead, interacts with it
through the OMPD library. However, a few cases require the tool to access the OpenMP runtime
directly. These cases fall into two broad categories. The first is during initialization, where the tool
must look up symbols and read variables in the OpenMP runtime in order to identify the OMPD
library that it should use, which is discussed in Section 5.2.2 on page 535 and Section 5.2.3 on
page 536. The second category relates to arranging for the tool to be notified when certain events

533

OO WD =

10
11
12

13
14

15

16
17

18 5.2.1

19
20
21

5.1

5.2

534

occur during the execution of the OpenMP program. For this purpose, the OpenMP implementation
must define certain symbols in the runtime code, as is discussed in Section 5.6 on page 594. Each
of these symbols corresponds to an event type. The runtime must ensure that control passes through
the appropriate named location when events occur. If the tool requires notification of an event, it
can plant a breakpoint at the matching location. The location can, but may not, be a function. It can,
for example, simply be a label. However, the names of the locations must have external C linkage.

OMPD Interfaces Definitions
C/C++

A compliant implementation must supply a set of definitions for the OMPD runtime entry points,
OMPD tool callback signatures, OMPD tool interface routines, and the special data types of their
parameters and return values. These definitions, which are listed throughout this chapter, and their
associated declarations shall be provided in a header file named omp—tools.h. In addition, the
set of definitions may specify other implementation-specific values.

The ompd_d11_locations function, all OMPD tool interface functions, and all OMPD
runtime entry points are external functions with C linkage.

C/C++

Activating an OMPD Tool

The tool and the OpenMP program exist as separate processes. Thus, coordination is required
between the OpenMP runtime and the external tool for OMPD.

Enabling the Runtime for OMPD

In order to support third-party tools, the OpenMP runtime may need to collect and to maintain
information that it might not otherwise. The OpenMP runtime collects whatever information is
necessary to support OMPD if the environment variable OMP_DEBUG is set to enabled.

OpenMP API — Version 5.0 November 2018

10

11
12
13
14
15
16

17
18
19
20
21
22
23
24

25
26
27
28
29

5.2.2

Cross References
e Activating an OMPT Tool, Section 4.2 on page 420

e OMP_DEBUG, Section 6.20 on page 617

ompd_dll_locations

Summary

The ompd_d11_locations global variable indicates the location of OMPD libraries that are
compatible with the OpenMP implementation.

Format
C
| const char sxompd_dll_locations;
C
Description

An OpenMP runtime may have more than one OMPD library. The tool must be able to locate the
right library to use for the OpenMP program that it is examining. The OpenMP runtime system
must provide a public variable ompd_d11_locations, which is an argv-style vector of
filename string pointers that provides the name(s) of any compatible OMPD library. This variable
must have C linkage. The tool uses the name of the variable verbatim and, in particular, does not
apply any name mangling before performing the look up.

The programming model or architecture of the tool and, thus, that of OMPD does not have to match
that of the OpenMP program that is being examined. The tool must interpret the contents of
ompd_dll_locations to find a suitable OMPD that matches its own architectural
characteristics. On platforms that support different programming models (for example, 32-bit vs
64-bit), OpenMP implementations are encouraged to provide OMPD libraries for all models, and
that can handle OpenMP programs of any model. Thus, for example, a 32-bit debugger that uses
OMPD should be able to debug a 64-bit OpenMP program by loading a 32-bit OMPD
implementation that can manage a 64-bit OpenMP runtime.

ompd_dll_locations points to a NULL-terminated vector of zero or more NULL-terminated
pathname strings that do not have any filename conventions. This vector must be fully initialized
before ompd_d1l1l_locations is set to a non-null value, such that if a tool, such as a debugger,
stops execution of the OpenMP program at any point at which ompd_d11_locations is
non-null, then the vector of strings to which it points is valid and complete.

CHAPTER 5. OMPD INTERFACE 535

10
11
12
13
14
15
16

17

18

19

20

21
22

5.2.3

5.3

5.3.1

536

Cross References
e ompd_dll_locations_valid, see Section 5.2.3 on page 536

ompd dll_ locations_valid

Summary

The OpenMP runtime notifies third-party tools that ompd_d11_locations is valid by allowing
execution to pass through a location that the symbol ompd_d11_locations_valid identifies.

Format
C
I void ompd dll_locations_valid(void);
C
Description

Since ompd_d1l1l_locations may not be a static variable, it may require runtime initialization.
The OpenMP runtime notifies third-party tools that ompd_d11_locations is valid by having
execution pass through a location that the symbol ompd_d11_locations_valid identifies. If
ompd_dll locations is NULL, a third-party tool can place a breakpoint at
ompd_dll_locations_valid to be notified that ompd_dll_locations is initialized. In
practice, the symbol ompd_d11_locations_wvalid may not be a function; instead, it may be a
labeled machine instruction through which execution passes once the vector is valid.

OMPD Data Types

This section defines the OMPD types.

Size Type

Summary

The ompd_size_t type specifies the number of bytes in opaque data objects that are passed
across the OMPD API.

OpenMP API — Version 5.0 November 2018

11

12
13
14

15

16
17
18

5.3.2

5.3.3

Format

C/C++
Itypedef uint64_t ompd size_t;

C/C++

Wait ID Type

Summary

This ompd_wait_id_t type identifies the object on which a thread.

Format
C/C++
Itypedef uint64_t ompd wait_id t;
C/C++

Basic Value Types

Summary

These definitions represent a word, address, and segment value types.

Format

C/C++
typedef uint64_t ompd addr_t;
typedef int64_t ompd word t;
typedef uint64_t ompd_seg t;

C/C++

Description

The ompd_addr_t type represents an unsigned integer address in an OpenMP process. The
ompd_word_t type represents a signed version of ompd_addr_t to hold a signed integer of the
OpenMP process. The ompd_seg_t type represents an unsigned integer segment value.

CHAPTER 5. OMPD INTERFACE 537

1 5.3.4 Address Type

2 Summary
3 The ompd_address_t type is used to specify device addresses.
4 Format
C/C++
5 typedef struct ompd_address_t ({
6 ompd_seg_t segment;
7 ompd_addr_t address;
8 } ompd address_t;
C/C++
9 Description
10 The ompd_address_t type is a structure that OMPD uses to specify device addresses, which
11 may or may not be segmented. For non-segmented architectures, ompd_segment_none is used
12 in the segment field of ompd_address_t; itis an instance of the ompd_seg_t type that has the
13 value 0.
14 5.3.5 Frame Information Type
15 Summary
16 The ompd_frame_info_t type is used to specify frame information.
17 Format
C/C++
18 typedef struct ompd frame info t {
19 ompd_address_t frame_address;
20 ompd_word_t frame_flag;
21 } ompd frame_info_t;
C/C++

538 OpenMP API — Version 5.0 November 2018

a b~ wN

11

12

13

14
15
16
17
18
19

20
21

22

23
24

5.3.6

5.3.7

Description

The ompd_frame_info_t type is a structure that OMPD uses to specify frame information.
The frame_address field of ompd_frame_info_t identifies a frame. The frame_flag field of
ompd_frame_info_t indicates what type of information is provided in frame_address. The
values and meaning is the same as defined for the ompt_ frame_t enumeration type.

Cross References
e ompt_frame_t, see Section 4.4.4.27 on page 454

System Device Identifiers

Summary

The ompd_device_t type provides information about OpenMP devices.

Format
C/C++
| typedef uint64_t ompd device_t;
C/C++
Description

Different OpenMP runtimes may utilize different underlying devices. The Device identifiers can
vary in size and format and, thus, are not explicitly represented in OMPD. Instead, device
identifiers are passed across the interface via the ompd_device_t type, which is a pointer to
where the device identifier is stored, and the size of the device identifier in bytes. The OMPD
library and a tool that uses it must agree on the format of the object that is passed. Each different
kind of device identifier uses a unique unsigned 64-bit integer value.

Recommended values of ompd_device_t are defined in the ompd—-types . h header file,
which is available on http://www.openmp.org/.

Native Thread Identifiers

Summary

The ompd_thread_id_t type provides information about native threads.

CHAPTER 5. OMPD INTERFACE 539

http://www.openmp.org/

o NOoO O W

11
12

13

14
15

16

17
18
19
20

5.3.8

540

Format

C/C++
Itypedef uint64_t ompd_ thread id t;

C/C++

Description

Different OpenMP runtimes may use different native thread implementations. Native thread
identifiers can vary in size and format and, thus, are not explicitly represented in the OMPD API.
Instead, native thread identifiers are passed across the interface via the ompd_thread_id_t
type, which is a pointer to where the native thread identifier is stored, and the size of the native
thread identifier in bytes. The OMPD library and a tool that uses it must agree on the format of the
object that is passed. Each different kind of native thread identifier uses a unique unsigned 64-bit
integer value.

Recommended values of ompd_thread_id_t are defined in the ompd—-types . h header file,
which is available on http://www.openmp.org/.

OMPD Handle Types

Summary

OMPD handle types are opaque types.

Format
C/C++

typedef struct _ompd aspace_handle ompd address_space_handle_t;
typedef struct _ompd thread handle ompd thread handle t;
typedef struct _ompd parallel handle ompd parallel handle t;
typedef struct _ompd_ task handle ompd_task_ handle_t;

C/C++

OpenMP API — Version 5.0 November 2018

http://www.openmp.org/

- O © © NOoO o~ ODND =

—_

12

13
14

15

16
17
18
19
20
21
22
23

24

25
26
27

5.3.9

Description

OMPD uses handles for address spaces (ompd_address_space_handle_t), threads
(ompd_thread handle_t), parallel regions (ompd_parallel handle_t), and tasks
(ompd_task_handle_t). Each operation of the OMPD interface that applies to a particular
address space, thread, parallel region, or task must explicitly specify a corresponding handle. A
handle for an entity is constant while the entity itself is alive. Handles are defined by the OMPD
library, and are opaque to the tool.

Defining externally visible type names in this way introduces type safety to the interface, and helps
to catch instances where incorrect handles are passed by the tool to the OMPD library. The
structures do not need to be defined; instead, the OMPD library must cast incoming (pointers to)
handles to the appropriate internal, private types.

OMPD Scope Types

Summary

The ompd_scope_t type identifies OMPD scopes.

Format
C/C++
typedef enum ompd_scope_t {
ompd_scope_global = 1,
ompd_scope_address_space = 2,
ompd_scope_thread = 3,
ompd scope_parallel = 4,
ompd_scope_implicit_task = 5,
ompd_scope_task = 6
} ompd_scope_t;
C/C++

Description

The ompd_scope_t type identifies OpenMP scopes, including those related to parallel regions
and tasks. When used in an OMPD interface function call, the scope type and the ompd handle
must match according to Table 5.1.

CHAPTER 5. OMPD INTERFACE 541

TABLE 5.1: Mapping of Scope Type and OMPD Handles

Scope types Handles

ompd_scope_global Address space handle for the host device
ompd_scope_address_space Any address space handle
ompd_scope_thread Any thread handle
ompd_scope_parallel Any parallel handle
ompd_scope_implicit_task Task handle for an implicit task
ompd_scope_task Any task handle

5.3.10 ICV ID Type

Summary
The ompd_icv_id_t type identifies an OpenMP implementation ICV.

Format
C/C++
Itypedef uint64_t ompd icv_id t;
C/C++

The ompd_icv_id_t type identifies OpenMP implementation ICVs. ompd_icv_undefined
is an instance of this type with the value 0.

5.3.11 Tool Context Types

Summary

A third-party tool uses contexts to uniquely identify abstractions. These contexts are opaque to the
OMPD library and are defined as follows:

Format
C/C++

typedef struct _ompd aspace_cont ompd_address_space context_t;
typedef struct _ompd thread_cont ompd thread context_t;

C/C++

542 OpenMP API — Version 5.0 November 2018

1 5.3.12 Return Code Types

18

19
20

21

22
23

24
25
26
27

28
29

30
31

Summary

The ompd_rc_t type is the return code type of OMPD operations

Format
C/C++

typedef enum ompd rc_t {
ompd rc_ok = O,
ompd rc_unavailable = 1,
ompd rc_stale handle = 2,
ompd_rc_bad_input = 3,
ompd_rc_error = 4,
ompd_rc_unsupported = 5,
ompd_rc_needs_state_tracking = 6,
ompd_rc_incompatible = 7,
ompd_rc_device_read error = 8,
ompd_rc_device_write_error = 9,
ompd_rc_nomem = 10,

} ompd rc t;

C/C++

Description

The ompd_rc_t type is used for the return codes of OMPD operations. The return code types and
their semantics are defined as follows:

e ompd_rc_ok is returned when the operation is successful;

e ompd_rc_unavailable is returned when information is not available for the specified
context;

e ompd_rc_stale_handle is returned when the specified handle is no longer valid;

e ompd_rc_bad_input is returned when the input parameters (other than handle) are invalid;
e ompd_rc_error is returned when a fatal error occurred,

e ompd_rc_unsupported is returned when the requested operation is not supported;

e ompd_rc_needs_state_tracking is returned when the state tracking operation failed
because state tracking is not currently enabled;

e ompd_rc_device_read_error is returned when a read operation failed on the device;
P p

e ompd_rc_device_write_error is returned when a write operation failed on the device;

CHAPTER 5. OMPD INTERFACE 543

—_

10
11
12
13
14
15
16

17

18
19
20
21
22

23
24

5.3.13

544

e ompd_rc_incompatible is returned when this OMPD library is incompatible with, or is not
capable of handling, the OpenMP program; and

e ompd_rc_nomem is returned when a memory allocation fails.

Primitive Type Sizes

Summary

The ompd_device_type_sizes_t type provides the “sizeof” of primitive types in the
OpenMP architecture address space.

Format

C/C++

typedef struct ompd device type sizes t {

uint8_t sizeof char;

uint8_t sizeof short;

uint8_t sizeof int;

uint8_t sizeof long;

uint8_t sizeof long long;

uint8_t sizeof pointer;
} ompd device_ type_sizes_t;

C/C++

Description

The ompd_device_type_sizes_t type is used in operations through which the OMPD
library can interrogate the tool about the “sizeof” of primitive types in the OpenMP architecture
address space. The fields of ompd_device_type_sizes_t give the sizes of the eponymous
basic types used by the OpenMP runtime. As the tool and the OMPD library, by definition, have the
same architecture and programming model, the size of the fields can be given as uint8_t.

Cross References
e ompd_callback_sizeof fn_t, see Section 5.4.2.2 on page 549

OpenMP API — Version 5.0 November 2018

—_

- O © 0N O~ WN

—_

12

13
14
15
16
17
18

19
20
21
22

23
24
25

26
27
28
29
30

31
32

o
>

5.4.1

OMPD Tool Callback Interface

For the OMPD library to provide information about the internal state of the OpenMP runtime
system in an OpenMP process or core file, it must have a means to extract information from the
OpenMP process that the tool is debugging. The OpenMP process on which the tool is operating
may be either a “live” process or a core file, and a thread may be either a “live” thread in an
OpenMP process, or a thread in a core file. To enable the OMPD library to extract state information
from an OpenMP process or core file, the tool must supply the OMPD library with callback
functions to inquire about the size of primitive types in the device of the OpenMP process, to look
up the addresses of symbols, and to read and to write memory in the device. The OMPD library
uses these callbacks to implement its interface operations. The OMPD library only invokes the
callback functions in direct response to calls made by the tool to the OMPD library.

Memory Management of OMPD Library

The OMPD library must not access the heap manager directly. Instead, if it needs heap memory it
must use the memory allocation and deallocation callback functions that are described in this
section, ompd_callback_memory_alloc_f£fn_t (see Section 5.4.1.1 on page 546) and
ompd_callback_memory_ free_fn_t (see Section 5.4.1.2 on page 546), which are provided
by the tool to obtain and to release heap memory. This mechanism ensures that the library does not
interfere with any custom memory management scheme that the tool may use.

If the OMPD library is implemented in C++, memory management operators like new and
delete in all their variants, must all be overloaded and implemented in terms of the callbacks that
the tool provides. The OMPD library must be coded so that any of its definitions of new or
delete do not interfere with any that the tool defines.

In some cases, the OMPD library must allocate memory to return results to the tool. The tool then
owns this memory and has the responsibility to release it. Thus, the OMPD library and the tool
must use the same memory manager.

The OMPD library creates OMPD handles, which are opaque to the tool and may have a complex
internal structure. The tool cannot determine if the handle pointers that the API returns correspond
to discrete heap allocations. Thus, the tool must not simply deallocate a handle by passing an
address that it receives from the OMPD library to its own memory manager. Instead, the API
includes functions that the tool must use when it no longer needs a handle.

A tool creates contexts and passes them to the OMPD library. The OMPD library does not release
contexts; instead the tool release them after it releases any handles that may reference the contexts.

CHAPTER 5. OMPD INTERFACE 545

1

© o NO®

10

11
12
13

14
15

16
17
18

19
20
21

22

23

24
25

5.4.1.1

5.4.1.2

546

ompd_callback_memory alloc_fn_t

Summary

The ompd_callback_memory_alloc_f£fn_t type is the type signature of the callback routine
that the tool provides to the OMPD library to allocate memory.

Format

C
typedef ompd rc_t (*ompd callback memory alloc fn t) (
ompd_size_t nbytes,
void xxpir

)i

Description

The ompd_callback_memory alloc_fn_t type is the type signature of the memory
allocation callback routine that the tool provides. The OMPD library may call the
ompd_callback_memory_ alloc_f£fn_t callback function to allocate memory.

Description of Arguments
The nbytes argument is the size in bytes of the block of memory to allocate.

The address of the newly allocated block of memory is returned in the location to which the ptr
argument points. The newly allocated block is suitably aligned for any type of variable, and is not
guaranteed to be zeroed.

Cross References
e ompd_size_ t, see Section 5.3.1 on page 536.

e ompd_rc_t, see Section 5.3.12 on page 543.

ompd_callback_memory free_fn_t

Summary

The ompd_callback_memory free_ fn_t type is the type signature of the callback routine
that the tool provides to the OMPD library to deallocate memory.

OpenMP API — Version 5.0 November 2018

w

© O NO O

11

12
13
14
15

16

17
18

19

20

21
22
23

5.4.2

5.4.2.1

Format

C
typedef ompd rc_t (*ompd callback_memory free fn t) (
void *pir
)i
C
Description

The ompd_callback_memory free_fn_t type is the type signature of the memory
deallocation callback routine that the tool provides. The OMPD library may call the
ompd_callback_memory free_£n_t callback function to deallocate memory that was
obtained from a prior call to the ompd_callback_memory_alloc_f£fn_t callback function.

Description of Arguments

The ptr argument is the address of the block to be deallocated.

Cross References

e ompd_rc_t, see Section 5.3.12 on page 543.

e ompd_callback_memory_alloc_f£fn_t, see Section 5.4.1.1 on page 546.
e ompd_callbacks_t, see Section 5.4.6 on page 556.

Context Management and Navigation

Summary

The tool provides the OMPD library with callbacks to manage and to navigate context relationships.

ompd_callback_get_thread context_for thread id fn t

Summary

The ompd_callback_get_thread_ context_for_thread id_f£fn_t is the type
signature of the callback routine that the tool provides to the OMPD library to map a thread
identifier to a tool thread context.

CHAPTER 5. OMPD INTERFACE 547

—_

© 00N O~ WN

10

11
12
13
14
15

16

17
18
19
20

21

22
23

24
25

26
27
28
29
30
31

548

Format

C
typedef ompd rc t
(*ompd_callback get_thread context for thread id fn t) (
ompd_address_space_context_t +*address_space_context,
ompd_thread id_t kind,
ompd_size_t sizeof thread_id,
const void xthread_id,
ompd_thread context_t =*xthread_context

C

Description

The ompd_callback_get_thread_context_for_ thread_id_f£n_t is the type
signature of the context mapping callback routine that the tool provides. This callback maps a
thread identifier to a tool thread context. The thread identifier is within the address space that
address_space_context identifies. The OMPD library can use the thread context, for example, to
access thread local storage.

Description of Arguments

The address_space_context argument is an opaque handle that the tool provides to reference an
address space. The kind, sizeof _thread_id, and thread_id arguments represent a native thread
identifier. On return, the thread_context argument provides an opaque handle that maps a native
thread identifier to a tool thread context.

Restrictions

Routines that use ompd_callback_get_thread context_for thread_id_f£fn_t have

the following restriction:

e The provided thread_context must be valid until the OMPD library returns from the OMPD tool

interface routine.

Cross References

e ompd_size_t, see Section 5.3.1 on page 536.

e ompd_thread_id_t, see Section 5.3.7 on page 539.

e ompd_address_space_context_t, see Section 5.3.11 on page 542.
e ompd_thread_ context_t, see Section 5.3.11 on page 542.

e ompd_rc_t, see Section 5.3.12 on page 543.

OpenMP API — Version 5.0 November 2018

1

w

© 00N

10

11
12
13

14

15
16

17
18
19
20
21

22

23
24
25

5.4.2.2

5.4.3

ompd_callback_sizeof_ fn_ t

Summary

The ompd_callback_sizeof_f£fn_t type is the type signature of the callback routine that the
tool provides to the OMPD library to determine the sizes of the primitive types in an address space.

Format

C
typedef ompd rc t (*ompd callback _sizeof fn t) (
ompd_address_space_context_t =*address_space_context,
ompd_device_type_ sizes_t =*sizes

)i
C

Description

The ompd_callback_sizeof_ fn_t is the type signature of the type-size query callback
routine that the tool provides. This callback provides the sizes of the basic primitive types for a
given address space.

Description of Arguments

The callback returns the sizes of the basic primitive types used by the address space context that the
address_space_context argument specifies in the location to which the sizes argument points.

Cross References

e ompd_address_space_context_t, see Section 5.3.11 on page 542.
e ompd_rc_t, see Section 5.3.12 on page 543.

e ompd_device_type_sizes_t, see Section 5.3.13 on page 544.

e ompd_callbacks_t, see Section 5.4.6 on page 556.

Accessing Memory in the OpenMP Program or Runtime

The OMPD library may need to read from or to write to the OpenMP program. It cannot do this
directly. Instead the OMPD library must use callbacks that the tool provides so that the tool
performs the operation.

CHAPTER 5. OMPD INTERFACE 549

1

13

14
15
16

17
18

19
20

21
22
23
24
25

26
27
28
29
30

31
32

5.4.3.1

550

ompd_callback_symbol_addr_ fn_t

Summary

The ompd_callback_symbol_addr_£n_t type is the type signature of the callback that the
tool provides to look up the addresses of symbols in an OpenMP program.

Format

C
typedef ompd rc_t (*ompd _callback_ symbol_addr_fn t) (
ompd_address_space_context_t =*address_space_context,
ompd thread context_ t =*thread_context,
const char =*symbol_name,
ompd_address_t *symbol_addr,
const char x*file_name

Description

The ompd_callback_symbol_addr_£n_t is the type signature of the symbol-address query
callback routine that the tool provides. This callback looks up addresses of symbols within a
specified address space.

Description of Arguments
This callback looks up the symbol provided in the symbol_name argument.

The address_space_context argument is the tool’s representation of the address space of the
process, core file, or device.

The thread_context argument is NULL for global memory access. If thread_context is not NULL,
thread_context gives the thread specific context for the symbol lookup, for the purpose of
calculating thread local storage addresses. If thread_context is non-null then the thread to which
thread_context refers must be associated with either the process or the device that corresponds to
the address_space_context argument.

The tool uses the symbol_name argument that the OMPD library supplies verbatim. In particular,
no name mangling, demangling or other transformations are performed prior to the lookup. The
symbol_name parameter must correspond to a statically allocated symbol within the specified
address space. The symbol can correspond to any type of object, such as a variable, thread local
storage variable, function, or untyped label. The symbol can have a local, global, or weak binding.

The file_name argument is an optional input parameter that indicates the name of the shared library
in which the symbol is defined, and is intended to help the third party tool disambiguate symbols

OpenMP API — Version 5.0 November 2018

o O @ NOoO O~ WD =

—_

11

12
13

14
15

16
17
18
19
20
21

22

23

24
25

5.4.3.2

that are defined multiple times across the executable or shared library files. The shared library
name may not be an exact match for the name seen by the tool. If file_name is NULL then the tool
first tries to find the symbol in the executable file, and, if the symbol is not found, the tool tries to
find the symbol in the shared libraries in the order in which the shared libraries are loaded into the
address space. If file_name is non-null then the tool first tries to find the symbol in the libraries that
match the name in the file_name argument and, if the symbol is not found, the tool then uses the
same procedure as when file_name is NULL.

The callback does not support finding symbols that are dynamically allocated on the call stack, or
statically allocated symbols that are defined within the scope of a function or subroutine.

The callback returns the symbol’s address in the location to which symbol_addr points.

Restrictions

Routines that use the ompd_callback_symbol_addr_£n_t type have the following
restrictions:

o The address_space_context argument must be non-null.

e The symbol that the symbol_name argument specifies must be defined.

Cross References

ompd_address_t, see Section 5.3.4 on page 538.

e ompd_address_space_context_t, see Section 5.3.11 on page 542.
e ompd_thread_context_t, see Section 5.3.11 on page 542.

e ompd_rc_t, see Section 5.3.12 on page 543.

e ompd_callbacks_t, see Section 5.4.6 on page 556.

ompd callback_ memory read fn_t

Summary

The ompd_callback_memory_ read_£n_t type is the type signature of the callback that the
tool provides to read data from an OpenMP program.

CHAPTER 5. OMPD INTERFACE 551

—_

0N O~ WN

10
11

12
13

14
15
16

17

18
19
20
21
22

23
24
25
26

552

Format

C
typedef ompd rc_t (*xompd callback_memory read fn t) (
ompd_address_space_context_t =*address_space_context,
ompd_thread context_t =xthread_context,
const ompd_address_t *addr,
ompd_size_t nbytes,
void =*buffer

Description

The ompd_callback_memory_ read_£n_t is the type signature of the read callback routines
that the tool provides.

The read_memory callback copies a block of data from addr within the address space to the tool
buffer.

The read_string callback copies a string to which addr points, including the terminating null
byte (“ \0’), to the tool buffer. At most nbytes bytes are copied. If a null byte is not among the first
nbytes bytes, the string placed in buffer is not null-terminated.

Description of Arguments

The address from which the data are to be read from the OpenMP program specified by
address_space_context is given by addr. while nbytes gives the number of bytes to be transferred.
The thread_context argument is optional for global memory access, and in this case should be
NULL. If it is non-null, thread_context identifies the thread specific context for the memory access
for the purpose of accessing thread local storage.

The data are returned through buffer, which is allocated and owned by the OMPD library. The
contents of the buffer are unstructured, raw bytes. The OMPD library must arrange for any
transformations such as byte-swapping that may be necessary (see Section 5.4.4 on page 554) to
interpret the data.

OpenMP API — Version 5.0 November 2018

o N o o A~ W DN

10

11
12

13

14
15
16
17
18
19
20

21

22
23
24

5.4.3.3

Cross References

e ompd_size_t, see Section 5.3.1 on page 536.

e ompd_address_t, see Section 5.3.4 on page 538.

e ompd_address_space_context_t, see Section 5.3.11 on page 542.
e ompd_thread_context_t, see Section 5.3.11 on page 542.

e ompd_rc_t, see Section 5.3.12 on page 543.

e ompd_callback_device_host_f£n_t, see Section 5.4.4 on page 554.
e ompd_callbacks_t, see Section 5.4.6 on page 556.

ompd callback memory write_fn t

Summary

The ompd_callback_memory write_f£fn_t type is the type signature of the callback that
the tool provides to write data to an OpenMP program.

Format
C

typedef ompd rc_t (*ompd callback memory write fn t) (
ompd_address_space_context_t =*address_space_context,
ompd_thread context_t =xthread_context,
const ompd_address_t *addr,
ompd_size_t nbytes,
const void =*buffer

)i

Description

The ompd_callback_memory_write_f£n_t is the type signature of the write callback
routine that the tool provides. The OMPD library may call this callback to have the tool write a
block of data to a location within an address space from a provided buffer.

CHAPTER 5. OMPD INTERFACE 553

O OWoo~N OO =

—_

11
12
13
14
15
16
17
18

19
20

21

22
23
24

5.4.4

554

Description of Arguments

The address to which the data are to be written in the OpenMP program that address_space_context
specifies is given by addr. The nbytes argument is the number of bytes to be transferred. The
thread_context argument is optional for global memory access, and, in this case, should be NULL.
If it is non-null then thread_context identifies the thread-specific context for the memory access for
the purpose of accessing thread local storage.

The data to be written are passed through buffer, which is allocated and owned by the OMPD
library. The contents of the buffer are unstructured, raw bytes. The OMPD library must arrange for
any transformations such as byte-swapping that may be necessary (see Section 5.4.4 on page 554)
to render the data into a form that is compatible with the OpenMP runtime.

Cross References

e ompd_size_t, see Section 5.3.1 on page 536.

e ompd_address_t, see Section 5.3.4 on page 538.

e ompd_address_space_context_t, see Section 5.3.11 on page 542.
e ompd_thread_context_t, see Section 5.3.11 on page 542.

e ompd_rc_t, see Section 5.3.12 on page 543.

e ompd_callback_device_host_f£fn_t, see Section 5.4.4 on page 554.

e ompd_callbacks_t, see Section 5.4.6 on page 556.

Data Format Conversion:
ompd_callback_device_host_f£fn_t
Summary

The ompd_callback_device_host_£fn_t type is the type signature of the callback that the
tool provides to convert data between the formats that the tool and the OMPD library use and that
the OpenMP program uses.

OpenMP API — Version 5.0 November 2018

—_

O NO O~ WDN

10
11
12
13
14
15

16

17
18
19
20

21
22

23
24
25
26
27

Format

C
typedef ompd rc_t (*ompd callback_device_host_fn t) (
ompd_address_space_context_t =*address_space_context,
const void xinput,
ompd_size_t unit_size,
ompd_size_t count,
void xoutput

)i

Description

The architecture and/or programming-model of the tool and the OMPD library may be different
from that of the OpenMP program that is being examined. Thus, the conventions for representing
data may differ. The callback interface includes operations to convert between the conventions,
such as the byte order (endianness), that the tool and OMPD library use and the one that the
OpenMP program uses. The callback with the ompd_callback_device_host_£n_t type
signature convert data between formats

Description of Arguments

The address_space_context argument specifies the OpenMP address space that is associated with

the data. The input argument is the source buffer and the output argument is the destination buffer.
The unit_size argument is the size of each of the elements to be converted. The count argument is

the number of elements to be transformed.

The OMPD library allocates and owns the input and output buffers. It must ensure that the buffers
have the correct size, and are eventually deallocated when they are no longer needed.

Cross References

e ompd_size_t, see Section 5.3.1 on page 536.

e ompd_address_space_context_t, see Section 5.3.11 on page 542.
e ompd_rc_t, see Section 5.3.12 on page 543.

e ompd_callbacks_t, see Section 5.4.6 on page 556.

CHAPTER 5. OMPD INTERFACE 555

1

w

© 0N O

10

11
12
13
14

15

16
17

18

19
20
21

22

23

24
25
26

5.4.5

5.4.6

556

Output: ompd_callback_print_string fn_t

Summary

The ompd_callback print_string fn_t type is the type signature of the callback that
tool provides so that the OMPD library can emit output.

Format

C
typedef ompd rc_t (*xompd callback_print_string fn t) (
const char =*siring,
int category

)i

Description

The OMPD library may call the ompd_callback_print_string fn_t callback function to
emit output, such as logging or debug information. The tool may set the
ompd_callback_print_string £n_t callback function to NULL to prevent the OMPD
library from emitting output; the OMPD may not write to file descriptors that it did not open.

Description of Arguments

The string argument is the null-terminated string to be printed. No conversion or formatting is
performed on the string.

The category argument is the implementation-defined category of the string to be printed.

Cross References
e ompd_rc_t, see Section 5.3.12 on page 543.

e ompd_callbacks_t, see Section 5.4.6 on page 556.

The Callback Interface

Summary

All OMPD library interactions with the OpenMP program must be through a set of callbacks that
the tool provides. These callbacks must also be used for allocating or releasing resources, such as
memory, that the library needs.

OpenMP API — Version 5.0 November 2018

-
O OWoONOOOLA~WN

11
12
13
14
15

16

17
18
19
20

21
22

23

24
25
26
27
28
29
30
31

32
33
34
35

36
37

Format
C

typedef struct ompd callbacks_t {
ompd_callback_memory alloc_f£fn_t alloc_memory;
ompd_callback_memory free_ fn_t free_memory;
ompd_callback print_string fn t print_string;
ompd_callback_sizeof fn_t sizeof type;
ompd_callback_symbol_addr_ fn_t symbol_addr_lookup;
ompd_callback_memory read fn_t read_memory;
ompd_callback_memory write_£n_t write_memory;
ompd_callback_memory read fn_t read_string;
ompd_callback device host_fn_t device_to_host;
ompd_callback_device_host_fn_t host_to_device;
ompd_callback_get_thread context_ for_thread id fn t

get_thread_context_for_thread_id;
} ompd_callbacks_t;

C

Description

The set of callbacks that the OMPD library must use is collected in the ompd_callbacks_t
record structure. An instance of this type is passed to the OMPD library as a parameter to
ompd_initialize (see Section 5.5.1.1 on page 558). Each field points to a function that the
OMPD library must use to interact with the OpenMP program or for memory operations.

The alloc_memory and free_memory fields are pointers to functions the OMPD library uses to
allocate and to release dynamic memory.

print_string points to a function that prints a string.

The architectures or programming models of the OMPD library and third party tool may be
different from that of the OpenMP program that is being examined. sizeof _type points to function
that allows the OMPD library to determine the sizes of the basic integer and pointer types that the
OpenMP program uses. Because of the differences in architecture or programming model, the
conventions for representing data in the OMPD library and the OpenMP program may be different.
The device_to_host field points to a function that translates data from the conventions that the
OpenMP program uses to those that the tool and OMPD library use. The reverse operation is
performed by the function to which the host_to_device field points.

The symbol_addr_lookup field points to a callback that the OMPD library can use to find the
address of a global or thread local storage symbol. The read_memory, read_string, and
write_memory fields are pointers to functions for reading from and writing to global memory or
thread local storage in the OpenMP program.

The get_thread_context_for_thread_id field is a pointer to a function that the OMPD library can
use to obtain a thread context that corresponds to a native thread identifier.

CHAPTER 5. OMPD INTERFACE 557

o © 0o N o o WO o=

—_ -
—_

12

13

14
15
16

17
18
19
20
21
22

23

24
25

5.5
5.5.1

5.5.1.1

558

Cross References
e ompd_callback_memory_alloc_f£fn_t, see Section 5.4.1.1 on page 546.
e ompd _callback memory_ free fn_t, see Section 5.4.1.2 on page 546.

e ompd_callback_get_thread context_for_thread_id_fn_t, see Section 5.4.2.1
on page 547.

e ompd_callback_sizeof_ fn_t, see Section 5.4.2.2 on page 549.

e ompd_callback symbol_addr_ fn_t, see Section 5.4.3.1 on page 550.
e ompd_callback_memory_read_f£fn_t, see Section 5.4.3.2 on page 551.
e ompd_callback_memory write_f£fn_t, see Section 5.4.3.3 on page 553.
e ompd_callback_device_host_f£fn_t, see Section 5.4.4 on page 554.

e ompd_callback print_string fn_ t, see Section 5.4.5 on page 556

OMPD Tool Interface Routines

Per OMPD Library Initialization and Finalization

The OMPD library must be initialized exactly once after it is loaded, and finalized exactly once
before it is unloaded. Per OpenMP process or core file initialization and finalization are also
required.

Once loaded, the tool can determine the version of the OMPD API that the library supports by
calling ompd_get_api_version (see Section 5.5.1.2 on page 559). If the tool supports the
version that ompd_get_api_version returns, the tool starts the initialization by calling
ompd_initialize (see Section 5.5.1.1 on page 558) using the version of the OMPD API that
the library supports. If the tool does not support the version that ompd_get_api_version
returns, it may attempt to call ompd_initialize with a different version.

ompd_initialize

Summary

The ompd_initialize function initializes the OMPD library.

OpenMP API — Version 5.0 November 2018

—_

a b~ wN

- OwWo~N O

—_

12

13
14

15
16
17
18

19
20
21
22

23

24
25

5.5.1.2

Format
C

ompd rc_t ompd _initialize(
ompd_word_t api version,
const ompd_callbacks_t =xcallbacks

)i
C

Description

A tool that uses OMPD calls ompd_initialize to initialize each OMPD library that it loads.
More than one library may be present in a third-party tool, such as a debugger, because the tool
may control multiple devices, which may use different runtime systems that require different
OMPD libraries. This initialization must be performed exactly once before the tool can begin to
operate on an OpenMP process or core file.

Description of Arguments

The api_version argument is the OMPD API version that the tool requests to use. The tool may call
ompd_get_api_version to obtain the latest version that the OMPD library supports.

The tool provides the OMPD library with a set of callback functions in the callbacks input
argument which enables the OMPD library to allocate and to deallocate memory in the tool’s
address space, to lookup the sizes of basic primitive types in the device, to lookup symbols in the
device, and to read and to write memory in the device.

Cross References
e ompd_rc_t type, see Section 5.3.12 on page 543.
e ompd_callbacks_t type, see Section 5.4.6 on page 556.

e ompd_get_api_version call, see Section 5.5.1.2 on page 559.

ompd get_api_version

Summary

The ompd_get_api_version function returns the OMPD API version.

CHAPTER 5. OMPD INTERFACE 559

10

11

12
13

14

15

16

17
18

5.5.1.3

560

Format
C

I ompd _rc_t ompd get_api_version (ompd word t =*version) ;

C

Description

The tool may call the ompd_get_api_version function to obtain the latest OMPD API
version number of the OMPD library.

Description of Arguments

The latest version number is returned into the location to which the version argument points.

Cross References
e ompd_rc_t type, see Section 5.3.12 on page 543.

ompd_get_version_string

Summary

The ompd_get_version_string function returns a descriptive string for the OMPD API
version.

Format
C

Iompd_rc_t ompd_get_version_string(const char =xxsiring) ;
C

Description

The tool may call this function to obtain a pointer to a descriptive version string of the OMPD API

version.

OpenMP API — Version 5.0 November 2018

15

16

17
18

19

20

21

22
23

24
25
26

5.5.14

Description of Arguments

A pointer to a descriptive version string is placed into the location to which string output argument
points. The OMPD library owns the string that the OMPD library returns; the tool must not modify
or release this string. The string remains valid for as long as the library is loaded. The
ompd_get_version_string function may be called before ompd_initialize (see
Section 5.5.1.1 on page 558). Accordingly, the OMPD library must not use heap or stack memory
for the string.

The signatures of ompd_get_api_version (see Section 5.5.1.2 on page 559) and
ompd_get_version_string are guaranteed not to change in future versions of the API. In
contrast, the type definitions and prototypes in the rest of the API do not carry the same guarantee.
Therefore a tool that uses OMPD should check the version of the API of the loaded OMPD library
before it calls any other function of the API.

Cross References

e ompd_rc_t type, see Section 5.3.12 on page 543.

ompd finalize

Summary

When the tool is finished with the OMPD library it should call ompd_finalize before it
unloads the library.

Format
C

I ompd rc_t ompd_finalize (void);

C

Description

The call to ompd_finalize must be the last OMPD call that the tool makes before it unloads the
library. This call allows the OMPD library to free any resources that it may be holding.

The OMPD library may implement a finalizer section, which executes as the library is unloaded
and therefore after the call to ompd_finalize. During finalization, the OMPD library may use
the callbacks that the tool earlier provided after the call to ompd_initialize.

CHAPTER 5. OMPD INTERFACE 561

10
11
12

13

14
15
16
17
18
19
20

21

22
23
24

5.5.2
5.5.2.1

562

Cross References
e ompd_rc_t type, see Section 5.3.12 on page 543.

Per OpenMP Process Initialization and Finalization

ompd_process_initialize

Summary

A tool calls ompd_process_initialize to obtain an address space handle when it initializes
a session on a live process or core file.

Format
C

ompd_rc_t ompd process_initialize (
ompd_address_space_context_t xcontext,
ompd_address_space_handle_t =xx*handle

)
C

Description

A tool calls ompd_process_initialize to obtain an address space handle when it initializes
a session on a live process or core file. On return from ompd_process_initialize, the tool
owns the address space handle, which it must release with
ompd_rel_address_space_handle. The initialization function must be called before any
OMPD operations are performed on the OpenMP process. This call allows the OMPD library to
confirm that it can handle the OpenMP process or core file that the confext identifies.
Incompatibility is signaled by a return value of ompd_rc_incompatible.

Description of Arguments

The context argument is an opaque handle that the tool provides to address an address space. On
return, the handle argument provides an opaque handle to the tool for this address space, which the
tool must release when it is no longer needed.

OpenMP API — Version 5.0 November 2018

a A~ W N

10

11
12
13
14
15
16
17
18

19

20
21
22

23

24
25
26
27
28

5.5.2.2

Cross References
e ompd_address_space_handle_t type, see Section 5.3.8 on page 540.

ompd_address_space_context_t type, see Section 5.3.11 on page 542.
e ompd_rc_t type, see Section 5.3.12 on page 543.
e ompd_rel_ address_space_handle type, see Section 5.5.2.3 on page 564.

ompd_device_initialize

Summary

A tool calls ompd_device_initialize to obtain an address space handle for a device that has
at least one active target region.

Format
C

ompd rc_t ompd device_ initialize (
ompd_address_space_handle_t =*process_handle,
ompd_address_space_context_t =*device_context,
ompd_device_t kind,
ompd_size_t sizeof id,
void *id,
ompd_address_space_handle_t =*x*device_handle

C

Description

A tool calls ompd_device_initialize to obtain an address space handle for a device that has
at least one active target region. On return from ompd_device_initialize, the tool owns the
address space handle.

Description of Arguments

The process_handle argument is an opaque handle that the tool provides to reference the address
space of the OpenMP process. The device_context argument is an opaque handle that the tool
provides to reference a device address space. The kind, sizeof_id, and id arguments represent a
device identifier. On return the device_handle argument provides an opaque handle to the tool for
this address space.

CHAPTER 5. OMPD INTERFACE 563

—_

o g~ WD

10

11
12
13

14

15
16
17

18
19

20
21

22
23

5.5.2.3

564

Cross References

e ompd_size_t type, see Section 5.3.1 on page 536.

e ompd_device_t type, see Section 5.3.6 on page 539.

e ompd_address_space_handle_t type, see Section 5.3.8 on page 540.

e ompd_address_space_context_t type, see Section 5.3.11 on page 542.

e ompd_rc_t type, see Section 5.3.12 on page 543.

ompd_rel_ address_space_handle

Summary

A tool calls ompd_rel_address_space_handle to release an address space handle.

Format

C
ompd rc_t ompd rel address_ space_ handle (
ompd_address_space_handle_ t xhandle

| BE
C

Description

When the tool is finished with the OpenMP process address space handle it should call
ompd_rel_address_space_handle to release the handle, which allows the OMPD library
to release any resources that it has related to the address space.

Description of Arguments

The handle argument is an opaque handle for the address space to be released.

Restrictions
The ompd_rel_address_space_handle has the following restriction:

e An address space context must not be used after the corresponding address space handle is
released.

OpenMP API — Version 5.0 November 2018

4

(o]

©

10

11
12

13

14
15
16
17

18

19
20

5.5.3

5.5.4
5.5.4.1

Cross References
e ompd_address_space_handle_t type, see Section 5.3.8 on page 540.

e ompd_rc_t type, see Section 5.3.12 on page 543.

Thread and Signal Safety

The OMPD library does not need to be reentrant. The tool must ensure that only one thread enters
the OMPD library at a time. The OMPD library must not install signal handlers or otherwise
interfere with the tool’s signal configuration.

Address Space Information

ompd_get_omp_version

Summary

The tool may call the ompd_get_omp_version function to obtain the version of the OpenMP
API that is associated with an address space.

Format
C

ompd_rc_t ompd get_omp_ version (
ompd_address_space_handle_t =*address_space,
ompd_word_t *omp_version

)

Description

The tool may call the ompd_get_omp_version function to obtain the version of the OpenMP
API that is associated with the address space.

CHAPTER 5. OMPD INTERFACE 565

as~ O =

(o]

10

11
12

13

14
15
16
17

18

19
20

21

22
23
24
25
26

5.5.4.2

566

Description of Arguments

The address_space argument is an opaque handle that the tool provides to reference the address
space of the OpenMP process or device.

Upon return, the omp_version argument contains the version of the OpenMP runtime in the
__ OPENMP version macro format.

Cross References
e ompd_address_space_handle_t type, see Section 5.3.8 on page 540.

e ompd_rc_t type, see Section 5.3.12 on page 543.

ompd_get_omp_version_string

Summary

The ompd_get_omp_version_string function returns a descriptive string for the OpenMP
API version that is associated with an address space.

Format
C

ompd_rc_t ompd get_omp_version_string(
ompd_address_space_handle_t =*address_space,
const char x*xstring

)

Description

After initialization, the tool may call the ompd_get_omp_version_string function to obtain
the version of the OpenMP API that is associated with an address space.

Description of Arguments

The address_space argument is an opaque handle that the tool provides to reference the address
space of the OpenMP process or device. A pointer to a descriptive version string is placed into the
location to which the string output argument points. After returning from the call, the tool owns the
string. The OMPD library must use the memory allocation callback that the tool provides to
allocate the string storage. The tool is responsible for releasing the memory.

OpenMP API — Version 5.0 November 2018

10
11
12
13
14

15

16
17
18

19

20
21
22

23
24

25
26

5.5.5
5.5.5.1

Cross References
e ompd_address_space_handle_t type, see Section 5.3.8 on page 540.

e ompd_rc_t type, see Section 5.3.12 on page 543.

Thread Handles

ompd _get_thread_in_parallel

Summary

The ompd_get_thread_in_parallel function enables a tool to obtain handles for OpenMP
threads that are associated with a parallel region.

Format

C
ompd_rc_t ompd get_thread in parallel (
ompd_parallel handle_t =*parallel_handle,
int thread_num,
ompd_thread _handle_t =xxthread_handle
)

C

Description

A successful invocation of ompd_get_thread_in_ parallel returns a pointer to a thread
handle in the location to which thread_handle points. This call yields meaningful results only
if all OpenMP threads in the parallel region are stopped.

Description of Arguments

The parallel_handle argument is an opaque handle for a parallel region and selects the parallel
region on which to operate. The thread_num argument selects the thread of the team to be returned.
On return, the thread_handle argument is an opaque handle for the selected thread.

Restrictions
The ompd_get_thread_in_parallel function has the following restriction:

e The value of thread_num must be a non-negative integer smaller than the team size that was
provided as the ompd-team-size-var from ompd_get_icv_from scope.

CHAPTER 5. OMPD INTERFACE 567

—_

a A~ W N

10
11
12
13
14
15
16

17

18
19
20

21

22
23
24

25
26

5.5.5.2

568

Cross References

e ompd_parallel_handle_t type, see Section 5.3.8 on page 540.
e ompd_thread handle_t type, see Section 5.3.8 on page 540.

e ompd_rc_t type, see Section 5.3.12 on page 543.

e ompd_get_icv_from_scope call, see Section 5.5.9.2 on page 590.

ompd_get_thread_handle

Summary

The ompd_get_thread_handle function maps a native thread to an OMPD thread handle.

Format

C
ompd_rc_t ompd get_thread handle (
ompd_address_space_handle_t =xhandle,
ompd_thread id t kind,
ompd_size_t sizeof thread_id,
const void =xthread_id,
ompd_thread handle_t x*xthread_handle

C

Description

The ompd_get_thread_handle function determines if the native thread identifier to which
thread_id points represents an OpenMP thread. If so, the function returns ompd_rc_ok and the
location to which thread_handle points is set to the thread handle for the OpenMP thread.

Description of Arguments

The handle argument is an opaque handle that the tool provides to reference an address space. The
kind, sizeof _thread_id, and thread_id arguments represent a native thread identifier. On return, the
thread_handle argument provides an opaque handle to the thread within the provided address space.

The native thread identifier to which thread_id points is guaranteed to be valid for the duration of
the call. If the OMPD library must retain the native thread identifier, it must copy it.

OpenMP API — Version 5.0 November 2018

[2BNNNG) N L% A \¢]

10

11
12
13

14

15
16

17
18

19
20
21

5.5.5.3

Cross References

e ompd_size_t type, see Section 5.3.1 on page 536.

e ompd_thread id_t type, see Section 5.3.7 on page 539.

e ompd_address_space_handle_t type, see Section 5.3.8 on page 540.
e ompd_thread_handle_t type, see Section 5.3.8 on page 540.

e ompd_rc_t type, see Section 5.3.12 on page 543.

ompd_rel_thread_handle

Summary

The ompd_rel_thread_handle function releases a thread handle.

Format

C
ompd rc_t ompd rel thread handle (

ompd_thread_handle_t =xthread_handle

1)
C

Description

Thread handles are opaque to tools, which therefore cannot release them directly. Instead, when the
tool is finished with a thread handle it must pass it to ompd_rel_thread_handle for disposal.

Description of Arguments

The thread_handle argument is an opaque handle for a thread to be released.

Cross References
e ompd_thread handle_t type, see Section 5.3.8 on page 540.
e ompd_rc_t type, see Section 5.3.12 on page 543.

CHAPTER 5. OMPD INTERFACE 569

1

© 0N O,

10

11
12
13
14

15
16
17
18

19

20
21

22
23
24

25

26
27

5.5.5.4

5.5.5.5

570

ompd_thread_handle_compare

Summary

The ompd_thread_handle_compare function allows tools to compare two thread handles.

Format
C

ompd rc_t ompd thread handle compare (
ompd_thread handle_t =thread handle_1,
ompd_thread handle_t =thread_handle_2,
int *cmp_value

)

Description

The internal structure of thread handles is opaque to a tool. While the tool can easily compare
pointers to thread handles, it cannot determine whether handles of two different addresses refer to
the same underlying thread. The ompd_thread handle_compare function compares thread
handles.

On success, ompd_thread handle_compare returns in the location to which cmp_value
points a signed integer value that indicates how the underlying threads compare: a value less than,
equal to, or greater than O indicates that the thread corresponding to thread_handle_] is,
respectively, less than, equal to, or greater than that corresponding to thread_handle_2.

Description of Arguments

The thread_handle_1 and thread_handle_2 arguments are opaque handles for threads. On return
the cmp_value argument is set to a signed integer value.

Cross References
e ompd_thread handle_t type, see Section 5.3.8 on page 540.
e ompd_rc_t type, see Section 5.3.12 on page 543.

ompd_get_thread_id

Summary
The ompd_get_thread_id maps an OMPD thread handle to a native thread.

OpenMP API — Version 5.0 November 2018

—_

No ok~ wND

10

11
12
13

14
15
16
17
18

19

20

21

22
23

5.5.6
5.5.6.1

Format

C
ompd rc_t ompd_get_thread id(
ompd_thread handle_t =xthread_handle,
ompd_thread_ id t kind,
ompd_size_t sizeof thread_id,
void =xthread id

)

Description

The ompd_get_thread_id function maps an OMPD thread handle to a native thread identifier.

Description of Arguments

The thread_handle argument is an opaque thread handle. The kind argument represents the native
thread identifier. The sizeof_thread_id argument represents the size of the native thread identifier.
On return, the thread_id argument is a buffer that represents a native thread identifier.

Cross References

e ompd_size_t type, see Section 5.3.1 on page 536.

e ompd_thread_id_t type, see Section 5.3.7 on page 539.

e ompd_thread handle_t type, see Section 5.3.8 on page 540.
e ompd_rc_t type, see Section 5.3.12 on page 543.

Parallel Region Handles

ompd_get_curr_ parallel_handle

Summary

The ompd_get_curr_parallel_handle function obtains a pointer to the parallel handle for
an OpenMP thread’s current parallel region.

CHAPTER 5. OMPD INTERFACE 571

—_

[S2 0 oI \V]

O O oo~N O

11

12
13
14

15
16
17
18
19

20

21

22
23

5.5.6.2

572

Format

C
ompd_rc_t ompd get_curr parallel_ handle (
ompd_thread handle_t xthread_handle,
ompd_parallel_handle_t =xxparallel_handle
)i

C

Description

The ompd_get_curr_parallel_handle function enables the tool to obtain a pointer to the
parallel handle for the current parallel region that is associated with an OpenMP thread. This call is
meaningful only if the associated thread is stopped. The parallel handle must be released by calling
ompd_rel_ parallel_handle.

Description of Arguments

The thread_handle argument is an opaque handle for a thread and selects the thread on which to
operate. On return, the parallel_handle argument is set to a handle for the parallel region that the
associated thread is currently executing, if any.

Cross References

e ompd_thread_handle_t type, see Section 5.3.8 on page 540.

e ompd_parallel_handle_t type, see Section 5.3.8 on page 540.

e ompd_rc_t type, see Section 5.3.12 on page 543.

e ompd_rel_parallel_handle call, see Section 5.5.6.4 on page 574.

ompd_get_enclosing_parallel_handle

Summary

The ompd_get_enclosing parallel_handle function obtains a pointer to the parallel
handle for an enclosing parallel region.

OpenMP API — Version 5.0 November 2018

—_

a b~ wN

o N O

11
12

13

14
15
16

17
18
19
20

21

22

23
24

5.5.6.3

Format

C
ompd _rc_t ompd_get_enclosing parallel_ handle(
ompd_parallel _handle_t =*parallel_handle,
ompd_parallel_handle_t =xxenclosing_parallel_handle

)i
C

Description

The ompd_get_enclosing parallel_ handle function enables a tool to obtain a pointer
to the parallel handle for the parallel region that encloses the parallel region that
parallel_handle specifies. This call is meaningful only if at least one thread in the parallel
region is stopped. A pointer to the parallel handle for the enclosing region is returned in the
location to which enclosing_parallel_handle points. After the call, the tool owns the handle; the
tool must release the handle with ompd_rel_parallel_handle when it is no longer required.

Description of Arguments

The parallel_handle argument is an opaque handle for a parallel region that selects the parallel
region on which to operate. On return, the enclosing_parallel_handle argument is set to a handle
for the parallel region that encloses the selected parallel region.

Cross References

e ompd parallel handle_t type, see Section 5.3.8 on page 540.

e ompd_rc_t type, see Section 5.3.12 on page 543.

e ompd_rel_parallel_handle call, see Section 5.5.6.4 on page 574.

ompd_get_task_parallel_handle

Summary

The ompd_get_task_parallel_handle function obtains a pointer to the parallel handle for
the parallel region that encloses a task region.

CHAPTER 5. OMPD INTERFACE 573

—_

a B~ wN

- OOV oo~N O

—_

12

13
14

15
16
17
18
19

20

21
22

23

24
25
26

Format

C
ompd rc_t ompd get_task parallel handle (

ompd_task_handle_t =xtask_handle,
ompd_parallel_handle_t =*xtask_parallel_handle
)i

C

Description

The ompd_get_task_parallel_handle function enables a tool to obtain a pointer to the
parallel handle for the parallel region that encloses the task region that task_handle specifies. This
call is meaningful only if at least one thread in the parallel region is stopped. A pointer to the
parallel regions handle is returned in the location to which task_parallel_handle points. The tool
owns that parallel handle, which it must release with ompd_rel_parallel_handle.

Description of Arguments

The task_handle argument is an opaque handle that selects the task on which to operate. On return,
the parallel_handle argument is set to a handle for the parallel region that encloses the selected task.

Cross References

e ompd_task_ handle_t type, see Section 5.3.8 on page 540.

e ompd_parallel_handle_t type, see Section 5.3.8 on page 540.

e ompd_rc_t type, see Section 5.3.12 on page 543.

e ompd_rel parallel_ handle call, see Section 5.5.6.4 on page 574.

5.5.6.4 ompd_rel_parallel_handle

Summary

The ompd_rel_parallel_handle function releases a parallel region handle.

Format

C
ompd_rc_t ompd rel parallel_ handle (

ompd_parallel_handle_t =*parallel_handle
)i

C

574 OpenMP API — Version 5.0 November 2018

A WOWN

10

11
12

13

14
15
16
17
18

19

20
21
22
23

24
25
26
27
28
29

5.5.6.5

Description

Parallel region handles are opaque so tools cannot release them directly. Instead, a tool must pass a
parallel region handle to the ompd_rel_parallel handle function for disposal when
finished with it.

Description of Arguments

The parallel_handle argument is an opaque handle to be released.

Cross References
e ompd parallel handle_t type, see Section 5.3.8 on page 540.
e ompd_rc_t type, see Section 5.3.12 on page 543.

ompd_parallel_handle_ compare

Summary

The ompd_parallel handle_compare function compares two parallel region handles.

Format
C

ompd rc_t ompd parallel_handle_compare (
ompd_parallel_handle_t =*parallel_handle_I,
ompd_parallel_handle_t =xparallel_handle 2,
int *cmp_value

)i

Description

The internal structure of parallel region handles is opaque to tools. While tools can easily compare
pointers to parallel region handles, they cannot determine whether handles at two different
addresses refer to the same underlying parallel region and, instead must use the
ompd_parallel_handle_compare function.

On success, ompd_parallel handle_compare returns a signed integer value in the location
to which cmp_value points that indicates how the underlying parallel regions compare. A value less
than, equal to, or greater than O indicates that the region corresponding to parallel_handle_1 is,
respectively, less than, equal to, or greater than that corresponding to parallel_handle_2. This
function is provided since the means by which parallel region handles are ordered is
implementation defined.

CHAPTER 5. OMPD INTERFACE 575

AN =

(¢}

(0]

10

11
12

13

14
15
16
17

18

19
20
21
22

23

24
25
26

5.5.7
5.5.7.1

576

Description of Arguments

The parallel_handle_I and parallel_handle_2 arguments are opaque handles that correspond to
parallel regions. On return the cmp_value argument points to a signed integer value that indicates
how the underlying parallel regions compare.

Cross References
e ompd_parallel_handle_t type, see Section 5.3.8 on page 540.
e ompd_rc_t type, see Section 5.3.12 on page 543.

Task Handles

ompd_get_curr_ task_handle

Summary

The ompd_get_curr_task_handle function obtains a pointer to the task handle for the
current task region that is associated with an OpenMP thread.

Format
C
ompd rc_t ompd get_ curr task_handle (
ompd_thread handle_t =*thread handle,
ompd_task_handle_t *x*fask_handle

)i
C

Description

The ompd_get_curr_task_handle function obtains a pointer to the task handle for the
current task region that is associated with an OpenMP thread. This call is meaningful only if the
thread for which the handle is provided is stopped. The task handle must be released with
ompd_rel_task_handle.

Description of Arguments

The thread_handle argument is an opaque handle that selects the thread on which to operate. On
return, the rask_handle argument points to a location that points to a handle for the task that the
thread is currently executing.

OpenMP API — Version 5.0 November 2018

a ~ W N

10

11
12
13
14

15

16
17
18
19
20
21

22

23
24
25

5.5.7.2

Cross References

e ompd_thread_handle_t type, see Section 5.3.8 on page 540.
e ompd_task handle_t type, see Section 5.3.8 on page 540.

e ompd_rc_t type, see Section 5.3.12 on page 543.

e ompd_rel_task_handle call, see Section 5.5.7.5 on page 580.

ompd_get_generating_ task_handle

Summary

The ompd_get_generating_task_handle function obtains a pointer to the task handle of
the generating task region.

Format
C

ompd rc_t ompd get generating task handle(
ompd_task_handle_t =*rfask_handle,
ompd_task_handle_ t =*x*generating_task_handle

)i

C

Description

The ompd_get_generating_ task_handle function obtains a pointer to the task handle for
the task that encountered the OpenMP task construct that generated the task represented by
task_handle. The generating task is the OpenMP task that was active when the task specified by
task_handle was created. This call is meaningful only if the thread that is executing the task that
task_handle specifies is stopped. The generating task handle must be released with
ompd_rel task handle.

Description of Arguments

The task_handle argument is an opaque handle that selects the task on which to operate. On return,
the generating_task_handle argument points to a location that points to a handle for the generating
task.

CHAPTER 5. OMPD INTERFACE 577

—_

£ NGO R o)

10
11
12
13

14

15
16
17
18

19

20
21
22
23

24
25
26
27

5.5.7.3

578

Cross References

e ompd_task_handle_t type, see Section 5.3.8 on page 540.

e ompd_rc_t type, see Section 5.3.12 on page 543.

e ompd_rel_task_handle call, see Section 5.5.7.5 on page 580.

ompd_get_scheduling task_handle

Summary

The ompd_get_scheduling_ task_handle function obtains a task handle for the task that
was active at a task scheduling point.

Format

C
ompd_rc_t ompd get_scheduling task_handle (

ompd_task_handle_t =xtask_handle,
ompd task_handle t xxscheduling task _handle
);

C

Description

The ompd_get_scheduling_task_handle function obtains a task handle for the task that
was active when the task that rask_handle represents was scheduled. This call is meaningful only if
the thread that is executing the task that rask_handle specifies is stopped. The scheduling task
handle must be released with ompd_rel_task_handle.

Description of Arguments

The task_handle argument is an opaque handle for a task and selects the task on which to operate.
On return, the scheduling_task_handle argument points to a location that points to a handle for the
task that is still on the stack of execution on the same thread and was deferred in favor of executing
the selected task.

Cross References

e ompd_task_handle_t type, see Section 5.3.8 on page 540.

e ompd_rc_t type, see Section 5.3.12 on page 543.

e ompd_rel task handle call, see Section 5.5.7.5 on page 580.

OpenMP API — Version 5.0 November 2018

1

w

O O 00N O

11

12
13
14
15

16

17
18
19
20
21

22
23

24
25

5.5.7.4

ompd_get_task_in_parallel

Summary

The ompd_get_task_in_parallel function obtains handles for the implicit tasks that are
associated with a parallel region.

Format

C
ompd rc_t ompd get task in parallel (
ompd_parallel handle_t =*parallel_handle,
int thread_num,
ompd_task_handle_t =x=*task_handle
)i

C

Description

The ompd_get_task_in_parallel function obtains handles for the implicit tasks that are
associated with a parallel region. A successful invocation of ompd_get_task_in_parallel
returns a pointer to a task handle in the location to which task_handle points. This call yields
meaningful results only if all OpenMP threads in the parallel region are stopped.

Description of Arguments

The parallel_handle argument is an opaque handle that selects the parallel region on which to
operate. The thread_num argument selects the implicit task of the team that is returned. The
selected implicit task would return thread_num from a call of the omp_get_thread_num()
routine. On return, the task_handle argument points to a location that points to an opaque handle
for the selected implicit task.

Restrictions
The following restriction applies to the ompd_get_task_in_parallel function:

e The value of thread_num must be a non-negative integer that is smaller than the size of the team
size that is the value of the ompd-team-size-var that ompd_get_icv_from_scope returns.

CHAPTER 5. OMPD INTERFACE 579

—_

a A~ W N

10
11
12

13

14
15

16
17

18
19
20

21

22
23

5.5.7.5

5.5.7.6

580

Cross References

e ompd_parallel_handle_t type, see Section 5.3.8 on page 540.
e ompd_task_ handle_t type, see Section 5.3.8 on page 540.

e ompd_rc_t type, see Section 5.3.12 on page 543.

e ompd_get_icv_from_scope call, see Section 5.5.9.2 on page 590.

ompd_rel_task_handle

Summary

This ompd_rel_task_handle function releases a task handle.

Format
C
ompd_rc_t ompd rel_ task_handle (
ompd task_handle_ t xtask_handle
)i
C

Description

Task handles are opaque so tools cannot release them directly. Instead, when a tool is finished with
a task handle it must use the ompd_rel_task_handle function to release it.

Description of Arguments

The task_handle argument is an opaque task handle to be released.

Cross References
e ompd_task_handle_t type, see Section 5.3.8 on page 540.
e ompd_rc_t type, see Section 5.3.12 on page 543.

ompd_task_handle_compare

Summary

The ompd_task_handle_compare function compares task handles.

OpenMP API — Version 5.0 November 2018

—_

(o226 BEF NGO I \V)

10
11
12
13
14

15

16
17
18

19
20
21

22

23

24
25

5.5.7.7

Format
C
ompd _rc_t ompd_task handle_compare (
ompd_task_handle_t =xrask_handle_1I,
ompd_task _handle_t =xtask_handle_2,
int *cmp_value

)i

Description

The internal structure of task handles is opaque so tools cannot directly determine if handles at two
different addresses refer to the same underlying task. The ompd_task_handle_compare
function compares task handles. After a successful call to ompd_task_handle_compare, the
value of the location to which cmp_value points is a signed integer that indicates how the underlying
tasks compare: a value less than, equal to, or greater than 0 indicates that the task that corresponds
to task_handle_1 is, respectively, less than, equal to, or greater than the task that corresponds to
task_handle_2. The means by which task handles are ordered is implementation defined.

Description of Arguments

The task_handle_I and task_handle_2 arguments are opaque handles that correspond to tasks. On
return, the cmp_value argument points to a location in which a signed integer value indicates how
the underlying tasks compare.

Cross References
e ompd_task_handle_t type, see Section 5.3.8 on page 540.
e ompd_rc_t type, see Section 5.3.12 on page 543.

ompd_get_task_function

Summary

This ompd_get_task_function function returns the entry point of the code that corresponds
to the body of a task.

CHAPTER 5. OMPD INTERFACE 581

—_

o~ 0N

~

10
11
12

13
14
15
16

17

18
19

20

21
22
23
24
25

5.5.7.8

582

Format
C

ompd_rc_t ompd get_task_ function (
ompd_task_handle_t =*task_handle,
ompd_address_t xentry_point

)i

Description

The ompd_get_task_function function returns the entry point of the code that corresponds
to the body of code that the task executes.

Description of Arguments

The task_handle argument is an opaque handle that selects the task on which to operate. On return,
the entry_point argument is set to an address that describes the beginning of application code that
executes the task region.

Cross References

e ompd_address_t type, see Section 5.3.4 on page 538.

e ompd_task_handle_t type, see Section 5.3.8 on page 540.
e ompd_rc_t type, see Section 5.3.12 on page 543.

ompd_get_task_frame

Summary

The ompd_get_task_frame function extracts the frame pointers of a task.

Format

C
ompd rc_t ompd get_task frame (
ompd_task_handle_t =xtask_handle,
ompd_frame_info_t =*exit_frame,
ompd_frame_info_t =*enter_frame

),

OpenMP API — Version 5.0 November 2018

A WOWN

- O WO NOO O

—_ -

12
13
14
15
16
17

18

19

20
21

22

23
24
25
26
27
28
29

5.5.7.9

Description

An OpenMP implementation maintains an ompt_ frame_t object for every implicit or explicit
task. The ompd_get_task_frame function extracts the enter_frame and exit_frame fields of
the ompt_ frame_t object of the task that rask_handle identifies.

Description of Arguments

The task_handle argument specifies an OpenMP task. On return, the exit_frame argument points to
an ompd_frame_info_t object that has the frame information with the same semantics as the
exit_frame field in the ompt_frame_t object that is associated with the specified task. On return,
the enter_frame argument points to an ompd_frame info_t object that has the frame
information with the same semantics as the enter_frame field in the ompt_ frame_t object that is
associated with the specified task.

Cross References

e ompt_frame_t type, see Section 4.4.4.27 on page 454.

e ompd_address_t type, see Section 5.3.4 on page 538.

e ompd_frame_info_t type, see Section 5.3.5 on page 538.
e ompd_task_handle_t type, see Section 5.3.8 on page 540.
e ompd_rc_t type, see Section 5.3.12 on page 543.

ompd_enumerate_states

Summary

The ompd_enumerate_states function enumerates thread states that an OpenMP
implementation supports.

Format
C

ompd_rc_t ompd_enumerate_states (
ompd_address_space_handle_t +*address_space_handle,
ompd_word_t current_state,
ompd_word_t *next_state,
const char xx*next_state_name,
ompd_word t #*more_enums

)i

CHAPTER 5. OMPD INTERFACE 583

—_

_
- O©W ONO® O wWN

—_ a4
A~ WM

15

16
17
18
19
20
21
22
23

24

25
26

27
28
29
30

584

Description

An OpenMP implementation may support only a subset of the states that the ompt_state_t
enumeration type defines. In addition, an OpenMP implementation may support
implementation-specific states. The ompd_enumerate_states call enables a tool to
enumerate the thread states that an OpenMP implementation supports.

When the current_state argument is a thread state that an OpenMP implementation supports, the
call assigns the value and string name of the next thread state in the enumeration to the locations to
which the next_state and next_state_name arguments point.

On return, the third-party tool owns the next_state_name string. The OMPD library allocates
storage for the string with the memory allocation callback that the tool provides. The tool is
responsible for releasing the memory.

On return, the location to which the more_enums argument points has the value 1 whenever one or
more states are left in the enumeration. On return, the location to which the more_enums argument
points has the value 0 when current_state is the last state in the enumeration.

Description of Arguments

The address_space_handle argument identifies the address space. The current_state argument must
be a thread state that the OpenMP implementation supports. To begin enumerating the supported
states, a tool should pass ompt_state_undefined as the value of current_state. Subsequent
calls to ompd_enumerate_states by the tool should pass the value that the call returned in
the next_state argument. On return, the next_state argument points to an integer with the value of
the next state in the enumeration. On return, the next_state_name argument points to a character
string that describes the next state. On return, the more_enums argument points to an integer with a
value of 1 when more states are left to enumerate and a value of 0 when no more states are left.

Constraints on Arguments

Any string that is returned through the next_state_name argument must be immutable and defined
for the lifetime of program execution.

Cross References

e ompt_state_t type, see Section 4.4.4.26 on page 452.

e ompd_address_space_handle_t type, see Section 5.3.8 on page 540.
e ompd_rc_t type, see Section 5.3.12 on page 543.

OpenMP API — Version 5.0 November 2018

1

© 00N O,

10
11

12

13
14
15
16
17

18
19
20
21
22

5.5.7.10 ompd_get_state

Summary

The ompd_get_state function obtains the state of a thread.

Format
C

ompd rc_t ompd get_state (
ompd_thread handle_t =xthread_handle,
ompd_word t =*state,
ompt_wait_id_t *wait_id

)i

Description

The ompd_get_state function returns the state of an OpenMP thread.

Description of Arguments

The thread_handle argument identifies the thread. The sfate argument represents the state of that
thread as represented by a value that ompd_enumerate_states returns. On return, if the
wait_id argument is non-null then it points to a handle that corresponds to the wait_id wait
identifier of the thread. If the thread state is not one of the specified wait states, the value to which
wait_id points is undefined.

Cross References

e ompd_wait_id_t type, see Section 5.3.2 on page 537.

e ompd_thread handle_t type, see Section 5.3.8 on page 540.
e ompd_rc_t type, see Section 5.3.12 on page 543.

e ompd_enumerate_states call, see Section 5.5.7.9 on page 583.

CHAPTER 5. OMPD INTERFACE 585

1

2 5.5.8.1

o © o N

11

12
13
14
15
16
17

18

19
20
21
22
23

24

25
26

5.5.8

586

Display Control Variables

ompd_get_display_control_vars

Summary

The ompd_get_display_control_vars function returns a list of name/value pairs for
OpenMP control variables.

Format
C

ompd_rc_t ompd get_display control_vars (
ompd_address_space_handle_t =*address_space_handle,
const char *x const xxcontrol_vars

),
C

Description

The ompd_get_display_control_vars function returns a NULL-terminated vector of
NULL-terminated strings of name/value pairs of control variables that have user controllable
settings and are important to the operation or performance of an OpenMP runtime system. The
control variables that this interface exposes include all OpenMP environment variables, settings
that may come from vendor or platform-specific environment variables, and other settings that
affect the operation or functioning of an OpenMP runtime.

The format of the strings is name=a string.

On return, the third-party tool owns the vector and the strings. The OMP library must satisfy the
termination constraints; it may use static or dynamic memory for the vector and/or the strings and is
unconstrained in how it arranges them in memory. If it uses dynamic memory then the OMPD
library must use the allocate callback that the tool provides to ompd_initialize. The tool must
use ompd_rel_display control_vars () to release the vector and the strings.

Description of Arguments

The address_space_handle argument identifies the address space. On return, the control_vars
argument points to the vector of display control variables.

OpenMP API — Version 5.0 November 2018

a A~ W N

10

11
12
13

14

15
16
17

18
19

20
21
22

5.5.8.2

Cross References

e ompd_address_space_handle_t type, see Section 5.3.8 on page 540.
e ompd_rc_t type, see Section 5.3.12 on page 543.

e ompd_initialize call, see Section 5.5.1.1 on page 558.

e ompd_rel_display_ control_vars type, see Section 5.5.8.2 on page 587.

ompd_rel_display_ control_vars

Summary

The ompd_rel_display_control_vars releases a list of name/value pairs of OpenMP
control variables previously acquired with ompd_get_display_control_vars.

Format
C

ompd rc_t ompd rel display control vars (
const char * const =xx*control_vars

)i
C

Description

The third-party tool owns the vector and strings that ompd_get_display_ control_vars
returns. The tool must call ompd_rel_display_control_vars to release the vector and the

strings.

Description of Arguments

The control_vars argument is the vector of display control variables to be released.

Cross References
e ompd_rc_t type, see Section 5.3.12 on page 543.

e ompd_get_display_control_vars call, see Section 5.5.8.1 on page 586.

CHAPTER 5. OMPD INTERFACE

587

1

2 5.5.9.1

14

15
16
17
18
19

20
21
22
23
24

25
26
27

5.5.9

588

Accessing Scope-Specific Information

ompd_enumerate_icvs

Summary

The ompd_enumerate_icvs function enumerates I[CVs.

Format
C

ompd_rc_t ompd_enumerate_icvs (
ompd_address_space_handle_t =xhandle,
ompd_icv_id_t current,
ompd_icv_id t =*next_id,
const char #*x*next_icv_name,
ompd scope_t #*next_scope,
int *more

Description

In addition to the ICVs listed in Table 2.1, an OpenMP implementation must support the OMPD
specific ICVs listed in Table 5.2. An OpenMP implementation may support additional
implementation specific variables. An implementation may store ICVs in a different scope than
Table 2.3 indicates. The ompd_enumerate_icvs function enables a tool to enumerate the
ICVs that an OpenMP implementation supports and their related scopes.

When the current argument is set to the identifier of a supported ICV, ompd_enumerate_icvs
assigns the value, string name, and scope of the next ICV in the enumeration to the locations to
which the next_id, next_icv_name, and next_scope arguments point. On return, the third-party tool
owns the next_icv_name string. The OMPD library uses the memory allocation callback that the
tool provides to allocate the string storage; the tool is responsible for releasing the memory.

On return, the location to which the more argument points has the value of 1 whenever one or more
ICV are left in the enumeration. on return, that location has the value 0 when current is the last
ICV in the enumeration.

OpenMP API — Version 5.0 November 2018

—_

O ©W 0o ~NO O WN

—_

11

12
13

14
15
16
17
18

Description of Arguments

The address_space_handle argument identifies the address space. The current argument must be
an ICV that the OpenMP implementation supports. To begin enumerating the ICVs, a tool should
pass ompd_icv_undefined as the value of current. Subsequent calls to
ompd_enumerate_icvs should pass the value returned by the call in the nexz_id output
argument. On return, the next_id argument points to an integer with the value of the ID of the next
ICV in the enumeration. On return, the next_icv argument points to a character string with the
name of the next ICV. On return, the next_scope argument points to the scope enum value of the
scope of the next ICV. On return, the more_enums argument points to an integer with the value of 1
when more ICVs are left to enumerate and the value of 0 when no more ICVs are left.

Constraints on Arguments

Any string that next_icv returns must be immutable and defined for the lifetime of a program
execution.

TABLE 5.2: OMPD-specific ICVs

Variable Scope Meaning

ompd-num-procs-var device return value of omp_get_num procs ()
when executed on this device

ompd-thread-num-var task return value of omp_get_thread num /()
when executed in this task

ompd-final-var task return value of omp_in_f£final () when
executed in this task

ompd-implicit-var task the task is an implicit task

ompd-team-size-var team return value of omp_get_num_threads ()
when executed in this team

Cross References

e ompd_address_space_handle_t type, see Section 5.3.8 on page 540.
e ompd_scope_t type, see Section 5.3.9 on page 541.

e ompd_icv_id_t type, see Section 5.3.10 on page 542.

e ompd_rc_t type, see Section 5.3.12 on page 543.

CHAPTER 5. OMPD INTERFACE 589

1

O © 0N O

11

12
13

14

15
16
17

18

19
20

21
22

5.5.9.2

590

ompd_get_icv_from_scope

Summary

The ompd_get_icv_from_scope function returns the value of an ICV.

Format
C

ompd _rc_t ompd get_icv_from scope (
void xhandle,
ompd_scope_t scope,
ompd_icv_id t icv_id,
ompd_word_t =*icv_value

Description

The ompd_get_icv_from_scope function provides access to the ICVs that
ompd_enumerate_icvs identifies.

Description of Arguments

The handle argument provides an OpenMP scope handle. The scope argument specifies the kind of
scope provided in handle. The icv_id argument specifies the ID of the requested ICV. On return,
the icv_value argument points to a location with the value of the requested ICV.

Constraints on Arguments

If the ICV cannot be represented by an integer type value then the function returns
ompd_rc_incompatible.

The provided handle must match the scope as defined in Section 5.3.10 on page 542.

The provided scope must match the scope for icv_id as requested by ompd_enumerate_icvs.

OpenMP API — Version 5.0 November 2018

—_

© 00 N o o b W N

10

11
12

13

14
15
16
17
18
19

20

21
22

5.5.9.3

Cross References

e ompd_address_space_handle_t type, see Section 5.3.8 on page 540.
e ompd_thread handle_t type, see Section 5.3.8 on page 540.

e ompd_parallel_handle_t type, see Section 5.3.8 on page 540.

e ompd_task_handle_t type, see Section 5.3.8 on page 540.

e ompd_scope_t type, see Section 5.3.9 on page 541.

e ompd_icv_id_t type, see Section 5.3.10 on page 542.

e ompd_rc_t type, see Section 5.3.12 on page 543.

e ompd_enumerate_icvs, see Section 5.5.9.1 on page 588.

ompd_get_icv_string from scope

Summary

The ompd_get_icv_string_from_scope function returns the value of an ICV.

Format
C

ompd rc_t ompd get_icv_string from scope (
void xhandle,
ompd_scope_t scope,
ompd_icv_id t icv_id,
const char xxicv_string

)i

Description

The ompd_get_icv_string from_scope function provides access to the ICVs that
ompd_enumerate_icvs identifies.

CHAPTER 5. OMPD INTERFACE

591

—_

No o AW

o)

11
12
13
14
15
16
17
18
19

20

21

22
23

5.5.9.4

592

Description of Arguments

The handle argument provides an OpenMP scope handle. The scope argument specifies the kind of
scope provided in handle. The icv_id argument specifies the ID of the requested ICV. On return,
the icv_string argument points to a string representation of the requested ICV.

On return, the third-party tool owns the icv_string string. The OMPD library allocates the string
storage with the memory allocation callback that the tool provides. The tool is responsible for
releasing the memory.

Constraints on Arguments
The provided handle must match the scope as defined in Section 5.3.10 on page 542.

The provided scope must match the scope for icv_id as requested by ompd_enumerate_icvs.

Cross References

e ompd_address_space_handle_t type, see Section 5.3.8 on page 540.
e ompd_thread_handle_t type, see Section 5.3.8 on page 540.

e ompd_parallel_handle_t type, see Section 5.3.8 on page 540.

e ompd_task_handle_t type, see Section 5.3.8 on page 540.

e ompd_scope_t type, see Section 5.3.9 on page 541.

e ompd_icv_id_t type, see Section 5.3.10 on page 542.

e ompd_rc_t type, see Section 5.3.12 on page 543.

e ompd_enumerate_icvs, see Section 5.5.9.1 on page 588.

ompd_get_tool_data

Summary

The ompd_get_tool_data function provides access to the OMPT data variable stored for each
OpenMP scope.

OpenMP API — Version 5.0 November 2018

—_

No ok~ wND

10
11

12

13
14
15
16

17
18
19
20
21
22
23
24

Format

C
ompd rc_t ompd_get_tool_data(
voidx handle,
ompd_scope_t scope,
ompd_word_t *value,
ompd_address_t *pir
)i
C

Description

The ompd_get_tool_data function provides access to the OMPT tool data stored for each
scope. If the runtime library does not support OMPT then the function returns
ompd_rc_unsupported.

Description of Arguments

The handle argument provides an OpenMP scope handle. The scope argument specifies the kind of
scope provided in handle. On return, the value argument points to the value field of the
ompt_data_t union stored for the selected scope. On return, the ptr argument points to the ptr
field of the ompt_data_t union stored for the selected scope.

Cross References

ompt_data_t type, see Section 4.4.4.4 on page 440.

e ompd_address_space_handle_t type, see Section 5.3.8 on page 540.
e ompd_thread_handle_t type, see Section 5.3.8 on page 540.

e ompd_parallel_handle_t type, see Section 5.3.8 on page 540.

e ompd_task handle_t type, see Section 5.3.8 on page 540.

e ompd_scope_t type, see Section 5.3.9 on page 541.

e ompd_rc_t type, see Section 5.3.12 on page 543.

CHAPTER 5. OMPD INTERFACE 593

1

oNO O MWN

10

11
12

13

14

15

16
17
18
19
20

21
22
23
24

5.6

5.6.1

594

Runtime Entry Points for OMPD

The OpenMP implementation must define several entry point symbols through which execution
must pass when particular events occur and data collection for OMPD is enabled. A tool can enable
notification of an event by setting a breakpoint at the address of the entry point symbol.

Entry point symbols have external C linkage and do not require demangling or other
transformations to look up their names to obtain the address in the OpenMP program. While each
entry point symbol conceptually has a function type signature, it may not be a function. It may be a
labeled location

Beginning Parallel Regions

Summary

Before starting the execution of an OpenMP parallel region, the implementation executes
ompd_bp_parallel_begin.

Format
C
| void ompd bp_parallel begin(void);
C
Description

The OpenMP implementation must execute ompd_bp_parallel_begin at every
parallel-begin event. At the point that the implementation reaches
ompd_bp_parallel_begin, the binding for ompd_get_curr_parallel_ handle is the
parallel region that is beginning and the binding for ompd_get_curr_task_handle is the
task that encountered the parallel construct.

Cross References

e parallel construct, see Section 2.6 on page 74.

e ompd_get_curr_parallel_handle, see Section 5.5.6.1 on page 571.
e ompd_get_curr_ task_handle, see Section 5.5.7.1 on page 576.

OpenMP API — Version 5.0 November 2018

1

w

10
11
12
13

14
15
16
17
18

19

20

21
22

5.6.2

5.6.3

Ending Parallel Regions

Summary

After finishing the execution of an OpenMP parallel region, the implementation executes
ompd_bp_ parallel_end.

Format
C
I void ompd bp parallel end(void);
C
Description

The OpenMP implementation must execute ompd_bp_parallel_end at every parallel-end
event. At the point that the implementation reaches ompd_bp_parallel_end, the binding for
ompd _get_curr_parallel handle is the parallel region that is ending and the binding
for ompd_get_curr task_handle is the task that encountered the parallel construct.
After execution of ompd_bp_parallel_end, any parallel_handle that was acquired for the
parallel region is invalid and should be released.

Cross References

e parallel construct, see Section 2.6 on page 74.

e ompd_get_curr_parallel_handle, see Section 5.5.6.1 on page 571.
e ompd_rel_parallel_handle, see Section 5.5.6.4 on page 574.

e ompd_get_curr_task_handle, see Section 5.5.7.1 on page 576.

Beginning Task Regions

Summary

Before starting the execution of an OpenMP task region, the implementation executes
ompd_bp_task_begin.

CHAPTER 5. OMPD INTERFACE 595

No ok~ W

o)

10

11

12
13

14

15

16

17
18
19
20
21

5.6.4

596

Format

C
I void ompd bp_ task_begin (void) ;

C

Description

The OpenMP implementation must execute ompd_bp_task_begin immediately before starting
execution of a structured-block that is associated with a non-merged task. At the point that the
implementation reaches ompd_bp_task_begin, the binding for
ompd_get_curr_task_handle is the task that is scheduled to execute.

Cross References
e ompd_get_curr_task_handle, see Section 5.5.7.1 on page 576.

Ending Task Regions

Summary

After finishing the execution of an OpenMP task region, the implementation executes
ompd_bp_task_end.

Format

C
I void ompd bp_ task_end(void);

C

Description

The OpenMP implementation must execute ompd_bp_task_end immediately after completion
of a structured-block that is associated with a non-merged task. At the point that the implementation
reaches ompd_bp_task_end, the binding for ompd_get_curr_task_handle is the task
that finished execution. After execution of ompd_bp_task_end, any task_handle that was
acquired for the task region is invalid and should be released.

OpenMP API — Version 5.0 November 2018

10
11
12

13
14
15

16

17
18

19

20

5.6.5

5.6.6

Cross References
e ompd_get_curr_task_handle, see Section 5.5.7.1 on page 576.

e ompd_rel task handle, see Section 5.5.7.5 on page 580.

Beginning OpenMP Threads

Summary

When starting an OpenMP thread, the implementation executes ompd_bp_thread_begin.

Format
C
I void ompd bp_ thread begin (void);
C
Description

The OpenMP implementation must execute ompd_bp_thread_begin at every
native-thread-begin and initial-thread-begin event. This execution occurs before the thread starts
the execution of any OpenMP region.

Cross References
e parallel construct, see Section 2.6 on page 74.

o Initial task, see Section 2.10.5 on page 148.

Ending OpenMP Threads

Summary

When terminating an OpenMP thread, the implementation executes ompd_bp_thread_end.

Format

C
| void ompd bp_thread_end (void);

C

CHAPTER 5. OMPD INTERFACE 597

—_

a b~ wON

© 0o N o

10

11

12
13

14

15

16

17
18
19

20
21

5.6.7

598

Description

The OpenMP implementation must execute ompd_bp_thread_end at every native-thread-end
and the initial-thread-end event. This execution occurs after the thread completes the execution of
all OpenMP regions. After executing ompd_bp_thread_end, any thread_handle that was
acquired for this thread is invalid and should be released.

Cross References
e parallel construct, see Section 2.6 on page 74.
o Initial task, see Section 2.10.5 on page 148.

e ompd_rel_thread_handle, see Section 5.5.5.3 on page 569.

Initializing OpenMP Devices

Summary

The OpenMP implementation must execute ompd_bp_device_begin at every device-initialize
event.

Format
C
I void ompd bp_ device_begin (void) ;
C
Description

When initializing a device for execution of a target region, the implementation must execute
ompd_bp_device_begin. This execution occurs before the work associated with any OpenMP
region executes on the device.

Cross References

e Device Initialization, see Section 2.12.1 on page 160.

OpenMP API — Version 5.0 November 2018

1

O ©oo~N O

11
12
13

5.6.8

Finalizing OpenMP Devices

Summary

When terminating an OpenMP thread, the implementation executes ompd_bp_device_end.

Format
C

| void ompd bp_device_end (void);

C

Description

The OpenMP implementation must execute ompd_bp_device_end at every device-finalize
event. This execution occurs after the thread executes all OpenMP regions. After execution of
ompd_bp_device_end, any address_space_handle that was acquired for this device is invalid
and should be released.

Cross References
e Device Initialization, see Section 2.12.1 on page 160.

e ompd_rel_address_space_handle, see Section 5.5.2.3 on page 564.

CHAPTER 5. OMPD INTERFACE 599

This page intentionally left blank

15
16

17
18

19

20
21

22

CHAPTER 6

6.1

Environment Variables

This chapter describes the OpenMP environment variables that specify the settings of the ICVs that
affect the execution of OpenMP programs (see Section 2.5 on page 63). The names of the
environment variables must be upper case. The values assigned to the environment variables are
case insensitive and may have leading and trailing white space. Modifications to the environment
variables after the program has started, even if modified by the program itself, are ignored by the
OpenMP implementation. However, the settings of some of the ICVs can be modified during the
execution of the OpenMP program by the use of the appropriate directive clauses or OpenMP API
routines.

The following examples demonstrate how the OpenMP environment variables can be set in
different environments:

o csh-like shells:
| setenv OMP_SCHEDULE "dynamic"

e bash-like shells:
| export OMP_SCHEDULE="dynamic"

e Windows Command Line:
| set OMP_SCHEDULE=dynamic

OMP__SCHEDULE

The OMP_ SCHEDULE environment variable controls the schedule kind and chunk size of all loop
directives that have the schedule kind runt ime, by setting the value of the run-sched-var ICV.

The value of this environment variable takes the form:

601

—_
- O ©Woo NoO o A WO N =

—_
w N

_ a2 a4
No o~

18
19
20
21
22
23

24

25
26
27
28

6.2

602

[modifier:Jkind[, chunk]

where

e modifier is one of monotonic or nonmonotonic;

e kind is one of static, dynamic, guided, or auto;

e chunk is an optional positive integer that specifies the chunk size.

If the modifier is not present, the modifier is set to monotonic if kind is static; for any other
kind it is set to nonmonotonic.

If chunk is present, white space may be on either side of the *“, . See Section 2.9.2 on page 101 for
a detailed description of the schedule kinds.

The behavior of the program is implementation defined if the value of OMP__SCHEDULE does not
conform to the above format.

Implementation specific schedules cannot be specified in OMP_ SCHEDULE. They can only be
specified by calling omp_set_schedule, described in Section 3.2.12 on page 345.

Examples:

setenv OMP_SCHEDULE '"guided, 4"
setenv OMP_SCHEDULE "dynamic"
setenv OMP_SCHEDULE "nonmonotonic:dynamic, 4"

Cross References

e run-sched-var ICV, see Section 2.5 on page 63.

e Worksharing-Loop construct, see Section 2.9.2 on page 101.

e Parallel worksharing-loop construct, see Section 2.13.1 on page 185.
e omp_set_schedule routine, see Section 3.2.12 on page 345.

e omp_get_schedule routine, see Section 3.2.13 on page 347.

OMP_NUM_THREADS

The OMP_NUM_THREADS environment variable sets the number of threads to use for parallel
regions by setting the initial value of the nthreads-var ICV. See Section 2.5 on page 63 for a
comprehensive set of rules about the interaction between the OMP_NUM_THREADS environment
variable, the num_threads clause, the omp_set_num_threads library routine and dynamic

OpenMP API — Version 5.0 November 2018

© o N O O A W N =

10
11
12
13
14
15
16

17 6.3

18
19

20
21

22
23
24
25
26

27
28

adjustment of threads, and Section 2.6.1 on page 78 for a complete algorithm that describes how the
number of threads for a parallel region is determined.

The value of this environment variable must be a list of positive integer values. The values of the
list set the number of threads to use for parallel regions at the corresponding nested levels.

The behavior of the program is implementation defined if any value of the list specified in the
OMP_NUM_THREADS environment variable leads to a number of threads that is greater than an
implementation can support, or if any value is not a positive integer.

Example:
| setenv OMP_NUM_THREADS 4, 3,2

Cross References

o nthreads-var ICV, see Section 2.5 on page 63.

e num_threads clause, see Section 2.6 on page 74.

e omp_set_num_threads routine, see Section 3.2.1 on page 334.
e omp_get_num_ threads routine, see Section 3.2.2 on page 335.
e omp_get_max threads routine, see Section 3.2.3 on page 336.

e omp_get_team_size routine, see Section 3.2.20 on page 354.

OMP_DYNAMIC

The OMP_DYNAMIC environment variable controls dynamic adjustment of the number of threads
to use for executing parallel regions by setting the initial value of the dyn-var ICV.

The value of this environment variable must be one of the following:
true | false

If the environment variable is set to true, the OpenMP implementation may adjust the number of
threads to use for executing parallel regions in order to optimize the use of system resources. If
the environment variable is set to false, the dynamic adjustment of the number of threads is
disabled. The behavior of the program is implementation defined if the value of OMP_DYNAMIC is
neither true nor false.

Example:
| setenv OMP_DYNAMIC true

CHAPTER 6. ENVIRONMENT VARIABLES 603

—_

£ NGO R o)

(&)

(o2 e}

11
12

13
14
15

16
17
18
19

20

21
22

23
24
25
26

6.4

604

Cross References
e dyn-var ICV, see Section 2.5 on page 63.
e omp_set_dynamic routine, see Section 3.2.7 on page 340.

e omp_get_dynamic routine, see Section 3.2.8 on page 341.

OMP_PROC_BIND

The OMP_ PROC_BIND environment variable sets the initial value of the bind-var ICV. The value
of this environment variable is either true, false, or a comma separated list of master,
close, or spread. The values of the list set the thread affinity policy to be used for parallel
regions at the corresponding nested level.

If the environment variable is set to false, the execution environment may move OpenMP threads
between OpenMP places, thread affinity is disabled, and proc_bind clauses on parallel
constructs are ignored.

Otherwise, the execution environment should not move OpenMP threads between OpenMP places,
thread affinity is enabled, and the initial thread is bound to the first place in the OpenMP place list
prior to the first active parallel region.

The behavior of the program is implementation defined if the value in the OMP_PROC_BIND
environment variable is not true, false, or a comma separated list of master, close, or
spread. The behavior is also implementation defined if an initial thread cannot be bound to the
first place in the OpenMP place list.

Examples:

I setenv OMP_PROC_BIND false

setenv OMP_PROC_BIND "spread, spread, close"

Cross References
e bind-var ICV, see Section 2.5 on page 63.
e proc_bind clause, see Section 2.6.2 on page 80.

e omp_get_proc_bind routine, see Section 3.2.23 on page 357.

OpenMP API — Version 5.0 November 2018

o
()

- . a a o -
DO WD - O © © (o236 BEF -GS I \V)

—_ -
o

DN —
- O ©

22
23
24
25
26

27
28

OMP_PLACES

A list of places can be specified in the OMP_PLACES environment variable. The
place-partition-var ICV obtains its initial value from the OMP_PLACES value, and makes the list
available to the execution environment. The value of OMP_PLACES can be one of two types of
values: either an abstract name that describes a set of places or an explicit list of places described
by non-negative numbers.

The OMP_PLACES environment variable can be defined using an explicit ordered list of
comma-separated places. A place is defined by an unordered set of comma-separated non-negative
numbers enclosed by braces. The meaning of the numbers and how the numbering is done are
implementation defined. Generally, the numbers represent the smallest unit of execution exposed by
the execution environment, typically a hardware thread.

Intervals may also be used to define places. Intervals can be specified using the <lower-bound> :
<length> : <stride> notation to represent the following list of numbers: “<lower-bound>,
<lower-bound> + <stride>, ..., <lower-bound> + (<length> - 1)*<stride>." When <stride> is
omitted, a unit stride is assumed. Intervals can specify numbers within a place as well as sequences
of places.

g

An exclusion operator
the operator.

can also be used to exclude the number or place immediately following

Alternatively, the abstract names listed in Table 6.1 should be understood by the execution and
runtime environment. The precise definitions of the abstract names are implementation defined. An
implementation may also add abstract names as appropriate for the target platform.

TABLE 6.1: Defined Abstract Names for OMP_PLACES

Abstract Name Meaning

threads Each place corresponds to a single hardware thread on the
target machine.

cores Each place corresponds to a single core (having one or more
hardware threads) on the target machine.

sockets Each place corresponds to a single socket (consisting of one or
more cores) on the target machine.

The abstract name may be appended by a positive number in parentheses to denote the length of the
place list to be created, that is abstract_name(num-places). When requesting fewer places than
available on the system, the determination of which resources of type abstract_name are to be
included in the place list is implementation defined. When requesting more resources than
available, the length of the place list is implementation defined.

The behavior of the program is implementation defined when the execution environment cannot
map a numerical value (either explicitly defined or implicitly derived from an interval) within the

CHAPTER 6. ENVIRONMENT VARIABLES 605

A WM =

- O O©W o ~NO O

—_ -

13
14

15
16
17
18
19

OMP_PLACES list to a processor on the target platform, or if it maps to an unavailable processor.
The behavior is also implementation defined when the OMP_ PLACES environment variable is
defined using an abstract name.

The following grammar describes the values accepted for the OMP_PLACES environment variable.

(list) = (p-list) | (aname)
(p-list)y = (p-interval) | (p-list),(p-interval)
(p-interval) = (place):(len):(stride) | (place):(len) | (place) | !(place)
(place) | {(res-list)}
(res-list) |= (res-interval) | (res-list),(res-interval)
(res-interval) |= (res):(num-places):(stride) | (res):(num-places) | (res) | !(res)
(aname) | (word)({num-places)) | (word)
(word) | sockets | cores | threads | <implementation-defined abstract name>
(res) = non-negative integer
(num-places) |= positive integer
(stride) | integer
(len) | positive integer
Examples:

setenv OMP_PLACES threads

setenv OMP_PLACES "threads (4)"

setenv OMP_PLACES
"{o0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}"

setenv OMP_PLACES "{0:4},{4:4},{8:4},{12:4}"

setenv OMP_PLACES "{0:4}:4:4"

where each of the last three definitions corresponds to the same 4 places including the smallest
units of execution exposed by the execution environment numbered, in turn, 0 to 3,4 to 7, 8§ to 11,
and 12 to 15.

Cross References

e place-partition-var, see Section 2.5 on page 63.

e Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.
e omp_get_num_places routine, see Section 3.2.24 on page 358.

e omp_get_place_num procs routine, see Section 3.2.25 on page 359.

606 OpenMP API — Version 5.0 November 2018

A W D

(31

o © 0 N O

12
13

14
15
16

17

18
19

20

21
22
23
24
25
26
27

28
29

6.6

e omp_get_place_proc_ids routine, see Section 3.2.26 on page 360.
e omp_get_place_numroutine, see Section 3.2.27 on page 362.
e omp_get_partition num places routine, see Section 3.2.28 on page 362.

e omp_get_partition_place_nums routine, see Section 3.2.29 on page 363.

OMP__STACKSIZE

The OMP_ STACKSIZE environment variable controls the size of the stack for threads created by
the OpenMP implementation, by setting the value of the stacksize-var ICV. The environment
variable does not control the size of the stack for an initial thread.

The value of this environment variable takes the form:
size | sizeB | sizeK | sizeM | sizeG
where:

e size is a positive integer that specifies the size of the stack for threads that are created by the
OpenMP implementation.

e B K, M, and G are letters that specify whether the given size is in Bytes, Kilobytes (1024 Bytes),
Megabytes (1024 Kilobytes), or Gigabytes (1024 Megabytes), respectively. If one of these letters
is present, there may be white space between size and the letter.

If only size is specified and none of B, K, M, or G is specified, then size is assumed to be in Kilobytes.

The behavior of the program is implementation defined if OMP__ STACKSIZE does not conform to
the above format, or if the implementation cannot provide a stack with the requested size.

Examples:

setenv OMP_STACKSIZE 2000500B
setenv OMP_STACKSIZE "3000 k "
setenv OMP_STACKSIZE 10M
setenv OMP_STACKSIZE " 10 M "
setenv OMP_STACKSIZE "20 m "
setenv OMP_STACKSIZE " 1G"
setenv OMP_STACKSIZE 20000

Cross References

e stacksize-var ICV, see Section 2.5 on page 63.

CHAPTER 6. ENVIRONMENT VARIABLES 607

—_

- O©OW oOo~N O O M~ OWOWN

—_ a4 a4
A~ D

—_ a4 a4
© 0o ~NO O

20
21

22

23
24

25
26
27
28

o
~N

6.8

608

OMP_WAIT_POLICY

The OMP_WAIT_POLICY environment variable provides a hint to an OpenMP implementation
about the desired behavior of waiting threads by setting the wait-policy-var ICV. A compliant
OpenMP implementation may or may not abide by the setting of the environment variable.

The value of this environment variable must be one of the following:
ACTIVE | PASSIVE

The ACTIVE value specifies that waiting threads should mostly be active, consuming processor
cycles, while waiting. An OpenMP implementation may, for example, make waiting threads spin.

The PASSIVE value specifies that waiting threads should mostly be passive, not consuming
processor cycles, while waiting. For example, an OpenMP implementation may make waiting
threads yield the processor to other threads or go to sleep.

The details of the ACTIVE and PASSIVE behaviors are implementation defined.

The behavior of the program is implementation defined if the value of OMP_WAIT_ POLICY is
neither ACTIVE nor PASSIVE.
Examples:

setenv OMP_WAIT POLICY ACTIVE
setenv OMP_WAIT POLICY active
setenv OMP_WAIT POLICY PASSIVE
setenv OMP_WAIT POLICY passive

Cross References

e wait-policy-var ICV, see Section 2.5 on page 63.

OMP_MAX ACTIVE_LEVELS

The OMP_MAX ACTIVE_ LEVELS environment variable controls the maximum number of nested
active parallel regions by setting the initial value of the max-active-levels-var ICV.

The value of this environment variable must be a non-negative integer. The behavior of the
program is implementation defined if the requested value of OMP_MAX ACTIVE_LEVELS is
greater than the maximum number of nested active parallel levels an implementation can support,
or if the value is not a non-negative integer.

OpenMP API — Version 5.0 November 2018

(¢)] A WD

— O O 0 N O»

—_ -

13
14
15

16

17
18

19
20
21
22
23

6.9

Cross References
e max-active-levels-var ICV, see Section 2.5 on page 63.
e omp_set_max active_levels routine, see Section 3.2.16 on page 350.

e omp_get_max_active_levels routine, see Section 3.2.17 on page 351.

OMP_NESTED

The OMP_NESTED environment variable controls nested parallelism by setting the initial value of
the max-active-levels-var ICV. If the environment variable is set to true, the initial value of
max-active-levels-var is set to the number of active levels of parallelism supported by the
implementation. If the environment variable is set to £alse, the initial value of
max-active-levels-var is set to 1. The behavior of the program is implementation defined if the
value of OMP_NESTED is neither true nor false.

If both the OMP_NESTED and OMP_MAX ACTIVE_LEVELS environment variables are set, the
value of OMP_NESTED is false, and the value of OMP_MAX_ ACTIVE_LEVELS is greater than
1, the behavior is implementation defined. Otherwise, if both environment variables are set then the
OMP_ NESTED environment variable has no effect.

The OMP_NESTED environment variable has been deprecated.

Example:
| setenv OMP_NESTED false

Cross References
e max-active-levels-var ICV, see Section 2.5 on page 63.

e omp_set_nested routine, see Section 3.2.10 on page 343.

omp_get_team size routine, see Section 3.2.20 on page 354.

e OMP_MAX ACTIVE_LEVELS environment variable, see Section 6.8 on page 608.

CHAPTER 6. ENVIRONMENT VARIABLES 609

1 6.10

oo WN

N

10

11
12
13

14
15
16
17

18
19
20
21
22

6.11

610

OMP_THREAD LIMIT

The OMP_THREAD_LIMIT environment variable sets the maximum number of OpenMP threads
to use in a contention group by setting the thread-limit-var ICV.

The value of this environment variable must be a positive integer. The behavior of the program is
implementation defined if the requested value of OMP_THREAD_LIMIT is greater than the
number of threads an implementation can support, or if the value is not a positive integer.

Cross References
o thread-limit-var ICV, see Section 2.5 on page 63.

e omp_get_thread_limit routine, see Section 3.2.14 on page 348.

OMP_ CANCELLATION

The OMP__ CANCELLATION environment variable sets the initial value of the cancel-var ICV.
The value of this environment variable must be one of the following:
true | false

If set to true, the effects of the cancel construct and of cancellation points are enabled and
cancellation is activated. If set to false, cancellation is disabled and the cancel construct and
cancellation points are effectively ignored. The behavior of the program is implementation defined
if OMP_CANCELLATION is set to neither true nor false.

Cross References

e cancel-var, see Section 2.5.1 on page 64.

e cancel construct, see Section 2.18.1 on page 263.

e cancellation point construct, see Section 2.18.2 on page 267.

e omp_get_cancellation routine, see Section 3.2.9 on page 342.

OpenMP API — Version 5.0 November 2018

1 6.12

0 N oo~ wWwN

11
12
13
14
15
16

17
18
19
20
21
22

23
24

25
26

27

28
29
30
31
32
33
34
35
36

OMP_DISPLAY_ ENV

The OMP_DISPLAY_ ENV environment variable instructs the runtime to display the OpenMP
version number and the value of the ICVs associated with the environment variables described in
Chapter 6, as name = value pairs. The runtime displays this information once, after processing the
environment variables and before any user calls to change the ICV values by runtime routines
defined in Chapter 3.

The value of the OMP_DISPLAY_ ENV environment variable may be set to one of these values:
TRUE | FALSE | VERBOSE

The TRUE value instructs the runtime to display the OpenMP version number defined by the
OPENMP version macro (or the openmp version Fortran parameter) value and the initial ICV
values for the environment variables listed in Chapter 6. The VERBOSE value indicates that the
runtime may also display the values of runtime variables that may be modified by vendor-specific
environment variables. The runtime does not display any information when the
OMP_DISPLAY ENV environment variable is FALSE or undefined. For all values of the
environment variable other than TRUE, FALSE, and VERBOSE, the displayed information is
unspecified.

The display begins with "OPENMP DISPLAY ENVIRONMENT BEGIN", followed by the
__OPENMP version macro (or the openmp_version Fortran parameter) value and ICV values, in
the format NAME *=" VALUE. NAME corresponds to the macro or environment variable name,
optionally prepended by a bracketed device-type. VALUE corresponds to the value of the macro or
ICV associated with this environment variable. Values are enclosed in single quotes. The display is
terminated with "OPENMP DISPLAY ENVIRONMENT END"

For the OMP_ NESTED environment variable, the printed value is true if the max-active-levels-var
ICV is initialized to a value greater than 1; otherwise the printed value is false.

Example:
I% setenv OMP_DISPLAY ENV TRUE

The above example causes an OpenMP implementation to generate output of the following form:

OPENMP DISPLAY ENVIRONMENT BEGIN
_OPENMP='201811"
[host] OMP SCHEDULE=’ GUIDED, 4’
[host] OMP_NUM THREADS='4, 3,2’
[device] OMP_NUM THREADS='2’'
[host,device] OMP_DYNAMIC='TRUE’
[host] OMP_PLACES='{0:4},{4:4},{8:4},{12:4}’

OPENMP DISPLAY ENVIRONMENT END

CHAPTER 6. ENVIRONMENT VARIABLES 611

1 6.13

- O ©O©WoOo~NOOH~WDMN

—_ a4 a4
AW N

—_ a4
N o O

—_
© 0o

20
21
22

23
24

25
26
27
28
29
30
31

612

OMP_DISPLAY AFFINITY

The OMP_DISPLAY_ AFFINITY environment variable instructs the runtime to display formatted
affinity information for all OpenMP threads in the parallel region upon entering the first parallel
region and when any change occurs in the information accessible by the format specifiers listed in
Table 6.2. If affinity of any thread in a parallel region changes then thread affinity information for
all threads in that region is displayed. If the thread affinity for each respective parallel region at
each nesting level has already been displayed and the thread affinity has not changed, then the
information is not displayed again. There is no specific order in displaying thread affinity
information for all threads in the same parallel region.

The value of the OMP_DISPLAY_ AFFINITY environment variable may be set to one of these
values:

TRUE | FALSE

The TRUE value instructs the runtime to display the OpenMP thread affinity information, and uses
the format setting defined in the affinity-format-var ICV.

The runtime does not display the OpenMP thread affinity information when the value of the
OMP_DISPLAY AFFINITY environment variable is FALSE or undefined. For all values of the
environment variable other than TRUE or FALSE, the display action is implementation defined.

Example:

Isetenv OMP_DISPLAY AFFINITY TRUE

The above example causes an OpenMP implementation to display OpenMP thread affinity
information during execution of the program, in a format given by the affinity-format-var ICV. The
following is a sample output:

I nesting level= 1, thread num= O, thread_affinity= 0,1
nesting level= 1, thread_ num= 1, thread affinity= 2,3
Cross References

e Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.

e omp_set_affinity_ format routine, see Section 3.2.30 on page 364.

e omp_get_affinity format routine, see Section 3.2.31 on page 366.

e omp_display_ affinity routine, see Section 3.2.32 on page 367.

e omp_capture_affinity routine, see Section 3.2.33 on page 368.

e OMP_AFFINITY_ FORMAT environment variable, see Section 6.14 on page 613.

OpenMP API — Version 5.0 November 2018

1 6.14

N oo AW

10
11

12
13
14
15
16
17
18

OMP_AFFINITY_ FORMAT

The OMP_AFFINITY_ FORMAT environment variable sets the initial value of the
affinity-format-var ICV which defines the format when displaying OpenMP thread affinity
information.

The value of this environment variable is a character string that may contain as substrings one or
more field specifiers, in addition to other characters. The format of each field specifier is

| s1110].] size] type

where an individual field specifier must contain the percent symbol (%) and a type. The type can be
a single character short name or its corresponding long name delimited with curly braces, such as
%$nor ${thread_num}. A literal percent is specified as $%. Field specifiers can be provided in
any order.

The 0 modifier indicates whether or not to add leading zeros to the output, following any indication
of sign or base. The . modifier indicates the output should be right justified when size is specified.
By default, output is left justified. The minimum field length is size, which is a decimal digit string
with a non-zero first digit. If no size is specified, the actual length needed to print the field will be
used. If the 0 modifier is used with frype of A, {thread_affinity}, H, {host}, or a type that
is not printed as a number, the result is unspecified. Any other characters in the format string that
are not part of a field specifier will be included literally in the output.

TABLE 6.2: Available Field Types for Formatting OpenMP Thread Affinity Information

Short Long Name Meaning

Name

t team_ num The value returned by omp_get_team_num().

T num_teams The value returned by omp_get_num_teams ().

L nesting_ level The value returned by omp_get_level ().

n thread_num The value returned by omp_get_thread_num().
N num_threads The value returned by omp_get_num_threads ().
a ancestor_ tnum The value returned by

omp_get_ancestor_thread_num (level),
where level is omp_get_level () minus 1.

table continued on next page

CHAPTER 6. ENVIRONMENT VARIABLES 613

oo A WN =

o © 00

11
12
13
14
15
16
17

614

table continued from previous page

Short Long Name Meaning

Name

H host The name for the host machine on which the OpenMP
program is running.

P process_id The process identifier used by the implementation.

i native_thread_id The native thread identifier used by the implementation.

A thread_affinity The list of numerical identifiers, in the format of a comma-

separated list of integers or integer ranges, that represent
processors on which a thread may execute, subject to
OpenMP thread affinity control and/or other external
affinity mechanisms.

Implementations may define additional field types. If an implementation does not have information
for a field type, "undefined" is printed for this field when displaying the OpenMP thread affinity
information.

Example:

setenv OMP_AFFINITY FORMAT
"Thread Affinity: %$0.3L %.8n %.15{thread affinity} %.12H"

The above example causes an OpenMP implementation to display OpenMP thread affinity
information in the following form:

Thread Affinity: 001
Thread Affinity: 001

Cross References

0 0-1,16-17 nid003
1 2-3,18-19 nid003

Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.

omp_set_affinity format routine, see Section 3.2.30 on page 364.

omp_get_affinity format routine, see Section 3.2.31 on page 366.

omp_display_affinity routine, see Section 3.2.32 on page 367.

omp_capture_affinity routine, see Section 3.2.33 on page 368.

OMP_DISPLAY AFFINITY environment variable, see Section 6.13 on page 612.

OpenMP API — Version 5.0 November 2018

1

10
11

12
13

14
15
16
17

18

19
20
21

22

6.15

6.16

6.17

OMP_DEFAULT_ DEVICE

The OMP_DEFAULT_DEVICE environment variable sets the device number to use in device
constructs by setting the initial value of the default-device-var ICV.

The value of this environment variable must be a non-negative integer value.

Cross References
o default-device-var ICV, see Section 2.5 on page 63.

e device directives, Section 2.12 on page 160.

OMP_MAX TASK_PRIORITY

The OMP_MAX TASK PRIORITY environment variable controls the use of task priorities by
setting the initial value of the max-task-priority-var ICV. The value of this environment variable
must be a non-negative integer.

Example:
I % setenv OMP_MAX TASK PRIORITY 20

Cross References
o max-task-priority-var ICV, see Section 2.5 on page 63.
o Tasking Constructs, see Section 2.10 on page 135.

e omp_get_max_task_priority routine, see Section 3.2.42 on page 377.

OMP_TARGET_OFFLOAD

The OMP_TARGET_OFFLOAD environment variable sets the initial value of the targer-offload-var

ICV. The value of the OMP_ TARGET_OFFLOAD environment variable must be one of the
following:

MANDATORY | DISABLED | DEFAULT

CHAPTER 6. ENVIRONMENT VARIABLES 615

N OO o AOWON =

10
11

12

13
14

15
16

17
18

19
20

21
22
23

The MANDATORY value specifies that program execution is terminated if a device construct or
device memory routine is encountered and the device is not available or is not supported by the
implementation. Support for the DISABLED value is implementation defined. If an
implementation supports it, the behavior is as if the only device is the host device.

The DEFAULT value specifies the default behavior as described in Section 1.3 on page 20.

Example:
I% setenv OMP_TARGET_OFFLOAD MANDATORY

Cross References
o target-offload-var ICV, see Section 2.5 on page 63.
e Device Directives, see Section 2.12 on page 160.

e Device Memory Routines, see Section 3.6 on page 397.

6.18 OMP_ TOOL

The OMP_TOOL environment variable sets the fool-var ICV, which controls whether an OpenMP
runtime will try to register a first party tool.

The value of this environment variable must be one of the following:
enabled | disabled

If OMP__TOOL is set to any value other than enabled or disabled, the behavior is unspecified.
If OMP__TOOL is not defined, the default value for fool-var is enabled.

Example:
I % setenv OMP_TOOL enabled

Cross References

e tool-var ICV, see Section 2.5 on page 63.

e OMPT Interface, see Chapter 4 on page 419.

616 OpenMP API — Version 5.0 November 2018

1

O NOO O WD

11
12

13

14
15

16
17
18
19

20

21
22

23
24

25
26

27
28

6.19

6.20

OMP_TOOL_LIBRARIES

The OMP_ TOOL_LIBRARIES environment variable sets the tool-libraries-var ICV to a list of tool
libraries that are considered for use on a device on which an OpenMP implementation is being
initialized. The value of this environment variable must be a list of names of dynamically-loadable
libraries, separated by an implementation specific, platform typical separator.

If the tool-var ICV is not enabled, the value of fool-libraries-var is ignored. Otherwise, if
ompt_start_tool is not visible in the address space on a device where OpenMP is being
initialized or if ompt_start_tool returns NULL, an OpenMP implementation will consider
libraries in the fool-libraries-var list in a left to right order. The OpenMP implementation will
search the list for a library that meets two criteria: it can be dynamically loaded on the current
device and it defines the symbol ompt_start_tool. If an OpenMP implementation finds a
suitable library, no further libraries in the list will be considered.

Example:

% setenv OMP_TOOL_LIBRARIES libtoolXY64.so:/usr/local/lib/
libtoolXY¥32.so

Cross References
e tool-libraries-var ICV, see Section 2.5 on page 63.
o OMPT Interface, see Chapter 4 on page 419.

e ompt_start_tool routine, see Section 4.2.1 on page 420.

OMP_ DEBUG

The OMP_ DEBUG environment variable sets the debug-var ICV, which controls whether an
OpenMP runtime collects information that an OMPD library may need to support a tool.

The value of this environment variable must be one of the following:
enabled | disabled

If OMP_DEBUG is set to any value other than enabled or disabled then the behavior is
implementation defined.

Example:
| ¥ setenv OMP_DEBUG enabled

CHAPTER 6. ENVIRONMENT VARIABLES 617

—_

A W DN

(&)

© 0N

11
12
13
14

6.21

618

Cross References

o debug-var ICV, see Section 2.5 on page 63.

o OMPD Interface, see Chapter 5 on page 533.

e Enabling the Runtime for OMPD, see Section 5.2.1 on page 534.

OMP_ALLOCATOR

OMP_ALLOCATOR sets the def-allocator-var ICV that specifies the default allocator for allocation
calls, directives and clauses that do not specify an allocator. The value of this environment variable
is a predefined allocator from Table 2.10 on page 155. The value of this environment variable is not
case sensitive.

Cross References

e def-allocator-var ICV, see Section 2.5 on page 63.

e Memory allocators, see Section 2.11.2 on page 152.

e omp_set_default_allocator routine, see Section 3.7.4 on page 411.

e omp_get_default_allocator routine, see Section 3.7.5 on page 412.

OpenMP API — Version 5.0 November 2018

APPENDIX A

OpenMP Implementation-Defined
Behaviors

This appendix summarizes the behaviors that are described as implementation defined in this APIL.
Each behavior is cross-referenced back to its description in the main specification. An
implementation is required to define and to document its behavior in these cases.

Processor: a hardware unit that is implementation defined (see Section 1.2.1 on page 2).
Device: an implementation defined logical execution engine (see Section 1.2.1 on page 2).

Device address: reference to an address in a device data environment (see Section 1.2.6 on
page 12).

Memory model: the minimum size at which a memory update may also read and write back
adjacent variables that are part of another variable (as array or structure elements) is
implementation defined but is no larger than required by the base language (see Section 1.4.1 on
page 23).

requires directive: support of requirements is implementation defined. All
implementation-defined requirements should begin with ext__ (see Section 2.4 on page 60).

Requires directive: Support for any feature specified by a requirement clause on a requires
directive is implementation defined (see Section 2.4 on page 60).

Internal control variables: the initial values of dyn-var, nthreads-var, run-sched-var,
def-sched-var, bind-var, stacksize-var, wait-policy-var, thread-limit-var, max-active-levels-var,
place-partition-var, affinity-format-var, default-device-var and def-allocator-var are
implementation defined. The method for initializing a target device’s internal control variable is
implementation defined (see Section 2.5.2 on page 66).

OpenMP context: the accepted isa-name values for the isa trait, the accepted arch-name values
for the arch trait, and the accepted extension-name values for the extension trait are
implementation defined (see Section 2.3.1 on page 51).

619

0o No o~ WON =

—_ a4
wWwnNn = O oo

—_ a4
© 00N O~

NN
- O

NN
w N

N NN NN
0N oA

WWwwwhmNn
wWwnN = O o

W www
NOoO b

w w
©

620

declare variant directive: whether, for some specific OpenMP context, the prototype of
the variant should differ from that of the base function, and if so how it should differ, is
implementation defined (see Section 2.3.5 on page 58).

Dynamic adjustment of threads: providing the ability to adjust the number of threads
dynamically is implementation defined. Implementations are allowed to deliver fewer threads
(but at least one) than indicated in Algorithm 2.1 even if dynamic adjustment is disabled (see
Section 2.6.1 on page 78).

Thread affinity: For the close thread affinity policy, if 7> P and P does not divide T evenly,
the exact number of threads in a particular place is implementation defined. For the spread
thread affinity, if 7> P and P does not divide T evenly, the exact number of threads in a
particular subpartition is implementation defined. The determination of whether the affinity
request can be fulfilled is implementation defined. If not, the mapping of threads in the team to
places is implementation defined (see Section 2.6.2 on page 80).

teams construct: the number of teams that are created is implementation defined but less than
or equal to the value of the num_teams clause if specified. The maximum number of threads
that participate in the contention group that each team initiates is implementation defined but less
than or equal to the value of the thread_1limit clause if specified. The assignment of the
initial threads to places and the values of the place-partition-var and default-device-var ICVs for
each initial thread are implementation defined (see Section 2.7 on page 82).

sections construct: the method of scheduling the structured blocks among threads in the
team is implementation defined (see Section 2.8.1 on page 86).

single construct: the method of choosing a thread to execute the structured block is
implementation defined (see Section 2.8.2 on page 89)

Worksharing-Loop directive: the integer type (or kind, for Fortran) used to compute the
iteration count of a collapsed loop is implementation defined. The effect of the

schedule (runtime) clause when the run-sched-var ICV is set to auto is implementation
defined. The value of simd_width for the simd schedule modifier is implementation defined (see
Section 2.9.2 on page 101).

simd construct: the integer type (or kind, for Fortran) used to compute the iteration count for
the collapsed loop is implementation defined. The number of iterations that are executed
concurrently at any given time is implementation defined. If the alignment parameter is not
specified in the aligned clause, the default alignments for the SIMD instructions are
implementation defined (see Section 2.9.3.1 on page 110).

declare simd directive: if the parameter of the simdlen clause is not a constant positive
integer expression, the number of concurrent arguments for the function is implementation
defined. If the alignment parameter of the aligned clause is not specified, the default
alignments for SIMD instructions are implementation defined (see Section 2.9.3.3 on page 116).

distribute construct: the integer type (or kind, for Fortran) used to compute the iteration
count for the collapsed loop is implementation defined. If no dist_schedule clause is

OpenMP API — Version 5.0 November 2018

(o2 &) IEF @b N =

©

10
11

12
13
14
15
16
17

18
19

20
21
22

23
24
25
26
27

28
29
30

31
32
33
34

specified then the schedule for the distribute construct is implementation defined (see
Section 2.9.4.1 on page 120).

taskloop construct: The number of loop iterations assigned to a task created from a
taskloop construct is implementation defined, unless the grainsize or num_tasks
clause is specified. The integer type (or kind, for Fortran) used to compute the iteration count for
the collapsed loop is implementation defined (see Section 2.10.2 on page 140).

C++

taskloop construct: For firstprivate variables of class type, the number of invocations
of copy constructors to perform the initialization is implementation defined (see Section 2.10.2
on page 140).

C++

Memory spaces: The actual storage resource that each memory space defined in Table 2.8 on
page 152 represents is implementation defined.

Memory allocators: The minimum partitioning size for partitioning of allocated memory over
the storage resources is implementation defined (see Section 2.11.2 on page 152). The default
value for the pool_size allocator trait is implementation defined (see Table 2.9 on page 153).
The associated memory space for each of the predefined omp_cgroup_mem_alloc,
omp_pteam_mem_alloc and omp_thread_mem_alloc allocators is implementation
defined (see Table 2.10 on page 155).

is_device_ ptr clause: Support for pointers created outside of the OpenMP device data
management routines is implementation defined (see Section 2.12.5 on page 170).

target construct: the effect of invoking a virtual member function of an object on a device
other than the device on which the object was constructed is implementation defined (see
Section 2.12.5 on page 170).

atomic construct: a compliant implementation may enforce exclusive access between
atomic regions that update different storage locations. The circumstances under which this
occurs are implementation defined. If the storage location designated by x is not size-aligned
(that is, if the byte alignment of x is not a multiple of the size of x), then the behavior of the
atomic region is implementation defined (see Section 2.17.7 on page 234).

Fortran
Data-sharing attributes: The data-sharing attributes of dummy arguments without the VALUE
attribute are implementation-defined if the associated actual argument is shared, except for the
conditions specified (see Section 2.19.1.2 on page 273).

threadprivate directive: if the conditions for values of data in the threadprivate objects of
threads (other than an initial thread) to persist between two consecutive active parallel regions do
not all hold, the allocation status of an allocatable variable in the second region is
implementation defined (see Section 2.19.2 on page 274).

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 621

A OWN =

oy OO,

11
12

13
14
15
16
17

18
19
20
21

22
23
24
25

26
27
28
29
30

31
32
33
34

35
36

622

Runtime library definitions: it is implementation defined whether the include file omp_1lib.h
or the module omp_1ib (or both) is provided. It is implementation defined whether any of the
OpenMP runtime library routines that take an argument are extended with a generic interface so
arguments of different KIND type can be accommodated (see Section 3.1 on page 332).

Fortran

omp_set_num_threads routine: if the argument is not a positive integer the behavior is
implementation defined (see Section 3.2.1 on page 334).

omp_set_schedule routine: for implementation specific schedule kinds, the values and
associated meanings of the second argument are implementation defined (see Section 3.2.12 on
page 345).

omp_get_supported_active_levels routine: the number of active levels of
parallelism supported by the implementation is implementation defined, but must be greater than
0 (see Section 3.2.15 on page 349).

omp_set_max_active_levels routine: when called from within any explicit parallel
region the binding thread set (and binding region, if required) for the
omp_set_max_active_levels region is implementation defined and the behavior is
implementation defined. If the argument is not a non-negative integer then the behavior is
implementation defined (see Section 3.2.16 on page 350).

omp_get_max_active_levels routine: when called from within any explicit parallel
region the binding thread set (and binding region, if required) for the
omp_get_max_active_levels region is implementation defined (see Section 3.2.17 on
page 351).

omp_get_place_proc_ids routine: the meaning of the non-negative numerical identifiers
returned by the omp_get_place_proc_ids routine is implementation defined. The order of
the numerical identifiers returned in the array ids is implementation defined (see Section 3.2.26
on page 360).

omp_set_affinity format routine: when called from within any explicit parallel
region, the binding thread set (and binding region, if required) for the

omp_set_affinity format region is implementation defined and the behavior is
implementation defined. If the argument does not conform to the specified format then the result
is implementation defined (see Section 3.2.30 on page 364).

omp_get_affinity format routine: when called from within any explicit parallel
region the binding thread set (and binding region, if required) for the

omp_get_affinity format region is implementation defined (see Section 3.2.31 on
page 366).

omp_display_affinity routine: if the argument does not conform to the specified format
then the result is implementation defined (see Section 3.2.32 on page 367).

OpenMP API — Version 5.0 November 2018

o [e22Né; ! A W N =

- 4 a4 4 4 o a a
NOoO OO~ WDN =00

N = =
o ©

NDMNDNDN
A O =

NN N
N O O

N N
O o

W w w
N = O

w W
H @

W W
o O

w W
©

omp_capture_affinity routine: if the formatr argument does not conform to the specified
format then the result is implementation defined (see Section 3.2.33 on page 368).

omp_get_initial_device routine: the value of the device number of the host device is
implementation defined (see Section 3.2.41 on page 376).

omp_target_memcpy_rect routine: the maximum number of dimensions supported is
implementation defined, but must be at least three (see Section 3.6.5 on page 402).

ompt_callback_sync_region_wait, ompt_callback_mutex_released,
ompt_callback_dependences, ompt_callback_task_dependence,
ompt_callback_work, ompt_callback_master, ompt_callback_target_map,
ompt_callback_sync_region, ompt_callback_lock_init,
ompt_callback_lock_ destroy, ompt_callback_mutex_acquire,
ompt_callback_mutex acquired, ompt_callback_nest_lock,
ompt_callback_flush, ompt_callback_cancel and
ompt_callback_dispatch tool callbacks: if a tool attempts to register a callback with the
string name using the runtime entry point ompt_set_callback, it is implementation defined
whether the registered callback may never or sometimes invoke this callback for the associated
events (see Table 4.2 on page 428)

Device tracing: Whether a target device supports tracing or not is implementation defined; if a
target device does not support tracing, a NULL may be supplied for the lookup function to a
tool’s device initializer (see Section 4.2.5 on page 427).

ompt_set_trace_ompt and ompt_buffer get_record_ompt runtime entry
points: it is implementation defined whether a device-specific tracing interface will define this
runtime entry point, indicating that it can collect traces in OMPT format. The kinds of trace
records available for a device is implementation defined (see Section 4.2.5 on page 427).

ompt_callback_target_data_op_t callback type: it is implementation defined
whether in some operations src_addr or dest_addr might point to an intermediate buffer (see
Section 4.5.2.25 on page 488).

ompt_set_callback_t entry point type: the subset of the associated event in which the
callback is invoked is implementation defined (see Section 4.6.1.3 on page 500).

ompt_get_place_proc_ids_t entry point type: the meaning of the numerical identifiers
returned is implementation defined. The order of ids returned in the array is implementation
defined (see Section 4.6.1.8 on page 505).

ompt_get_partition_place_nums_t entry point type: the order of the identifiers
returned in the array place_nums is implementation defined (see Section 4.6.1.10 on page 507).

ompt_get_proc_id_t entry point type: the meaning of the numerical identifier returned is
implementation defined (see Section 4.6.1.11 on page 508).

ompd_callback_print_string fn_t callback function: the value of catergory is
implementation defined (see Section 5.4.5 on page 556).

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 623

- O©W oOoN OO0 MW N-=

—_ a4
w N

_
NOoO O b

—_
© @

NDNDMNDNDNDNDNDDNDNDDND
© oo NO O~ WN-—=O

W w w
N = O

w w
A~

W w w
N O O

624

ompd_parallel_handle_compare operation: the means by which parallel region
handles are ordered is implementation defined (see Section 5.5.6.5 on page 575).

ompd_task_handle_compare operation: the means by which task handles are ordered is
implementation defined (see Section 5.5.7.6 on page 580).

OMPT thread states: The set of OMPT thread states supported is implementation defined (see
Section 4.4.4.26 on page 452).

OMP__ SCHEDULE environment variable: if the value does not conform to the specified format
then the result is implementation defined (see Section 6.1 on page 601).

OMP_NUM_THREADS environment variable: if any value of the list specified leads to a number
of threads that is greater than the implementation can support, or if any value is not a positive
integer, then the result is implementation defined (see Section 6.2 on page 602).

OMP_DYNAMIC environment variable: if the value is neither true nor false the behavior is
implementation defined (see Section 6.3 on page 603).

OMP_PROC_BIND environment variable: if the value is not true, false, or a comma
separated list of master, close, or spread, the behavior is implementation defined. The
behavior is also implementation defined if an initial thread cannot be bound to the first place in
the OpenMP place list (see Section 6.4 on page 604).

OMP_PLACES environment variable: the meaning of the numbers specified in the environment
variable and how the numbering is done are implementation defined. The precise definitions of
the abstract names are implementation defined. An implementation may add
implementation-defined abstract names as appropriate for the target platform. When creating a
place list of n elements by appending the number 7 to an abstract name, the determination of
which resources to include in the place list is implementation defined. When requesting more
resources than available, the length of the place list is also implementation defined. The behavior
of the program is implementation defined when the execution environment cannot map a
numerical value (either explicitly defined or implicitly derived from an interval) within the
OMP_PLACES list to a processor on the target platform, or if it maps to an unavailable processor.
The behavior is also implementation defined when the OMP_ PLACES environment variable is
defined using an abstract name (see Section 6.5 on page 605).

OMP__ STACKSIZE environment variable: if the value does not conform to the specified format
or the implementation cannot provide a stack of the specified size then the behavior is
implementation defined (see Section 6.6 on page 607).

OMP_WAIT POLICY environment variable: the details of the ACTIVE and PASSIVE
behaviors are implementation defined (see Section 6.7 on page 608).

OMP_MAX ACTIVE_LEVELS environment variable: if the value is not a non-negative integer
or is greater than the number of parallel levels an implementation can support then the behavior
is implementation defined (see Section 6.8 on page 608).

OpenMP API — Version 5.0 November 2018

[oc N (o2 &) IEF @b N =

©

-
N = O

—a a
A W

-
o O,

_
0

OMP_NESTED environment variable: if the value is neither true nor £alse the behavior is
implementation defined (see Section 6.9 on page 609).

Conflicting OMP_NESTED and OMP_MAX ACTIVE_LEVELS environment variables: if
both environment variables are set, the value of OMP_NESTED is false, and the value of
OMP_MAX ACTIVE_LEVELS is greater than 1, the behavior is implementation defined (see
Section 6.9 on page 609).

OMP_THREAD_LIMIT environment variable: if the requested value is greater than the number
of threads an implementation can support, or if the value is not a positive integer, the behavior of
the program is implementation defined (see Section 6.10 on page 610).

OMP_DISPLAY AFFINITY environment variable: for all values of the environment variables
other than TRUE or FALSE, the display action is implementation defined (see Section 6.13 on
page 612).

OMP_AFFINITY FORMAT environment variable: if the value does not conform to the
specified format then the result is implementation defined (see Section 6.14 on page 613).

OMP_TARGET_OFFLOAD environment variable: the support of disabled is
implementation defined (see Section 6.17 on page 615).

OMP_ DEBUG environment variable: if the value is neither disabled nor enabled the
behavior is implementation defined (see Section 6.20 on page 617).

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 625

This page intentionally left blank

N

0 NoO O

11
12
13

14

15
16
17

APPENDIX B

B.1

B.2

Features History

This appendix summarizes the major changes between OpenMP API versions since version 2.5.

Deprecated Features

The following features have been deprecated in Version 5.0.

e The nest-var ICV, the OMP_NESTED environment variable, and the omp_set_nested and
omp_get_nested routines were deprecated.

e Lock hints were renamed to synchronization hints. The following lock hint type and constants
were deprecated:

— the C/C++ type omp_lock_hint_t and the Fortran kind omp_lock_hint_kind;

— the constants omp_lock_hint_none, omp_lock_hint_uncontended,
omp_lock_hint_contended, omp_lock_hint_nonspeculative, and
omp_lock_hint_speculative.

Version 4.5 to 5.0 Differences

e The memory model was extended to distinguish different types of flush operations according to
specified flush properties (see Section 1.4.4 on page 25) and to define a happens before order
based on synchronizing flush operations (see Section 1.4.5 on page 27).

627

oO~NOO OO~ W N =

11
12
13

14
15
16
17
18

19
20

21
22
23
24

25
26

27
28

29
30

31
32
33

34
35
36
37

628

Various changes throughout the specification were made to provide initial support of C11,
C++11, C++14, C++17 and Fortran 2008 (see Section 1.7 on page 31).

Fortran 2003 is now fully supported (see Section 1.7 on page 31).

The requires directive (see Section 2.4 on page 60) was added to support applications that
require implementation-specific features.

The target-offload-var internal control variable (see Section 2.5 on page 63) and the
OMP_TARGET_OFFLOAD environment variable (see Section 6.17 on page 615) were added to
support runtime control of the execution of device constructs.

Control over whether nested parallelism is enabled or disabled was integrated into the
max-active-levels-var internal control variable (see Section 2.5.2 on page 66), the default value
of which is now implementation defined, unless determined according to the values of the
OMP_NUM_THREADS (see Section 6.2 on page 602) or OMP_PROC_BIND (see Section 6.4 on
page 604) environment variables.

Support for array shaping (see Section 2.1.4 on page 43) and for array sections with non-unit
strides in C and C++ (see Section 2.1.5 on page 44) was added to facilitate specification of
discontiguous storage and the target update construct (see Section 2.12.6 on page 176) and
the depend clause (see Section 2.17.11 on page 255) were extended to allow the use of
shape-operators (see Section 2.1.4 on page 43).

Iterators (see Section 2.1.6 on page 47) were added to support expressions in a list that expand to
multiple expressions.

The metadirective directive (see Section 2.3.4 on page 56) and declare variant
directive (see Section 2.3.5 on page 58) were added to support selection of directive variants and
declared function variants at a callsite, respectively, based on compile-time traits of the enclosing
context.

The teams construct (see Section 2.7 on page 82) was extended to support execution on the host
device without an enclosing target construct (see Section 2.12.5 on page 170).

The canonical loop form was defined for Fortran and, for all base languages, extended to permit
non-rectangular loop nests (see Section 2.9.1 on page 95).

The relational-op in the canonical loop form for C/C++ was extended to include != (see
Section 2.9.1 on page 95).

The default loop schedule modifier for worksharing-loop constructs without the static
schedule and the ordered clause was changed to nonmonotonic (see Section 2.9.2 on
page 101).

The collapse of associated loops that are imperfectly nested loops was defined for the
worksharing-loop (see Section 2.9.2 on page 101), simd (see Section 2.9.3.1 on page 110),
taskloop (see Section 2.10.2 on page 140) and distribute (see Section 2.9.4.2 on
page 123) constructs.

OpenMP API — Version 5.0 November 2018

o o0, WN =

©

- 4 o
A WON-—=O

-
[N é)

- —a
© o

NN NN
[*SHN S e]

NN
(621

NN
)

W wWwWwNDN
- O O ©

W w w
A WO

w w
o O

The simd construct (see Section 2.9.3.1 on page 110) was extended to accept the if,
nontemporal and order (concurrent) clauses and to allow the use of atomic
constructs within it.

The 1loop construct and the order (concurrent) clause were added to support compiler
optimization and parallelization of loops for which iterations may execute in any order, including
concurrently (see Section 2.9.5 on page 128).

The scan directive (see Section 2.9.6 on page 132) and the inscan modifier for the
reduction clause (see Section 2.19.5.4 on page 300) were added to support inclusive and
exclusive scan computations.

To support task reductions, the task (see Section 2.10.1 on page 135) and target (see
Section 2.12.5 on page 170) constructs were extended to accept the in_reduction clause (see
Section 2.19.5.6 on page 303), the taskgroup construct (see Section 2.17.6 on page 232) was
extended to accept the task_reduction clause Section 2.19.5.5 on page 303), and the task
modifier was added to the reduction clause (see Section 2.19.5.4 on page 300).

The affinity clause was added to the task construct (see Section 2.10.1 on page 135) to
support hints that indicate data affinity of explicit tasks.

The detach clause for the task construct (see Section 2.10.1 on page 135) and the
omp_fulfill event runtime routine (see Section 3.5.1 on page 396) were added to support
execution of detachable tasks.

To support taskloop reductions, the taskloop (see Section 2.10.2 on page 140) and
taskloop simd (see Section 2.10.3 on page 146) constructs were extended to accept the
reduction (see Section 2.19.5.4 on page 300) and in_reduction (see Section 2.19.5.6 on
page 303) clauses.

The taskloop construct (see Section 2.10.2 on page 140) was added to the list of constructs
that can be canceled by the cancel construct (see Section 2.18.1 on page 263)).

To support mutually exclusive inout sets, a mutexinoutset dependence-type was added to
the depend clause (see Section 2.10.6 on page 149 and Section 2.17.11 on page 255).

Predefined memory spaces (see Section 2.11.1 on page 152), predefined memory allocators and
allocator traits (see Section 2.11.2 on page 152) and directives, clauses (see Section 2.11 on
page 152 and API routines (see Section 3.7 on page 406) to use them were added to support
different kinds of memories.

The semantics of the use_device_ptr clause for pointer variables was clarified and the
use_device_addr clause for using the device address of non-pointer variables inside the
target data construct was added (see Section 2.12.2 on page 161).

To support reverse offload, the ancestor modifier was added to the device clause for
target constructs (see Section 2.12.5 on page 170).

APPENDIX B. FEATURES HISTORY 629

oNO O~ WON =

—_
o ©

—_ a4
A OWN =

-
(&)

N = = = =
O © 0o NO®

N
—_

N N
w N

N N
a

NN
N O

W wnhN
- O © @

W www
a b~

w w
N O

630

To reduce programmer effort implicit declare target directives for some functions (C, C++,
Fortran) and subroutines (Fortran) were added (see Section 2.12.5 on page 170 and
Section 2.12.7 on page 180).

The target update construct (see Section 2.12.6 on page 176) was modified to allow array
sections that specify discontiguous storage.

The to and £rom clauses on the target update construct (see Section 2.12.6 on page 176),
the depend clause on task generating constructs (see Section 2.17.11 on page 255), and the
map clause (see Section 2.19.7.1 on page 315) were extended to allow any Ivalue expression as a
list item for C/C++.

Support for nested declare target directives was added (see Section 2.12.7 on page 180).

New combined constructs master taskloop (see Section 2.13.7 on page 192),

parallel master (see Section 2.13.6 on page 191), parallel master taskloop (see
Section 2.13.9 on page 195), master taskloop simd (see Section 2.13.8 on page 194),
parallel master taskloop simd (see Section 2.13.10 on page 196) were added.

The depend clause was added to the taskwait construct (see Section 2.17.5 on page 230).

To support acquire and release semantics with weak memory ordering, the acq_rel,
acquire, and release clauses were added to the atomic construct (see Section 2.17.7 on
page 234) and £1ush construct (see Section 2.17.8 on page 242), and the memory ordering
semantics of implicit flushes on various constructs and runtime routines were clarified (see
Section 2.17.8.1 on page 246).

The atomic construct was extended with the hint clause (see Section 2.17.7 on page 234).

The depend clause (see Section 2.17.11 on page 255) was extended to support iterators and to
support depend objects that can be created with the new depob3j construct.

Lock hints were renamed to synchronization hints, and the old names were deprecated (see
Section 2.17.12 on page 260).

To support conditional assignment to lastprivate variables, the conditional modifier was
added to the lastprivate clause (see Section 2.19.4.5 on page 288).

The description of the map clause was modified to clarify the mapping order when multiple
map-types are specified for a variable or structure members of a variable on the same construct.
The close map-type-modifier was added as a hint for the runtime to allocate memory close to
the target device (see Section 2.19.7.1 on page 315).

The capability to map C/C++ pointer variables and to assign the address of device memory that
is mapped by an array section to them was added. Support for mapping of Fortran pointer and
allocatable variables, including pointer and allocatable components of variables, was added (see
Section 2.19.7.1 on page 315).

The defaultmap clause (see Section 2.19.7.2 on page 324) was extended to allow selecting
the data-mapping or data-sharing attributes for any of the scalar, aggregate, pointer or allocatable

OpenMP API — Version 5.0 November 2018

0 N o o A W N =

©

—_
o~ wOND—=2O

—_ -
N O

N = —
O O

[\SJ]
N =

NN
A W

N N
[o)NE) |

27

28
29

30
31

B.3

classes on a per-region basis. Additionally it accepts the none parameter to support the
requirement that all variables referenced in the construct must be explicitly mapped or privatized.

The declare mapper directive was added to support mapping of data types with direct and
indirect members (see Section 2.19.7.3 on page 326).

The omp_set_nested (see Section 3.2.10 on page 343) and omp_get_nested (see
Section 3.2.11 on page 344) routines and the OMP__NESTED environment variable (see
Section 6.9 on page 609) were deprecated.

The omp_get_supported_active_levels routine was added to query the number of
active levels of parallelism supported by the implementation (see Section 3.2.15 on page 349).

Runtime routines omp_set_affinity format (see Section 3.2.30 on page 364),
omp_get_affinity_ format (see Section 3.2.31 on page 366), omp_set_affinity
(see Section 3.2.32 on page 367), and omp_capture_affinity (see Section 3.2.33 on
page 368) and environment variables OMP_DISPLAY_ AFFINITY (see Section 6.13 on
page 612) and OMP_AFFINITY_ FORMAT (see Section 6.14 on page 613) were added to
provide OpenMP runtime thread affinity information.

The omp_get_device_num runtime routine (see Section 3.2.37 on page 372) was added to
support determination of the device on which a thread is executing.

The omp_pause_resource and omp_pause_resource_all runtime routines were
added to allow the runtime to relinquish resources used by OpenMP (see Section 3.2.43 on
page 378 and Section 3.2.44 on page 380).

Support for a first-party tool interface (see Section 4 on page 419) was added.
Support for a third-party tool interface (see Section 5 on page 533) was added.

Support for controlling offloading behavior with the OMP_ TARGET_OFFLOAD environment
variable was added (see Section 6.17 on page 615).

Stubs for Runtime Library Routines(previously Appendix A) were moved to a separate document.

Interface Declarations (previously Appendix B) were moved to a separate document.

Version 4.0 to 4.5 Differences

o Support for several features of Fortran 2003 was added (see Section 1.7 on page 31 for features

that are still not supported).

e A parameter was added to the ordered clause of the worksharing-loop construct (see

Section 2.9.2 on page 101) and clauses were added to the ordered construct (see

APPENDIX B. FEATURES HISTORY 631

o~N OO0 AW N =

—_ a4
N = O ©

—_
A~ W

—_ a4
N o O

—_
©

NN
- O

N NN
A~ 0N

NN N
N O O

W wnN
- O © @

w w
w N

w
>

w W
[23Nd)]

632

Section 2.17.9 on page 250) to support doacross loop nests and use of the simd construct on
loops with loop-carried backward dependences.

The 1inear clause was added to the worksharing-loop construct (see Section 2.9.2 on
page 101).

The simdlen clause was added to the simd construct (see Section 2.9.3.1 on page 110) to
support specification of the exact number of iterations desired per SIMD chunk.

The priority clause was added to the task construct (see Section 2.10.1 on page 135) to
support hints that specify the relative execution priority of explicit tasks. The
omp_get_max_task_priority routine was added to return the maximum supported
priority value (see Section 3.2.42 on page 377) and the OMP_MAX_TASK_PRIORITY
environment variable was added to control the maximum priority value allowed (see

Section 6.16 on page 615).

Taskloop constructs (see Section 2.10.2 on page 140 and Section 2.10.3 on page 146) were added
to support nestable parallel loops that create OpenMP tasks.

To support interaction with native device implementations, the use_device_ptr clause was
added to the target data construct (see Section 2.12.2 on page 161) and the
is_device_ptr clause was added to the target construct (see Section 2.12.5 on page 170).

The nowait and depend clauses were added to the target construct (see Section 2.12.5 on
page 170) to improve support for asynchronous execution of target regions.

The private, firstprivate and defaultmap clauses were added to the target
construct (see Section 2.12.5 on page 170).

The declare target directive was extended to allow mapping of global variables to be
deferred to specific device executions and to allow an extended-list to be specified in C/C++ (see
Section 2.12.7 on page 180).

To support unstructured data mapping for devices, the target enter data (see
Section 2.12.3 on page 164) and target exit data (see Section 2.12.4 on page 166)
constructs were added and the map clause (see Section 2.19.7.1 on page 315) was updated.

To support a more complete set of device construct shortcuts, the target parallel (see
Section 2.13.16 on page 203), target parallel worksharing-loop (see Section 2.13.17 on
page 205), target parallel worksharing-loop SIMD (see Section 2.13.18 on page 206), and
target simd (see Section 2.13.20 on page 209), combined constructs were added.

The if clause was extended to take a directive-name-modifier that allows it to apply to combined
constructs (see Section 2.15 on page 220).

The hint clause was addded to the critical construct (see Section 2.17.1 on page 223).

The source and sink dependence types were added to the depend clause (see
Section 2.17.11 on page 255) to support doacross loop nests.

OpenMP API — Version 5.0 November 2018

o N [e22Né, ! A~ W N =

11
12

13
14
15

16
17

18

19

20
21

22

23
24
25

26

27
28

29
30
31

B.4

e The implicit data-sharing attribute for scalar variables in target regions was changed to
firstprivate (see Section 2.19.1.1 on page 270).

e Use of some C++ reference types was allowed in some data sharing attribute clauses (see
Section 2.19.4 on page 282).

e Semantics for reductions on C/C++ array sections were added and restrictions on the use of
arrays and pointers in reductions were removed (see Section 2.19.5.4 on page 300).

e The ref, val, and uval modifiers were added to the 1inear clause (see Section 2.19.4.6 on
page 290).

e Support was added to the map clauses to handle structure elements (see Section 2.19.7.1 on
page 315).

e Query functions for OpenMP thread affinity were added (see Section 3.2.24 on page 358 to
Section 3.2.29 on page 363).

o The lock API was extended with lock routines that support storing a hint with a lock to select a
desired lock implementation for a lock’s intended usage by the application code (see
Section 3.3.2 on page 385).

e Device memory routines were added to allow explicit allocation, deallocation, memory transfers
and memory associations (see Section 3.6 on page 397).

o C/C++ Grammar (previously Appendix B) was moved to a separate document.

Version 3.1 to 4.0 Differences

e Various changes throughout the specification were made to provide initial support of Fortran
2003 (see Section 1.7 on page 31).

o C/C++ array syntax was extended to support array sections (see Section 2.1.5 on page 44).

e The proc_bind clause (see Section 2.6.2 on page 80), the OMP_PLACES environment
variable (see Section 6.5 on page 605), and the omp_get_proc_bind runtime routine (see
Section 3.2.23 on page 357) were added to support thread affinity policies.

e SIMD directives were added to support SIMD parallelism (see Section 2.9.3 on page 110).

e Implementation defined task scheduling points for untied tasks were removed (see Section 2.10.6
on page 149).

e Device directives (see Section 2.12 on page 160), the OMP_DEFAULT_DEVICE environment
variable (see Section 6.15 on page 615), and the omp_set_default_device,
omp_get_default_device, omp_get_num devices, omp_get_num teams,

APPENDIX B. FEATURES HISTORY 633

0 NoO o AW N =

11
12

13
14
15

16
17

18

19

20
21
22

23
24
25

26
27

28
29

30
31
32

B.5

634

omp_get_team_num, and omp_is_initial_device routines were added to support
execution on devices.

e The taskgroup construct (see Section 2.17.6 on page 232) was added to support more flexible
deep task synchronization.

e The atomic construct (see Section 2.17.7 on page 234) was extended to support atomic swap
with the capture clause, to allow new atomic update and capture forms, and to support
sequentially consistent atomic operations with a new seq_cst clause.

e The depend clause (see Section 2.17.11 on page 255) was added to support task dependences.

e The cancel construct (see Section 2.18.1 on page 263), the cancellation point
construct (see Section 2.18.2 on page 267), the omp_get_cancellation runtime routine
(see Section 3.2.9 on page 342) and the OMP__ CANCELLATION environment variable (see
Section 6.11 on page 610) were added to support the concept of cancellation.

o The reduction clause (see Section 2.19.5.4 on page 300) was extended and the
declare reduction construct (see Section 2.19.5.7 on page 304) was added to support user
defined reductions.

e The OMP_DISPLAY_ ENV environment variable (see Section 6.12 on page 611) was added to
display the value of ICVs associated with the OpenMP environment variables.

e Examples (previously Appendix A) were moved to a separate document.

Version 3.0 to 3.1 Differences

e The bind-var ICV has been added, which controls whether or not threads are bound to processors
(see Section 2.5.1 on page 64). The value of this ICV can be set with the OMP_PROC_BIND
environment variable (see Section 6.4 on page 604).

o The nthreads-var ICV has been modified to be a list of the number of threads to use at each
nested parallel region level and the algorithm for determining the number of threads used in a
parallel region has been modified to handle a list (see Section 2.6.1 on page 78).

e The final and mergeable clauses (see Section 2.10.1 on page 135) were added to the task
construct to support optimization of task data environments.

e The taskyield construct (see Section 2.10.4 on page 147) was added to allow user-defined
task scheduling points.

e The atomic construct (see Section 2.17.7 on page 234) was extended to include read, write,
and capture forms, and an update clause was added to apply the already existing form of the
atomic construct.

OpenMP API — Version 5.0 November 2018

- O © 0 (o226, A~ N =

—_
N

a A
A~ W

15

16
17
18

19
20

21
22

23
24
25
26
27
28

29
30
31
32
33

B.6

e Data environment restrictions were changed to allow intent (in) and const-qualified types
for the firstprivate clause (see Section 2.19.4.4 on page 286).

e Data environment restrictions were changed to allow Fortran pointers in firstprivate (see
Section 2.19.4.4 on page 286) and lastprivate (see Section 2.19.4.5 on page 288).

e New reduction operators min and max were added for C and C++ (see Section 2.19.5 on
page 293).

e The nesting restrictions in Section 2.20 on page 328 were clarified to disallow closely-nested
OpenMP regions within an atomic region. This allows an atomic region to be consistently
defined with other OpenMP regions so that they include all code in the atomic construct.

e The omp_in_final runtime library routine (see Section 3.2.22 on page 356) was added to
support specialization of final task regions.

e Descriptions of examples (previously Appendix A) were expanded and clarified.

e Replaced incorrect use of omp_integer_kind in Fortran interfaces with
selected _int_kind(8).

Version 2.5 to 3.0 Differences

o The definition of active parallel region has been changed: in Version 3.0 a parallel
region is active if it is executed by a team consisting of more than one thread (see Section 1.2.2
on page 2).

o The concept of tasks has been added to the OpenMP execution model (see Section 1.2.5 on
page 10 and Section 1.3 on page 20).

e The OpenMP memory model now covers atomicity of memory accesses (see Section 1.4.1 on
page 23). The description of the behavior of volatile in terms of £1lush was removed.

e In Version 2.5, there was a single copy of the nest-var, dyn-var, nthreads-var and run-sched-var
internal control variables (ICVs) for the whole program. In Version 3.0, there is one copy of
these ICVs per task (see Section 2.5 on page 63). As a result, the omp_set_num_threads,
omp_set_nested and omp_set_dynamic runtime library routines now have specified
effects when called from inside a parallel region (see Section 3.2.1 on page 334,

Section 3.2.7 on page 340 and Section 3.2.10 on page 343).

e The thread-limit-var ICV has been added, which controls the maximum number of threads
participating in the OpenMP program. The value of this ICV can be set with the
OMP__THREAD_LIMIT environment variable and retrieved with the
omp_get_thread_limit runtime library routine (see Section 2.5.1 on page 64,
Section 3.2.14 on page 348 and Section 6.10 on page 610).

APPENDIX B. FEATURES HISTORY 635

o~N OO0~ OWN =

©

—_ —a
N = O

—_
A~ W

_
[e)RNé)}

—_ a4
© o N

NN
- O

N NN
A~ 0N

N N
o O

N N
©

W N
o ©

W w
N —

W www
o Ok W

636

The max-active-levels-var ICV has been added, which controls the number of nested active
parallel regions. The value of this ICV can be set with the OMP_MAX ACTIVE_LEVELS
environment variable and the omp_set_max_active_levels runtime library routine, and
it can be retrieved with the omp_get_max_active_levels runtime library routine (see
Section 2.5.1 on page 64, Section 3.2.16 on page 350, Section 3.2.17 on page 351 and

Section 6.8 on page 608).

The stacksize-var ICV has been added, which controls the stack size for threads that the OpenMP
implementation creates. The value of this ICV can be set with the OMP_ STACKSIZE
environment variable (see Section 2.5.1 on page 64 and Section 6.6 on page 607).

The wait-policy-var ICV has been added, which controls the desired behavior of waiting threads.
The value of this ICV can be set with the OMP_WAIT POLICY environment variable (see
Section 2.5.1 on page 64 and Section 6.7 on page 608).

The rules for determining the number of threads used in a parallel region have been modified
(see Section 2.6.1 on page 78).

In Version 3.0, the assignment of iterations to threads in a loop construct with a static
schedule kind is deterministic (see Section 2.9.2 on page 101).

In Version 3.0, a loop construct may be associated with more than one perfectly nested loop. The
number of associated loops is controlled by the collapse clause (see Section 2.9.2 on
page 101).

Random access iterators, and variables of unsigned integer type, may now be used as loop
iterators in loops associated with a loop construct (see Section 2.9.2 on page 101).

The schedule kind auto has been added, which gives the implementation the freedom to choose
any possible mapping of iterations in a loop construct to threads in the team (see Section 2.9.2 on
page 101).

The task construct (see Section 2.10 on page 135) has been added, which provides a
mechanism for creating tasks explicitly.

The taskwait construct (see Section 2.17.5 on page 230) has been added, which causes a task
to wait for all its child tasks to complete.

Fortran assumed-size arrays now have predetermined data-sharing attributes (see
Section 2.19.1.1 on page 270).

In Version 3.0, static class members variables may appear in a threadprivate directive (see
Section 2.19.2 on page 274).

Version 3.0 makes clear where, and with which arguments, constructors and destructors of
private and threadprivate class type variables are called (see Section 2.19.2 on page 274,
Section 2.19.4.3 on page 285, Section 2.19.4.4 on page 286, Section 2.19.6.1 on page 310 and
Section 2.19.6.2 on page 312).

OpenMP API — Version 5.0 November 2018

- O © © N O a O =

a4 a4 a4 o
A WOWN

-
N O O

N = =
O O

N NN
w N =

NN N
(o2 Bé) IS

N
B

In Version 3.0, Fortran allocatable arrays may appear in private, firstprivate,
lastprivate, reduction, copyin and copyprivate clauses (see Section 2.19.2 on
page 274, Section 2.19.4.3 on page 285, Section 2.19.4.4 on page 286, Section 2.19.4.5 on
page 288, Section 2.19.5.4 on page 300, Section 2.19.6.1 on page 310 and Section 2.19.6.2 on
page 312).

In Fortran, firstprivate is now permitted as an argument to the default clause (see
Section 2.19.4.1 on page 282).

For list items in the private clause, implementations are no longer permitted to use the storage
of the original list item to hold the new list item on the master thread. If no attempt is made to
reference the original list item inside the parallel region, its value is well defined on exit
from the parallel region (see Section 2.19.4.3 on page 285).

The runtime library routines omp_set_schedule and omp_get_schedule have been
added; these routines respectively set and retrieve the value of the run-sched-var ICV (see
Section 3.2.12 on page 345 and Section 3.2.13 on page 347).

The omp_get_level runtime library routine has been added, which returns the number of
nested parallel regions enclosing the task that contains the call (see Section 3.2.18 on
page 352).

The omp_get_ancestor_thread_numruntime library routine has been added, which
returns, for a given nested level of the current thread, the thread number of the ancestor (see
Section 3.2.19 on page 353).

The omp_get_team_size runtime library routine has been added, which returns, for a given
nested level of the current thread, the size of the thread team to which the ancestor belongs (see
Section 3.2.20 on page 354).

The omp_get_active_level runtime library routine has been added, which returns the
number of nested active parallel regions enclosing the task that contains the call (see
Section 3.2.21 on page 355).

In Version 3.0, locks are owned by tasks, not by threads (see Section 3.3 on page 381).

APPENDIX B. FEATURES HISTORY 637

This page intentionally left blank

Index

Symbols
_ OPENMP macro, 49, 611-613

A

acquire flush, 27

affinity, 80

allocate, 156, 158
array sections, 44

array shaping, 43

atomic, 234

atomic construct, 621
attribute clauses, 282
attributes, data-mapping, 314
attributes, data-sharing, 269
auto, 105

B
barrier, 226
barrier, implicit, 228

C

cancel, 263

cancellation constructs, 263
cancel, 263

cancellation point, 267

cancellation point, 267
canonical loop form, 95
capture, atomic, 234
clauses

allocate, 158

attribute data-sharing, 282

collapse, 101, 102
copyin, 310
copyprivate, 312
data copying, 309
data-sharing, 282
default, 282
defaultmap, 324
depend, 255
firstprivate, 286
hint, 260

if Clause, 220
in_reduction, 303
lastprivate, 288
linear, 290

map, 315

private, 285
reduction, 300
schedule, 103
shared, 283
task_reduction, 303

combined constructs, 185

master taskloop, 192

master taskloop simd, 194

parallel loop, 186

parallel master, 191

parallel master taskloop, 195

parallelmastertaskloop simd,
196

parallel sections, 188

parallel workshare, 189

639

parallel worksharing-loop
construct, 185
parallel worksharing-loop SIMD
construct, 190
target parallel, 203
target parallel loop, 208
target parallel worksharing-loop
construct, 205
target parallel worksharing-loop SIMD
construct, 206
target simd, 209
target teams, 210
target teams distribute, 211
target teams distribute parallel
worksharing-loop construct, 215
target teams distribute parallel
worksharing-loop SIMD
construct, 216
target teams distribute simd,
213
target teams loop construct, 214
teams distribute, 197
teams distribute parallel
worksharing-loop construct, 200
teams distribute parallel
worksharing-loop SIMD
construct, 201
teams distribute simd, 198
teams loop, 202
compilation sentinels, 50
compliance, 31
conditional compilation, 49
constructs
atomic, 234
barrier, 226
cancel, 263
cancellation constructs, 263
cancellation point, 267
combined constructs, 185
critical, 223
declare mapper, 326
declare target, 180
depobij, 254

640 OpenMP API — Version 5.0 November 2018

device constructs, 160

distribute, 120

distribute parallel do, 125

distribute parallel do simd,
126

distribute parallel for, 125

distribute parallel for simd,
126

distribute parallel worksharing-loop
construct, 125

distribute parallel worksharing-loop
SIMD construct, 126

distribute simd, 123

do Fortran, 101

flush, 242

for, C/C++, 101

loop, 128

master, 221

master taskloop, 192

master taskloop simd, 194

ordered, 250

parallel, 74

parallel do Fortran, 185

parallel for C/C++, 185

parallel loop, 186

parallel master, 191

parallel master taskloop, 195

parallelmastertaskloop simd,
196

parallel sections, 188

parallel workshare, 189

parallel worksharing-loop
construct, 185

parallel worksharing-loop SIMD
construct, 190

sections, 86

simd, 110

single, 89

target, 170

target data, 161

target enter data, 164

target exit data, 166

target parallel, 203

target parallel do, 205

target parallel do simd, 206

target parallel for, 205

target parallel for simd, 206

target parallel loop, 208

target parallel worksharing-loop
construct, 205

target parallel worksharing-loop SIMD
construct, 206

target simd, 209

target teams, 210

target teams distribute, 211

target teams distribute parallel
worksharing-loop construct, 215

target teams distribute parallel
worksharing-loop SIMD
construct, 216

target teams distribute simd,
213

target teams loop, 214

target update, 176

task, 135

taskgroup, 232

tasking constructs, 135

taskloop, 140

taskloop simd, 146

taskwait, 230

taskyield, 147

teams, 82

teams distribute, 197

teams distribute parallel
worksharing-loop construct, 200

teams distribute parallel
worksharing-loop SIMD
construct, 201

teams distribute simd, 198

teams loop, 202

workshare, 92

worksharing, 86

worksharing-loop construct, 101

worksharing-loop SIMD construct, 114

controlling OpenMP thread affinity, 80
copyin, 310

copyprivate, 312
critical, 223

D
data copying clauses, 309
data environment, 269
data terminology, 12
data-mapping rules and clauses, 314
data-sharing attribute clauses, 282
data-sharing attribute rules, 269
declare mapper, 326
declare reduction, 304
declare simd, 116
declare target, 180
declare wvariant, 58
default, 282
defaultmap, 324
depend, 255
depend object, 254
depobij, 254
deprecated features, 627
device constructs
declare mapper, 326
declare target, 180
device constructs, 160
distribute, 120
distribute parallel worksharing-loop
construct, 125
distribute parallel worksharing-loop
SIMD construct, 126
distribute simd, 123
target, 170
target update, 176
teams, §2
device data environments, 24, 164, 166
device directives, 160
device memory routines, 397
directive format, 38
directives, 37
allocate, 156
declare mapper, 326
declare reduction, 304
declare simd, 116
declare target, 180

Index 641

642

declare wvariant, 58
memory management directives, 152
metadirective, 56
requires, 60
scan Directive, 132
threadprivate, 274
variant directives, 51
distribute, 120
distribute parallel worksharing-loop
construct, 125
distribute parallel worksharing-loop SIMD
construct, 126
distribute simd, 123
do, Fortran, 101
do simd, 114
dynamic, 105
dynamic thread adjustment, 620

E

environment variables, 601
OMP_AFFINITY FORMAT, 613
OMP_ALLOCATOR, 618
OMP_CANCELLATION, 610
OMP_DEBUG, 617
OMP_DEFAULT_DEVICE, 615
OMP_DISPLAY AFFINITY, 612
OMP_DISPLAY ENV, 611
OMP_DYNAMIC, 603
OMP_MAX ACTIVE_LEVELS, 608
OMP_MAX TASK PRIORITY, 615
OMP_NESTED, 609
OMP_NUM_THREADS, 602
OMP_PLACES, 605
OMP_PROC_BIND, 604
OMP__SCHEDULE, 601
OMP_ STACKSIZE, 607
OMP_TARGET_OFFLOAD, 615
OMP_THREAD_LIMIT, 610
OMP_TOOL, 616
OMP_TOOL_LIBRARIES, 617
OMP_WAIT_POLICY, 608

event, 396

event callback registration, 425

event callback signatures, 459

OpenMP API — Version 5.0 November 2018

event routines, 396
execution environment routines, 334
execution model, 20

F

features history, 627

firstprivate, 286

fixed source form conditional compilation
sentinels, 50

fixed source form directives, 41

flush, 242

flush operation, 25

flush synchronization, 27

flush-set, 25

for, C/C++, 101

for simd, 114

frames, 454

free source form conditional compilation
sentinel, 50

free source form directives, 41

G
glossary, 2
guided, 105

H

happens before, 27
header files, 332
history of features, 627

I

ICVs (internal control variables), 63
if Clause, 220

implementation, 619
implementation terminology, 16
implicit barrier, 228

implicit flushes, 246
in_reduction, 303

include files, 332

internal control variables, 619
internal control variables (ICVs), 63
introduction, 1

iterators, 47

L

lastprivate, 288
linear, 290

list item privatization, 279
lock routines, 381

loop, 128

loop terminology, 8

M

map, 315

master, 221

master taskloop, 192

master taskloop simd, 194

memory allocators, 152

memory management, 152

memory management directives
memory management directives, 152

memory management routines, 406

memory model, 23

memory spaces, 152

metadirective, 56

modifying and retrieving ICV values, 68

modifying ICVs, 66

N
nesting of regions, 328
normative references, 31

(0]

OMP_AFFINITY FORMAT, 613
omp_alloc, 413
OMP_ALLOCATOR, 618
OMP_CANCELLATION, 610
omp_capture_affinity, 368
OMP_DEBUG, 617
OMP_DEFAULT_DEVICE, 615
omp_destroy_allocator, 410
omp_destroy_lock, 387
omp_destroy_nest_lock, 387
OMP_DISPLAY AFFINITY, 612
omp_display affinity, 367
OMP_DISPLAY ENV, 611
OMP_DYNAMIC, 603

omp_free, 414

omp_fulfill event, 396
omp_get_active_level, 355
omp_get_affinity_ format, 366
omp_get_ancestor_thread_ num, 353
omp_get_cancellation, 342
omp_get_default_allocator, 412
omp_get_default_device, 370
omp_get_device_num, 372
omp_get_dynamic, 341
omp_get_initial_ device, 376
omp_get_level, 352
omp_get_max_active_levels, 351
omp_get_max_task_priority, 377
omp_get_max_threads, 336
omp_get_nested, 344
omp_get_num_devices, 371
omp_get_num_places, 358
omp_get_num procs, 338
omp_get_num_teams, 373
omp_get_num_threads, 335
omp_get_partition_num_places,
362
omp_get_partition_place_nums,
363
omp_get_place_num, 362
omp_get_place_num_procs, 359
omp_get_place_proc_ids, 360
omp_get_proc_bind, 357
omp_get_schedule, 347
omp_get_supported_active
_levels, 349
omp_get_team_num, 374
omp_get_team_size, 354
omp_get_thread_ limit, 348
omp_get_thread_num, 337
omp_get_wtick, 395
omp_get_wtime, 394
omp_in_final, 356
omp_in_parallel, 339
omp_init_allocator, 409
omp_init_1lock, 384, 385
omp_init_nest_lock, 384, 385
omp_is_initial_device, 375

Index 643

OMP_MAX ACTIVE_LEVELS, 608
OMP_MAX TASK PRIORITY, 615
OMP_NESTED, 609

OMP_NUM THREADS, 602
omp_pause_resource, 378
omp_pause_resource_all, 380
OMP_PLACES, 605
OMP_PROC_BIND, 604

OMP_ SCHEDULE, 601
omp_set_affinity format, 364
omp_set_default_allocator, 411
omp_set_default_device, 369
omp_set_dynamic, 340
omp_set_lock, 388
omp_set_max_active_levels, 350
omp_set_nest_lock, 388
omp_set_nested, 343
omp_set_num_threads, 334
omp_set_schedule, 345
OMP_STACKSIZE, 607
omp_target_alloc, 397
omp_target_associate_ptr, 403
omp_target_disassociate_ptr, 405
omp_target_free, 399
omp_target_is_present, 400
omp_target_memcpy, 400
omp_target_memcpy_rect, 402
OMP_TARGET_ OFFLOAD, 615
omp_test_lock, 392
omp_test_nest_lock, 392
OMP_THREAD_LIMIT, 610
OMP_TOOL, 616
OMP_TOOL_LIBRARIES, 617
omp_unset_lock, 390
omp_unset_nest_1lock, 390
OMP_WAIT POLICY, 608
ompd_bp_device_begin, 598
ompd_bp_device_end, 599
ompd_bp_parallel_begin, 594
ompd_bp_parallel_end, 595
ompd_bp_task_begin, 595
ompd_bp_task_end, 596
ompd_bp_thread_begin, 597

OpenMP API — Version 5.0 November 2018

ompd_bp_thread_end, 597

ompd_callback_device_host
_fn_t,554

ompd callback_get_ thread
context for thread id

_fn_t, 547
ompd_callback_memory alloc
_fn_t, 546
ompd_callback memory_ free
_fn_t, 546
ompd_callback_memory_ read
_fn_t, 551
ompd_callback_memory write
_fn_t,553
ompd callback_print_string
_fn_t, 556

ompd_callback_sizeof_ fn_t, 549
ompd_callback_symbol_addr
_fn_t,550
ompd_callbacks_t, 556
ompd_dll_ locations_valid, 536
ompd_dll_locations, 535
ompt_callback_buffer
_complete_t, 487
ompt_callback_ buffer
_request_t, 486
ompt_callback_cancel_t, 481
ompt_callback_control
_tool_t, 495
ompt_callback_dependences_t, 468
ompt_callback_dispatch_t, 465
ompt_callback_device
_finalize t,484
ompt_callback_device
initialize t, 482
ompt_callback_f£flush_t, 480
ompt_callback_implicit
_task _t,471
ompt_callback_master_t, 473
ompt_callback_mutex
_acquire_t, 476
ompt_callback mutex_ t, 477
ompt_callback_nest_lock_t, 479

ompt_callback_parallel

_begin_t, 461
ompt_callback parallel

_end_t, 463
ompt_callback_sync_region_t,474
ompt_callback_device_load_t,484
ompt_callback_device

_unload_t, 486
ompt_callback target_data

_op_t, 488
ompt_callback_target_map_t, 492
ompt_callback_target

_submit_t, 494
ompt_callback_target_t, 490
ompt_callback_task_create_t, 467
ompt_callback_task

_dependence_t, 470
ompt_callback_task

_schedule_t, 470
ompt_callback thread

_begin_t, 459
ompt_callback_thread_end_t, 460
ompt_callback_work_t, 464
OpenMP compliance, 31
ordered, 250

P

parallel, 74

parallel loop, 186

parallel master construct, 191

parallel master taskloop, 195

parallelmaster taskloop simd, 196

parallel sections, 188

parallel workshare, 189

parallel worksharing-loop construct, 185

parallel worksharing-loop SIMD
construct, 190

private, 285

R

read, atomic, 234
reduction, 300
reduction clauses, 293
release flush, 27

requires, 60

runtime, 105

runtime library definitions, 332
runtime library routines, 331

S

scan Directive, 132
scheduling, 149

sections, 86

shared, 283

simd, 110

SIMD Directives, 110

Simple Lock Routines, 382
single, 89

stand-alone directives, 42
static, 104

strong flush, 25
synchronization constructs, 223
synchronization constructs and clauses, 223
synchronization hints, 260
synchronization terminology, 9

T

target, 170

target data, 161

target memory routines, 397

target parallel, 203

target parallel loop, 208

target parallel worksharing-loop construct
construct, 205

target parallel worksharing-loop SIMD
construct, 206

target simd, 209

target teams, 210

target teams distribute, 211

target teams distribute parallel
worksharing-loop construct, 215

target teams distribute parallel
worksharing-loop SIMD
construct, 216

target teams distribute simd, 213

target teams loop, 214

target update, 176

task, 135

Index 645

task scheduling, 149 worksharing-loop SIMD construct, 114

task_reduction, 303 write, atomic, 234

taskgroup, 232

tasking constructs, 135

tasking terminology, 10

taskloop, 140

taskloop simd, 146

taskwait, 230

taskyield, 147

teams, §2

teams distribute, 197

teams distribute parallel worksharing-loop
construct, 200

teams distribute parallel worksharing-loop
SIMD construct, 201

teams distribute simd, 198

teams loop, 202

thread affinity, 80

threadprivate, 274

timer, 394

timing routines, 394

tool control, 415

tool initialization, 423

tool interfaces definitions, 419, 534

tools header files, 419, 534

tracing device activity, 427

U
update, atomic, 234

\Y%
variables, environment, 601
variant directives, 51

w
wait identifier, 456
wall clock timer, 394
workshare, 92
worksharing

constructs, 86

parallel, 185

scheduling, 109
worksharing constructs, 86
worksharing-loop construct, 101

646 OpenMP API — Version 5.0 November 2018

	Introduction
	Scope
	Glossary
	Threading Concepts
	OpenMP Language Terminology
	Loop Terminology
	Synchronization Terminology
	Tasking Terminology
	Data Terminology
	Implementation Terminology
	Tool Terminology

	Execution Model
	Memory Model
	Structure of the OpenMP Memory Model
	Device Data Environments
	Memory Management
	The Flush Operation
	Flush Synchronization and Happens Before
	OpenMP Memory Consistency

	Tool Interfaces
	OMPT
	OMPD

	OpenMP Compliance
	Normative References
	Organization of this Document

	Directives
	Directive Format
	Fixed Source Form Directives
	Free Source Form Directives
	Stand-Alone Directives
	Array Shaping
	Array Sections
	Iterators

	Conditional Compilation
	Fixed Source Form Conditional Compilation Sentinels
	Free Source Form Conditional Compilation Sentinel

	Variant Directives
	OpenMP Context
	Context Selectors
	Matching and Scoring Context Selectors
	Metadirectives
	declare variant Directive

	requires Directive
	Internal Control Variables
	ICV Descriptions
	ICV Initialization
	Modifying and Retrieving ICV Values
	How ICVs are Scoped
	How the Per-Data Environment ICVs Work

	ICV Override Relationships

	parallel Construct
	Determining the Number of Threads for a parallel Region
	Controlling OpenMP Thread Affinity

	teams Construct
	Worksharing Constructs
	sections Construct
	single Construct
	workshare Construct

	Loop-Related Directives
	Canonical Loop Form
	Worksharing-Loop Construct
	Determining the Schedule of a Worksharing-Loop

	SIMD Directives
	simd Construct
	Worksharing-Loop SIMD Construct
	declare simd Directive

	distribute Loop Constructs
	distribute Construct
	distribute simd Construct
	Distribute Parallel Worksharing-Loop Construct
	Distribute Parallel Worksharing-Loop SIMD Construct

	loop Construct
	scan Directive

	Tasking Constructs
	task Construct
	taskloop Construct
	taskloop simd Construct
	taskyield Construct
	Initial Task
	Task Scheduling

	Memory Management Directives
	Memory Spaces
	Memory Allocators
	allocate Directive
	allocate Clause

	Device Directives
	Device Initialization
	target data Construct
	target enter data Construct
	target exit data Construct
	target Construct
	target update Construct
	declare target Directive

	Combined Constructs
	Parallel Worksharing-Loop Construct
	parallel loop Construct
	parallel sections Construct
	parallel workshare Construct
	Parallel Worksharing-Loop SIMD Construct
	parallel master Construct
	master taskloop Construct
	master taskloop simd Construct
	parallel master taskloop Construct
	parallel master taskloop simd Construct
	teams distribute Construct
	teams distribute simd Construct
	Teams Distribute Parallel Worksharing-Loop Construct
	Teams Distribute Parallel Worksharing-Loop SIMD Construct
	teams loop Construct
	target parallel Construct
	Target Parallel Worksharing-Loop Construct
	Target Parallel Worksharing-Loop SIMD Construct
	target parallel loop Construct
	target simd Construct
	target teams Construct
	target teams distribute Construct
	target teams distribute simd Construct
	target teams loop Construct
	Target Teams Distribute Parallel Worksharing-Loop Construct
	Target Teams Distribute Parallel Worksharing-Loop SIMD Construct

	Clauses on Combined and Composite Constructs
	if Clause
	master Construct
	Synchronization Constructs and Clauses
	critical Construct
	barrier Construct
	Implicit Barriers
	Implementation-Specific Barriers
	taskwait Construct
	taskgroup Construct
	atomic Construct
	flush Construct
	Implicit Flushes

	ordered Construct
	Depend Objects
	depobj Construct

	depend Clause
	Synchronization Hints

	Cancellation Constructs
	cancel Construct
	cancellation point Construct

	Data Environment
	Data-Sharing Attribute Rules
	Variables Referenced in a Construct
	Variables Referenced in a Region but not in a Construct

	threadprivate Directive
	List Item Privatization
	Data-Sharing Attribute Clauses
	default Clause
	shared Clause
	private Clause
	firstprivate Clause
	lastprivate Clause
	linear Clause

	Reduction Clauses and Directives
	Properties Common To All Reduction Clauses
	Reduction Scoping Clauses
	Reduction Participating Clauses
	reduction Clause
	task_reduction Clause
	in_reduction Clause
	declare reduction Directive

	Data Copying Clauses
	copyin Clause
	copyprivate Clause

	Data-Mapping Attribute Rules, Clauses, and Directives
	map Clause
	defaultmap Clause
	declare mapper Directive

	Nesting of Regions

	Runtime Library Routines
	Runtime Library Definitions
	Execution Environment Routines
	omp_set_num_threads
	omp_get_num_threads
	omp_get_max_threads
	omp_get_thread_num
	omp_get_num_procs
	omp_in_parallel
	omp_set_dynamic
	omp_get_dynamic
	omp_get_cancellation
	omp_set_nested
	omp_get_nested
	omp_set_schedule
	omp_get_schedule
	omp_get_thread_limit
	omp_get_supported_active_levels
	omp_set_max_active_levels
	omp_get_max_active_levels
	omp_get_level
	omp_get_ancestor_thread_num
	omp_get_team_size
	omp_get_active_level
	omp_in_final
	omp_get_proc_bind
	omp_get_num_places
	omp_get_place_num_procs
	omp_get_place_proc_ids
	omp_get_place_num
	omp_get_partition_num_places
	omp_get_partition_place_nums
	omp_set_affinity_format
	omp_get_affinity_format
	omp_display_affinity
	omp_capture_affinity
	omp_set_default_device
	omp_get_default_device
	omp_get_num_devices
	omp_get_device_num
	omp_get_num_teams
	omp_get_team_num
	omp_is_initial_device
	omp_get_initial_device
	omp_get_max_task_priority
	omp_pause_resource
	omp_pause_resource_all

	Lock Routines
	omp_init_lock and omp_init_nest_lock
	omp_init_lock_with_hint and omp_init_nest_lock_with_hint
	omp_destroy_lock and omp_destroy_nest_lock
	omp_set_lock and omp_set_nest_lock
	omp_unset_lock and omp_unset_nest_lock
	omp_test_lock and omp_test_nest_lock

	Timing Routines
	omp_get_wtime
	omp_get_wtick

	Event Routine
	omp_fulfill_event

	Device Memory Routines
	omp_target_alloc
	omp_target_free
	omp_target_is_present
	omp_target_memcpy
	omp_target_memcpy_rect
	omp_target_associate_ptr
	omp_target_disassociate_ptr

	Memory Management Routines
	Memory Management Types
	omp_init_allocator
	omp_destroy_allocator
	omp_set_default_allocator
	omp_get_default_allocator
	omp_alloc
	omp_free

	Tool Control Routine

	OMPT Interface
	OMPT Interfaces Definitions
	Activating a First-Party Tool
	ompt_start_tool
	Determining Whether a First-Party Tool Should be Initialized
	Initializing a First-Party Tool
	Binding Entry Points in the OMPT Callback Interface

	Monitoring Activity on the Host with OMPT
	Tracing Activity on Target Devices with OMPT

	Finalizing a First-Party Tool
	OMPT Data Types
	Tool Initialization and Finalization
	Callbacks
	Tracing
	Record Type
	Native Record Kind
	Native Record Abstract Type
	Record Type

	Miscellaneous Type Definitions
	ompt_callback_t
	ompt_set_result_t
	ompt_id_t
	ompt_data_t
	ompt_device_t
	ompt_device_time_t
	ompt_buffer_t
	ompt_buffer_cursor_t
	ompt_dependence_t
	ompt_thread_t
	ompt_scope_endpoint_t
	ompt_dispatch_t
	ompt_sync_region_t
	ompt_target_data_op_t
	ompt_work_t
	ompt_mutex_t
	ompt_native_mon_flag_t
	ompt_task_flag_t
	ompt_task_status_t
	ompt_target_t
	ompt_parallel_flag_t
	ompt_target_map_flag_t
	ompt_dependence_type_t
	ompt_cancel_flag_t
	ompt_hwid_t
	ompt_state_t
	ompt_frame_t
	ompt_frame_flag_t
	ompt_wait_id_t

	OMPT Tool Callback Signatures and Trace Records
	Initialization and Finalization Callback Signature
	ompt_initialize_t
	ompt_finalize_t

	Event Callback Signatures and Trace Records
	ompt_callback_thread_begin_t
	ompt_callback_thread_end_t
	ompt_callback_parallel_begin_t
	ompt_callback_parallel_end_t
	ompt_callback_work_t
	ompt_callback_dispatch_t
	ompt_callback_task_create_t
	ompt_callback_dependences_t
	ompt_callback_task_dependence_t
	ompt_callback_task_schedule_t
	ompt_callback_implicit_task_t
	ompt_callback_master_t
	ompt_callback_sync_region_t
	ompt_callback_mutex_acquire_t
	ompt_callback_mutex_t
	ompt_callback_nest_lock_t
	ompt_callback_flush_t
	ompt_callback_cancel_t
	ompt_callback_device_initialize_t
	ompt_callback_device_finalize_t
	ompt_callback_device_load_t
	ompt_callback_device_unload_t
	ompt_callback_buffer_request_t
	ompt_callback_buffer_complete_t
	ompt_callback_target_data_op_t
	ompt_callback_target_t
	ompt_callback_target_map_t
	ompt_callback_target_submit_t
	ompt_callback_control_tool_t

	OMPT Runtime Entry Points for Tools
	Entry Points in the OMPT Callback Interface
	ompt_enumerate_states_t
	ompt_enumerate_mutex_impls_t
	ompt_set_callback_t
	ompt_get_callback_t
	ompt_get_thread_data_t
	ompt_get_num_procs_t
	ompt_get_num_places_t
	ompt_get_place_proc_ids_t
	ompt_get_place_num_t
	ompt_get_partition_place_nums_t
	ompt_get_proc_id_t
	ompt_get_state_t
	ompt_get_parallel_info_t
	ompt_get_task_info_t
	ompt_get_task_memory_t
	ompt_get_target_info_t
	ompt_get_num_devices_t
	ompt_get_unique_id_t
	ompt_finalize_tool_t

	Entry Points in the OMPT Device Tracing Interface
	ompt_get_device_num_procs_t
	ompt_get_device_time_t
	ompt_translate_time_t
	ompt_set_trace_ompt_t
	ompt_set_trace_native_t
	ompt_start_trace_t
	ompt_pause_trace_t
	ompt_flush_trace_t
	ompt_stop_trace_t
	ompt_advance_buffer_cursor_t
	ompt_get_record_type_t
	ompt_get_record_ompt_t
	ompt_get_record_native_t
	ompt_get_record_abstract_t

	Lookup Entry Points: ompt_function_lookup_t

	OMPD Interface
	OMPD Interfaces Definitions
	Activating an OMPD Tool
	Enabling the Runtime for OMPD
	ompd_dll_locations
	ompd_dll_locations_valid

	OMPD Data Types
	Size Type
	Wait ID Type
	Basic Value Types
	Address Type
	Frame Information Type
	System Device Identifiers
	Native Thread Identifiers
	OMPD Handle Types
	OMPD Scope Types
	ICV ID Type
	Tool Context Types
	Return Code Types
	Primitive Type Sizes

	OMPD Tool Callback Interface
	Memory Management of OMPD Library
	ompd_callback_memory_alloc_fn_t
	ompd_callback_memory_free_fn_t

	Context Management and Navigation
	ompd_callback_get_thread_context_for_thread_id_fn_t
	ompd_callback_sizeof_fn_t

	Accessing Memory in the OpenMP Program or Runtime
	ompd_callback_symbol_addr_fn_t
	ompd_callback_memory_read_fn_t
	ompd_callback_memory_write_fn_t

	Data Format Conversion: ompd_callback_device_host_fn_t
	Output: ompd_callback_print_string_fn_t
	The Callback Interface

	OMPD Tool Interface Routines
	Per OMPD Library Initialization and Finalization
	ompd_initialize
	ompd_get_api_version
	ompd_get_version_string
	ompd_finalize

	Per OpenMP Process Initialization and Finalization
	ompd_process_initialize
	ompd_device_initialize
	ompd_rel_address_space_handle

	Thread and Signal Safety
	Address Space Information
	ompd_get_omp_version
	ompd_get_omp_version_string

	Thread Handles
	ompd_get_thread_in_parallel
	ompd_get_thread_handle
	ompd_rel_thread_handle
	ompd_thread_handle_compare
	ompd_get_thread_id

	Parallel Region Handles
	ompd_get_curr_parallel_handle
	ompd_get_enclosing_parallel_handle
	ompd_get_task_parallel_handle
	ompd_rel_parallel_handle
	ompd_parallel_handle_compare

	Task Handles
	ompd_get_curr_task_handle
	ompd_get_generating_task_handle
	ompd_get_scheduling_task_handle
	ompd_get_task_in_parallel
	ompd_rel_task_handle
	ompd_task_handle_compare
	ompd_get_task_function
	ompd_get_task_frame
	ompd_enumerate_states
	ompd_get_state

	Display Control Variables
	ompd_get_display_control_vars
	ompd_rel_display_control_vars

	Accessing Scope-Specific Information
	ompd_enumerate_icvs
	ompd_get_icv_from_scope
	ompd_get_icv_string_from_scope
	ompd_get_tool_data

	Runtime Entry Points for OMPD
	Beginning Parallel Regions
	Ending Parallel Regions
	Beginning Task Regions
	Ending Task Regions
	Beginning OpenMP Threads
	Ending OpenMP Threads
	Initializing OpenMP Devices
	Finalizing OpenMP Devices

	Environment Variables
	OMP_SCHEDULE
	OMP_NUM_THREADS
	OMP_DYNAMIC
	OMP_PROC_BIND
	OMP_PLACES
	OMP_STACKSIZE
	OMP_WAIT_POLICY
	OMP_MAX_ACTIVE_LEVELS
	OMP_NESTED
	OMP_THREAD_LIMIT
	OMP_CANCELLATION
	OMP_DISPLAY_ENV
	OMP_DISPLAY_AFFINITY
	OMP_AFFINITY_FORMAT
	OMP_DEFAULT_DEVICE
	OMP_MAX_TASK_PRIORITY
	OMP_TARGET_OFFLOAD
	OMP_TOOL
	OMP_TOOL_LIBRARIES
	OMP_DEBUG
	OMP_ALLOCATOR

	OpenMP Implementation-Defined Behaviors
	Features History
	Deprecated Features
	Version 4.5 to 5.0 Differences
	Version 4.0 to 4.5 Differences
	Version 3.1 to 4.0 Differences
	Version 3.0 to 3.1 Differences
	Version 2.5 to 3.0 Differences

	Index

