
OpenMP
Application Programming

Interface

Version 5.0 November 2018

Copyright c©1997-2018 OpenMP Architecture Review Board.
Permission to copy without fee all or part of this material is granted, provided the OpenMP
Architecture Review Board copyright notice and the title of this document appear. Notice is
given that copying is by permission of the OpenMP Architecture Review Board.

This page intentionally left blank.

Contents

1 Introduction 1
1.1 Scope . 1
1.2 Glossary . 2
1.2.1 Threading Concepts . 2
1.2.2 OpenMP Language Terminology . 2
1.2.3 Loop Terminology . 8
1.2.4 Synchronization Terminology . 9
1.2.5 Tasking Terminology . 10
1.2.6 Data Terminology . 12
1.2.7 Implementation Terminology . 17
1.2.8 Tool Terminology . 17

1.3 Execution Model . 20
1.4 Memory Model . 23
1.4.1 Structure of the OpenMP Memory Model 23
1.4.2 Device Data Environments . 24
1.4.3 Memory Management . 25
1.4.4 The Flush Operation . 25
1.4.5 Flush Synchronization and Happens Before 27
1.4.6 OpenMP Memory Consistency . 28

1.5 Tool Interfaces . 29
1.5.1 OMPT . 29
1.5.2 OMPD . 30

i

1.6 OpenMP Compliance . 31
1.7 Normative References . 31
1.8 Organization of this Document . 34

2 Directives 37
2.1 Directive Format . 38
2.1.1 Fixed Source Form Directives . 41
2.1.2 Free Source Form Directives . 41
2.1.3 Stand-Alone Directives . 42
2.1.4 Array Shaping . 43
2.1.5 Array Sections . 44
2.1.6 Iterators . 47

2.2 Conditional Compilation . 49
2.2.1 Fixed Source Form Conditional Compilation Sentinels 50
2.2.2 Free Source Form Conditional Compilation Sentinel 50

2.3 Variant Directives . 51
2.3.1 OpenMP Context . 51
2.3.2 Context Selectors . 53
2.3.3 Matching and Scoring Context Selectors 55
2.3.4 Metadirectives . 56
2.3.5 declare variant Directive . 58

2.4 requires Directive . 60
2.5 Internal Control Variables . 63
2.5.1 ICV Descriptions . 64
2.5.2 ICV Initialization . 66
2.5.3 Modifying and Retrieving ICV Values . 68
2.5.4 How ICVs are Scoped . 70
2.5.4.1 How the Per-Data Environment ICVs Work 72

2.5.5 ICV Override Relationships . 72
2.6 parallel Construct . 74
2.6.1 Determining the Number of Threads for a parallel Region 78
2.6.2 Controlling OpenMP Thread Affinity . 80

2.7 teams Construct . 82

ii OpenMP API – Version 5.0 November 2018

2.8 Worksharing Constructs . 86
2.8.1 sections Construct . 86
2.8.2 single Construct . 89
2.8.3 workshare Construct . 92

2.9 Loop-Related Directives . 95
2.9.1 Canonical Loop Form . 95
2.9.2 Worksharing-Loop Construct . 101
2.9.2.1 Determining the Schedule of a Worksharing-Loop 109

2.9.3 SIMD Directives . 110
2.9.3.1 simd Construct . 110
2.9.3.2 Worksharing-Loop SIMD Construct 114
2.9.3.3 declare simd Directive . 116

2.9.4 distribute Loop Constructs . 120
2.9.4.1 distribute Construct . 120
2.9.4.2 distribute simd Construct . 123
2.9.4.3 Distribute Parallel Worksharing-Loop Construct 125
2.9.4.4 Distribute Parallel Worksharing-Loop SIMD Construct 126

2.9.5 loop Construct . 128
2.9.6 scan Directive . 132

2.10 Tasking Constructs . 135
2.10.1 task Construct . 135
2.10.2 taskloop Construct . 140
2.10.3 taskloop simd Construct . 146
2.10.4 taskyield Construct . 147
2.10.5 Initial Task . 148
2.10.6 Task Scheduling . 149

2.11 Memory Management Directives . 152
2.11.1 Memory Spaces . 152
2.11.2 Memory Allocators . 152
2.11.3 allocate Directive . 156
2.11.4 allocate Clause . 158

2.12 Device Directives . 160
2.12.1 Device Initialization . 160

Contents iii

2.12.2 target data Construct . 161
2.12.3 target enter data Construct . 164
2.12.4 target exit data Construct . 166
2.12.5 target Construct . 170
2.12.6 target update Construct . 176
2.12.7 declare target Directive . 180

2.13 Combined Constructs . 185
2.13.1 Parallel Worksharing-Loop Construct . 185
2.13.2 parallel loop Construct . 186
2.13.3 parallel sections Construct . 188
2.13.4 parallel workshare Construct . 189
2.13.5 Parallel Worksharing-Loop SIMD Construct 190
2.13.6 parallel master Construct . 191
2.13.7 master taskloop Construct . 192
2.13.8 master taskloop simd Construct . 194
2.13.9 parallel master taskloop Construct 195
2.13.10 parallel master taskloop simd Construct 196
2.13.11 teams distribute Construct . 197
2.13.12 teams distribute simd Construct 198
2.13.13 Teams Distribute Parallel Worksharing-Loop Construct 200
2.13.14 Teams Distribute Parallel Worksharing-Loop SIMD Construct 201
2.13.15 teams loop Construct . 202
2.13.16 target parallel Construct . 203
2.13.17 Target Parallel Worksharing-Loop Construct 205
2.13.18 Target Parallel Worksharing-Loop SIMD Construct 206
2.13.19 target parallel loop Construct . 208
2.13.20 target simd Construct . 209
2.13.21 target teams Construct . 210
2.13.22 target teams distribute Construct 211
2.13.23 target teams distribute simd Construct 213
2.13.24 target teams loop Construct . 214
2.13.25 Target Teams Distribute Parallel Worksharing-Loop Construct 215
2.13.26 Target Teams Distribute Parallel Worksharing-Loop SIMD Construct 216

iv OpenMP API – Version 5.0 November 2018

2.14 Clauses on Combined and Composite Constructs 218
2.15 if Clause . 220
2.16 master Construct . 221
2.17 Synchronization Constructs and Clauses . 223
2.17.1 critical Construct . 223
2.17.2 barrier Construct . 226
2.17.3 Implicit Barriers . 228
2.17.4 Implementation-Specific Barriers . 230
2.17.5 taskwait Construct . 230
2.17.6 taskgroup Construct . 232
2.17.7 atomic Construct . 234
2.17.8 flush Construct . 242
2.17.8.1 Implicit Flushes . 246

2.17.9 ordered Construct . 250
2.17.10 Depend Objects . 254
2.17.10.1 depobj Construct . 254

2.17.11 depend Clause . 255
2.17.12 Synchronization Hints . 260

2.18 Cancellation Constructs . 263
2.18.1 cancel Construct . 263
2.18.2 cancellation point Construct . 267

2.19 Data Environment . 269
2.19.1 Data-Sharing Attribute Rules . 269
2.19.1.1 Variables Referenced in a Construct 270
2.19.1.2 Variables Referenced in a Region but not in a Construct 273

2.19.2 threadprivate Directive . 274
2.19.3 List Item Privatization . 279
2.19.4 Data-Sharing Attribute Clauses . 282
2.19.4.1 default Clause . 282
2.19.4.2 shared Clause . 283
2.19.4.3 private Clause . 285
2.19.4.4 firstprivate Clause . 286
2.19.4.5 lastprivate Clause . 288

Contents v

2.19.4.6 linear Clause . 290
2.19.5 Reduction Clauses and Directives . 293
2.19.5.1 Properties Common To All Reduction Clauses 294
2.19.5.2 Reduction Scoping Clauses . 299
2.19.5.3 Reduction Participating Clauses . 300
2.19.5.4 reduction Clause . 300
2.19.5.5 task_reduction Clause . 303
2.19.5.6 in_reduction Clause . 303
2.19.5.7 declare reduction Directive . 304

2.19.6 Data Copying Clauses . 309
2.19.6.1 copyin Clause . 310
2.19.6.2 copyprivate Clause . 312

2.19.7 Data-Mapping Attribute Rules, Clauses, and Directives 314
2.19.7.1 map Clause . 315
2.19.7.2 defaultmap Clause . 324
2.19.7.3 declare mapper Directive . 326

2.20 Nesting of Regions . 328

3 Runtime Library Routines 331
3.1 Runtime Library Definitions . 332
3.2 Execution Environment Routines . 334
3.2.1 omp_set_num_threads . 334
3.2.2 omp_get_num_threads . 335
3.2.3 omp_get_max_threads . 336
3.2.4 omp_get_thread_num . 337
3.2.5 omp_get_num_procs . 338
3.2.6 omp_in_parallel . 339
3.2.7 omp_set_dynamic . 340
3.2.8 omp_get_dynamic . 341
3.2.9 omp_get_cancellation . 342
3.2.10 omp_set_nested . 343
3.2.11 omp_get_nested . 344
3.2.12 omp_set_schedule . 345
3.2.13 omp_get_schedule . 347

vi OpenMP API – Version 5.0 November 2018

3.2.14 omp_get_thread_limit . 348
3.2.15 omp_get_supported_active_levels 349
3.2.16 omp_set_max_active_levels . 350
3.2.17 omp_get_max_active_levels . 351
3.2.18 omp_get_level . 352
3.2.19 omp_get_ancestor_thread_num 353
3.2.20 omp_get_team_size . 354
3.2.21 omp_get_active_level . 355
3.2.22 omp_in_final . 356
3.2.23 omp_get_proc_bind . 357
3.2.24 omp_get_num_places . 358
3.2.25 omp_get_place_num_procs . 359
3.2.26 omp_get_place_proc_ids . 360
3.2.27 omp_get_place_num . 362
3.2.28 omp_get_partition_num_places 362
3.2.29 omp_get_partition_place_nums 363
3.2.30 omp_set_affinity_format . 364
3.2.31 omp_get_affinity_format . 366
3.2.32 omp_display_affinity . 367
3.2.33 omp_capture_affinity . 368
3.2.34 omp_set_default_device . 369
3.2.35 omp_get_default_device . 370
3.2.36 omp_get_num_devices . 371
3.2.37 omp_get_device_num . 372
3.2.38 omp_get_num_teams . 373
3.2.39 omp_get_team_num . 374
3.2.40 omp_is_initial_device . 375
3.2.41 omp_get_initial_device . 376
3.2.42 omp_get_max_task_priority . 377
3.2.43 omp_pause_resource . 378
3.2.44 omp_pause_resource_all . 380

3.3 Lock Routines . 381
3.3.1 omp_init_lock and omp_init_nest_lock 384

Contents vii

3.3.2 omp_init_lock_with_hint and
omp_init_nest_lock_with_hint 385

3.3.3 omp_destroy_lock and omp_destroy_nest_lock 387
3.3.4 omp_set_lock and omp_set_nest_lock 388
3.3.5 omp_unset_lock and omp_unset_nest_lock 390
3.3.6 omp_test_lock and omp_test_nest_lock 392

3.4 Timing Routines . 394
3.4.1 omp_get_wtime . 394
3.4.2 omp_get_wtick . 395

3.5 Event Routine . 396
3.5.1 omp_fulfill_event . 396

3.6 Device Memory Routines . 397
3.6.1 omp_target_alloc . 397
3.6.2 omp_target_free . 399
3.6.3 omp_target_is_present . 400
3.6.4 omp_target_memcpy . 400
3.6.5 omp_target_memcpy_rect . 402
3.6.6 omp_target_associate_ptr . 403
3.6.7 omp_target_disassociate_ptr 405

3.7 Memory Management Routines . 406
3.7.1 Memory Management Types . 406
3.7.2 omp_init_allocator . 409
3.7.3 omp_destroy_allocator . 410
3.7.4 omp_set_default_allocator . 411
3.7.5 omp_get_default_allocator . 412
3.7.6 omp_alloc . 413
3.7.7 omp_free . 414

3.8 Tool Control Routine . 415

4 OMPT Interface 419
4.1 OMPT Interfaces Definitions . 419
4.2 Activating a First-Party Tool . 420
4.2.1 ompt_start_tool . 420
4.2.2 Determining Whether a First-Party Tool Should be Initialized 421

viii OpenMP API – Version 5.0 November 2018

4.2.3 Initializing a First-Party Tool . 423
4.2.3.1 Binding Entry Points in the OMPT Callback Interface 424

4.2.4 Monitoring Activity on the Host with OMPT 425
4.2.5 Tracing Activity on Target Devices with OMPT 427

4.3 Finalizing a First-Party Tool . 432
4.4 OMPT Data Types . 433
4.4.1 Tool Initialization and Finalization . 433
4.4.2 Callbacks . 434
4.4.3 Tracing . 435
4.4.3.1 Record Type . 435
4.4.3.2 Native Record Kind . 435
4.4.3.3 Native Record Abstract Type . 436
4.4.3.4 Record Type . 436

4.4.4 Miscellaneous Type Definitions . 438
4.4.4.1 ompt_callback_t . 438
4.4.4.2 ompt_set_result_t . 438
4.4.4.3 ompt_id_t . 439
4.4.4.4 ompt_data_t . 440
4.4.4.5 ompt_device_t . 441
4.4.4.6 ompt_device_time_t . 441
4.4.4.7 ompt_buffer_t . 441
4.4.4.8 ompt_buffer_cursor_t . 442
4.4.4.9 ompt_dependence_t . 442
4.4.4.10 ompt_thread_t . 443
4.4.4.11 ompt_scope_endpoint_t . 443
4.4.4.12 ompt_dispatch_t . 444
4.4.4.13 ompt_sync_region_t . 444
4.4.4.14 ompt_target_data_op_t . 444
4.4.4.15 ompt_work_t . 445
4.4.4.16 ompt_mutex_t . 445
4.4.4.17 ompt_native_mon_flag_t . 446
4.4.4.18 ompt_task_flag_t . 446
4.4.4.19 ompt_task_status_t . 447

Contents ix

4.4.4.20 ompt_target_t . 448
4.4.4.21 ompt_parallel_flag_t . 448
4.4.4.22 ompt_target_map_flag_t . 449
4.4.4.23 ompt_dependence_type_t . 450
4.4.4.24 ompt_cancel_flag_t . 450
4.4.4.25 ompt_hwid_t . 451
4.4.4.26 ompt_state_t . 452
4.4.4.27 ompt_frame_t . 454
4.4.4.28 ompt_frame_flag_t . 455
4.4.4.29 ompt_wait_id_t . 456

4.5 OMPT Tool Callback Signatures and Trace Records 457
4.5.1 Initialization and Finalization Callback Signature 457
4.5.1.1 ompt_initialize_t . 457
4.5.1.2 ompt_finalize_t . 458

4.5.2 Event Callback Signatures and Trace Records 459
4.5.2.1 ompt_callback_thread_begin_t 459
4.5.2.2 ompt_callback_thread_end_t 460
4.5.2.3 ompt_callback_parallel_begin_t 461
4.5.2.4 ompt_callback_parallel_end_t 463
4.5.2.5 ompt_callback_work_t . 464
4.5.2.6 ompt_callback_dispatch_t 465
4.5.2.7 ompt_callback_task_create_t 467
4.5.2.8 ompt_callback_dependences_t 468
4.5.2.9 ompt_callback_task_dependence_t 470
4.5.2.10 ompt_callback_task_schedule_t 470
4.5.2.11 ompt_callback_implicit_task_t 471
4.5.2.12 ompt_callback_master_t . 473
4.5.2.13 ompt_callback_sync_region_t 474
4.5.2.14 ompt_callback_mutex_acquire_t 476
4.5.2.15 ompt_callback_mutex_t . 477
4.5.2.16 ompt_callback_nest_lock_t 479
4.5.2.17 ompt_callback_flush_t . 480
4.5.2.18 ompt_callback_cancel_t . 481

x OpenMP API – Version 5.0 November 2018

4.5.2.19 ompt_callback_device_initialize_t 482
4.5.2.20 ompt_callback_device_finalize_t 484
4.5.2.21 ompt_callback_device_load_t 484
4.5.2.22 ompt_callback_device_unload_t 486
4.5.2.23 ompt_callback_buffer_request_t 486
4.5.2.24 ompt_callback_buffer_complete_t 487
4.5.2.25 ompt_callback_target_data_op_t 488
4.5.2.26 ompt_callback_target_t . 490
4.5.2.27 ompt_callback_target_map_t 492
4.5.2.28 ompt_callback_target_submit_t 494
4.5.2.29 ompt_callback_control_tool_t 495

4.6 OMPT Runtime Entry Points for Tools . 497
4.6.1 Entry Points in the OMPT Callback Interface 497
4.6.1.1 ompt_enumerate_states_t . 498
4.6.1.2 ompt_enumerate_mutex_impls_t 499
4.6.1.3 ompt_set_callback_t . 500
4.6.1.4 ompt_get_callback_t . 502
4.6.1.5 ompt_get_thread_data_t . 503
4.6.1.6 ompt_get_num_procs_t . 503
4.6.1.7 ompt_get_num_places_t . 504
4.6.1.8 ompt_get_place_proc_ids_t 505
4.6.1.9 ompt_get_place_num_t . 506
4.6.1.10 ompt_get_partition_place_nums_t 507
4.6.1.11 ompt_get_proc_id_t . 508
4.6.1.12 ompt_get_state_t . 508
4.6.1.13 ompt_get_parallel_info_t 510
4.6.1.14 ompt_get_task_info_t . 512
4.6.1.15 ompt_get_task_memory_t . 514
4.6.1.16 ompt_get_target_info_t . 515
4.6.1.17 ompt_get_num_devices_t . 516
4.6.1.18 ompt_get_unique_id_t . 517
4.6.1.19 ompt_finalize_tool_t . 517

Contents xi

4.6.2 Entry Points in the OMPT Device Tracing Interface 518
4.6.2.1 ompt_get_device_num_procs_t 518
4.6.2.2 ompt_get_device_time_t . 519
4.6.2.3 ompt_translate_time_t . 520
4.6.2.4 ompt_set_trace_ompt_t . 521
4.6.2.5 ompt_set_trace_native_t . 522
4.6.2.6 ompt_start_trace_t . 523
4.6.2.7 ompt_pause_trace_t . 524
4.6.2.8 ompt_flush_trace_t . 525
4.6.2.9 ompt_stop_trace_t . 526
4.6.2.10 ompt_advance_buffer_cursor_t 527
4.6.2.11 ompt_get_record_type_t . 528
4.6.2.12 ompt_get_record_ompt_t . 529
4.6.2.13 ompt_get_record_native_t 530
4.6.2.14 ompt_get_record_abstract_t 531

4.6.3 Lookup Entry Points: ompt_function_lookup_t 531

5 OMPD Interface 533
5.1 OMPD Interfaces Definitions . 534
5.2 Activating an OMPD Tool . 534
5.2.1 Enabling the Runtime for OMPD . 534
5.2.2 ompd_dll_locations . 535
5.2.3 ompd_dll_locations_valid . 536

5.3 OMPD Data Types . 536
5.3.1 Size Type . 536
5.3.2 Wait ID Type . 537
5.3.3 Basic Value Types . 537
5.3.4 Address Type . 538
5.3.5 Frame Information Type . 538
5.3.6 System Device Identifiers . 539
5.3.7 Native Thread Identifiers . 539
5.3.8 OMPD Handle Types . 540
5.3.9 OMPD Scope Types . 541
5.3.10 ICV ID Type . 542

xii OpenMP API – Version 5.0 November 2018

5.3.11 Tool Context Types . 542
5.3.12 Return Code Types . 543
5.3.13 Primitive Type Sizes . 544

5.4 OMPD Tool Callback Interface . 545
5.4.1 Memory Management of OMPD Library 545
5.4.1.1 ompd_callback_memory_alloc_fn_t 546
5.4.1.2 ompd_callback_memory_free_fn_t 546

5.4.2 Context Management and Navigation . 547
5.4.2.1 ompd_callback_get_thread_context_for_thread_id

_fn_t . 547
5.4.2.2 ompd_callback_sizeof_fn_t 549

5.4.3 Accessing Memory in the OpenMP Program or Runtime 549
5.4.3.1 ompd_callback_symbol_addr_fn_t 550
5.4.3.2 ompd_callback_memory_read_fn_t 551
5.4.3.3 ompd_callback_memory_write_fn_t 553

5.4.4 Data Format Conversion: ompd_callback_device_host_fn_t . . . 554
5.4.5 Output: ompd_callback_print_string_fn_t 556
5.4.6 The Callback Interface . 556

5.5 OMPD Tool Interface Routines . 558
5.5.1 Per OMPD Library Initialization and Finalization 558
5.5.1.1 ompd_initialize . 558
5.5.1.2 ompd_get_api_version . 559
5.5.1.3 ompd_get_version_string . 560
5.5.1.4 ompd_finalize . 561

5.5.2 Per OpenMP Process Initialization and Finalization 562
5.5.2.1 ompd_process_initialize . 562
5.5.2.2 ompd_device_initialize . 563
5.5.2.3 ompd_rel_address_space_handle 564

5.5.3 Thread and Signal Safety . 565
5.5.4 Address Space Information . 565
5.5.4.1 ompd_get_omp_version . 565
5.5.4.2 ompd_get_omp_version_string 566

Contents xiii

5.5.5 Thread Handles . 567
5.5.5.1 ompd_get_thread_in_parallel 567
5.5.5.2 ompd_get_thread_handle . 568
5.5.5.3 ompd_rel_thread_handle . 569
5.5.5.4 ompd_thread_handle_compare 570
5.5.5.5 ompd_get_thread_id . 570

5.5.6 Parallel Region Handles . 571
5.5.6.1 ompd_get_curr_parallel_handle 571
5.5.6.2 ompd_get_enclosing_parallel_handle 572
5.5.6.3 ompd_get_task_parallel_handle 573
5.5.6.4 ompd_rel_parallel_handle 574
5.5.6.5 ompd_parallel_handle_compare 575

5.5.7 Task Handles . 576
5.5.7.1 ompd_get_curr_task_handle 576
5.5.7.2 ompd_get_generating_task_handle 577
5.5.7.3 ompd_get_scheduling_task_handle 578
5.5.7.4 ompd_get_task_in_parallel 579
5.5.7.5 ompd_rel_task_handle . 580
5.5.7.6 ompd_task_handle_compare 580
5.5.7.7 ompd_get_task_function . 581
5.5.7.8 ompd_get_task_frame . 582
5.5.7.9 ompd_enumerate_states . 583
5.5.7.10 ompd_get_state . 585

5.5.8 Display Control Variables . 586
5.5.8.1 ompd_get_display_control_vars 586
5.5.8.2 ompd_rel_display_control_vars 587

5.5.9 Accessing Scope-Specific Information . 588
5.5.9.1 ompd_enumerate_icvs . 588
5.5.9.2 ompd_get_icv_from_scope . 590
5.5.9.3 ompd_get_icv_string_from_scope 591
5.5.9.4 ompd_get_tool_data . 592

5.6 Runtime Entry Points for OMPD . 594
5.6.1 Beginning Parallel Regions . 594

xiv OpenMP API – Version 5.0 November 2018

5.6.2 Ending Parallel Regions . 595
5.6.3 Beginning Task Regions . 595
5.6.4 Ending Task Regions . 596
5.6.5 Beginning OpenMP Threads . 597
5.6.6 Ending OpenMP Threads . 597
5.6.7 Initializing OpenMP Devices . 598
5.6.8 Finalizing OpenMP Devices . 599

6 Environment Variables 601
6.1 OMP_SCHEDULE . 601
6.2 OMP_NUM_THREADS . 602
6.3 OMP_DYNAMIC . 603
6.4 OMP_PROC_BIND . 604
6.5 OMP_PLACES . 605
6.6 OMP_STACKSIZE . 607
6.7 OMP_WAIT_POLICY . 608
6.8 OMP_MAX_ACTIVE_LEVELS . 608
6.9 OMP_NESTED . 609
6.10 OMP_THREAD_LIMIT . 610
6.11 OMP_CANCELLATION . 610
6.12 OMP_DISPLAY_ENV . 611
6.13 OMP_DISPLAY_AFFINITY . 612
6.14 OMP_AFFINITY_FORMAT . 613
6.15 OMP_DEFAULT_DEVICE . 615
6.16 OMP_MAX_TASK_PRIORITY . 615
6.17 OMP_TARGET_OFFLOAD . 615
6.18 OMP_TOOL . 616
6.19 OMP_TOOL_LIBRARIES . 617
6.20 OMP_DEBUG . 617
6.21 OMP_ALLOCATOR . 618

A OpenMP Implementation-Defined Behaviors 619

B Features History 627
B.1 Deprecated Features . 627

Contents xv

B.2 Version 4.5 to 5.0 Differences . 627
B.3 Version 4.0 to 4.5 Differences . 631
B.4 Version 3.1 to 4.0 Differences . 633
B.5 Version 3.0 to 3.1 Differences . 634
B.6 Version 2.5 to 3.0 Differences . 635

Index 639

xvi OpenMP API – Version 5.0 November 2018

List of Figures

2.1 Determining the schedule for a Worksharing-Loop 109

4.1 First-Party Tool Activation Flow Chart . 422

xvii

List of Tables

1.1 Map-Type Decay of Map Type Combinations . 16

2.1 ICV Initial Values . 66
2.2 Ways to Modify and to Retrieve ICV Values . 68
2.3 Scopes of ICVs . 70
2.4 ICV Override Relationships . 72
2.5 schedule Clause kind Values . 104
2.6 schedule Clause modifier Values . 106
2.7 ompt_callback_task_create callback flags evaluation 139
2.8 Predefined Memory Spaces . 152
2.9 Allocator Traits . 153
2.10 Predefined Allocators . 155
2.11 Implicitly Declared C/C++ reduction-identifiers 294
2.12 Implicitly Declared Fortran reduction-identifiers 295

3.1 Standard Tool Control Commands . 417

4.1 OMPT Callback Interface Runtime Entry Point Names and Their Type Signatures . 426
4.2 Valid Return Codes of ompt_set_callback for Each Callback 428
4.3 OMPT Tracing Interface Runtime Entry Point Names and Their Type Signatures . . 430

5.1 Mapping of Scope Type and OMPD Handles . 542
5.2 OMPD-specific ICVs . 589

6.1 Defined Abstract Names for OMP_PLACES . 605
6.2 Available Field Types for Formatting OpenMP Thread Affinity Information 613

xviii

CHAPTER 1

Introduction1

2

The collection of compiler directives, library routines, and environment variables described in this3
document collectively define the specification of the OpenMP Application Program Interface4
(OpenMP API) for parallelism in C, C++ and Fortran programs.5

This specification provides a model for parallel programming that is portable across architectures6
from different vendors. Compilers from numerous vendors support the OpenMP API. More7
information about the OpenMP API can be found at the following web site8

http://www.openmp.org9

The directives, library routines, environment variables, and tool support defined in this document10
allow users to create, to manage, to debug and to analyze parallel programs while permitting11
portability. The directives extend the C, C++ and Fortran base languages with single program12
multiple data (SPMD) constructs, tasking constructs, device constructs, worksharing constructs,and13
synchronization constructs, and they provide support for sharing, mapping and privatizing data.14
The functionality to control the runtime environment is provided by library routines and15
environment variables. Compilers that support the OpenMP API often include a command line16
option to the compiler that activates and allows interpretation of all OpenMP directives.17

1.1 Scope18

The OpenMP API covers only user-directed parallelization, wherein the programmer explicitly19
specifies the actions to be taken by the compiler and runtime system in order to execute the program20
in parallel. OpenMP-compliant implementations are not required to check for data dependencies,21
data conflicts, race conditions, or deadlocks, any of which may occur in conforming programs. In22
addition, compliant implementations are not required to check for code sequences that cause a23
program to be classified as non-conforming. Application developers are responsible for correctly24

1

using the OpenMP API to produce a conforming program. The OpenMP API does not cover1
compiler-generated automatic parallelization.2

1.2 Glossary3

1.2.1 Threading Concepts4

thread An execution entity with a stack and associated static memory, called threadprivate5
memory.6

OpenMP thread A thread that is managed by the OpenMP implementation.7

thread number A number that the OpenMP implementation assigns to an OpenMP thread. For8
threads within the same team, zero identifies the master thread and consecutive9
numbers identify the other threads of this team.10

idle thread An OpenMP thread that is not currently part of any parallel region.11

thread-safe routine A routine that performs the intended function even when executed concurrently (by12
more than one thread).13

processor Implementation-defined hardware unit on which one or more OpenMP threads can14
execute.15

device An implementation-defined logical execution engine.16

COMMENT: A device could have one or more processors.17

host device The device on which the OpenMP program begins execution.18

target device A device onto which code and data may be offloaded from the host device.19

parent device For a given target region, the device on which the corresponding target20
construct was encountered.21

1.2.2 OpenMP Language Terminology22

base language A programming language that serves as the foundation of the OpenMP specification.23

COMMENT: See Section 1.7 on page 31 for a listing of current base24
languages for the OpenMP API.25

2 OpenMP API – Version 5.0 November 2018

base program A program written in a base language.1

program order An ordering of operations performed by the same thread as determined by the2
execution sequence of operations specified by the base language.3

COMMENT: For C11 and C++11, program order corresponds to the4
sequenced before relation between operations performed by the same5
thread.6

structured block For C/C++, an executable statement, possibly compound, with a single entry at the7
top and a single exit at the bottom, or an OpenMP construct.8

For Fortran, a block of executable statements with a single entry at the top and a9
single exit at the bottom, or an OpenMP construct.10

COMMENT: See Section 2.1 on page 38 for restrictions on structured11
blocks.12

compilation unit For C/C++, a translation unit.13

For Fortran, a program unit.14

enclosing context For C/C++, the innermost scope enclosing an OpenMP directive.15

For Fortran, the innermost scoping unit enclosing an OpenMP directive.16

directive For C/C++, a #pragma, and for Fortran, a comment, that specifies OpenMP17
program behavior.18

COMMENT: See Section 2.1 on page 38 for a description of OpenMP19
directive syntax.20

metadirective A directive that conditionally resolves to another directive at compile time.21

white space A non-empty sequence of space and/or horizontal tab characters.22

OpenMP program A program that consists of a base program that is annotated with OpenMP directives23
or that calls OpenMP API runtime library routines24

conforming program An OpenMP program that follows all rules and restrictions of the OpenMP25
specification.26

declarative directive An OpenMP directive that may only be placed in a declarative context. A declarative27
directive results in one or more declarations only; it is not associated with the28
immediate execution of any user code.29

executable directive An OpenMP directive that is not declarative. That is, it may be placed in an30
executable context.31

stand-alone directive An OpenMP executable directive that has no associated user code except for that32
which appears in clauses in the directive.33

CHAPTER 1. INTRODUCTION 3

construct An OpenMP executable directive (and for Fortran, the paired end directive, if any)1
and the associated statement, loop or structured block, if any, not including the code2
in any called routines. That is, the lexical extent of an executable directive.3

combined construct A construct that is a shortcut for specifying one construct immediately nested inside4
another construct. A combined construct is semantically identical to that of explicitly5
specifying the first construct containing one instance of the second construct and no6
other statements.7

composite construct A construct that is composed of two constructs but does not have identical semantics8
to specifying one of the constructs immediately nested inside the other. A composite9
construct either adds semantics not included in the constructs from which it is10
composed or the nesting of the one construct inside the other is not conforming.11

combined target
construct

A combined construct that is composed of a target construct along with another12
construct.13

region All code encountered during a specific instance of the execution of a given construct14
or of an OpenMP library routine. A region includes any code in called routines as15
well as any implicit code introduced by the OpenMP implementation. The generation16
of a task at the point where a task generating construct is encountered is a part of the17
region of the encountering thread. However, an explicit task region corresponding to18
a task generating construct is not part of the region of the encountering thread unless19
it is an included task region. The point where a target or teams directive is20
encountered is a part of the region of the encountering thread, but the region21
corresponding to the target or teams directive is not.22

COMMENTS:23

A region may also be thought of as the dynamic or runtime extent of a24
construct or of an OpenMP library routine.25

During the execution of an OpenMP program, a construct may give rise to26
many regions.27

active parallel region A parallel region that is executed by a team consisting of more than one thread.28

inactive parallel region A parallel region that is executed by a team of only one thread.29

active target region A target region that is executed on a device other than the device that encountered30
the target construct.31

inactive target region A target region that is executed on the same device that encountered the target32
construct.33

4 OpenMP API – Version 5.0 November 2018

sequential part All code encountered during the execution of an initial task region that is not part of1
a parallel region corresponding to a parallel construct or a task region2
corresponding to a task construct.3

COMMENTS:4

A sequential part is enclosed by an implicit parallel region.5

Executable statements in called routines may be in both a sequential part6
and any number of explicit parallel regions at different points in the7
program execution.8

master thread An OpenMP thread that has thread number 0. A master thread may be an initial9
thread or the thread that encounters a parallel construct, creates a team,10
generates a set of implicit tasks, and then executes one of those tasks as thread11
number 0.12

parent thread The thread that encountered the parallel construct and generated a parallel13
region is the parent thread of each of the threads in the team of that parallel14
region. The master thread of a parallel region is the same thread as its parent15
thread with respect to any resources associated with an OpenMP thread.16

child thread When a thread encounters a parallel construct, each of the threads in the17
generated parallel region’s team are child threads of the encountering thread.18
The target or teams region’s initial thread is not a child thread of the thread that19
encountered the target or teams construct.20

ancestor thread For a given thread, its parent thread or one of its parent thread’s ancestor threads.21

descendent thread For a given thread, one of its child threads or one of its child threads’ descendent22
threads.23

team A set of one or more threads participating in the execution of a parallel region.24

COMMENTS:25

For an active parallel region, the team comprises the master thread and at26
least one additional thread.27

For an inactive parallel region, the team comprises only the master thread.28

league The set of teams created by a teams construct.29

contention group An initial thread and its descendent threads.30

implicit parallel region An inactive parallel region that is not generated from a parallel construct.31
Implicit parallel regions surround the whole OpenMP program, all target regions,32
and all teams regions.33

initial thread The thread that executes an implicit parallel region.34

CHAPTER 1. INTRODUCTION 5

initial team The team that comprises an initial thread executing an implicit parallel region.1

nested construct A construct (lexically) enclosed by another construct.2

closely nested construct A construct nested inside another construct with no other construct nested between3
them.4

nested region A region (dynamically) enclosed by another region. That is, a region generated from5
the execution of another region or one of its nested regions.6

COMMENT: Some nestings are conforming and some are not. See7
Section 2.20 on page 328 for the restrictions on nesting.8

closely nested region A region nested inside another region with no parallel region nested between9
them.10

strictly nested region A region nested inside another region with no other region nested between them.11

all threads All OpenMP threads participating in the OpenMP program.12

current team All threads in the team executing the innermost enclosing parallel region.13

encountering thread For a given region, the thread that encounters the corresponding construct.14

all tasks All tasks participating in the OpenMP program.15

current team tasks All tasks encountered by the corresponding team. The implicit tasks constituting the16
parallel region and any descendent tasks encountered during the execution of17
these implicit tasks are included in this set of tasks.18

generating task For a given region, the task for which execution by a thread generated the region.19

binding thread set The set of threads that are affected by, or provide the context for, the execution of a20
region.21

The binding thread set for a given region can be all threads on a device, all threads22
in a contention group, all master threads executing an enclosing teams region, the23
current team, or the encountering thread.24

COMMENT: The binding thread set for a particular region is described in25
its corresponding subsection of this specification.26

binding task set The set of tasks that are affected by, or provide the context for, the execution of a27
region.28

The binding task set for a given region can be all tasks, the current team tasks, all29
tasks of the current team that are generated in the region, the binding implicit task, or30
the generating task.31

COMMENT: The binding task set for a particular region (if applicable) is32
described in its corresponding subsection of this specification.33

6 OpenMP API – Version 5.0 November 2018

binding region The enclosing region that determines the execution context and limits the scope of1
the effects of the bound region is called the binding region.2

Binding region is not defined for regions for which the binding thread set is all3
threads or the encountering thread, nor is it defined for regions for which the binding4
task set is all tasks.5

COMMENTS:6

The binding region for an ordered region is the innermost enclosing7
loop region.8

The binding region for a taskwait region is the innermost enclosing9
task region.10

The binding region for a cancel region is the innermost enclosing11
region corresponding to the construct-type-clause of the cancel12
construct.13

The binding region for a cancellation point region is the14
innermost enclosing region corresponding to the construct-type-clause of15
the cancellation point construct.16

For all other regions for which the binding thread set is the current team17
or the binding task set is the current team tasks, the binding region is the18
innermost enclosing parallel region.19

For regions for which the binding task set is the generating task, the20
binding region is the region of the generating task.21

A parallel region need not be active nor explicit to be a binding22
region.23

A task region need not be explicit to be a binding region.24

A region never binds to any region outside of the innermost enclosing25
parallel region.26

orphaned construct A construct that gives rise to a region for which the binding thread set is the current27
team, but is not nested within another construct giving rise to the binding region.28

worksharing construct A construct that defines units of work, each of which is executed exactly once by one29
of the threads in the team executing the construct.30

For C/C++, worksharing constructs are for, sections, and single.31

For Fortran, worksharing constructs are do, sections, single and32
workshare.33

device construct An OpenMP construct that accepts the device clause.34

CHAPTER 1. INTRODUCTION 7

device routine A function (for C/C+ and Fortran) or subroutine (for Fortran) that can be executed on1
a target device, as part of a target region.2

place An unordered set of processors on a device.3

place list The ordered list that describes all OpenMP places available to the execution4
environment.5

place partition An ordered list that corresponds to a contiguous interval in the OpenMP place list. It6
describes the places currently available to the execution environment for a given7
parallel region.8

place number A number that uniquely identifies a place in the place list, with zero identifying the9
first place in the place list, and each consecutive whole number identifying the next10
place in the place list.11

thread affinity A binding of threads to places within the current place partition.12

SIMD instruction A single machine instruction that can operate on multiple data elements.13

SIMD lane A software or hardware mechanism capable of processing one data element from a14
SIMD instruction.15

SIMD chunk A set of iterations executed concurrently, each by a SIMD lane, by a single thread by16
means of SIMD instructions.17

memory A storage resource to store and to retrieve variables accessible by OpenMP threads.18

memory space A representation of storage resources from which memory can be allocated or19
deallocated. More than one memory space may exist.20

memory allocator An OpenMP object that fulfills requests to allocate and to deallocate memory for21
program variables from the storage resources of its associated memory space.22

handle An opaque reference that uniquely identifies an abstraction.23

1.2.3 Loop Terminology24

loop-associated
directive

An OpenMP executable directive for which the associated user code must be a loop25
nest that is a structured block.26

associated loop(s) The loop(s) controlled by a loop-associated directive.27

COMMENT: If the loop-associated directive contains a collapse or an28
ordered(n) clause then it may have more than one associated loop.29

sequential loop A loop that is not associated with any OpenMP loop-associated directive.30

8 OpenMP API – Version 5.0 November 2018

SIMD loop A loop that includes at least one SIMD chunk.1

non-rectangular loop
nest

A loop nest for which the iteration count of a loop inside the loop nest is the not same2
for all occurrences of the loop in the loop nest.3

doacross loop nest A loop nest that has cross-iteration dependence. An iteration is dependent on one or4
more lexicographically earlier iterations.5

COMMENT: The ordered clause parameter on a worksharing-loop6
directive identifies the loop(s) associated with the doacross loop nest.7

1.2.4 Synchronization Terminology8

barrier A point in the execution of a program encountered by a team of threads, beyond9
which no thread in the team may execute until all threads in the team have reached10
the barrier and all explicit tasks generated by the team have executed to completion.11
If cancellation has been requested, threads may proceed to the end of the canceled12
region even if some threads in the team have not reached the barrier.13

cancellation An action that cancels (that is, aborts) an OpenMP region and causes executing14
implicit or explicit tasks to proceed to the end of the canceled region.15

cancellation point A point at which implicit and explicit tasks check if cancellation has been requested.16
If cancellation has been observed, they perform the cancellation.17

COMMENT: For a list of cancellation points, see Section 2.18.1 on18
page 263.19

flush An operation that a thread performs to enforce consistency between its view and20
other threads’ view of memory.21

flush property Properties that determine the manner in which a flush operation enforces memory22
consistency. These properties are:23

• strong: flushes a set of variables from the current thread’s temporary view of the24
memory to the memory;25

• release: orders memory operations that precede the flush before memory26
operations performed by a different thread with which it synchronizes;27

• acquire: orders memory operations that follow the flush after memory operations28
performed by a different thread that synchronizes with it.29

COMMENT: Any flush operation has one or more flush properties.30

strong flush A flush operation that has the strong flush property.31

CHAPTER 1. INTRODUCTION 9

release flush A flush operation that has the release flush property.1

acquire flush A flush operation that has the acquire flush property.2

atomic operation An operation that is specified by an atomic construct and atomically accesses3
and/or modifies a specific storage location.4

atomic read An atomic operation that is specified by an atomic construct on which the read5
clause is present.6

atomic write An atomic operation that is specified by an atomic construct on which the write7
clause is present.8

atomic update An atomic operation that is specified by an atomic construct on which the9
update clause is present.10

atomic captured
update

An atomic operation that is specified by an atomic construct on which the11
capture clause is present.12

read-modify-write An atomic operation that reads and writes to a given storage location.13

COMMENT: All atomic update and atomic captured update operations14
are read-modify-write operations.15

sequentially consistent
atomic construct

An atomic construct for which the seq_cst clause is specified.16

non-sequentially
consistent atomic

construct

An atomic construct for which the seq_cst clause is not specified17

sequentially consistent
atomic operation

An atomic operation that is specified by a sequentially consistent atomic construct.18

1.2.5 Tasking Terminology19

task A specific instance of executable code and its data environment that the OpenMP20
implementation can schedule for execution by threads.21

task region A region consisting of all code encountered during the execution of a task.22

COMMENT: A parallel region consists of one or more implicit task23
regions.24

implicit task A task generated by an implicit parallel region or generated when a parallel25
construct is encountered during execution.26

10 OpenMP API – Version 5.0 November 2018

binding implicit task The implicit task of the current thread team assigned to the encountering thread.1

explicit task A task that is not an implicit task.2

initial task An implicit task associated with an implicit parallel region.3

current task For a given thread, the task corresponding to the task region in which it is executing.4

child task A task is a child task of its generating task region. A child task region is not part of5
its generating task region.6

sibling tasks Tasks that are child tasks of the same task region.7

descendent task A task that is the child task of a task region or of one of its descendent task regions.8

task completion Task completion occurs when the end of the structured block associated with the9
construct that generated the task is reached.10

COMMENT: Completion of the initial task that is generated when the11
program begins occurs at program exit.12

task scheduling point A point during the execution of the current task region at which it can be suspended13
to be resumed later; or the point of task completion, after which the executing thread14
may switch to a different task region.15

COMMENT: For a list of task scheduling points, see Section 2.10.6 on16
page 149.17

task switching The act of a thread switching from the execution of one task to another task.18

tied task A task that, when its task region is suspended, can be resumed only by the same19
thread that suspended it. That is, the task is tied to that thread.20

untied task A task that, when its task region is suspended, can be resumed by any thread in the21
team. That is, the task is not tied to any thread.22

undeferred task A task for which execution is not deferred with respect to its generating task region.23
That is, its generating task region is suspended until execution of the structured block24
associated with the undeferred task is completed.25

included task A task for which execution is sequentially included in the generating task region.26
That is, an included task is undeferred and executed by the encountering thread.27

merged task A task for which the data environment, inclusive of ICVs, is the same as that of its28
generating task region.29

mergeable task A task that may be a merged task if it is an undeferred task or an included task.30

final task A task that forces all of its child tasks to become final and included tasks.31

CHAPTER 1. INTRODUCTION 11

task dependence An ordering relation between two sibling tasks: the dependent task and a previously1
generated predecessor task. The task dependence is fulfilled when the predecessor2
task has completed.3

dependent task A task that because of a task dependence cannot be executed until its predecessor4
tasks have completed.5

mutually exclusive
tasks

Tasks that may be executed in any order, but not at the same time.6

predecessor task A task that must complete before its dependent tasks can be executed.7

task synchronization
construct

A taskwait, taskgroup, or a barrier construct.8

task generating
construct

A construct that generates one or more explicit tasks.9

target task A mergeable and untied task that is generated by a target, target enter10
data, target exit data, or target update construct.11

taskgroup set A set of tasks that are logically grouped by a taskgroup region.12

1.2.6 Data Terminology13

variable A named data storage block, for which the value can be defined and redefined during14
the execution of a program.15

COMMENT: An array element or structure element is a variable that is16
part of another variable.17

scalar variable For C/C++, a scalar variable, as defined by the base language.18

For Fortran, a scalar variable with intrinsic type, as defined by the base language,19
excluding character type.20

aggregate variable A variable, such as an array or structure, composed of other variables.21

array section A designated subset of the elements of an array that is specified using a subscript22
notation that can select more than one element.23

array item An array, an array section, or an array element.24

shape-operator For C/C++, an array shaping operator that reinterprets a pointer expression as an25
array with one or more specified dimensions.26

12 OpenMP API – Version 5.0 November 2018

implicit array For C/C++, the set of array elements of non-array type T that may be accessed by1
applying a sequence of [] operators to a given pointer that is either a pointer to type T2
or a pointer to a multidimensional array of elements of type T.3

For Fortran, the set of array elements for a given array pointer.4

COMMENT: For C/C++, the implicit array for pointer p with type T5
(*)[10] consists of all accessible elements p[i][j], for all i and j=0..9.6

base pointer For C/C++, an lvalue pointer expression that is used by a given lvalue expression or7
array section to refer indirectly to its storage, where the lvalue expression or array8
section is part of the implicit array for that lvalue pointer expression.9

For Fortran, a data pointer that appears last in the designator for a given variable or10
array section, where the variable or array section is part of the pointer target for that11
data pointer.12

COMMENT: For the array section13
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a14
pointer type declaration and identifiers xi have an array type declaration,15
the base pointer is: (*p0).x0[k1].p1->p2.16

named pointer For C/C++, the base pointer of a given lvalue expression or array section, or the base17
pointer of one of its named pointers.18

For Fortran, the base pointer of a given variable or array section, or the base pointer19
of one of its named pointers.20

COMMENT: For the array section21
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a22
pointer type declaration and identifiers xi have an array type declaration,23
the named pointers are: p0, (*p0).x0[k1].p1, and (*p0).x0[k1].p1->p2.24

containing array For C/C++, a non-subscripted array (a containing array) that appears in a given25
lvalue expression or array section, where the lvalue expression or array section is part26
of that containing array.27

For Fortran, an array (a containing array) without the POINTER attribute and28
without a subscript list that appears in the designator of a given variable or array29
section, where the variable or array section is part of that containing array.30

COMMENT: For the array section31
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a32
pointer type declaration and identifiers xi have an array type declaration,33
the containing arrays are: (*p0).x0[k1].p1->p2[k2].x1 and34
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.35

CHAPTER 1. INTRODUCTION 13

base array For C/C++, a containing array of a given lvalue expression or array section that does1
not appear in the expression of any of its other containing arrays.2

For Fortran, a containing array of a given variable or array section that does not3
appear in the designator of any of its other containing arrays.4

COMMENT: For the array section5
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a6
pointer type declaration and identifiers xi have an array type declaration,7
the base array is: (*p0).x0[k1].p1->p2[k2].x1[k3].x2.8

named array For C/C++, a containing array of a given lvalue expression or array section, or a9
containing array of one of its named pointers.10

For Fortran, a containing array of a given variable or array section, or a containing11
array of one of its named pointers.12

COMMENT: For the array section13
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a14
pointer type declaration and identifiers xi have an array type declaration,15
the named arrays are: (*p0).x0, (*p0).x0[k1].p1->p2[k2].x1, and16
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.17

base expression The base array of a given array section or array element, if it exists; otherwise, the18
base pointer of the array section or array element.19

COMMENT: For the array section20
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a21
pointer type declaration and identifiers xi have an array type declaration,22
the base expression is: (*p0).x0[k1].p1->p2[k2].x1[k3].x2.23

More examples for C/C++:24

• The base expression for x[i] and for x[i:n] is x, if x is an array or pointer.25

• The base expression for x[5][i] and for x[5][i:n] is x, if x is a pointer to26
an array or x is 2-dimensional array.27

• The base expression for y[5][i] and for y[5][i:n] is y[5], if y is an array28
of pointers or y is a pointer to a pointer.29

Examples for Fortran:30

• The base expression for x(i) and for x(i:j) is x.31

attached pointer A pointer variable in a device data environment to which the effect of a map clause32
assigns the address of an object, minus some offset, that is created in the device data33
environment. The pointer is an attached pointer for the remainder of its lifetime in34
the device data environment.35

14 OpenMP API – Version 5.0 November 2018

simply contiguous
array section

An array section that statically can be determined to have contiguous storage or that,1
in Fortran, has the CONTIGUOUS attribute.2

structure A structure is a variable that contains one or more variables.3

For C/C++: Implemented using struct types.4

For C++: Implemented using class types.5

For Fortran: Implemented using derived types.6

private variable With respect to a given set of task regions or SIMD lanes that bind to the same7
parallel region, a variable for which the name provides access to a different8
block of storage for each task region or SIMD lane.9

A variable that is part of another variable (as an array or structure element) cannot be10
made private independently of other components.11

shared variable With respect to a given set of task regions that bind to the same parallel region, a12
variable for which the name provides access to the same block of storage for each13
task region.14

A variable that is part of another variable (as an array or structure element) cannot be15
shared independently of the other components, except for static data members of16
C++ classes.17

threadprivate variable A variable that is replicated, one instance per thread, by the OpenMP18
implementation. Its name then provides access to a different block of storage for each19
thread.20

A variable that is part of another variable (as an array or structure element) cannot be21
made threadprivate independently of the other components, except for static data22
members of C++ classes.23

threadprivate memory The set of threadprivate variables associated with each thread.24

data environment The variables associated with the execution of a given region.25

device data
environment

The initial data environment associated with a device.26

device address An implementation-defined reference to an address in a device data environment.27

device pointer A variable that contains a device address.28

mapped variable An original variable in a data environment with a corresponding variable in a device29
data environment.30

COMMENT: The original and corresponding variables may share storage.31

CHAPTER 1. INTRODUCTION 15

TABLE 1.1: Map-Type Decay of Map Type Combinations

alloc to from tofrom release delete
alloc alloc alloc alloc alloc release delete
to alloc to alloc to release delete
from alloc alloc from from release delete
tofrom alloc to from tofrom release delete

map-type decay The process used to determine the final map type when mapping a variable with a1
user defined mapper. Table 1.1 shows the final map type that the combination of the2
two map types determines.3

mappable type A type that is valid for a mapped variable. If a type is composed from other types4
(such as the type of an array or structure element) and any of the other types are not5
mappable then the type is not mappable.6

COMMENT: Pointer types are mappable but the memory block to which7
the pointer refers is not mapped.8

For C, the type must be a complete type.9

For C++, the type must be a complete type.10

In addition, for class types:11

• All member functions accessed in any target region must appear in a12
declare target directive.13

For Fortran, no restrictions on the type except that for derived types:14

• All type-bound procedures accessed in any target region must appear in a15
declare target directive.16

defined For variables, the property of having a valid value.17

For C, for the contents of variables, the property of having a valid value.18

For C++, for the contents of variables of POD (plain old data) type, the property of19
having a valid value.20

For variables of non-POD class type, the property of having been constructed but not21
subsequently destructed.22

For Fortran, for the contents of variables, the property of having a valid value. For23
the allocation or association status of variables, the property of having a valid status.24

COMMENT: Programs that rely upon variables that are not defined are25
non-conforming programs.26

class type For C++, variables declared with one of the class, struct, or union keywords.27

16 OpenMP API – Version 5.0 November 2018

1.2.7 Implementation Terminology1

supporting n active
levels of parallelism

Implies allowing an active parallel region to be enclosed by n-1 active parallel2
regions.3

supporting the
OpenMP API

Supporting at least one active level of parallelism.4

supporting nested
parallelism

Supporting more than one active level of parallelism.5

internal control
variable

A conceptual variable that specifies runtime behavior of a set of threads or tasks in6
an OpenMP program.7

COMMENT: The acronym ICV is used interchangeably with the term8
internal control variable in the remainder of this specification.9

compliant
implementation

An implementation of the OpenMP specification that compiles and executes any10
conforming program as defined by the specification.11

COMMENT: A compliant implementation may exhibit unspecified12
behavior when compiling or executing a non-conforming program.13

unspecified behavior A behavior or result that is not specified by the OpenMP specification or not known14
prior to the compilation or execution of an OpenMP program.15

Such unspecified behavior may result from:16

• Issues documented by the OpenMP specification as having unspecified behavior.17

• A non-conforming program.18

• A conforming program exhibiting an implementation-defined behavior.19

implementation defined Behavior that must be documented by the implementation, and is allowed to vary20
among different compliant implementations. An implementation is allowed to define21
this behavior as unspecified.22

COMMENT: All features that have implementation-defined behavior are23
documented in Appendix A.24

deprecated For a construct, clause, or other feature, the property that it is normative in the25
current specification but is considered obsolescent and will be removed in the future.26

1.2.8 Tool Terminology27

tool Executable code, distinct from application or runtime code, that can observe and/or28
modify the execution of an application.29

CHAPTER 1. INTRODUCTION 17

first-party tool A tool that executes in the address space of the program that it is monitoring.1

third-party tool A tool that executes as a separate process from the process that it is monitoring and2
potentially controlling.3

activated tool A first-party tool that successfully completed its initialization.4

event A point of interest in the execution of a thread.5

native thread A thread defined by an underlying thread implementation.6

tool callback A function that a tool provides to an OpenMP implementation to invoke when an7
associated event occurs.8

registering a callback Providing a tool callback to an OpenMP implementation.9

dispatching a callback
at an event

Processing a callback when an associated event occurs in a manner consistent with10
the return code provided when a first-party tool registered the callback.11

thread state An enumeration type that describes the current OpenMP activity of a thread. A12
thread can be in only one state at any time.13

wait identifier A unique opaque handle associated with each data object (for example, a lock) used14
by the OpenMP runtime to enforce mutual exclusion that may cause a thread to wait15
actively or passively.16

frame A storage area on a thread’s stack associated with a procedure invocation. A frame17
includes space for one or more saved registers and often also includes space for saved18
arguments, local variables, and padding for alignment.19

canonical frame
address

An address associated with a procedure frame on a call stack that was the value of the20
stack pointer immediately prior to calling the procedure for which the invocation is21
represented by the frame.22

runtime entry point A function interface provided by an OpenMP runtime for use by a tool. A runtime23
entry point is typically not associated with a global function symbol.24

trace record A data structure in which to store information associated with an occurrence of an25
event.26

native trace record A trace record for an OpenMP device that is in a device-specific format.27

signal A software interrupt delivered to a thread.28

signal handler A function called asynchronously when a signal is delivered to a thread.29

async signal safe The guarantee that interruption by signal delivery will not interfere with a set of30
operations. An async signal safe runtime entry point is safe to call from a signal31
handler.32

18 OpenMP API – Version 5.0 November 2018

code block A contiguous region of memory that contains code of an OpenMP program to be1
executed on a device.2

OMPT An interface that helps a first-party tool monitor the execution of an OpenMP3
program.4

OMPT interface state A state that indicates the permitted interactions between a first-party tool and the5
OpenMP implementation.6

OMPT active An OMPT interface state in which the OpenMP implementation is prepared to accept7
runtime calls from a first party tool and it dispatches any registered callbacks and in8
which a first-party tool can invoke runtime entry points if not otherwise restricted.9

OMPT pending An OMPT interface state in which the OpenMP implementation can only call10
functions to initialize a first party tool and in which a first-party tool cannot invoke11
runtime entry points.12

OMPT inactive An OMPT interface state in which the OpenMP implementation will not make any13
callbacks and in which a first-party tool cannot invoke runtime entry points.14

OMPD An interface that helps a third-party tool inspect the OpenMP state of a program that15
has begun execution.16

OMPD library A dynamically loadable library that implements the OMPD interface.17

image file An executable or shared library.18

address space A collection of logical, virtual, or physical memory address ranges that contain code,19
stack, and/or data. Address ranges within an address space need not be contiguous.20
An address space consists of one or more segments.21

segment A portion of an address space associated with a set of address ranges.22

OpenMP architecture The architecture on which an OpenMP region executes.23

tool architecture The architecture on which an OMPD tool executes.24

OpenMP process A collection of one or more threads and address spaces. A process may contain25
threads and address spaces for multiple OpenMP architectures. At least one thread26
in an OpenMP process is an OpenMP thread. A process may be live or a core file.27

address space handle A handle that refers to an address space within an OpenMP process.28

thread handle A handle that refers to an OpenMP thread.29

parallel handle A handle that refers to an OpenMP parallel region.30

task handle A handle that refers to an OpenMP task region.31

descendent handle An output handle that is returned from the OMPD library in a function that accepts32
an input handle: the output handle is a descendent of the input handle.33

CHAPTER 1. INTRODUCTION 19

ancestor handle An input handle that is passed to the OMPD library in a function that returns an1
output handle: the input handle is an ancestor of the output handle. For a given2
handle, the ancestors of the handle are also the ancestors of the handle’s descendent.3

COMMENT: A handle cannot be used by the tool in an OMPD call if any4
ancestor of the handle has been released, except for OMPD calls that5
release the handle.6

tool context An opaque reference provided by a tool to an OMPD library. A tool context uniquely7
identifies an abstraction.8

address space context A tool context that refers to an address space within a process.9

thread context A tool context that refers to a native thread.10

native thread identifier An identifier for a native thread defined by a thread implementation.11

1.3 Execution Model12

The OpenMP API uses the fork-join model of parallel execution. Multiple threads of execution13
perform tasks defined implicitly or explicitly by OpenMP directives. The OpenMP API is intended14
to support programs that will execute correctly both as parallel programs (multiple threads of15
execution and a full OpenMP support library) and as sequential programs (directives ignored and a16
simple OpenMP stubs library). However, it is possible and permitted to develop a program that17
executes correctly as a parallel program but not as a sequential program, or that produces different18
results when executed as a parallel program compared to when it is executed as a sequential19
program. Furthermore, using different numbers of threads may result in different numeric results20
because of changes in the association of numeric operations. For example, a serial addition21
reduction may have a different pattern of addition associations than a parallel reduction. These22
different associations may change the results of floating-point addition.23

An OpenMP program begins as a single thread of execution, called an initial thread. An initial24
thread executes sequentially, as if the code encountered is part of an implicit task region, called an25
initial task region, that is generated by the implicit parallel region surrounding the whole program.26

The thread that executes the implicit parallel region that surrounds the whole program executes on27
the host device. An implementation may support other target devices. If supported, one or more28
devices are available to the host device for offloading code and data. Each device has its own29
threads that are distinct from threads that execute on another device. Threads cannot migrate from30
one device to another device. The execution model is host-centric such that the host device offloads31
target regions to target devices.32

20 OpenMP API – Version 5.0 November 2018

When a target construct is encountered, a new target task is generated. The target task region1
encloses the target region. The target task is complete after the execution of the target region2
is complete.3

When a target task executes, the enclosed target region is executed by an initial thread. The4
initial thread may execute on a target device. The initial thread executes sequentially, as if the target5
region is part of an initial task region that is generated by an implicit parallel region. If the target6
device does not exist or the implementation does not support the target device, all target regions7
associated with that device execute on the host device.8

The implementation must ensure that the target region executes as if it were executed in the data9
environment of the target device unless an if clause is present and the if clause expression10
evaluates to false.11

The teams construct creates a league of teams, where each team is an initial team that comprises12
an initial thread that executes the teams region. Each initial thread executes sequentially, as if the13
code encountered is part of an initial task region that is generated by an implicit parallel region14
associated with each team.15

If a construct creates a data environment, the data environment is created at the time the construct is16
encountered. The description of a construct defines whether it creates a data environment.17

When any thread encounters a parallel construct, the thread creates a team of itself and zero or18
more additional threads and becomes the master of the new team. A set of implicit tasks, one per19
thread, is generated. The code for each task is defined by the code inside the parallel construct.20
Each task is assigned to a different thread in the team and becomes tied; that is, it is always21
executed by the thread to which it is initially assigned. The task region of the task being executed22
by the encountering thread is suspended, and each member of the new team executes its implicit23
task. There is an implicit barrier at the end of the parallel construct. Only the master thread24
resumes execution beyond the end of the parallel construct, resuming the task region that was25
suspended upon encountering the parallel construct. Any number of parallel constructs26
can be specified in a single program.27

parallel regions may be arbitrarily nested inside each other. If nested parallelism is disabled, or28
is not supported by the OpenMP implementation, then the new team that is created by a thread29
encountering a parallel construct inside a parallel region will consist only of the30
encountering thread. However, if nested parallelism is supported and enabled, then the new team31
can consist of more than one thread. A parallel construct may include a proc_bind clause to32
specify the places to use for the threads in the team within the parallel region.33

When any team encounters a worksharing construct, the work inside the construct is divided among34
the members of the team, and executed cooperatively instead of being executed by every thread.35
There is a default barrier at the end of each worksharing construct unless the nowait clause is36
present. Redundant execution of code by every thread in the team resumes after the end of the37
worksharing construct.38

CHAPTER 1. INTRODUCTION 21

When any thread encounters a task generating construct, one or more explicit tasks are generated.1
Execution of explicitly generated tasks is assigned to one of the threads in the current team, subject2
to the thread’s availability to execute work. Thus, execution of the new task could be immediate, or3
deferred until later according to task scheduling constraints and thread availability. Threads are4
allowed to suspend the current task region at a task scheduling point in order to execute a different5
task. If the suspended task region is for a tied task, the initially assigned thread later resumes6
execution of the suspended task region. If the suspended task region is for an untied task, then any7
thread may resume its execution. Completion of all explicit tasks bound to a given parallel region is8
guaranteed before the master thread leaves the implicit barrier at the end of the region. Completion9
of a subset of all explicit tasks bound to a given parallel region may be specified through the use of10
task synchronization constructs. Completion of all explicit tasks bound to the implicit parallel11
region is guaranteed by the time the program exits.12

When any thread encounters a simd construct, the iterations of the loop associated with the13
construct may be executed concurrently using the SIMD lanes that are available to the thread.14

When a loop construct is encountered, the iterations of the loop associated with the construct are15
executed in the context of its encountering thread(s), as determined according to its binding region.16
If the loop region binds to a teams region, the region is encountered by the set of master threads17
that execute the teams region. If the loop region binds to a parallel region, the region is18
encountered by the team of threads executing the parallel region. Otherwise, the region is19
encountered by a single thread.20

If the loop region binds to a teams region, the encountering threads may continue execution21
after the loop region without waiting for all iterations to complete; the iterations are guaranteed to22
complete before the end of the teams region. Otherwise, all iterations must complete before the23
encountering thread(s) continue execution after the loop region. All threads that encounter the24
loop construct may participate in the execution of the iterations. Only one of these threads may25
execute any given iteration.26

The cancel construct can alter the previously described flow of execution in an OpenMP region.27
The effect of the cancel construct depends on its construct-type-clause. If a task encounters a28
cancel construct with a taskgroup construct-type-clause, then the task activates cancellation29
and continues execution at the end of its task region, which implies completion of that task. Any30
other task in that taskgroup that has begun executing completes execution unless it encounters a31
cancellation point construct, in which case it continues execution at the end of its task32
region, which implies its completion. Other tasks in that taskgroup region that have not begun33
execution are aborted, which implies their completion.34

For all other construct-type-clause values, if a thread encounters a cancel construct, it activates35
cancellation of the innermost enclosing region of the type specified and the thread continues36
execution at the end of that region. Threads check if cancellation has been activated for their region37
at cancellation points and, if so, also resume execution at the end of the canceled region.38

If cancellation has been activated regardless of construct-type-clause, threads that are waiting39
inside a barrier other than an implicit barrier at the end of the canceled region exit the barrier and40

22 OpenMP API – Version 5.0 November 2018

resume execution at the end of the canceled region. This action can occur before the other threads1
reach that barrier.2

Synchronization constructs and library routines are available in the OpenMP API to coordinate3
tasks and data access in parallel regions. In addition, library routines and environment4
variables are available to control or to query the runtime environment of OpenMP programs.5

The OpenMP specification makes no guarantee that input or output to the same file is synchronous6
when executed in parallel. In this case, the programmer is responsible for synchronizing input and7
output processing with the assistance of OpenMP synchronization constructs or library routines.8
For the case where each thread accesses a different file, no synchronization by the programmer is9
necessary.10

1.4 Memory Model11

1.4.1 Structure of the OpenMP Memory Model12

The OpenMP API provides a relaxed-consistency, shared-memory model. All OpenMP threads13
have access to a place to store and to retrieve variables, called the memory. In addition, each thread14
is allowed to have its own temporary view of the memory. The temporary view of memory for each15
thread is not a required part of the OpenMP memory model, but can represent any kind of16
intervening structure, such as machine registers, cache, or other local storage, between the thread17
and the memory. The temporary view of memory allows the thread to cache variables and thereby18
to avoid going to memory for every reference to a variable. Each thread also has access to another19
type of memory that must not be accessed by other threads, called threadprivate memory.20

A directive that accepts data-sharing attribute clauses determines two kinds of access to variables21
used in the directive’s associated structured block: shared and private. Each variable referenced in22
the structured block has an original variable, which is the variable by the same name that exists in23
the program immediately outside the construct. Each reference to a shared variable in the structured24
block becomes a reference to the original variable. For each private variable referenced in the25
structured block, a new version of the original variable (of the same type and size) is created in26
memory for each task or SIMD lane that contains code associated with the directive. Creation of27
the new version does not alter the value of the original variable. However, the impact of attempts to28
access the original variable during the region corresponding to the directive is unspecified; see29
Section 2.19.4.3 on page 285 for additional details. References to a private variable in the30
structured block refer to the private version of the original variable for the current task or SIMD31
lane. The relationship between the value of the original variable and the initial or final value of the32
private version depends on the exact clause that specifies it. Details of this issue, as well as other33
issues with privatization, are provided in Section 2.19 on page 269.34

CHAPTER 1. INTRODUCTION 23

The minimum size at which a memory update may also read and write back adjacent variables that1
are part of another variable (as array or structure elements) is implementation defined but is no2
larger than required by the base language.3

A single access to a variable may be implemented with multiple load or store instructions and, thus,4
is not guaranteed to be atomic with respect to other accesses to the same variable. Accesses to5
variables smaller than the implementation defined minimum size or to C or C++ bit-fields may be6
implemented by reading, modifying, and rewriting a larger unit of memory, and may thus interfere7
with updates of variables or fields in the same unit of memory.8

If multiple threads write without synchronization to the same memory unit, including cases due to9
atomicity considerations as described above, then a data race occurs. Similarly, if at least one10
thread reads from a memory unit and at least one thread writes without synchronization to that11
same memory unit, including cases due to atomicity considerations as described above, then a data12
race occurs. If a data race occurs then the result of the program is unspecified.13

A private variable in a task region that subsequently generates an inner nested parallel region is14
permitted to be made shared by implicit tasks in the inner parallel region. A private variable in15
a task region can also be shared by an explicit task region generated during its execution. However,16
it is the programmer’s responsibility to ensure through synchronization that the lifetime of the17
variable does not end before completion of the explicit task region sharing it. Any other access by18
one task to the private variables of another task results in unspecified behavior.19

1.4.2 Device Data Environments20

When an OpenMP program begins, an implicit target data region for each device surrounds21
the whole program. Each device has a device data environment that is defined by its implicit22
target data region. Any declare target directives and the directives that accept23
data-mapping attribute clauses determine how an original variable in a data environment is mapped24
to a corresponding variable in a device data environment.25

When an original variable is mapped to a device data environment and a corresponding variable is26
not present in the device data environment, a new corresponding variable (of the same type and size27
as the original variable) is created in the device data environment. Conversely, the original variable28
becomes the new variable’s corresponding variable in the device data environment of the device29
that performs the mapping operation.30

The corresponding variable in the device data environment may share storage with the original31
variable. Writes to the corresponding variable may alter the value of the original variable. The32
impact of this possibility on memory consistency is discussed in Section 1.4.6 on page 28. When a33
task executes in the context of a device data environment, references to the original variable refer to34
the corresponding variable in the device data environment. If an original variable is not currently35
mapped and a corresponding variable does not exist in the device data environment then accesses to36

24 OpenMP API – Version 5.0 November 2018

the original variable result in unspecified behavior unless the unified_shared_memory1
clause is specified on a requires directive for the compilation unit.2

The relationship between the value of the original variable and the initial or final value of the3
corresponding variable depends on the map-type. Details of this issue, as well as other issues with4
mapping a variable, are provided in Section 2.19.7.1 on page 315.5

The original variable in a data environment and the corresponding variable(s) in one or more device6
data environments may share storage. Without intervening synchronization data races can occur.7

1.4.3 Memory Management8

The host device, and target devices that an implementation may support, have attached storage9
resources where program variables are stored. These resources can have different traits. A memory10
space in an OpenMP program represents a set of these storage resources. Memory spaces are11
defined according to a set of traits, and a single resource may be exposed as multiple memory12
spaces with different traits or may be part of multiple memory spaces. In any device, at least one13
memory space is guaranteed to exist.14

An OpenMP program can use a memory allocator to allocate memory in which to store variables.15
This memory will be allocated from the storage resources of the memory space associated with the16
memory allocator. Memory allocators are also used to deallocate previously allocated memory.17
When an OpenMP memory allocator is not used to allocate memory, OpenMP does not prescribe18
the storage resource for the allocation; the memory for the variables may be allocated in any storage19
resource.20

1.4.4 The Flush Operation21

The memory model has relaxed-consistency because a thread’s temporary view of memory is not22
required to be consistent with memory at all times. A value written to a variable can remain in the23
thread’s temporary view until it is forced to memory at a later time. Likewise, a read from a24
variable may retrieve the value from the thread’s temporary view, unless it is forced to read from25
memory. OpenMP flush operations are used to enforce consistency between a thread’s temporary26
view of memory and memory, or between multiple threads’ view of memory.27

If a flush operation is a strong flush, it enforces consistency between a thread’s temporary view and28
memory. A strong flush operation is applied to a set of variables called the flush-set. A strong flush29
restricts reordering of memory operations that an implementation might otherwise do.30
Implementations must not reorder the code for a memory operation for a given variable, or the code31

CHAPTER 1. INTRODUCTION 25

for a flush operation for the variable, with respect to a strong flush operation that refers to the same1
variable.2

If a thread has performed a write to its temporary view of a shared variable since its last strong flush3
of that variable, then when it executes another strong flush of the variable, the strong flush does not4
complete until the value of the variable has been written to the variable in memory. If a thread5
performs multiple writes to the same variable between two strong flushes of that variable, the strong6
flush ensures that the value of the last write is written to the variable in memory. A strong flush of a7
variable executed by a thread also causes its temporary view of the variable to be discarded, so that8
if its next memory operation for that variable is a read, then the thread will read from memory and9
capture the value in its temporary view. When a thread executes a strong flush, no later memory10
operation by that thread for a variable involved in that strong flush is allowed to start until the strong11
flush completes. The completion of a strong flush executed by a thread is defined as the point at12
which all writes to the flush-set performed by the thread before the strong flush are visible in13
memory to all other threads, and at which that thread’s temporary view of the flush-set is discarded.14

A strong flush operation provides a guarantee of consistency between a thread’s temporary view15
and memory. Therefore, a strong flush can be used to guarantee that a value written to a variable by16
one thread may be read by a second thread. To accomplish this, the programmer must ensure that17
the second thread has not written to the variable since its last strong flush of the variable, and that18
the following sequence of events are completed in this specific order:19

1. The value is written to the variable by the first thread;20

2. The variable is flushed, with a strong flush, by the first thread;21

3. The variable is flushed, with a strong flush, by the second thread; and22

4. The value is read from the variable by the second thread.23

If a flush operation is a release flush or acquire flush, it can enforce consistency between the views24
of memory of two synchronizing threads. A release flush guarantees that any prior operation that25
writes or reads a shared variable will appear to be completed before any operation that writes or26
reads the same shared variable and follows an acquire flush with which the release flush27
synchronizes (see Section 1.4.5 on page 27 for more details on flush synchronization). A release28
flush will propagate the values of all shared variables in its temporary view to memory prior to the29
thread performing any subsequent atomic operation that may establish a synchronization. An30
acquire flush will discard any value of a shared variable in its temporary view to which the thread31
has not written since last performing a release flush, so that it may subsequently read a value32
propagated by a release flush that synchronizes with it. Therefore, release and acquire flushes may33
also be used to guarantee that a value written to a variable by one thread may be read by a second34
thread. To accomplish this, the programmer must ensure that the second thread has not written to35
the variable since its last acquire flush, and that the following sequence of events happen in this36
specific order:37

1. The value is written to the variable by the first thread;38

2. The first thread performs a release flush;39

26 OpenMP API – Version 5.0 November 2018

3. The second thread performs an acquire flush; and1

4. The value is read from the variable by the second thread.2

3

Note – OpenMP synchronization operations, described in Section 2.17 on page 223 and in4
Section 3.3 on page 381, are recommended for enforcing this order. Synchronization through5
variables is possible but is not recommended because the proper timing of flushes is difficult.6

7

The flush properties that define whether a flush operation is a strong flush, a release flush, or an8
acquire flush are not mutually disjoint. A flush operation may be a strong flush and a release flush;9
it may be a strong flush and an acquire flush; it may be a release flush and an acquire flush; or it10
may be all three.11

1.4.5 Flush Synchronization and Happens Before12

OpenMP supports thread synchronization with the use of release flushes and acquire flushes. For13
any such synchronization, a release flush is the source of the synchronization and an acquire flush is14
the sink of the synchronization, such that the release flush synchronizes with the acquire flush.15

A release flush has one or more associated release sequences that define the set of modifications16
that may be used to establish a synchronization. A release sequence starts with an atomic operation17
that follows the release flush and modifies a shared variable and additionally includes any18
read-modify-write atomic operations that read a value taken from some modification in the release19
sequence. The following rules determine the atomic operation that starts an associated release20
sequence.21

• If a release flush is performed on entry to an atomic operation, that atomic operation starts its22
release sequence.23

• If a release flush is performed in an implicit flush region, an atomic operation that is provided24
by the implementation and that modifies an internal synchronization variable, starts its release25
sequence.26

• If a release flush is performed by an explicit flush region, any atomic operation that modifies a27
shared variable and follows the flush region in its thread’s program order starts an associated28
release sequence.29

An acquire flush is associated with one or more prior atomic operations that read a shared variable30
and that may be used to establish a synchronization. The following rules determine the associated31
atomic operation that may establish a synchronization.32

• If an acquire flush is performed on exit from an atomic operation, that atomic operation is its33
associated atomic operation.34

CHAPTER 1. INTRODUCTION 27

• If an acquire flush is performed in an implicit flush region, an atomic operation that is1
provided by the implementation and that reads an internal synchronization variable is its2
associated atomic operation.3

• If an acquire flush is performed by an explicit flush region, any atomic operation that reads a4
shared variable and precedes the flush region in its thread’s program order is an associated5
atomic operation.6

A release flush synchronizes with an acquire flush if an atomic operation associated with the7
acquire flush reads a value written by a modification from a release sequence associated with the8
release flush.9

An operation X simply happens before an operation Y if any of the following conditions are10
satisfied:11

1. X and Y are performed by the same thread, and X precedes Y in the thread’s program order;12

2. X synchronizes with Y according to the flush synchronization conditions explained above or13
according to the base language’s definition of synchronizes with, if such a definition exists; or14

3. There exists another operation Z, such that X simply happens before Z and Z simply happens15
before Y.16

An operation X happens before an operation Y if any of the following conditions are satisfied:17

1. X happens before Y according to the base language’s definition of happens before, if such a18
definition exists; or19

2. X simply happens before Y.20

A variable with an initial value is treated as if the value is stored to the variable by an operation that21
happens before all operations that access or modify the variable in the program.22

1.4.6 OpenMP Memory Consistency23

The following rules guarantee the observable completion order of memory operations, as seen by24
all threads.25

• If two operations performed by different threads are sequentially consistent atomic operations or26
they are strong flushes that flush the same variable, then they must be completed as if in some27
sequential order, seen by all threads.28

• If two operations performed by the same thread are sequentially consistent atomic operations or29
they access, modify, or, with a strong flush, flush the same variable, then they must be completed30
as if in that thread’s program order, as seen by all threads.31

• If two operations are performed by different threads and one happens before the other, then they32
must be completed as if in that happens before order, as seen by all threads, if:33

28 OpenMP API – Version 5.0 November 2018

– both operations access or modify the same variable;1

– both operations are strong flushes that flush the same variable; or2

– both operations are sequentially consistent atomic operations.3

• Any two atomic memory operations from different atomic regions must be completed as if in4
the same order as the strong flushes implied in their respective regions, as seen by all threads.5

The flush operation can be specified using the flush directive, and is also implied at various6
locations in an OpenMP program: see Section 2.17.8 on page 242 for details.7

8

Note – Since flush operations by themselves cannot prevent data races, explicit flush operations are9
only useful in combination with non-sequentially consistent atomic directives.10

11

OpenMP programs that:12

• Do not use non-sequentially consistent atomic directives;13

• Do not rely on the accuracy of a false result from omp_test_lock and14
omp_test_nest_lock; and15

• Correctly avoid data races as required in Section 1.4.1 on page 23,16

behave as though operations on shared variables were simply interleaved in an order consistent with17
the order in which they are performed by each thread. The relaxed consistency model is invisible18
for such programs, and any explicit flush operations in such programs are redundant.19

1.5 Tool Interfaces20

The OpenMP API includes two tool interfaces, OMPT and OMPD, to enable development of21
high-quality, portable, tools that support monitoring, performance, or correctness analysis and22
debugging of OpenMP programs developed using any implementation of the OpenMP API,23

1.5.1 OMPT24

The OMPT interface, which is intended for first-party tools, provides the following:25

• A mechanism to initialize a first-party tool;26

CHAPTER 1. INTRODUCTION 29

• Routines that enable a tool to determine the capabilities of an OpenMP implementation;1

• Routines that enable a tool to examine OpenMP state information associated with a thread;2

• Mechanisms that enable a tool to map implementation-level calling contexts back to their3
source-level representations;4

• A callback interface that enables a tool to receive notification of OpenMP events;5

• A tracing interface that enables a tool to trace activity on OpenMP target devices; and6

• A runtime library routine that an application can use to control a tool.7

OpenMP implementations may differ with respect to the thread states that they support, the mutual8
exclusion implementations that they employ, and the OpenMP events for which tool callbacks are9
invoked. For some OpenMP events, OpenMP implementations must guarantee that a registered10
callback will be invoked for each occurrence of the event. For other OpenMP events, OpenMP11
implementations are permitted to invoke a registered callback for some or no occurrences of the12
event; for such OpenMP events, however, OpenMP implementations are encouraged to invoke tool13
callbacks on as many occurrences of the event as is practical. Section 4.2.4 specifies the subset of14
OMPT callbacks that an OpenMP implementation must support for a minimal implementation of15
the OMPT interface.16

An implementation of the OpenMP API may differ from the abstract execution model described by17
its specification. The ability of tools that use the OMPT interface to observe such differences does18
not constrain implementations of the OpenMP API in any way.19

With the exception of the omp_control_tool runtime library routine for tool control, all other20
routines in the OMPT interface are intended for use only by tools and are not visible to21
applications. For that reason, a Fortran binding is provided only for omp_control_tool; all22
other OMPT functionality is described with C syntax only.23

1.5.2 OMPD24

The OMPD interface is intended for third-party tools, which run as separate processes. An25
OpenMP implementation must provide an OMPD library that can be dynamically loaded and used26
by a third-party tool. A third-party tool, such as a debugger, uses the OMPD library to access27
OpenMP state of a program that has begun execution. OMPD defines the following:28

• An interface that an OMPD library exports, which a tool can use to access OpenMP state of a29
program that has begun execution;30

• A callback interface that a tool provides to the OMPD library so that the library can use it to31
access the OpenMP state of a program that has begun execution; and32

30 OpenMP API – Version 5.0 November 2018

• A small number of symbols that must be defined by an OpenMP implementation to help the tool1
find the correct OMPD library to use for that OpenMP implementation and to facilitate2
notification of events.3

Section 5 describes OMPD in detail.4

1.6 OpenMP Compliance5

The OpenMP API defines constructs that operate in the context of the base language that is6
supported by an implementation. If the implementation of the base language does not support a7
language construct that appears in this document, a compliant OpenMP implementation is not8
required to support it, with the exception that for Fortran, the implementation must allow case9
insensitivity for directive and API routines names, and must allow identifiers of more than six10
characters. An implementation of the OpenMP API is compliant if and only if it compiles and11
executes all other conforming programs, and supports the tool interface, according to the syntax12
and semantics laid out in Chapters 1, 2, 3, 4 and 5. Appendices A, B, C, and D, as well as sections13
designated as Notes (see Section 1.8 on page 34) are for information purposes only and are not part14
of the specification.15

All library, intrinsic and built-in routines provided by the base language must be thread-safe in a16
compliant implementation. In addition, the implementation of the base language must also be17
thread-safe. For example, ALLOCATE and DEALLOCATE statements must be thread-safe in18
Fortran. Unsynchronized concurrent use of such routines by different threads must produce correct19
results (although not necessarily the same as serial execution results, as in the case of random20
number generation routines).21

Starting with Fortran 90, variables with explicit initialization have the SAVE attribute implicitly.22
This is not the case in Fortran 77. However, a compliant OpenMP Fortran implementation must23
give such a variable the SAVE attribute, regardless of the underlying base language version.24

Appendix A lists certain aspects of the OpenMP API that are implementation defined. A compliant25
implementation must define and document its behavior for each of the items in Appendix A.26

1.7 Normative References27

• ISO/IEC 9899:1990, Information Technology - Programming Languages - C.28

This OpenMP API specification refers to ISO/IEC 9899:1990 as C90.29

CHAPTER 1. INTRODUCTION 31

• ISO/IEC 9899:1999, Information Technology - Programming Languages - C.1

This OpenMP API specification refers to ISO/IEC 9899:1999 as C99.2

• ISO/IEC 9899:2011, Information Technology - Programming Languages - C.3

This OpenMP API specification refers to ISO/IEC 9899:2011 as C11. While future versions of4
the OpenMP specification are expected to address the following features, currently their use may5
result in unspecified behavior.6

– Supporting the noreturn property7

– Adding alignment support8

– Creation of complex value9

– Threads for the C standard library10

– Thread-local storage11

– Parallel memory sequencing model12

– Atomic13

• ISO/IEC 14882:1998, Information Technology - Programming Languages - C++.14

This OpenMP API specification refers to ISO/IEC 14882:1998 as C++98.15

• ISO/IEC 14882:2011, Information Technology - Programming Languages - C++.16

This OpenMP API specification refers to ISO/IEC 14882:2011 as C++11. While future versions17
of the OpenMP specification are expected to address the following features, currently their use18
may result in unspecified behavior.19

– Alignment support20

– Standard layout types21

– Allowing move constructs to throw22

– Defining move special member functions23

– Concurrency24

– Data-dependency ordering: atomics and memory model25

– Additions to the standard library26

– Thread-local storage27

– Dynamic initialization and destruction with concurrency28

– C++11 library29

32 OpenMP API – Version 5.0 November 2018

• ISO/IEC 14882:2014, Information Technology - Programming Languages - C++.1

This OpenMP API specification refers to ISO/IEC 14882:2014 as C++14. While future versions2
of the OpenMP specification are expected to address the following features, currently their use3
may result in unspecified behavior.4

– Sized deallocation5

– What signal handlers can do6

• ISO/IEC 14882:2017, Information Technology - Programming Languages - C++.7

This OpenMP API specification refers to ISO/IEC 14882:2017 as C++17.8

• ISO/IEC 1539:1980, Information Technology - Programming Languages - Fortran.9

This OpenMP API specification refers to ISO/IEC 1539:1980 as Fortran 77.10

• ISO/IEC 1539:1991, Information Technology - Programming Languages - Fortran.11

This OpenMP API specification refers to ISO/IEC 1539:1991 as Fortran 90.12

• ISO/IEC 1539-1:1997, Information Technology - Programming Languages - Fortran.13

This OpenMP API specification refers to ISO/IEC 1539-1:1997 as Fortran 95.14

• ISO/IEC 1539-1:2004, Information Technology - Programming Languages - Fortran.15

This OpenMP API specification refers to ISO/IEC 1539-1:2004 as Fortran 2003.16

• ISO/IEC 1539-1:2010, Information Technology - Programming Languages - Fortran.17

This OpenMP API specification refers to ISO/IEC 1539-1:2010 as Fortran 2008. While future18
versions of the OpenMP specification are expected to address the following features, currently19
their use may result in unspecified behavior.20

– Submodules21

– Coarrays22

– DO CONCURRENT23

– Allocatable components of recursive type24

– Pointer initialization25

– Value attribute is permitted for any nonallocatable nonpointer nonarray26

– Simply contiguous arrays rank remapping to rank>1 target27

– Polymorphic assignment28

– Accessing real and imaginary parts29

– Pointer function reference is a variable30

CHAPTER 1. INTRODUCTION 33

– Recursive I/O1

– The BLOCK construct2

– EXIT statement (to terminate a non-DO construct)3

– ERROR STOP4

– Internal procedure as an actual argument5

– Generic resolution by procedureness6

– Generic resolution by pointer vs. allocatable7

– Impure elemental procedures8

Where this OpenMP API specification refers to C, C++ or Fortran, reference is made to the base9
language supported by the implementation.10

1.8 Organization of this Document11

The remainder of this document is structured as follows:12

• Chapter 2 “Directives”13

• Chapter 3 “Runtime Library Routines”14

• Chapter 4 “OMPT Interface”15

• Chapter 5 “OMPD Interface”16

• Chapter 6 “Environment Variables”17

• Appendix A “OpenMP Implementation-Defined Behaviors”18

• Appendix B “Features History”19

Some sections of this document only apply to programs written in a certain base language. Text that20
applies only to programs for which the base language is C or C++ is shown as follows:21

C / C++
C/C++ specific text...22

C / C++
Text that applies only to programs for which the base language is C only is shown as follows:23

C
C specific text...24

C

34 OpenMP API – Version 5.0 November 2018

Text that applies only to programs for which the base language is C90 only is shown as follows:1

C90
C90 specific text...2

C90
Text that applies only to programs for which the base language is C99 only is shown as follows:3

C99
C99 specific text...4

C99
Text that applies only to programs for which the base language is C++ only is shown as follows:5

C++
C++ specific text...6

C++
Text that applies only to programs for which the base language is Fortran is shown as follows:7

Fortran
Fortran specific text......8

Fortran
Where an entire page consists of base language specific text, a marker is shown at the top of the9
page. For Fortran-specific text, the marker is:10

Fortran (cont.)

For C/C++-specific text, the marker is:11

C/C++ (cont.)

Some text is for information only, and is not part of the normative specification. Such text is12
designated as a note, like this:13

14

Note – Non-normative text...15
16

CHAPTER 1. INTRODUCTION 35

This page intentionally left blank

CHAPTER 2

Directives1

2

This chapter describes the syntax and behavior of OpenMP directives.3

C / C++
In C/C++, OpenMP directives are specified by using the #pragma mechanism provided by the C4
and C++ standards.5

C / C++
Fortran

In Fortran, OpenMP directives are specified by using special comments that are identified by6
unique sentinels. Also, a special comment form is available for conditional compilation.7

Fortran
Compilers can therefore ignore OpenMP directives and conditionally compiled code if support of8
the OpenMP API is not provided or enabled. A compliant implementation must provide an option9
or interface that ensures that underlying support of all OpenMP directives and OpenMP conditional10
compilation mechanisms is enabled. In the remainder of this document, the phrase OpenMP11
compilation is used to mean a compilation with these OpenMP features enabled.12

Fortran

Restrictions13

The following restriction applies to all OpenMP directives:14

• OpenMP directives, except simd and any declarative directive, may not appear in pure15
procedures.16

• OpenMP directives may not appear in the WHERE and FORALL constructs.17

Fortran

CHAPTER 2. DIRECTIVES 37

2.1 Directive Format1

C / C++
OpenMP directives for C/C++ are specified with #pragma directives. The syntax of an OpenMP2
directive is as follows:3

#pragma omp directive-name [clause[[,] clause] ...] new-line4

Each directive starts with #pragma omp. The remainder of the directive follows the conventions5
of the C and C++ standards for compiler directives. In particular, white space can be used before6
and after the #, and sometimes white space must be used to separate the words in a directive.7
Preprocessing tokens following #pragma omp are subject to macro replacement.8

Some OpenMP directives may be composed of consecutive #pragma directives if specified in9
their syntax.10

Directives are case-sensitive.11

Each of the expressions used in the OpenMP syntax inside of the clauses must be a valid12
assignment-expression of the base language unless otherwise specified.13

C / C++
C++

Directives may not appear in constexpr functions or in constant expressions. Variadic parameter14
packs cannot be expanded into a directive or its clauses except as part of an expression argument to15
be evaluated by the base language, such as into a function call inside an if clause.16

C++
Fortran

OpenMP directives for Fortran are specified as follows:17

sentinel directive-name [clause[[,] clause]...]18

All OpenMP compiler directives must begin with a directive sentinel. The format of a sentinel19
differs between fixed form and free form source files, as described in Section 2.1.1 on page 41 and20
Section 2.1.2 on page 41.21

Directives are case insensitive. Directives cannot be embedded within continued statements, and22
statements cannot be embedded within directives.23

Each of the expressions used in the OpenMP syntax inside of the clauses must be a valid expression24
of the base language unless otherwise specified.25

In order to simplify the presentation, free form is used for the syntax of OpenMP directives for26
Fortran in the remainder of this document, except as noted.27

Fortran

38 OpenMP API – Version 5.0 November 2018

Only one directive-name can be specified per directive (note that this includes combined directives,1
see Section 2.13 on page 185). The order in which clauses appear on directives is not significant.2
Clauses on directives may be repeated as needed, subject to the restrictions listed in the description3
of each clause.4

Some clauses accept a list, an extended-list, or a locator-list. A list consists of a comma-separated5
collection of one or more list items. An extended-list consists of a comma-separated collection of6
one or more extended list items. A locator-list consists of a comma-separated collection of one or7
more locator list items.8

C / C++
A list item is a variable or an array section. An extended list item is a list item or a function name. A9
locator list item is any lvalue expression, including variables, or an array section.10

C / C++
Fortran

A list item is a variable, array section or common block name (enclosed in slashes). An extended11
list item is a list item or a procedure name. A locator list item is a list item.12

When a named common block appears in a list, it has the same meaning as if every explicit member13
of the common block appeared in the list. An explicit member of a common block is a variable that14
is named in a COMMON statement that specifies the common block name and is declared in the same15
scoping unit in which the clause appears.16

Although variables in common blocks can be accessed by use association or host association,17
common block names cannot. As a result, a common block name specified in a data-sharing18
attribute, a data copying or a data-mapping attribute clause must be declared to be a common block19
in the same scoping unit in which the clause appears.20

If a list item that appears in a directive or clause is an optional dummy argument that is not present,21
the directive or clause for that list item is ignored.22

If the variable referenced inside a construct is an optional dummy argument that is not present, any23
explicitly determined, implicitly determined, or predetermined data-sharing and data-mapping24
attribute rules for that variable are ignored. Otherwise, if the variable is an optional dummy25
argument that is present, it is present inside the construct.26

Fortran
For all base languages, a list item, an extended list item, or a locator list item is subject to the27
restrictions specified in Section 2.1.5 on page 44 and in each of the sections describing clauses and28
directives for which the list, the extended-list, or the locator-list appears.29

Some executable directives include a structured block. A structured block:30

• may contain infinite loops where the point of exit is never reached;31

• may halt due to an IEEE exception;32

CHAPTER 2. DIRECTIVES 39

C / C++
• may contain calls to exit(), _Exit(), quick_exit(), abort() or functions with a1
_Noreturn specifier (in C) or a noreturn attribute (in C/C++);2

• may be an expression statement, iteration statement, selection statement, or try block, provided3
that the corresponding compound statement obtained by enclosing it in { and } would be a4
structured block; and5

C / C++
Fortran

• may contain STOP statements.6

Fortran

Restrictions7

Restrictions to structured blocks are as follows:8

• Entry to a structured block must not be the result of a branch.9

• The point of exit cannot be a branch out of the structured block.10

C / C++
• The point of entry to a structured block must not be a call to setjmp().11

• longjmp() and throw() must not violate the entry/exit criteria.12

C / C++

40 OpenMP API – Version 5.0 November 2018

Fortran

2.1.1 Fixed Source Form Directives1

The following sentinels are recognized in fixed form source files:2

!$omp | c$omp | *$omp3

Sentinels must start in column 1 and appear as a single word with no intervening characters.4
Fortran fixed form line length, white space, continuation, and column rules apply to the directive5
line. Initial directive lines must have a space or a zero in column 6, and continuation directive lines6
must have a character other than a space or a zero in column 6.7

Comments may appear on the same line as a directive. The exclamation point initiates a comment8
when it appears after column 6. The comment extends to the end of the source line and is ignored.9
If the first non-blank character after the directive sentinel of an initial or continuation directive line10
is an exclamation point, the line is ignored.11

12

Note – In the following example, the three formats for specifying the directive are equivalent (the13
first line represents the position of the first 9 columns):14

c2345678915
!$omp parallel do shared(a,b,c)16

17
c$omp parallel do18
c$omp+shared(a,b,c)19

20
c$omp paralleldoshared(a,b,c)21

22

2.1.2 Free Source Form Directives23

The following sentinel is recognized in free form source files:24

!$omp25

The sentinel can appear in any column as long as it is preceded only by white space. It must appear26
as a single word with no intervening white space. Fortran free form line length, white space, and27
continuation rules apply to the directive line. Initial directive lines must have a space after the28
sentinel. Continued directive lines must have an ampersand (&) as the last non-blank character on29
the line, prior to any comment placed inside the directive. Continuation directive lines can have an30
ampersand after the directive sentinel with optional white space before and after the ampersand.31

CHAPTER 2. DIRECTIVES 41

Comments may appear on the same line as a directive. The exclamation point (!) initiates a1
comment. The comment extends to the end of the source line and is ignored. If the first non-blank2
character after the directive sentinel is an exclamation point, the line is ignored.3

One or more blanks or horizontal tabs are optional to separate adjacent keywords in4
directive-names unless otherwise specified.5

6

Note – In the following example the three formats for specifying the directive are equivalent (the7
first line represents the position of the first 9 columns):8

!234567899
!$omp parallel do &10

!$omp shared(a,b,c)11
12

!$omp parallel &13
!$omp&do shared(a,b,c)14

15
!$omp paralleldo shared(a,b,c)16

17
18

Fortran

2.1.3 Stand-Alone Directives19

Summary20

Stand-alone directives are executable directives that have no associated user code.21

Description22

Stand-alone directives do not have any associated executable user code. Instead, they represent23
executable statements that typically do not have succinct equivalent statements in the base24
language. There are some restrictions on the placement of a stand-alone directive within a program.25
A stand-alone directive may be placed only at a point where a base language executable statement is26
allowed.27

42 OpenMP API – Version 5.0 November 2018

Restrictions1

C / C++
• A stand-alone directive may not be used in place of the statement following an if, while, do,2
switch, or label.3

C / C++
Fortran

• A stand-alone directive may not be used as the action statement in an if statement or as the4
executable statement following a label if the label is referenced in the program.5

Fortran
C / C++

2.1.4 Array Shaping6

If an expression has a type of pointer to T, then a shape-operator can be used to specify the extent of7
that pointer. In other words, the shape-operator is used to reinterpret, as an n-dimensional array, the8
region of memory to which that expression points.9

Formally, the syntax of the shape-operator is as follows:10

shaped-expression := ([s1][s2]...[sn])cast-expression11

The result of applying the shape-operator to an expression is an lvalue expression with an12
n-dimensional array type with dimensions s1 × s2 . . .× sn and element type T.13

The precedence of the shape-operator is the same as a type cast.14

Each si is an integral type expression that must evaluate to a positive integer.15

Restrictions16

Restrictions to the shape-operator are as follows:17

• The type T must be a complete type.18

• The shape-operator can appear only in clauses where it is explicitly allowed.19

• The result of a shape-operator must be a named array of a list item.20

• The type of the expression upon which a shape-operator is applied must be a pointer type.21

C++
• If the type T is a reference to a type T’, then the type will be considered to be T’ for all purposes22
of the designated array.23

C++
C / C++

CHAPTER 2. DIRECTIVES 43

2.1.5 Array Sections1

An array section designates a subset of the elements in an array.2

C / C++
To specify an array section in an OpenMP construct, array subscript expressions are extended with3
the following syntax:4

[lower-bound : length : stride] or5

[lower-bound : length :] or6

[lower-bound : length] or7

[lower-bound : : stride] or8

[lower-bound : :] or9

[lower-bound :] or10

[: length : stride] or11

[: length :] or12

[: length] or13

[: : stride]14

[: :]15

[:]16

The array section must be a subset of the original array.17

Array sections are allowed on multidimensional arrays. Base language array subscript expressions18
can be used to specify length-one dimensions of multidimensional array sections.19

Each of the lower-bound, length, and stride expressions if specified must be an integral type20
expression of the base language. When evaluated they represent a set of integer values as follows:21

{ lower-bound, lower-bound + stride, lower-bound + 2 * stride,... , lower-bound + ((length - 1) *22
stride) }23

The length must evaluate to a non-negative integer.24

The stride must evaluate to a positive integer.25

When the size of the array dimension is not known, the length must be specified explicitly.26

When the stride is absent it defaults to 1.27

When the length is absent it defaults to dd(size− lower-bound)/strideee, where size is the size of the28
array dimension.29

When the lower-bound is absent it defaults to 0.30

44 OpenMP API – Version 5.0 November 2018

C/C++ (cont.)

The precedence of a subscript operator that uses the array section syntax is the same as the1
precedence of a subscript operator that does not use the array section syntax.2

3

Note – The following are examples of array sections:4

a[0:6]5

a[0:6:1]6

a[1:10]7

a[1:]8

a[:10:2]9

b[10][:][:]10

b[10][:][:0]11

c[42][0:6][:]12

c[42][0:6:2][:]13

c[1:10][42][0:6]14

S.c[:100]15

p->y[:10]16

this->a[:N]17

(p+10)[:N]18

Assume a is declared to be a 1-dimensional array with dimension size 11. The first two examples19
are equivalent, and the third and fourth examples are equivalent. The fifth example specifies a stride20
of 2 and therefore is not contiguous.21

Assume b is declared to be a pointer to a 2-dimensional array with dimension sizes 10 and 10. The22
sixth example refers to all elements of the 2-dimensional array given by b[10]. The seventh23
example is a zero-length array section.24

Assume c is declared to be a 3-dimensional array with dimension sizes 50, 50, and 50. The eighth25
example is contiguous, while the ninth and tenth examples are not contiguous.26

The final four examples show array sections that are formed from more general base expressions.27

The following are examples that are non-conforming array sections:28

s[:10].x29

p[:10]->y30

*(xp[:10])31

CHAPTER 2. DIRECTIVES 45

For all three examples, a base language operator is applied in an undefined manner to an array1
section. The only operator that may be applied to an array section is a subscript operator for which2
the array section appears as the postfix expression.3

4
5

C / C++
Fortran

Fortran has built-in support for array sections although some restrictions apply to their use, as6
enumerated in the following section.7

Fortran

Restrictions8

Restrictions to array sections are as follows:9

• An array section can appear only in clauses where it is explicitly allowed.10

• A stride expression may not be specified unless otherwise stated.11

C / C++
• An element of an array section with a non-zero size must have a complete type.12

• The base expression of an array section must have an array or pointer type.13

• If a consecutive sequence of array subscript expressions appears in an array section, and the first14
subscript expression in the sequence uses the extended array section syntax defined in this15
section, then only the last subscript expression in the sequence may select array elements that16
have a pointer type.17

C / C++
C++

• If the type of the base expression of an array section is a reference to a type T, then the type will18
be considered to be T for all purposes of the array section.19

• An array section cannot be used in an overloaded [] operator.20

C++
Fortran

• If a stride expression is specified, it must be positive.21

• The upper bound for the last dimension of an assumed-size dummy array must be specified.22

• If a list item is an array section with vector subscripts, the first array element must be the lowest23
in the array element order of the array section.24

• If a list item is an array section, the last part-ref of the list item must have a section subscript list.25

Fortran

46 OpenMP API – Version 5.0 November 2018

2.1.6 Iterators1

Iterators are identifiers that expand to multiple values in the clause on which they appear.2

The syntax of the iterator modifier is as follows:3

iterator(iterators-definition)4

where iterators-definition is one of the following:5

iterator-specifier [, iterators-definition]6

where iterator-specifier is one of the following:7

[iterator-type] identifier = range-specification8

where:9

• identifier is a base language identifier.10

C / C++
• iterator-type is a type name.11

C / C++
Fortran

• iterator-type is a type specifier.12

Fortran
• range-specification is of the form begin:end[:step], where begin and end are expressions for13
which their types can be converted to iterator-type and step is an integral expression.14

C / C++
In an iterator-specifier, if the iterator-type is not specified then the type of that iterator is of int15
type.16

C / C++
Fortran

In an iterator-specifier, if the iterator-type is not specified then the type of that iterator is default17
integer.18

Fortran
In a range-specification, if the step is not specified its value is implicitly defined to be 1.19

An iterator only exists in the context of the clause in which it appears. An iterator also hides all20
accessible symbols with the same name in the context of the clause.21

The use of a variable in an expression that appears in the range-specification causes an implicit22
reference to the variable in all enclosing constructs.23

CHAPTER 2. DIRECTIVES 47

C / C++
The values of the iterator are the set of values i0, . . . , iN−1 where:1

• i0 = (iterator-type) begin,2

• ij = (iterator-type) (ij−1 + step), and3

• if step > 0,4

– i0 < (iterator-type) end,5

– iN−1 < (iterator-type) end, and6

– (iterator-type) (iN−1 + step) ≥ (iterator-type) end;7

• if step < 0,8

– i0 > (iterator-type) end,9

– iN−1 > (iterator-type) end, and10

– (iterator-type) (iN−1 + step) ≤ (iterator-type) end.11

C / C++
Fortran

The values of the iterator are the set of values i1, . . . , iN where:12

• i1 = begin,13

• ij = ij−1 + step, and14

• if step > 0,15

– i1 ≤ end,16

– iN ≤ end, and17

– iN + step > end;18

• if step < 0,19

– i1 ≥ end,20

– iN ≥ end, and21

– iN + step < end.22

Fortran

48 OpenMP API – Version 5.0 November 2018

The set of values will be empty if no possible value complies with the conditions above.1

For those clauses that contain expressions that contain iterator identifiers, the effect is as if the list2
item is instantiated within the clause for each value of the iterator in the set defined above,3
substituting each occurrence of the iterator identifier in the expression with the iterator value. If the4
set of values of the iterator is empty then the effect is as if the clause was not specified.5

The behavior is unspecified if ij + step cannot be represented in iterator-type in any of the6
ij + step computations for any 0 ≤ j < N in C/C++ or 0 < j ≤ N in Fortran.7

Restrictions8

• An expression that contains an iterator identifier can only appear in clauses that explicitly allow9
expressions that contain iterators.10

• The iterator-type must not declare a new type.11

C / C++
• The iterator-type must be an integral or pointer type.12

• The iterator-type must not be const qualified.13

C / C++
Fortran

• The iterator-type must be an integer type.14

Fortran
• If the step expression of a range-specification equals zero, the behavior is unspecified.15

• Each iterator identifier can only be defined once in an iterators-definition.16

• Iterators cannot appear in the range-specification.17

2.2 Conditional Compilation18

In implementations that support a preprocessor, the _OPENMP macro name is defined to have the19
decimal value yyyymm where yyyy and mm are the year and month designations of the version of20
the OpenMP API that the implementation supports.21

If a #define or a #undef preprocessing directive in user code defines or undefines the22
_OPENMP macro name, the behavior is unspecified.23

Fortran
The OpenMP API requires Fortran lines to be compiled conditionally, as described in the following24
sections.25

CHAPTER 2. DIRECTIVES 49

Fortran (cont.)

2.2.1 Fixed Source Form Conditional Compilation Sentinels1

The following conditional compilation sentinels are recognized in fixed form source files:2

!$ | *$ | c$3

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the4
following criteria:5

• The sentinel must start in column 1 and appear as a single word with no intervening white space;6

• After the sentinel is replaced with two spaces, initial lines must have a space or zero in column 67
and only white space and numbers in columns 1 through 5;8

• After the sentinel is replaced with two spaces, continuation lines must have a character other than9
a space or zero in column 6 and only white space in columns 1 through 5.10

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not met, the line11
is left unchanged.12

13

Note – In the following example, the two forms for specifying conditional compilation in fixed14
source form are equivalent (the first line represents the position of the first 9 columns):15

c2345678916
!$ 10 iam = omp_get_thread_num() +17
!$ & index18

19
#ifdef _OPENMP20

10 iam = omp_get_thread_num() +21
& index22

#endif23

24

2.2.2 Free Source Form Conditional Compilation Sentinel25

The following conditional compilation sentinel is recognized in free form source files:26

!$27

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the28
following criteria:29

• The sentinel can appear in any column but must be preceded only by white space;30

• The sentinel must appear as a single word with no intervening white space;31

50 OpenMP API – Version 5.0 November 2018

• Initial lines must have a space after the sentinel;1

• Continued lines must have an ampersand as the last non-blank character on the line, prior to any2
comment appearing on the conditionally compiled line.3

Continuation lines can have an ampersand after the sentinel, with optional white space before and4
after the ampersand. If these criteria are met, the sentinel is replaced by two spaces. If these criteria5
are not met, the line is left unchanged.6

7

Note – In the following example, the two forms for specifying conditional compilation in free8
source form are equivalent (the first line represents the position of the first 9 columns):9

c2345678910
!$ iam = omp_get_thread_num() + &11
!$& index12

13
#ifdef _OPENMP14

iam = omp_get_thread_num() + &15
index16

#endif17

18
19

Fortran

2.3 Variant Directives20

2.3.1 OpenMP Context21

At any point in a program, an OpenMP context exists that defines traits that describe the active22
OpenMP constructs, the execution devices, and functionality supported by the implementation. The23
traits are grouped into trait sets. The following trait sets exist: construct, device and24
implementation.25

The construct set is composed of the directive names, each being a trait, of all enclosing constructs26
at that point in the program up to a target construct. Combined and composite constructs are27
added to the set as distinct constructs in the same nesting order specified by the original construct.28
The set is ordered by nesting level in ascending order. Specifically, the ordering of the set of29
constructs is c1, . . . , cN , where c1 is the construct at the outermost nesting level and cN is the30
construct at the innermost nesting level. In addition, if the point in the program is not enclosed by a31
target construct, the following rules are applied in order:32

CHAPTER 2. DIRECTIVES 51

1. For functions with a declare simd directive, the simd trait is added to the beginning of the1
set as c1 for any generated SIMD versions so the total size of the set is increased by 1.2

2. For functions that are determined to be function variants by a declare variant directive,3
the selectors c1, . . . , cM of the construct selector set are added in the same order to the4
beginning of the set as c1, . . . , cM so the total size of the set is increased by M .5

3. For functions within a declare target block, the target trait is added to the beginning of the6
set as c1 for any versions of the function that are generated for target regions so the total size7
of the set is increased by 1.8

The simd trait can be further defined with properties that match the clauses accepted by the9
declare simd directive with the same name and semantics. The simd trait must define at least10
the simdlen property and one of the inbranch or notinbranch properties.11

The device set includes traits that define the characteristics of the device being targeted by the12
compiler at that point in the program. At least the following traits must be defined:13

• The kind(kind-name-list) trait specifies the general kind of the device. The following kind-name14
values are defined:15

– host, which specifies that the device is the host device;16

– nohost, which specifies that the devices is not the host device; and17

– the values defined in the “OpenMP Context Definitions” document, which is available at18
http://www.openmp.org/.19

• The isa(isa-name-list) trait specifies the Instruction Set Architectures supported by the device.20
The accepted isa-name values are implementation defined.21

• The arch(arch-name-list) trait specifies the architectures supported by the device. The accepted22
arch-name values are implementation defined.23

The implementation set includes traits that describe the functionality supported by the OpenMP24
implementation at that point in the program. At least the following traits can be defined:25

• The vendor(vendor-name-list) trait, which specifies the vendor identifiers of the implementation.26
OpenMP defined values for vendor-name are defined in the “OpenMP Context Definitions”27
document, which is available at http://www.openmp.org/.28

• The extension(extension-name-list) trait, which specifies vendor specific extensions to the29
OpenMP specification. The accepted extension-name values are implementation defined.30

• A trait with a name that is identical to the name of any clause that can be supplied to the31
requires directive.32

52 OpenMP API – Version 5.0 November 2018

http://www.openmp.org/
http://www.openmp.org/

Implementations can define further traits in the device and implementation sets. All implementation1
defined traits must follow the following syntax:2

identifier[(context-element[, context-element[, ...]])]3
4

context-element:5
identifier[(context-element[, context-element[, ...]])]6
or7
context-value8

9
context-value:10

constant string11
or12
constant integer expression13

where identifier is a base language identifier.14

2.3.2 Context Selectors15

Context selectors are used to define the properties of an OpenMP context that a directive or clause16
can match. OpenMP defines different sets of selectors, each containing different selectors.17

The syntax to define a context-selector-specification is the following:18

trait-set-selector[,trait-set-selector[,...]]19
20

trait-set-selector:21
trait-set-selector-name={trait-selector[, trait-selector[, ...]]}22

23
trait-selector:24

trait-selector-name[([trait-score:] trait-property[, trait-property[, ...]])]25
26

trait-score:27
score(score-expression)28

The construct selector set defines the construct traits that should be active in the OpenMP29
context. The following selectors can be defined in the construct set: target; teams;30
parallel; for (in C/C++); do (in Fortran); and simd. The properties of each selector are the31
same properties that are defined for the corresponding trait. The construct selector is an32
ordered list c1, . . . , cN .33

The device and implementation selector sets define the traits that should be active in the34
corresponding trait set of the OpenMP context. The same traits defined in the corresponding traits35

CHAPTER 2. DIRECTIVES 53

sets can be used as selectors with the same properties. The kind selector of the device selector1
set can also be set to the value any, which is as if no kind selector was specified.2

The user selector set defines the condition selector that provides additional user-defined3
conditions.4

C
The condition(boolean-expr) selector defines a constant expression that must evaluate to true5
for the selector to be true.6

C
C++

The condition(boolean-expr) selector defines a constexpr expression that must evaluate to7
true for the selector to be true.8

C++
Fortran

The condition(logical-expr) selector defines a constant expression that must evaluate to true9
for the selector to be true.10

Fortran
A score-expression must be an constant integer expression.11

Implementations can allow further selectors to be specified. Implementations can ignore specified12
selectors that are not those described in this section.13

Restrictions14

• Each trait-set-selector-name can only be specified once.15

• Each trait-selector-name can only be specified once.16

• A trait-score cannot be specified in traits from the construct or device trait-selector-sets.17

54 OpenMP API – Version 5.0 November 2018

2.3.3 Matching and Scoring Context Selectors1

A given context selector is compatible with a given OpenMP context if the following conditions are2
satisfied:3

• All selectors in the user set of the context selector are true;4

• All selectors in the construct, device, and implementation sets of the context selector5
appear in the corresponding trait set of the OpenMP context;6

• For each selector in the context selector, its properties are a subset of the properties of the7
corresponding trait of the OpenMP context; and8

• Selectors in the construct set of the context selector appear in the same relative order as their9
corresponding traits in the construct trait set of the OpenMP context.10

Some properties of the simd selector have special rules to match the properties of the simd trait:11

• The simdlen(N) property of the selector matches the simdlen(M) trait of the OpenMP context12
ifM%N equals zero; and13

• The aligned(list:N) property of the selector matches the aligned(list:M) trait of the OpenMP14
context if N%M equals zero.15

Among compatible context selectors, a score is computed using the following algorithm:16

1. Each trait that appears in the construct trait set in the OpenMP context is given the value 2p−117
where p is the position of the construct trait, cp, in the set;18

2. The kind, arch, and isa selectors are given the values 2l, 2l+1 and 2l+2, respectively, where19
l is the number of traits in the construct set;20

3. Traits for which a trait-score is specified are given the value specified by the trait-score21
score-expression;22

4. The values given to any additional selectors allowed by the implementation are implemented23
defined;24

5. Other selectors are given a value of zero; and25

6. A context selector that is a strict subset of another context selector has a score of zero. For other26
context selectors, the final score is the sum of the values of all specified selectors plus 1. If the27
traits that correspond to the construct selectors appear multiple times in the OpenMP28
context, the highest valued subset of traits that contains all selectors in the same order are used.29

CHAPTER 2. DIRECTIVES 55

2.3.4 Metadirectives1

Summary2

A metadirective is a directive that can specify multiple directive variants of which one may be3
conditionally selected to replace the metadirective based on the enclosing OpenMP context.4

Syntax5

C / C++
The syntax of a metadirective takes one of the following forms:6

#pragma omp metadirective [clause[[,] clause] ...] new-line7

or8

#pragma omp begin metadirective [clause[[,] clause] ...] new-line9
stmt(s)10

#pragma omp end metadirective11

where clause is one of the following:12

when(context-selector-specification: [directive-variant])13

default(directive-variant)14

C / C++
Fortran

The syntax of a metadirective takes one of the following forms:15

!$omp metadirective [clause[[,] clause] ...]16

or17

!$omp begin metadirective [clause[[,] clause] ...]18
stmt(s)19

!$omp end metadirective20

where clause is one of the following:21

when(context-selector-specification: [directive-variant])22

default(directive-variant)23

Fortran
In the when clause, context-selector-specification specifies a context selector (see Section 2.3.2).24

In the when and default clauses, directive-variant has the following form and specifies a25
directive variant that specifies an OpenMP directive with clauses that apply to it.26

directive-name [clause[[,] clause] ...]27

56 OpenMP API – Version 5.0 November 2018

Description1

A metadirective is a directive that behaves as if it is either ignored or replaced by the directive2
variant specified in one of the when or default clauses that appears on the metadirective.3

The OpenMP context for a given metadirective is defined according to Section 2.3.1. For each4
when clause that appears on a metadirective, the specified directive variant, if present, is a5
candidate to replace the metadirective if the corresponding context selector is compatible with the6
OpenMP context according to the matching rules defined in Section 2.3.3. If only one compatible7
context selector specified by a when clause has the highest score and it specifies a directive variant,8
the directive variant will replace the metadirective. If more than one when clause specifies a9
compatible context selector that has the highest computed score and at least one specifies a10
directive variant, the first directive variant specified in the lexical order of those when clauses will11
replace the metadirective.12

If no context selector from any when clause is compatible with the OpenMP context and a13
default clause is present, the directive variant specified in the default clause will replace the14
metadirective.15

If a directive variant is not selected to replace a metadirective according to the above rules, the16
metadirective has no effect on the execution of the program.17

The begin metadirective directive behaves identically to the metadirective directive,18
except that the directive syntax for the specified directive variants must accept a paired19
end directive. For any directive variant that is selected to replace the begin metadirective20
directive, the end metadirective directive will be implicitly replaced by its paired21
end directive to demarcate the statements that are affected by or are associated with the directive22
variant. If no directive variant is selected to replace the begin metadirective directive, its23
paired end metadirective directive is ignored.24

Restrictions25

Restrictions to metadirectives are as follows:26

• The directive variant appearing in a when or default clause must not specify a27
metadirective, begin metadirective, or end metadirective directive.28

• The context selector that appears in a when clause must not specify any properties for the simd29
selector.30

• Any replacement that occurs for a metadirective must not result in a non-conforming OpenMP31
program.32

• Any directive variant that is specified by a when or default clause on a33
begin metadirective directive must be an OpenMP directive that has a paired34
end directive, and the begin metadirective directive must have a paired35
end metadirective directive.36

• The default clause may appear at most once on a metadirective.37

CHAPTER 2. DIRECTIVES 57

2.3.5 declare variant Directive1

Summary2

The declare variant directive declares a specialized variant of a base function and specifies3
the context in which that specialized variant is used. The declare variant directive is a4
declarative directive.5

Syntax6

C / C++
The syntax of the declare variant directive is as follows:7

#pragma omp declare variant(variant-func-id) clause new-line8
[#pragma omp declare variant(variant-func-id) clause new-line]9
[...]10

function definition or declaration11

where clause is one of the following:12

match(context-selector-specification)13

and where variant-func-id is the name of a function variant that is either a base language identifier14
or, for C++, a template-id.15

C / C++
Fortran

The syntax of the declare variant directive is as follows:16

!$omp declare variant([base-proc-name:]variant-proc-name) clause17

where clause is one of the following:18

match(context-selector-specification)19

and where variant-proc-name is the name of a function variant that is a base language identifier.20

Fortran

Description21

The declare variant directive declares the base function to have the specified function22
variant. The context selector in the match clause is associated with the variant.23

58 OpenMP API – Version 5.0 November 2018

The OpenMP context for a call to a given base function is defined according to Section 2.3.1. If the1
context selector that is associated with a declared function variant is compatible with the OpenMP2
context of a call to a base function according to the matching rules defined in Section 2.3.3 then a3
call to the variant is a candidate to replace the base function call. For any call to the base function4
for which candidate variants exist, the variant with the highest score is selected from all compatible5
variants. If multiple variants have the highest score, the selected variant is implementation defined.6
If a compatible variant exists, the call to the base function is replaced with a call to the selected7
variant. If no compatible variants exist then the call to the base function is not changed.8

Different declare variant directives may be specified for different declarations of the same9
base function.10

Any differences that the specific OpenMP context requires in the prototype of the variant from the11
base function prototype are implementation defined.12

C++
The function variant is determined by base language standard name lookup rules ([basic.lookup])13
of variant-func-id with arguments that correspond to the argument types in the base function14
declaration.15

The variant-func-id and any expressions inside of the match clause are interpreted as if they16
appeared at the scope of the trailing return type of the base function.17

C++

Restrictions18

Restrictions to the declare variant directive are as follows:19

• Calling functions that a declare variant directive determined to be a function variant20
directly in an OpenMP context that is different from the one that the construct selector set of21
the context selector specifies is non-conforming.22

• If a function is determined to be a function variant through more than one declare variant23
directive then the construct selector set of their context selectors must be the same.24

C / C++
• If the function has any declarations, then the declare variant directives for any declarations25
that have one must be equivalent. If the function definition has a declare variant, it must26
also be equivalent. Otherwise, the result is unspecified.27

C / C++
C++

• The declare variant directive cannot be specified for a virtual function.28

• The type of the function variant must be compatible with the type of the base function after the29
implementation-defined transformation for its OpenMP context.30

C++

CHAPTER 2. DIRECTIVES 59

Fortran
• base-proc-name must not be a generic name, procedure pointer, or entry name.1

• If base-proc-name is omitted then the declare variant directive must appear in the2
specification part of a subroutine subprogram or a function subprogram.3

• Any declare variant directive must appear in the specification part of a subroutine,4
subprogram, function subprogram, or interface body to which it applies.5

• If a declare variant directive is specified in an interface block for a procedure then it must6
match a declare variant directive in the definition of the procedure.7

• If a procedure is declared via a procedure declaration statement then the procedure8
base-proc-name should appear in the same specification.9

• If a declare variant directive is specified for a procedure name with an explicit interface10
and a declare variant directive is also specified for the definition of the procedure, the two11
declare variant directives must match. Otherwise the result is unspecified.12

Fortran

Cross References13

• OpenMP Context Specification, see Section 2.3.1 on page 51.14

• Context Selectors, see Section 2.3.2 on page 53.15

2.4 requires Directive16

Summary17

The requires directive specifies the features that an implementation must provide in order for18
the code to compile and to execute correctly. The requires directive is a declarative directive.19

Syntax20

C / C++
The syntax of the requires directive is as follows:21

#pragma omp requires clause[[[,] clause] ...] new-line22

C / C++

60 OpenMP API – Version 5.0 November 2018

Fortran
The syntax of the requires directive is as follows:1

!$omp requires clause[[[,] clause] ...]2

Fortran
Where clause is either one of the requirement clauses listed below or a clause of the form3
ext_implementation-defined-requirement for an implementation defined requirement clause.4

reverse_offload5

unified_address6

unified_shared_memory7

atomic_default_mem_order(seq_cst | acq_rel | relaxed)8

dynamic_allocators9

Description10

The requires directive specifies features that an implementation must support for correct11
execution. The behavior that a requirement clause specifies may override the normal behavior12
specified elsewhere in this document. Whether an implementation supports the feature that a given13
requirement clause specifies is implementation defined.14

The requires directive specifies requirements for the execution of all code in the current15
compilation unit.16

17

Note – Use of this directive makes your code less portable. Users should be aware that not all18
devices or implementations support all requirements.19

20

When the reverse_offload clause appears on a requires directive, the implementation21
guarantees that a target region, for which the target construct specifies a device clause in22
which the ancestor modifier appears, can execute on the parent device of an enclosing target23
region.24

When the unified_address clause appears on a requires directive, the implementation25
guarantees that all devices accessible through OpenMP API routines and directives use a unified26
address space. In this address space, a pointer will always refer to the same location in memory27
from all devices accessible through OpenMP. The pointers returned by omp_target_alloc and28
accessed through use_device_ptr are guaranteed to be pointer values that can support pointer29
arithmetic while still being native device pointers. The is_device_ptr clause is not necessary30
for device pointers to be translated in target regions, and pointers found not present are not set to31
null but keep their original value. Memory local to a specific execution context may be exempt32
from this requirement, following the restrictions of locality to a given execution context, thread, or33

CHAPTER 2. DIRECTIVES 61

contention group. Target devices may still have discrete memories and dereferencing a device1
pointer on the host device or host pointer on a target device remains unspecified behavior.2

The unified_shared_memory clause implies the unified_address requirement,3
inheriting all of its behaviors. Additionally, memory in the device data environment of any device4
visible to OpenMP, including but not limited to the host, is considered part of the device data5
environment of all devices accessible through OpenMP except as noted below. Every device address6
allocated through OpenMP device memory routines is a valid host pointer. Memory local to an7
execution context as defined in unified_address above may remain part of distinct device data8
environments as long as the execution context is local to the device containing that environment.9

The unified_shared_memory clause makes the map clause optional on target constructs10
and the declare target directive optional for static lifetime variables accessed inside11
declare target functions. Scalar variables are still firstprivate by default when referenced12
inside target constructs. Values stored into memory by one device may not be visible to another13
device until those two devices synchronize with each other or both devices synchronize with the14
host.15

The atomic_default_mem_order clause specifies the default memory ordering behavior for16
atomic constructs that must be provided by an implementation. If the default memory ordering is17
specified as seq_cst, all atomic constructs on which memory-order-clause is not specified18
behave as if the seq_cst clause appears. If the default memory ordering is specified as19
relaxed, all atomic constructs on which memory-order-clause is not specified behave as if the20
relaxed clause appears.21

If the default memory ordering is specified as acq_rel, atomic constructs on which22
memory-order-clause is not specified behave as if the release clause appears if the atomic write23
or atomic update operation is specified, as if the acquire clause appears if the atomic read24
operation is specified, and as if the acq_rel clause appears if the atomic captured update25
operation is specified.26

The dynamic_allocators clause removes certain restrictions on the use of memory allocators27
in target regions. It makes the uses_allocators clause optional on target constructs for28
the purpose of using allocators in the corresponding target regions. It allows calls to the29
omp_init_allocator and omp_destroy_allocator API routines in target regions.30
Finally, it allows default allocators to be used by allocate directives, allocate clauses, and31
omp_alloc API routines in target regions.32

Implementers are allowed to include additional implementation defined requirement clauses. All33
implementation defined requirements should begin with ext_. Requirement names that do not34
start with ext_ are reserved.35

Restrictions36

The restrictions for the requires directive are as follows:37

• Each of the clauses can appear at most once on the directive.38

62 OpenMP API – Version 5.0 November 2018

• At most one requires directive with atomic_default_mem_order clause can appear in1
a single compilation unit.2

• A requires directive with a unified_address, unified_shared_memory, or3
reverse_offload clause must appear lexically before any device constructs or device4
routines.5

• A requires directive with any of the following clauses must appear in all compilation units of6
a program that contain device constructs or device routines or in none of them:7

– reverse_offload8

– unified_address9

– unified_shared_memory10

• The requires directive with atomic_default_mem_order clause may not appear11
lexically after any atomic construct on which memory-order-clause is not specified.12

C
• The requires directive may only appear at file scope.13

C
C++

• The requires directive may only appear at file or namespace scope.14

C++

2.5 Internal Control Variables15

An OpenMP implementation must act as if there are internal control variables (ICVs) that control16
the behavior of an OpenMP program. These ICVs store information such as the number of threads17
to use for future parallel regions, the schedule to use for worksharing loops and whether nested18
parallelism is enabled or not. The ICVs are given values at various times (described below) during19
the execution of the program. They are initialized by the implementation itself and may be given20
values through OpenMP environment variables and through calls to OpenMP API routines. The21
program can retrieve the values of these ICVs only through OpenMP API routines.22

For purposes of exposition, this document refers to the ICVs by certain names, but an23
implementation is not required to use these names or to offer any way to access the variables other24
than through the ways shown in Section 2.5.2 on page 66.25

CHAPTER 2. DIRECTIVES 63

2.5.1 ICV Descriptions1

The following ICVs store values that affect the operation of parallel regions.2

• dyn-var - controls whether dynamic adjustment of the number of threads is enabled for3
encountered parallel regions. There is one copy of this ICV per data environment.4

• nthreads-var - controls the number of threads requested for encountered parallel regions.5
There is one copy of this ICV per data environment.6

• thread-limit-var - controls the maximum number of threads participating in the contention7
group. There is one copy of this ICV per data environment.8

• max-active-levels-var - controls the maximum number of nested active parallel regions.9
There is one copy of this ICV per device.10

• place-partition-var - controls the place partition available to the execution environment for11
encountered parallel regions. There is one copy of this ICV per implicit task.12

• active-levels-var - the number of nested active parallel regions that enclose the current task13
such that all of the parallel regions are enclosed by the outermost initial task region on the14
current device. There is one copy of this ICV per data environment.15

• levels-var - the number of nested parallel regions that enclose the current task such that all of the16
parallel regions are enclosed by the outermost initial task region on the current device.17
There is one copy of this ICV per data environment.18

• bind-var - controls the binding of OpenMP threads to places. When binding is requested, the19
variable indicates that the execution environment is advised not to move threads between places.20
The variable can also provide default thread affinity policies. There is one copy of this ICV per21
data environment.22

The following ICVs store values that affect the operation of worksharing-loop regions.23

• run-sched-var - controls the schedule that is used for worksharing-loop regions when the24
runtime schedule kind is specified. There is one copy of this ICV per data environment.25

• def-sched-var - controls the implementation defined default scheduling of worksharing-loop26
regions. There is one copy of this ICV per device.27

The following ICVs store values that affect program execution.28

• stacksize-var - controls the stack size for threads that the OpenMP implementation creates. There29
is one copy of this ICV per device.30

• wait-policy-var - controls the desired behavior of waiting threads. There is one copy of this ICV31
per device.32

• display-affinity-var - controls whether to display thread affinity. There is one copy of this ICV for33
the whole program.34

64 OpenMP API – Version 5.0 November 2018

• affinity-format-var - controls the thread affinity format when displaying thread affinity. There is1
one copy of this ICV per device.2

• cancel-var - controls the desired behavior of the cancel construct and cancellation points.3
There is one copy of this ICV for the whole program.4

• default-device-var - controls the default target device. There is one copy of this ICV per data5
environment.6

• target-offload-var - controls the offloading behavior. There is one copy of this ICV for the whole7
program.8

• max-task-priority-var - controls the maximum priority value that can be specified in the9
priority clause of the task construct. There is one copy of this ICV for the whole program.10

The following ICVs store values that affect the operation of the OMPT tool interface.11

• tool-var - controls whether an OpenMP implementation will try to register a tool. There is one12
copy of this ICV for the whole program.13

• tool-libraries-var - specifies a list of absolute paths to tool libraries for OpenMP devices. There14
is one copy of this ICV for the whole program.15

The following ICVs store values that affect the operation of the OMPD tool interface.16

• debug-var - controls whether an OpenMP implementation will collect information that an17
OMPD library can access to satisfy requests from a tool. There is one copy of this ICV for the18
whole program.19

The following ICVs store values that affect default memory allocation.20

• def-allocator-var - controls the memory allocator to be used by memory allocation routines,21
directives and clauses when a memory allocator is not specified by the user. There is one copy of22
this ICV per implicit task.23

CHAPTER 2. DIRECTIVES 65

2.5.2 ICV Initialization1

TABLE 2.1: ICV Initial Values

ICV Environment Variable Initial value

dyn-var OMP_DYNAMIC See description below

nthreads-var OMP_NUM_THREADS Implementation defined

run-sched-var OMP_SCHEDULE Implementation defined

def-sched-var (none) Implementation defined

bind-var OMP_PROC_BIND Implementation defined

stacksize-var OMP_STACKSIZE Implementation defined

wait-policy-var OMP_WAIT_POLICY Implementation defined

thread-limit-var OMP_THREAD_LIMIT Implementation defined

max-active-levels-var OMP_MAX_ACTIVE_LEVELS,
OMP_NESTED

See description below

active-levels-var (none) zero

levels-var (none) zero

place-partition-var OMP_PLACES Implementation defined

cancel-var OMP_CANCELLATION false

display-affinity-var OMP_DISPLAY_AFFINITY false

affinity-format-var OMP_AFFINITY_FORMAT Implementation defined

default-device-var OMP_DEFAULT_DEVICE Implementation defined

target-offload-var OMP_TARGET_OFFLOAD DEFAULT

max-task-priority-var OMP_MAX_TASK_PRIORITY zero

tool-var OMP_TOOL enabled

tool-libraries-var OMP_TOOL_LIBRARIES empty string

debug-var OMP_DEBUG disabled

def-allocator-var OMP_ALLOCATOR Implementation defined

Table 2.1 shows the ICVs, associated environment variables, and initial values.2

66 OpenMP API – Version 5.0 November 2018

Description1

• Each device has its own ICVs.2

• The initial value of dyn-var is implementation defined if the implementation supports dynamic3
adjustment of the number of threads; otherwise, the initial value is false.4

• The value of the nthreads-var ICV is a list.5

• The value of the bind-var ICV is a list.6

• The initial value of max-active-levels-var is the number of active levels of parallelism that the7
implementation supports if OMP_NUM_THREADS or OMP_PROC_BIND is set to a8
comma-separated list of more than one value. Otherwise, the initial value of9
max-active-levels-var is implementation defined.10

The host and target device ICVs are initialized before any OpenMP API construct or OpenMP API11
routine executes. After the initial values are assigned, the values of any OpenMP environment12
variables that were set by the user are read and the associated ICVs for the host device are modified13
accordingly. The method for initializing a target device’s ICVs is implementation defined.14

Cross References15

• OMP_SCHEDULE environment variable, see Section 6.1 on page 601.16

• OMP_NUM_THREADS environment variable, see Section 6.2 on page 602.17

• OMP_DYNAMIC environment variable, see Section 6.3 on page 603.18

• OMP_PROC_BIND environment variable, see Section 6.4 on page 604.19

• OMP_PLACES environment variable, see Section 6.5 on page 605.20

• OMP_STACKSIZE environment variable, see Section 6.6 on page 607.21

• OMP_WAIT_POLICY environment variable, see Section 6.7 on page 608.22

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 6.8 on page 608.23

• OMP_NESTED environment variable, see Section 6.9 on page 609.24

• OMP_THREAD_LIMIT environment variable, see Section 6.10 on page 610.25

• OMP_CANCELLATION environment variable, see Section 6.11 on page 610.26

• OMP_DISPLAY_AFFINITY environment variable, see Section 6.13 on page 612.27

• OMP_AFFINITY_FORMAT environment variable, see Section 6.14 on page 613.28

• OMP_DEFAULT_DEVICE environment variable, see Section 6.15 on page 615.29

• OMP_MAX_TASK_PRIORITY environment variable, see Section 6.16 on page 615.30

• OMP_TARGET_OFFLOAD environment variable, see Section 6.17 on page 615.31

CHAPTER 2. DIRECTIVES 67

• OMP_TOOL environment variable, see Section 6.18 on page 616.1

• OMP_TOOL_LIBRARIES environment variable, see Section 6.19 on page 617.2

• OMP_DEBUG environment variable, see Section 6.20 on page 617.3

• OMP_ALLOCATOR environment variable, see Section 6.21 on page 618.4

2.5.3 Modifying and Retrieving ICV Values5

Table 2.2 shows the method for modifying and retrieving the values of ICVs through OpenMP API6
routines.7

TABLE 2.2: Ways to Modify and to Retrieve ICV Values

ICV Ways to Modify Value Ways to Retrieve Value

dyn-var omp_set_dynamic() omp_get_dynamic()

nthreads-var omp_set_num_threads() omp_get_max_threads()

run-sched-var omp_set_schedule() omp_get_schedule()

def-sched-var (none) (none)

bind-var (none) omp_get_proc_bind()

stacksize-var (none) (none)

wait-policy-var (none) (none)

thread-limit-var thread_limit clause omp_get_thread_limit()

max-active-levels-var omp_set_max_active_levels(),
omp_set_nested()

omp_get_max_active_levels()

active-levels-var (none) omp_get_active_level()

levels-var (none) omp_get_level()

place-partition-var (none) See description below

cancel-var (none) omp_get_cancellation()

display-affinity-var (none) (none)

affinity-format-var omp_set_affinity_format() omp_get_affinity_format()

table continued on next page

68 OpenMP API – Version 5.0 November 2018

table continued from previous page

ICV Ways to Modify Value Ways to Retrieve Value

default-device-var omp_set_default_device() omp_get_default_device()

target-offload-var (none) (none)

max-task-priority-var (none) omp_get_max_task_priority()

tool-var (none) (none)

tool-libraries-var (none) (none)

debug-var (none) (none)

def-allocator-var omp_set_default_allocator() omp_get_default_allocator()

Description1

• The value of the nthreads-var ICV is a list. The runtime call omp_set_num_threads sets2
the value of the first element of this list, and omp_get_max_threads retrieves the value of3
the first element of this list.4

• The value of the bind-var ICV is a list. The runtime call omp_get_proc_bind retrieves the5
value of the first element of this list.6

• Detailed values in the place-partition-var ICV are retrieved using the runtime calls7
omp_get_partition_num_places, omp_get_partition_place_nums,8
omp_get_place_num_procs, and omp_get_place_proc_ids.9

Cross References10

• thread_limit clause of the teams construct, see Section 2.7 on page 82.11

• omp_set_num_threads routine, see Section 3.2.1 on page 334.12

• omp_get_max_threads routine, see Section 3.2.3 on page 336.13

• omp_set_dynamic routine, see Section 3.2.7 on page 340.14

• omp_get_dynamic routine, see Section 3.2.8 on page 341.15

• omp_get_cancellation routine, see Section 3.2.9 on page 342.16

• omp_set_nested routine, see Section 3.2.10 on page 343.17

• omp_get_nested routine, see Section 3.2.11 on page 344.18

• omp_set_schedule routine, see Section 3.2.12 on page 345.19

• omp_get_schedule routine, see Section 3.2.13 on page 347.20

CHAPTER 2. DIRECTIVES 69

• omp_get_thread_limit routine, see Section 3.2.14 on page 348.1

• omp_get_supported_active_levels, see Section 3.2.15 on page 349.2

• omp_set_max_active_levels routine, see Section 3.2.16 on page 350.3

• omp_get_max_active_levels routine, see Section 3.2.17 on page 351.4

• omp_get_level routine, see Section 3.2.18 on page 352.5

• omp_get_active_level routine, see Section 3.2.21 on page 355.6

• omp_get_proc_bind routine, see Section 3.2.23 on page 357.7

• omp_get_place_num_procs routine, see Section 3.2.25 on page 359.8

• omp_get_place_proc_ids routine, see Section 3.2.26 on page 360.9

• omp_get_partition_num_places routine, see Section 3.2.28 on page 362.10

• omp_get_partition_place_nums routine, see Section 3.2.29 on page 363.11

• omp_set_affinity_format routine, see Section 3.2.30 on page 364.12

• omp_get_affinity_format routine, see Section 3.2.31 on page 366.13

• omp_set_default_device routine, see Section 3.2.34 on page 369.14

• omp_get_default_device routine, see Section 3.2.35 on page 370.15

• omp_get_max_task_priority routine, see Section 3.2.42 on page 377.16

• omp_set_default_allocator routine, see Section 3.7.4 on page 411.17

• omp_get_default_allocator routine, see Section 3.7.5 on page 412.18

2.5.4 How ICVs are Scoped19

Table 2.3 shows the ICVs and their scope.20

TABLE 2.3: Scopes of ICVs

ICV Scope

dyn-var data environment

nthreads-var data environment

table continued on next page

70 OpenMP API – Version 5.0 November 2018

table continued from previous page

ICV Scope

run-sched-var data environment

def-sched-var device

bind-var data environment

stacksize-var device

wait-policy-var device

thread-limit-var data environment

max-active-levels-var device

active-levels-var data environment

levels-var data environment

place-partition-var implicit task

cancel-var global

display-affinity-var global

affinity-format-var device

default-device-var data environment

target-offload-var global

max-task-priority-var global

tool-var global

tool-libraries-var global

debug-var global

def-allocator-var implicit task

Description1

• There is one copy per device of each ICV with device scope.2

• Each data environment has its own copies of ICVs with data environment scope.3

• Each implicit task has its own copy of ICVs with implicit task scope.4

Calls to OpenMP API routines retrieve or modify data environment scoped ICVs in the data5
environment of their binding tasks.6

CHAPTER 2. DIRECTIVES 71

2.5.4.1 How the Per-Data Environment ICVs Work1

When a task construct or parallel construct is encountered, the generated task(s) inherit the2
values of the data environment scoped ICVs from the generating task’s ICV values.3

When a parallel construct is encountered, the value of each ICV with implicit task scope is4
inherited, unless otherwise specified, from the implicit binding task of the generating task unless5
otherwise specified.6

When a task construct is encountered, the generated task inherits the value of nthreads-var from7
the generating task’s nthreads-var value. When a parallel construct is encountered, and the8
generating task’s nthreads-var list contains a single element, the generated task(s) inherit that list as9
the value of nthreads-var. When a parallel construct is encountered, and the generating task’s10
nthreads-var list contains multiple elements, the generated task(s) inherit the value of nthreads-var11
as the list obtained by deletion of the first element from the generating task’s nthreads-var value.12
The bind-var ICV is handled in the same way as the nthreads-var ICV.13

When a target task executes a target region, the generated initial task uses the values of the data14
environment scoped ICVs from the device data environment ICV values of the device that will15
execute the region.16

If a teams construct with a thread_limit clause is encountered, the thread-limit-var ICV17
from the data environment of the initial task for each team is instead set to a value that is less than18
or equal to the value specified in the clause.19

When encountering a worksharing-loop region for which the runtime schedule kind is specified,20
all implicit task regions that constitute the binding parallel region must have the same value for21
run-sched-var in their data environments. Otherwise, the behavior is unspecified.22

2.5.5 ICV Override Relationships23

Table 2.4 shows the override relationships among construct clauses and ICVs.24

TABLE 2.4: ICV Override Relationships

ICV construct clause, if used

dyn-var (none)

nthreads-var num_threads

run-sched-var schedule

table continued on next page

72 OpenMP API – Version 5.0 November 2018

table continued from previous page

ICV construct clause, if used

def-sched-var schedule

bind-var proc_bind

stacksize-var (none)

wait-policy-var (none)

thread-limit-var (none)

max-active-levels-var (none)

active-levels-var (none)

levels-var (none)

place-partition-var (none)

cancel-var (none)

display-affinity-var (none)

affinity-format-var (none)

default-device-var (none)

target-offload-var (none)

max-task-priority-var (none)

tool-var (none)

tool-libraries-var (none)

debug-var (none)

def-allocator-var allocator

Description1

• The num_threads clause overrides the value of the first element of the nthreads-var ICV.2

• If a schedule clause specifies a modifier then that modifier overrides any modifier that is3
specified in the run-sched-var ICV.4

• If bind-var is not set to false then the proc_bind clause overrides the value of the first element5
of the bind-var ICV; otherwise, the proc_bind clause has no effect.6

Cross References7

• parallel construct, see Section 2.6 on page 74.8

• proc_bind clause, Section 2.6 on page 74.9

• num_threads clause, see Section 2.6.1 on page 78.10

CHAPTER 2. DIRECTIVES 73

• Worksharing-Loop construct, see Section 2.9.2 on page 101.1

• schedule clause, see Section 2.9.2.1 on page 109.2

2.6 parallel Construct3

Summary4

The parallel construct creates a team of OpenMP threads that execute the region.5

Syntax6

C / C++
The syntax of the parallel construct is as follows:7

#pragma omp parallel [clause[[,] clause] ...] new-line8
structured-block9

where clause is one of the following:10

if([parallel :] scalar-expression)11

num_threads(integer-expression)12

default(shared | none)13

private(list)14

firstprivate(list)15

shared(list)16

copyin(list)17

reduction([reduction-modifier ,] reduction-identifier : list)18

proc_bind(master | close | spread)19

allocate([allocator :] list)20

C / C++

74 OpenMP API – Version 5.0 November 2018

Fortran
The syntax of the parallel construct is as follows:1

!$omp parallel [clause[[,] clause] ...]2
structured-block3

!$omp end parallel4

where clause is one of the following:5

if([parallel :] scalar-logical-expression)6

num_threads(scalar-integer-expression)7

default(private | firstprivate | shared | none)8

private(list)9

firstprivate(list)10

shared(list)11

copyin(list)12

reduction([reduction-modifier ,] reduction-identifier : list)13

proc_bind(master | close | spread)14

allocate([allocator :] list)15

Fortran

Binding16

The binding thread set for a parallel region is the encountering thread. The encountering thread17
becomes the master thread of the new team.18

Description19

When a thread encounters a parallel construct, a team of threads is created to execute the20
parallel region (see Section 2.6.1 on page 78 for more information about how the number of21
threads in the team is determined, including the evaluation of the if and num_threads clauses).22
The thread that encountered the parallel construct becomes the master thread of the new team,23
with a thread number of zero for the duration of the new parallel region. All threads in the new24
team, including the master thread, execute the region. Once the team is created, the number of25
threads in the team remains constant for the duration of that parallel region.26

The optional proc_bind clause, described in Section 2.6.2 on page 80, specifies the mapping of27
OpenMP threads to places within the current place partition, that is, within the places listed in the28
place-partition-var ICV for the implicit task of the encountering thread.29

Within a parallel region, thread numbers uniquely identify each thread. Thread numbers are30
consecutive whole numbers ranging from zero for the master thread up to one less than the number31

CHAPTER 2. DIRECTIVES 75

of threads in the team. A thread may obtain its own thread number by a call to the1
omp_get_thread_num library routine.2

A set of implicit tasks, equal in number to the number of threads in the team, is generated by the3
encountering thread. The structured block of the parallel construct determines the code that4
will be executed in each implicit task. Each task is assigned to a different thread in the team and5
becomes tied. The task region of the task being executed by the encountering thread is suspended6
and each thread in the team executes its implicit task. Each thread can execute a path of statements7
that is different from that of the other threads.8

The implementation may cause any thread to suspend execution of its implicit task at a task9
scheduling point, and to switch to execution of any explicit task generated by any of the threads in10
the team, before eventually resuming execution of the implicit task (for more details see11
Section 2.10 on page 135).12

There is an implied barrier at the end of a parallel region. After the end of a parallel13
region, only the master thread of the team resumes execution of the enclosing task region.14

If a thread in a team executing a parallel region encounters another parallel directive, it15
creates a new team, according to the rules in Section 2.6.1 on page 78, and it becomes the master of16
that new team.17

If execution of a thread terminates while inside a parallel region, execution of all threads in all18
teams terminates. The order of termination of threads is unspecified. All work done by a team prior19
to any barrier that the team has passed in the program is guaranteed to be complete. The amount of20
work done by each thread after the last barrier that it passed and before it terminates is unspecified.21

Execution Model Events22

The parallel-begin event occurs in a thread that encounters a parallel construct before any23
implicit task is created for the corresponding parallel region.24

Upon creation of each implicit task, an implicit-task-begin event occurs in the thread that executes25
the implicit task after the implicit task is fully initialized but before the thread begins to execute the26
structured block of the parallel construct.27

If the parallel region creates a native thread, a native-thread-begin event occurs as the first28
event in the context of the new thread prior to the implicit-task-begin event.29

Events associated with implicit barriers occur at the end of a parallel region. Section 2.17.330
describes events associated with implicit barriers.31

When a thread finishes an implicit task, an implicit-task-end event occurs in the thread after events32
associated with implicit barrier synchronization in the implicit task.33

The parallel-end event occurs in the thread that encounters the parallel construct after the34
thread executes its implicit-task-end event but before the thread resumes execution of the35
encountering task.36

76 OpenMP API – Version 5.0 November 2018

If a native thread is destroyed at the end of a parallel region, a native thread-end event occurs1
in the thread as the last event prior to destruction of the thread.2

Tool Callbacks3

A thread dispatches a registered ompt_callback_parallel_begin callback for each4
occurrence of a parallel-begin event in that thread. The callback occurs in the task that encounters5
the parallel construct. This callback has the type signature6
ompt_callback_parallel_begin_t. In the dispatched callback,7
(flags & ompt_parallel_team) evaluates to true.8

A thread dispatches a registered ompt_callback_implicit_task callback with9
ompt_scope_begin as its endpoint argument for each occurrence of an implicit-task-begin10
event in that thread. Similarly, a thread dispatches a registered11
ompt_callback_implicit_task callback with ompt_scope_end as its endpoint12
argument for each occurrence of an implicit-task-end event in that thread. The callbacks occur in13
the context of the implicit task and have type signature ompt_callback_implicit_task_t.14
In the dispatched callback, (flags & ompt_task_implicit) evaluates to true.15

A thread dispatches a registered ompt_callback_parallel_end callback for each16
occurrence of a parallel-end event in that thread. The callback occurs in the task that encounters17
the parallel construct. This callback has the type signature18
ompt_callback_parallel_end_t.19

A thread dispatches a registered ompt_callback_thread_begin callback for the20
native-thread-begin event in that thread. The callback occurs in the context of the thread. The21
callback has type signature ompt_callback_thread_begin_t.22

A thread dispatches a registered ompt_callback_thread_end callback for the23
native-thread-end event in that thread. The callback occurs in the context of the thread. The24
callback has type signature ompt_callback_thread_end_t.25

Restrictions26

Restrictions to the parallel construct are as follows:27

• A program that branches into or out of a parallel region is non-conforming.28

• A program must not depend on any ordering of the evaluations of the clauses of the parallel29
directive, or on any side effects of the evaluations of the clauses.30

• At most one if clause can appear on the directive.31

• At most one proc_bind clause can appear on the directive.32

• At most one num_threads clause can appear on the directive. The num_threads33
expression must evaluate to a positive integer value.34

CHAPTER 2. DIRECTIVES 77

C++
• A throw executed inside a parallel region must cause execution to resume within the same1
parallel region, and the same thread that threw the exception must catch it.2

C++

Cross References3

• OpenMP execution model, see Section 1.3 on page 20.4

• num_threads clause, see Section 2.6 on page 74.5

• proc_bind clause, see Section 2.6.2 on page 80.6

• allocate clause, see Section 2.11.4 on page 158.7

• if clause, see Section 2.15 on page 220.8

• default, shared, private, firstprivate, and reduction clauses, see9
Section 2.19.4 on page 282.10

• copyin clause, see Section 2.19.6 on page 309.11

• omp_get_thread_num routine, see Section 3.2.4 on page 337.12

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.13

• ompt_callback_thread_begin_t, see Section 4.5.2.1 on page 459.14

• ompt_callback_thread_end_t, see Section 4.5.2.2 on page 460.15

• ompt_callback_parallel_begin_t, see Section 4.5.2.3 on page 461.16

• ompt_callback_parallel_end_t, see Section 4.5.2.4 on page 463.17

• ompt_callback_implicit_task_t, see Section 4.5.2.11 on page 471.18

2.6.1 Determining the Number of Threads for a parallel Region19

When execution encounters a parallel directive, the value of the if clause or num_threads20
clause (if any) on the directive, the current parallel context, and the values of the nthreads-var,21
dyn-var, thread-limit-var, and max-active-levels-var ICVs are used to determine the number of22
threads to use in the region.23

Using a variable in an if or num_threads clause expression of a parallel construct causes24
an implicit reference to the variable in all enclosing constructs. The if clause expression and the25
num_threads clause expression are evaluated in the context outside of the parallel construct,26

78 OpenMP API – Version 5.0 November 2018

and no ordering of those evaluations is specified. In what order or how many times any side effects1
of the evaluation of the num_threads or if clause expressions occur is also unspecified.2

When a thread encounters a parallel construct, the number of threads is determined according3
to Algorithm 2.1.4

5
Algorithm 2.16

7

let ThreadsBusy be the number of OpenMP threads currently executing in this contention group;8

let ActiveParRegions be the number of enclosing active parallel regions;9

if an if clause exists10

then let IfClauseValue be the value of the if clause expression;11

else let IfClauseValue = true;12

if a num_threads clause exists13

then let ThreadsRequested be the value of the num_threads clause expression;14

else let ThreadsRequested = value of the first element of nthreads-var;15

let ThreadsAvailable = (thread-limit-var - ThreadsBusy + 1);16

if (IfClauseValue = false)17

then number of threads = 1;18

else if (ActiveParRegions = max-active-levels-var)19

then number of threads = 1;20

else if (dyn-var = true) and (ThreadsRequested ≤ ThreadsAvailable)21

then 1 ≤ number of threads ≤ ThreadsRequested;22

else if (dyn-var = true) and (ThreadsRequested > ThreadsAvailable)23

then 1 ≤ number of threads ≤ ThreadsAvailable;24

else if (dyn-var = false) and (ThreadsRequested ≤ ThreadsAvailable)25

then number of threads = ThreadsRequested;26

else if (dyn-var = false) and (ThreadsRequested > ThreadsAvailable)27

then behavior is implementation defined;28

29
30

CHAPTER 2. DIRECTIVES 79

1

Note – Since the initial value of the dyn-var ICV is implementation defined, programs that depend2
on a specific number of threads for correct execution should explicitly disable dynamic adjustment3
of the number of threads.4

5

Cross References6

• nthreads-var, dyn-var, thread-limit-var, and max-active-levels-var ICVs, see Section 2.5 on7
page 63.8

• parallel construct, see Section 2.6 on page 74.9

• num_threads clause, see Section 2.6 on page 74.10

• if clause, see Section 2.15 on page 220.11

2.6.2 Controlling OpenMP Thread Affinity12

When a thread encounters a parallel directive without a proc_bind clause, the bind-var ICV13
is used to determine the policy for assigning OpenMP threads to places within the current place14
partition, that is, within the places listed in the place-partition-var ICV for the implicit task of the15
encountering thread. If the parallel directive has a proc_bind clause then the binding policy16
specified by the proc_bind clause overrides the policy specified by the first element of the17
bind-var ICV. Once a thread in the team is assigned to a place, the OpenMP implementation should18
not move it to another place.19

The master thread affinity policy instructs the execution environment to assign every thread in the20
team to the same place as the master thread. The place partition is not changed by this policy, and21
each implicit task inherits the place-partition-var ICV of the parent implicit task.22

The close thread affinity policy instructs the execution environment to assign the threads in the23
team to places close to the place of the parent thread. The place partition is not changed by this24
policy, and each implicit task inherits the place-partition-var ICV of the parent implicit task. If T25
is the number of threads in the team, and P is the number of places in the parent’s place partition,26
then the assignment of threads in the team to places is as follows:27

• T ≤ P : The master thread executes on the place of the parent thread. The thread with the next28
smallest thread number executes on the next place in the place partition, and so on, with wrap29
around with respect to the place partition of the master thread.30

80 OpenMP API – Version 5.0 November 2018

• T > P : Each place p will contain Sp threads with consecutive thread numbers where1
bbT/Pcc ≤ Sp ≤ ddT/Pee. The first S0 threads (including the master thread) are assigned to the2
place of the parent thread. The next S1 threads are assigned to the next place in the place3
partition, and so on, with wrap around with respect to the place partition of the master thread.4
When P does not divide T evenly, the exact number of threads in a particular place is5
implementation defined.6

The purpose of the spread thread affinity policy is to create a sparse distribution for a team of T7
threads among the P places of the parent’s place partition. A sparse distribution is achieved by first8
subdividing the parent partition into T subpartitions if T ≤ P , or P subpartitions if T > P . Then9
one thread (T ≤ P) or a set of threads (T > P) is assigned to each subpartition. The10
place-partition-var ICV of each implicit task is set to its subpartition. The subpartitioning is not11
only a mechanism for achieving a sparse distribution, it also defines a subset of places for a thread12
to use when creating a nested parallel region. The assignment of threads to places is as follows:13

• T ≤ P : The parent thread’s place partition is split into T subpartitions, where each subpartition14
contains bbP/Tcc or ddP/Tee consecutive places. A single thread is assigned to each subpartition.15
The master thread executes on the place of the parent thread and is assigned to the subpartition16
that includes that place. The thread with the next smallest thread number is assigned to the first17
place in the next subpartition, and so on, with wrap around with respect to the original place18
partition of the master thread.19

• T > P : The parent thread’s place partition is split into P subpartitions, each consisting of a20
single place. Each subpartition is assigned Sp threads with consecutive thread numbers, where21
bbT/Pcc ≤ Sp ≤ ddT/Pee. The first S0 threads (including the master thread) are assigned to the22
subpartition containing the place of the parent thread. The next S1 threads are assigned to the23
next subpartition, and so on, with wrap around with respect to the original place partition of the24
master thread. When P does not divide T evenly, the exact number of threads in a particular25
subpartition is implementation defined.26

The determination of whether the affinity request can be fulfilled is implementation defined. If the27
affinity request cannot be fulfilled, then the affinity of threads in the team is implementation defined.28

29

Note – Wrap around is needed if the end of a place partition is reached before all thread30
assignments are done. For example, wrap around may be needed in the case of close and T ≤ P ,31
if the master thread is assigned to a place other than the first place in the place partition. In this32
case, thread 1 is assigned to the place after the place of the master place, thread 2 is assigned to the33
place after that, and so on. The end of the place partition may be reached before all threads are34
assigned. In this case, assignment of threads is resumed with the first place in the place partition.35

36

CHAPTER 2. DIRECTIVES 81

2.7 teams Construct1

Summary2

The teams construct creates a league of initial teams and the initial thread in each team executes3
the region.4

Syntax5

C / C++
The syntax of the teams construct is as follows:6

#pragma omp teams [clause[[,] clause] ...] new-line7
structured-block8

where clause is one of the following:9

num_teams(integer-expression)10

thread_limit(integer-expression)11

default(shared | none)12

private(list)13

firstprivate(list)14

shared(list)15

reduction([default ,] reduction-identifier : list)16

allocate([allocator :] list)17

C / C++
Fortran

The syntax of the teams construct is as follows:18

!$omp teams [clause[[,] clause] ...]19
structured-block20

!$omp end teams21

82 OpenMP API – Version 5.0 November 2018

where clause is one of the following:1

num_teams(scalar-integer-expression)2

thread_limit(scalar-integer-expression)3

default(shared | firstprivate | private | none)4

private(list)5

firstprivate(list)6

shared(list)7

reduction([default ,] reduction-identifier : list)8

allocate([allocator :] list)9

Fortran

Binding10

The binding thread set for a teams region is the encountering thread.11

Description12

When a thread encounters a teams construct, a league of teams is created. Each team is an initial13
team, and the initial thread in each team executes the teams region.14

The number of teams created is implementation defined, but is less than or equal to the value15
specified in the num_teams clause. A thread may obtain the number of initial teams created by16
the construct by a call to the omp_get_num_teams routine.17

The maximum number of threads participating in the contention group that each team initiates is18
implementation defined, but is less than or equal to the value specified in the thread_limit19
clause.20

On a combined or composite construct that includes target and teams constructs, the21
expressions in num_teams and thread_limit clauses are evaluated on the host device on22
entry to the target construct.23

Once the teams are created, the number of initial teams remains constant for the duration of the24
teams region.25

Within a teams region, initial team numbers uniquely identify each initial team. Initial team26
numbers are consecutive whole numbers ranging from zero to one less than the number of initial27
teams. A thread may obtain its own initial team number by a call to the omp_get_team_num28
library routine. The policy for assigning the initial threads to places is implementation defined. The29
teams construct sets the place-partition-var and default-device-var ICVs for each initial thread to30
an implementation-defined value.31

After the teams have completed execution of the teams region, the encountering task resumes32
execution of the enclosing task region.33

CHAPTER 2. DIRECTIVES 83

Execution Model Events1

The teams-begin event occurs in a thread that encounters a teams construct before any initial task2
is created for the corresponding teams region.3

Upon creation of each initial task, an initial-task-begin event occurs in the thread that executes the4
initial task after the initial task is fully initialized but before the thread begins to execute the5
structured block of the teams construct.6

If the teams region creates a native thread, a native-thread-begin event occurs as the first event in7
the context of the new thread prior to the initial-task-begin event.8

When a thread finishes an initial task, an initial-task-end event occurs in the thread.9

The teams-end event occurs in the thread that encounters the teams construct after the thread10
executes its initial-task-end event but before it resumes execution of the encountering task.11

If a native thread is destroyed at the end of a teams region, a native-thread-end event occurs in the12
thread as the last event prior to destruction of the thread.13

Tool Callbacks14

A thread dispatches a registered ompt_callback_parallel_begin callback for each15
occurrence of a teams-begin event in that thread. The callback occurs in the task that encounters the16
teams construct. This callback has the type signature17
ompt_callback_parallel_begin_t. In the dispatched callback,18
(flags & ompt_parallel_league) evaluates to true.19

A thread dispatches a registered ompt_callback_implicit_task callback with20
ompt_scope_begin as its endpoint argument for each occurrence of an initial-task-begin in21
that thread. Similarly, a thread dispatches a registered ompt_callback_implicit_task22
callback with ompt_scope_end as its endpoint argument for each occurrence of an23
initial-task-end event in that thread. The callbacks occur in the context of the initial task and have24
type signature ompt_callback_implicit_task_t. In the dispatched callback,25
(flags & ompt_task_initial) evaluates to true.26

A thread dispatches a registered ompt_callback_parallel_end callback for each27
occurrence of a teams-end event in that thread. The callback occurs in the task that encounters the28
teams construct. This callback has the type signature ompt_callback_parallel_end_t.29

A thread dispatches a registered ompt_callback_thread_begin callback for the30
native-thread-begin event in that thread. The callback occurs in the context of the thread. The31
callback has type signature ompt_callback_thread_begin_t.32

A thread dispatches a registered ompt_callback_thread_end callback for the33
native-thread-end event in that thread. The callback occurs in the context of the thread. The34
callback has type signature ompt_callback_thread_end_t.35

84 OpenMP API – Version 5.0 November 2018

Restrictions1

Restrictions to the teams construct are as follows:2

• A program that branches into or out of a teams region is non-conforming.3

• A program must not depend on any ordering of the evaluations of the clauses of the teams4
directive, or on any side effects of the evaluation of the clauses.5

• At most one thread_limit clause can appear on the directive. The thread_limit6
expression must evaluate to a positive integer value.7

• At most one num_teams clause can appear on the directive. The num_teams expression must8
evaluate to a positive integer value.9

• A teams region can only be strictly nested within the implicit parallel region or a target10
region. If a teams construct is nested within a target construct, that target construct must11
contain no statements, declarations or directives outside of the teams construct.12

• distribute, distribute simd, distribute parallel worksharing-loop, distribute parallel13
worksharing-loop SIMD, parallel regions, including any parallel regions arising from14
combined constructs, omp_get_num_teams() regions, and omp_get_team_num()15
regions are the only OpenMP regions that may be strictly nested inside the teams region.16

Cross References17

• parallel construct, see Section 2.6 on page 74.18

• distribute construct, see Section 2.9.4.1 on page 120.19

• distribute simd construct, see Section 2.9.4.2 on page 123.20

• allocate clause, see Section 2.11.4 on page 158.21

• target construct, see Section 2.12.5 on page 170.22

• default, shared, private, firstprivate, and reduction clauses, see23
Section 2.19.4 on page 282.24

• omp_get_num_teams routine, see Section 3.2.38 on page 373.25

• omp_get_team_num routine, see Section 3.2.39 on page 374.26

• ompt_callback_thread_begin_t, see Section 4.5.2.1 on page 459.27

• ompt_callback_thread_end_t, see Section 4.5.2.2 on page 460.28

• ompt_callback_parallel_begin_t, see Section 4.5.2.3 on page 461.29

• ompt_callback_parallel_end_t, see Section 4.5.2.4 on page 463.30

• ompt_callback_implicit_task_t, see Section 4.5.2.11 on page 471.31

CHAPTER 2. DIRECTIVES 85

2.8 Worksharing Constructs1

A worksharing construct distributes the execution of the corresponding region among the members2
of the team that encounters it. Threads execute portions of the region in the context of the implicit3
tasks that each one is executing. If the team consists of only one thread then the worksharing region4
is not executed in parallel.5

A worksharing region has no barrier on entry; however, an implied barrier exists at the end of the6
worksharing region, unless a nowait clause is specified. If a nowait clause is present, an7
implementation may omit the barrier at the end of the worksharing region. In this case, threads that8
finish early may proceed straight to the instructions that follow the worksharing region without9
waiting for the other members of the team to finish the worksharing region, and without performing10
a flush operation.11

The OpenMP API defines the worksharing constructs that are described in this section as well as12
the worksharing-loop construct, which is described in Section 2.9.2 on page 101.13

Restrictions14

The following restrictions apply to worksharing constructs:15

• Each worksharing region must be encountered by all threads in a team or by none at all, unless16
cancellation has been requested for the innermost enclosing parallel region.17

• The sequence of worksharing regions and barrier regions encountered must be the same for18
every thread in a team.19

2.8.1 sections Construct20

Summary21

The sections construct is a non-iterative worksharing construct that contains a set of structured22
blocks that are to be distributed among and executed by the threads in a team. Each structured23
block is executed once by one of the threads in the team in the context of its implicit task.24

86 OpenMP API – Version 5.0 November 2018

Syntax1

C / C++
The syntax of the sections construct is as follows:2

#pragma omp sections [clause[[,] clause] ...] new-line3
{4
[#pragma omp section new-line]5

structured-block6
[#pragma omp section new-line7

structured-block]8
...9
}10

where clause is one of the following:11

private(list)12

firstprivate(list)13

lastprivate([lastprivate-modifier:] list)14

reduction([reduction-modifier ,] reduction-identifier : list)15

allocate([allocator :] list)16

nowait17

C / C++
Fortran

The syntax of the sections construct is as follows:18

!$omp sections [clause[[,] clause] ...]19
[!$omp section]20

structured-block21
[!$omp section22

structured-block]23
...24

!$omp end sections [nowait]25

where clause is one of the following:26

private(list)27

firstprivate(list)28

lastprivate([lastprivate-modifier:] list)29

reduction([reduction-modifier ,] reduction-identifier : list)30

allocate([allocator :] list)31

Fortran

CHAPTER 2. DIRECTIVES 87

Binding1

The binding thread set for a sections region is the current team. A sections region binds to2
the innermost enclosing parallel region. Only the threads of the team that executes the binding3
parallel region participate in the execution of the structured blocks and the implied barrier of4
the sections region if the barrier is not eliminated by a nowait clause.5

Description6

Each structured block in the sections construct is preceded by a section directive except7
possibly the first block, for which a preceding section directive is optional.8

The method of scheduling the structured blocks among the threads in the team is implementation9
defined.10

There is an implicit barrier at the end of a sections construct unless a nowait clause is11
specified.12

Execution Model Events13

The section-begin event occurs after an implicit task encounters a sections construct but before14
the task executes any structured block of the sections region.15

The sections-end event occurs after an implicit task finishes execution of a sections region but16
before it resumes execution of the enclosing context.17

The section-begin event occurs before an implicit task starts to execute a structured block in the18
sections construct for each of those structured blocks that the task executes.19

Tool Callbacks20

A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin21
as its endpoint argument and ompt_work_sections as its wstype argument for each22
occurrence of a section-begin event in that thread. Similarly, a thread dispatches a registered23
ompt_callback_work callback with ompt_scope_end as its endpoint argument and24
ompt_work_sections as its wstype argument for each occurrence of a sections-end event in25
that thread. The callbacks occur in the context of the implicit task. The callbacks have type26
signature ompt_callback_work_t.27

A thread dispatches a registered ompt_callback_dispatch callback for each occurrence of a28
section-begin event in that thread. The callback occurs in the context of the implicit task. The29
callback has type signature ompt_callback_dispatch_t.30

88 OpenMP API – Version 5.0 November 2018

Restrictions1

Restrictions to the sections construct are as follows:2

• Orphaned section directives are prohibited. That is, the section directives must appear3
within the sections construct and must not be encountered elsewhere in the sections4
region.5

• The code enclosed in a sections construct must be a structured block.6

• Only a single nowait clause can appear on a sections directive.7

C++
• A throw executed inside a sections region must cause execution to resume within the same8
section of the sections region, and the same thread that threw the exception must catch it.9

C++

Cross References10

• allocate clause, see Section 2.11.4 on page 158.11

• private, firstprivate, lastprivate, and reduction clauses, see Section 2.19.4 on12
page 282.13

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.14

• ompt_work_sections, see Section 4.4.4.15 on page 445.15

• ompt_callback_work_t, see Section 4.5.2.5 on page 464.16

• ompt_callback_dispatch_t, see Section 4.5.2.6 on page 465.17

2.8.2 single Construct18

Summary19

The single construct specifies that the associated structured block is executed by only one of the20
threads in the team (not necessarily the master thread), in the context of its implicit task. The other21
threads in the team, which do not execute the block, wait at an implicit barrier at the end of the22
single construct unless a nowait clause is specified.23

CHAPTER 2. DIRECTIVES 89

Syntax1

C / C++
The syntax of the single construct is as follows:2

#pragma omp single [clause[[,] clause] ...] new-line3
structured-block4

where clause is one of the following:5

private(list)6

firstprivate(list)7

copyprivate(list)8

allocate([allocator :] list)9

nowait10

C / C++
Fortran

The syntax of the single construct is as follows:11

!$omp single [clause[[,] clause] ...]12
structured-block13

!$omp end single [end_clause[[,] end_clause] ...]14

where clause is one of the following:15

private(list)16

firstprivate(list)17

allocate([allocator :] list)18

and end_clause is one of the following:19

copyprivate(list)20

nowait21

Fortran

Binding22

The binding thread set for a single region is the current team. A single region binds to the23
innermost enclosing parallel region. Only the threads of the team that executes the binding24
parallel region participate in the execution of the structured block and the implied barrier of the25
single region if the barrier is not eliminated by a nowait clause.26

90 OpenMP API – Version 5.0 November 2018

Description1

Only one of the encountering threads will execute the structured block associated with the single2
construct. The method of choosing a thread to execute the structured block each time the team3
encounters the construct is implementation defined. There is an implicit barrier at the end of the4
single construct unless a nowait clause is specified.5

Execution Model Events6

The single-begin event occurs after an implicit task encounters a single construct but7
before the task starts to execute the structured block of the single region.8

The single-end event occurs after an implicit task finishes execution of a single region but before9
it resumes execution of the enclosing region.10

Tool Callbacks11

A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin12
as its endpoint argument for each occurrence of a single-begin event in that thread. Similarly, a13
thread dispatches a registered ompt_callback_work callback with ompt_scope_begin as14
its endpoint argument for each occurrence of a single-end event in that thread. For each of these15
callbacks, the wstype argument is ompt_work_single_executor if the thread executes the16
structured block associated with the single region; otherwise, the wstype argument is17
ompt_work_single_other. The callback has type signature ompt_callback_work_t.18

Restrictions19

Restrictions to the single construct are as follows:20

• The copyprivate clause must not be used with the nowait clause.21

• At most one nowait clause can appear on a single construct.22

C++
• A throw executed inside a single region must cause execution to resume within the same23
single region, and the same thread that threw the exception must catch it.24

C++

CHAPTER 2. DIRECTIVES 91

Cross References1

• allocate clause, see Section 2.11.4 on page 158.2

• private and firstprivate clauses, see Section 2.19.4 on page 282.3

• copyprivate clause, see Section 2.19.6.2 on page 312.4

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.5

• ompt_work_single_executor and ompt_work_single_other, see Section 4.4.4.156
on page 445.7

• ompt_callback_work_t, Section 4.5.2.5 on page 464.8

Fortran

2.8.3 workshare Construct9

Summary10

The workshare construct divides the execution of the enclosed structured block into separate11
units of work, and causes the threads of the team to share the work such that each unit is executed12
only once by one thread, in the context of its implicit task.13

Syntax14

The syntax of the workshare construct is as follows:15

!$omp workshare16
structured-block17

!$omp end workshare [nowait]18

Binding19

The binding thread set for a workshare region is the current team. A workshare region binds20
to the innermost enclosing parallel region. Only the threads of the team that executes the21
binding parallel region participate in the execution of the units of work and the implied barrier22
of the workshare region if the barrier is not eliminated by a nowait clause.23

92 OpenMP API – Version 5.0 November 2018

Fortran (cont.)

Description1

There is an implicit barrier at the end of a workshare construct unless a nowait clause is2
specified.3

An implementation of the workshare construct must insert any synchronization that is required4
to maintain standard Fortran semantics. For example, the effects of one statement within the5
structured block must appear to occur before the execution of succeeding statements, and the6
evaluation of the right hand side of an assignment must appear to complete prior to the effects of7
assigning to the left hand side.8

The statements in the workshare construct are divided into units of work as follows:9

• For array expressions within each statement, including transformational array intrinsic functions10
that compute scalar values from arrays:11

– Evaluation of each element of the array expression, including any references to ELEMENTAL12
functions, is a unit of work.13

– Evaluation of transformational array intrinsic functions may be freely subdivided into any14
number of units of work.15

• For an array assignment statement, the assignment of each element is a unit of work.16

• For a scalar assignment statement, the assignment operation is a unit of work.17

• For a WHERE statement or construct, the evaluation of the mask expression and the masked18
assignments are each a unit of work.19

• For a FORALL statement or construct, the evaluation of the mask expression, expressions20
occurring in the specification of the iteration space, and the masked assignments are each a unit21
of work.22

• For an atomic construct, the atomic operation on the storage location designated as x is a unit23
of work.24

• For a critical construct, the construct is a single unit of work.25

• For a parallel construct, the construct is a unit of work with respect to the workshare26
construct. The statements contained in the parallel construct are executed by a new thread27
team.28

• If none of the rules above apply to a portion of a statement in the structured block, then that29
portion is a unit of work.30

The transformational array intrinsic functions are MATMUL, DOT_PRODUCT, SUM, PRODUCT,31
MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD, PACK, UNPACK, RESHAPE, TRANSPOSE,32
EOSHIFT, CSHIFT, MINLOC, and MAXLOC.33

It is unspecified how the units of work are assigned to the threads executing a workshare region.34

CHAPTER 2. DIRECTIVES 93

Fortran (cont.)

If an array expression in the block references the value, association status, or allocation status of1
private variables, the value of the expression is undefined, unless the same value would be2
computed by every thread.3

If an array assignment, a scalar assignment, a masked array assignment, or a FORALL assignment4
assigns to a private variable in the block, the result is unspecified.5

The workshare directive causes the sharing of work to occur only in the workshare construct,6
and not in the remainder of the workshare region.7

Execution Model Events8

The workshare-begin event occurs after an implicit task encounters a workshare construct but9
before the task starts to execute the structured block of the workshare region.10

The workshare-end event occurs after an implicit task finishes execution of a workshare region11
but before it resumes execution of the enclosing context.12

Tool Callbacks13

A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin14
as its endpoint argument and ompt_work_workshare as its wstype argument for each15
occurrence of a workshare-begin event in that thread. Similarly, a thread dispatches a registered16
ompt_callback_work callback with ompt_scope_end as its endpoint argument and17
ompt_work_workshare as its wstype argument for each occurrence of a workshare-end event18
in that thread. The callbacks occur in the context of the implicit task. The callbacks have type19
signature ompt_callback_work_t.20

Restrictions21

The following restrictions apply to the workshare construct:22

• The only OpenMP constructs that may be closely nested inside a workshare construct are the23
atomic, critical, and parallel constructs.24

• Base language statements that are encountered inside a workshare construct but that are not25
enclosed within a parallel construct that is nested inside the workshare construct must26
consist of only the following:27

– array assignments28

– scalar assignments29

– FORALL statements30

– FORALL constructs31

– WHERE statements32

94 OpenMP API – Version 5.0 November 2018

– WHERE constructs1

• All array assignments, scalar assignments, and masked array assignments that are encountered2
inside a workshare construct but are not nested inside a parallel construct that is nested3
inside the workshare construct must be intrinsic assignments.4

• The construct must not contain any user defined function calls unless the function is5
ELEMENTAL or the function call is contained inside a parallel construct that is nested inside6
the workshare construct.7

Cross References8

• parallel construct, see Section 2.6 on page 74.9

• critical construct, see Section 2.17.1 on page 223.10

• atomic construct, see Section 2.17.7 on page 234.11

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.12

• ompt_work_workshare, see Section 4.4.4.15 on page 445.13

• ompt_callback_work_t, see Section 4.5.2.5 on page 464.14

Fortran

2.9 Loop-Related Directives15

2.9.1 Canonical Loop Form16

C / C++
The loops associated with a loop-associated directive have canonical loop form if they conform to17
the following:18

for (init-expr; test-expr; incr-expr) structured-block

init-expr One of the following:
var = lb
integer-type var = lb
random-access-iterator-type var = lb
pointer-type var = lb

continued on next page

CHAPTER 2. DIRECTIVES 95

C/C++ (cont.)

continued from previous page

test-expr One of the following:
var relational-op b
b relational-op var

incr-expr One of the following:
++var
var++
- - var
var - -
var += incr
var - = incr
var = var + incr
var = incr + var
var = var - incr

var One of the following:
A variable of a signed or unsigned integer type.
For C++, a variable of a random access iterator type.
For C, a variable of a pointer type.

This variable must not be modified during the execution of the for-loop other
than in incr-expr.

relational-op One of the following:
<
<=
>
>=
!=

lb and b Expressions of a type compatible with the type of var that are loop invariant
with respect to the outermost associated loop or are one of the following (where
var-outer, a1, and a2 have a type compatible with the type of var, var-outer
is var from an outer associated loop, and a1 and a2 are loop invariant integer
expressions with respect to the outermost loop):

continued on next page

96 OpenMP API – Version 5.0 November 2018

continued from previous page

var-outer
var-outer + a2
a2 + var-outer
var-outer - a2
a2 - var-outer
a1 * var-outer
a1 * var-outer + a2
a2 + a1 * var-outer
a1 * var-outer - a2
a2 - a1 * var-outer
var-outer * a1
var-outer * a1 + a2
a2 + var-outer * a1
var-outer * a1 - a2
a2 - var-outer * a1

incr An integer expression that is loop invariant with respect to the outermost
associated loop.

C / C++
Fortran

The loops associated with a loop-associated directive have canonical loop form if each of them is a1
do-loop that is a do-construct or an inner-shared-do-construct as defined by the Fortran standard. If2
an end do directive follows a do-construct in which several loop statements share a DO termination3
statement, then the directive can only be specified for the outermost of these DO statements.4

CHAPTER 2. DIRECTIVES 97

The do-stmt for any do-loop must conform to the following:1

DO [label] var = lb , b [, incr]

var A variable of integer type.

lb and b Expressions of a type compatible with the type of var that are loop invariant
with respect to the outermost associated loop or are one of the following (where
var-outer, a1, and a2 have a type compatible with the type of var, var-outer
is var from an outer associated loop, and a1 and a2 are loop invariant integer
expressions with respect to the outermost loop):
var-outer
var-outer + a2
a2 + var-outer
var-outer - a2
a2 - var-outer
a1 * var-outer
a1 * var-outer + a2
a2 + a1 * var-outer
a1 * var-outer - a2
a2 - a1 * var-outer
var-outer * a1
var-outer * a1 + a2
a2 + var-outer * a1
var-outer * a1 - a2
a2 - var-outer * a1

incr An integer expression that is loop invariant with respect to the outermost
associated loop. If it is not explicitly specified, its value is assumed to be 1.

Fortran
The canonical form allows the iteration count of all associated loops to be computed before2
executing the outermost loop. The incr and range-expr are evaluated before executing the3
loop-associated construct. If b or lb is loop invariant with respect to the outermost associated loop,4
it is evaluated before executing the loop-associated construct. If b or lb is not loop invariant with5
respect to the outermost associated loop, a1 and/or a2 are evaluated before executing the6
loop-associated construct. The computation is performed for each loop in an integer type. This type7
is derived from the type of var as follows:8

• If var is of an integer type, then the type is the type of var.9

98 OpenMP API – Version 5.0 November 2018

C++
• If var is of a random access iterator type, then the type is the type that would be used by1
std::distance applied to variables of the type of var.2

C++
C

• If var is of a pointer type, then the type is ptrdiff_t.3

C
The behavior is unspecified if any intermediate result required to compute the iteration count4
cannot be represented in the type determined above.5

There is no implied synchronization during the evaluation of the lb, b, or incr expressions. It is6
unspecified whether, in what order, or how many times any side effects within the lb, b, or incr7
expressions occur.8

9

Note – Random access iterators are required to support random access to elements in constant10
time. Other iterators are precluded by the restrictions since they can take linear time or offer limited11
functionality. The use of tasks to parallelize those cases is therefore advisable.12

13

C++
A range-based for loop that is valid in the base language and has a begin value that satisfies the14
random access iterator requirement has canonical loop form. Range-based for loops are of the15
following form:16

for (range-decl: range-expr) structured-block17

The begin-expr and end-expr expressions are derived from range-expr by the base language and18
assigned to variables to which this specification refers as __begin and __end respectively. Both19
__begin and __end are privatized. For the purpose of the rest of the standard __begin is the20
iteration variable of the range-for loop.21

C++

CHAPTER 2. DIRECTIVES 99

Restrictions1

The following restrictions also apply:2

C / C++
• If test-expr is of the form var relational-op b and relational-op is < or <= then incr-expr must3
cause var to increase on each iteration of the loop. If test-expr is of the form var relational-op b4
and relational-op is > or >= then incr-expr must cause var to decrease on each iteration of the5
loop.6

• If test-expr is of the form b relational-op var and relational-op is < or <= then incr-expr must7
cause var to decrease on each iteration of the loop. If test-expr is of the form b relational-op var8
and relational-op is > or >= then incr-expr must cause var to increase on each iteration of the9
loop.10

• If test-expr is of the form b != var or var != b then incr-expr must cause var either to increase on11
each iteration of the loop or to decrease on each iteration of the loop.12

• If relational-op is != and incr-expr is of the form that has incr then incr must be a constant13
expression and evaluate to -1 or 1.14

C / C++
C++

• In the simd construct the only random access iterator types that are allowed for var are pointer15
types.16

• The range-expr of a range-for loop must be loop invariant with respect to the outermost17
associated loop, and must not reference iteration variables of any associated loops.18

• The loops associated with an ordered clause with a parameter may not include range-for loops.19

C++
• The b, lb, incr, and range-expr expressions may not reference any var or member of the20

range-decl of any enclosed associated loop.21

• For any associated loop where the b or lb expression is not loop invariant with respect to the22
outermost loop, the var-outer that appears in the expression may not have a random access23
iterator type.24

• For any associated loop where b or lb is not loop invariant with respect to the outermost loop, the25
expression b− lb will have the form c ∗ var-outer+ d, where c and d are loop invariant integer26
expressions. Let incr-outer be the incr expression of the outer loop referred to by var-outer. The27
value of c ∗ incr-outer mod incr must be 0.28

100 OpenMP API – Version 5.0 November 2018

Cross References1

• simd construct, see Section 2.9.3.1 on page 110.2

• lastprivate clause, see Section 2.19.4.5 on page 288.3

• linear clause, see Section 2.19.4.6 on page 290.4

2.9.2 Worksharing-Loop Construct5

Summary6

The worksharing-loop construct specifies that the iterations of one or more associated loops will be7
executed in parallel by threads in the team in the context of their implicit tasks. The iterations are8
distributed across threads that already exist in the team that is executing the parallel region to9
which the worksharing-loop region binds.10

Syntax11

C / C++
The syntax of the worksharing-loop construct is as follows:12

#pragma omp for [clause[[,] clause] ...] new-line13
for-loops14

where clause is one of the following:15

private(list)16

firstprivate(list)17

lastprivate([lastprivate-modifier:] list)18

linear(list[: linear-step])19

reduction([reduction-modifier,]reduction-identifier : list)20

schedule([modifier [, modifier]:]kind[, chunk_size])21

collapse(n)22

ordered[(n)]23

nowait24

allocate([allocator :]list)25

order(concurrent)26

The for directive places restrictions on the structure of all associated for-loops. Specifically, all27
associated for-loops must have canonical loop form (see Section 2.9.1 on page 95).28

C / C++

CHAPTER 2. DIRECTIVES 101

Fortran
The syntax of the worksharing-loop construct is as follows:1

!$omp do [clause[[,] clause] ...]2
do-loops3

[!$omp end do [nowait]]4

where clause is one of the following:5

private(list)6

firstprivate(list)7

lastprivate([lastprivate-modifier:] list)8

linear(list[: linear-step])9

reduction([reduction-modifier,]reduction-identifier : list)10

schedule([modifier [, modifier]:]kind[, chunk_size])11

collapse(n)12

ordered[(n)]13

allocate([allocator :]list)14

order(concurrent)15

If an end do directive is not specified, an end do directive is assumed at the end of the do-loops.16

The do directive places restrictions on the structure of all associated do-loops. Specifically, all17
associated do-loops must have canonical loop form (see Section 2.9.1 on page 95).18

Fortran

Binding19

The binding thread set for a worksharing-loop region is the current team. A worksharing-loop20
region binds to the innermost enclosing parallel region. Only the threads of the team executing21
the binding parallel region participate in the execution of the loop iterations and the implied22
barrier of the worksharing-loop region if the barrier is not eliminated by a nowait clause.23

Description24

The worksharing-loop construct is associated with a loop nest that consists of one or more loops25
that follow the directive.26

There is an implicit barrier at the end of a worksharing-loop construct unless a nowait clause is27
specified.28

The collapse clause may be used to specify how many loops are associated with the29
worksharing-loop construct. The parameter of the collapse clause must be a constant positive30

102 OpenMP API – Version 5.0 November 2018

integer expression. If a collapse clause is specified with a parameter value greater than 1, then1
the iterations of the associated loops to which the clause applies are collapsed into one larger2
iteration space that is then divided according to the schedule clause. The sequential execution of3
the iterations in these associated loops determines the order of the iterations in the collapsed4
iteration space. If no collapse clause is present or its parameter is 1, the only loop that is5
associated with the worksharing-loop construct for the purposes of determining how the iteration6
space is divided according to the schedule clause is the one that immediately follows the7
worksharing-loop directive.8

If more than one loop is associated with the worksharing-loop construct then the number of times9
that any intervening code between any two associated loops will be executed is unspecified but will10
be at least once per iteration of the loop enclosing the intervening code and at most once per11
iteration of the innermost loop associated with the construct. If the iteration count of any loop that12
is associated with the worksharing-loop construct is zero and that loop does not enclose the13
intervening code, the behavior is unspecified.14

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is15
implementation defined.16

A worksharing-loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop17
iterations, and the logical numbering denotes the sequence in which the iterations would be18
executed if a set of associated loop(s) were executed sequentially. At the beginning of each logical19
iteration, the loop iteration variable of each associated loop has the value that it would have if the20
set of the associated loop(s) were executed sequentially. The schedule clause specifies how21
iterations of these associated loops are divided into contiguous non-empty subsets, called chunks,22
and how these chunks are distributed among threads of the team. Each thread executes its assigned23
chunk(s) in the context of its implicit task. The iterations of a given chunk are executed in24
sequential order by the assigned thread. The chunk_size expression is evaluated using the original25
list items of any variables that are made private in the worksharing-loop construct. It is unspecified26
whether, in what order, or how many times, any side effects of the evaluation of this expression27
occur. The use of a variable in a schedule clause expression of a worksharing-loop construct28
causes an implicit reference to the variable in all enclosing constructs.29

Different worksharing-loop regions with the same schedule and iteration count, even if they occur30
in the same parallel region, can distribute iterations among threads differently. The only exception31
is for the static schedule as specified in Table 2.5. Programs that depend on which thread32
executes a particular iteration under any other circumstances are non-conforming.33

See Section 2.9.2.1 on page 109 for details of how the schedule for a worksharing-loop region is34
determined.35

The schedule kind can be one of those specified in Table 2.5.36

The schedule modifier can be one of those specified in Table 2.6. If the static schedule kind is37
specified or if the ordered clause is specified, and if the nonmonotonic modifier is not38
specified, the effect is as if the monotonic modifier is specified. Otherwise, unless the39
monotonic modifier is specified, the effect is as if the nonmonotonic modifier is specified. If40

CHAPTER 2. DIRECTIVES 103

a schedule clause specifies a modifier then that modifier overrides any modifier that is specified1
in the run-sched-var ICV.2

The ordered clause with the parameter may also be used to specify how many loops are3
associated with the worksharing-loop construct. The parameter of the ordered clause must be a4
constant positive integer expression if specified. The parameter of the ordered clause does not5
affect how the logical iteration space is then divided. If an ordered clause with the parameter is6
specified for the worksharing-loop construct, then those associated loops form a doacross loop nest.7

If the value of the parameter in the collapse or ordered clause is larger than the number of8
nested loops following the construct, the behavior is unspecified.9

If an order(concurrent) clause is present, then after assigning the iterations of the associated10
loops to their respective threads, as specified in Table 2.5, the iterations may be executed in any11
order, including concurrently.12

TABLE 2.5: schedule Clause kind Values

static When kind is static, iterations are divided into chunks of size chunk_size,
and the chunks are assigned to the threads in the team in a round-robin
fashion in the order of the thread number. Each chunk contains chunk_size
iterations, except for the chunk that contains the sequentially last iteration,
which may have fewer iterations.
When no chunk_size is specified, the iteration space is divided into chunks
that are approximately equal in size, and at most one chunk is distributed to
each thread. The size of the chunks is unspecified in this case.
A compliant implementation of the static schedule must ensure that the
same assignment of logical iteration numbers to threads will be used in
two worksharing-loop regions if the following conditions are satisfied: 1)
both worksharing-loop regions have the same number of loop iterations, 2)
both worksharing-loop regions have the same value of chunk_size specified,
or both worksharing-loop regions have no chunk_size specified, 3) both
worksharing-loop regions bind to the same parallel region, and 4) neither
loop is associated with a SIMD construct. A data dependence between
the same logical iterations in two such loops is guaranteed to be satisfied
allowing safe use of the nowait clause.

table continued on next page

104 OpenMP API – Version 5.0 November 2018

table continued from previous page

dynamic When kind is dynamic, the iterations are distributed to threads in the team
in chunks. Each thread executes a chunk of iterations, then requests another
chunk, until no chunks remain to be distributed.
Each chunk contains chunk_size iterations, except for the chunk that contains
the sequentially last iteration, which may have fewer iterations.
When no chunk_size is specified, it defaults to 1.

guided When kind is guided, the iterations are assigned to threads in the team in
chunks. Each thread executes a chunk of iterations, then requests another
chunk, until no chunks remain to be assigned.
For a chunk_size of 1, the size of each chunk is proportional to the number
of unassigned iterations divided by the number of threads in the team,
decreasing to 1. For a chunk_size with value k (greater than 1), the size
of each chunk is determined in the same way, with the restriction that
the chunks do not contain fewer than k iterations (except for the chunk
that contains the sequentially last iteration, which may have fewer than k
iterations).
When no chunk_size is specified, it defaults to 1.

auto When kind is auto, the decision regarding scheduling is delegated to the
compiler and/or runtime system. The programmer gives the implementation
the freedom to choose any possible mapping of iterations to threads in the
team.

runtime When kind is runtime, the decision regarding scheduling is deferred until
run time, and the schedule and chunk size are taken from the run-sched-var
ICV. If the ICV is set to auto, the schedule is implementation defined.

1

Note – For a team of p threads and a loop of n iterations, let ddn/pee be the integer q that satisfies2
n = p ∗ q − r, with 0 <= r < p. One compliant implementation of the static schedule (with no3
specified chunk_size) would behave as though chunk_size had been specified with value q. Another4
compliant implementation would assign q iterations to the first p− r threads, and q− 1 iterations to5
the remaining r threads. This illustrates why a conforming program must not rely on the details of a6
particular implementation.7

A compliant implementation of the guided schedule with a chunk_size value of k would assign8
q = ddn/pee iterations to the first available thread and set n to the larger of n− q and p ∗ k. It would9
then repeat this process until q is greater than or equal to the number of remaining iterations, at10
which time the remaining iterations form the final chunk. Another compliant implementation could11
use the same method, except with q = ddn/(2p)ee, and set n to the larger of n− q and 2 ∗ p ∗ k.12

13

CHAPTER 2. DIRECTIVES 105

TABLE 2.6: schedule Clause modifier Values

monotonic When the monotonic modifier is specified then each thread executes
the chunks that it is assigned in increasing logical iteration order.

nonmonotonic When the nonmonotonic modifier is specified then chunks are
assigned to threads in any order and the behavior of an application that
depends on any execution order of the chunks is unspecified.

simd When the simd modifier is specified and the loop is associated with
a SIMD construct, the chunk_size for all chunks except the first and
last chunks is new_chunk_size = ddchunk_size/simd_widthee ∗
simd_width where simd_width is an implementation-defined value.
The first chunk will have at least new_chunk_size iterations except if
it is also the last chunk. The last chunk may have fewer iterations than
new_chunk_size. If the simd modifier is specified and the loop is not
associated with a SIMD construct, the modifier is ignored.

1

Execution Model Events2

The ws-loop-begin event occurs after an implicit task encounters a worksharing-loop construct but3
before the task starts execution of the structured block of the worksharing-loop region.4

The ws-loop-end event occurs after a worksharing-loop region finishes execution but before5
resuming execution of the encountering task.6

The ws-loop-iteration-begin event occurs once for each iteration of a worksharing-loop before the7
iteration is executed by an implicit task.8

Tool Callbacks9

A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin10
as its endpoint argument and work_loop as its wstype argument for each occurrence of a11
ws-loop-begin event in that thread. Similarly, a thread dispatches a registered12
ompt_callback_work callback with ompt_scope_end as its endpoint argument and13
work_loop as its wstype argument for each occurrence of a ws-loop-end event in that thread. The14
callbacks occur in the context of the implicit task. The callbacks have type signature15
ompt_callback_work_t.16

A thread dispatches a registered ompt_callback_dispatch callback for each occurrence of a17
ws-loop-iteration-begin event in that thread. The callback occurs in the context of the implicit task.18
The callback has type signature ompt_callback_dispatch_t.19

106 OpenMP API – Version 5.0 November 2018

Restrictions1

Restrictions to the worksharing-loop construct are as follows:2

• No OpenMP directive may appear in the region between any associated loops.3

• If a collapse clause is specified, exactly one loop must occur in the region at each nesting4
level up to the number of loops specified by the parameter of the collapse clause.5

• If the ordered clause is present, all loops associated with the construct must be perfectly6
nested; that is there must be no intervening code between any two loops.7

• If a reduction clause with the inscan modifier is specified, neither the ordered nor8
schedule clause may appear on the worksharing-loop directive.9

• The values of the loop control expressions of the loops associated with the worksharing-loop10
construct must be the same for all threads in the team.11

• Only one schedule clause can appear on a worksharing-loop directive.12

• The schedule clause must not appear on the worksharing-loop directive if the associated13
loop(s) form a non-rectangular loop nest.14

• The ordered clause must not appear on the worksharing-loop directive if the associated15
loop(s) form a non-rectangular loop nest.16

• Only one collapse clause can appear on a worksharing-loop directive.17

• chunk_size must be a loop invariant integer expression with a positive value.18

• The value of the chunk_size expression must be the same for all threads in the team.19

• The value of the run-sched-var ICV must be the same for all threads in the team.20

• When schedule(runtime) or schedule(auto) is specified, chunk_size must not be21
specified.22

• A modifier may not be specified on a linear clause.23

• Only one ordered clause can appear on a worksharing-loop directive.24

• The ordered clause must be present on the worksharing-loop construct if any ordered25
region ever binds to a worksharing-loop region arising from the worksharing-loop construct.26

• The nonmonotonic modifier cannot be specified if an ordered clause is specified.27

• Either the monotonic modifier or the nonmonotonic modifier can be specified but not both.28

• The loop iteration variable may not appear in a threadprivate directive.29

• If both the collapse and ordered clause with a parameter are specified, the parameter of the30
ordered clause must be greater than or equal to the parameter of the collapse clause.31

CHAPTER 2. DIRECTIVES 107

• A linear clause or an ordered clause with a parameter can be specified on a1
worksharing-loop directive but not both.2

• If an order(concurrent) clause is present, all restrictions from the loop construct with an3
order(concurrent) clause also apply.4

• If an order(concurrent) clause is present, an ordered clause may not appear on the5
same directive.6

C / C++
• The associated for-loops must be structured blocks.7

• Only an iteration of the innermost associated loop may be curtailed by a continue statement.8

• No statement can branch to any associated for statement.9

• Only one nowait clause can appear on a for directive.10

• A throw executed inside a worksharing-loop region must cause execution to resume within the11
same iteration of the worksharing-loop region, and the same thread that threw the exception must12
catch it.13

C / C++
Fortran

• The associated do-loops must be structured blocks.14

• Only an iteration of the innermost associated loop may be curtailed by a CYCLE statement.15

• No statement in the associated loops other than the DO statements can cause a branch out of the16
loops.17

• The do-loop iteration variable must be of type integer.18

• The do-loop cannot be a DO WHILE or a DO loop without loop control.19

Fortran
Cross References20

• order(concurrent) clause, see Section 2.9.5 on page 128.21

• ordered construct, see Section 2.17.9 on page 250.22

• depend clause, see Section 2.17.11 on page 255.23

• private, firstprivate, lastprivate, linear, and reduction clauses, see24
Section 2.19.4 on page 282.25

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.26

• ompt_work_loop, see Section 4.4.4.15 on page 445.27

• ompt_callback_work_t, see Section 4.5.2.5 on page 464.28

• OMP_SCHEDULE environment variable, see Section 6.1 on page 601.29

108 OpenMP API – Version 5.0 November 2018

START

schedule
clause present?

schedule
kind value is
runtime?

Use def-sched-var schedule kind

Use schedule kind specified in
schedule clause

Use run-sched-var schedule kind

No

Yes

No

Yes

FIGURE 2.1: Determining the schedule for a Worksharing-Loop

2.9.2.1 Determining the Schedule of a Worksharing-Loop1

When execution encounters a worksharing-loop directive, the schedule clause (if any) on the2
directive, and the run-sched-var and def-sched-var ICVs are used to determine how loop iterations3
are assigned to threads. See Section 2.5 on page 63 for details of how the values of the ICVs are4
determined. If the worksharing-loop directive does not have a schedule clause then the current5
value of the def-sched-var ICV determines the schedule. If the worksharing-loop directive has a6
schedule clause that specifies the runtime schedule kind then the current value of the7
run-sched-var ICV determines the schedule. Otherwise, the value of the schedule clause8
determines the schedule. Figure 2.1 describes how the schedule for a worksharing-loop is9
determined.10

Cross References11

• ICVs, see Section 2.5 on page 63.12

CHAPTER 2. DIRECTIVES 109

2.9.3 SIMD Directives1

2.9.3.1 simd Construct2

Summary3

The simd construct can be applied to a loop to indicate that the loop can be transformed into a4
SIMD loop (that is, multiple iterations of the loop can be executed concurrently using SIMD5
instructions).6

Syntax7

The syntax of the simd construct is as follows:8

C / C++
#pragma omp simd [clause[[,] clause] ...] new-line9

for-loops10

where clause is one of the following:11

if([simd :] scalar-expression)12

safelen(length)13

simdlen(length)14

linear(list[: linear-step])15

aligned(list[: alignment])16

nontemporal(list)17

private(list)18

lastprivate([lastprivate-modifier:] list)19

reduction([reduction-modifier,]reduction-identifier : list)20

collapse(n)21

order(concurrent)22

The simd directive places restrictions on the structure of the associated for-loops. Specifically, all23
associated for-loops must have canonical loop form (Section 2.9.1 on page 95).24

C / C++

110 OpenMP API – Version 5.0 November 2018

Fortran
!$omp simd [clause[[,] clause ...]1

do-loops2
[!$omp end simd]3

where clause is one of the following:4

if([simd :] scalar-logical-expression)5

safelen(length)6

simdlen(length)7

linear(list[: linear-step])8

aligned(list[: alignment])9

nontemporal(list)10

private(list)11

lastprivate([lastprivate-modifier:] list)12

reduction([reduction-modifier,]reduction-identifier : list)13

collapse(n)14

order(concurrent)15

If an end simd directive is not specified, an end simd directive is assumed at the end of the16
do-loops.17

The simd directive places restrictions on the structure of all associated do-loops. Specifically, all18
associated do-loops must have canonical loop form (see Section 2.9.1 on page 95).19

Fortran

Binding20

A simd region binds to the current task region. The binding thread set of the simd region is the21
current team.22

Description23

The simd construct enables the execution of multiple iterations of the associated loops24
concurrently by means of SIMD instructions.25

The collapse clause may be used to specify how many loops are associated with the construct.26
The parameter of the collapse clause must be a constant positive integer expression. If no27
collapse clause is present, the only loop that is associated with the simd construct is the one28
that immediately follows the directive.29

CHAPTER 2. DIRECTIVES 111

If more than one loop is associated with the simd construct, then the iterations of all associated1
loops are collapsed into one larger iteration space that is then executed with SIMD instructions.2
The sequential execution of the iterations in all associated loops determines the order of the3
iterations in the collapsed iteration space.4

If more than one loop is associated with the simd construct then the number of times that any5
intervening code between any two associated loops will be executed is unspecified but will be at6
least once per iteration of the loop enclosing the intervening code and at most once per iteration of7
the innermost loop associated with the construct. If the iteration count of any loop that is associated8
with the simd construct is zero and that loop does not enclose the intervening code, the behavior is9
unspecified.10

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is11
implementation defined.12

A SIMD loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop iterations,13
and the logical numbering denotes the sequence in which the iterations would be executed if the14
associated loop(s) were executed with no SIMD instructions. At the beginning of each logical15
iteration, the loop iteration variable of each associated loop has the value that it would have if the16
set of the associated loop(s) were executed sequentially. The number of iterations that are executed17
concurrently at any given time is implementation defined. Each concurrent iteration will be18
executed by a different SIMD lane. Each set of concurrent iterations is a SIMD chunk. Lexical19
forward dependencies in the iterations of the original loop must be preserved within each SIMD20
chunk.21

The safelen clause specifies that no two concurrent iterations within a SIMD chunk can have a22
distance in the logical iteration space that is greater than or equal to the value given in the clause.23
The parameter of the safelen clause must be a constant positive integer expression. The24
simdlen clause specifies the preferred number of iterations to be executed concurrently unless an25
if clause is present and evaluates to false, in which case the preferred number of iterations to be26
executed concurrently is one. The parameter of the simdlen clause must be a constant positive27
integer expression.28

C / C++
The aligned clause declares that the object to which each list item points is aligned to the29
number of bytes expressed in the optional parameter of the aligned clause.30

C / C++
Fortran

The aligned clause declares that the location of each list item is aligned to the number of bytes31
expressed in the optional parameter of the aligned clause.32

Fortran

112 OpenMP API – Version 5.0 November 2018

The optional parameter of the aligned clause, alignment, must be a constant positive integer1
expression. If no optional parameter is specified, implementation-defined default alignments for2
SIMD instructions on the target platforms are assumed.3

The nontemporal clause specifies that accesses to the storage locations to which the list items4
refer have low temporal locality across the iterations in which those storage locations are accessed.5

Restrictions6

• No OpenMP directive may appear in the region between any associated loops.7

• If a collapse clause is specified, exactly one loop must occur in the region at each nesting8
level up to the number of loops specified by the parameter of the collapse clause.9

• The associated loops must be structured blocks.10

• A program that branches into or out of a simd region is non-conforming.11

• Only one collapse clause can appear on a simd directive.12

• A list-item cannot appear in more than one aligned clause.13

• A list-item cannot appear in more than one nontemporal clause.14

• Only one safelen clause can appear on a simd directive.15

• Only one simdlen clause can appear on a simd directive.16

• If both simdlen and safelen clauses are specified, the value of the simdlen parameter17
must be less than or equal to the value of the safelen parameter.18

• A modifier may not be specified on a linear clause.19

• The only OpenMP constructs that can be encountered during execution of a simd region are the20
atomic construct, the loop construct, the simd construct and the ordered construct with21
the simd clause.22

• If an order(concurrent) clause is present, all restrictions from the loop construct with an23
order(concurrent) clause also apply.24

C / C++
• The simd region cannot contain calls to the longjmp or setjmp functions.25

C / C++
C

• The type of list items appearing in the aligned clause must be array or pointer.26

C

CHAPTER 2. DIRECTIVES 113

C++
• The type of list items appearing in the aligned clause must be array, pointer, reference to1
array, or reference to pointer.2

• No exception can be raised in the simd region.3

C++
Fortran

• The do-loop iteration variable must be of type integer.4

• The do-loop cannot be a DO WHILE or a DO loop without loop control.5

• If a list item on the aligned clause has the ALLOCATABLE attribute, the allocation status must6
be allocated.7

• If a list item on the aligned clause has the POINTER attribute, the association status must be8
associated.9

• If the type of a list item on the aligned clause is either C_PTR or Cray pointer, the list item10
must be defined.11

Fortran

Cross References12

• order(concurrent) clause, see Section 2.9.5 on page 128.13

• if Clause, see Section 2.15 on page 220.14

• private, lastprivate, linear and reduction clauses, see Section 2.19.4 on page 282.15

2.9.3.2 Worksharing-Loop SIMD Construct16

Summary17

The worksharing-loop SIMD construct specifies that the iterations of one or more associated loops18
will be distributed across threads that already exist in the team and that the iterations executed by19
each thread can also be executed concurrently using SIMD instructions. The worksharing-loop20
SIMD construct is a composite construct.21

114 OpenMP API – Version 5.0 November 2018

Syntax1

C / C++
#pragma omp for simd [clause[[,] clause] ...] new-line2

for-loops3

where clause can be any of the clauses accepted by the for or simd directives with identical4
meanings and restrictions.5

C / C++
Fortran

!$omp do simd [clause[[,] clause] ...]6
do-loops7

[!$omp end do simd [nowait]]8

where clause can be any of the clauses accepted by the simd or do directives, with identical9
meanings and restrictions.10

If an end do simd directive is not specified, an end do simd directive is assumed at the end of11
the do-loops.12

Fortran

Description13

The worksharing-loop SIMD construct will first distribute the iterations of the associated loop(s)14
across the implicit tasks of the parallel region in a manner consistent with any clauses that apply to15
the worksharing-loop construct. The resulting chunks of iterations will then be converted to a16
SIMD loop in a manner consistent with any clauses that apply to the simd construct.17

Execution Model Events18

This composite construct generates the same events as the worksharing-loop construct.19

Tool Callbacks20

This composite construct dispatches the same callbacks as the worksharing-loop construct.21

CHAPTER 2. DIRECTIVES 115

Restrictions1

All restrictions to the worksharing-loop construct and the simd construct apply to the2
worksharing-loop SIMD construct. In addition, the following restrictions apply:3

• No ordered clause with a parameter can be specified.4

• A list item may appear in a linear or firstprivate clause but not both.5

Cross References6

• worksharing-loop construct, see Section 2.9.2 on page 101.7

• simd construct, see Section 2.9.3.1 on page 110.8

• Data attribute clauses, see Section 2.19.4 on page 282.9

2.9.3.3 declare simd Directive10

Summary11

The declare simd directive can be applied to a function (C, C++ and Fortran) or a subroutine12
(Fortran) to enable the creation of one or more versions that can process multiple arguments using13
SIMD instructions from a single invocation in a SIMD loop. The declare simd directive is a14
declarative directive. There may be multiple declare simd directives for a function (C, C++,15
Fortran) or subroutine (Fortran).16

Syntax17

The syntax of the declare simd directive is as follows:18

C / C++
#pragma omp declare simd [clause[[,] clause] ...] new-line19
[#pragma omp declare simd [clause[[,] clause] ...] new-line]20
[...]21

function definition or declaration22

where clause is one of the following:23

simdlen(length)24

linear(linear-list[: linear-step])25

aligned(argument-list[: alignment])26

uniform(argument-list)27

inbranch28

notinbranch29

C / C++

116 OpenMP API – Version 5.0 November 2018

Fortran
!$omp declare simd [(proc-name)] [clause[[,] clause] ...]1

where clause is one of the following:2

simdlen(length)3

linear(linear-list[: linear-step])4

aligned(argument-list[: alignment])5

uniform(argument-list)6

inbranch7

notinbranch8

Fortran

Description9

C / C++
The use of one or more declare simd directives immediately prior to a function declaration or10
definition enables the creation of corresponding SIMD versions of the associated function that can11
be used to process multiple arguments from a single invocation in a SIMD loop concurrently.12

The expressions appearing in the clauses of each directive are evaluated in the scope of the13
arguments of the function declaration or definition.14

C / C++
Fortran

The use of one or more declare simd directives for a specified subroutine or function enables15
the creation of corresponding SIMD versions of the subroutine or function that can be used to16
process multiple arguments from a single invocation in a SIMD loop concurrently.17

Fortran
If a SIMD version is created, the number of concurrent arguments for the function is determined by18
the simdlen clause. If the simdlen clause is used its value corresponds to the number of19
concurrent arguments of the function. The parameter of the simdlen clause must be a constant20
positive integer expression. Otherwise, the number of concurrent arguments for the function is21
implementation defined.22

C++
The special this pointer can be used as if it was one of the arguments to the function in any of the23
linear, aligned, or uniform clauses.24

C++
The uniform clause declares one or more arguments to have an invariant value for all concurrent25
invocations of the function in the execution of a single SIMD loop.26

CHAPTER 2. DIRECTIVES 117

C / C++
The aligned clause declares that the object to which each list item points is aligned to the1
number of bytes expressed in the optional parameter of the aligned clause.2

C / C++
Fortran

The aligned clause declares that the target of each list item is aligned to the number of bytes3
expressed in the optional parameter of the aligned clause.4

Fortran
The optional parameter of the aligned clause, alignment, must be a constant positive integer5
expression. If no optional parameter is specified, implementation-defined default alignments for6
SIMD instructions on the target platforms are assumed.7

The inbranch clause specifies that the SIMD version of the function will always be called from8
inside a conditional statement of a SIMD loop. The notinbranch clause specifies that the SIMD9
version of the function will never be called from inside a conditional statement of a SIMD loop. If10
neither clause is specified, then the SIMD version of the function may or may not be called from11
inside a conditional statement of a SIMD loop.12

Restrictions13

• Each argument can appear in at most one uniform or linear clause.14

• At most one simdlen clause can appear in a declare simd directive.15

• Either inbranch or notinbranch may be specified, but not both.16

• When a linear-step expression is specified in a linear clause it must be either a constant integer17
expression or an integer-typed parameter that is specified in a uniform clause on the directive.18

• The function or subroutine body must be a structured block.19

• The execution of the function or subroutine, when called from a SIMD loop, cannot result in the20
execution of an OpenMP construct except for an ordered construct with the simd clause or an21
atomic construct.22

• The execution of the function or subroutine cannot have any side effects that would alter its23
execution for concurrent iterations of a SIMD chunk.24

• A program that branches into or out of the function is non-conforming.25

C / C++
• If the function has any declarations, then the declare simd construct for any declaration that26
has one must be equivalent to the one specified for the definition. Otherwise, the result is27
unspecified.28

• The function cannot contain calls to the longjmp or setjmp functions.29

C / C++

118 OpenMP API – Version 5.0 November 2018

C
• The type of list items appearing in the aligned clause must be array or pointer.1

C
C++

• The function cannot contain any calls to throw.2

• The type of list items appearing in the aligned clause must be array, pointer, reference to3
array, or reference to pointer.4

C++
Fortran

• proc-name must not be a generic name, procedure pointer or entry name.5

• If proc-name is omitted, the declare simd directive must appear in the specification part of a6
subroutine subprogram or a function subprogram for which creation of the SIMD versions is7
enabled.8

• Any declare simd directive must appear in the specification part of a subroutine subprogram,9
function subprogram or interface body to which it applies.10

• If a declare simd directive is specified in an interface block for a procedure, it must match a11
declare simd directive in the definition of the procedure.12

• If a procedure is declared via a procedure declaration statement, the procedure proc-name should13
appear in the same specification.14

• If a declare simd directive is specified for a procedure name with explicit interface and a15
declare simd directive is also specified for the definition of the procedure then the two16
declare simd directives must match. Otherwise the result is unspecified.17

• Procedure pointers may not be used to access versions created by the declare simd directive.18

• The type of list items appearing in the aligned clause must be C_PTR or Cray pointer, or the19
list item must have the POINTER or ALLOCATABLE attribute.20

Fortran

Cross References21

• linear clause, see Section 2.19.4.6 on page 290.22

• reduction clause, see Section 2.19.5.4 on page 300.23

CHAPTER 2. DIRECTIVES 119

2.9.4 distribute Loop Constructs1

2.9.4.1 distribute Construct2

Summary3

The distribute construct specifies that the iterations of one or more loops will be executed by4
the initial teams in the context of their implicit tasks. The iterations are distributed across the initial5
threads of all initial teams that execute the teams region to which the distribute region binds.6

Syntax7

C / C++
The syntax of the distribute construct is as follows:8

#pragma omp distribute [clause[[,] clause] ...] new-line9
for-loops10

Where clause is one of the following:11

private(list)12

firstprivate(list)13

lastprivate(list)14

collapse(n)15

dist_schedule(kind[, chunk_size])16

allocate([allocator :]list)17

The distribute directive places restrictions on the structure of all associated for-loops.18
Specifically, all associated for-loops must have canonical loop form (see Section 2.9.1 on page 95).19

C / C++
Fortran

The syntax of the distribute construct is as follows:20

!$omp distribute [clause[[,] clause] ...]21
do-loops22

[!$omp end distribute]23

120 OpenMP API – Version 5.0 November 2018

Where clause is one of the following:1

private(list)2

firstprivate(list)3

lastprivate(list)4

collapse(n)5

dist_schedule(kind[, chunk_size])6

allocate([allocator :]list)7

If an end distribute directive is not specified, an end distribute directive is assumed at8
the end of the do-loops.9

The distribute directive places restrictions on the structure of all associated do-loops.10
Specifically, all associated do-loops must have canonical loop form (see Section 2.9.1 on page 95).11

Fortran

Binding12

The binding thread set for a distribute region is the set of initial threads executing an13
enclosing teams region. A distribute region binds to this teams region.14

Description15

The distribute construct is associated with a loop nest consisting of one or more loops that16
follow the directive.17

There is no implicit barrier at the end of a distribute construct. To avoid data races the18
original list items modified due to lastprivate or linear clauses should not be accessed19
between the end of the distribute construct and the end of the teams region to which the20
distribute binds.21

The collapse clause may be used to specify how many loops are associated with the22
distribute construct. The parameter of the collapse clause must be a constant positive23
integer expression. If no collapse clause is present or its parameter is 1, the only loop that is24
associated with the distribute construct is the one that immediately follows the distribute25
construct. If a collapse clause is specified with a parameter value greater than 1 and more than26
one loop is associated with the distribute construct, then the iteration of all associated loops27
are collapsed into one larger iteration space. The sequential execution of the iterations in all28
associated loops determines the order of the iterations in the collapsed iteration space.29

A distribute loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop30
iterations, and the logical numbering denotes the sequence in which the iterations would be31
executed if the set of associated loop(s) were executed sequentially. At the beginning of each32

CHAPTER 2. DIRECTIVES 121

logical iteration, the loop iteration variable of each associated loop has the value that it would have1
if the set of the associated loop(s) were executed sequentially.2

If more than one loop is associated with the distribute construct then the number of times that3
any intervening code between any two associated loops will be executed is unspecified but will be4
at least once per iteration of the loop enclosing the intervening code and at most once per iteration5
of the innermost loop associated with the construct. If the iteration count of any loop that is6
associated with the distribute construct is zero and that loop does not enclose the intervening7
code, the behavior is unspecified.8

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is9
implementation defined.10

If dist_schedule is specified, kind must be static. If specified, iterations are divided into11
chunks of size chunk_size, chunks are assigned to the initial teams of the league in a round-robin12
fashion in the order of the initial team number. When no chunk_size is specified, the iteration space13
is divided into chunks that are approximately equal in size, and at most one chunk is distributed to14
each initial team of the league. The size of the chunks is unspecified in this case.15

When no dist_schedule clause is specified, the schedule is implementation defined.16

Execution Model Events17

The distribute-begin event occurs after an implicit task encounters a distribute construct but18
before the task starts to execute the structured block of the distribute region.19

The distribute-end event occurs after an implicit task finishes execution of a distribute region20
but before it resumes execution of the enclosing context.21

Tool Callbacks22

A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin23
as its endpoint argument and ompt_work_distribute as its wstype argument for each24
occurrence of a distribute-begin event in that thread. Similarly, a thread dispatches a registered25
ompt_callback_work callback with ompt_scope_end as its endpoint argument and26
ompt_work_distribute as its wstype argument for each occurrence of a distribute-end event27
in that thread. The callbacks occur in the context of the implicit task. The callbacks have type28
signature ompt_callback_work_t.29

Restrictions30

Restrictions to the distribute construct are as follows:31

• The distribute construct inherits the restrictions of the worksharing-loop construct.32

• Each distribute region must be encountered by the initial threads of all initial teams in a33
league or by none at all.34

122 OpenMP API – Version 5.0 November 2018

• The sequence of the distribute regions encountered must be the same for every initial thread1
of every initial team in a league.2

• The region corresponding to the distribute construct must be strictly nested inside a teams3
region.4

• A list item may appear in a firstprivate or lastprivate clause but not both.5

• The dist_schedule clause must not appear on the distribute directive if the associated6
loop(s) form a non-rectangular loop nest.7

Cross References8

• teams construct, see Section 2.7 on page 829

• worksharing-loop construct, see Section 2.9.2 on page 101.10

• ompt_work_distribute, see Section 4.4.4.15 on page 445.11

• ompt_callback_work_t, see Section 4.5.2.5 on page 464.12

2.9.4.2 distribute simd Construct13

Summary14

The distribute simd construct specifies a loop that will be distributed across the master15
threads of the teams region and executed concurrently using SIMD instructions. The16
distribute simd construct is a composite construct.17

Syntax18

The syntax of the distribute simd construct is as follows:19

C / C++
#pragma omp distribute simd [clause[[,] clause] ...] newline20

for-loops21

where clause can be any of the clauses accepted by the distribute or simd directives with22
identical meanings and restrictions.23

C / C++

CHAPTER 2. DIRECTIVES 123

Fortran
!$omp distribute simd [clause[[,] clause] ...]1

do-loops2
[!$omp end distribute simd]3

where clause can be any of the clauses accepted by the distribute or simd directives with4
identical meanings and restrictions.5

If an end distribute simd directive is not specified, an end distribute simd directive is6
assumed at the end of the do-loops.7

Fortran

Description8

The distribute simd construct will first distribute the iterations of the associated loop(s)9
according to the semantics of the distribute construct and any clauses that apply to the10
distribute construct. The resulting chunks of iterations will then be converted to a SIMD loop in a11
manner consistent with any clauses that apply to the simd construct.12

Execution Model Events13

This composite construct generates the same events as the distribute construct.14

Tool Callbacks15

This composite construct dispatches the same callbacks as the distribute construct.16

Restrictions17

• The restrictions for the distribute and simd constructs apply.18

• A list item may not appear in a linear clause unless it is the loop iteration variable of a loop19
that is associated with the construct.20

• The conditional modifier may not appear in a lastprivate clause.21

Cross References22

• simd construct, see Section 2.9.3.1 on page 110.23

• distribute construct, see Section 2.9.4.1 on page 120.24

• Data attribute clauses, see Section 2.19.4 on page 282.25

124 OpenMP API – Version 5.0 November 2018

2.9.4.3 Distribute Parallel Worksharing-Loop Construct1

Summary2

The distribute parallel worksharing-loop construct specifies a loop that can be executed in parallel3
by multiple threads that are members of multiple teams. The distribute parallel worksharing-loop4
construct is a composite construct.5

Syntax6

The syntax of the distribute parallel worksharing-loop construct is as follows:7

C / C++
#pragma omp distribute parallel for [clause[[,] clause] ...] newline8

for-loops9

where clause can be any of the clauses accepted by the distribute or parallel worksharing-loop10
directives with identical meanings and restrictions.11

C / C++
Fortran

!$omp distribute parallel do [clause[[,] clause] ...]12
do-loops13

[!$omp end distribute parallel do]14

where clause can be any of the clauses accepted by the distribute or parallel worksharing-loop15
directives with identical meanings and restrictions.16

If an end distribute parallel do directive is not specified, an end distribute17
parallel do directive is assumed at the end of the do-loops.18

Fortran

Description19

The distribute parallel worksharing-loop construct will first distribute the iterations of the20
associated loop(s) into chunks according to the semantics of the distribute construct and any21
clauses that apply to the distribute construct. Each of these chunks will form a loop. Each22
resulting loop will then be distributed across the threads within the teams region to which the23
distribute construct binds in a manner consistent with any clauses that apply to the parallel24
worksharing-loop construct.25

Execution Model Events26

This composite construct generates the same events as the distribute and parallel27
worksharing-loop constructs.28

CHAPTER 2. DIRECTIVES 125

Tool Callbacks1

This composite construct dispatches the same callbacks as the distribute and parallel2
worksharing-loop constructs.3

Restrictions4

• The restrictions for the distribute and parallel worksharing-loop constructs apply.5

• No ordered clause can be specified.6

• No linear clause can be specified.7

• The conditional modifier may not appear in a lastprivate clause.8

Cross References9

• distribute construct, see Section 2.9.4.1 on page 120.10

• Parallel worksharing-loop construct, see Section 2.13.1 on page 185.11

• Data attribute clauses, see Section 2.19.4 on page 282.12

2.9.4.4 Distribute Parallel Worksharing-Loop SIMD Construct13

Summary14

The distribute parallel worksharing-loop SIMD construct specifies a loop that can be executed15
concurrently using SIMD instructions in parallel by multiple threads that are members of multiple16
teams. The distribute parallel worksharing-loop SIMD construct is a composite construct.17

Syntax18

C / C++
The syntax of the distribute parallel worksharing-loop SIMD construct is as follows:19

#pragma omp distribute parallel for simd \20
[clause[[,] clause] ...] newline21

for-loops22

where clause can be any of the clauses accepted by the distribute or parallel worksharing-loop23
SIMD directives with identical meanings and restrictions.24

C / C++

126 OpenMP API – Version 5.0 November 2018

Fortran
The syntax of the distribute parallel worksharing-loop SIMD construct is as follows:1

!$omp distribute parallel do simd [clause[[,] clause] ...]2
do-loops3

[!$omp end distribute parallel do simd]4

where clause can be any of the clauses accepted by the distribute or parallel worksharing-loop5
SIMD directives with identical meanings and restrictions.6

If an end distribute parallel do simd directive is not specified, an end distribute7
parallel do simd directive is assumed at the end of the do-loops.8

Fortran

Description9

The distribute parallel worksharing-loop SIMD construct will first distribute the iterations of the10
associated loop(s) according to the semantics of the distribute construct and any clauses that11
apply to the distribute construct. The resulting loops will then be distributed across the12
threads contained within the teams region to which the distribute construct binds in a13
manner consistent with any clauses that apply to the parallel worksharing-loop construct. The14
resulting chunks of iterations will then be converted to a SIMD loop in a manner consistent with15
any clauses that apply to the simd construct.16

Execution Model Events17

This composite construct generates the same events as the distribute and parallel18
worksharing-loop SIMD constructs.19

Tool Callbacks20

This composite construct dispatches the same callbacks as the distribute and parallel21
worksharing-loop SIMD constructs.22

Restrictions23

• The restrictions for the distribute and parallel worksharing-loop SIMD constructs apply.24

• No ordered clause can be specified.25

• A list item may not appear in a linear clause unless it is the loop iteration variable of a loop26
that is associated with the construct.27

• The conditional modifier may not appear in a lastprivate clause.28

CHAPTER 2. DIRECTIVES 127

Cross References1

• distribute construct, see Section 2.9.4.1 on page 120.2

• Parallel worksharing-loop SIMD construct, see Section 2.13.5 on page 190.3

• Data attribute clauses, see Section 2.19.4 on page 282.4

2.9.5 loop Construct5

Summary6

A loop construct specifies that the iterations of the associated loops may execute concurrently and7
permits the encountering thread(s) to execute the loop accordingly.8

Syntax9

C / C++
The syntax of the loop construct is as follows:10

#pragma omp loop [clause[[,] clause] ...] new-line11
for-loops12

where clause is one of the following:13

bind(binding)14

collapse(n)15

order(concurrent)16

private(list)17

lastprivate(list)18

reduction([default ,]reduction-identifier : list)19

where binding is one of the following:20

teams21

parallel22

thread23

The loop directive places restrictions on the structure of all associated for-loops. Specifically, all24
associated for-loops must have canonical loop form (see Section 2.9.1 on page 95).25

C / C++

128 OpenMP API – Version 5.0 November 2018

Fortran
The syntax of the loop construct is as follows:1

!$omp loop [clause[[,] clause] ...]2
do-loops3

[!$omp end loop]4

where clause is one of the following:5

bind(binding)6

collapse(n)7

order(concurrent)8

private(list)9

lastprivate(list)10

reduction([default ,]reduction-identifier : list)11

where binding is one of the following:12

teams13

parallel14

thread15

If an end loop directive is not specified, an end loop directive is assumed at the end of the16
do-loops.17

The loop directive places restrictions on the structure of all associated do-loops. Specifically, all18
associated do-loops must have canonical loop form (see Section 2.9.1 on page 95).19

Fortran

Binding20

If the bind clause is present on the construct, the binding region is determined by binding.21
Specifically, if binding is teams and there exists an innermost enclosing teams region then the22
binding region is that teams region; if binding is parallel then the binding region is the23
innermost enclosing parallel region, which may be an implicit parallel region; and if binding is24
thread then the binding region is not defined. If the bind clause is not present on the construct25
and the loop construct is closely nested inside a teams or parallel construct, the binding26
region is the corresponding teams or parallel region. If none of those conditions hold, the27
binding region is not defined.28

If the binding region is a teams region, then the binding thread set is the set of master threads that29
are executing that region. If the binding region is a parallel region, then the binding thread set is the30
team of threads that are executing that region. If the binding region is not defined, then the binding31
thread set is the encountering thread.32

CHAPTER 2. DIRECTIVES 129

Description1

The loop construct is associated with a loop nest that consists of one or more loops that follow the2
directive. The directive asserts that the iterations may execute in any order, including concurrently.3

The collapse clause may be used to specify how many loops are associated with the loop4
construct. The parameter of the collapse clause must be a constant positive integer expression.5
If a collapse clause is specified with a parameter value greater than 1, then the iterations of the6
associated loops to which the clause applies are collapsed into one larger iteration space with7
unspecified ordering. If no collapse clause is present or its parameter is 1, the only loop that is8
associated with the loop construct is the one that immediately follows the loop directive.9

If more than one loop is associated with the loop construct then the number of times that any10
intervening code between any two associated loops will be executed is unspecified but will be at11
least once per iteration of the loop enclosing the intervening code and at most once per iteration of12
the innermost loop associated with the construct. If the iteration count of any loop that is associated13
with the loop construct is zero and that loop does not enclose the intervening code, the behavior is14
unspecified.15

The iteration space of the associated loops correspond to logical iterations numbered 0,1,...,N-116
where N is the number of loop iterations, and the logical numbering denotes the sequence in which17
the iterations would be executed if a set of associated loop(s) were executed sequentially. At the18
beginning of each logical iteration, the loop iteration variable of each associated loop has the value19
that it would have if the set of the associated loop(s) were executed sequentially.20

Each logical iteration is executed once per instance of the loop region that is encountered by the21
binding thread set.22

If the order(concurrent) clause appears on the loop construct, the iterations of the23
associated loops may execute in any order, including concurrently. If the order clause is not24
present, the behavior is as if the order(concurrent) clause appeared on the construct.25

The set of threads that may execute the iterations of the loop region is the binding thread set. Each26
iteration is executed by one thread from this set.27

If the loop region binds to a teams region, the threads in the binding thread set may continue28
execution after the loop region without waiting for all iterations of the associated loop(s) to29
complete. The iterations are guaranteed to complete before the end of the teams region.30

If the loop region does not bind to a teams region, all iterations of the associated loop(s) must31
complete before the encountering thread(s) continue execution after the loop region.32

Restrictions33

Restrictions to the loop construct are as follows:34

• If the collapse clause is specified then there may be no intervening OpenMP directives35
between the associated loops.36

130 OpenMP API – Version 5.0 November 2018

• At most one collapse clause can appear on a loop directive.1

• A list item may not appear in a lastprivate clause unless it is the loop iteration variable of a2
loop that is associated with the construct.3

• If a loop construct is not nested inside another OpenMP construct and it appears in a procedure,4
the bind clause must be present.5

• If a loop region binds to a teams or parallel region, it must be encountered by all threads in6
the binding thread set or by none of them.7

• If the bind clause is present and binding is teams, the loop region corresponding to the8
loop construct must be strictly nested inside a teams region.9

• If the bind clause is present and binding is parallel, the behavior is unspecified if the loop10
region corresponding to a loop construct is closely nested inside a simd region.11

• The only constructs that may be nested inside a loop region are the loop construct, the12
parallel construct, the simd construct, and combined constructs for which the first construct13
is a parallel construct.14

• A loop region corresponding to a loop construct may not contain calls to procedures that15
contain OpenMP directives.16

• A loop region corresponding to a loop construct may not contain calls to the OpenMP17
Runtime API.18

• If a threadprivate variable is referenced inside a loop region, the behavior is unspecified.19

C / C++
• The associated for-loops must be structured blocks.20

• No statement can branch to any associated for statement.21

C / C++
Fortran

• The associated do-loops must be structured blocks.22

• No statement in the associated loops other than the DO statements can cause a branch out of the23
loops.24

Fortran

Cross References25

• The single construct, see Section 2.8.2 on page 89.26

• The Worksharing-Loop construct, see Section 2.9.2 on page 101.27

• SIMD directives, see Section 2.9.3 on page 110.28

• distribute construct, see Section 2.9.4.1 on page 120.29

CHAPTER 2. DIRECTIVES 131

2.9.6 scan Directive1

Summary2

The scan directive specifies that scan computations update the list items on each iteration.3

Syntax4

C / C++
The syntax of the scan directive is as follows:5

loop-associated-directive6
for-loop-headers7
{8

structured-block9
#pragma omp scan clause new-line10
structured-block11

}12

where clause is one of the following:13

inclusive(list)14

exclusive(list)15

and where loop-associated-directive is a for, for simd, or simd directive.16

C / C++
Fortran

The syntax of the scan directive is as follows:17

loop-associated-directive18
do-loop-headers19

structured-block20
!$omp scan clause21
structured-block22

do-termination-stmts(s)23
[end-loop-associated-directive]24

where clause is one of the following:25

inclusive(list)26

exclusive(list)27

and where loop-associated-directive (end-loop-associated-directive) is a do (end do), do simd28
(end do simd), or simd (end simd) directive.29

Fortran

132 OpenMP API – Version 5.0 November 2018

Description1

The scan directive may appear in the body of a loop or loop nest associated with an enclosing2
worksharing-loop, worksharing-loop SIMD, or simd construct, to specify that a scan computation3
updates each list item on each loop iteration. The directive specifies that either an inclusive scan4
computation is to be performed for each list item that appears in an inclusive clause on the5
directive, or an exclusive scan computation is to be performed for each list item that appears in an6
exclusive clause on the directive. For each list item for which a scan computation is specified,7
statements that lexically precede or follow the directive constitute one of two phases for a given8
logical iteration of the loop – an input phase or a scan phase.9

If the list item appears in an inclusive clause, all statements in the structured block that10
lexically precede the directive constitute the input phase and all statements in the structured block11
that lexically follow the directive constitute the scan phase. If the list item appears in an12
exclusive clause and the iteration is not the last iteration, all statements in the structured block13
that lexically precede the directive constitute the scan phase and all statements in the structured14
block that lexically follow the directive constitute the input phase. If the list item appears in an15
exclusive clause and the iteration is the last iteration, the iteration does not have an input phase16
and all statements that lexically precede or follow the directive constitute the scan phase for the17
iteration. The input phase contains all computations that update the list item in the iteration, and the18
scan phase ensures that any statement that reads the list item uses the result of the scan computation19
for that iteration.20

The result of a scan computation for a given iteration is calculated according to the last generalized21
prefix sum (PRESUMlast) applied over the sequence of values given by the original value of the list22
item prior to the loop and all preceding updates to the list item in the logical iteration space of the23
loop. The operation PRESUMlast(op, a1, . . . , aN) is defined for a given binary operator op and a24
sequence of N values a1, . . . , aN as follows:25

• if N = 1, a126

• if N > 1, op(PRESUMlast(op, a1, . . . , aK), PRESUMlast(op, aL, . . . , aN)), where27
1 ≤ K+ 1 = L ≤ N.28

At the beginning of the input phase of each iteration, the list item is initialized with the initializer29
value of the reduction-identifier specified by the reduction clause on the innermost enclosing30
construct. The update value of a list item is, for a given iteration, the value of the list item on31
completion of its input phase.32

Let orig-val be the value of the original list item on entry to the enclosing worksharing-loop,33
worksharing-loop SIMD, or simd construct. Let combiner be the combiner for the34
reduction-identifier specified by the reduction clause on the construct. And let uI be the update35
value of a list item for iteration I. For list items appearing in an inclusive clause on the scan36
directive, at the beginning of the scan phase for iteration I the list item is assigned the result of the37
operation PRESUMlast(combiner, orig-val, u0, . . . , uI). For list items appearing in an38
exclusive clause on the scan directive, at the beginning of the scan phase for iteration I = 039

CHAPTER 2. DIRECTIVES 133

the list item is assigned the value orig-val, and at the beginning of the scan phase for iteration I > 01
the list item is assigned the result of the operation PRESUMlast(combiner, orig-val, u0, . . . , uI-1).2

Restrictions3

Restrictions to the scan directive are as follows:4

• Exactly one scan directive must appear in the loop body of an enclosing worksharing-loop,5
worksharing-loop SIMD, or simd construct on which a reduction clause with the inscan6
modifier is present.7

• A list item that appears in the inclusive or exclusive clause must appear in a8
reduction clause with the inscan modifier on the enclosing worksharing-loop,9
worksharing-loop SIMD, or simd construct.10

• Cross-iteration dependences across different logical iterations must not exist, except for11
dependences for the list items specified in an inclusive or exclusive clause.12

• Intra-iteration dependences from a statement in the structured block preceding a scan directive13
to a statement in the structured block following a scan directive must not exist, except for14
dependences for the list items specified in an inclusive or exclusive clause.15

Cross References16

• worksharing-loop construct, see Section 2.9.2 on page 101.17

• simd construct, see Section 2.9.3.1 on page 110.18

• worksharing-loop SIMD construct, see Section 2.9.3.2 on page 114.19

• reduction clause, see Section 2.19.5.4 on page 300.20

134 OpenMP API – Version 5.0 November 2018

2.10 Tasking Constructs1

2.10.1 task Construct2

Summary3

The task construct defines an explicit task.4

Syntax5

C / C++
The syntax of the task construct is as follows:6

#pragma omp task [clause[[,] clause] ...] new-line7
structured-block8

where clause is one of the following:9

if([task :] scalar-expression)10

final(scalar-expression)11

untied12

default(shared | none)13

mergeable14

private(list)15

firstprivate(list)16

shared(list)17

in_reduction(reduction-identifier : list)18

depend([depend-modifier,] dependence-type : locator-list)19

priority(priority-value)20

allocate([allocator :] list)21

affinity([aff-modifier :] locator-list)22

detach(event-handle)23

where aff-modifier is one of the following:24

iterator(iterators-definition)25

where event-handle is a variable of the omp_event_handle_t type.26

C / C++

CHAPTER 2. DIRECTIVES 135

Fortran
The syntax of the task construct is as follows:1

!$omp task [clause[[,] clause] ...]2
structured-block3

!$omp end task4

where clause is one of the following:5

if([task :] scalar-logical-expression)6

final(scalar-logical-expression)7

untied8

default(private | firstprivate | shared | none)9

mergeable10

private(list)11

firstprivate(list)12

shared(list)13

in_reduction(reduction-identifier : list)14

depend([depend-modifier,] dependence-type : locator-list)15

priority(priority-value)16

allocate([allocator :] list)17

affinity([aff-modifier :] locator-list)18

detach(event-handle)19

where aff-modifier is one of the following:20

iterator(iterators-definition)21

where event-handle is an integer variable of omp_event_handle_kind kind.22

Fortran

Binding23

The binding thread set of the task region is the current team. A task region binds to the24
innermost enclosing parallel region.25

136 OpenMP API – Version 5.0 November 2018

Description1

The task construct is a task generating construct. When a thread encounters a task construct, an2
explicit task is generated from the code for the associated structured-block. The data environment3
of the task is created according to the data-sharing attribute clauses on the task construct, per-data4
environment ICVs, and any defaults that apply. The data environment of the task is destroyed when5
the execution code of the associated structured-block is completed.6

The encountering thread may immediately execute the task, or defer its execution. In the latter case,7
any thread in the team may be assigned the task. Completion of the task can be guaranteed using8
task synchronization constructs. If a task construct is encountered during execution of an outer9
task, the generated task region corresponding to this construct is not a part of the outer task10
region unless the generated task is an included task.11

If a detach clause is present on a task construct a new event allow-completion-event is created.12
The allow-completion-event is connected to the completion of the associated task region. The13
original event-handle will be updated to represent the allow-completion-event event before the task14
data environment is created. The event-handle will be considered as if it was specified on a15
firstprivate clause. The use of a variable in a detach clause expression of a task16
construct causes an implicit reference to the variable in all enclosing constructs.17

If no detach clause is present on a task construct the generated task is completed when the18
execution of its associated structured-block is completed. If a detach clause is present on a task19
construct the task is completed when the execution of its associated structured-block is completed20
and the allow-completion-event is fulfilled.21

When an if clause is present on a task construct, and the if clause expression evaluates to false,22
an undeferred task is generated, and the encountering thread must suspend the current task region,23
for which execution cannot be resumed until execution of the structured block that is associated24
with the generated task is completed. The use of a variable in an if clause expression of a task25
construct causes an implicit reference to the variable in all enclosing constructs.26

When a final clause is present on a task construct and the final clause expression evaluates27
to true, the generated task will be a final task. All task constructs encountered during execution of28
a final task will generate final and included tasks. The use of a variable in a final clause29
expression of a task construct causes an implicit reference to the variable in all enclosing30
constructs. Encountering a task construct with the detach clause during the execution of a final31
task results in unspecified behavior.32

The if clause expression and the final clause expression are evaluated in the context outside of33
the task construct, and no ordering of those evaluations is specified..34

A thread that encounters a task scheduling point within the task region may temporarily suspend35
the task region. By default, a task is tied and its suspended task region can only be resumed by36
the thread that started its execution. If the untied clause is present on a task construct, any37
thread in the team can resume the task region after a suspension. The untied clause is ignored38

CHAPTER 2. DIRECTIVES 137

if a final clause is present on the same task construct and the final clause expression1
evaluates to true, or if a task is an included task.2

The task construct includes a task scheduling point in the task region of its generating task,3
immediately following the generation of the explicit task. Each explicit task region includes a4
task scheduling point at the end of its associated structured-block.5

When the mergeable clause is present on a task construct, the generated task is a mergeable6
task.7

The priority clause is a hint for the priority of the generated task. The priority-value is a8
non-negative integer expression that provides a hint for task execution order. Among all tasks ready9
to be executed, higher priority tasks (those with a higher numerical value in the priority clause10
expression) are recommended to execute before lower priority ones. The default priority-value11
when no priority clause is specified is zero (the lowest priority). If a value is specified in the12
priority clause that is higher than the max-task-priority-var ICV then the implementation will13
use the value of that ICV. A program that relies on task execution order being determined by this14
priority-value may have unspecified behavior.15

The affinity clause is a hint to indicate data affinity of the generated task. The task is16
recommended to execute closely to the location of the list items. A program that relies on the task17
execution location being determined by this list may have unspecified behavior.18

The list items that appear in the affinity clause may reference iterators defined by an19
iterators-definition appearing in the same clause. The list items that appear in the affinity20
clause may include array sections.21

C / C++
The list items that appear in the affinity clause may use shape-operators.22

C / C++
If a list item appears in an affinity clause then data affinity refers to the original list item.23

24

Note – When storage is shared by an explicit task region, the programmer must ensure, by25
adding proper synchronization, that the storage does not reach the end of its lifetime before the26
explicit task region completes its execution.27

28

Execution Model Events29

The task-create event occurs when a thread encounters a construct that causes a new task to be30
created. The event occurs after the task is initialized but before it begins execution or is deferred.31

138 OpenMP API – Version 5.0 November 2018

Tool Callbacks1

A thread dispatches a registered ompt_callback_task_create callback for each occurrence2
of a task-create event in the context of the encountering task. This callback has the type signature3
ompt_callback_task_create_t and the flags argument indicates the task types shown in4
Table 2.7.5

TABLE 2.7: ompt_callback_task_create callback flags evaluation

Operation Evaluates to true

(flags & ompt_task_explicit) Always in the dispatched callback

(flags & ompt_task_undeferred) If the task is an undeferred task

(flags & ompt_task_final) If the task is a final task

(flags & ompt_task_untied) If the task is an untied task

(flags & ompt_task_mergeable) If the task is a mergeable task

(flags & ompt_task_merged) If the task is a merged task

Restrictions6

Restrictions to the task construct are as follows:7

• A program that branches into or out of a task region is non-conforming.8

• A program must not depend on any ordering of the evaluations of the clauses of the task9
directive, or on any side effects of the evaluations of the clauses.10

• At most one if clause can appear on the directive.11

• At most one final clause can appear on the directive.12

• At most one priority clause can appear on the directive.13

• At most one detach clause can appear on the directive.14

• If a detach clause appears on the directive, then a mergeable clause cannot appear on the15
same directive.16

C / C++
• A throw executed inside a task region must cause execution to resume within the same task17
region, and the same thread that threw the exception must catch it.18

C / C++

CHAPTER 2. DIRECTIVES 139

Cross References1

• Task scheduling constraints, see Section 2.10.6 on page 149.2

• allocate clause, see Section 2.11.4 on page 158.3

• if clause, see Section 2.15 on page 220.4

• depend clause, see Section 2.17.11 on page 255.5

• Data-sharing attribute clauses, Section 2.19.4 on page 282.6

• default clause, see Section 2.19.4.1 on page 282.7

• in_reduction clause, see Section 2.19.5.6 on page 303.8

• omp_fulfill_event, see Section 3.5.1 on page 396.9

• ompt_callback_task_create_t, see Section 4.5.2.7 on page 467.10

2.10.2 taskloop Construct11

Summary12

The taskloop construct specifies that the iterations of one or more associated loops will be13
executed in parallel using explicit tasks. The iterations are distributed across tasks generated by the14
construct and scheduled to be executed.15

Syntax16

C / C++
The syntax of the taskloop construct is as follows:17

#pragma omp taskloop [clause[[,] clause] ...] new-line18
for-loops19

where clause is one of the following:20

if([taskloop :] scalar-expression)21

shared(list)22

private(list)23

firstprivate(list)24

lastprivate(list)25

reduction([default ,]reduction-identifier : list)26

in_reduction(reduction-identifier : list)27

140 OpenMP API – Version 5.0 November 2018

default(shared | none)1

grainsize(grain-size)2

num_tasks(num-tasks)3

collapse(n)4

final(scalar-expr)5

priority(priority-value)6

untied7

mergeable8

nogroup9

allocate([allocator :] list)10

The taskloop directive places restrictions on the structure of all associated for-loops.11
Specifically, all associated for-loops must have canonical loop form (see Section 2.9.1 on page 95).12

C / C++
Fortran

The syntax of the taskloop construct is as follows:13

!$omp taskloop [clause[[,] clause] ...]14
do-loops15

[!$omp end taskloop]16

where clause is one of the following:17

if([taskloop :] scalar-logical-expression)18

shared(list)19

private(list)20

firstprivate(list)21

lastprivate(list)22

reduction([default ,]reduction-identifier : list)23

in_reduction(reduction-identifier : list)24

default(private | firstprivate | shared | none)25

grainsize(grain-size)26

num_tasks(num-tasks)27

collapse(n)28

final(scalar-logical-expr)29

priority(priority-value)30

CHAPTER 2. DIRECTIVES 141

untied1

mergeable2

nogroup3

allocate([allocator :] list)4

If an end taskloop directive is not specified, an end taskloop directive is assumed at the end5
of the do-loops.6

The taskloop directive places restrictions on the structure of all associated do-loops.7
Specifically, all associated do-loops must have canonical loop form (see Section 2.9.1 on page 95).8

Fortran

Binding9

The binding thread set of the taskloop region is the current team. A taskloop region binds to10
the innermost enclosing parallel region.11

Description12

The taskloop construct is a task generating construct. When a thread encounters a taskloop13
construct, the construct partitions the iterations of the associated loops into explicit tasks for14
parallel execution. The data environment of each generated task is created according to the15
data-sharing attribute clauses on the taskloop construct, per-data environment ICVs, and any16
defaults that apply. The order of the creation of the loop tasks is unspecified. Programs that rely on17
any execution order of the logical loop iterations are non-conforming.18

By default, the taskloop construct executes as if it was enclosed in a taskgroup construct19
with no statements or directives outside of the taskloop construct. Thus, the taskloop20
construct creates an implicit taskgroup region. If the nogroup clause is present, no implicit21
taskgroup region is created.22

If a reduction clause is present on the taskloop construct, the behavior is as if a23
task_reduction clause with the same reduction operator and list items was applied to the24
implicit taskgroup construct enclosing the taskloop construct. The taskloop construct25
executes as if each generated task was defined by a task construct on which an in_reduction26
clause with the same reduction operator and list items is present. Thus, the generated tasks are27
participants of the reduction defined by the task_reduction clause that was applied to the28
implicit taskgroup construct.29

If an in_reduction clause is present on the taskloop construct, the behavior is as if each30
generated task was defined by a task construct on which an in_reduction clause with the31
same reduction operator and list items is present. Thus, the generated tasks are participants of a32
reduction previously defined by a reduction scoping clause.33

142 OpenMP API – Version 5.0 November 2018

If a grainsize clause is present on the taskloop construct, the number of logical loop1
iterations assigned to each generated task is greater than or equal to the minimum of the value of2
the grain-size expression and the number of logical loop iterations, but less than two times the value3
of the grain-size expression.4

The parameter of the grainsize clause must be a positive integer expression. If num_tasks is5
specified, the taskloop construct creates as many tasks as the minimum of the num-tasks6
expression and the number of logical loop iterations. Each task must have at least one logical loop7
iteration. The parameter of the num_tasks clause must be a positive integer expression. If neither8
a grainsize nor num_tasks clause is present, the number of loop tasks generated and the9
number of logical loop iterations assigned to these tasks is implementation defined.10

The collapse clause may be used to specify how many loops are associated with the taskloop11
construct. The parameter of the collapse clause must be a constant positive integer expression.12
If no collapse clause is present or its parameter is 1, the only loop that is associated with the13
taskloop construct is the one that immediately follows the taskloop directive. If a14
collapse clause is specified with a parameter value greater than 1 and more than one loop is15
associated with the taskloop construct, then the iterations of all associated loops are collapsed16
into one larger iteration space that is then divided according to the grainsize and num_tasks17
clauses. The sequential execution of the iterations in all associated loops determines the order of18
the iterations in the collapsed iteration space.19

If more than one loop is associated with the taskloop construct then the number of times that20
any intervening code between any two associated loops will be executed is unspecified but will be21
at least once per iteration of the loop enclosing the intervening code and at most once per iteration22
of the innermost loop associated with the construct. If the iteration count of any loop that is23
associated with the taskloop construct is zero and that loop does not enclose intervening code,24
the behavior is unspecified.25

A taskloop loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop26
iterations, and the logical numbering denotes the sequence in which the iterations would be27
executed if the set of associated loop(s) were executed sequentially. At the beginning of each28
logical iteration, the loop iteration variable of each associated loop has the value that it would have29
if the set of the associated loop(s) were executed sequentially.30

The iteration count for each associated loop is computed before entry to the outermost loop. If31
execution of any associated loop changes any of the values used to compute any of the iteration32
counts, then the behavior is unspecified.33

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is34
implementation defined.35

When an if clause is present on a taskloop construct, and if the if clause expression evaluates36
to false, undeferred tasks are generated. The use of a variable in an if clause expression of a37
taskloop construct causes an implicit reference to the variable in all enclosing constructs.38

CHAPTER 2. DIRECTIVES 143

When a final clause is present on a taskloop construct and the final clause expression1
evaluates to true, the generated tasks will be final tasks. The use of a variable in a final clause2
expression of a taskloop construct causes an implicit reference to the variable in all enclosing3
constructs.4

When a priority clause is present on a taskloop construct, the generated tasks use the5
priority-value as if it was specified for each individual task. If the priority clause is not6
specified, tasks generated by the taskloop construct have the default task priority (zero).7

If the untied clause is specified, all tasks generated by the taskloop construct are untied tasks.8

When the mergeable clause is present on a taskloop construct, each generated task is a9
mergeable task.10

C++
For firstprivate variables of class type, the number of invocations of copy constructors to11
perform the initialization is implementation-defined.12

C++
13

Note – When storage is shared by a taskloop region, the programmer must ensure, by adding14
proper synchronization, that the storage does not reach the end of its lifetime before the taskloop15
region and its descendant tasks complete their execution.16

17

Execution Model Events18

The taskloop-begin event occurs after a task encounters a taskloop construct but before any19
other events that may trigger as a consequence of executing the taskloop. Specifically, a20
taskloop-begin event for a taskloop will precede the taskgroup-begin that occurs unless a21
nogroup clause is present. Regardless of whether an implicit taskgroup is present, a22
taskloop-begin will always precede any task-create events for generated tasks.23

The taskloop-end event occurs after a taskloop region finishes execution but before resuming24
execution of the encountering task.25

The taskloop-iteration-begin event occurs before an explicit task executes each iteration of a26
taskloop.27

144 OpenMP API – Version 5.0 November 2018

Tool Callbacks1

A thread dispatches a registered ompt_callback_work callback for each occurrence of a2
taskloop-begin and taskloop-end event in that thread. The callback occurs in the context of the3
encountering task. The callback has type signature ompt_callback_work_t. The callback4
receives ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate,5
and ompt_work_taskloop as its wstype argument.6

A thread dispatches a registered ompt_callback_dispatch callback for each occurrence of a7
taskloop-iteration-begin event in that thread. The callback occurs in the context of the encountering8
task. The callback has type signature ompt_callback_dispatch_t.9

Restrictions10

The restrictions of the taskloop construct are as follows:11

• A program that branches into or out of a taskloop region is non-conforming.12

• No OpenMP directive may appear in the region between any associated loops.13

• If a collapse clause is specified, exactly one loop must occur in the region at each nesting14
level up to the number of loops specified by the parameter of the collapse clause.15

• If a reduction clause is present on the taskloop directive, the nogroup clause must not16
be specified.17

• The same list item cannot appear in both a reduction and an in_reduction clause.18

• At most one grainsize clause can appear on a taskloop directive.19

• At most one num_tasks clause can appear on a taskloop directive.20

• The grainsize clause and num_tasks clause are mutually exclusive and may not appear on21
the same taskloop directive.22

• At most one collapse clause can appear on a taskloop directive.23

• At most one if clause can appear on the directive.24

• At most one final clause can appear on the directive.25

• At most one priority clause can appear on the directive.26

Cross References27

• task construct, Section 2.10.1 on page 135.28

• if clause, see Section 2.15 on page 220.29

• taskgroup construct, Section 2.17.6 on page 232.30

• Data-sharing attribute clauses, Section 2.19.4 on page 282.31

CHAPTER 2. DIRECTIVES 145

• default clause, see Section 2.19.4.1 on page 282.1

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.2

• ompt_work_taskloop, see Section 4.4.4.15 on page 445.3

• ompt_callback_work_t, see Section 4.5.2.5 on page 464.4

• ompt_callback_dispatch_t, see Section 4.5.2.6 on page 465.5

2.10.3 taskloop simd Construct6

Summary7

The taskloop simd construct specifies a loop that can be executed concurrently using SIMD8
instructions and that those iterations will also be executed in parallel using explicit tasks. The9
taskloop simd construct is a composite construct.10

Syntax11

C / C++
The syntax of the taskloop simd construct is as follows:12

#pragma omp taskloop simd [clause[[,] clause] ...] new-line13
for-loops14

where clause can be any of the clauses accepted by the taskloop or simd directives with15
identical meanings and restrictions.16

C / C++
Fortran

The syntax of the taskloop simd construct is as follows:17

!$omp taskloop simd [clause[[,] clause] ...]18
do-loops19

[!$omp end taskloop simd]20

where clause can be any of the clauses accepted by the taskloop or simd directives with21
identical meanings and restrictions.22

If an end taskloop simd directive is not specified, an end taskloop simd directive is23
assumed at the end of the do-loops.24

Fortran

146 OpenMP API – Version 5.0 November 2018

Binding1

The binding thread set of the taskloop simd region is the current team. A taskloop simd2
region binds to the innermost enclosing parallel region.3

Description4

The taskloop simd construct will first distribute the iterations of the associated loop(s) across5
tasks in a manner consistent with any clauses that apply to the taskloop construct. The resulting6
tasks will then be converted to a SIMD loop in a manner consistent with any clauses that apply to7
the simd construct, except for the collapse clause. For the purposes of each task’s conversion to8
a SIMD loop, the collapse clause is ignored and the effect of any in_reduction clause is as9
if a reduction clause with the same reduction operator and list items is present on the construct.10

Execution Model Events11

This composite construct generates the same events as the taskloop construct.12

Tool Callbacks13

This composite construct dispatches the same callbacks as the taskloop construct.14

Restrictions15

• The restrictions for the taskloop and simd constructs apply.16

• The conditional modifier may not appear in a lastprivate clause.17

Cross References18

• simd construct, see Section 2.9.3.1 on page 110.19

• taskloop construct, see Section 2.10.2 on page 140.20

• Data-sharing attribute clauses, see Section 2.19.4 on page 282.21

2.10.4 taskyield Construct22

Summary23

The taskyield construct specifies that the current task can be suspended in favor of execution of24
a different task. The taskyield construct is a stand-alone directive.25

CHAPTER 2. DIRECTIVES 147

Syntax1

C / C++
The syntax of the taskyield construct is as follows:2

#pragma omp taskyield new-line3

C / C++
Fortran

The syntax of the taskyield construct is as follows:4

!$omp taskyield5

Fortran

Binding6

A taskyield region binds to the current task region. The binding thread set of the taskyield7
region is the current team.8

Description9

The taskyield region includes an explicit task scheduling point in the current task region.10

Cross References11

• Task scheduling, see Section 2.10.6 on page 149.12

2.10.5 Initial Task13

Execution Model Events14

No events are associated with the implicit parallel region in each initial thread.15

The initial-thread-begin event occurs in an initial thread after the OpenMP runtime invokes the tool16
initializer but before the initial thread begins to execute the first OpenMP region in the initial task.17

The initial-task-begin event occurs after an initial-thread-begin event but before the first OpenMP18
region in the initial task begins to execute.19

The initial-task-end event occurs before an initial-thread-end event but after the last OpenMP20
region in the initial task finishes to execute.21

The initial-thread-end event occurs as the final event in an initial thread at the end of an initial task22
immediately prior to invocation of the tool finalizer.23

148 OpenMP API – Version 5.0 November 2018

Tool Callbacks1

A thread dispatches a registered ompt_callback_thread_begin callback for the2
initial-thread-begin event in an initial thread. The callback occurs in the context of the initial3
thread. The callback has type signature ompt_callback_thread_begin_t. The callback4
receives ompt_thread_initial as its thread_type argument.5

A thread dispatches a registered ompt_callback_implicit_task callback with6
ompt_scope_begin as its endpoint argument for each occurrence of an initial-task-begin in7
that thread. Similarly, a thread dispatches a registered ompt_callback_implicit_task8
callback with ompt_scope_end as its endpoint argument for each occurrence of an9
initial-task-end event in that thread. The callbacks occur in the context of the initial task and have10
type signature ompt_callback_implicit_task_t. In the dispatched callback,11
(flag & ompt_task_initial) always evaluates to true.12

A thread dispatches a registered ompt_callback_thread_end callback for the13
initial-thread-end event in that thread. The callback occurs in the context of the thread. The14
callback has type signature ompt_callback_thread_end_t. The implicit parallel region15
does not dispatch a ompt_callback_parallel_end callback; however, the implicit parallel16
region can be finalized within this ompt_callback_thread_end callback.17

Cross References18

• ompt_thread_initial, see Section 4.4.4.10 on page 443.19

• ompt_task_initial, see Section 4.4.4.18 on page 446.20

• ompt_callback_thread_begin_t, see Section 4.5.2.1 on page 459.21

• ompt_callback_thread_end_t, see Section 4.5.2.2 on page 460.22

• ompt_callback_parallel_begin_t, see Section 4.5.2.3 on page 461.23

• ompt_callback_parallel_end_t, see Section 4.5.2.4 on page 463.24

• ompt_callback_implicit_task_t, see Section 4.5.2.11 on page 471.25

2.10.6 Task Scheduling26

Whenever a thread reaches a task scheduling point, the implementation may cause it to perform a27
task switch, beginning or resuming execution of a different task bound to the current team. Task28
scheduling points are implied at the following locations:29

• during the generation of an explicit task;30

• the point immediately following the generation of an explicit task;31

CHAPTER 2. DIRECTIVES 149

• after the point of completion of the structured block associated with a task;1

• in a taskyield region;2

• in a taskwait region;3

• at the end of a taskgroup region;4

• in an implicit barrier region;5

• in an explicit barrier region;6

• during the generation of a target region;7

• the point immediately following the generation of a target region;8

• at the beginning and end of a target data region;9

• in a target update region;10

• in a target enter data region;11

• in a target exit data region;12

• in the omp_target_memcpy routine;13

• in the omp_target_memcpy_rect routine;14

When a thread encounters a task scheduling point it may do one of the following, subject to the15
Task Scheduling Constraints (below):16

• begin execution of a tied task bound to the current team;17

• resume any suspended task region, bound to the current team, to which it is tied;18

• begin execution of an untied task bound to the current team; or19

• resume any suspended untied task region bound to the current team.20

If more than one of the above choices is available, it is unspecified as to which will be chosen.21

Task Scheduling Constraints are as follows:22

1. Scheduling of new tied tasks is constrained by the set of task regions that are currently tied to the23
thread and that are not suspended in a barrier region. If this set is empty, any new tied task may24
be scheduled. Otherwise, a new tied task may be scheduled only if it is a descendent task of25
every task in the set.26

2. A dependent task shall not start its execution until its task dependences are fulfilled.27

3. A task shall not be scheduled while any task with which it is mutually exclusive has been28
scheduled, but has not yet completed.29

150 OpenMP API – Version 5.0 November 2018

4. When an explicit task is generated by a construct containing an if clause for which the1
expression evaluated to false, and the previous constraints are already met, the task is executed2
immediately after generation of the task.3

A program relying on any other assumption about task scheduling is non-conforming.4

5

Note – Task scheduling points dynamically divide task regions into parts. Each part is executed6
uninterrupted from start to end. Different parts of the same task region are executed in the order in7
which they are encountered. In the absence of task synchronization constructs, the order in which a8
thread executes parts of different schedulable tasks is unspecified.9

A program must behave correctly and consistently with all conceivable scheduling sequences that10
are compatible with the rules above.11

For example, if threadprivate storage is accessed (explicitly in the source code or implicitly12
in calls to library routines) in one part of a task region, its value cannot be assumed to be preserved13
into the next part of the same task region if another schedulable task exists that modifies it.14

As another example, if a lock acquire and release happen in different parts of a task region, no15
attempt should be made to acquire the same lock in any part of another task that the executing16
thread may schedule. Otherwise, a deadlock is possible. A similar situation can occur when a17
critical region spans multiple parts of a task and another schedulable task contains a18
critical region with the same name.19

The use of threadprivate variables and the use of locks or critical sections in an explicit task with an20
if clause must take into account that when the if clause evaluates to false, the task is executed21
immediately, without regard to Task Scheduling Constraint 2.22

23

Execution Model Events24

The task-schedule event occurs in a thread when the thread switches tasks at a task scheduling25
point; no event occurs when switching to or from a merged task.26

Tool Callbacks27

A thread dispatches a registered ompt_callback_task_schedule callback for each28
occurrence of a task-schedule event in the context of the task that begins or resumes. This callback29
has the type signature ompt_callback_task_schedule_t. The argument prior_task_status30
is used to indicate the cause for suspending the prior task. This cause may be the completion of the31
prior task region, the encountering of a taskyield construct, or the encountering of an active32
cancellation point.33

Cross References34

• ompt_callback_task_schedule_t, see Section 4.5.2.10 on page 470.35

CHAPTER 2. DIRECTIVES 151

2.11 Memory Management Directives1

2.11.1 Memory Spaces2

OpenMP memory spaces represent storage resources where variables can be stored and retrieved.3
Table 2.8 shows the list of predefined memory spaces. The selection of a given memory space4
expresses an intent to use storage with certain traits for the allocations. The actual storage resources5
that each memory space represents are implementation defined.6

TABLE 2.8: Predefined Memory Spaces

Memory space name Storage selection intent

omp_default_mem_space Represents the system default storage.

omp_large_cap_mem_space Represents storage with large capacity.

omp_const_mem_space Represents storage optimized for variables with
constant values. The result of writing to this storage
is unspecified.

omp_high_bw_mem_space Represents storage with high bandwidth.

omp_low_lat_mem_space Represents storage with low latency.
7

Note – For variables allocated in the omp_const_mem_space memory space OpenMP8
supports initializing constant memory either by means of the firstprivate clause or through9
initialization with compile time constants for static and constant variables. Implementation-defined10
mechanisms to provide the constant value of these variables may also be supported.11

12

Cross References13

• omp_init_allocator routine, see Section 3.7.2 on page 409.14

2.11.2 Memory Allocators15

OpenMP memory allocators can be used by a program to make allocation requests. When a16
memory allocator receives a request to allocate storage of a certain size, an allocation of logically17
consecutive memory in the resources of its associated memory space of at least the size that was18
requested will be returned if possible. This allocation will not overlap with any other existing19
allocation from an OpenMP memory allocator.20

152 OpenMP API – Version 5.0 November 2018

The behavior of the allocation process can be affected by the allocator traits that the user specifies.1
Table 2.9 shows the allowed allocators traits, their possible values and the default value of each trait.2

TABLE 2.9: Allocator Traits

Allocator trait Allowed values Default value

sync_hint contended, uncontended,
serialized, private

contended

alignment A positive integer value that is a power of
2

1 byte

access all, cgroup, pteam, thread all

pool_size Positive integer value Implementation
defined

fallback default_mem_fb, null_fb,
abort_fb, allocator_fb

default_mem_fb

fb_data an allocator handle (none)

pinned true, false false

partition environment, nearest, blocked,
interleaved

environment

3

The sync_hint trait describes the expected manner in which multiple threads may use the4
allocator. The values and their description are:5

• contended: high contention is expected on the allocator; that is, many threads are expected to6
request allocations simultaneously.7

• uncontended: low contention is expected on the allocator; that is, few threads are expected to8
request allocations simultaneously.9

• serialized: only one thread at a time will request allocations with the allocator. Requesting10
two allocations simultaneously when specifying serialized results in unspecified behavior.11

• private: the same thread will request allocations with the allocator every time. Requesting an12
allocation from different threads, simultaneously or not, when specifying private results in13
unspecified behavior.14

Allocated memory will be byte aligned to at least the value specified for the alignment trait of15
the allocator. Some directives and API routines can specify additional requirements on alignment16
beyond those described in this section.17

Memory allocated by allocators with the access trait defined to be all must be accessible by all18
threads in the device where the allocation was requested. Memory allocated by allocators with the19
access trait defined to be cgroup will be memory accessible by all threads in the same20

CHAPTER 2. DIRECTIVES 153

contention group as the thread that requested the allocation. Attempts to access the memory1
returned by an allocator with the access trait defined to be cgroup from a thread that is not part2
of the same contention group as the thread that allocated the memory result in unspecified behavior.3
Memory allocated by allocators with the access trait defined to be pteam will be memory4
accessible by all threads that bind to the same parallel region of the thread that requested the5
allocation. Attempts to access the memory returned by an allocator with the access trait defined6
to be pteam from a thread that does not bind to the same parallel region as the thread that7
allocated the memory result in unspecified behavior. Memory allocated by allocator with the8
access trait defined to be thread will be memory accessible by the thread that requested the9
allocation. Attempts to access the memory returned by an allocator with the access trait defined10
to be thread from a thread other than the one that allocated the memory result in unspecified11
behavior.12

The total amount of storage in bytes that an allocator can use is limited by the pool_size trait.13
For allocators with the access trait defined to be all, this limit refers to allocations from all14
threads that access the allocator. For allocators with the access trait defined to be cgroup, this15
limit refers to allocations from threads that access the allocator from the same contention group. For16
allocators with the access trait defined to be pteam, this limit refers to allocations from threads17
that access the allocator from the same parallel team. For allocators with the access trait defined18
to be thread, this limit refers to allocations from each thread that access the allocator. Requests19
that would result in using more storage than pool_size will not be fulfilled by the allocator.20

The fallback trait specifies how the allocator behaves when it cannot fulfill an allocation21
request. If the fallback trait is set to null_fb, the allocator returns the value zero if it fails to22
allocate the memory. If the fallback trait is set to abort_fb, program execution will be23
terminated if the allocation fails. If the fallback trait is set to allocator_fb then when an24
allocation fails the request will be delegated to the allocator specified in the fb_data trait. If the25
fallback trait is set to default_mem_fb then when an allocation fails another allocation will26
be tried in the omp_default_mem_space memory space, which assumes all allocator traits to27
be set to their default values except for fallback trait which will be set to null_fb.28

Allocators with the pinned trait defined to be true ensure that their allocations remain in the29
same storage resource at the same location for their entire lifetime.30

The partition trait describes the partitioning of allocated memory over the storage resources31
represented by the memory space associated with the allocator. The partitioning will be done in32
parts with a minimum size that is implementation defined. The values are:33

• environment: the placement of allocated memory is determined by the execution34
environment.35

• nearest: allocated memory is placed in the storage resource that is nearest to the thread that36
requests the allocation.37

• blocked: allocated memory is partitioned into parts of approximately the same size with at38
most one part per storage resource.39

154 OpenMP API – Version 5.0 November 2018

• interleaved: allocated memory parts are distributed in a round-robin fashion across the1
storage resources.2

Table 2.10 shows the list of predefined memory allocators and their associated memory spaces. The3
predefined memory allocators have default values for their allocator traits unless otherwise4
specified.5

TABLE 2.10: Predefined Allocators

Allocator name Associated memory space Non-default trait
values

omp_default_mem_alloc omp_default_mem_space (none)

omp_large_cap_mem_alloc omp_large_cap_mem_space (none)

omp_const_mem_alloc omp_const_mem_space (none)

omp_high_bw_mem_alloc omp_high_bw_mem_space (none)

omp_low_lat_mem_alloc omp_low_lat_mem_space (none)

omp_cgroup_mem_alloc Implementation defined access:cgroup

omp_pteam_mem_alloc Implementation defined access:pteam

omp_thread_mem_alloc Implementation defined access:thread

6

Fortran
If any operation of the base language causes a reallocation of an array that is allocated with a7
memory allocator then that memory allocator will be used to release the current memory and to8
allocate the new memory.9

Fortran

Cross References10

• omp_init_allocator routine, see Section 3.7.2 on page 409.11

• omp_destroy_allocator routine, see Section 3.7.3 on page 410.12

• omp_set_default_allocator routine, see Section 3.7.4 on page 411.13

• omp_get_default_allocator routine, see Section 3.7.5 on page 412.14

• OMP_ALLOCATOR environment variable, see Section 6.21 on page 618.15

CHAPTER 2. DIRECTIVES 155

2.11.3 allocate Directive1

Summary2

The allocate directive specifies how a set of variables are allocated. The allocate directive3
is a declarative directive if it is not associated with an allocation statement.4

Syntax5

C / C++
The syntax of the allocate directive is as follows:6

#pragma omp allocate(list) [clause] new-line7

where clause is one of the following:8

allocator(allocator)9

where allocator is an expression of omp_allocator_handle_t type.10

C / C++

Fortran
The syntax of the allocate directive is as follows:11

!$omp allocate(list) [clause]12

or13

!$omp allocate[(list)] clause14
[!$omp allocate(list) clause15
[...]]16

allocate statement17

where clause is one of the following:18

allocator(allocator)19

where allocator is an integer expression of omp_allocator_handle_kind kind.20

Fortran

156 OpenMP API – Version 5.0 November 2018

Description1

If the directive is not associated with a statement, the storage for each list item that appears in the2
directive will be provided by an allocation through a memory allocator. If no clause is specified3
then the memory allocator specified by the def-allocator-var ICV will be used. If the allocator4
clause is specified, the memory allocator specified in the clause will be used. The allocation of each5
list item will be byte aligned to at least the alignment required by the base language for the type of6
that list item.7

The scope of this allocation is that of the list item in the base language. At the end of the scope for a8
given list item the memory allocator used to allocate that list item deallocates the storage.9

Fortran
If the directive is associated with an allocate statement, the same list items appearing in the10
directive list and the allocate statement list are allocated with the memory allocator of the directive.11
If no list items are specified then all variables listed in the allocate statement are allocated with the12
memory allocator of the directive.13

Fortran
For allocations that arise from this directive the null_fb value of the fallback allocator trait will14
behave as if the abort_fb had been specified.15

Restrictions16

• A variable that is part of another variable (as an array or structure element) cannot appear in an17
allocate directive.18

• The allocate directive must appear in the same scope as the declarations of each of its list19
items and must follow all such declarations.20

• At most one allocator clause can appear on the allocate directive.21

• allocate directives that appear in a target region must specify an allocator clause22
unless a requires directive with the dynamic_allocators clause is present in the same23
compilation unit.24

C / C++
• If a list item has a static storage type, the allocator expression in the allocator clause must25
be a constant expression that evaluates to one of the predefined memory allocator values.26

• After a list item has been allocated, the scope that contains the allocate directive must not end27
abnormally other than through C++ exceptions, such as through a call to the longjmp function.28

C / C++

CHAPTER 2. DIRECTIVES 157

Fortran
• List items specified in the allocate directive must not have the ALLOCATABLE attribute1
unless the directive is associated with an allocate statement.2

• List items specified in an allocate directive that is associated with an allocate statement must3
be variables that are allocated by the allocate statement.4

• Multiple directives can only be associated with an allocate statement if list items are specified on5
each allocate directive.6

• If a list item has the SAVE attribute, is a common block name, or is declared in the scope of a7
module, then only predefined memory allocator parameters can be used in the allocator8
clause.9

• A type parameter inquiry cannot appear in an allocate directive.10

Fortran

Cross References11

• def-allocator-var ICV, see Section 2.5.1 on page 64.12

• Memory allocators, see Section 2.11.2 on page 152.13

• omp_allocator_handle_t and omp_allocator_handle_kind, see Section 3.7.1 on14
page 406.15

2.11.4 allocate Clause16

Summary17

The allocate clause specifies the memory allocator to be used to obtain storage for private18
variables of a directive.19

Syntax20

The syntax of the allocate clause is as follows:21

allocate([allocator:] list)22

158 OpenMP API – Version 5.0 November 2018

C / C++
where allocator is an expression of the omp_allocator_handle_t type.1

C / C++
Fortran

where allocator is an integer expression of the omp_allocator_handle_kind kind.2

Fortran

Description3

The storage for new list items that arise from list items that appear in the directive will be provided4
through a memory allocator. If an allocator is specified in the clause, that allocator will be used for5
allocations. For all directives except the target directive, if no allocator is specified in the clause6
then the memory allocator that is specified by the def-allocator-var ICV will be used for the list7
items that are specified in the allocate clause. The allocation of each list item will be byte8
aligned to at least the alignment required by the base language for the type of that list item.9

For allocations that arise from this clause the null_fb value of the fallback allocator trait will10
behave as if the abort_fb had been specified.11

Restrictions12

• For any list item that is specified in the allocate clause on a directive, a data-sharing attribute13
clause that may create a private copy of that list item must be specified on the same directive.14

• For task, taskloop or target directives, allocation requests to memory allocators with the15
trait access set to thread result in unspecified behavior.16

• allocate clauses that appear on a target construct or on constructs in a target region17
must specify an allocator expression unless a requires directive with the18
dynamic_allocators clause is present in the same compilation unit.19

Cross References20

• def-allocator-var ICV, see Section 2.5.1 on page 64.21

• Memory allocators, see Section 2.11.2 on page 152.22

• omp_allocator_handle_t and omp_allocator_handle_kind, see Section 3.7.1 on23
page 406.24

CHAPTER 2. DIRECTIVES 159

2.12 Device Directives1

2.12.1 Device Initialization2

Execution Model Events3

The device-initialize event occurs in a thread that encounters the first target, target data, or4
target enter data construct or a device memory routine that is associated with a particular5
target device after the thread initiates initialization of OpenMP on the device and the device’s6
OpenMP initialization, which may include device-side tool initialization, completes.7

The device-load event for a code block for a target device occurs in some thread before any thread8
executes code from that code block on that target device.9

The device-unload event for a target device occurs in some thread whenever a code block is10
unloaded from the device.11

The device-finalize event for a target device that has been initialized occurs in some thread before12
an OpenMP implementation shuts down.13

Tool Callbacks14

A thread dispatches a registered ompt_callback_device_initialize callback for each15
occurrence of a device-initialize event in that thread. This callback has type signature16
ompt_callback_device_initialize_t.17

A thread dispatches a registered ompt_callback_device_load callback for each occurrence18
of a device-load event in that thread. This callback has type signature19
ompt_callback_device_load_t.20

A thread dispatches a registered ompt_callback_device_unload callback for each21
occurrence of a device-unload event in that thread. This callback has type signature22
ompt_callback_device_unload_t.23

A thread dispatches a registered ompt_callback_device_finalize callback for each24
occurrence of a device-finalize event in that thread. This callback has type signature25
ompt_callback_device_finalize_t.26

Restrictions27

No thread may offload execution of an OpenMP construct to a device until a dispatched28
ompt_callback_device_initialize callback completes.29

No thread may offload execution of an OpenMP construct to a device after a dispatched30
ompt_callback_device_finalize callback occurs.31

160 OpenMP API – Version 5.0 November 2018

Cross References1

• ompt_callback_device_load_t, see Section 4.5.2.21 on page 484.2

• ompt_callback_device_unload_t, see Section 4.5.2.22 on page 486.3

• ompt_callback_device_initialize_t, see Section 4.5.2.19 on page 482.4

• ompt_callback_device_finalize_t, see Section 4.5.2.20 on page 484.5

2.12.2 target data Construct6

Summary7

Map variables to a device data environment for the extent of the region.8

Syntax9

C / C++
The syntax of the target data construct is as follows:10

#pragma omp target data clause[[[,] clause] ...] new-line11
structured-block12

where clause is one of the following:13

if([target data :] scalar-expression)14

device(integer-expression)15

map([[map-type-modifier[,] [map-type-modifier[,] ...] map-type:] locator-list)16

use_device_ptr(ptr-list)17

use_device_addr(list)18

C / C++

Fortran
The syntax of the target data construct is as follows:19

!$omp target data clause[[[,] clause] ...]20
structured-block21

!$omp end target data22

CHAPTER 2. DIRECTIVES 161

where clause is one of the following:1

if([target data :] scalar-logical-expression)2

device(scalar-integer-expression)3

map([[map-type-modifier[,] [map-type-modifier[,] ...] map-type:] locator-list)4

use_device_ptr(ptr-list)5

use_device_addr(list)6

Fortran

Binding7

The binding task set for a target data region is the generating task. The target data region8
binds to the region of the generating task.9

Description10

When a target data construct is encountered, the encountering task executes the region. If11
there is no device clause, the default device is determined by the default-device-var ICV. When12
an if clause is present and the if clause expression evaluates to false, the device is the host.13
Variables are mapped for the extent of the region, according to any data-mapping attribute clauses,14
from the data environment of the encountering task to the device data environment.15

Pointers that appear in a use_device_ptr clause are privatized and the device pointers to the16
corresponding list items in the device data environment are assigned into the private versions.17

List items that appear in a use_device_addr clause have the address of the corresponding18
object in the device data environment inside the construct. For objects, any reference to the value of19
the object will be to the corresponding object on the device, while references to the address will20
result in a valid device address that points to that object. Array sections privatize the base of the21
array section and assign the private copy to the address of the corresponding array section in the22
device data environment.23

If one or more of the use_device_ptr or use_device_addr clauses and one or more map24
clauses are present on the same construct, the address conversions of use_device_addr and25
use_device_ptr clauses will occur as if performed after all variables are mapped according to26
those map clauses.27

Execution Model Events28

The events associated with entering a target data region are the same events as associated with a29
target enter data construct, described in Section 2.12.3 on page 164.30

The events associated with exiting a target data region are the same events as associated with a31
target exit data construct, described in Section 2.12.4 on page 166.32

162 OpenMP API – Version 5.0 November 2018

Tool Callbacks1

The tool callbacks dispatched when entering a target data region are the same as the tool callbacks2
dispatched when encountering a target enter data construct, described in Section 2.12.3 on3
page 164.4

The tool callbacks dispatched when exiting a target data region are the same as the tool callbacks5
dispatched when encountering a target exit data construct, described in Section 2.12.4 on page 166.6

Restrictions7

• A program must not depend on any ordering of the evaluations of the clauses of the8
target data directive, except as explicitly stated for map clauses relative to9
use_device_ptr and use_device_addr clauses, or on any side effects of the evaluations10
of the clauses.11

• At most one device clause can appear on the directive. The device clause expression must12
evaluate to a non-negative integer value less than the value of omp_get_num_devices() or13
to the value of omp_get_initial_device().14

• At most one if clause can appear on the directive.15

• A map-type in a map clause must be to, from, tofrom or alloc.16

• At least one map, use_device_addr or use_device_ptr clause must appear on the17
directive.18

• A list item in a use_device_ptr clause must hold the address of an object that has a19
corresponding list item in the device data environment.20

• A list item in a use_device_addr clause must have a corresponding list item in the device21
data environment.22

• A list item that specifies a given variable may not appear in more than one use_device_ptr23
clause.24

• A reference to a list item in a use_device_addr clause must be to the address of the list item.25

Cross References26

• default-device-var, see Section 2.5 on page 63.27

• if Clause, see Section 2.15 on page 220.28

• map clause, see Section 2.19.7.1 on page 315.29

• omp_get_num_devices routine, see Section 3.2.36 on page 371.30

• ompt_callback_target_t, see Section 4.5.2.26 on page 490.31

CHAPTER 2. DIRECTIVES 163

2.12.3 target enter data Construct1

Summary2

The target enter data directive specifies that variables are mapped to a device data3
environment. The target enter data directive is a stand-alone directive.4

Syntax5

C / C++
The syntax of the target enter data construct is as follows:6

#pragma omp target enter data [clause[[,] clause]...] new-line7

where clause is one of the following:8

if([target enter data :] scalar-expression)9

device(integer-expression)10

map([map-type-modifier[,] [map-type-modifier[,] ...] map-type: locator-list)11

depend([depend-modifier,] dependence-type : locator-list)12

nowait13

C / C++
Fortran

The syntax of the target enter data is as follows:14

!$omp target enter data [clause[[,] clause]...]15

where clause is one of the following:16

if([target enter data :] scalar-logical-expression)17

device(scalar-integer-expression)18

map([map-type-modifier[,] [map-type-modifier[,] ...] map-type: locator-list)19

depend([depend-modifier,] dependence-type : locator-list)20

nowait21

Fortran

Binding22

The binding task set for a target enter data region is the generating task, which is the target23
task generated by the target enter data construct. The target enter data region binds24
to the corresponding target task region.25

164 OpenMP API – Version 5.0 November 2018

Description1

When a target enter data construct is encountered, the list items are mapped to the device2
data environment according to the map clause semantics.3

The target enter data construct is a task generating construct. The generated task is a target4
task. The generated task region encloses the target enter data region.5

All clauses are evaluated when the target enter data construct is encountered. The data6
environment of the target task is created according to the data-sharing attribute clauses on the7
target enter data construct, per-data environment ICVs, and any default data-sharing8
attribute rules that apply to the target enter data construct. A variable that is mapped in the9
target enter data construct has a default data-sharing attribute of shared in the data10
environment of the target task.11

Assignment operations associated with mapping a variable (see Section 2.19.7.1 on page 315)12
occur when the target task executes.13

If the nowait clause is present, execution of the target task may be deferred. If the nowait14
clause is not present, the target task is an included task.15

If a depend clause is present, it is associated with the target task.16

If no device clause is present, the default device is determined by the default-device-var ICV.17

When an if clause is present and the if clause expression evaluates to false, the device is the host.18

Execution Model Events19

Events associated with a target task are the same as for the task construct defined in20
Section 2.10.1 on page 135.21

The target-enter-data-begin event occurs when a thread enters a target enter data region.22

The target-enter-data-end event occurs when a thread exits a target enter data region.23

Tool Callbacks24

Callbacks associated with events for target tasks are the same as for the task construct defined in25
Section 2.10.1 on page 135; (flags & ompt_task_target) always evaluates to true in the26
dispatched callback.27

A thread dispatches a registered ompt_callback_target callback with28
ompt_scope_begin as its endpoint argument and ompt_target_enter_data as its kind29
argument for each occurrence of a target-enter-data-begin event in that thread in the context of the30
target task on the host. Similarly, a thread dispatches a registered ompt_callback_target31
callback with ompt_scope_end as its endpoint argument and ompt_target_enter_data32
as its kind argument for each occurrence of a target-enter-data-end event in that thread in the33

CHAPTER 2. DIRECTIVES 165

context of the target task on the host. These callbacks have type signature1
ompt_callback_target_t.2

Restrictions3

• A program must not depend on any ordering of the evaluations of the clauses of the4
target enter data directive, or on any side effects of the evaluations of the clauses.5

• At least one map clause must appear on the directive.6

• At most one device clause can appear on the directive. The device clause expression must7
evaluate to a non-negative integer value less than the value of omp_get_num_devices() or8
to the value of omp_get_initial_device().9

• At most one if clause can appear on the directive.10

• A map-type must be specified in all map clauses and must be either to or alloc.11

• At most one nowait clause can appear on the directive.12

Cross References13

• default-device-var, see Section 2.5.1 on page 64.14

• task, see Section 2.10.1 on page 135.15

• task scheduling constraints, see Section 2.10.6 on page 149.16

• target data, see Section 2.12.2 on page 161.17

• target exit data, see Section 2.12.4 on page 166.18

• if Clause, see Section 2.15 on page 220.19

• map clause, see Section 2.19.7.1 on page 315.20

• omp_get_num_devices routine, see Section 3.2.36 on page 371.21

• ompt_callback_target_t, see Section 4.5.2.26 on page 490.22

2.12.4 target exit data Construct23

Summary24

The target exit data directive specifies that list items are unmapped from a device data25
environment. The target exit data directive is a stand-alone directive.26

166 OpenMP API – Version 5.0 November 2018

Syntax1

C / C++
The syntax of the target exit data construct is as follows:2

#pragma omp target exit data [clause[[,] clause]...] new-line3

where clause is one of the following:4

if([target exit data :] scalar-expression)5

device(integer-expression)6

map([map-type-modifier[,] [map-type-modifier[,] ...] map-type: locator-list)7

depend([depend-modifier,] dependence-type : locator-list)8

nowait9

C / C++
Fortran

The syntax of the target exit data is as follows:10

!$omp target exit data [clause[[,] clause]...]11

where clause is one of the following:12

if([target exit data :] scalar-logical-expression)13

device(scalar-integer-expression)14

map([map-type-modifier[,] [map-type-modifier[,] ...] map-type: locator-list)15

depend([depend-modifier,] dependence-type : locator-list)16

nowait17

Fortran

Binding18

The binding task set for a target exit data region is the generating task, which is the target19
task generated by the target exit data construct. The target exit data region binds to20
the corresponding target task region.21

CHAPTER 2. DIRECTIVES 167

Description1

When a target exit data construct is encountered, the list items in the map clauses are2
unmapped from the device data environment according to the map clause semantics.3

The target exit data construct is a task generating construct. The generated task is a target4
task. The generated task region encloses the target exit data region.5

All clauses are evaluated when the target exit data construct is encountered. The data6
environment of the target task is created according to the data-sharing attribute clauses on the7
target exit data construct, per-data environment ICVs, and any default data-sharing attribute8
rules that apply to the target exit data construct. A variable that is mapped in the9
target exit data construct has a default data-sharing attribute of shared in the data10
environment of the target task.11

Assignment operations associated with mapping a variable (see Section 2.19.7.1 on page 315)12
occur when the target task executes.13

If the nowait clause is present, execution of the target task may be deferred. If the nowait14
clause is not present, the target task is an included task.15

If a depend clause is present, it is associated with the target task.16

If no device clause is present, the default device is determined by the default-device-var ICV.17

When an if clause is present and the if clause expression evaluates to false, the device is the host.18

Execution Model Events19

Events associated with a target task are the same as for the task construct defined in20
Section 2.10.1 on page 135.21

The target-exit-data-begin event occurs when a thread enters a target exit data region.22

The target-exit-data-end event occurs when a thread exits a target exit data region.23

Tool Callbacks24

Callbacks associated with events for target tasks are the same as for the task construct defined in25
Section 2.10.1 on page 135; (flags & ompt_task_target) always evaluates to true in the26
dispatched callback.27

A thread dispatches a registered ompt_callback_target callback with28
ompt_scope_begin as its endpoint argument and ompt_target_exit_data as its kind29
argument for each occurrence of a target-exit-data-begin event in that thread in the context of the30
target task on the host. Similarly, a thread dispatches a registered ompt_callback_target31
callback with ompt_scope_end as its endpoint argument and ompt_target_exit_data as32
its kind argument for each occurrence of a target-exit-data-end event in that thread in the context of33
the target task on the host. These callbacks have type signature ompt_callback_target_t.34

168 OpenMP API – Version 5.0 November 2018

Restrictions1

• A program must not depend on any ordering of the evaluations of the clauses of the2
target exit data directive, or on any side effects of the evaluations of the clauses.3

• At least one map clause must appear on the directive.4

• At most one device clause can appear on the directive. The device clause expression must5
evaluate to a non-negative integer value less than the value of omp_get_num_devices() or6
to the value of omp_get_initial_device().7

• At most one if clause can appear on the directive.8

• A map-type must be specified in all map clauses and must be either from, release, or9
delete.10

• At most one nowait clause can appear on the directive.11

Cross References12

• default-device-var, see Section 2.5.1 on page 64.13

• task, see Section 2.10.1 on page 135.14

• task scheduling constraints, see Section 2.10.6 on page 149.15

• target data, see Section 2.12.2 on page 161.16

• target enter data, see Section 2.12.3 on page 164.17

• if Clause, see Section 2.15 on page 220.18

• map clause, see Section 2.19.7.1 on page 315.19

• omp_get_num_devices routine, see Section 3.2.36 on page 371.20

• ompt_callback_target_t, see Section 4.5.2.26 on page 490.21

CHAPTER 2. DIRECTIVES 169

2.12.5 target Construct1

Summary2

Map variables to a device data environment and execute the construct on that device.3

Syntax4

C / C++
The syntax of the target construct is as follows:5

#pragma omp target [clause[[,] clause] ...] new-line6
structured-block7

where clause is one of the following:8

if([target :] scalar-expression)9

device([device-modifier :] integer-expression)10

private(list)11

firstprivate(list)12

in_reduction(reduction-identifier : list)13

map([[map-type-modifier[,] [map-type-modifier[,] ...] map-type:] locator-list)14

is_device_ptr(list)15

defaultmap(implicit-behavior[:variable-category])16

nowait17

depend([depend-modifier,] dependence-type : locator-list)18

allocate([[allocator :] list)19

uses_allocators(allocator[(allocator-traits-array)]20

[,allocator[(allocator-traits-array)] ...])21

and where device-modifier is one of the following:22

ancestor23

device_num24

and where allocator is an identifier of omp_allocator_handle_t type and25
allocator-traits-array is an identifier of const omp_alloctrait_t * type.26

C / C++

170 OpenMP API – Version 5.0 November 2018

Fortran
The syntax of the target construct is as follows:1

!$omp target [clause[[,] clause] ...]2
structured-block3

!$omp end target4

where clause is one of the following:5

if([target :] scalar-logical-expression)6

device([device-modifier :] scalar-integer-expression)7

private(list)8

firstprivate(list)9

in_reduction(reduction-identifier : list)10

map([[map-type-modifier[,] [map-type-modifier[,] ...] map-type:] locator-list)11

is_device_ptr(list)12

defaultmap(implicit-behavior[:variable-category])13

nowait14

depend([depend-modifier,] dependence-type : locator-list)15

allocate([allocator:]list)16

uses_allocators(allocator[(allocator-traits-array)]17

[,allocator[(allocator-traits-array)] ...])18

and where device-modifier is one of the following:19

ancestor20

device_num21

and where allocator is an integer expression of omp_allocator_handle_kind kind and22
allocator-traits-array is an array of type(omp_alloctrait) type.23

Fortran

Binding24

The binding task set for a target region is the generating task, which is the target task generated25
by the target construct. The target region binds to the corresponding target task region.26

CHAPTER 2. DIRECTIVES 171

Description1

The target construct provides a superset of the functionality provided by the target data2
directive, except for the use_device_ptr and use_device_addr clauses.3

The functionality added to the target directive is the inclusion of an executable region to be4
executed by a device. That is, the target directive is an executable directive.5

The target construct is a task generating construct. The generated task is a target task. The6
generated task region encloses the target region.7

All clauses are evaluated when the target construct is encountered. The data environment of the8
target task is created according to the data-sharing attribute clauses on the target construct,9
per-data environment ICVs, and any default data-sharing attribute rules that apply to the target10
construct. If a variable or part of a variable is mapped by the target construct and does not11
appear as a list item in an in_reduction clause on the construct, the variable has a default12
data-sharing attribute of shared in the data environment of the target task.13

Assignment operations associated with mapping a variable (see Section 2.19.7.1 on page 315)14
occur when the target task executes.15

If a device clause in which the device_num device-modifier appears is present on the16
construct, the device clause expression specifies the device number of the target device. If17
device-modifier does not appear in the clause, the behavior of the clause is as if device-modifier is18
device_num.19

If a device clause in which the ancestor device-modifier appears is present on the target20
construct and the device clause expression evaluates to 1, execution of the target region occurs21
on the parent device of the enclosing target region. If the target construct is not encountered22
in a target region, the current device is treated as the parent device. The encountering thread23
waits for completion of the target region on the parent device before resuming. For any list item24
that appears in a map clause on the same construct, if the corresponding list item exists in the device25
data environment of the parent device, it is treated as if it has a reference count of positive infinity.26

If the nowait clause is present, execution of the target task may be deferred. If the nowait27
clause is not present, the target task is an included task.28

If a depend clause is present, it is associated with the target task.29

When an if clause is present and the if clause expression evaluates to false, the target region30
is executed by the host device in the host data environment.31

The is_device_ptr clause is used to indicate that a list item is a device pointer already in the32
device data environment and that it should be used directly. Support for device pointers created33
outside of OpenMP, specifically outside of the omp_target_alloc routine and the34
use_device_ptr clause, is implementation defined.35

172 OpenMP API – Version 5.0 November 2018

If a function (C, C++, Fortran) or subroutine (Fortran) is referenced in a target construct then1
that function or subroutine is treated as if its name had appeared in a to clause on a2
declare target directive.3

Each memory allocator specified in the uses_allocators clause will be made available in the4
target region. For each non-predefined allocator that is specified, a new allocator handle will be5
associated with an allocator that is created with the specified traits as if by a call to6
omp_init_allocator at the beginning of the target region. Each non-predefined allocator7
will be destroyed as if by a call to omp_destroy_allocator at the end of the target region.8

C / C++
If a list item in a map clause has a base pointer and it is a scalar variable with a predetermined9
data-sharing attribute of firstprivate (see Section 2.19.1.1 on page 270), then on entry to the10
target region:11

• If the list item is not a zero-length array section, the corresponding private variable is initialized12
such that the corresponding list item in the device data environment can be accessed through the13
pointer in the target region.14

• If the list item is a zero-length array section, the corresponding private variable is initialized such15
that the corresponding storage location of the array section can be referenced through the pointer16
in the target region. If the corresponding storage location is not present in the device data17
environment, the corresponding private variable is initialized to NULL.18

C / C++

Execution Model Events19

Events associated with a target task are the same as for the task construct defined in20
Section 2.10.1 on page 135.21

Events associated with the initial task that executes the target region are defined in22
Section 2.10.5 on page 148.23

The target-begin event occurs when a thread enters a target region.24

The target-end event occurs when a thread exits a target region.25

The target-submit event occurs prior to creating an initial task on a target device for a target26
region.27

CHAPTER 2. DIRECTIVES 173

Tool Callbacks1

Callbacks associated with events for target tasks are the same as for the task construct defined in2
Section 2.10.1 on page 135; (flags & ompt_task_target) always evaluates to true in the3
dispatched callback.4

A thread dispatches a registered ompt_callback_target callback with5
ompt_scope_begin as its endpoint argument and ompt_target as its kind argument for6
each occurrence of a target-begin event in that thread in the context of the target task on the host.7
Similarly, a thread dispatches a registered ompt_callback_target callback with8
ompt_scope_end as its endpoint argument and ompt_target as its kind argument for each9
occurrence of a target-end event in that thread in the context of the target task on the host. These10
callbacks have type signature ompt_callback_target_t.11

A thread dispatches a registered ompt_callback_target_submit callback for each12
occurrence of a target-submit event in that thread. The callback has type signature13
ompt_callback_target_submit_t.14

Restrictions15

• If a target update, target data, target enter data, or target exit data16
construct is encountered during execution of a target region, the behavior is unspecified.17

• The result of an omp_set_default_device, omp_get_default_device, or18
omp_get_num_devices routine called within a target region is unspecified.19

• The effect of an access to a threadprivate variable in a target region is unspecified.20

• If a list item in a map clause is a structure element, any other element of that structure that is21
referenced in the target construct must also appear as a list item in a map clause.22

• A variable referenced in a target region but not the target construct that is not declared in23
the target region must appear in a declare target directive.24

• At most one defaultmap clause for each category can appear on the directive.25

• At most one nowait clause can appear on the directive.26

• A map-type in a map clause must be to, from, tofrom or alloc.27

• A list item that appears in an is_device_ptr clause must be a valid device pointer in the28
device data environment.29

• At most one device clause can appear on the directive. The device clause expression must30
evaluate to a non-negative integer value less than the value of omp_get_num_devices() or31
to the value of omp_get_initial_device().32

• If a device clause in which the ancestor device-modifier appears is present on the33
construct, then the following restrictions apply:34

174 OpenMP API – Version 5.0 November 2018

– A requires directive with the reverse_offload clause must be specified;1

– The device clause expression must evaluate to 1;2

– Only the device, firstprivate, private, defaultmap, and map clauses may3
appear on the construct;4

– No OpenMP constructs or calls to OpenMP API runtime routines are allowed inside the5
corresponding target region.6

• Memory allocators that do not appear in a uses_allocators clause cannot appear as an7
allocator in an allocate clause or be used in the target region unless a requires8
directive with the dynamic_allocators clause is present in the same compilation unit.9

• Memory allocators that appear in a uses_allocators clause cannot appear in other10
data-sharing attribute clauses or data-mapping attribute clauses in the same construct.11

• Predefined allocators appearing in a uses_allocators clause cannot have traits specified.12

• Non-predefined allocators appearing in a uses_allocators clause must have traits specified.13

• Arrays that contain allocator traits that appear in a uses_allocators clause must be14
constant arrays, have constant values and be defined in the same scope as the construct in which15
the clause appears.16

• Any IEEE floating-point exception status flag, halting mode, or rounding mode set prior to a17
target region is unspecified in the region.18

• Any IEEE floating-point exception status flag, halting mode, or rounding mode set in a target19
region is unspecified upon exiting the region.20

C / C++
• An attached pointer must not be modified in a target region.21

C / C++
C

• A list item that appears in an is_device_ptr clause must have a type of pointer or array.22

C
C++

• A list item that appears in an is_device_ptr clause must have a type of pointer, array,23
reference to pointer or reference to array.24

• The effect of invoking a virtual member function of an object on a device other than the device25
on which the object was constructed is implementation defined.26

• A throw executed inside a target region must cause execution to resume within the same27
target region, and the same thread that threw the exception must catch it.28

C++

CHAPTER 2. DIRECTIVES 175

Fortran
• An attached pointer that is associated with a given pointer target must not become associated1
with a different pointer target in a target region.2

• A list item that appears in an is_device_ptr clause must be a dummy argument that does3
not have the ALLOCATABLE, POINTER or VALUE attribute.4

• If a list item in a map clause is an array section, and the array section is derived from a variable5
with a POINTER or ALLOCATABLE attribute then the behavior is unspecified if the6
corresponding list item’s variable is modified in the region.7

Fortran

Cross References8

• default-device-var, see Section 2.5 on page 63.9

• task construct, see Section 2.10.1 on page 135.10

• task scheduling constraints, see Section 2.10.6 on page 14911

• Memory allocators, see Section 2.11.2 on page 152.12

• target data construct, see Section 2.12.2 on page 161.13

• if Clause, see Section 2.15 on page 220.14

• private and firstprivate clauses, see Section 2.19.4 on page 282.15

• Data-Mapping Attribute Rules and Clauses, see Section 2.19.7 on page 314.16

• omp_get_num_devices routine, see Section 3.2.36 on page 371.17

• omp_alloctrait_t and omp_alloctrait types, see Section 3.7.1 on page 406.18

• omp_set_default_allocator routine, see Section 3.7.4 on page 411.19

• omp_get_default_allocator routine, see Section 3.7.5 on page 412.20

• ompt_callback_target_t, see Section 4.5.2.26 on page 490.21

• ompt_callback_target_submit_t, Section 4.5.2.28 on page 494.22

2.12.6 target update Construct23

Summary24

The target update directive makes the corresponding list items in the device data environment25
consistent with their original list items, according to the specified motion clauses. The26
target update construct is a stand-alone directive.27

176 OpenMP API – Version 5.0 November 2018

Syntax1

C / C++
The syntax of the target update construct is as follows:2

#pragma omp target update clause[[[,] clause] ...] new-line3

where clause is either motion-clause or one of the following:4

if([target update :] scalar-expression)5

device(integer-expression)6

nowait7

depend([depend-modifier,] dependence-type : locator-list)8

and motion-clause is one of the following:9

to([mapper(mapper-identifier):]locator-list)10

from([mapper(mapper-identifier):]locator-list)11

C / C++
Fortran

The syntax of the target update construct is as follows:12

!$omp target update clause[[[,] clause] ...]13

where clause is either motion-clause or one of the following:14

if([target update :] scalar-logical-expression)15

device(scalar-integer-expression)16

nowait17

depend([depend-modifier,] dependence-type : locator-list)18

and motion-clause is one of the following:19

to([mapper(mapper-identifier):]locator-list)20

from([mapper(mapper-identifier):]locator-list)21

Fortran

Binding22

The binding task set for a target update region is the generating task, which is the target task23
generated by the target update construct. The target update region binds to the24
corresponding target task region.25

CHAPTER 2. DIRECTIVES 177

Description1

For each list item in a to or from clause there is a corresponding list item and an original list item.2
If the corresponding list item is not present in the device data environment then no assignment3
occurs to or from the original list item. Otherwise, each corresponding list item in the device data4
environment has an original list item in the current task’s data environment. If a mapper()5
modifier appears in a to clause, each list item is replaced with the list items that the given mapper6
specifies are to be mapped with a to or tofrom map-type. If a mapper() modifier appears in a7
from clause, each list item is replaced with the list items that the given mapper specifies are to be8
mapped with a from or tofrom map-type.9

For each list item in a from or a to clause:10

• For each part of the list item that is an attached pointer:11

C / C++
– On exit from the region that part of the original list item will have the value it had on entry to12
the region;13

– On exit from the region that part of the corresponding list item will have the value it had on14
entry to the region;15

C / C++
Fortran

– On exit from the region that part of the original list item, if associated, will be associated with16
the same pointer target with which it was associated on entry to the region;17

– On exit from the region that part of the corresponding list item, if associated, will be18
associated with the same pointer target with which it was associated on entry to the region.19

Fortran
• For each part of the list item that is not an attached pointer:20

– If the clause is from, the value of that part of the corresponding list item is assigned to that21
part of the original list item;22

– If the clause is to, the value of that part of the original list item is assigned to that part of the23
corresponding list item.24

• To avoid data races:25

– Concurrent reads or updates of any part of the original list item must be synchronized with the26
update of the original list item that occurs as a result of the from clause;27

– Concurrent reads or updates of any part of the corresponding list item must be synchronized28
with the update of the corresponding list item that occurs as a result of the to clause.29

C / C++
The list items that appear in the to or from clauses may use shape-operators.30

C / C++

178 OpenMP API – Version 5.0 November 2018

The list items that appear in the to or from clauses may include array sections with stride1
expressions.2

The target update construct is a task generating construct. The generated task is a target task.3
The generated task region encloses the target update region.4

All clauses are evaluated when the target update construct is encountered. The data5
environment of the target task is created according to the data-sharing attribute clauses on the6
target update construct, per-data environment ICVs, and any default data-sharing attribute7
rules that apply to the target update construct. A variable that is mapped in the8
target update construct has a default data-sharing attribute of shared in the data9
environment of the target task.10

Assignment operations associated with mapping a variable (see Section 2.19.7.1 on page 315)11
occur when the target task executes.12

If the nowait clause is present, execution of the target task may be deferred. If the nowait13
clause is not present, the target task is an included task.14

If a depend clause is present, it is associated with the target task.15

The device is specified in the device clause. If there is no device clause, the device is16
determined by the default-device-var ICV. When an if clause is present and the if clause17
expression evaluates to false then no assignments occur.18

Execution Model Events19

Events associated with a target task are the same as for the task construct defined in20
Section 2.10.1 on page 135.21

The target-update-begin event occurs when a thread enters a target update region.22

The target-update-end event occurs when a thread exits a target update region.23

Tool Callbacks24

Callbacks associated with events for target tasks are the same as for the task construct defined in25
Section 2.10.1 on page 135; (flags & ompt_task_target) always evaluates to true in the26
dispatched callback.27

A thread dispatches a registered ompt_callback_target callback with28
ompt_scope_begin as its endpoint argument and ompt_target_update as its kind29
argument for each occurrence of a target-update-begin event in that thread in the context of the30
target task on the host. Similarly, a thread dispatches a registered ompt_callback_target31
callback with ompt_scope_end as its endpoint argument and ompt_target_update as its32
kind argument for each occurrence of a target-update-end event in that thread in the context of the33
target task on the host. These callbacks have type signature ompt_callback_target_t.34

CHAPTER 2. DIRECTIVES 179

Restrictions1

• A program must not depend on any ordering of the evaluations of the clauses of the2
target update directive, or on any side effects of the evaluations of the clauses.3

• At least one motion-clause must be specified.4

• A list item can only appear in a to or from clause, but not both.5

• A list item in a to or from clause must have a mappable type.6

• At most one device clause can appear on the directive. The device clause expression must7
evaluate to a non-negative integer value less than the value of omp_get_num_devices() or8
to the value of omp_get_initial_device().9

• At most one if clause can appear on the directive.10

• At most one nowait clause can appear on the directive.11

Cross References12

• Array shaping, Section 2.1.4 on page 4313

• Array sections, Section 2.1.5 on page 4414

• default-device-var, see Section 2.5 on page 63.15

• task construct, see Section 2.10.1 on page 135.16

• task scheduling constraints, see Section 2.10.6 on page 14917

• target data, see Section 2.12.2 on page 161.18

• if Clause, see Section 2.15 on page 220.19

• omp_get_num_devices routine, see Section 3.2.36 on page 371.20

• ompt_callback_task_create_t, see Section 4.5.2.7 on page 467.21

• ompt_callback_target_t, see Section 4.5.2.26 on page 490.22

2.12.7 declare target Directive23

Summary24

The declare target directive specifies that variables, functions (C, C++ and Fortran), and25
subroutines (Fortran) are mapped to a device. The declare target directive is a declarative26
directive.27

180 OpenMP API – Version 5.0 November 2018

Syntax1

C / C++
The syntax of the declare target directive takes either of the following forms:2

#pragma omp declare target new-line3
declaration-definition-seq4
#pragma omp end declare target new-line5

or6

#pragma omp declare target (extended-list) new-line7

or8

#pragma omp declare target clause[[,] clause ...] new-line9

where clause is one of the following:10

to(extended-list)11

link(list)12

device_type(host | nohost | any)13

C / C++
Fortran

The syntax of the declare target directive is as follows:14

!$omp declare target (extended-list)15

or16

!$omp declare target [clause[[,] clause] ...]17

where clause is one of the following:18

to(extended-list)19

link(list)20

device_type(host | nohost | any)21

Fortran

CHAPTER 2. DIRECTIVES 181

Description1

The declare target directive ensures that procedures and global variables can be executed or2
accessed on a device. Variables are mapped for all device executions, or for specific device3
executions through a link clause.4

If an extended-list is present with no clause then the to clause is assumed.5

The device_type clause specifies if a version of the procedure should be made available on6
host, device or both. If host is specified only a host version of the procedure is made available. If7
nohost is specified then only a device version of the procedure is made available. If any is8
specified then both device and host versions of the procedure are made available.9

C / C++
If a function appears in a to clause in the same translation unit in which the definition of the10
function occurs then a device-specific version of the function is created.11

If a variable appears in a to clause in the same translation unit in which the definition of the12
variable occurs then the original list item is allocated a corresponding list item in the device data13
environment of all devices.14

C / C++
Fortran

If an internal procedure appears in a to clause then a device-specific version of the procedure is15
created.16

If a variable that is host associated appears in a to clause then the original list item is allocated a17
corresponding list item in the device data environment of all devices.18

Fortran
If a variable appears in a to clause then the corresponding list item in the device data environment19
of each device is initialized once, in the manner specified by the program, but at an unspecified20
point in the program prior to the first reference to that list item. The list item is never removed from21
those device data environments as if its reference count is initialized to positive infinity.22

Including list items in a link clause supports compilation of functions called in a target region23
that refer to the list items. The list items are not mapped by the declare target directive.24
Instead, they are mapped according to the data mapping rules described in Section 2.19.7 on25
page 314.26

182 OpenMP API – Version 5.0 November 2018

C / C++
If a function is referenced in a function that appears as a list item in a to clause on a1
declare target directive then the name of the referenced function is treated as if it had2
appeared in a to clause on a declare target directive.3

If a variable with static storage duration or a function (except lambda for C++) is referenced in the4
initializer expression list of a variable with static storage duration that appears as a list item in a to5
clause on a declare target directive then the name of the referenced variable or function is6
treated as if it had appeared in a to clause on a declare target directive.7

The form of the declare target directive that has no clauses and requires a matching8
end declare target directive defines an implicit extended-list to an implicit to clause. The9
implicit extended-list consists of the variable names of any variable declarations at file or10
namespace scope that appear between the two directives and of the function names of any function11
declarations at file, namespace or class scope that appear between the two directives.12

The declaration-definition-seq defined by a declare target directive and an13
end declare target directive may contain declare target directives. If a14
device_type clause is present on the contained declare target directive, then its argument15
determines which versions are made available. If a list item appears both in an implicit and explicit16
list, the explicit list determines which versions are made available.17

C / C++
Fortran

If a procedure is referenced in a procedure that appears as a list item in a to clause on a18
declare target directive then the name of the procedure is treated as if it had appeared in a to19
clause on a declare target directive.20

If a declare target does not have any clauses then an implicit extended-list to an implicit to21
clause of one item is formed from the name of the enclosing subroutine subprogram, function22
subprogram or interface body to which it applies.23

If a declare target directive has a device_type clause then any enclosed internal24
procedures cannot contain any declare target directives. The enclosing device_type25
clause implicitly applies to internal procedures.26

Fortran

Restrictions27

• A threadprivate variable cannot appear in a declare target directive.28

• A variable declared in a declare target directive must have a mappable type.29

• The same list item must not appear multiple times in clauses on the same directive.30

• The same list item must not explicitly appear in both a to clause on one declare target31
directive and a link clause on another declare target directive.32

CHAPTER 2. DIRECTIVES 183

C++
• The function names of overloaded functions or template functions may only be specified within1
an implicit extended-list.2

• If a lambda declaration and definition appears between a declare target directive and the3
matching end declare target directive, all variables that are captured by the lambda4
expression must also appear in a to clause.5

C++
Fortran

• If a list item is a procedure name, it must not be a generic name, procedure pointer or entry name.6

• Any declare target directive with clauses must appear in a specification part of a7
subroutine subprogram, function subprogram, program or module.8

• Any declare target directive without clauses must appear in a specification part of a9
subroutine subprogram, function subprogram or interface body to which it applies.10

• If a declare target directive is specified in an interface block for a procedure, it must match11
a declare target directive in the definition of the procedure.12

• If an external procedure is a type-bound procedure of a derived type and a declare target13
directive is specified in the definition of the external procedure, such a directive must appear in14
the interface block that is accessible to the derived type definition.15

• If any procedure is declared via a procedure declaration statement that is not in the type-bound16
procedure part of a derived-type definition, any declare target with the procedure name17
must appear in the same specification part.18

• A variable that is part of another variable (as an array, structure element or type parameter19
inquiry) cannot appear in a declare target directive.20

• The declare target directive must appear in the declaration section of a scoping unit in21
which the common block or variable is declared.22

• If a declare target directive that specifies a common block name appears in one program23
unit, then such a directive must also appear in every other program unit that contains a COMMON24
statement that specifies the same name, after the last such COMMON statement in the program unit.25

• If a list item is declared with the BIND attribute, the corresponding C entities must also be26
specified in a declare target directive in the C program.27

• A blank common block cannot appear in a declare target directive.28

• A variable can only appear in a declare target directive in the scope in which it is declared.29
It must not be an element of a common block or appear in an EQUIVALENCE statement.30

• A variable that appears in a declare target directive must be declared in the Fortran scope31
of a module or have the SAVE attribute, either explicitly or implicitly.32

Fortran

184 OpenMP API – Version 5.0 November 2018

Cross References1

• target data construct, see Section 2.12.2 on page 161.2

• target construct, see Section 2.12.5 on page 170.3

2.13 Combined Constructs4

Combined constructs are shortcuts for specifying one construct immediately nested inside another5
construct. The semantics of the combined constructs are identical to that of explicitly specifying6
the first construct containing one instance of the second construct and no other statements.7

For combined constructs, tool callbacks are invoked as if the constructs were explicitly nested.8

2.13.1 Parallel Worksharing-Loop Construct9

Summary10

The parallel worksharing-loop construct is a shortcut for specifying a parallel construct11
containing a worksharing-loop construct with one or more associated loops and no other statements.12

Syntax13

C / C++
The syntax of the parallel worksharing-loop construct is as follows:14

#pragma omp parallel for [clause[[,] clause] ...] new-line15
for-loops16

where clause can be any of the clauses accepted by the parallel or for directives, except the17
nowait clause, with identical meanings and restrictions.18

C / C++

CHAPTER 2. DIRECTIVES 185

Fortran
The syntax of the parallel worksharing-loop construct is as follows:1

!$omp parallel do [clause[[,] clause] ...]2
do-loops3

[!$omp end parallel do]4

where clause can be any of the clauses accepted by the parallel or do directives, with identical5
meanings and restrictions.6

If an end parallel do directive is not specified, an end parallel do directive is assumed at7
the end of the do-loops. nowait may not be specified on an end parallel do directive.8

Fortran

Description9

The semantics are identical to explicitly specifying a parallel directive immediately followed10
by a worksharing-loop directive.11

Restrictions12

• The restrictions for the parallel construct and the worksharing-loop construct apply.13

Cross References14

• parallel construct, see Section 2.6 on page 74.15

• Worksharing-loop construct, see Section 2.9.2 on page 101.16

• Data attribute clauses, see Section 2.19.4 on page 282.17

2.13.2 parallel loop Construct18

Summary19

The parallel loop construct is a shortcut for specifying a parallel construct containing a20
loop construct with one or more associated loops and no other statements.21

186 OpenMP API – Version 5.0 November 2018

Syntax1

C / C++
The syntax of the parallel loop construct is as follows:2

#pragma omp parallel loop [clause[[,] clause] ...] new-line3
for-loops4

where clause can be any of the clauses accepted by the parallel or loop directives, with5
identical meanings and restrictions.6

C / C++
Fortran

The syntax of the parallel loop construct is as follows:7

!$omp parallel loop [clause[[,] clause] ...]8
do-loops9

[!$omp end parallel loop]10

where clause can be any of the clauses accepted by the parallel or loop directives, with11
identical meanings and restrictions.12

If an end parallel loop directive is not specified, an end parallel loop directive is13
assumed at the end of the do-loops. nowait may not be specified on an end parallel loop14
directive.15

Fortran

Description16

The semantics are identical to explicitly specifying a parallel directive immediately followed17
by a loop directive.18

Restrictions19

• The restrictions for the parallel construct and the loop construct apply.20

Cross References21

• parallel construct, see Section 2.6 on page 74.22

• loop construct, see Section 2.9.5 on page 128.23

• Data attribute clauses, see Section 2.19.4 on page 282.24

CHAPTER 2. DIRECTIVES 187

2.13.3 parallel sections Construct1

Summary2

The parallel sections construct is a shortcut for specifying a parallel construct3
containing a sections construct and no other statements.4

Syntax5

C / C++
The syntax of the parallel sections construct is as follows:6

#pragma omp parallel sections [clause[[,] clause] ...] new-line7
{8
[#pragma omp section new-line]9

structured-block10
[#pragma omp section new-line11

structured-block]12
...13
}14

where clause can be any of the clauses accepted by the parallel or sections directives,15
except the nowait clause, with identical meanings and restrictions.16

C / C++
Fortran

The syntax of the parallel sections construct is as follows:17

!$omp parallel sections [clause[[,] clause] ...]18
[!$omp section]19

structured-block20
[!$omp section21

structured-block]22
...23

!$omp end parallel sections24

where clause can be any of the clauses accepted by the parallel or sections directives, with25
identical meanings and restrictions.26

The last section ends at the end parallel sections directive. nowait cannot be specified27
on an end parallel sections directive.28

Fortran

188 OpenMP API – Version 5.0 November 2018

Description1

C / C++
The semantics are identical to explicitly specifying a parallel directive immediately followed2
by a sections directive.3

C / C++
Fortran

The semantics are identical to explicitly specifying a parallel directive immediately followed4
by a sections directive, and an end sections directive immediately followed by an5
end parallel directive.6

Fortran

Restrictions7

The restrictions for the parallel construct and the sections construct apply.8

Cross References9

• parallel construct, see Section 2.6 on page 74.10

• sections construct, see Section 2.8.1 on page 86.11

• Data attribute clauses, see Section 2.19.4 on page 282.12

Fortran

2.13.4 parallel workshare Construct13

Summary14

The parallel workshare construct is a shortcut for specifying a parallel construct15
containing a workshare construct and no other statements.16

Syntax17

The syntax of the parallel workshare construct is as follows:18

!$omp parallel workshare [clause[[,] clause] ...]19
structured-block20

!$omp end parallel workshare21

where clause can be any of the clauses accepted by the parallel directive, with identical22
meanings and restrictions. nowait may not be specified on an end parallel workshare23
directive.24

CHAPTER 2. DIRECTIVES 189

Description1

The semantics are identical to explicitly specifying a parallel directive immediately followed2
by a workshare directive, and an end workshare directive immediately followed by an3
end parallel directive.4

Restrictions5

The restrictions for the parallel construct and the workshare construct apply.6

Cross References7

• parallel construct, see Section 2.6 on page 74.8

• workshare construct, see Section 2.8.3 on page 92.9

• Data attribute clauses, see Section 2.19.4 on page 282.10

Fortran

2.13.5 Parallel Worksharing-Loop SIMD Construct11

Summary12

The parallel worksharing-loop SIMD construct is a shortcut for specifying a parallel construct13
containing a worksharing-loop SIMD construct and no other statements.14

Syntax15

C / C++
The syntax of the parallel worksharing-loop SIMD construct is as follows:16

#pragma omp parallel for simd [clause[[,] clause] ...] new-line17
for-loops18

where clause can be any of the clauses accepted by the parallel or for simd directives, except19
the nowait clause, with identical meanings and restrictions.20

C / C++

190 OpenMP API – Version 5.0 November 2018

Fortran
The syntax of the parallel worksharing-loop SIMD construct is as follows:1

!$omp parallel do simd [clause[[,] clause] ...]2
do-loops3

[!$omp end parallel do simd]4

where clause can be any of the clauses accepted by the parallel or do simd directives, with5
identical meanings and restrictions.6

If an end parallel do simd directive is not specified, an end parallel do simd directive7
is assumed at the end of the do-loops. nowait may not be specified on an end parallel8
do simd directive.9

Fortran

Description10

The semantics of the parallel worksharing-loop SIMD construct are identical to explicitly11
specifying a parallel directive immediately followed by a worksharing-loop SIMD directive.12

Restrictions13

The restrictions for the parallel construct and the worksharing-loop SIMD construct apply.14

Cross References15

• parallel construct, see Section 2.6 on page 74.16

• Worksharing-loop SIMD construct, see Section 2.9.3.2 on page 114.17

• Data attribute clauses, see Section 2.19.4 on page 282.18

2.13.6 parallel master Construct19

Summary20

The parallel master construct is a shortcut for specifying a parallel construct containing21
a master construct and no other statements.22

CHAPTER 2. DIRECTIVES 191

Syntax1

C / C++
The syntax of the parallel master construct is as follows:2

#pragma omp parallel master [clause[[,] clause] ...] new-line3
structured-block4

where clause can be any of the clauses accepted by the parallel or master directives, with5
identical meanings and restrictions.6

C / C++
Fortran

The syntax of the parallel master construct is as follows:7

!$omp parallel master [clause[[,] clause] ...]8
structured-block9

!$omp end parallel master10

where clause can be any of the clauses accepted by the parallel or master directives, with11
identical meanings and restrictions.12

Fortran

Description13

The semantics are identical to explicitly specifying a parallel directive immediately followed14
by a master directive.15

Restrictions16

The restrictions for the parallel construct and the master construct apply.17

Cross References18

• parallel construct, see Section 2.6 on page 74.19

• master construct, see Section 2.16 on page 221.20

• Data attribute clauses, see Section 2.19.4 on page 282.21

2.13.7 master taskloop Construct22

Summary23

The master taskloop construct is a shortcut for specifying a master construct containing a24
taskloop construct and no other statements.25

192 OpenMP API – Version 5.0 November 2018

Syntax1

C / C++
The syntax of the master taskloop construct is as follows:2

#pragma omp master taskloop [clause[[,] clause] ...] new-line3
for-loops4

where clause can be any of the clauses accepted by the master or taskloop directives with5
identical meanings and restrictions.6

C / C++
Fortran

The syntax of the master taskloop construct is as follows:7

!$omp master taskloop [clause[[,] clause] ...]8
do-loops9

[!$omp end master taskloop]10

where clause can be any of the clauses accepted by the master or taskloop directives with11
identical meanings and restrictions.12

If an end master taskloop directive is not specified, an end master taskloop directive is13
assumed at the end of the do-loops.14

Fortran

Description15

The semantics are identical to explicitly specifying a master directive immediately followed by a16
taskloop directive.17

Restrictions18

The restrictions for the master and taskloop constructs apply.19

Cross References20

• taskloop construct, see Section 2.10.2 on page 140.21

• master construct, see Section 2.16 on page 221.22

• Data attribute clauses, see Section 2.19.4 on page 282.23

CHAPTER 2. DIRECTIVES 193

2.13.8 master taskloop simd Construct1

Summary2

The master taskloop simd construct is a shortcut for specifying a master construct3
containing a taskloop simd construct and no other statements.4

Syntax5

C / C++
The syntax of the master taskloop simd construct is as follows:6

#pragma omp master taskloop simd [clause[[,] clause] ...] new-line7
for-loops8

where clause can be any of the clauses accepted by the master or taskloop simd directives9
with identical meanings and restrictions.10

C / C++
Fortran

The syntax of the master taskloop simd construct is as follows:11

!$omp master taskloop simd [clause[[,] clause] ...]12
do-loops13

[!$omp end master taskloop simd]14

where clause can be any of the clauses accepted by the master or taskloop simd directives15
with identical meanings and restrictions.16

If an end master taskloop simd directive is not specified, an end master17
taskloop simd directive is assumed at the end of the do-loops.18

Fortran

Description19

The semantics are identical to explicitly specifying a master directive immediately followed by a20
taskloop simd directive.21

Restrictions22

The restrictions for the master and taskloop simd constructs apply.23

194 OpenMP API – Version 5.0 November 2018

Cross References1

• taskloop simd construct, see Section 2.10.3 on page 146.2

• master construct, see Section 2.16 on page 221.3

• Data attribute clauses, see Section 2.19.4 on page 282.4

2.13.9 parallel master taskloop Construct5

Summary6

The parallel master taskloop construct is a shortcut for specifying a parallel7
construct containing a master taskloop construct and no other statements.8

Syntax9

C / C++
The syntax of the parallel master taskloop construct is as follows:10

#pragma omp parallel master taskloop [clause[[,] clause] ...] new-line11
for-loops12

where clause can be any of the clauses accepted by the parallel or master taskloop13
directives, except the in_reduction clause, with identical meanings and restrictions.14

C / C++
Fortran

The syntax of the parallel master taskloop construct is as follows:15

!$omp parallel master taskloop [clause[[,] clause] ...]16
do-loops17

[!$omp end parallel master taskloop]18

where clause can be any of the clauses accepted by the parallel or master taskloop19
directives, except the in_reduction clause, with identical meanings and restrictions.20

If an end parallel master taskloop directive is not specified, an21
end parallel master taskloop directive is assumed at the end of the do-loops.22

Fortran

Description23

The semantics are identical to explicitly specifying a parallel directive immediately followed24
by a master taskloop directive.25

CHAPTER 2. DIRECTIVES 195

Restrictions1

The restrictions for the parallel construct and the master taskloop construct apply.2

Cross References3

• parallel construct, see Section 2.6 on page 74.4

• master taskloop construct, see Section 2.13.7 on page 192.5

• Data attribute clauses, see Section 2.19.4 on page 282.6

2.13.10 parallel master taskloop simd Construct7

Summary8

The parallel master taskloop simd construct is a shortcut for specifying a parallel9
construct containing a master taskloop simd construct and no other statements.10

Syntax11

C / C++
The syntax of the parallel master taskloop simd construct is as follows:12

#pragma omp parallel master taskloop simd [clause[[,] clause] ...] new-line13
for-loops14

where clause can be any of the clauses accepted by the parallel or master taskloop simd15
directives, except the in_reduction clause, with identical meanings and restrictions.16

C / C++
Fortran

The syntax of the parallel master taskloop simd construct is as follows:17

!$omp parallel master taskloop simd [clause[[,] clause] ...]18
do-loops19

[!$omp end parallel master taskloop simd]20

where clause can be any of the clauses accepted by the parallel or master taskloop simd21
directives, except the in_reduction clause, with identical meanings and restrictions.22

If an end parallel master taskloop simd directive is not specified, an end parallel23
master taskloop simd directive is assumed at the end of the do-loops.24

Fortran

196 OpenMP API – Version 5.0 November 2018

Description1

The semantics are identical to explicitly specifying a parallel directive immediately followed2
by a master taskloop simd directive.3

Restrictions4

The restrictions for the parallel construct and the master taskloop simd construct apply.5

Cross References6

• parallel construct, see Section 2.6 on page 74.7

• master taskloop simd construct, see Section 2.13.8 on page 194.8

• Data attribute clauses, see Section 2.19.4 on page 282.9

2.13.11 teams distribute Construct10

Summary11

The teams distribute construct is a shortcut for specifying a teams construct containing a12
distribute construct and no other statements.13

Syntax14

C / C++
The syntax of the teams distribute construct is as follows:15

#pragma omp teams distribute [clause[[,] clause] ...] new-line16
for-loops17

where clause can be any of the clauses accepted by the teams or distribute directives with18
identical meanings and restrictions.19

C / C++

CHAPTER 2. DIRECTIVES 197

Fortran
The syntax of the teams distribute construct is as follows:1

!$omp teams distribute [clause[[,] clause] ...]2
do-loops3

[!$omp end teams distribute]4

where clause can be any of the clauses accepted by the teams or distribute directives with5
identical meanings and restrictions.6

If an end teams distribute directive is not specified, an end teams distribute7
directive is assumed at the end of the do-loops.8

Fortran

Description9

The semantics are identical to explicitly specifying a teams directive immediately followed by a10
distribute directive.11

Restrictions12

The restrictions for the teams and distribute constructs apply.13

Cross References14

• teams construct, see Section 2.7 on page 82.15

• distribute construct, see Section 2.9.4.1 on page 120.16

• Data attribute clauses, see Section 2.19.4 on page 282.17

2.13.12 teams distribute simd Construct18

Summary19

The teams distribute simd construct is a shortcut for specifying a teams construct20
containing a distribute simd construct and no other statements.21

198 OpenMP API – Version 5.0 November 2018

Syntax1

C / C++
The syntax of the teams distribute simd construct is as follows:2

#pragma omp teams distribute simd [clause[[,] clause] ...] new-line3
for-loops4

where clause can be any of the clauses accepted by the teams or distribute simd directives5
with identical meanings and restrictions.6

C / C++
Fortran

The syntax of the teams distribute simd construct is as follows:7

!$omp teams distribute simd [clause[[,] clause] ...]8
do-loops9

[!$omp end teams distribute simd]10

where clause can be any of the clauses accepted by the teams or distribute simd directives11
with identical meanings and restrictions.12

If an end teams distribute simd directive is not specified, an end teams13
distribute simd directive is assumed at the end of the do-loops.14

Fortran

Description15

The semantics are identical to explicitly specifying a teams directive immediately followed by a16
distribute simd directive.17

Restrictions18

The restrictions for the teams and distribute simd constructs apply.19

Cross References20

• teams construct, see Section 2.7 on page 82.21

• distribute simd construct, see Section 2.9.4.2 on page 123.22

• Data attribute clauses, see Section 2.19.4 on page 282.23

CHAPTER 2. DIRECTIVES 199

2.13.13 Teams Distribute Parallel Worksharing-Loop Construct1

Summary2

The teams distribute parallel worksharing-loop construct is a shortcut for specifying a teams3
construct containing a distribute parallel worksharing-loop construct and no other statements.4

Syntax5

C / C++
The syntax of the teams distribute parallel worksharing-loop construct is as follows:6

#pragma omp teams distribute parallel for \7
[clause[[,] clause] ...] new-line8

for-loops9

where clause can be any of the clauses accepted by the teams or distribute parallel for10
directives with identical meanings and restrictions.11

C / C++
Fortran

The syntax of the teams distribute parallel worksharing-loop construct is as follows:12

!$omp teams distribute parallel do [clause[[,] clause] ...]13
do-loops14

[!$omp end teams distribute parallel do]15

where clause can be any of the clauses accepted by the teams or distribute parallel do16
directives with identical meanings and restrictions.17

If an end teams distribute parallel do directive is not specified, an end teams18
distribute parallel do directive is assumed at the end of the do-loops.19

Fortran

Description20

The semantics are identical to explicitly specifying a teams directive immediately followed by a21
distribute parallel worksharing-loop directive.22

Restrictions23

The restrictions for the teams and distribute parallel worksharing-loop constructs apply.24

200 OpenMP API – Version 5.0 November 2018

Cross References1

• teams construct, see Section 2.7 on page 82.2

• Distribute parallel worksharing-loop construct, see Section 2.9.4.3 on page 125.3

• Data attribute clauses, see Section 2.19.4 on page 282.4

2.13.14 Teams Distribute Parallel Worksharing-Loop SIMD5

Construct6

Summary7

The teams distribute parallel worksharing-loop SIMD construct is a shortcut for specifying a8
teams construct containing a distribute parallel worksharing-loop SIMD construct and no other9
statements.10

Syntax11

C / C++
The syntax of the teams distribute parallel worksharing-loop SIMD construct is as follows:12

#pragma omp teams distribute parallel for simd \13
[clause[[,] clause] ...] new-line14

for-loops15

where clause can be any of the clauses accepted by the teams or distribute parallel16
for simd directives with identical meanings and restrictions.17

C / C++
Fortran

The syntax of the teams distribute parallel worksharing-loop SIMD construct is as follows:18

!$omp teams distribute parallel do simd [clause[[,] clause] ...]19
do-loops20

[!$omp end teams distribute parallel do simd]21

where clause can be any of the clauses accepted by the teams or distribute parallel22
do simd directives with identical meanings and restrictions.23

If an end teams distribute parallel do simd directive is not specified, an end teams24
distribute parallel do simd directive is assumed at the end of the do-loops.25

Fortran

CHAPTER 2. DIRECTIVES 201

Description1

The semantics are identical to explicitly specifying a teams directive immediately followed by a2
distribute parallel worksharing-loop SIMD directive.3

Restrictions4

The restrictions for the teams and distribute parallel worksharing-loop SIMD constructs apply.5

Cross References6

• teams construct, see Section 2.7 on page 82.7

• Distribute parallel worksharing-loop SIMD construct, see Section 2.9.4.4 on page 126.8

• Data attribute clauses, see Section 2.19.4 on page 282.9

2.13.15 teams loop Construct10

Summary11

The teams loop construct is a shortcut for specifying a teams construct containing a loop12
construct and no other statements.13

Syntax14

C / C++
The syntax of the teams loop construct is as follows:15

#pragma omp teams loop [clause[[,] clause] ...] new-line16
for-loops17

where clause can be any of the clauses accepted by the teams or loop directives with identical18
meanings and restrictions.19

C / C++

202 OpenMP API – Version 5.0 November 2018

Fortran
The syntax of the teams loop construct is as follows:1

!$omp teams loop [clause[[,] clause] ...]2
do-loops3

[!$omp end teams loop]4

where clause can be any of the clauses accepted by the teams or loop directives with identical5
meanings and restrictions.6

If an end teams loop directive is not specified, an end teams loop directive is assumed at the7
end of the do-loops.8

Fortran

Description9

The semantics are identical to explicitly specifying a teams directive immediately followed by a10
loop directive.11

Restrictions12

The restrictions for the teams and loop constructs apply.13

Cross References14

• teams construct, see Section 2.7 on page 82.15

• loop construct, see Section 2.9.5 on page 128.16

• Data attribute clauses, see Section 2.19.4 on page 282.17

2.13.16 target parallel Construct18

Summary19

The target parallel construct is a shortcut for specifying a target construct containing a20
parallel construct and no other statements.21

CHAPTER 2. DIRECTIVES 203

Syntax1

C / C++
The syntax of the target parallel construct is as follows:2

#pragma omp target parallel [clause[[,] clause] ...] new-line3
structured-block4

where clause can be any of the clauses accepted by the target or parallel directives, except5
for copyin, with identical meanings and restrictions.6

C / C++
Fortran

The syntax of the target parallel construct is as follows:7

!$omp target parallel [clause[[,] clause] ...]8
structured-block9

!$omp end target parallel10

where clause can be any of the clauses accepted by the target or parallel directives, except11
for copyin, with identical meanings and restrictions.12

Fortran

Description13

The semantics are identical to explicitly specifying a target directive immediately followed by a14
parallel directive.15

Restrictions16

The restrictions for the target and parallel constructs apply except for the following explicit17
modifications:18

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the19
directive must include a directive-name-modifier.20

• At most one if clause without a directive-name-modifier can appear on the directive.21

• At most one if clause with the parallel directive-name-modifier can appear on the directive.22

• At most one if clause with the target directive-name-modifier can appear on the directive.23

204 OpenMP API – Version 5.0 November 2018

Cross References1

• parallel construct, see Section 2.6 on page 74.2

• target construct, see Section 2.12.5 on page 170.3

• if Clause, see Section 2.15 on page 220.4

• Data attribute clauses, see Section 2.19.4 on page 282.5

2.13.17 Target Parallel Worksharing-Loop Construct6

Summary7

The target parallel worksharing-loop construct is a shortcut for specifying a target construct8
containing a parallel worksharing-loop construct and no other statements.9

Syntax10

C / C++
The syntax of the target parallel worksharing-loop construct is as follows:11

#pragma omp target parallel for [clause[[,] clause] ...] new-line12
for-loops13

where clause can be any of the clauses accepted by the target or parallel for directives,14
except for copyin, with identical meanings and restrictions.15

C / C++
Fortran

The syntax of the target parallel worksharing-loop construct is as follows:16

!$omp target parallel do [clause[[,] clause] ...]17
do-loops18

[!$omp end target parallel do]19

where clause can be any of the clauses accepted by the target or parallel do directives,20
except for copyin, with identical meanings and restrictions.21

If an end target parallel do directive is not specified, an end target parallel do22
directive is assumed at the end of the do-loops.23

Fortran

CHAPTER 2. DIRECTIVES 205

Description1

The semantics are identical to explicitly specifying a target directive immediately followed by a2
parallel worksharing-loop directive.3

Restrictions4

The restrictions for the target and parallel worksharing-loop constructs apply except for the5
following explicit modifications:6

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the7
directive must include a directive-name-modifier.8

• At most one if clause without a directive-name-modifier can appear on the directive.9

• At most one if clause with the parallel directive-name-modifier can appear on the directive.10

• At most one if clause with the target directive-name-modifier can appear on the directive.11

Cross References12

• target construct, see Section 2.12.5 on page 170.13

• Parallel Worksharing-Loop construct, see Section 2.13.1 on page 185.14

• if Clause, see Section 2.15 on page 220.15

• Data attribute clauses, see Section 2.19.4 on page 282.16

2.13.18 Target Parallel Worksharing-Loop SIMD Construct17

Summary18

The target parallel worksharing-loop SIMD construct is a shortcut for specifying a target19
construct containing a parallel worksharing-loop SIMD construct and no other statements.20

206 OpenMP API – Version 5.0 November 2018

Syntax1

C / C++
The syntax of the target parallel worksharing-loop SIMD construct is as follows:2

#pragma omp target parallel for simd \3
[clause[[,] clause] ...] new-line4

for-loops5

where clause can be any of the clauses accepted by the target or parallel for simd6
directives, except for copyin, with identical meanings and restrictions.7

C / C++
Fortran

The syntax of the target parallel worksharing-loop SIMD construct is as follows:8

!$omp target parallel do simd [clause[[,] clause] ...]9
do-loops10

[!$omp end target parallel do simd]11

where clause can be any of the clauses accepted by the target or parallel do simd12
directives, except for copyin, with identical meanings and restrictions.13

If an end target parallel do simd directive is not specified, an end target parallel14
do simd directive is assumed at the end of the do-loops.15

Fortran

Description16

The semantics are identical to explicitly specifying a target directive immediately followed by a17
parallel worksharing-loop SIMD directive.18

Restrictions19

The restrictions for the target and parallel worksharing-loop SIMD constructs apply except for20
the following explicit modifications:21

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the22
directive must include a directive-name-modifier.23

• At most one if clause without a directive-name-modifier can appear on the directive.24

• At most one if clause with the parallel directive-name-modifier can appear on the directive.25

• At most one if clause with the target directive-name-modifier can appear on the directive.26

CHAPTER 2. DIRECTIVES 207

Cross References1

• target construct, see Section 2.12.5 on page 170.2

• Parallel worksharing-loop SIMD construct, see Section 2.13.5 on page 190.3

• if Clause, see Section 2.15 on page 220.4

• Data attribute clauses, see Section 2.19.4 on page 282.5

2.13.19 target parallel loop Construct6

Summary7

The target parallel loop construct is a shortcut for specifying a target construct8
containing a parallel loop construct and no other statements.9

Syntax10

C / C++
The syntax of the target parallel loop construct is as follows:11

#pragma omp target parallel loop [clause[[,] clause] ...] new-line12
for-loops13

where clause can be any of the clauses accepted by the target or parallel loop directives14
with identical meanings and restrictions.15

C / C++
Fortran

The syntax of the target parallel loop construct is as follows:16

!$omp target parallel loop [clause[[,] clause] ...]17
do-loops18

[!$omp end target parallel loop]19

where clause can be any of the clauses accepted by the teams or parallel loop directives20
with identical meanings and restrictions.21

If an end target parallel loop directive is not specified, an end target parallel22
loop directive is assumed at the end of the do-loops. nowait may not be specified on an23
end target parallel loop directive.24

Fortran

208 OpenMP API – Version 5.0 November 2018

Description1

The semantics are identical to explicitly specifying a target directive immediately followed by a2
parallel loop directive.3

Restrictions4

The restrictions for the target and parallel loop constructs apply.5

Cross References6

• target construct, see Section 2.12.5 on page 170.7

• parallel loop construct, see Section 2.13.2 on page 186.8

• Data attribute clauses, see Section 2.19.4 on page 282.9

2.13.20 target simd Construct10

Summary11

The target simd construct is a shortcut for specifying a target construct containing a simd12
construct and no other statements.13

Syntax14

C / C++
The syntax of the target simd construct is as follows:15

#pragma omp target simd [clause[[,] clause] ...] new-line16
for-loops17

where clause can be any of the clauses accepted by the target or simd directives with identical18
meanings and restrictions.19

C / C++

CHAPTER 2. DIRECTIVES 209

Fortran
The syntax of the target simd construct is as follows:1

!$omp target simd [clause[[,] clause] ...]2
do-loops3

[!$omp end target simd]4

where clause can be any of the clauses accepted by the target or simd directives with identical5
meanings and restrictions.6

If an end target simd directive is not specified, an end target simd directive is assumed at7
the end of the do-loops.8

Fortran

Description9

The semantics are identical to explicitly specifying a target directive immediately followed by a10
simd directive.11

Restrictions12

The restrictions for the target and simd constructs apply.13

Cross References14

• simd construct, see Section 2.9.3.1 on page 110.15

• target construct, see Section 2.12.5 on page 170.16

• Data attribute clauses, see Section 2.19.4 on page 282.17

2.13.21 target teams Construct18

Summary19

The target teams construct is a shortcut for specifying a target construct containing a20
teams construct and no other statements.21

210 OpenMP API – Version 5.0 November 2018

Syntax1

C / C++
The syntax of the target teams construct is as follows:2

#pragma omp target teams [clause[[,] clause] ...] new-line3
structured-block4

where clause can be any of the clauses accepted by the target or teams directives with identical5
meanings and restrictions.6

C / C++
Fortran

The syntax of the target teams construct is as follows:7

!$omp target teams [clause[[,] clause] ...]8
structured-block9

!$omp end target teams10

where clause can be any of the clauses accepted by the target or teams directives with identical11
meanings and restrictions.12

Fortran

Description13

The semantics are identical to explicitly specifying a target directive immediately followed by a14
teams directive.15

Restrictions16

The restrictions for the target and teams constructs apply.17

Cross References18

• teams construct, see Section 2.7 on page 82.19

• target construct, see Section 2.12.5 on page 170.20

• Data attribute clauses, see Section 2.19.4 on page 282.21

2.13.22 target teams distribute Construct22

Summary23

The target teams distribute construct is a shortcut for specifying a target construct24
containing a teams distribute construct and no other statements.25

CHAPTER 2. DIRECTIVES 211

Syntax1

C / C++
The syntax of the target teams distribute construct is as follows:2

#pragma omp target teams distribute [clause[[,] clause] ...] new-line3
for-loops4

where clause can be any of the clauses accepted by the target or teams distribute5
directives with identical meanings and restrictions.6

C / C++
Fortran

The syntax of the target teams distribute construct is as follows:7

!$omp target teams distribute [clause[[,] clause] ...]8
do-loops9

[!$omp end target teams distribute]10

where clause can be any of the clauses accepted by the target or teams distribute11
directives with identical meanings and restrictions.12

If an end target teams distribute directive is not specified, an end target teams13
distribute directive is assumed at the end of the do-loops.14

Fortran

Description15

The semantics are identical to explicitly specifying a target directive immediately followed by a16
teams distribute directive.17

Restrictions18

The restrictions for the target and teams distribute constructs.19

Cross References20

• target construct, see Section 2.12.2 on page 161.21

• teams distribute construct, see Section 2.13.11 on page 197.22

• Data attribute clauses, see Section 2.19.4 on page 282.23

212 OpenMP API – Version 5.0 November 2018

2.13.23 target teams distribute simd Construct1

Summary2

The target teams distribute simd construct is a shortcut for specifying a target3
construct containing a teams distribute simd construct and no other statements.4

Syntax5

C / C++
The syntax of the target teams distribute simd construct is as follows:6

#pragma omp target teams distribute simd \7
[clause[[,] clause] ...] new-line8

for-loops9

where clause can be any of the clauses accepted by the target or teams distribute simd10
directives with identical meanings and restrictions.11

C / C++
Fortran

The syntax of the target teams distribute simd construct is as follows:12

!$omp target teams distribute simd [clause[[,] clause] ...]13
do-loops14

[!$omp end target teams distribute simd]15

where clause can be any of the clauses accepted by the target or teams distribute simd16
directives with identical meanings and restrictions.17

If an end target teams distribute simd directive is not specified, an end target18
teams distribute simd directive is assumed at the end of the do-loops.19

Fortran

Description20

The semantics are identical to explicitly specifying a target directive immediately followed by a21
teams distribute simd directive.22

Restrictions23

The restrictions for the target and teams distribute simd constructs apply.24

CHAPTER 2. DIRECTIVES 213

Cross References1

• target construct, see Section 2.12.2 on page 161.2

• teams distribute simd construct, see Section 2.13.12 on page 198.3

• Data attribute clauses, see Section 2.19.4 on page 282.4

2.13.24 target teams loop Construct5

Summary6

The target teams loop construct is a shortcut for specifying a target construct containing a7
teams loop construct and no other statements.8

Syntax9

C / C++
The syntax of the target teams loop construct is as follows:10

#pragma omp target teams loop [clause[[,] clause] ...] new-line11
for-loops12

where clause can be any of the clauses accepted by the target or teams loop directives with13
identical meanings and restrictions.14

C / C++
Fortran

The syntax of the target teams loop construct is as follows:15

!$omp target teams loop [clause[[,] clause] ...]16
do-loops17

[!$omp end target teams loop]18

where clause can be any of the clauses accepted by the target or teams loop directives with19
identical meanings and restrictions.20

If an end target teams loop directive is not specified, an end target teams loop21
directive is assumed at the end of the do-loops.22

Fortran

Description23

The semantics are identical to explicitly specifying a target directive immediately followed by a24
teams loop directive.25

214 OpenMP API – Version 5.0 November 2018

Restrictions1

The restrictions for the target and teams loop constructs.2

Cross References3

• target construct, see Section 2.12.5 on page 170.4

• Teams loop construct, see Section 2.13.15 on page 202.5

• Data attribute clauses, see Section 2.19.4 on page 282.6

2.13.25 Target Teams Distribute Parallel Worksharing-Loop7

Construct8

Summary9

The target teams distribute parallel worksharing-loop construct is a shortcut for specifying a10
target construct containing a teams distribute parallel worksharing-loop construct and no other11
statements.12

Syntax13

C / C++
The syntax of the target teams distribute parallel worksharing-loop construct is as follows:14

#pragma omp target teams distribute parallel for \15
[clause[[,] clause] ...] new-line16

for-loops17

where clause can be any of the clauses accepted by the target or teams distribute18
parallel for directives with identical meanings and restrictions.19

C / C++
Fortran

The syntax of the target teams distribute parallel worksharing-loop construct is as follows:20

!$omp target teams distribute parallel do [clause[[,] clause] ...]21
do-loops22

[!$omp end target teams distribute parallel do]23

where clause can be any of the clauses accepted by the target or teams distribute24
parallel do directives with identical meanings and restrictions.25

If an end target teams distribute parallel do directive is not specified, an26
end target teams distribute parallel do directive is assumed at the end of the27
do-loops.28

Fortran

CHAPTER 2. DIRECTIVES 215

Description1

The semantics are identical to explicitly specifying a target directive immediately followed by a2
teams distribute parallel worksharing-loop directive.3

Restrictions4

The restrictions for the target and teams distribute parallel worksharing-loop constructs apply5
except for the following explicit modifications:6

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the7
directive must include a directive-name-modifier.8

• At most one if clause without a directive-name-modifier can appear on the directive.9

• At most one if clause with the parallel directive-name-modifier can appear on the directive.10

• At most one if clause with the target directive-name-modifier can appear on the directive.11

Cross References12

• target construct, see Section 2.12.5 on page 170.13

• Teams distribute parallel worksharing-loop construct, see Section 2.13.13 on page 200.14

• if Clause, see Section 2.15 on page 220.15

• Data attribute clauses, see Section 2.19.4 on page 282.16

2.13.26 Target Teams Distribute Parallel Worksharing-Loop SIMD17

Construct18

Summary19

The target teams distribute parallel worksharing-loop SIMD construct is a shortcut for specifying a20
target construct containing a teams distribute parallel worksharing-loop SIMD construct and no21
other statements.22

216 OpenMP API – Version 5.0 November 2018

Syntax1

C / C++
The syntax of the target teams distribute parallel worksharing-loop SIMD construct is as follows:2

#pragma omp target teams distribute parallel for simd \3
[clause[[,] clause] ...] new-line4

for-loops5

where clause can be any of the clauses accepted by the target or teams distribute6
parallel for simd directives with identical meanings and restrictions.7

C / C++
Fortran

The syntax of the target teams distribute parallel worksharing-loop SIMD construct is as follows:8

!$omp target teams distribute parallel do simd [clause[[,] clause] ...]9
do-loops10

[!$omp end target teams distribute parallel do simd]11

where clause can be any of the clauses accepted by the target or teams distribute12
parallel do simd directives with identical meanings and restrictions.13

If an end target teams distribute parallel do simd directive is not specified, an14
end target teams distribute parallel do simd directive is assumed at the end of the15
do-loops.16

Fortran

Description17

The semantics are identical to explicitly specifying a target directive immediately followed by a18
teams distribute parallel worksharing-loop SIMD directive.19

Restrictions20

The restrictions for the target and teams distribute parallel worksharing-loop SIMD constructs21
apply except for the following explicit modifications:22

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the23
directive must include a directive-name-modifier.24

• At most one if clause without a directive-name-modifier can appear on the directive.25

• At most one if clause with the parallel directive-name-modifier can appear on the directive.26

• At most one if clause with the target directive-name-modifier can appear on the directive.27

CHAPTER 2. DIRECTIVES 217

Cross References1

• target construct, see Section 2.12.5 on page 170.2

• Teams distribute parallel worksharing-loop SIMD construct, see Section 2.13.14 on page 201.3

• if Clause, see Section 2.15 on page 220.4

• Data attribute clauses, see Section 2.19.4 on page 282.5

2.14 Clauses on Combined and Composite Constructs6

This section specifies the handling of clauses on combined or composite constructs and the7
handling of implicit clauses from variables with predetermined data sharing if they are not8
predetermined only on a particular construct. Some clauses are permitted only on a single construct9
of the constructs that constitute the combined or composite construct, in which case the effect is as10
if the clause is applied to that specific construct. As detailed in this section, other clauses have the11
effect as if they are applied to one or more constituent constructs.12

The collapse clause is applied once to the combined or composite construct.13

The effect of the private clause is as if it is applied only to the innermost constituent construct14
that permits it.15

The effect of the firstprivate clause is as if it is applied to one or more constructs as follows:16

• To the distribute construct if it is among the constituent constructs;17

• To the teams construct if it is among the constituent constructs and the distribute18
construct is not;19

• To the worksharing-loop construct if it is among the constituent constructs;20

• To the taskloop construct if it is among the constituent constructs;21

• To the parallel construct if it is among the constituent constructs and the worksharing-loop22
construct or the taskloop construct is not;23

• To the outermost constituent construct if not already applied to it by the above rules and the24
outermost constituent construct is not a teams construct, a parallel construct, a master25
construct, or a target construct; and26

• To the target construct if it is among the constituent constructs and the same list item does not27
appear in a lastprivate or map clause.28

218 OpenMP API – Version 5.0 November 2018

If the parallel construct is among the constituent constructs and the effect is not as if the1
firstprivate clause is applied to it by the above rules, then the effect is as if the shared2
clause with the same list item is applied to the parallel construct. If the teams construct is3
among the constituent constructs and the effect is not as if the firstprivate clause is applied to4
it by the above rules, then the effect is as if the shared clause with the same list item is applied to5
the teams construct.6

The effect of the lastprivate clause is as if it is applied to one or more constructs as follows:7

• To the worksharing-loop construct if it is among the constituent constructs;8

• To the taskloop construct if it is among the constituent constructs;9

• To the distribute construct if it is among the constituent constructs; and10

• To the innermost constituent construct that permits it unless it is a worksharing-loop or11
distribute construct.12

If the parallel construct is among the constituent constructs and the list item is not also specified13
in the firstprivate clause, then the effect of the lastprivate clause is as if the shared14
clause with the same list item is applied to the parallel construct. If the teams construct is15
among the constituent constructs and the list item is not also specified in the firstprivate16
clause, then the effect of the lastprivate clause is as if the shared clause with the same list17
item is applied to the teams construct. If the target construct is among the constituent18
constructs and the list item is not specified in a map clause, the effect of the lastprivate clause19
is as if the same list item appears in a map clause with a map-type of tofrom.20

The effect of the shared, default, order, or allocate clause is as if it is applied to all21
constituent constructs that permit the clause.22

The effect of the reduction clause is as if it is applied to all constructs that permit the clause,23
except for the following constructs:24

• The parallel construct, when combined with the sections, worksharing-loop, loop, or25
taskloop construct; and26

• The teams construct, when combined with the loop construct.27

For the parallel and teams constructs above, the effect of the reduction clause instead is as28
if each list item or, for any list item that is an array item, its corresponding base array or base29
pointer appears in a shared clause for the construct. If the task reduction-modifier is specified,30
the effect is as if it only modifies the behavior of the reduction clause on the innermost31
construct that constitutes the combined construct and that accepts the modifier (see Section 2.19.5.432
on page 300). If the inscan reduction-modifier is specified, the effect is as if it modifies the33
behavior of the reduction clause on all constructs of the combined construct to which the clause34
is applied and that accept the modifier. If a construct to which the inscan reduction-modifier is35
applied is combined with the target construct, the effect is as if the same list item also appears in36
a map clause with a map-type of tofrom.37

CHAPTER 2. DIRECTIVES 219

The in_reduction clause is permitted on a single construct among those that constitute the1
combined or composite construct and the effect is as if the clause is applied to that construct, but if2
that construct is a target construct, the effect is also as if the same list item appears in a map3
clause with a map-type of tofrom and a map-type-modifier of always.4

The effect of the if clause is described in Section 2.15 on page 220.5

The effect of the linear clause is as if it is applied to the innermost constituent construct.6
Additionally, if the list item is not the iteration variable of a simd or worksharing-loop SIMD7
construct, the effect on the outer constituent constructs is as if the list item was specified in8
firstprivate and lastprivate clauses on the combined or composite construct, with the9
rules specified above applied. If a list item of the linear clause is the iteration variable of a10
simd or worksharing-loop SIMD construct and it is not declared in the construct, the effect on the11
outer constituent constructs is as if the list item was specified in a lastprivate clause on the12
combined or composite construct with the rules specified above applied.13

The effect of the nowait clause is as if it is applied to the outermost constituent construct that14
permits it.15

If the clauses have expressions on them, such as for various clauses where the argument of the16
clause is an expression, or lower-bound, length, or stride expressions inside array sections (or17
subscript and stride expressions in subscript-triplet for Fortran), or linear-step or alignment18
expressions, the expressions are evaluated immediately before the construct to which the clause has19
been split or duplicated per the above rules (therefore inside of the outer constituent constructs).20
However, the expressions inside the num_teams and thread_limit clauses are always21
evaluated before the outermost constituent construct.22

The restriction that a list item may not appear in more than one data sharing clause with the23
exception of specifying a variable in both firstprivate and lastprivate clauses applies24
after the clauses are split or duplicated per the above rules.25

2.15 if Clause26

Summary27

The semantics of an if clause are described in the section on the construct to which it applies. The28
if clause directive-name-modifier names the associated construct to which an expression applies,29
and is particularly useful for composite and combined constructs.30

220 OpenMP API – Version 5.0 November 2018

Syntax1

C / C++
The syntax of the if clause is as follows:2

if([directive-name-modifier :] scalar-expression)3

C / C++
Fortran

The syntax of the if clause is as follows:4

if([directive-name-modifier :] scalar-logical-expression)5

Fortran

Description6

The effect of the if clause depends on the construct to which it is applied. For combined or7
composite constructs, the if clause only applies to the semantics of the construct named in the8
directive-name-modifier if one is specified. If no directive-name-modifier is specified for a9
combined or composite construct then the if clause applies to all constructs to which an if clause10
can apply.11

2.16 master Construct12

Summary13

The master construct specifies a structured block that is executed by the master thread of the team.14

Syntax15

C / C++
The syntax of the master construct is as follows:16

#pragma omp master new-line17
structured-block18

C / C++
Fortran

The syntax of the master construct is as follows:19

!$omp master20
structured-block21

!$omp end master22

Fortran

CHAPTER 2. DIRECTIVES 221

Binding1

The binding thread set for a master region is the current team. A master region binds to the2
innermost enclosing parallel region.3

Description4

Only the master thread of the team that executes the binding parallel region participates in the5
execution of the structured block of the master region. Other threads in the team do not execute6
the associated structured block. There is no implied barrier either on entry to, or exit from, the7
master construct.8

Execution Model Events9

The master-begin event occurs in the master thread of a team that encounters the master construct10
on entry to the master region.11

The master-end event occurs in the master thread of a team that encounters the master construct12
on exit from the master region.13

Tool Callbacks14

A thread dispatches a registered ompt_callback_master callback with15
ompt_scope_begin as its endpoint argument for each occurrence of a master-begin event in16
that thread. Similarly, a thread dispatches a registered ompt_callback_master callback with17
ompt_scope_end as its endpoint argument for each occurrence of a master-end event in that18
thread. These callbacks occur in the context of the task executed by the master thread and have the19
type signature ompt_callback_master_t.20

Restrictions21

C++
• A throw executed inside a master region must cause execution to resume within the same22
master region, and the same thread that threw the exception must catch it23

C++

Cross References24

• parallel construct, see Section 2.6 on page 74.25

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.26

• ompt_callback_master_t, see Section 4.5.2.12 on page 473.27

222 OpenMP API – Version 5.0 November 2018

2.17 Synchronization Constructs and Clauses1

A synchronization construct orders the completion of code executed by different threads. This2
ordering is imposed by synchronizing flush operations that are executed as part of the region that3
corresponds to the construct.4

Synchronization through the use of synchronizing flush operations and atomic operations is5
described in Section 1.4.4 on page 25 and Section 1.4.6 on page 28. Section 2.17.8.1 on page 2466
defines the behavior of synchronizing flush operations that are implied at various other locations in7
an OpenMP program.8

2.17.1 critical Construct9

Summary10

The critical construct restricts execution of the associated structured block to a single thread at11
a time.12

Syntax13

C / C++
The syntax of the critical construct is as follows:14

#pragma omp critical [(name) [[,] hint(hint-expression)]] new-line15
structured-block16

where hint-expression is an integer constant expression that evaluates to a valid synchronization17
hint (as described in Section 2.17.12 on page 260).18

C / C++
Fortran

The syntax of the critical construct is as follows:19

!$omp critical [(name) [[,] hint(hint-expression)]]20
structured-block21

!$omp end critical [(name)]22

where hint-expression is a constant expression that evaluates to a scalar value with kind23
omp_sync_hint_kind and a value that is a valid synchronization hint (as described24
in Section 2.17.12 on page 260).25

Fortran

CHAPTER 2. DIRECTIVES 223

Binding1

The binding thread set for a critical region is all threads in the contention group.2

Description3

The region that corresponds to a critical construct is executed as if only a single thread at a4
time among all threads in the contention group enters the region for execution, without regard to the5
team(s) to which the threads belong. An optional name may be used to identify the critical6
construct. All critical constructs without a name are considered to have the same unspecified7
name.8

C / C++
Identifiers used to identify a critical construct have external linkage and are in a name space9
that is separate from the name spaces used by labels, tags, members, and ordinary identifiers.10

C / C++
Fortran

The names of critical constructs are global entities of the program. If a name conflicts with11
any other entity, the behavior of the program is unspecified.12

Fortran
The threads of a contention group execute the critical region as if only one thread of the13
contention group executes the critical region at a time. The critical construct enforces14
these execution semantics with respect to all critical constructs with the same name in all15
threads in the contention group.16

If present, the hint clause gives the implementation additional information about the expected17
runtime properties of the critical region that can optionally be used to optimize the18
implementation. The presence of a hint clause does not affect the isolation guarantees provided19
by the critical construct. If no hint clause is specified, the effect is as if20
hint(omp_sync_hint_none) had been specified.21

Execution Model Events22

The critical-acquiring event occurs in a thread that encounters the critical construct on entry23
to the critical region before initiating synchronization for the region.24

The critical-acquired event occurs in a thread that encounters the critical construct after it25
enters the region, but before it executes the structured block of the critical region.26

The critical-released event occurs in a thread that encounters the critical construct after it27
completes any synchronization on exit from the critical region.28

224 OpenMP API – Version 5.0 November 2018

Tool Callbacks1

A thread dispatches a registered ompt_callback_mutex_acquire callback for each2
occurrence of a critical-acquiring event in that thread. This callback has the type signature3
ompt_callback_mutex_acquire_t.4

A thread dispatches a registered ompt_callback_mutex_acquired callback for each5
occurrence of a critical-acquired event in that thread. This callback has the type signature6
ompt_callback_mutex_t.7

A thread dispatches a registered ompt_callback_mutex_released callback for each8
occurrence of a critical-released event in that thread. This callback has the type signature9
ompt_callback_mutex_t.10

The callbacks occur in the task that encounters the critical construct. The callbacks should receive11
ompt_mutex_critical as their kind argument if practical, but a less specific kind is12
acceptable.13

Restrictions14

The following restrictions apply to the critical construct:15

• Unless the effect is as if hint(omp_sync_hint_none) was specified, the critical16
construct must specify a name.17

• If the hint clause is specified, each of the critical constructs with the same name must18
have a hint clause for which the hint-expression evaluates to the same value.19

C++
• A throw executed inside a critical region must cause execution to resume within the same20
critical region, and the same thread that threw the exception must catch it.21

C++
Fortran

• If a name is specified on a critical directive, the same name must also be specified on the22
end critical directive.23

• If no name appears on the critical directive, no name can appear on the end critical24
directive.25

Fortran

CHAPTER 2. DIRECTIVES 225

Cross References1

• Synchronization Hints, see Section 2.17.12 on page 260.2

• ompt_mutex_critical, see Section 4.4.4.16 on page 445.3

• ompt_callback_mutex_acquire_t, see Section 4.5.2.14 on page 476.4

• ompt_callback_mutex_t, see Section 4.5.2.15 on page 477.5

2.17.2 barrier Construct6

Summary7

The barrier construct specifies an explicit barrier at the point at which the construct appears.8
The barrier construct is a stand-alone directive.9

Syntax10

C / C++
The syntax of the barrier construct is as follows:11

#pragma omp barrier new-line12

C / C++
Fortran

The syntax of the barrier construct is as follows:13

!$omp barrier14

Fortran

Binding15

The binding thread set for a barrier region is the current team. A barrier region binds to the16
innermost enclosing parallel region.17

Description18

All threads of the team that is executing the binding parallel region must execute the barrier19
region and complete execution of all explicit tasks bound to this parallel region before any are20
allowed to continue execution beyond the barrier.21

The barrier region includes an implicit task scheduling point in the current task region.22

226 OpenMP API – Version 5.0 November 2018

Execution Model Events1

The explicit-barrier-begin event occurs in each thread that encounters the barrier construct on2
entry to the barrier region.3

The explicit-barrier-wait-begin event occurs when a task begins an interval of active or passive4
waiting in a barrier region.5

The explicit-barrier-wait-end event occurs when a task ends an interval of active or passive waiting6
and resumes execution in a barrier region.7

The explicit-barrier-end event occurs in each thread that encounters the barrier construct after8
the barrier synchronization on exit from the barrier region.9

A cancellation event occurs if cancellation is activated at an implicit cancellation point in a10
barrier region.11

Tool Callbacks12

A thread dispatches a registered ompt_callback_sync_region callback with13
ompt_sync_region_barrier_explicit— or ompt_sync_region_barrier, if the14
implementation cannot make a distinction — as its kind argument and ompt_scope_begin as15
its endpoint argument for each occurrence of an explicit-barrier-begin event in the task that16
encounters the barrier construct. Similarly, a thread dispatches a registered17
ompt_callback_sync_region callback with18
ompt_sync_region_barrier_explicit— or ompt_sync_region_barrier, if the19
implementation cannot make a distinction — as its kind argument and ompt_scope_end as its20
endpoint argument for each occurrence of an explicit-barrier-end event in the task that encounters21
the barrier construct. These callbacks occur in the task that encounters the barrier construct22
and have the type signature ompt_callback_sync_region_t.23

A thread dispatches a registered ompt_callback_sync_region_wait callback with24
ompt_sync_region_barrier_explicit— or ompt_sync_region_barrier, if the25
implementation cannot make a distinction — as its kind argument and ompt_scope_begin as26
its endpoint argument for each occurrence of an explicit-barrier-wait-begin event. Similarly, a27
thread dispatches a registered ompt_callback_sync_region_wait callback with28
ompt_sync_region_barrier_explicit— or ompt_sync_region_barrier, if the29
implementation cannot make a distinction — as its kind argument and ompt_scope_end as its30
endpoint argument for each occurrence of an explicit-barrier-wait-end event. These callbacks31
occur in the context of the task that encountered the barrier construct and have type signature32
ompt_callback_sync_region_t.33

A thread dispatches a registered ompt_callback_cancel callback with34
ompt_cancel_detected as its flags argument for each occurrence of a cancellation event in35
that thread. The callback occurs in the context of the encountering task. The callback has type36
signature ompt_callback_cancel_t.37

CHAPTER 2. DIRECTIVES 227

Restrictions1

The following restrictions apply to the barrier construct:2

• Each barrier region must be encountered by all threads in a team or by none at all, unless3
cancellation has been requested for the innermost enclosing parallel region.4

• The sequence of worksharing regions and barrier regions encountered must be the same for5
every thread in a team.6

Cross References7

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.8

• ompt_sync_region_barrier, see Section 4.4.4.13 on page 444.9

• ompt_callback_sync_region_t, see Section 4.5.2.13 on page 474.10

• ompt_callback_cancel_t, see Section 4.5.2.18 on page 481.11

2.17.3 Implicit Barriers12

This section describes the OMPT events and tool callbacks associated with implicit barriers, which13
occur at the end of various regions as defined in the description of the constructs to which they14
correspond. Implicit barriers are task scheduling points. For a description of task scheduling15
points, associated events, and tool callbacks, see Section 2.10.6 on page 149.16

Execution Model Events17

The implicit-barrier-begin event occurs in each implicit task at the beginning of an implicit barrier18
region.19

The implicit-barrier-wait-begin event occurs when a task begins an interval of active or passive20
waiting in an implicit barrier region.21

The implicit-barrier-wait-end event occurs when a task ends an interval of active or waiting and22
resumes execution of an implicit barrier region.23

The implicit-barrier-end event occurs in each implicit task after the barrier synchronization on exit24
from an implicit barrier region.25

A cancellation event occurs if cancellation is activated at an implicit cancellation point in an26
implicit barrier region.27

228 OpenMP API – Version 5.0 November 2018

Tool Callbacks1

A thread dispatches a registered ompt_callback_sync_region callback with2
ompt_sync_region_barrier_implicit— or ompt_sync_region_barrier, if the3
implementation cannot make a distinction — as its kind argument and ompt_scope_begin as4
its endpoint argument for each occurrence of an implicit-barrier-begin event in that thread.5
Similarly, a thread dispatches a registered ompt_callback_sync_region callback with6
ompt_sync_region_barrier_implicit— or ompt_sync_region_barrier, if the7
implementation cannot make a distinction — as its kind argument and ompt_scope_end as its8
endpoint argument for each occurrence of an implicit-barrier-end event in that thread. These9
callbacks occur in the implicit task that executes the parallel region and have the type signature10
ompt_callback_sync_region_t.11

A thread dispatches a registered ompt_callback_sync_region_wait callback with12
ompt_sync_region_barrier_implicit— or ompt_sync_region_barrier, if the13
implementation cannot make a distinction — as its kind argument and ompt_scope_begin as14
its endpoint argument for each occurrence of a implicit-barrier-wait-begin event in that thread.15
Similarly, a thread dispatches a registered ompt_callback_sync_region_wait callback16
with ompt_sync_region_barrier_explicit— or ompt_sync_region_barrier,17
if the implementation cannot make a distinction — as its kind argument and ompt_scope_end18
as its endpoint argument for each occurrence of an implicit-barrier-wait-end event in that thread.19
These callbacks occur in the implicit task that executes the parallel region and have type signature20
ompt_callback_sync_region_t.21

A thread dispatches a registered ompt_callback_cancel callback with22
ompt_cancel_detected as its flags argument for each occurrence of a cancellation event in23
that thread. The callback occurs in the context of the encountering task. The callback has type24
signature ompt_callback_cancel_t.25

Restrictions26

If a thread is in the state ompt_state_wait_barrier_implicit_parallel, a call to27
ompt_get_parallel_info may return a pointer to a copy of the data object associated with28
the parallel region rather than a pointer to the associated data object itself. Writing to the data29
object returned by omp_get_parallel_info when a thread is in the30
ompt_state_wait_barrier_implicit_parallel results in unspecified behavior.31

Cross References32

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.33

• ompt_sync_region_barrier, see Section 4.4.4.13 on page 44434

• ompt_cancel_detected, see Section 4.4.4.24 on page 450.35

• ompt_callback_sync_region_t, see Section 4.5.2.13 on page 474.36

• ompt_callback_cancel_t, see Section 4.5.2.18 on page 481.37

CHAPTER 2. DIRECTIVES 229

2.17.4 Implementation-Specific Barriers1

An OpenMP implementation can execute implementation-specific barriers that are not implied by2
the OpenMP specification; therefore, no execution model events are bound to these barriers. The3
implementation can handle these barriers like implicit barriers and dispatch all events as for4
implicit barriers. These callbacks are dispatched with5
ompt_sync_region_barrier_implementation— or6
ompt_sync_region_barrier, if the implementation cannot make a distinction — as the kind7
argument.8

2.17.5 taskwait Construct9

Summary10

The taskwait construct specifies a wait on the completion of child tasks of the current task. The11
taskwait construct is a stand-alone directive.12

Syntax13

C / C++
The syntax of the taskwait construct is as follows:14

#pragma omp taskwait [clause[[,] clause] ...] new-line15

where clause is one of the following:16

depend([depend-modifier,]dependence-type : locator-list)17

C / C++
Fortran

The syntax of the taskwait construct is as follows:18

!$omp taskwait [clause[[,] clause] ...]19

where clause is one of the following:20

depend([depend-modifier,]dependence-type : locator-list)21

Fortran

Binding22

The taskwait region binds to the current task region. The binding thread set of the taskwait23
region is the current team.24

230 OpenMP API – Version 5.0 November 2018

Description1

If no depend clause is present on the taskwait construct, the current task region is suspended2
at an implicit task scheduling point associated with the construct. The current task region remains3
suspended until all child tasks that it generated before the taskwait region complete execution.4

Otherwise, if one or more depend clauses are present on the taskwait construct, the behavior5
is as if these clauses were applied to a task construct with an empty associated structured block6
that generates a mergeable and included task. Thus, the current task region is suspended until the7
predecessor tasks of this task complete execution.8

Execution Model Events9

The taskwait-begin event occurs in each thread that encounters the taskwait construct on entry10
to the taskwait region.11

The taskwait-wait-begin event occurs when a task begins an interval of active or passive waiting in12
a taskwait region.13

The taskwait-wait-end event occurs when a task ends an interval of active or passive waiting and14
resumes execution in a taskwait region.15

The taskwait-end event occurs in each thread that encounters the taskwait construct after the16
taskwait synchronization on exit from the taskwait region.17

Tool Callbacks18

A thread dispatches a registered ompt_callback_sync_region callback with19
ompt_sync_region_taskwait as its kind argument and ompt_scope_begin as its20
endpoint argument for each occurrence of a taskwait-begin event in the task that encounters the21
taskwait construct. Similarly, a thread dispatches a registered22
ompt_callback_sync_region callback with ompt_sync_region_taskwait as its23
kind argument and ompt_scope_end as its endpoint argument for each occurrence of a24
taskwait-end event in the task that encounters the taskwait construct. These callbacks occur in25
the task that encounters the taskwait construct and have the type signature26
ompt_callback_sync_region_t.27

A thread dispatches a registered ompt_callback_sync_region_wait callback with28
ompt_sync_region_taskwait as its kind argument and ompt_scope_begin as its29
endpoint argument for each occurrence of a taskwait-wait-begin event. Similarly, a thread30
dispatches a registered ompt_callback_sync_region_wait callback with31
ompt_sync_region_taskwait as its kind argument and ompt_scope_end as its endpoint32
argument for each occurrence of a taskwait-wait-end event. These callbacks occur in the context of33
the task that encounters the taskwait construct and have type signature34
ompt_callback_sync_region_t.35

CHAPTER 2. DIRECTIVES 231

Restrictions1

The following restrictions apply to the taskwait construct:2

• The mutexinoutset dependence-type may not appear in a depend clause on a taskwait3
construct.4

• If the dependence-type of a depend clause is depobj then the dependence objects cannot5
represent dependences of the mutexinoutset dependence type.6

Cross References7

• task construct, see Section 2.10.1 on page 135.8

• Task scheduling, see Section 2.10.6 on page 149.9

• depend clause, see Section 2.17.11 on page 255.10

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.11

• ompt_sync_region_taskwait, see Section 4.4.4.13 on page 444.12

• ompt_callback_sync_region_t, see Section 4.5.2.13 on page 474.13

2.17.6 taskgroup Construct14

Summary15

The taskgroup construct specifies a wait on completion of child tasks of the current task and16
their descendent tasks.17

Syntax18

C / C++
The syntax of the taskgroup construct is as follows:19

#pragma omp taskgroup [clause[[,] clause] ...] new-line20
structured-block21

where clause is one of the following:22

task_reduction(reduction-identifier : list)23

allocate([allocator:]list)24

C / C++

232 OpenMP API – Version 5.0 November 2018

Fortran
The syntax of the taskgroup construct is as follows:1

!$omp taskgroup [clause [[,] clause] ...]2
structured-block3

!$omp end taskgroup4

where clause is one of the following:5

task_reduction(reduction-identifier : list)6

allocate([allocator:]list)7

Fortran

Binding8

The binding task set of a taskgroup region is all tasks of the current team that are generated in9
the region. A taskgroup region binds to the innermost enclosing parallel region.10

Description11

When a thread encounters a taskgroup construct, it starts executing the region. All child tasks12
generated in the taskgroup region and all of their descendants that bind to the same parallel13
region as the taskgroup region are part of the taskgroup set associated with the taskgroup14
region.15

There is an implicit task scheduling point at the end of the taskgroup region. The current task is16
suspended at the task scheduling point until all tasks in the taskgroup set complete execution.17

Execution Model Events18

The taskgroup-begin event occurs in each thread that encounters the taskgroup construct on19
entry to the taskgroup region.20

The taskgroup-wait-begin event occurs when a task begins an interval of active or passive waiting21
in a taskgroup region.22

The taskgroup-wait-end event occurs when a task ends an interval of active or passive waiting and23
resumes execution in a taskgroup region.24

The taskgroup-end event occurs in each thread that encounters the taskgroup construct after the25
taskgroup synchronization on exit from the taskgroup region.26

CHAPTER 2. DIRECTIVES 233

Tool Callbacks1

A thread dispatches a registered ompt_callback_sync_region callback with2
ompt_sync_region_taskgroup as its kind argument and ompt_scope_begin as its3
endpoint argument for each occurrence of a taskgroup-begin event in the task that encounters the4
taskgroup construct. Similarly, a thread dispatches a registered5
ompt_callback_sync_region callback with ompt_sync_region_taskgroup as its6
kind argument and ompt_scope_end as its endpoint argument for each occurrence of a7
taskgroup-end event in the task that encounters the taskgroup construct. These callbacks occur8
in the task that encounters the taskgroup construct and have the type signature9
ompt_callback_sync_region_t.10

A thread dispatches a registered ompt_callback_sync_region_wait callback with11
ompt_sync_region_taskgroup as its kind argument and ompt_scope_begin as its12
endpoint argument for each occurrence of a taskgroup-wait-begin event. Similarly, a thread13
dispatches a registered ompt_callback_sync_region_wait callback with14
ompt_sync_region_taskgroup as its kind argument and ompt_scope_end as its15
endpoint argument for each occurrence of a taskgroup-wait-end event. These callbacks occur in the16
context of the task that encounters the taskgroup construct and have type signature17
ompt_callback_sync_region_t.18

Cross References19

• Task scheduling, see Section 2.10.6 on page 149.20

• task_reduction Clause, see Section 2.19.5.5 on page 303.21

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.22

• ompt_sync_region_taskgroup, see Section 4.4.4.13 on page 444.23

• ompt_callback_sync_region_t, see Section 4.5.2.13 on page 474.24

2.17.7 atomic Construct25

Summary26

The atomic construct ensures that a specific storage location is accessed atomically, rather than27
exposing it to the possibility of multiple, simultaneous reading and writing threads that may result28
in indeterminate values.29

234 OpenMP API – Version 5.0 November 2018

Syntax1

In the following syntax, atomic-clause is a clause that indicates the semantics for which atomicity is2
enforced, memory-order-clause is a clause that indicates the memory ordering behavior of the3
construct and clause is a clause other than atomic-clause. Specifically, atomic-clause is one of the4
following:5

read6

write7

update8

capture9

memory-order-clause is one of the following:10

seq_cst11

acq_rel12

release13

acquire14

relaxed15

and clause is either memory-order-clause or one of the following:16

hint(hint-expression)17

C / C++
The syntax of the atomic construct takes one of the following forms:18

#pragma omp atomic [clause[[[,] clause] ...] [,]] atomic-clause19
[[,] clause [[[,] clause] ...]] new-line20

expression-stmt21

or22

#pragma omp atomic [clause[[,] clause] ...] new-line23
expression-stmt24

or25

#pragma omp atomic [clause[[[,] clause] ...] [,]] capture26
[[,] clause [[[,] clause] ...]] new-line27

structured-block28

where expression-stmt is an expression statement with one of the following forms:29

• If atomic-clause is read:30

v = x;31

CHAPTER 2. DIRECTIVES 235

C/C++ (cont.)

• If atomic-clause is write:1

x = expr;2

• If atomic-clause is update or not present:3

x++;4
x--;5
++x;6
--x;7
x binop= expr;8
x = x binop expr;9
x = expr binop x;10

• If atomic-clause is capture:11

v = x++;12
v = x--;13
v = ++x;14
v = --x;15
v = x binop= expr;16
v = x = x binop expr;17
v = x = expr binop x;18

and where structured-block is a structured block with one of the following forms:19

{ v = x; x binop= expr; }20
{ x binop= expr; v = x; }21
{ v = x; x = x binop expr; }22
{ v = x; x = expr binop x; }23
{ x = x binop expr; v = x; }24
{ x = expr binop x; v = x; }25
{ v = x; x = expr; }26
{ v = x; x++; }27
{ v = x; ++x; }28
{ ++x; v = x; }29
{ x++; v = x; }30
{ v = x; x--; }31
{ v = x; --x; }32
{ --x; v = x; }33
{ x--; v = x; }34

In the preceding expressions:35

• x and v (as applicable) are both l-value expressions with scalar type.36

• During the execution of an atomic region, multiple syntactic occurrences of x must designate the37
same storage location.38

236 OpenMP API – Version 5.0 November 2018

• Neither of v and expr (as applicable) may access the storage location designated by x.1

• Neither of x and expr (as applicable) may access the storage location designated by v.2

• expr is an expression with scalar type.3

• binop is one of +, *, -, /, &, ^, |, <<, or >>.4

• binop, binop=, ++, and -- are not overloaded operators.5

• The expression x binop expr must be numerically equivalent to x binop (expr). This requirement6
is satisfied if the operators in expr have precedence greater than binop, or by using parentheses7
around expr or subexpressions of expr.8

• The expression expr binop x must be numerically equivalent to (expr) binop x. This requirement9
is satisfied if the operators in expr have precedence equal to or greater than binop, or by using10
parentheses around expr or subexpressions of expr.11

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is12
unspecified.13

• hint-expression is a constant integer expression that evaluates to a valid synchronization hint.14

C / C++
Fortran

The syntax of the atomic construct takes any of the following forms:15

!$omp atomic [clause[[[,] clause] ...] [,]] read [[,] clause [[[,] clause] ...]]16
capture-statement17

[!$omp end atomic]18

or19

!$omp atomic [clause[[[,] clause] ...] [,]] write [[,] clause [[[,] clause] ...]]20
write-statement21

[!$omp end atomic]22

or23

!$omp atomic [clause[[[,] clause] ...] [,]] update [[,] clause [[[,] clause] ...]]24
update-statement25

[!$omp end atomic]26

or27

!$omp atomic [clause[[,] clause] ...]28
update-statement29

[!$omp end atomic]30

or31

CHAPTER 2. DIRECTIVES 237

Fortran (cont.)

!$omp atomic [clause[[[,] clause] ...] [,]] capture [[,] clause [[[,] clause] ...]]1
update-statement2
capture-statement3

!$omp end atomic4

or5

!$omp atomic [clause[[[,] clause] ...] [,]] capture [[,] clause [[[,] clause] ...]]6
capture-statement7
update-statement8

!$omp end atomic9

or10

!$omp atomic [clause[[[,] clause] ...] [,]] capture [[,] clause [[[,] clause] ...]]11
capture-statement12
write-statement13

!$omp end atomic14

where write-statement has the following form (if atomic-clause is capture or write):15

x = expr16

where capture-statement has the following form (if atomic-clause is capture or read):17

v = x18

and where update-statement has one of the following forms (if atomic-clause is update,19
capture, or not present):20

x = x operator expr21

22

x = expr operator x23

24

x = intrinsic_procedure_name (x, expr_list)25

26

x = intrinsic_procedure_name (expr_list, x)27

In the preceding statements:28

• x and v (as applicable) are both scalar variables of intrinsic type.29

• x must not have the ALLOCATABLE attribute.30

• During the execution of an atomic region, multiple syntactic occurrences of x must designate the31
same storage location.32

• None of v, expr, and expr_list (as applicable) may access the same storage location as x.33

238 OpenMP API – Version 5.0 November 2018

• None of x, expr, and expr_list (as applicable) may access the same storage location as v.1

• expr is a scalar expression.2

• expr_list is a comma-separated, non-empty list of scalar expressions. If3
intrinsic_procedure_name refers to IAND, IOR, or IEOR, exactly one expression must appear in4
expr_list.5

• intrinsic_procedure_name is one of MAX, MIN, IAND, IOR, or IEOR.6

• operator is one of +, *, -, /, .AND., .OR., .EQV., or .NEQV..7

• The expression x operator expr must be numerically equivalent to x operator (expr). This8
requirement is satisfied if the operators in expr have precedence greater than operator, or by9
using parentheses around expr or subexpressions of expr.10

• The expression expr operator x must be numerically equivalent to (expr) operator x. This11
requirement is satisfied if the operators in expr have precedence equal to or greater than12
operator, or by using parentheses around expr or subexpressions of expr.13

• intrinsic_procedure_name must refer to the intrinsic procedure name and not to other program14
entities.15

• operator must refer to the intrinsic operator and not to a user-defined operator.16

• All assignments must be intrinsic assignments.17

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is18
unspecified.19

• hint-expression is a constant expression that evaluates to a scalar value with kind20
omp_sync_hint_kind and a value that is a valid synchronization hint.21

Fortran

Binding22

If the size of x is 8, 16, 32, or 64 bits and x is aligned to a multiple of its size, the binding thread set23
for the atomic region is all threads on the device. Otherwise, the binding thread set for the24
atomic region is all threads in the contention group. atomic regions enforce exclusive access25
with respect to other atomic regions that access the same storage location x among all threads in26
the binding thread set without regard to the teams to which the threads belong.27

Description28

If atomic-clause is not present on the construct, the behavior is as if the update clause is specified.29

The atomic construct with the read clause results in an atomic read of the location designated30
by x regardless of the native machine word size.31

CHAPTER 2. DIRECTIVES 239

The atomic construct with the write clause results in an atomic write of the location designated1
by x regardless of the native machine word size.2

The atomic construct with the update clause results in an atomic update of the location3
designated by x using the designated operator or intrinsic. Only the read and write of the location4
designated by x are performed mutually atomically. The evaluation of expr or expr_list need not be5
atomic with respect to the read or write of the location designated by x. No task scheduling points6
are allowed between the read and the write of the location designated by x.7

The atomic construct with the capture clause results in an atomic captured update — an8
atomic update of the location designated by x using the designated operator or intrinsic while also9
capturing the original or final value of the location designated by x with respect to the atomic10
update. The original or final value of the location designated by x is written in the location11
designated by v based on the base language semantics of structured block or statements of the12
atomic construct. Only the read and write of the location designated by x are performed mutually13
atomically. Neither the evaluation of expr or expr_list, nor the write to the location designated by v,14
need be atomic with respect to the read or write of the location designated by x. No task scheduling15
points are allowed between the read and the write of the location designated by x.16

The atomic construct may be used to enforce memory consistency between threads, based on the17
guarantees provided by Section 1.4.6 on page 28. A strong flush on the location designated by x is18
performed on entry to and exit from the atomic operation, ensuring that the set of all atomic19
operations in the program applied to the same location has a total completion order. If the write,20
update, or capture clause is specified and the release, acq_rel, or seq_cst clause is21
specified then the strong flush on entry to the atomic operation is also a release flush. If the read22
or capture clause is specified and the acquire, acq_rel, or seq_cst clause is specified23
then the strong flush on exit from the atomic operation is also an acquire flush. Therefore, if24
memory-order-clause is specified and is not relaxed, release and/or acquire flush operations are25
implied and permit synchronization between the threads without the use of explicit flush26
directives.27

For all forms of the atomic construct, any combination of two or more of these atomic28
constructs enforces mutually exclusive access to the locations designated by x among threads in the29
binding thread set. To avoid data races, all accesses of the locations designated by x that could30
potentially occur in parallel must be protected with an atomic construct.31

atomic regions do not guarantee exclusive access with respect to any accesses outside of32
atomic regions to the same storage location x even if those accesses occur during a critical33
or ordered region, while an OpenMP lock is owned by the executing task, or during the34
execution of a reduction clause.35

However, other OpenMP synchronization can ensure the desired exclusive access. For example, a36
barrier that follows a series of atomic updates to x guarantees that subsequent accesses do not form37
a race with the atomic accesses.38

A compliant implementation may enforce exclusive access between atomic regions that update39
different storage locations. The circumstances under which this occurs are implementation defined.40

240 OpenMP API – Version 5.0 November 2018

If the storage location designated by x is not size-aligned (that is, if the byte alignment of x is not a1
multiple of the size of x), then the behavior of the atomic region is implementation defined.2

If present, the hint clause gives the implementation additional information about the expected3
properties of the atomic operation that can optionally be used to optimize the implementation. The4
presence of a hint clause does not affect the semantics of the atomic construct, and all hints5
may be ignored. If no hint clause is specified, the effect is as if6
hint(omp_sync_hint_none) had been specified.7

Execution Model Events8

The atomic-acquiring event occurs in the thread that encounters the atomic construct on entry to9
the atomic region before initiating synchronization for the region.10

The atomic-acquired event occurs in the thread that encounters the atomic construct after it11
enters the region, but before it executes the structured block of the atomic region.12

The atomic-released event occurs in the thread that encounters the atomic construct after it13
completes any synchronization on exit from the atomic region.14

Tool Callbacks15

A thread dispatches a registered ompt_callback_mutex_acquire callback for each16
occurrence of an atomic-acquiring event in that thread. This callback has the type signature17
ompt_callback_mutex_acquire_t.18

A thread dispatches a registered ompt_callback_mutex_acquired callback for each19
occurrence of an atomic-acquired event in that thread. This callback has the type signature20
ompt_callback_mutex_t.21

A thread dispatches a registered ompt_callback_mutex_released callback with22
ompt_mutex_atomic as the kind argument if practical, although a less specific kind may be23
used, for each occurrence of an atomic-released event in that thread. This callback has the type24
signature ompt_callback_mutex_t and occurs in the task that encounters the atomic25
construct.26

Restrictions27

The following restrictions apply to the atomic construct:28

• OpenMP constructs may not be encountered during execution of an atomic region.29

• At most one memory-order-clause may appear on the construct.30

• At most one hint clause may appear on the construct.31

• If atomic-clause is read then memory-order-clause must not be acq_rel or release.32

CHAPTER 2. DIRECTIVES 241

• If atomic-clause is write then memory-order-clause must not be acq_rel or acquire.1

• If atomic-clause is update or not present then memory-order-clause must not be acq_rel or2
acquire.3

C / C++
• All atomic accesses to the storage locations designated by x throughout the program are required4
to have a compatible type.5

C / C++
Fortran

• All atomic accesses to the storage locations designated by x throughout the program are required6
to have the same type and type parameters.7

Fortran

Cross References8

• critical construct, see Section 2.17.1 on page 223.9

• barrier construct, see Section 2.17.2 on page 226.10

• flush construct, see Section 2.17.8 on page 242.11

• ordered construct, see Section 2.17.9 on page 250.12

• Synchronization Hints, see Section 2.17.12 on page 260.13

• reduction clause, see Section 2.19.5.4 on page 300.14

• lock routines, see Section 3.3 on page 381.15

• ompt_mutex_atomic, see Section 4.4.4.16 on page 445.16

• ompt_callback_mutex_acquire_t, see Section 4.5.2.14 on page 476.17

• ompt_callback_mutex_t, see Section 4.5.2.15 on page 477.18

2.17.8 flush Construct19

Summary20

The flush construct executes the OpenMP flush operation. This operation makes a thread’s21
temporary view of memory consistent with memory and enforces an order on the memory22
operations of the variables explicitly specified or implied. See the memory model description in23
Section 1.4 on page 23 for more details. The flush construct is a stand-alone directive.24

242 OpenMP API – Version 5.0 November 2018

Syntax1

C / C++
The syntax of the flush construct is as follows:2

#pragma omp flush [memory-order-clause] [(list)] new-line3

where memory-order-clause is one of the following:4

acq_rel5

release6

acquire7

C / C++
Fortran

The syntax of the flush construct is as follows:8

!$omp flush [memory-order-clause] [(list)]9

where memory-order-clause is one of the following:10

acq_rel11

release12

acquire13

Fortran

Binding14

The binding thread set for a flush region is the encountering thread. Execution of a flush15
region affects the memory and the temporary view of memory of only the thread that executes the16
region. It does not affect the temporary view of other threads. Other threads must themselves17
execute a flush operation in order to be guaranteed to observe the effects of the flush operation of18
the encountering thread.19

Description20

If memory-order-clause is not specified then the flush construct results in a strong flush operation21
with the following behavior. A flush construct without a list, executed on a given thread, operates22
as if the whole thread-visible data state of the program, as defined by the base language, is flushed.23
A flush construct with a list applies the flush operation to the items in the list, and the flush24
operation does not complete until the operation is complete for all specified list items. An25
implementation may implement a flush with a list by ignoring the list, and treating it the same as26
a flush without a list.27

CHAPTER 2. DIRECTIVES 243

If no list items are specified, the flush operation has the release and/or acquire flush properties:1

• If memory-order-clause is not specified or is acq_rel, the flush operation is both a release2
flush and an acquire flush.3

• If memory-order-clause is release, the flush operation is a release flush.4

• If memory-order-clause is acquire, the flush operation is an acquire flush.5

C / C++
If a pointer is present in the list, the pointer itself is flushed, not the memory block to which the6
pointer refers.7

C / C++
Fortran

If the list item or a subobject of the list item has the POINTER attribute, the allocation or8
association status of the POINTER item is flushed, but the pointer target is not. If the list item is a9
Cray pointer, the pointer is flushed, but the object to which it points is not. If the list item is of type10
C_PTR, the variable is flushed, but the storage that corresponds to that address is not flushed. If the11
list item or the subobject of the list item has the ALLOCATABLE attribute and has an allocation12
status of allocated, the allocated variable is flushed; otherwise the allocation status is flushed.13

Fortran
14

Note – Use of a flush construct with a list is extremely error prone and users are strongly15
discouraged from attempting it. The following examples illustrate the ordering properties of the16
flush operation. In the following incorrect pseudocode example, the programmer intends to prevent17
simultaneous execution of the protected section by the two threads, but the program does not work18
properly because it does not enforce the proper ordering of the operations on variables a and b.19
Any shared data accessed in the protected section is not guaranteed to be current or consistent20
during or after the protected section. The atomic notation in the pseudocode in the following two21
examples indicates that the accesses to a and b are atomic write and atomic read operations.22
Otherwise both examples would contain data races and automatically result in unspecified behavior.23
The flush operations are strong flushes that are applied to the specified flush lists24

244 OpenMP API – Version 5.0 November 2018

Incorrect example:
a = b = 0

thread 1 thread 2

atomic(b = 1) atomic(a = 1)

flush(b) flush(a)
flush(a) flush(b)
atomic(tmp = a) atomic(tmp = b)

if (tmp == 0) then if (tmp == 0) then

protected section protected section
end if end if

1

The problem with this example is that operations on variables a and b are not ordered with respect2
to each other. For instance, nothing prevents the compiler from moving the flush of b on thread 1 or3
the flush of a on thread 2 to a position completely after the protected section (assuming that the4
protected section on thread 1 does not reference b and the protected section on thread 2 does not5
reference a). If either re-ordering happens, both threads can simultaneously execute the protected6
section.7

The following pseudocode example correctly ensures that the protected section is executed by not8
more than one of the two threads at any one time. Execution of the protected section by neither9
thread is considered correct in this example. This occurs if both flushes complete prior to either10
thread executing its if statement.11

Correct example:
a = b = 0

thread 1 thread 2

atomic(b = 1) atomic(a = 1)

flush(a,b) flush(a,b)

atomic(tmp = a) atomic(tmp = b)

if (tmp == 0) then if (tmp == 0) then

protected section protected section

end if end if

12

CHAPTER 2. DIRECTIVES 245

The compiler is prohibited from moving the flush at all for either thread, ensuring that the1
respective assignment is complete and the data is flushed before the if statement is executed.2

3
4

Execution Model Events5

The flush event occurs in a thread that encounters the flush construct.6

Tool Callbacks7

A thread dispatches a registered ompt_callback_flush callback for each occurrence of a8
flush event in that thread. This callback has the type signature ompt_callback_flush_t.9

Restrictions10

The following restrictions apply to the flush construct:11

• If memory-order-clause is release, acquire, or acq_rel, list items must not be specified12
on the flush directive.13

Cross References14

• ompt_callback_flush_t, see Section 4.5.2.17 on page 480.15

2.17.8.1 Implicit Flushes16

Flush operations implied when executing an atomic region are described in Section 2.17.7.17

A flush region that corresponds to a flush directive with the release clause present is18
implied at the following locations:19

• During a barrier region;20

• At entry to a parallel region;21

• At entry to a teams region;22

• At exit from a critical region;23

• During an omp_unset_lock region;24

• During an omp_unset_nest_lock region;25

• Immediately before every task scheduling point;26

246 OpenMP API – Version 5.0 November 2018

• At exit from the task region of each implicit task;1

• At exit from an ordered region, if a threads clause or a depend clause with a source2
dependence type is present, or if no clauses are present; and3

• During a cancel region, if the cancel-var ICV is true.4

A flush region that corresponds to a flush directive with the acquire clause present is5
implied at the following locations:6

• During a barrier region;7

• At exit from a teams region;8

• At entry to a critical region;9

• If the region causes the lock to be set, during:10

– an omp_set_lock region;11

– an omp_test_lock region;12

– an omp_set_nest_lock region; and13

– an omp_test_nest_lock region;14

• Immediately after every task scheduling point;15

• At entry to the task region of each implicit task;16

• At entry to an ordered region, if a threads clause or a depend clause with a sink17
dependence type is present, or if no clauses are present; and18

• Immediately before a cancellation point, if the cancel-var ICV is true and cancellation has been19
activated.20

21

Note – A flush region is not implied at the following locations:22

• At entry to worksharing regions; and23

• At entry to or exit from master regions.24

25

The synchronization behavior of implicit flushes is as follows:26

• When a thread executes an atomic region for which the corresponding construct has the27
release, acq_rel, or seq_cst clause and specifies an atomic operation that starts a given28
release sequence, the release flush that is performed on entry to the atomic operation29
synchronizes with an acquire flush that is performed by a different thread and has an associated30
atomic operation that reads a value written by a modification in the release sequence.31

CHAPTER 2. DIRECTIVES 247

• When a thread executes an atomic region for which the corresponding construct has the1
acquire, acq_rel, or seq_cst clause and specifies an atomic operation that reads a value2
written by a given modification, a release flush that is performed by a different thread and has an3
associated release sequence that contains that modification synchronizes with the acquire flush4
that is performed on exit from the atomic operation.5

• When a thread executes a critical region that has a given name, the behavior is as if the6
release flush performed on exit from the region synchronizes with the acquire flush performed on7
entry to the next critical region with the same name that is performed by a different thread,8
if it exists.9

• When a thread team executes a barrier region, the behavior is as if the release flush10
performed by each thread within the region synchronizes with the acquire flush performed by all11
other threads within the region.12

• When a thread executes a taskwait region that does not result in the creation of a dependent13
task, the behavior is as if each thread that executes a remaining child task performs a release flush14
upon completion of the child task that synchronizes with an acquire flush performed in the15
taskwait region.16

• When a thread executes a taskgroup region, the behavior is as if each thread that executes a17
remaining descendant task performs a release flush upon completion of the descendant task that18
synchronizes with an acquire flush performed on exit from the taskgroup region.19

• When a thread executes an ordered region that does not arise from a stand-alone ordered20
directive, the behavior is as if the release flush performed on exit from the region synchronizes21
with the acquire flush performed on entry to an ordered region encountered in the next logical22
iteration to be executed by a different thread, if it exists.23

• When a thread executes an ordered region that arises from a stand-alone ordered directive,24
the behavior is as if the release flush performed in the ordered region from a given source25
iteration synchronizes with the acquire flush performed in all ordered regions executed by a26
different thread that are waiting for dependences on that iteration to be satisfied.27

• When a thread team begins execution of a parallel region, the behavior is as if the release28
flush performed by the master thread on entry to the parallel region synchronizes with the29
acquire flush performed on entry to each implicit task that is assigned to a different thread.30

• When an initial thread begins execution of a target region that is generated by a different31
thread from a target task, the behavior is as if the release flush performed by the generating32
thread in the target task synchronizes with the acquire flush performed by the initial thread on33
entry to its initial task region.34

• When an initial thread completes execution of a target region that is generated by a different35
thread from a target task, the behavior is as if the release flush performed by the initial thread on36
exit from its initial task region synchronizes with the acquire flush performed by the generating37
thread in the target task.38

248 OpenMP API – Version 5.0 November 2018

• When a thread encounters a teams construct, the behavior is as if the release flush performed by1
the thread on entry to the teams region synchronizes with the acquire flush performed on entry2
to each initial task that is executed by a different initial thread that participates in the execution of3
the teams region.4

• When a thread that encounters a teams construct reaches the end of the teams region, the5
behavior is as if the release flush performed by each different participating initial thread at exit6
from its initial task synchronizes with the acquire flush performed by the thread at exit from the7
teams region.8

• When a task generates an explicit task that begins execution on a different thread, the behavior is9
as if the thread that is executing the generating task performs a release flush that synchronizes10
with the acquire flush performed by the thread that begins to execute the explicit task.11

• When an undeferred task completes execution on a given thread that is different from the thread12
on which its generating task is suspended, the behavior is as if a release flush performed by the13
thread that completes execution of the undeferred task synchronizes with an acquire flush14
performed by the thread that resumes execution of the generating task.15

• When a dependent task with one or more predecessor tasks begins execution on a given thread,16
the behavior is as if each release flush performed by a different thread on completion of a17
predecessor task synchronizes with the acquire flush performed by the thread that begins to18
execute the dependent task.19

• When a task begins execution on a given thread and it is mutually exclusive with respect to20
another sibling task that is executed by a different thread, the behavior is as if each release flush21
performed on completion of the sibling task synchronizes with the acquire flush performed by22
the thread that begins to execute the task.23

• When a thread executes a cancel region, the cancel-var ICV is true, and cancellation is not24
already activated for the specified region, the behavior is as if the release flush performed during25
the cancel region synchronizes with the acquire flush performed by a different thread26
immediately before a cancellation point in which that thread observes cancellation was activated27
for the region.28

• When a thread executes an omp_unset_lock region that causes the specified lock to be unset,29
the behavior is as if a release flush is performed during the omp_unset_lock region that30
synchronizes with an acquire flush that is performed during the next omp_set_lock or31
omp_test_lock region to be executed by a different thread that causes the specified lock to be32
set.33

• When a thread executes an omp_unset_nest_lock region that causes the specified nested34
lock to be unset, the behavior is as if a release flush is performed during the35
omp_unset_nest_lock region that synchronizes with an acquire flush that is performed36
during the next omp_set_nest_lock or omp_test_nest_lock region to be executed by37
a different thread that causes the specified nested lock to be set.38

CHAPTER 2. DIRECTIVES 249

2.17.9 ordered Construct1

Summary2

The ordered construct either specifies a structured block in a worksharing-loop, simd, or3
worksharing-loop SIMD region that will be executed in the order of the loop iterations, or it is a4
stand-alone directive that specifies cross-iteration dependences in a doacross loop nest. The5
ordered construct sequentializes and orders the execution of ordered regions while allowing6
code outside the region to run in parallel.7

Syntax8

C / C++
The syntax of the ordered construct is as follows:9

#pragma omp ordered [clause[[,] clause]] new-line10
structured-block11

where clause is one of the following:12

threads13

simd14

or15

#pragma omp ordered clause [[[,] clause] ...] new-line16

where clause is one of the following:17

depend(source)18

depend(sink : vec)19

C / C++
Fortran

The syntax of the ordered construct is as follows:20

!$omp ordered [clause[[,] clause]]21
structured-block22

!$omp end ordered23

where clause is one of the following:24

threads25

simd26

or27

!$omp ordered clause [[[,] clause] ...]28

250 OpenMP API – Version 5.0 November 2018

where clause is one of the following:1

depend(source)2

depend(sink : vec)3

Fortran
If the depend clause is specified, the ordered construct is a stand-alone directive.4

Binding5

The binding thread set for an ordered region is the current team. An ordered region binds to6
the innermost enclosing simd or worksharing-loop SIMD region if the simd clause is present, and7
otherwise it binds to the innermost enclosing worksharing-loop region. ordered regions that bind8
to different regions execute independently of each other.9

Description10

If no clause is specified, the ordered construct behaves as if the threads clause had been11
specified. If the threads clause is specified, the threads in the team that is executing the12
worksharing-loop region execute ordered regions sequentially in the order of the loop iterations.13
If any depend clauses are specified then those clauses specify the order in which the threads in the14
team execute ordered regions. If the simd clause is specified, the ordered regions15
encountered by any thread will execute one at a time in the order of the loop iterations.16

When the thread that is executing the first iteration of the loop encounters an ordered construct,17
it can enter the ordered region without waiting. When a thread that is executing any subsequent18
iteration encounters an ordered construct without a depend clause, it waits at the beginning of19
the ordered region until execution of all ordered regions belonging to all previous iterations20
has completed. When a thread that is executing any subsequent iteration encounters an ordered21
construct with one or more depend(sink:vec) clauses, it waits until its dependences on all22
valid iterations specified by the depend clauses are satisfied before it completes execution of the23
ordered region. A specific dependence is satisfied when a thread that is executing the24
corresponding iteration encounters an ordered construct with a depend(source) clause.25

Execution Model Events26

The ordered-acquiring event occurs in the task that encounters the ordered construct on entry to27
the ordered region before it initiates synchronization for the region.28

The ordered-acquired event occurs in the task that encounters the ordered construct after it29
enters the region, but before it executes the structured block of the ordered region.30

The ordered-released event occurs in the task that encounters the ordered construct after it31
completes any synchronization on exit from the ordered region.32

CHAPTER 2. DIRECTIVES 251

The doacross-sink event occurs in the task that encounters a ordered construct for each1
depend(sink:vec) clause after the dependence is fulfilled.2

The doacross-source event occurs in the task that encounters a ordered construct with a3
depend(source:vec) clause before signaling the dependence to be fulfilled.4

Tool Callbacks5

A thread dispatches a registered ompt_callback_mutex_acquire callback for each6
occurrence of an ordered-acquiring event in that thread. This callback has the type signature7
ompt_callback_mutex_acquire_t.8

A thread dispatches a registered ompt_callback_mutex_acquired callback for each9
occurrence of an ordered-acquired event in that thread. This callback has the type signature10
ompt_callback_mutex_t.11

A thread dispatches a registered ompt_callback_mutex_released callback with12
ompt_mutex_ordered as the kind argument if practical, although a less specific kind may be13
used, for each occurrence of an ordered-released event in that thread. This callback has the type14
signature ompt_callback_mutex_t and occurs in the task that encounters the atomic15
construct.16

A thread dispatches a registered ompt_callback_dependences callback with all vector17
entries listed as ompt_dependence_type_sink in the deps argument for each occurrence of a18
doacross-sink event in that thread. A thread dispatches a registered19
ompt_callback_dependences callback with all vector entries listed as20
ompt_dependence_type_source in the deps argument for each occurrence of a21
doacross-source event in that thread. These callbacks have the type signature22
ompt_callback_dependences_t.23

Restrictions24

Restrictions to the ordered construct are as follows:25

• At most one threads clause can appear on an ordered construct.26

• At most one simd clause can appear on an ordered construct.27

• At most one depend(source) clause can appear on an ordered construct.28

• The construct corresponding to the binding region of an ordered region must not specify a29
reduction clause with the inscan modifier.30

• Either depend(sink:vec) clauses or depend(source) clauses may appear on an31
ordered construct, but not both.32

252 OpenMP API – Version 5.0 November 2018

• The worksharing-loop or worksharing-loop SIMD region to which an ordered region1
corresponding to an ordered construct without a depend clause binds must have an2
ordered clause without the parameter specified on the corresponding worksharing-loop or3
worksharing-loop SIMD directive.4

• The worksharing-loop region to which an ordered region corresponding to an ordered5
construct with any depend clauses binds must have an ordered clause with the parameter6
specified on the corresponding worksharing-loop directive.7

• An ordered construct with the depend clause specified must be closely nested inside a8
worksharing-loop (or parallel worksharing-loop) construct.9

• An ordered region corresponding to an ordered construct without the simd clause10
specified must be closely nested inside a loop region.11

• An ordered region corresponding to an ordered construct with the simd clause specified12
must be closely nested inside a simd or worksharing-loop SIMD region.13

• An ordered region corresponding to an ordered construct with both the simd and14
threads clauses must be closely nested inside a worksharing-loop SIMD region or must be15
closely nested inside a worksharing-loop and simd region.16

• During execution of an iteration of a worksharing-loop or a loop nest within a worksharing-loop,17
simd, or worksharing-loop SIMD region, a thread must not execute more than one ordered18
region corresponding to an ordered construct without a depend clause.19

C++
• A throw executed inside a ordered region must cause execution to resume within the same20
ordered region, and the same thread that threw the exception must catch it.21

C++

Cross References22

• worksharing-loop construct, see Section 2.9.2 on page 101.23

• simd construct, see Section 2.9.3.1 on page 110.24

• parallel Worksharing-loop construct, see Section 2.13.1 on page 185.25

• depend Clause, see Section 2.17.11 on page 25526

• ompt_mutex_ordered, see Section 4.4.4.16 on page 445.27

• ompt_callback_mutex_acquire_t, see Section 4.5.2.14 on page 476.28

• ompt_callback_mutex_t, see Section 4.5.2.15 on page 477.29

CHAPTER 2. DIRECTIVES 253

2.17.10 Depend Objects1

This section describes constructs that support OpenMP depend objects that can be used to supply2
user-computed dependences to depend clauses. OpenMP depend objects must be accessed only3
through the depobj construct or through the depend clause; programs that otherwise access4
OpenMP depend objects are non-conforming.5

An OpenMP depend object can be in one of the following states: uninitialized or initialized.6
Initially OpenMP depend objects are in the uninitialized state.7

2.17.10.1depobj Construct8

Summary9

The depobj construct initializes, updates or destroys an OpenMP depend object. The depobj10
construct is a stand-alone directive.11

Syntax12

C / C++
The syntax of the depobj construct is as follows:13

#pragma omp depobj(depobj) clause new-line14

where depobj is an lvalue expression of type omp_depend_t.15

where clause is one of the following:16

depend(dependence-type : locator)17

destroy18

update(dependence-type)19

C / C++
Fortran

The syntax of the depobj construct is as follows:20

!$omp depobj(depobj) clause21

where depobj is a scalar integer variable of the omp_depend_kind kind.22

where clause is one of the following:23

depend(dependence-type : locator)24

destroy25

update(dependence-type)26

Fortran

254 OpenMP API – Version 5.0 November 2018

Binding1

The binding thread set for depobj regions is the encountering thread.2

Description3

A depobj construct with a depend clause present sets the state of depobj to initialized. The4
depobj is initialized to represent the dependence that the depend clause specifies.5

A depobj construct with a destroy clause present changes the state of the depobj to6
uninitialized.7

A depobj construct with an update clause present changes the dependence type of the8
dependence represented by depobj to the one specified by the update clause.9

Restrictions10

• A depend clause on a depobj construct must not have source, sink or depobj as11
dependence-type.12

• A depend clause on a depobj construct can only specify one locator.13

• The depobj of a depobj construct with the depend clause present must be in the uninitialized14
state.15

• The depobj of a depobj construct with the destroy clause present must be in the initialized16
state.17

• The depobj of a depobj construct with the update clause present must be in the initialized18
state.19

Cross References20

• depend clause, see Section 2.17.11 on page 255.21

2.17.11 depend Clause22

Summary23

The depend clause enforces additional constraints on the scheduling of tasks or loop iterations.24
These constraints establish dependences only between sibling tasks or between loop iterations.25

CHAPTER 2. DIRECTIVES 255

Syntax1

The syntax of the depend clause is as follows:2

depend([depend-modifier,]dependence-type : locator-list)3

where dependence-type is one of the following:4

in5

out6

inout7

mutexinoutset8

depobj9

where depend-modifier is one of the following:10

iterator(iterators-definition)11

or12

depend(dependence-type)13

where dependence-type is:14

source15

or16

depend(dependence-type : vec)17

where dependence-type is:18

sink19

and where vec is the iteration vector, which has the form:20

x1 [± d1], x2 [± d2], . . . , xn [± dn]21

where n is the value specified by the ordered clause in the worksharing-loop directive, xi denotes22
the loop iteration variable of the i-th nested loop associated with the worksharing-loop directive,23
and di is a constant non-negative integer.24

Description25

Task dependences are derived from the dependence-type of a depend clause and its list items26
when dependence-type is in, out, inout, or mutexinoutset. When the dependence-type is27
depobj, the task dependences are derived from the dependences represented by the depend28
objects specified in the depend clause as if the depend clauses of the depobj constructs were29
specified in the current construct.30

256 OpenMP API – Version 5.0 November 2018

For the in dependence-type, if the storage location of at least one of the list items is the same as the1
storage location of a list item appearing in a depend clause with an out, inout, or2
mutexinoutset dependence-type on a construct from which a sibling task was previously3
generated, then the generated task will be a dependent task of that sibling task.4

For the out and inout dependence-types, if the storage location of at least one of the list items is5
the same as the storage location of a list item appearing in a depend clause with an in, out,6
inout, or mutexinoutset dependence-type on a construct from which a sibling task was7
previously generated, then the generated task will be a dependent task of that sibling task.8

For the mutexinoutset dependence-type, if the storage location of at least one of the list items9
is the same as the storage location of a list item appearing in a depend clause with an in, out, or10
inout dependence-type on a construct from which a sibling task was previously generated, then11
the generated task will be a dependent task of that sibling task.12

If a list item appearing in a depend clause with a mutexinoutset dependence-type on a13
task-generating construct has the same storage location as a list item appearing in a depend clause14
with a mutexinoutset dependence-type on a different task generating construct, and both15
constructs generate sibling tasks, the sibling tasks will be mutually exclusive tasks.16

The list items that appear in the depend clause may reference iterators defined by an17
iterators-definition appearing on an iterator modifier.18

The list items that appear in the depend clause may include array sections.19

Fortran
If a list item has the ALLOCATABLE attribute and its allocation status is unallocated, the behavior20
is unspecified. If a list item has the POINTER attribute and its association status is disassociated or21
undefined, the behavior is unspecified.22

Fortran
C / C++

The list items that appear in a depend clause may use shape-operators.23

C / C++
24

Note – The enforced task dependence establishes a synchronization of memory accesses25
performed by a dependent task with respect to accesses performed by the predecessor tasks.26
However, it is the responsibility of the programmer to synchronize properly with respect to other27
concurrent accesses that occur outside of those tasks.28

29

The source dependence-type specifies the satisfaction of cross-iteration dependences that arise30
from the current iteration.31

The sink dependence-type specifies a cross-iteration dependence, where the iteration vector vec32
indicates the iteration that satisfies the dependence.33

CHAPTER 2. DIRECTIVES 257

If the iteration vector vec does not occur in the iteration space, the depend clause is ignored. If all1
depend clauses on an ordered construct are ignored then the construct is ignored.2

3

Note – An iteration vector vec that does not indicate a lexicographically earlier iteration may cause4
a deadlock.5

6

Execution Model Events7

The task-dependences event occurs in a thread that encounters a task generating construct or a8
taskwait construct with a depend clause immediately after the task-create event for the new9
task or the taskwait-begin event.10

The task-dependence event indicates an unfulfilled dependence for the generated task. This event11
occurs in a thread that observes the unfulfilled dependence before it is satisfied.12

Tool Callbacks13

A thread dispatches the ompt_callback_dependences callback for each occurrence of the14
task-dependences event to announce its dependences with respect to the list items in the depend15
clause. This callback has type signature ompt_callback_dependences_t.16

A thread dispatches the ompt_callback_task_dependence callback for a task-dependence17
event to report a dependence between a predecessor task (src_task_data) and a dependent task18
(sink_task_data). This callback has type signature ompt_callback_task_dependence_t.19

Restrictions20

Restrictions to the depend clause are as follows:21

• List items used in depend clauses of the same task or sibling tasks must indicate identical22
storage locations or disjoint storage locations.23

• List items used in depend clauses cannot be zero-length array sections.24

• Array sections cannot be specified in depend clauses with the depobj dependence type.25

• List items used in depend clauses with the depobj dependence type must be depend objects26
in the initialized state.27

C / C++
• List items used in depend clauses with the depobj dependence type must be expressions of28
the omp_depend_t type.29

• List items used in depend clauses with the in, out, inout or mutexinoutset30
dependence types cannot be expressions of the omp_depend_t type.31

C / C++

258 OpenMP API – Version 5.0 November 2018

Fortran
• A common block name cannot appear in a depend clause.1

• List items used in depend clauses with the depobj dependence type must be integer2
expressions of the omp_depend_kind kind.3

Fortran
• For a vec element of sink dependence-type of the form xi + di or xi − di if the loop iteration4
variable xi has an integral or pointer type, the expression xi + di or xi − di for any value of the5
loop iteration variable xi that can encounter the ordered construct must be computable without6
overflow in the type of the loop iteration variable.7

C++
• For a vec element of sink dependence-type of the form xi + di or xi − di if the loop iteration8
variable xi is of a random access iterator type other than pointer type, the expression9
(xi − lbi) + di or (xi − lbi) − di for any value of the loop iteration variable xi that can10
encounter the ordered construct must be computable without overflow in the type that would11
be used by std::distance applied to variables of the type of xi.12

C++
C / C++

• A bit-field cannot appear in a depend clause.13

C / C++

Cross References14

• Array sections, see Section 2.1.5 on page 44.15

• Iterators, see Section 2.1.6 on page 47.16

• task construct, see Section 2.10.1 on page 135.17

• Task scheduling constraints, see Section 2.10.6 on page 149.18

• target enter data construct, see Section 2.12.3 on page 164.19

• target exit data construct, see Section 2.12.4 on page 166.20

• target construct, see Section 2.12.5 on page 170.21

• target update construct, see Section 2.12.6 on page 176.22

• ordered construct, see Section 2.17.9 on page 250.23

• depobj construct, see Section 2.17.10.1 on page 254.24

• ompt_callback_dependences_t, see Section 4.5.2.8 on page 468.25

• ompt_callback_task_dependence_t, see Section 4.5.2.9 on page 470.26

CHAPTER 2. DIRECTIVES 259

2.17.12 Synchronization Hints1

Hints about the expected dynamic behavior or suggested implementation can be provided by the2
programmer to locks (by using the omp_init_lock_with_hint or3
omp_init_nest_lock_with_hint functions to initialize the lock), and to atomic and4
critical directives by using the hint clause. The effect of a hint does not change the semantics5
of the associated construct; if ignoring the hint changes the program semantics, the result is6
unspecified.7

The C/C++ header file (omp.h) and the Fortran include file (omp_lib.h) and/or Fortran 908
module file (omp_lib) define the valid hint constants. The valid constants must include the9
following, which can be extended with implementation-defined values:10

C / C++
typedef enum omp_sync_hint_t {11

omp_sync_hint_none = 0x0,12
omp_lock_hint_none = omp_sync_hint_none,13
omp_sync_hint_uncontended = 0x1,14
omp_lock_hint_uncontended = omp_sync_hint_uncontended,15
omp_sync_hint_contended = 0x2,16
omp_lock_hint_contended = omp_sync_hint_contended,17
omp_sync_hint_nonspeculative = 0x4,18
omp_lock_hint_nonspeculative = omp_sync_hint_nonspeculative,19
omp_sync_hint_speculative = 0x820
omp_lock_hint_speculative = omp_sync_hint_speculative21

} omp_sync_hint_t;22
23

typedef omp_sync_hint_t omp_lock_hint_t;24

C / C++
Fortran

integer, parameter :: omp_lock_hint_kind = omp_sync_hint_kind25
26

integer (kind=omp_sync_hint_kind), &27
parameter :: omp_sync_hint_none = &28

int(Z’0’, kind=omp_sync_hint_kind)29
integer (kind=omp_lock_hint_kind), &30

parameter :: omp_lock_hint_none = omp_sync_hint_none31
integer (kind=omp_sync_hint_kind), &32

parameter :: omp_sync_hint_uncontended = &33
int(Z’1’, kind=omp_sync_hint_kind)34

integer (kind=omp_lock_hint_kind), &35
parameter :: omp_lock_hint_uncontended = &36

omp_sync_hint_uncontended37
integer (kind=omp_sync_hint_kind), &38

260 OpenMP API – Version 5.0 November 2018

parameter :: omp_sync_hint_contended = &1
int(Z’2’, kind=omp_sync_hint_kind)2

integer (kind=omp_lock_hint_kind), &3
parameter :: omp_lock_hint_contended = &4

omp_sync_hint_contended5
integer (kind=omp_sync_hint_kind), &6

parameter :: omp_sync_hint_nonspeculative = &7
int(Z’4’, kind=omp_sync_hint_kind)8

integer (kind=omp_lock_hint_kind), &9
parameter :: omp_lock_hint_nonspeculative = &10

omp_sync_hint_nonspeculative11
integer (kind=omp_sync_hint_kind), &12

parameter :: omp_sync_hint_speculative = &13
int(Z’8’, kind=omp_sync_hint_kind)14

integer (kind=omp_lock_hint_kind), &15
parameter :: omp_lock_hint_speculative = &16

omp_sync_hint_speculative17

Fortran
The hints can be combined by using the + or | operators in C/C++ or the + operator in Fortran.18
Combining omp_sync_hint_none with any other hint is equivalent to specifying the other hint.19

The intended meaning of each hint is:20

• omp_sync_hint_uncontended: low contention is expected in this operation, that is, few21
threads are expected to perform the operation simultaneously in a manner that requires22
synchronization;23

• omp_sync_hint_contended: high contention is expected in this operation, that is, many24
threads are expected to perform the operation simultaneously in a manner that requires25
synchronization;26

• omp_sync_hint_speculative: the programmer suggests that the operation should be27
implemented using speculative techniques such as transactional memory; and28

• omp_sync_hint_nonspeculative: the programmer suggests that the operation should29
not be implemented using speculative techniques such as transactional memory.30

31

Note – Future OpenMP specifications may add additional hints to the omp_sync_hint_t type32
and the omp_sync_hint_kind kind. Implementers are advised to add implementation-defined33
hints starting from the most significant bit of the omp_sync_hint_t type and34
omp_sync_hint_kind kind and to include the name of the implementation in the name of the35
added hint to avoid name conflicts with other OpenMP implementations.36

37

CHAPTER 2. DIRECTIVES 261

The omp_sync_hint_t and omp_lock_hint_t enumeration types and the equivalent types1
in Fortran are synonyms for each other. The type omp_lock_hint_t has been deprecated.2

Restrictions3

Restrictions to the synchronization hints are as follows:4

• The hints omp_sync_hint_uncontended and omp_sync_hint_contended cannot5
be combined.6

• The hints omp_sync_hint_nonspeculative and omp_sync_hint_speculative7
cannot be combined.8

The restrictions for combining multiple values of omp_sync_hint apply equally to the9
corresponding values of omp_lock_hint, and expressions that mix the two types.10

Cross References11

• critical construct, see Section 2.17.1 on page 223.12

• atomic construct, see Section 2.17.7 on page 23413

• omp_init_lock_with_hint and omp_init_nest_lock_with_hint, see14
Section 3.3.2 on page 385.15

262 OpenMP API – Version 5.0 November 2018

2.18 Cancellation Constructs1

2.18.1 cancel Construct2

Summary3

The cancel construct activates cancellation of the innermost enclosing region of the type4
specified. The cancel construct is a stand-alone directive.5

Syntax6

C / C++
The syntax of the cancel construct is as follows:7

#pragma omp cancel construct-type-clause [[,] if-clause] new-line8

where construct-type-clause is one of the following:9

parallel10

sections11

for12

taskgroup13

and if-clause is14

if ([cancel :] scalar-expression)15

C / C++
Fortran

The syntax of the cancel construct is as follows:16

!$omp cancel construct-type-clause [[,] if-clause]17

where construct-type-clause is one of the following:18

parallel19

sections20

do21

taskgroup22

and if-clause is23

if ([cancel :] scalar-logical-expression)24

Fortran

CHAPTER 2. DIRECTIVES 263

Binding1

The binding thread set of the cancel region is the current team. The binding region of the2
cancel region is the innermost enclosing region of the type corresponding to the3
construct-type-clause specified in the directive (that is, the innermost parallel, sections,4
worksharing-loop, or taskgroup region).5

Description6

The cancel construct activates cancellation of the binding region only if the cancel-var ICV is7
true, in which case the cancel construct causes the encountering task to continue execution at the8
end of the binding region if construct-type-clause is parallel, for, do, or sections. If the9
cancel-var ICV is true and construct-type-clause is taskgroup, the encountering task continues10
execution at the end of the current task region. If the cancel-var ICV is false, the cancel11
construct is ignored.12

Threads check for active cancellation only at cancellation points that are implied at the following13
locations:14

• cancel regions;15

• cancellation point regions;16

• barrier regions;17

• implicit barriers regions.18

When a thread reaches one of the above cancellation points and if the cancel-var ICV is true, then:19

• If the thread is at a cancel or cancellation point region and construct-type-clause is20
parallel, for, do, or sections, the thread continues execution at the end of the canceled21
region if cancellation has been activated for the innermost enclosing region of the type specified.22

• If the thread is at a cancel or cancellation point region and construct-type-clause is23
taskgroup, the encountering task checks for active cancellation of all of the taskgroup sets to24
which the encountering task belongs, and continues execution at the end of the current task25
region if cancellation has been activated for any of the taskgroup sets.26

• If the encountering task is at a barrier region, the encountering task checks for active cancellation27
of the innermost enclosing parallel region. If cancellation has been activated, then the28
encountering task continues execution at the end of the canceled region.29

30

Note – If one thread activates cancellation and another thread encounters a cancellation point, the31
order of execution between the two threads is non-deterministic. Whether the thread that32
encounters a cancellation point detects the activated cancellation depends on the underlying33
hardware and operating system.34

35

264 OpenMP API – Version 5.0 November 2018

When cancellation of tasks is activated through a cancel construct with the taskgroup1
construct-type-clause, the tasks that belong to the taskgroup set of the innermost enclosing2
taskgroup region will be canceled. The task that encountered that construct continues execution3
at the end of its task region, which implies completion of that task. Any task that belongs to the4
innermost enclosing taskgroup and has already begun execution must run to completion or until5
a cancellation point is reached. Upon reaching a cancellation point and if cancellation is active, the6
task continues execution at the end of its task region, which implies the task’s completion. Any task7
that belongs to the innermost enclosing taskgroup and that has not begun execution may be8
discarded, which implies its completion.9

When cancellation is active for a parallel, sections, or worksharing-loop region, each10
thread of the binding thread set resumes execution at the end of the canceled region if a cancellation11
point is encountered. If the canceled region is a parallel region, any tasks that have been12
created by a task or a taskloop construct and their descendent tasks are canceled according to13
the above taskgroup cancellation semantics. If the canceled region is a sections, or14
worksharing-loop region, no task cancellation occurs.15

C++
The usual C++ rules for object destruction are followed when cancellation is performed.16

C++
Fortran

All private objects or subobjects with ALLOCATABLE attribute that are allocated inside the17
canceled construct are deallocated.18

Fortran
If the canceled construct contains a reduction, task_reduction or lastprivate clause,19
the final value of the list items that appeared in those clauses are undefined.20

When an if clause is present on a cancel construct and the if expression evaluates to false, the21
cancel construct does not activate cancellation. The cancellation point associated with the22
cancel construct is always encountered regardless of the value of the if expression.23

24

Note – The programmer is responsible for releasing locks and other synchronization data25
structures that might cause a deadlock when a cancel construct is encountered and blocked26
threads cannot be canceled. The programmer is also responsible for ensuring proper27
synchronizations to avoid deadlocks that might arise from cancellation of OpenMP regions that28
contain OpenMP synchronization constructs.29

30

Execution Model Events31

If a task encounters a cancel construct that will activate cancellation then a cancel event occurs.32

A discarded-task event occurs for any discarded tasks.33

CHAPTER 2. DIRECTIVES 265

Tool Callbacks1

A thread dispatches a registered ompt_callback_cancel callback for each occurrence of a2
cancel event in the context of the encountering task. This callback has type signature3
ompt_callback_cancel_t; (flags & ompt_cancel_activated) always evaluates to4
true in the dispatched callback; (flags & ompt_cancel_parallel) evaluates to true in the5
dispatched callback if construct-type-clause is parallel;6
(flags & ompt_cancel_sections) evaluates to true in the dispatched callback if7
construct-type-clause is sections; (flags & ompt_cancel_loop) evaluates to true in the8
dispatched callback if construct-type-clause is for or do; and9
(flags & ompt_cancel_taskgroup) evaluates to true in the dispatched callback if10
construct-type-clause is taskgroup.11

A thread dispatches a registered ompt_callback_cancel callback with the ompt_data_t12
associated with the discarded task as its task_data argument and13
ompt_cancel_discarded_task as its flags argument for each occurrence of a14
discarded-task event. The callback occurs in the context of the task that discards the task and has15
type signature ompt_callback_cancel_t.16

Restrictions17

The restrictions to the cancel construct are as follows:18

• The behavior for concurrent cancellation of a region and a region nested within it is unspecified.19

• If construct-type-clause is taskgroup, the cancel construct must be closely nested inside a20
task or a taskloop construct and the cancel region must be closely nested inside a21
taskgroup region. If construct-type-clause is sections, the cancel construct must be22
closely nested inside a sections or section construct. Otherwise, the cancel construct23
must be closely nested inside an OpenMP construct that matches the type specified in24
construct-type-clause of the cancel construct.25

• A worksharing construct that is canceled must not have a nowait clause.26

• A worksharing-loop construct that is canceled must not have an ordered clause.27

• During execution of a construct that may be subject to cancellation, a thread must not encounter28
an orphaned cancellation point. That is, a cancellation point must only be encountered within29
that construct and must not be encountered elsewhere in its region.30

Cross References31

• cancel-var ICV, see Section 2.5.1 on page 64.32

• if clause, see Section 2.15 on page 220.33

• cancellation point construct, see Section 2.18.2 on page 267.34

266 OpenMP API – Version 5.0 November 2018

• omp_get_cancellation routine, see Section 3.2.9 on page 342.1

• omp_cancel_flag_t enumeration type, see Section 4.4.4.24 on page 450.2

• ompt_callback_cancel_t, see Section 4.5.2.18 on page 481.3

2.18.2 cancellation point Construct4

Summary5

The cancellation point construct introduces a user-defined cancellation point at which6
implicit or explicit tasks check if cancellation of the innermost enclosing region of the type7
specified has been activated. The cancellation point construct is a stand-alone directive.8

Syntax9

C / C++
The syntax of the cancellation point construct is as follows:10

#pragma omp cancellation point construct-type-clause new-line11

where construct-type-clause is one of the following:12

parallel13

sections14

for15

taskgroup16

C / C++
Fortran

The syntax of the cancellation point construct is as follows:17

!$omp cancellation point construct-type-clause18

where construct-type-clause is one of the following:19

parallel20

sections21

do22

taskgroup23

Fortran

CHAPTER 2. DIRECTIVES 267

Binding1

The binding thread set of the cancellation point construct is the current team. The binding2
region of the cancellation point region is the innermost enclosing region of the type3
corresponding to the construct-type-clause specified in the directive (that is, the innermost4
parallel, sections, worksharing-loop, or taskgroup region).5

Description6

This directive introduces a user-defined cancellation point at which an implicit or explicit task must7
check if cancellation of the innermost enclosing region of the type specified in the clause has been8
requested. This construct does not implement any synchronization between threads or tasks.9

When an implicit or explicit task reaches a user-defined cancellation point and if the cancel-var10
ICV is true, then:11

• If the construct-type-clause of the encountered cancellation point construct is12
parallel, for, do, or sections, the thread continues execution at the end of the canceled13
region if cancellation has been activated for the innermost enclosing region of the type specified.14

• If the construct-type-clause of the encountered cancellation point construct is15
taskgroup, the encountering task checks for active cancellation of all taskgroup sets to which16
the encountering task belongs and continues execution at the end of the current task region if17
cancellation has been activated for any of them.18

Execution Model Events19

The cancellation event occurs if a task encounters a cancellation point and detected the activation20
of cancellation.21

Tool Callbacks22

A thread dispatches a registered ompt_callback_cancel callback for each occurrence of a23
cancel event in the context of the encountering task. This callback has type signature24
ompt_callback_cancel_t; (flags & ompt_cancel_detected) always evaluates to true25
in the dispatched callback; (flags & ompt_cancel_parallel) evaluates to true in the26
dispatched callback if construct-type-clause of the encountered cancellation point27
construct is parallel; (flags & ompt_cancel_sections) evaluates to true in the28
dispatched callback if construct-type-clause of the encountered cancellation point29
construct is sections; (flags & ompt_cancel_loop) evaluates to true in the dispatched30
callback if construct-type-clause of the encountered cancellation point construct is for or31
do; and (flags & ompt_cancel_taskgroup) evaluates to true in the dispatched callback if32
construct-type-clause of the encountered cancellation point construct is taskgroup.33

268 OpenMP API – Version 5.0 November 2018

Restrictions1

• A cancellation point construct for which construct-type-clause is taskgroup must be2
closely nested inside a task or taskloop construct, and the cancellation point region3
must be closely nested inside a taskgroup region.4

• A cancellation point construct for which construct-type-clause is sections must be5
closely nested inside a sections or section construct.6

• A cancellation point construct for which construct-type-clause is neither sections nor7
taskgroup must be closely nested inside an OpenMP construct that matches the type specified8
in construct-type-clause.9

Cross References10

• cancel-var ICV, see Section 2.5.1 on page 64.11

• cancel construct, see Section 2.18.1 on page 263.12

• omp_get_cancellation routine, see Section 3.2.9 on page 342.13

• ompt_callback_cancel_t, see Section 4.5.2.18 on page 481.14

2.19 Data Environment15

This section presents directives and clauses for controlling data environments.16

2.19.1 Data-Sharing Attribute Rules17

This section describes how the data-sharing attributes of variables referenced in data environments18
are determined. The following two cases are described separately:19

• Section 2.19.1.1 on page 270 describes the data-sharing attribute rules for variables referenced in20
a construct.21

• Section 2.19.1.2 on page 273 describes the data-sharing attribute rules for variables referenced in22
a region, but outside any construct.23

CHAPTER 2. DIRECTIVES 269

2.19.1.1 Variables Referenced in a Construct1

The data-sharing attributes of variables that are referenced in a construct can be predetermined,2
explicitly determined, or implicitly determined, according to the rules outlined in this section.3

Specifying a variable in a data-sharing attribute clause, except for the private clause, or4
copyprivate clause of an enclosed construct causes an implicit reference to the variable in the5
enclosing construct. Specifying a variable in a map clause of an enclosed construct may cause an6
implicit reference to the variable in the enclosing construct. Such implicit references are also7
subject to the data-sharing attribute rules outlined in this section.8

Certain variables and objects have predetermined data-sharing attributes as follows:9

C / C++
• Variables that appear in threadprivate directives are threadprivate.10

• Variables with automatic storage duration that are declared in a scope inside the construct are11
private.12

• Objects with dynamic storage duration are shared.13

• Static data members are shared.14

• The loop iteration variable(s) in the associated for-loop(s) of a for, parallel for,15
taskloop, or distribute construct is (are) private.16

• The loop iteration variable in the associated for-loop of a simd construct with just one17
associated for-loop is linear with a linear-step that is the increment of the associated for-loop.18

• The loop iteration variables in the associated for-loops of a simd construct with multiple19
associated for-loops are lastprivate.20

• The loop iteration variable(s) in the associated for-loop(s) of a loop construct is (are) lastprivate.21

• Variables with static storage duration that are declared in a scope inside the construct are shared.22

• If a list item in a map clause on the target construct has a base pointer, and the base pointer is23
a scalar variable that does not appear in a map clause on the construct, the base pointer is24
firstprivate.25

• If a list item in a reduction or in_reduction clause on a construct has a base pointer then26
the base pointer is private.27

C / C++
Fortran

• Variables and common blocks that appear in threadprivate directives are threadprivate.28

• The loop iteration variable(s) in the associated do-loop(s) of a do, parallel do, taskloop,29
or distribute construct is (are) private.30

270 OpenMP API – Version 5.0 November 2018

• The loop iteration variable in the associated do-loop of a simd construct with just one1
associated do-loop is linear with a linear-step that is the increment of the associated do-loop.2

• The loop iteration variables in the associated do-loops of a simd construct with multiple3
associated do-loops are lastprivate.4

• The loop iteration variable(s) in the associated do-loop(s) of a loop construct is (are) lastprivate.5

• A loop iteration variable for a sequential loop in a parallel or task generating construct is6
private in the innermost such construct that encloses the loop.7

• Implied-do indices and forall indices are private.8

• Cray pointees have the same data-sharing attribute as the storage with which their Cray pointers9
are associated.10

• Assumed-size arrays are shared.11

• An associate name preserves the association with the selector established at the ASSOCIATE or12
SELECT TYPE statement.13

Fortran
Variables with predetermined data-sharing attributes may not be listed in data-sharing attribute14
clauses, except for the cases listed below. For these exceptions only, listing a predetermined15
variable in a data-sharing attribute clause is allowed and overrides the variable’s predetermined16
data-sharing attributes.17

C / C++
• The loop iteration variable(s) in the associated for-loop(s) of a for, parallel for,18
taskloop, distribute, or loop construct may be listed in a private or19
lastprivate clause.20

• The loop iteration variable in the associated for-loop of a simd construct with just one21
associated for-loop may be listed in a private, lastprivate, or linear clause with a22
linear-step that is the increment of the associated for-loop.23

• The loop iteration variables in the associated for-loops of a simd construct with multiple24
associated for-loops may be listed in a private or lastprivate clause.25

• Variables with const-qualified type with no mutable members may be listed in a26
firstprivate clause, even if they are static data members.27

C / C++

CHAPTER 2. DIRECTIVES 271

Fortran
• The loop iteration variable(s) in the associated do-loop(s) of a do, parallel do, taskloop,1
distribute, or loop construct may be listed in a private or lastprivate clause.2

• The loop iteration variable in the associated do-loop of a simd construct with just one3
associated do-loop may be listed in a private, lastprivate, or linear clause with a4
linear-step that is the increment of the associated loop.5

• The loop iteration variables in the associated do-loops of a simd construct with multiple6
associated do-loops may be listed in a private or lastprivate clause.7

• Variables used as loop iteration variables in sequential loops in a parallel or task generating8
construct may be listed in data-sharing attribute clauses on the construct itself, and on enclosed9
constructs, subject to other restrictions.10

• Assumed-size arrays may be listed in a shared clause.11

Fortran
Additional restrictions on the variables that may appear in individual clauses are described with12
each clause in Section 2.19.4 on page 282.13

Variables with explicitly determined data-sharing attributes are those that are referenced in a given14
construct and are listed in a data-sharing attribute clause on the construct.15

Variables with implicitly determined data-sharing attributes are those that are referenced in a given16
construct, do not have predetermined data-sharing attributes, and are not listed in a data-sharing17
attribute clause on the construct.18

Rules for variables with implicitly determined data-sharing attributes are as follows:19

• In a parallel, teams, or task generating construct, the data-sharing attributes of these20
variables are determined by the default clause, if present (see Section 2.19.4.1 on page 282).21

• In a parallel construct, if no default clause is present, these variables are shared.22

• For constructs other than task generating constructs, if no default clause is present, these23
variables reference the variables with the same names that exist in the enclosing context.24

• In a target construct, variables that are not mapped after applying data-mapping attribute25
rules (see Section 2.19.7 on page 314) are firstprivate.26

C++
• In an orphaned task generating construct, if no default clause is present, formal arguments27
passed by reference are firstprivate.28

C++
Fortran

• In an orphaned task generating construct, if no default clause is present, dummy arguments29
are firstprivate.30

Fortran

272 OpenMP API – Version 5.0 November 2018

• In a task generating construct, if no default clause is present, a variable for which the1
data-sharing attribute is not determined by the rules above and that in the enclosing context is2
determined to be shared by all implicit tasks bound to the current team is shared.3

• In a task generating construct, if no default clause is present, a variable for which the4
data-sharing attribute is not determined by the rules above is firstprivate.5

Additional restrictions on the variables for which data-sharing attributes cannot be implicitly6
determined in a task generating construct are described in Section 2.19.4.4 on page 286.7

2.19.1.2 Variables Referenced in a Region but not in a Construct8

The data-sharing attributes of variables that are referenced in a region, but not in a construct, are9
determined as follows:10

C / C++
• Variables with static storage duration that are declared in called routines in the region are shared.11

• File-scope or namespace-scope variables referenced in called routines in the region are shared12
unless they appear in a threadprivate directive.13

• Objects with dynamic storage duration are shared.14

• Static data members are shared unless they appear in a threadprivate directive.15

• In C++, formal arguments of called routines in the region that are passed by reference have the16
same data-sharing attributes as the associated actual arguments.17

• Other variables declared in called routines in the region are private.18

C / C++
Fortran

• Local variables declared in called routines in the region and that have the save attribute, or that19
are data initialized, are shared unless they appear in a threadprivate directive.20

• Variables belonging to common blocks, or accessed by host or use association, and referenced in21
called routines in the region are shared unless they appear in a threadprivate directive.22

• Dummy arguments of called routines in the region that have the VALUE attribute are private.23

• Dummy arguments of called routines in the region that do not have the VALUE attribute are24
private if the associated actual argument is not shared.25

• Dummy arguments of called routines in the region that do not have the VALUE attribute are26
shared if the actual argument is shared and it is a scalar variable, structure, an array that is not a27
pointer or assumed-shape array, or a simply contiguous array section. Otherwise, the28
data-sharing attribute of the dummy argument is implementation-defined if the associated actual29
argument is shared.30

CHAPTER 2. DIRECTIVES 273

• Cray pointees have the same data-sharing attribute as the storage with which their Cray pointers1
are associated.2

• Implied-do indices, forall indices, and other local variables declared in called routines in the3
region are private.4

Fortran

2.19.2 threadprivate Directive5

Summary6

The threadprivate directive specifies that variables are replicated, with each thread having its7
own copy. The threadprivate directive is a declarative directive.8

Syntax9

C / C++
The syntax of the threadprivate directive is as follows:10

#pragma omp threadprivate(list) new-line11

where list is a comma-separated list of file-scope, namespace-scope, or static block-scope variables12
that do not have incomplete types.13

C / C++
Fortran

The syntax of the threadprivate directive is as follows:14

!$omp threadprivate(list)15

where list is a comma-separated list of named variables and named common blocks. Common16
block names must appear between slashes.17

Fortran

Description18

Each copy of a threadprivate variable is initialized once, in the manner specified by the program,19
but at an unspecified point in the program prior to the first reference to that copy. The storage of all20
copies of a threadprivate variable is freed according to how static variables are handled in the base21
language, but at an unspecified point in the program.22

274 OpenMP API – Version 5.0 November 2018

A program in which a thread references another thread’s copy of a threadprivate variable is1
non-conforming.2

The content of a threadprivate variable can change across a task scheduling point if the executing3
thread switches to another task that modifies the variable. For more details on task scheduling, see4
Section 1.3 on page 20 and Section 2.10 on page 135.5

In parallel regions, references by the master thread will be to the copy of the variable in the6
thread that encountered the parallel region.7

During a sequential part references will be to the initial thread’s copy of the variable. The values of8
data in the initial thread’s copy of a threadprivate variable are guaranteed to persist between any9
two consecutive references to the variable in the program provided that no teams construct that is10
not nested inside of a target construct is encountered between the references and that the initial11
thread is not nested inside of a teams region. For initial threads nested inside of a teams region,12
the values of data in the copies of a threadprivate variable of those initial threads are guaranteed to13
persist between any two consecutive references to the variable inside of that teams region.14

The values of data in the threadprivate variables of threads that are not initial threads are15
guaranteed to persist between two consecutive active parallel regions only if all of the16
following conditions hold:17

• Neither parallel region is nested inside another explicit parallel region;18

• The number of threads used to execute both parallel regions is the same;19

• The thread affinity policies used to execute both parallel regions are the same;20

• The value of the dyn-var internal control variable in the enclosing task region is false at entry to21
both parallel regions; and22

• No teams construct that is not nested inside of a target construct is encountered between23
both parallel regions.24

• Neither the omp_pause_resource nor omp_pause_resource_all routine is called.25

If these conditions all hold, and if a threadprivate variable is referenced in both regions, then26
threads with the same thread number in their respective regions will reference the same copy of that27
variable.28

C / C++
If the above conditions hold, the storage duration, lifetime, and value of a thread’s copy of a29
threadprivate variable that does not appear in any copyin clause on the second region will be30
retained. Otherwise, the storage duration, lifetime, and value of a thread’s copy of the variable in31
the second region is unspecified.32

C / C++

CHAPTER 2. DIRECTIVES 275

Fortran
If the above conditions hold, the definition, association, or allocation status of a thread’s copy of a1
threadprivate variable or a variable in a threadprivate common block that is not affected by any2
copyin clause that appears on the second region (a variable is affected by a copyin clause if the3
variable appears in the copyin clause or it is in a common block that appears in the copyin4
clause) will be retained. Otherwise, the definition and association status of a thread’s copy of the5
variable in the second region are undefined, and the allocation status of an allocatable variable will6
be implementation defined.7

If a threadprivate variable or a variable in a threadprivate common block is not affected by any8
copyin clause that appears on the first parallel region in which it is referenced, the thread’s9
copy of the variable inherits the declared type parameter and the default parameter values from the10
original variable. The variable or any subobject of the variable is initially defined or undefined11
according to the following rules:12

• If it has the ALLOCATABLE attribute, each copy created will have an initial allocation status of13
unallocated;14

• If it has the POINTER attribute:15

– If it has an initial association status of disassociated, either through explicit initialization or16
default initialization, each copy created will have an association status of disassociated;17

– Otherwise, each copy created will have an association status of undefined.18

• If it does not have either the POINTER or the ALLOCATABLE attribute:19

– If it is initially defined, either through explicit initialization or default initialization, each copy20
created is so defined;21

– Otherwise, each copy created is undefined.22

Fortran
C / C++

The address of a threadprivate variable is not an address constant.23

C / C++
C++

The order in which any constructors for different threadprivate variables of class type are called is24
unspecified. The order in which any destructors for different threadprivate variables of class type25
are called is unspecified.26

C++

276 OpenMP API – Version 5.0 November 2018

Restrictions1

The restrictions to the threadprivate directive are as follows:2

• A threadprivate variable must not appear in any clause except the copyin, copyprivate,3
schedule, num_threads, thread_limit, and if clauses.4

• A program in which an untied task accesses threadprivate storage is non-conforming.5

C / C++
• If the value of a variable referenced in an explicit initializer of a threadprivate variable is6
modified prior to the first reference to any instance of the threadprivate variable, then the7
behavior is unspecified.8

• A variable that is part of another variable (as an array or structure element) cannot appear in a9
threadprivate clause unless it is a static data member of a C++ class.10

• A threadprivate directive for file-scope variables must appear outside any definition or11
declaration, and must lexically precede all references to any of the variables in its list.12

• A threadprivate directive for namespace-scope variables must appear outside any13
definition or declaration other than the namespace definition itself, and must lexically precede all14
references to any of the variables in its list.15

• Each variable in the list of a threadprivate directive at file, namespace, or class scope must16
refer to a variable declaration at file, namespace, or class scope that lexically precedes the17
directive.18

• A threadprivate directive for static block-scope variables must appear in the scope of the19
variable and not in a nested scope. The directive must lexically precede all references to any of20
the variables in its list.21

• Each variable in the list of a threadprivate directive in block scope must refer to a variable22
declaration in the same scope that lexically precedes the directive. The variable declaration must23
use the static storage-class specifier.24

• If a variable is specified in a threadprivate directive in one translation unit, it must be25
specified in a threadprivate directive in every translation unit in which it is declared.26

C / C++
C++

• A threadprivate directive for static class member variables must appear in the class27
definition, in the same scope in which the member variables are declared, and must lexically28
precede all references to any of the variables in its list.29

• A threadprivate variable must not have an incomplete type or a reference type.30

• A threadprivate variable with class type must have:31

– An accessible, unambiguous default constructor in the case of default initialization without a32
given initializer;33

CHAPTER 2. DIRECTIVES 277

– An accessible, unambiguous constructor that accepts the given argument in the case of direct1
initialization; and2

– An accessible, unambiguous copy constructor in the case of copy initialization with an explicit3
initializer.4

C++
Fortran

• A variable that is part of another variable (as an array, structure element or type parameter5
inquiry) cannot appear in a threadprivate clause.6

• The threadprivate directive must appear in the declaration section of a scoping unit in7
which the common block or variable is declared.8

• If a threadprivate directive that specifies a common block name appears in one program9
unit, then such a directive must also appear in every other program unit that contains a COMMON10
statement that specifies the same name. It must appear after the last such COMMON statement in11
the program unit.12

• If a threadprivate variable or a threadprivate common block is declared with the BIND attribute,13
the corresponding C entities must also be specified in a threadprivate directive in the C14
program.15

• A blank common block cannot appear in a threadprivate directive.16

• A variable can only appear in a threadprivate directive in the scope in which it is declared.17
It must not be an element of a common block or appear in an EQUIVALENCE statement.18

• A variable that appears in a threadprivate directive must be declared in the scope of a19
module or have the SAVE attribute, either explicitly or implicitly.20

Fortran

Cross References21

• dyn-var ICV, see Section 2.5 on page 63.22

• Number of threads used to execute a parallel region, see Section 2.6.1 on page 78.23

• copyin clause, see Section 2.19.6.1 on page 310.24

278 OpenMP API – Version 5.0 November 2018

2.19.3 List Item Privatization1

For any construct, a list item that appears in a data-sharing attribute clause, including a reduction2
clause, may be privatized. Each task that references a privatized list item in any statement in the3
construct receives at least one new list item if the construct has one or more associated loops, and4
otherwise each such task receives one new list item. Each SIMD lane used in a simd construct that5
references a privatized list item in any statement in the construct receives at least one new list item.6
Language-specific attributes for new list items are derived from the corresponding original list item.7
Inside the construct, all references to the original list item are replaced by references to a new list8
item received by the task or SIMD lane.9

If the construct has one or more associated loops, within the same logical iteration of the loop(s)10
the same new list item replaces all references to the original list item. For any two logical iterations,11
if the references to the original list item are replaced by the same list item then the logical iterations12
must execute in some sequential order.13

In the rest of the region, it is unspecified whether references are to a new list item or the original list14
item. Therefore, if an attempt is made to reference the original item, its value after the region is also15
unspecified. If a task or a SIMD lane does not reference a privatized list item, it is unspecified16
whether the task or SIMD lane receives a new list item.17

The value and/or allocation status of the original list item will change only:18

• If accessed and modified via pointer;19

• If possibly accessed in the region but outside of the construct;20

• As a side effect of directives or clauses; or21

Fortran
• If accessed and modified via construct association.22

Fortran
C++

If the construct is contained in a member function, it is unspecified anywhere in the region if23
accesses through the implicit this pointer refer to the new list item or the original list item.24

C++
C / C++

A new list item of the same type, with automatic storage duration, is allocated for the construct.25
The storage and thus lifetime of these list items last until the block in which they are created exits.26
The size and alignment of the new list item are determined by the type of the variable. This27
allocation occurs once for each task generated by the construct and once for each SIMD lane used28
by the construct.29

The new list item is initialized, or has an undefined initial value, as if it had been locally declared30
without an initializer.31

C / C++

CHAPTER 2. DIRECTIVES 279

C++
If the type of a list item is a reference to a type T then the type will be considered to be T for all1
purposes of this clause.2

The order in which any default constructors for different private variables of class type are called is3
unspecified. The order in which any destructors for different private variables of class type are4
called is unspecified.5

C++
Fortran

If any statement of the construct references a list item, a new list item of the same type and type6
parameters is allocated. This allocation occurs once for each task generated by the construct and7
once for each SIMD lane used by the construct. The initial value of the new list item is undefined.8
The initial status of a private pointer is undefined.9

For a list item or the subobject of a list item with the ALLOCATABLE attribute:10

• If the allocation status is unallocated, the new list item or the subobject of the new list item will11
have an initial allocation status of unallocated;12

• If the allocation status is allocated, the new list item or the subobject of the new list item will13
have an initial allocation status of allocated; and14

• If the new list item or the subobject of the new list item is an array, its bounds will be the same as15
those of the original list item or the subobject of the original list item.16

A privatized list item may be storage-associated with other variables when the data-sharing17
attribute clause is encountered. Storage association may exist because of constructs such as18
EQUIVALENCE or COMMON. If A is a variable that is privatized by a construct and B is a variable19
that is storage-associated with A, then:20

• The contents, allocation, and association status of B are undefined on entry to the region;21

• Any definition of A, or of its allocation or association status, causes the contents, allocation, and22
association status of B to become undefined; and23

• Any definition of B, or of its allocation or association status, causes the contents, allocation, and24
association status of A to become undefined.25

A privatized list item clause may be a selector of an ASSOCIATE or SELECT TYPE construct. If26
the construct association is established prior to a parallel region, the association between the27
associate name and the original list item will be retained in the region.28

Finalization of a list item of a finalizable type or subobjects of a list item of a finalizable type29
occurs at the end of the region. The order in which any final subroutines for different variables of a30
finalizable type are called is unspecified.31

Fortran

280 OpenMP API – Version 5.0 November 2018

If a list item appears in both firstprivate and lastprivate clauses, the update required1
for the lastprivate clause occurs after all initializations for the firstprivate clause.2

Restrictions3

The following restrictions apply to any list item that is privatized unless otherwise stated for a given4
data-sharing attribute clause:5

C
• A variable that is part of another variable (as an array or structure element) cannot be privatized.6

C
C++

• A variable that is part of another variable (as an array or structure element) cannot be privatized7
except if the data-sharing attribute clause is associated with a construct within a class non-static8
member function and the variable is an accessible data member of the object for which the9
non-static member function is invoked.10

• A variable of class type (or array thereof) that is privatized requires an accessible, unambiguous11
default constructor for the class type.12

C++
C / C++

• A variable that is privatized must not have a const-qualified type unless it is of class type with13
a mutable member. This restriction does not apply to the firstprivate clause.14

• A variable that is privatized must not have an incomplete type or be a reference to an incomplete15
type.16

C / C++
Fortran

• A variable that is part of another variable (as an array or structure element) cannot be privatized.17

• A variable that is privatized must either be definable, or an allocatable variable. This restriction18
does not apply to the firstprivate clause.19

• Variables that appear in namelist statements, in variable format expressions, and in expressions20
for statement function definitions, may not be privatized.21

• Pointers with the INTENT(IN) attribute may not be privatized. This restriction does not apply22
to the firstprivate clause.23

• Assumed-size arrays may not be privatized in a target, teams, or distribute construct.24

Fortran

CHAPTER 2. DIRECTIVES 281

2.19.4 Data-Sharing Attribute Clauses1

Several constructs accept clauses that allow a user to control the data-sharing attributes of variables2
referenced in the construct. Not all of the clauses listed in this section are valid on all directives.3
The set of clauses that is valid on a particular directive is described with the directive.4

Most of the clauses accept a comma-separated list of list items (see Section 2.1 on page 38). All list5
items that appear in a clause must be visible, according to the scoping rules of the base language.6
With the exception of the default clause, clauses may be repeated as needed. A list item may not7
appear in more than one clause on the same directive, except that it may be specified in both8
firstprivate and lastprivate clauses.9

The reduction data-sharing attribute clauses are explained in Section 2.19.5 on page 293.10

C++
If a variable referenced in a data-sharing attribute clause has a type derived from a template, and11
the program does not otherwise reference that variable then any behavior related to that variable is12
unspecified.13

C++
Fortran

When a named common block appears in a private, firstprivate, lastprivate, or14
shared clause of a directive, none of its members may be declared in another data-sharing15
attribute clause in that directive. When individual members of a common block appear in a16
private, firstprivate, lastprivate, reduction, or linear clause of a directive,17
the storage of the specified variables is no longer Fortran associated with the storage of the common18
block itself.19

Fortran

2.19.4.1 default Clause20

Summary21

The default clause explicitly determines the data-sharing attributes of variables that are22
referenced in a parallel, teams, or task generating construct and would otherwise be implicitly23
determined (see Section 2.19.1.1 on page 270).24

282 OpenMP API – Version 5.0 November 2018

Syntax1

C / C++
The syntax of the default clause is as follows:2

default(shared | none)3

C / C++
Fortran

The syntax of the default clause is as follows:4

default(private | firstprivate | shared | none)5

Fortran

Description6

The default(shared) clause causes all variables referenced in the construct that have7
implicitly determined data-sharing attributes to be shared.8

Fortran
The default(firstprivate) clause causes all variables in the construct that have implicitly9
determined data-sharing attributes to be firstprivate.10

The default(private) clause causes all variables referenced in the construct that have11
implicitly determined data-sharing attributes to be private.12

Fortran
The default(none) clause requires that each variable that is referenced in the construct, and13
that does not have a predetermined data-sharing attribute, must have its data-sharing attribute14
explicitly determined by being listed in a data-sharing attribute clause.15

Restrictions16

The restrictions to the default clause are as follows:17

• Only a single default clause may be specified on a parallel, task, taskloop or18
teams directive.19

2.19.4.2 shared Clause20

Summary21

The shared clause declares one or more list items to be shared by tasks generated by a22
parallel, teams, or task generating construct.23

CHAPTER 2. DIRECTIVES 283

Syntax1

The syntax of the shared clause is as follows:2

shared(list)3

Description4

All references to a list item within a task refer to the storage area of the original variable at the point5
the directive was encountered.6

The programmer must ensure, by adding proper synchronization, that storage shared by an explicit7
task region does not reach the end of its lifetime before the explicit task region completes its8
execution.9

Fortran
The association status of a shared pointer becomes undefined upon entry to and exit from the10
parallel, teams, or task generating construct if it is associated with a target or a subobject of a11
target that appears as a privatized list item in a data-sharing attribute clause on the construct.12

13

Note – Passing a shared variable to a procedure may result in the use of temporary storage in place14
of the actual argument when the corresponding dummy argument does not have the VALUE or15
CONTIGUOUS attribute and its data-sharing attribute is implementation-defined as per the rules in16
Section 2.19.1.2 on page 273. These conditions effectively result in references to, and definitions of,17
the temporary storage during the procedure reference. Furthermore, the value of the shared variable18
is copied into the intervening temporary storage before the procedure reference when the dummy19
argument does not have the INTENT(OUT) attribute, and is copied out of the temporary storage20
into the shared variable when the dummy argument does not have the INTENT(IN) attribute. Any21
references to (or definitions of) the shared storage that is associated with the dummy argument by22
any other task must be synchronized with the procedure reference to avoid possible data races.23

24
25

Fortran

Restrictions26

The restrictions for the shared clause are as follows:27

C
• A variable that is part of another variable (as an array or structure element) cannot appear in a28
shared clause.29

C

284 OpenMP API – Version 5.0 November 2018

C++
• A variable that is part of another variable (as an array or structure element) cannot appear in a1
shared clause except if the shared clause is associated with a construct within a class2
non-static member function and the variable is an accessible data member of the object for which3
the non-static member function is invoked.4

C++
Fortran

• A variable that is part of another variable (as an array, structure element or type parameter5
inquiry) cannot appear in a shared clause.6

Fortran

2.19.4.3 private Clause7

Summary8

The private clause declares one or more list items to be private to a task or to a SIMD lane.9

Syntax10

The syntax of the private clause is as follows:11

private(list)12

Description13

The private clause specifies that its list items are to be privatized according to Section 2.19.3 on14
page 279. Each task or SIMD lane that references a list item in the construct receives only one new15
list item, unless the construct has one or more associated loops and the order(concurrent)16
clause is also present.17

List items that appear in a private, firstprivate, or reduction clause in a parallel18
construct may also appear in a private clause in an enclosed parallel, worksharing, loop,19
task, taskloop, simd, or target construct.20

List items that appear in a private or firstprivate clause in a task or taskloop21
construct may also appear in a private clause in an enclosed parallel, loop, task,22
taskloop, simd, or target construct.23

List items that appear in a private, firstprivate, lastprivate, or reduction clause24
in a worksharing construct may also appear in a private clause in an enclosed parallel,25
loop, task, simd, or target construct.26

List items that appear in a private clause on a loop construct may also appear in a private27
clause in an enclosed loop, parallel, or simd construct.28

CHAPTER 2. DIRECTIVES 285

Restrictions1

The restrictions to the private clause are as specified in Section 2.19.3.2

Cross References3

• List Item Privatization, see Section 2.19.3 on page 279.4

2.19.4.4 firstprivate Clause5

Summary6

The firstprivate clause declares one or more list items to be private to a task, and initializes7
each of them with the value that the corresponding original item has when the construct is8
encountered.9

Syntax10

The syntax of the firstprivate clause is as follows:11

firstprivate(list)12

Description13

The firstprivate clause provides a superset of the functionality provided by the private14
clause.15

A list item that appears in a firstprivate clause is subject to the private clause semantics16
described in Section 2.19.4.3 on page 285, except as noted. In addition, the new list item is17
initialized from the original list item existing before the construct. The initialization of the new list18
item is done once for each task that references the list item in any statement in the construct. The19
initialization is done prior to the execution of the construct.20

For a firstprivate clause on a parallel, task, taskloop, target, or teams21
construct, the initial value of the new list item is the value of the original list item that exists22
immediately prior to the construct in the task region where the construct is encountered unless23
otherwise specified. For a firstprivate clause on a worksharing construct, the initial value of24
the new list item for each implicit task of the threads that execute the worksharing construct is the25
value of the original list item that exists in the implicit task immediately prior to the point in time26
that the worksharing construct is encountered unless otherwise specified.27

To avoid data races, concurrent updates of the original list item must be synchronized with the read28
of the original list item that occurs as a result of the firstprivate clause.29

286 OpenMP API – Version 5.0 November 2018

C / C++
For variables of non-array type, the initialization occurs by copy assignment. For an array of1
elements of non-array type, each element is initialized as if by assignment from an element of the2
original array to the corresponding element of the new array.3

C / C++
C++

For each variable of class type:4

• If the firstprivate clause is not on a target construct then a copy constructor is invoked5
to perform the initialization; and6

• If the firstprivate clause is on a target construct then it is unspecified how many copy7
constructors, if any, are invoked.8

If copy constructors are called, the order in which copy constructors for different variables of class9
type are called is unspecified.10

C++
Fortran

If the original list item does not have the POINTER attribute, initialization of the new list items11
occurs as if by intrinsic assignment unless the list item has a type bound procedure as a defined12
assignment. If the original list item that does not have the POINTER attribute has the allocation13
status of unallocated, the new list items will have the same status.14

If the original list item has the POINTER attribute, the new list items receive the same association15
status of the original list item as if by pointer assignment.16

Fortran

Restrictions17

The restrictions to the firstprivate clause are as follows:18

• A list item that is private within a parallel region must not appear in a firstprivate19
clause on a worksharing construct if any of the worksharing regions arising from the worksharing20
construct ever bind to any of the parallel regions arising from the parallel construct.21

• A list item that is private within a teams region must not appear in a firstprivate clause22
on a distribute construct if any of the distribute regions arising from the23
distribute construct ever bind to any of the teams regions arising from the teams24
construct.25

• A list item that appears in a reduction clause of a parallel construct must not appear in a26
firstprivate clause on a worksharing, task, or taskloop construct if any of the27
worksharing or task regions arising from the worksharing, task, or taskloop construct28
ever bind to any of the parallel regions arising from the parallel construct.29

CHAPTER 2. DIRECTIVES 287

• A list item that appears in a reduction clause of a teams construct must not appear in a1
firstprivate clause on a distribute construct if any of the distribute regions2
arising from the distribute construct ever bind to any of the teams regions arising from the3
teams construct.4

• A list item that appears in a reduction clause of a worksharing construct must not appear in a5
firstprivate clause in a task construct encountered during execution of any of the6
worksharing regions arising from the worksharing construct.7

C++
• A variable of class type (or array thereof) that appears in a firstprivate clause requires an8
accessible, unambiguous copy constructor for the class type.9

C++
C / C++

• If a list item in a firstprivate clause on a worksharing construct has a reference type then it10
must bind to the same object for all threads of the team.11

C / C++
Fortran

• If the list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is12
unspecified.13

Fortran

2.19.4.5 lastprivate Clause14

Summary15

The lastprivate clause declares one or more list items to be private to an implicit task or to a16
SIMD lane, and causes the corresponding original list item to be updated after the end of the region.17

Syntax18

The syntax of the lastprivate clause is as follows:19

lastprivate([lastprivate-modifier:] list)20

where lastprivate-modifier is:21

conditional22

288 OpenMP API – Version 5.0 November 2018

Description1

The lastprivate clause provides a superset of the functionality provided by the private2
clause.3

A list item that appears in a lastprivate clause is subject to the private clause semantics4
described in Section 2.19.4.3 on page 285. In addition, when a lastprivate clause without the5
conditional modifier appears on a directive, the value of each new list item from the6
sequentially last iteration of the associated loops, or the lexically last section construct, is7
assigned to the original list item. When the conditional modifier appears on the clause, if an8
assignment to a list item is encountered in the construct then the original list item is assigned the9
value that is assigned to the new list item in the sequentially last iteration or lexically last section in10
which such an assignment is encountered.11

C / C++
For an array of elements of non-array type, each element is assigned to the corresponding element12
of the original array.13

C / C++
Fortran

If the original list item does not have the POINTER attribute, its update occurs as if by intrinsic14
assignment unless it has a type bound procedure as a defined assignment.15

If the original list item has the POINTER attribute, its update occurs as if by pointer assignment.16

Fortran
When the conditional modifier does not appear on the lastprivate clause, list items that17
are not assigned a value by the sequentially last iteration of the loops, or by the lexically last18
section construct, have unspecified values after the construct. Unassigned subcomponents also19
have unspecified values after the construct.20

If the lastprivate clause is used on a construct to which neither the nowait nor the21
nogroup clauses are applied, the original list item becomes defined at the end of the construct. To22
avoid data races, concurrent reads or updates of the original list item must be synchronized with the23
update of the original list item that occurs as a result of the lastprivate clause.24

Otherwise, If the lastprivate clause is used on a construct to which the nowait or the25
nogroup clauses are applied, accesses to the original list item may create a data race. To avoid26
this data race, if an assignment to the original list item occurs then synchronization must be inserted27
to ensure that the assignment completes and the original list item is flushed to memory.28

If a list item that appears in a lastprivate clause with the conditional modifier is29
modified in the region by an assignment outside the construct or not to the list item then the value30
assigned to the original list item is unspecified.31

CHAPTER 2. DIRECTIVES 289

Restrictions1

The restrictions to the lastprivate clause are as follows:2

• A list item that is private within a parallel region, or that appears in the reduction clause3
of a parallel construct, must not appear in a lastprivate clause on a worksharing4
construct if any of the corresponding worksharing regions ever binds to any of the corresponding5
parallel regions.6

• A list item that appears in a lastprivate clause with the conditional modifier must be a7
scalar variable.8

C++
• A variable of class type (or array thereof) that appears in a lastprivate clause requires an9
accessible, unambiguous default constructor for the class type, unless the list item is also10
specified in a firstprivate clause.11

• A variable of class type (or array thereof) that appears in a lastprivate clause requires an12
accessible, unambiguous copy assignment operator for the class type. The order in which copy13
assignment operators for different variables of class type are called is unspecified.14

C++
C / C++

• If a list item in a lastprivate clause on a worksharing construct has a reference type then it15
must bind to the same object for all threads of the team.16

C / C++
Fortran

• A variable that appears in a lastprivate clause must be definable.17

• If the original list item has the ALLOCATABLE attribute, the corresponding list item whose value18
is assigned to the original list item must have an allocation status of allocated upon exit from the19
sequentially last iteration or lexically last section construct.20

• If the list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is21
unspecified.22

Fortran

2.19.4.6 linear Clause23

Summary24

The linear clause declares one or more list items to be private and to have a linear relationship25
with respect to the iteration space of a loop associated with the construct on which the clause26
appears.27

290 OpenMP API – Version 5.0 November 2018

Syntax1

C
The syntax of the linear clause is as follows:2

linear(linear-list[: linear-step])3

where linear-list is one of the following4

list5

modifier(list)6

where modifier is one of the following:7

val8

C
C++

The syntax of the linear clause is as follows:9

linear(linear-list[: linear-step])10

where linear-list is one of the following11

list12

modifier(list)13

where modifier is one of the following:14

ref15

val16

uval17

C++
Fortran

The syntax of the linear clause is as follows:18

linear(linear-list[: linear-step])19

where linear-list is one of the following20

list21

modifier(list)22

CHAPTER 2. DIRECTIVES 291

where modifier is one of the following:1

ref2

val3

uval4

Fortran

Description5

The linear clause provides a superset of the functionality provided by the private clause. A6
list item that appears in a linear clause is subject to the private clause semantics described in7
Section 2.19.4.3 on page 285 except as noted. If linear-step is not specified, it is assumed to be 1.8

When a linear clause is specified on a construct, the value of the new list item on each iteration9
of the associated loop(s) corresponds to the value of the original list item before entering the10
construct plus the logical number of the iteration times linear-step. The value corresponding to the11
sequentially last iteration of the associated loop(s) is assigned to the original list item.12

When a linear clause is specified on a declarative directive, all list items must be formal13
parameters (or, in Fortran, dummy arguments) of a function that will be invoked concurrently on14
each SIMD lane. If no modifier is specified or the val or uval modifier is specified, the value of15
each list item on each lane corresponds to the value of the list item upon entry to the function plus16
the logical number of the lane times linear-step. If the uval modifier is specified, each invocation17
uses the same storage location for each SIMD lane; this storage location is updated with the final18
value of the logically last lane. If the ref modifier is specified, the storage location of each list19
item on each lane corresponds to an array at the storage location upon entry to the function indexed20
by the logical number of the lane times linear-step.21

Restrictions22

• The linear-step expression must be invariant during the execution of the region that corresponds23
to the construct. Otherwise, the execution results in unspecified behavior.24

• Only a loop iteration variable of a loop that is associated with the construct may appear as a25
list-item in a linear clause if a reduction clause with the inscan modifier also appears26
on the construct.27

C
• A list-item that appears in a linear clause must be of integral or pointer type.28

C

292 OpenMP API – Version 5.0 November 2018

C++
• A list-item that appears in a linear clause without the ref modifier must be of integral or1
pointer type, or must be a reference to an integral or pointer type.2

• The ref or uval modifier can only be used if the list-item is of a reference type.3

• If a list item in a linear clause on a worksharing construct has a reference type then it must4
bind to the same object for all threads of the team.5

• If the list item is of a reference type and the ref modifier is not specified and if any write to the6
list item occurs before any read of the list item then the result is unspecified.7

C++
Fortran

• A list-item that appears in a linear clause without the ref modifier must be of type8
integer.9

• The ref or uval modifier can only be used if the list-item is a dummy argument without the10
VALUE attribute.11

• Variables that have the POINTER attribute and Cray pointers may not appear in a linear12
clause.13

• If the list item has the ALLOCATABLE attribute and the ref modifier is not specified, the14
allocation status of the list item in the sequentially last iteration must be allocated upon exit from15
that iteration.16

• If the ref modifier is specified, variables with the ALLOCATABLE attribute, assumed-shape17
arrays and polymorphic variables may not appear in the linear clause.18

• If the list item is a dummy argument without the VALUE attribute and the ref modifier is not19
specified and if any write to the list item occurs before any read of the list item then the result is20
unspecified.21

• A common block name cannot appear in a linear clause.22

Fortran

2.19.5 Reduction Clauses and Directives23

The reduction clauses are data-sharing attribute clauses that can be used to perform some forms of24
recurrence calculations in parallel. Reduction clauses include reduction scoping clauses and25
reduction participating clauses. Reduction scoping clauses define the region in which a reduction is26
computed. Reduction participating clauses define the participants in the reduction. Reduction27
clauses specify a reduction-identifier and one or more list items.28

CHAPTER 2. DIRECTIVES 293

2.19.5.1 Properties Common To All Reduction Clauses1

Syntax2

The syntax of a reduction-identifier is defined as follows:3

C
A reduction-identifier is either an identifier or one of the following operators: +, -, *, &, |, ^, &&4
and ||.5

C
C++

A reduction-identifier is either an id-expression or one of the following operators: +, -, *, &, |, ^,6
&& and ||.7

C++
Fortran

A reduction-identifier is either a base language identifier, or a user-defined operator, or one of the8
following operators: +, -, *, .and., .or., .eqv., .neqv., or one of the following intrinsic9
procedure names: max, min, iand, ior, ieor.10

Fortran
C / C++

Table 2.11 lists each reduction-identifier that is implicitly declared at every scope for arithmetic11
types and its semantic initializer value. The actual initializer value is that value as expressed in the12
data type of the reduction list item.13

TABLE 2.11: Implicitly Declared C/C++ reduction-identifiers

Identifier Initializer Combiner

+ omp_priv = 0 omp_out += omp_in

- omp_priv = 0 omp_out += omp_in

* omp_priv = 1 omp_out *= omp_in

& omp_priv = ~ 0 omp_out &= omp_in

| omp_priv = 0 omp_out |= omp_in

^ omp_priv = 0 omp_out ^= omp_in

&& omp_priv = 1 omp_out = omp_in && omp_out

table continued on next page

294 OpenMP API – Version 5.0 November 2018

table continued from previous page

Identifier Initializer Combiner

|| omp_priv = 0 omp_out = omp_in || omp_out

max omp_priv = Least
representable number in the
reduction list item type

omp_out = omp_in > omp_out ?
omp_in : omp_out

min omp_priv = Largest
representable number in the
reduction list item type

omp_out = omp_in < omp_out ?
omp_in : omp_out

C / C++
Fortran

Table 2.12 lists each reduction-identifier that is implicitly declared for numeric and logical types1
and its semantic initializer value. The actual initializer value is that value as expressed in the data2
type of the reduction list item.3

TABLE 2.12: Implicitly Declared Fortran reduction-identifiers

Identifier Initializer Combiner

+ omp_priv = 0 omp_out = omp_in + omp_out

- omp_priv = 0 omp_out = omp_in + omp_out

* omp_priv = 1 omp_out = omp_in * omp_out

.and. omp_priv = .true. omp_out = omp_in .and. omp_out

.or. omp_priv = .false. omp_out = omp_in .or. omp_out

.eqv. omp_priv = .true. omp_out = omp_in .eqv. omp_out

.neqv. omp_priv = .false. omp_out = omp_in .neqv. omp_out

max omp_priv = Least
representable number in the
reduction list item type

omp_out = max(omp_in, omp_out)

min omp_priv = Largest
representable number in the
reduction list item type

omp_out = min(omp_in, omp_out)

table continued on next page

CHAPTER 2. DIRECTIVES 295

table continued from previous page

Identifier Initializer Combiner

iand omp_priv = All bits on omp_out = iand(omp_in, omp_out)

ior omp_priv = 0 omp_out = ior(omp_in, omp_out)

ieor omp_priv = 0 omp_out = ieor(omp_in, omp_out)

Fortran
In the above tables, omp_in and omp_out correspond to two identifiers that refer to storage of the1
type of the list item. omp_out holds the final value of the combiner operation.2

Any reduction-identifier that is defined with the declare reduction directive is also valid. In3
that case, the initializer and combiner of the reduction-identifier are specified by the4
initializer-clause and the combiner in the declare reduction directive.5

Description6

A reduction clause specifies a reduction-identifier and one or more list items.7

The reduction-identifier specified in a reduction clause must match a previously declared8
reduction-identifier of the same name and type for each of the list items. This match is done by9
means of a name lookup in the base language.10

The list items that appear in a reduction clause may include array sections.11

C++
If the type is a derived class, then any reduction-identifier that matches its base classes is also a12
match, if there is no specific match for the type.13

If the reduction-identifier is not an id-expression, then it is implicitly converted to one by14
prepending the keyword operator (for example, + becomes operator+).15

If the reduction-identifier is qualified then a qualified name lookup is used to find the declaration.16

If the reduction-identifier is unqualified then an argument-dependent name lookup must be17
performed using the type of each list item.18

C++
If the list item is an array or array section, it will be treated as if a reduction clause would be applied19
to each separate element of the array section.20

If the list item is an array section, the elements of any copy of the array section will be allocated21
contiguously.22

296 OpenMP API – Version 5.0 November 2018

Fortran
If the original list item has the POINTER attribute, any copies of the list item are associated with1
private targets.2

Fortran
Any copies associated with the reduction are initialized with the initializer value of the3
reduction-identifier.4

Any copies are combined using the combiner associated with the reduction-identifier.5

Execution Model Events6

The reduction-begin event occurs before a task begins to perform loads and stores that belong to the7
implementation of a reduction and the reduction-end event occurs after the task has completed8
loads and stores associated with the reduction. If a task participates in multiple reductions, each9
reduction may be bracketed by its own pair of reduction-begin/reduction-end events or multiple10
reductions may be bracketed by a single pair of events. The interval defined by a pair of11
reduction-begin/reduction-end events may not contain a task scheduling point.12

Tool Callbacks13

A thread dispatches a registered ompt_callback_reduction with14
ompt_sync_region_reduction in its kind argument and ompt_scope_begin as its15
endpoint argument for each occurrence of a reduction-begin event in that thread. Similarly, a thread16
dispatches a registered ompt_callback_reduction with17
ompt_sync_region_reduction in its kind argument and ompt_scope_end as its18
endpoint argument for each occurrence of a reduction-end event in that thread. These callbacks19
occur in the context of the task that performs the reduction and has the type signature20
ompt_callback_sync_region_t.21

Restrictions22

The restrictions common to reduction clauses are as follows:23

• Any number of reduction clauses can be specified on the directive, but a list item (or any array24
element in an array section) can appear only once in reduction clauses for that directive.25

• For a reduction-identifier declared with the declare reduction construct, the directive must26
appear before its use in a reduction clause.27

• If a list item is an array section or an array element, its base expression must be a base language28
identifier.29

• If a list item is an array section, it must specify contiguous storage and it cannot be a zero-length30
array section.31

CHAPTER 2. DIRECTIVES 297

• If a list item is an array section or an array element, accesses to the elements of the array outside1
the specified array section or array element result in unspecified behavior.2

C
• A variable that is part of another variable, with the exception of array elements, cannot appear in3
a reduction clause.4

C
C++

• A variable that is part of another variable, with the exception of array elements, cannot appear in5
a reduction clause except if the reduction clause is associated with a construct within a class6
non-static member function and the variable is an accessible data member of the object for which7
the non-static member function is invoked.8

C++
C / C++

• The type of a list item that appears in a reduction clause must be valid for the9
reduction-identifier. For a max or min reduction in C, the type of the list item must be an10
allowed arithmetic data type: char, int, float, double, or _Bool, possibly modified with11
long, short, signed, or unsigned. For a max or min reduction in C++, the type of the12
list item must be an allowed arithmetic data type: char, wchar_t, int, float, double, or13
bool, possibly modified with long, short, signed, or unsigned.14

• A list item that appears in a reduction clause must not be const-qualified.15

• The reduction-identifier for any list item must be unambiguous and accessible.16

C / C++
Fortran

• A variable that is part of another variable, with the exception of array elements, cannot appear in17
a reduction clause.18

• A type parameter inquiry cannot appear in a reduction clause.19

• The type, type parameters and rank of a list item that appears in a reduction clause must be valid20
for the combiner and initializer.21

• A list item that appears in a reduction clause must be definable.22

• A procedure pointer may not appear in a reduction clause.23

• A pointer with the INTENT(IN) attribute may not appear in the reduction clause.24

• An original list item with the POINTER attribute or any pointer component of an original list25
item that is referenced in the combiner must be associated at entry to the construct that contains26
the reduction clause. Additionally, the list item or the pointer component of the list item must not27
be deallocated, allocated, or pointer assigned within the region.28

298 OpenMP API – Version 5.0 November 2018

• An original list item with the ALLOCATABLE attribute or any allocatable component of an1
original list item that corresponds to the special variable identifier in the combiner or the2
initializer must be in the allocated state at entry to the construct that contains the reduction3
clause. Additionally, the list item or the allocatable component of the list item must be neither4
deallocated nor allocated, explicitly or implicitly, within the region.5

• If the reduction-identifier is defined in a declare reduction directive, the6
declare reduction directive must be in the same subprogram, or accessible by host or use7
association.8

• If the reduction-identifier is a user-defined operator, the same explicit interface for that operator9
must be accessible as at the declare reduction directive.10

• If the reduction-identifier is defined in a declare reduction directive, any subroutine or11
function referenced in the initializer clause or combiner expression must be an intrinsic function,12
or must have an explicit interface where the same explicit interface is accessible as at the13
declare reduction directive.14

Fortran

Cross References15

• ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 443.16

• ompt_sync_region_reduction, see Section 4.4.4.13 on page 444.17

• ompt_callback_sync_region_t, see Section 4.5.2.13 on page 474.18

2.19.5.2 Reduction Scoping Clauses19

Reduction scoping clauses define the region in which a reduction is computed by tasks or SIMD20
lanes. All properties common to all reduction clauses, which are defined in Section 2.19.5.1 on21
page 294, apply to reduction scoping clauses.22

The number of copies created for each list item and the time at which those copies are initialized23
are determined by the particular reduction scoping clause that appears on the construct.24

The time at which the original list item contains the result of the reduction is determined by the25
particular reduction scoping clause.26

The location in the OpenMP program at which values are combined and the order in which values27
are combined are unspecified. Therefore, when comparing sequential and parallel runs, or when28
comparing one parallel run to another (even if the number of threads used is the same), there is no29
guarantee that bitwise-identical results will be obtained or that side effects (such as floating-point30
exceptions) will be identical or take place at the same location in the OpenMP program.31

To avoid data races, concurrent reads or updates of the original list item must be synchronized with32
the update of the original list item that occurs as a result of the reduction computation.33

CHAPTER 2. DIRECTIVES 299

2.19.5.3 Reduction Participating Clauses1

A reduction participating clause specifies a task or a SIMD lane as a participant in a reduction2
defined by a reduction scoping clause. All properties common to all reduction clauses, which are3
defined in Section 2.19.5.1 on page 294, apply to reduction participating clauses.4

Accesses to the original list item may be replaced by accesses to copies of the original list item5
created by a region that corresponds to a construct with a reduction scoping clause.6

In any case, the final value of the reduction must be determined as if all tasks or SIMD lanes that7
participate in the reduction are executed sequentially in some arbitrary order.8

2.19.5.4 reduction Clause9

Summary10

The reduction clause specifies a reduction-identifier and one or more list items. For each list11
item, a private copy is created in each implicit task or SIMD lane and is initialized with the12
initializer value of the reduction-identifier. After the end of the region, the original list item is13
updated with the values of the private copies using the combiner associated with the14
reduction-identifier.15

Syntax16

reduction([reduction-modifier,]reduction-identifier : list)17

Where reduction-identifier is defined in Section 2.19.5.1 on page 294, and reduction-modifier is18
one of the following:19

inscan20

task21

default22

Description23

The reduction clause is a reduction scoping clause and a reduction participating clause, as24
described in Section 2.19.5.2 on page 299 and Section 2.19.5.3 on page 300.25

If reduction-modifier is not present or the default reduction-modifier is present, the behavior is26
as follows. For parallel and worksharing constructs, one or more private copies of each list27
item are created for each implicit task, as if the private clause had been used. For the simd28
construct, one or more private copies of each list item are created for each SIMD lane, as if the29
private clause had been used. For the taskloop construct, private copies are created30
according to the rules of the reduction scoping clauses. For the teams construct, one or more31

300 OpenMP API – Version 5.0 November 2018

private copies of each list item are created for the initial task of each team in the league, as if the1
private clause had been used. For the loop construct, private copies are created and used in the2
construct according to the description and restrictions in Section 2.19.3 on page 279. At the end of3
a region that corresponds to a construct for which the reduction clause was specified, the4
original list item is updated by combining its original value with the final value of each of the5
private copies, using the combiner of the specified reduction-identifier.6

If the inscan reduction-modifier is present, a scan computation is performed over updates to the7
list item performed in each logical iteration of the loop associated with the worksharing-loop,8
worksharing-loop SIMD, or simd construct (see Section 2.9.6 on page 132). The list items are9
privatized in the construct according to the description and restrictions in Section 2.19.3 on10
page 279. At the end of the region, each original list item is assigned the value of the private copy11
from the last logical iteration of the loops associated with the construct.12

If the task reduction-modifier is present for a parallel or worksharing construct, then each list13
item is privatized according to the description and restrictions in Section 2.19.3 on page 279, and14
an unspecified number of additional private copies are created to support task reductions. Any15
copies associated with the reduction are initialized before they are accessed by the tasks that16
participate in the reduction, which include all implicit tasks in the corresponding region and all17
participating explicit tasks that specify an in_reduction clause (see Section 2.19.5.6 on18
page 303). After the end of the region, the original list item contains the result of the reduction.19

If nowait is not specified for the construct, the reduction computation will be complete at the end20
of the construct; however, if the reduction clause is used on a construct to which nowait is21
also applied, accesses to the original list item will create a race and, thus, have unspecified effect22
unless synchronization ensures that they occur after all threads have executed all of their iterations23
or section constructs, and the reduction computation has completed and stored the computed24
value of that list item. This can most simply be ensured through a barrier synchronization.25

Restrictions26

The restrictions to the reduction clause are as follows:27

• All restrictions common to all reduction clauses, which are listed in Section 2.19.5.1 on28
page 294, apply to this clause.29

• A list item that appears in a reduction clause of a worksharing construct must be shared in30
the parallel region to which a corresponding worksharing region binds.31

• If a list item that appears in a reduction clause of a worksharing construct or loop construct32
for which the corresponding region binds to a parallel region is an array section or an array33
element, all threads that participate in the reduction must specify the same storage location.34

• A list item that appears in a reduction clause with the inscan reduction-modifier must35
appear as a list item in an inclusive or exclusive clause on a scan directive enclosed by36
the construct.37

CHAPTER 2. DIRECTIVES 301

• A reduction clause without the inscan reduction-modifier may not appear on a construct1
on which a reduction clause with the inscan reduction-modifier appears.2

• A reduction clause with the task reduction-modifier may only appear on a parallel3
construct, a worksharing construct or a combined or composite construct for which any of the4
aforementioned constructs is a constituent construct and simd or loop are not constituent5
constructs.6

• A reduction clause with the inscan reduction-modifier may only appear on a7
worksharing-loop construct, a worksharing-loop SIMD construct, a simd construct, a parallel8
worksharing-loop construct or a parallel worksharing-loop SIMD construct.9

• A list item that appears in a reduction clause of the innermost enclosing worksharing or10
parallel construct may not be accessed in an explicit task generated by a construct for which11
an in_reduction clause over the same list item does not appear.12

• The task reduction-modifier may not appear in a reduction clause if the nowait clause is13
specified on the same construct.14

C / C++
• If a list item in a reduction clause on a worksharing construct or loop construct for which15
the corresponding region binds to a parallel region has a reference type then it must bind to the16
same object for all threads of the team.17

• If a list item in a reduction clause on a worksharing construct or loop construct for which18
the corresponding region binds to a parallel region is an array section or an array element then19
the base pointer must point to the same variable for all threads of the team.20

• A variable of class type (or array thereof) that appears in a reduction clause with the21
inscan reduction-modifier requires an accessible, unambiguous default constructor for the22
class type. The number of calls to the default constructor while performing the scan computation23
is unspecified.24

• A variable of class type (or array thereof) that appears in a reduction clause with the25
inscan reduction-modifier requires an accessible, unambiguous copy assignment operator for26
the class type. The number of calls to the copy assignment operator while performing the scan27
computation is unspecified.28

C / C++

Cross References29

• scan directive, see Section 2.9.6 on page 132.30

• List Item Privatization, see Section 2.19.3 on page 279.31

• private clause, see Section 2.19.4.3 on page 285.32

302 OpenMP API – Version 5.0 November 2018

2.19.5.5 task_reduction Clause1

Summary2

The task_reduction clause specifies a reduction among tasks.3

Syntax4

task_reduction(reduction-identifier : list)5

Where reduction-identifier is defined in Section 2.19.5.1.6

Description7

The task_reduction clause is a reduction scoping clause, as described in 2.19.5.2.8

For each list item, the number of copies is unspecified. Any copies associated with the reduction9
are initialized before they are accessed by the tasks participating in the reduction. After the end of10
the region, the original list item contains the result of the reduction.11

Restrictions12

The restrictions to the task_reduction clause are as follows:13

• All restrictions common to all reduction clauses, which are listed in Section 2.19.5.1 on14
page 294, apply to this clause.15

2.19.5.6 in_reduction Clause16

Summary17

The in_reduction clause specifies that a task participates in a reduction.18

Syntax19

in_reduction(reduction-identifier : list)20

where reduction-identifier is defined in Section 2.19.5.1 on page 294.21

Description22

The in_reduction clause is a reduction participating clause, as described in Section 2.19.5.323
on page 300. For a given a list item, the in_reduction clause defines a task to be a participant24
in a task reduction that is defined by an enclosing region for a matching list item that appears in a25
task_reduction clause or a reduction clause with the task modifier, where either:26

CHAPTER 2. DIRECTIVES 303

1. The matching list item has the same storage location as the list item in the in_reduction1
clause; or2

2. A private copy, derived from the matching list item, that is used to perform the task reduction3
has the same storage location as the list item in the in_reduction clause.4

For the task construct, the generated task becomes the participating task. For each list item, a5
private copy may be created as if the private clause had been used.6

For the target construct, the target task becomes the participating task. For each list item, a7
private copy will be created in the data environment of the target task as if the private clause had8
been used, and this private copy will be implicitly mapped into the device data environment of the9
target device.10

At the end of the task region, if a private copy was created its value is combined with a copy created11
by a reduction scoping clause or with the original list item.12

Restrictions13

The restrictions to the in_reduction clause are as follows:14

• All restrictions common to all reduction clauses, which are listed in Section 2.19.5.1 on15
page 294, apply to this clause.16

• A list item that appears in a task_reduction clause or a reduction clause with the task17
modifier that is specified on a construct that corresponds to a region in which the region of the18
participating task is closely nested must match each list item. The construct that corresponds to19
the innermost enclosing region that meets this condition must specify the same20
reduction-identifier for the matching list item as the in_reduction clause.21

2.19.5.7 declare reduction Directive22

Summary23

The following section describes the directive for declaring user-defined reductions. The24
declare reduction directive declares a reduction-identifier that can be used in a reduction25
clause. The declare reduction directive is a declarative directive.26

304 OpenMP API – Version 5.0 November 2018

Syntax1

C
#pragma omp declare reduction(reduction-identifier : typename-list :2
combiner)[initializer-clause] new-line3

where:4

• reduction-identifier is either a base language identifier or one of the following operators: +, -, *,5
&, |, ^, && and ||6

• typename-list is a list of type names7

• combiner is an expression8

• initializer-clause is initializer(initializer-expr) where initializer-expr is9
omp_priv = initializer or function-name(argument-list)10

C
C++

#pragma omp declare reduction(reduction-identifier : typename-list :11
combiner) [initializer-clause] new-line12

where:13

• reduction-identifier is either an id-expression or one of the following operators: +, -, *, &, |, ^,14
&& or ||15

• typename-list is a list of type names16

• combiner is an expression17

• initializer-clause is initializer(initializer-expr) where initializer-expr is18
omp_priv initializer or function-name(argument-list)19

C++
Fortran

!$omp declare reduction(reduction-identifier : type-list : combiner)20
[initializer-clause]21

where:22

• reduction-identifier is either a base language identifier, or a user-defined operator, or one of the23
following operators: +, -, *, .and., .or., .eqv., .neqv., or one of the following intrinsic24
procedure names: max, min, iand, ior, ieor.25

• type-list is a list of type specifiers that must not be CLASS(*) and abstract type26

• combiner is either an assignment statement or a subroutine name followed by an argument list27

• initializer-clause is initializer(initializer-expr), where initializer-expr is28
omp_priv = expression or subroutine-name(argument-list)29

Fortran

CHAPTER 2. DIRECTIVES 305

Description1

Custom reductions can be defined using the declare reduction directive; the2
reduction-identifier and the type identify the declare reduction directive. The3
reduction-identifier can later be used in a reduction clause that uses variables of the type or4
types specified in the declare reduction directive. If the directive applies to several types5
then it is considered as if there were multiple declare reduction directives, one for each type.6

Fortran
If a type with deferred or assumed length type parameter is specified in a declare reduction7
directive, the reduction-identifier of that directive can be used in a reduction clause with any8
variable of the same type and the same kind parameter, regardless of the length type Fortran9
parameters with which the variable is declared.10

Fortran
The visibility and accessibility of this declaration are the same as those of a variable declared at the11
same point in the program. The enclosing context of the combiner and of the initializer-expr is that12
of the declare reduction directive. The combiner and the initializer-expr must be correct in13
the base language as if they were the body of a function defined at the same point in the program.14

Fortran
If the reduction-identifier is the same as the name of a user-defined operator or an extended15
operator, or the same as a generic name that is one of the allowed intrinsic procedures, and if the16
operator or procedure name appears in an accessibility statement in the same module, the17
accessibility of the corresponding declare reduction directive is determined by the18
accessibility attribute of the statement.19

If the reduction-identifier is the same as a generic name that is one of the allowed intrinsic20
procedures and is accessible, and if it has the same name as a derived type in the same module, the21
accessibility of the corresponding declare reduction directive is determined by the22
accessibility of the generic name according to the base language.23

Fortran
C++

The declare reduction directive can also appear at points in the program at which a static24
data member could be declared. In this case, the visibility and accessibility of the declaration are25
the same as those of a static data member declared at the same point in the program.26

C++
The combiner specifies how partial results can be combined into a single value. The combiner can27
use the special variable identifiers omp_in and omp_out that are of the type of the variables that28
this reduction-identifier reduces. Each of them will denote one of the values to be combined before29
executing the combiner. The special omp_out identifier refers to the storage that holds the30
resulting combined value after executing the combiner.31

The number of times that the combiner is executed, and the order of these executions, for any32
reduction clause is unspecified.33

306 OpenMP API – Version 5.0 November 2018

Fortran
If the combiner is a subroutine name with an argument list, the combiner is evaluated by calling the1
subroutine with the specified argument list.2

If the combiner is an assignment statement, the combiner is evaluated by executing the assignment3
statement.4

Fortran
As the initializer-expr value of a user-defined reduction is not known a priori the initializer-clause5
can be used to specify one. Then the contents of the initializer-clause will be used as the initializer6
for private copies of reduction list items where the omp_priv identifier will refer to the storage to7
be initialized. The special identifier omp_orig can also appear in the initializer-clause and it will8
refer to the storage of the original variable to be reduced.9

The number of times that the initializer-expr is evaluated, and the order of these evaluations, is10
unspecified.11

C / C++
If the initializer-expr is a function name with an argument list, the initializer-expr is evaluated by12
calling the function with the specified argument list. Otherwise, the initializer-expr specifies how13
omp_priv is declared and initialized.14

C / C++
C

If no initializer-clause is specified, the private variables will be initialized following the rules for15
initialization of objects with static storage duration.16

C
C++

If no initializer-expr is specified, the private variables will be initialized following the rules for17
default-initialization.18

C++
Fortran

If the initializer-expr is a subroutine name with an argument list, the initializer-expr is evaluated by19
calling the subroutine with the specified argument list.20

If the initializer-expr is an assignment statement, the initializer-expr is evaluated by executing the21
assignment statement.22

If no initializer-clause is specified, the private variables will be initialized as follows:23

• For complex, real, or integer types, the value 0 will be used.24

• For logical types, the value .false. will be used.25

CHAPTER 2. DIRECTIVES 307

• For derived types for which default initialization is specified, default initialization will be used.1

• Otherwise, not specifying an initializer-clause results in unspecified behavior.2

Fortran
C / C++

If reduction-identifier is used in a target region then a declare target construct must be3
specified for any function that can be accessed through the combiner and initializer-expr.4

C / C++
Fortran

If reduction-identifier is used in a target region then a declare target construct must be5
specified for any function or subroutine that can be accessed through the combiner and6
initializer-expr.7

Fortran

Restrictions8

• The only variables allowed in the combiner are omp_in and omp_out.9

• The only variables allowed in the initializer-clause are omp_priv and omp_orig.10

• If the variable omp_orig is modified in the initializer-clause, the behavior is unspecified.11

• If execution of the combiner or the initializer-expr results in the execution of an OpenMP12
construct or an OpenMP API call, then the behavior is unspecified.13

• A reduction-identifier may not be re-declared in the current scope for the same type or for a type14
that is compatible according to the base language rules.15

• At most one initializer-clause can be specified.16

• The typename-list must not declare new types.17

C / C++
• A type name in a declare reduction directive cannot be a function type, an array type, a18
reference type, or a type qualified with const, volatile or restrict.19

C / C++

C
• If the initializer-expr is a function name with an argument list, then one of the arguments must be20
the address of omp_priv.21

C
C++

• If the initializer-expr is a function name with an argument list, then one of the arguments must be22
omp_priv or the address of omp_priv.23

C++

308 OpenMP API – Version 5.0 November 2018

Fortran
• If the initializer-expr is a subroutine name with an argument list, then one of the arguments must1
be omp_priv.2

• If the declare reduction directive appears in the specification part of a module and the3
corresponding reduction clause does not appear in the same module, the reduction-identifier must4
be the same as the name of a user-defined operator, one of the allowed operators that is extended5
or a generic name that is the same as the name of one of the allowed intrinsic procedures.6

• If the declare reduction directive appears in the specification of a module, if the7
corresponding reduction clause does not appear in the same module, and if the8
reduction-identifier is the same as the name of a user-defined operator or an extended operator, or9
the same as a generic name that is the same as one of the allowed intrinsic procedures then the10
interface for that operator or the generic name must be defined in the specification of the same11
module, or must be accessible by use association.12

• Any subroutine or function used in the initializer clause or combiner expression must be13
an intrinsic function, or must have an accessible interface.14

• Any user-defined operator, defined assignment or extended operator used in the initializer15
clause or combiner expression must have an accessible interface.16

• If any subroutine, function, user-defined operator, defined assignment or extended operator is17
used in the initializer clause or combiner expression, it must be accessible to the18
subprogram in which the corresponding reduction clause is specified.19

• If the length type parameter is specified for a type, it must be a constant, a colon or an *.20

• If a type with deferred or assumed length parameter is specified in a declare reduction21
directive, no other declare reduction directive with the same type, the same kind22
parameters and the same reduction-identifier is allowed in the same scope.23

• Any subroutine used in the initializer clause or combiner expression must not have any24
alternate returns appear in the argument list.25

Fortran

Cross References26

• Properties Common To All Reduction Clauses, see Section 2.19.5.1 on page 294.27

2.19.6 Data Copying Clauses28

This section describes the copyin clause (allowed on the parallel construct and combined29
parallel worksharing constructs) and the copyprivate clause (allowed on the single30
construct).31

CHAPTER 2. DIRECTIVES 309

These clauses support the copying of data values from private or threadprivate variables on one1
implicit task or thread to the corresponding variables on other implicit tasks or threads in the team.2

The clauses accept a comma-separated list of list items (see Section 2.1 on page 38). All list items3
appearing in a clause must be visible, according to the scoping rules of the base language. Clauses4
may be repeated as needed, but a list item that specifies a given variable may not appear in more5
than one clause on the same directive.6

Fortran
An associate name preserves the association with the selector established at the ASSOCIATE7
statement. A list item that appears in a data copying clause may be a selector of an ASSOCIATE8
construct. If the construct association is established prior to a parallel region, the association9
between the associate name and the original list item will be retained in the region.10

Fortran

2.19.6.1 copyin Clause11

Summary12

The copyin clause provides a mechanism to copy the value of a threadprivate variable of the13
master thread to the threadprivate variable of each other member of the team that is executing the14
parallel region.15

Syntax16

The syntax of the copyin clause is as follows:17

copyin(list)18

Description19

C / C++
The copy is done after the team is formed and prior to the start of execution of the associated20
structured block. For variables of non-array type, the copy occurs by copy assignment. For an array21
of elements of non-array type, each element is copied as if by assignment from an element of the22
array of the master thread to the corresponding element of the array of the other thread.23

C / C++
C++

For class types, the copy assignment operator is invoked. The order in which copy assignment24
operators for different variables of class type are called is unspecified.25

C++

310 OpenMP API – Version 5.0 November 2018

Fortran
The copy is done, as if by assignment, after the team is formed and prior to the start of execution of1
the associated structured block.2

On entry to any parallel region, each thread’s copy of a variable that is affected by a copyin3
clause for the parallel region will acquire the type parameters, allocation, association, and4
definition status of the copy of the master thread, according to the following rules:5

• If the original list item has the POINTER attribute, each copy receives the same association6
status as that of the copy of the master thread as if by pointer assignment.7

• If the original list item does not have the POINTER attribute, each copy becomes defined with8
the value of the copy of the master thread as if by intrinsic assignment unless the list item has a9
type bound procedure as a defined assignment. If the original list item that does not have the10
POINTER attribute has the allocation status of unallocated, each copy will have the same status.11

• If the original list item is unallocated or unassociated, the copy of the other thread inherits the12
declared type parameters and the default type parameter values from the original list item.13

Fortran

Restrictions14

The restrictions to the copyin clause are as follows:15

C / C++
• A list item that appears in a copyin clause must be threadprivate.16

• A variable of class type (or array thereof) that appears in a copyin clause requires an17
accessible, unambiguous copy assignment operator for the class type.18

C / C++
Fortran

• A list item that appears in a copyin clause must be threadprivate. Named variables that appear19
in a threadprivate common block may be specified: it is not necessary to specify the whole20
common block.21

• A common block name that appears in a copyin clause must be declared to be a common block22
in the same scoping unit in which the copyin clause appears.23

• If the list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is24
unspecified.25

Fortran

CHAPTER 2. DIRECTIVES 311

Cross References1

• parallel construct, see Section 2.6 on page 74.2

• threadprivate directive, see Section 2.19.2 on page 274.3

2.19.6.2 copyprivate Clause4

Summary5

The copyprivate clause provides a mechanism to use a private variable to broadcast a value6
from the data environment of one implicit task to the data environments of the other implicit tasks7
that belong to the parallel region.8

To avoid data races, concurrent reads or updates of the list item must be synchronized with the9
update of the list item that occurs as a result of the copyprivate clause.10

Syntax11

The syntax of the copyprivate clause is as follows:12

copyprivate(list)13

Description14

The effect of the copyprivate clause on the specified list items occurs after the execution of the15
structured block associated with the single construct (see Section 2.8.2 on page 89), and before16
any of the threads in the team have left the barrier at the end of the construct.17

C / C++
In all other implicit tasks that belong to the parallel region, each specified list item becomes18
defined with the value of the corresponding list item in the implicit task associated with the thread19
that executed the structured block. For variables of non-array type, the definition occurs by copy20
assignment. For an array of elements of non-array type, each element is copied by copy assignment21
from an element of the array in the data environment of the implicit task that is associated with the22
thread that executed the structured block to the corresponding element of the array in the data23
environment of the other implicit tasks24

C / C++
C++

For class types, a copy assignment operator is invoked. The order in which copy assignment25
operators for different variables of class type are called is unspecified.26

C++

312 OpenMP API – Version 5.0 November 2018

Fortran
If a list item does not have the POINTER attribute, then in all other implicit tasks that belong to the1
parallel region, the list item becomes defined as if by intrinsic assignment with the value of the2
corresponding list item in the implicit task that is associated with the thread that executed the3
structured block. If the list item has a type bound procedure as a defined assignment, the4
assignment is performed by the defined assignment.5

If the list item has the POINTER attribute, then, in all other implicit tasks that belong to the6
parallel region, the list item receives, as if by pointer assignment, the same association status of7
the corresponding list item in the implicit task that is associated with the thread that executed the8
structured block.9

The order in which any final subroutines for different variables of a finalizable type are called is10
unspecified.11

Fortran
12

Note – The copyprivate clause is an alternative to using a shared variable for the value when13
providing such a shared variable would be difficult (for example, in a recursion requiring a different14
variable at each level).15

16

Restrictions17

The restrictions to the copyprivate clause are as follows:18

• All list items that appear in the copyprivate clause must be either threadprivate or private in19
the enclosing context.20

• A list item that appears in a copyprivate clause may not appear in a private or21
firstprivate clause on the single construct.22

C++
• A variable of class type (or array thereof) that appears in a copyprivate clause requires an23
accessible unambiguous copy assignment operator for the class type.24

C++
Fortran

• A common block that appears in a copyprivate clause must be threadprivate.25

• Pointers with the INTENT(IN) attribute may not appear in the copyprivate clause.26

• The list item with the ALLOCATABLE attribute must have the allocation status of allocated when27
the intrinsic assignment is performed.28

• If the list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is29
unspecified.30

Fortran

CHAPTER 2. DIRECTIVES 313

Cross References1

• parallel construct, see Section 2.6 on page 74.2

• threadprivate directive, see Section 2.19.2 on page 274.3

• private clause, see Section 2.19.4.3 on page 285.4

2.19.7 Data-Mapping Attribute Rules, Clauses, and Directives5

This section describes how the data-mapping and data-sharing attributes of any variable referenced6
in a target region are determined. When specified, explicit data-sharing attributes, map or7
is_device_ptr clauses on target directives determine these attributes. Otherwise, the first8
matching rule from the following implicit data-mapping rules applies for variables referenced in a9
target construct that are not declared in the construct and do not appear in data-sharing attribute,10
map or is_device_ptr clauses.11

• If a variable appears in a to or link clause on a declare target directive then it is treated12
as if it had appeared in a map clause with a map-type of tofrom.13

• If a list item appears in a reduction, lastprivate or linear clause on a combined14
target construct then it is treated as if it also appears in a map clause with a map-type of15
tofrom.16

• If a list item appears in an in_reduction clause on a target construct then it is treated as if17
it also appears in a map clause with a map-type of tofrom and a map-type-modifier of18
always.19

• If a defaultmap clause is present for the category of the variable and specifies an implicit20
behavior other than default, the data-mapping attribute is determined by that clause.21

C++
• If the target construct is within a class non-static member function, and a variable is an22
accessible data member of the object for which the non-static data member function is invoked,23
the variable is treated as if the this[:1] expression had appeared in a map clause with a24
map-type of tofrom. Additionally, if the variable is of a type pointer or reference to pointer, it25
is also treated as if it has appeared in a map clause as a zero-length array section.26

• If the this keyword is referenced inside a target construct within a class non-static member27
function, it is treated as if the this[:1] expression had appeared in a map clause with a28
map-type of tofrom.29

C++

314 OpenMP API – Version 5.0 November 2018

C / C++
• A variable that is of type pointer is treated as if it is the base pointer of a zero-length array1
section that appeared as a list item in a map clause.2

C / C++
C++

• A variable that is of type reference to pointer is treated as if it had appeared in a map clause as a3
zero-length array section.4

C++
• If a variable is not a scalar then it is treated as if it had appeared in a map clause with a map-type5
of tofrom.6

Fortran
• If a scalar variable has the TARGET, ALLOCATABLE or POINTER attribute then it is treated as7
if it has appeared in a map clause with a map-type of tofrom.8

Fortran
• If none of the above rules applies then a scalar variable is not mapped, but instead has an implicit9
data-sharing attribute of mapped, but instead has an implicit data-sharing attribute of firstprivate10
(see Section 2.19.1.1 on page 270).11

2.19.7.1 map Clause12

Summary13

The map clause specifies how an original list item is mapped from the current task’s data14
environment to a corresponding list item in the device data environment of the device identified by15
the construct.16

Syntax17

The syntax of the map clause is as follows:18

map([[map-type-modifier[,] [map-type-modifier[,] ...] map-type :] locator-list)19

where map-type is one of the following:20

to21

from22

tofrom23

alloc24

release25

delete26

CHAPTER 2. DIRECTIVES 315

and map-type-modifier is one of the following:1

always2

close3

mapper(mapper-identifier)4

Description5

The list items that appear in a map clause may include array sections and structure elements.6

The map-type and map-type-modifier specify the effect of the map clause, as described below.7

For a given construct, the effect of a map clause with the to, from, or tofrom map-type is8
ordered before the effect of a map clause with the alloc, release, or delete map-type. If a9
mapper is specified for the type being mapped, or explicitly specified with the mapper10
map-type-modifier, then the effective map-type of a list item will be determined according to the11
rules of map-type decay.12

If a mapper is specified for the type being mapped, or explicitly specified with the mapper13
map-type-modifier, then all map clauses that appear on the declare mapper directive are14
treated as though they appeared on the construct with the map clause. Array sections of a mapper15
type are mapped as normal, then each element in the array section is mapped according to the rules16
of the mapper.17

C / C++
If a list item in a map clause is a variable of structure type then it is treated as if each structure18
element contained in the variable is a list item in the clause.19

C / C++
Fortran

If a list item in a map clause is a derived type variable then it is treated as if each component is a20
list item in the clause.21

Each pointer component that is a list item that results from a mapped derived type variable is22
treated as if its association status is undefined, unless the pointer component appears as another list23
item or as the base pointer of another list item in a map clause on the same construct.24

Fortran
If a list item in a map clause is a structure element then all other structure elements of the25
containing structure variable form a structure sibling list. The map clause and the structure sibling26
list are associated with the same construct. If a corresponding list item of the structure sibling list27
item is present in the device data environment when the construct is encountered then:28

316 OpenMP API – Version 5.0 November 2018

• If the structure sibling list item does not appear in a map clause on the construct then:1

– If the construct is a target, target data, or target enter data construct then the2
structure sibling list item is treated as if it is a list item in a map clause on the construct with a3
map-type of alloc.4

– If the construct is target exit data construct, then the structure sibling list item is treated5
as if it is a list item in a map clause on the construct with a map-type of release.6

Fortran
– If the structure sibling list item is a pointer then it is treated as if its association status is7
undefined, unless it appears as the base pointer of another list item in a map clause on the8
same construct.9

Fortran
• If the map clause in which the structure element appears as a list item has a map-type of10
delete and the structure sibling list item does not appear as a list item in a map clause on the11
construct with a map-type of delete then the structure sibling list item is treated as if it is a list12
item in a map clause on the construct with a map-type of delete.13

If item1 is a list item in a map clause, and item2 is another list item in a map clause on the same14
construct that has a base pointer that is, or is part of, item1, then:15

• If the map clause(s) appear on a target, target data, or target enter data construct,16
then on entry to the corresponding region the effect of the map clause on item1 is ordered to17
occur before the effect of the map clause on item2.18

• If the map clause(s) appear on a target, target data, or target exit data construct19
then on exit from the corresponding region the effect of the map clause on item2 is ordered to20
occur before the effect of the map clause on item1.21

Fortran
If a list item in a map clause is an associated pointer and the pointer is not the base pointer of22
another list item in a map clause on the same construct, then it is treated as if its pointer target is23
implicitly mapped in the same clause. For the purposes of the map clause, the mapped pointer24
target is treated as if its base pointer is the associated pointer.25

Fortran
If a list item in a map clause has a base pointer, and a pointer variable is present in the device data26
environment that corresponds to the base pointer when the effect of the map clause occurs, then if27
the corresponding pointer or the corresponding list item is created in the device data environment28
on entry to the construct, then:29

C / C++
1. The corresponding pointer variable is assigned an address such that the corresponding list item30

can be accessed through the pointer in a target region.31

C / C++

CHAPTER 2. DIRECTIVES 317

Fortran
1. The corresponding pointer variable is associated with a pointer target that has the same rank and1

bounds as the pointer target of the original pointer, such that the corresponding list item can be2
accessed through the pointer in a target region.3

Fortran
2. The corresponding pointer variable becomes an attached pointer for the corresponding list item.4

3. If the original base pointer and the corresponding attached pointer share storage, then the5
original list item and the corresponding list item must share storage.6

C++
If a lambda is mapped explicitly or implicitly, variables that are captured by the lambda behave as7
follows:8

• the variables that are of pointer type are treated as if they had appeared in a map clause as9
zero-length array sections; and10

• the variables that are of reference type are treated as if they had appeared in a map clause.11

If a member variable is captured by a lambda in class scope, and the lambda is later mapped12
explicitly or implicitly with its full static type, the this pointer is treated as if it had appeared on a13
map clause.14

C++
The original and corresponding list items may share storage such that writes to either item by one15
task followed by a read or write of the other item by another task without intervening16
synchronization can result in data races.17

If the map clause appears on a target, target data, or target enter data construct then18
on entry to the region the following sequence of steps occurs as if performed as a single atomic19
operation:20

1. If a corresponding list item of the original list item is not present in the device data environment,21
then:22

a) A new list item with language-specific attributes is derived from the original list item and23
created in the device data environment;24

b) The new list item becomes the corresponding list item of the original list item in the device25
data environment;26

c) The corresponding list item has a reference count that is initialized to zero; and27

d) The value of the corresponding list item is undefined;28

2. If the corresponding list item’s reference count was not already incremented because of the29
effect of a map clause on the construct then:30

a) The corresponding list item’s reference count is incremented by one;31

318 OpenMP API – Version 5.0 November 2018

3. If the corresponding list item’s reference count is one or the always map-type-modifier is1
present, and if the map-type is to or tofrom, then:2

C / C++
a) For each part of the list item that is an attached pointer, that part of the corresponding list3

item will have the value that it had immediately prior to the effect of the map clause; and4

C / C++
Fortran

a) For each part of the list item that is an attached pointer, that part of the corresponding list5
item, if associated, will be associated with the same pointer target that it was associated with6
immediately prior to the effect of the map clause.7

Fortran
b) For each part of the list item that is not an attached pointer, the value of that part of the8

original list item is assigned to that part of the corresponding list item.9

10

Note – If the effect of the map clauses on a construct would assign the value of an original list11
item to a corresponding list item more than once, then an implementation is allowed to ignore12
additional assignments of the same value to the corresponding list item.13

14

In all cases on entry to the region, concurrent reads or updates of any part of the corresponding list15
item must be synchronized with any update of the corresponding list item that occurs as a result of16
the map clause to avoid data races.17

If the map clause appears on a target, target data, or target exit data construct and a18
corresponding list item of the original list item is not present in the device data environment on exit19
from the region then the list item is ignored. Alternatively, if the map clause appears on a target,20
target data, or target exit data construct and a corresponding list item of the original list21
item is present in the device data environment on exit from the region, then the following sequence22
of steps occurs as if performed as a single atomic operation:23

1. If the map-type is not delete and the corresponding list item’s reference count is finite and24
was not already decremented because of the effect of a map clause on the construct then:25

a) The corresponding list item’s reference count is decremented by one;26

2. If the map-type is delete and the corresponding list item’s reference count is finite then:27

a) The corresponding list item’s reference count is set to zero;28

3. If the map-type is from or tofrom and if the corresponding list item’s reference count is zero29
or the always map-type-modifier is present then:30

CHAPTER 2. DIRECTIVES 319

C / C++
a) For each part of the list item that is an attached pointer, that part of the original list item will1

have the value that it had immediately prior to the effect of the map clause;2

C / C++
Fortran

a) For each part of the list item that is an attached pointer, that part of the corresponding list3
item, if associated, will be associated with the same pointer target with which it was4
associated immediately prior to the effect of the map clause; and5

Fortran
b) For each part of the list item that is not an attached pointer, the value of that part of the6

corresponding list item is assigned to that part of the original list item; and7

4. If the corresponding list item’s reference count is zero then the corresponding list item is8
removed from the device data environment.9

10

Note – If the effect of the map clauses on a construct would assign the value of a corresponding11
list item to an original list item more than once, then an implementation is allowed to ignore12
additional assignments of the same value to the original list item.13

14

In all cases on exit from the region, concurrent reads or updates of any part of the original list item15
must be synchronized with any update of the original list item that occurs as a result of the map16
clause to avoid data races.17

If a single contiguous part of the original storage of a list item with an implicit data-mapping18
attribute has corresponding storage in the device data environment prior to a task encountering the19
construct that is associated with the map clause, only that part of the original storage will have20
corresponding storage in the device data environment as a result of the map clause.21

If a list item with an implicit data-mapping attribute does not have any corresponding storage in the22
device data environment prior to a task encountering the construct associated with the map clause,23
and one or more contiguous parts of the original storage are either list items or base pointers to list24
items that are explicitly mapped on the construct, only those parts of the original storage will have25
corresponding storage in the device data environment as a result of the map clauses on the26
construct.27

C / C++
If a new list item is created then a new list item of the same type, with automatic storage duration, is28
allocated for the construct. The size and alignment of the new list item are determined by the static29
type of the variable. This allocation occurs if the region references the list item in any statement.30
Initialization and assignment of the new list item are through bitwise copy.31

C / C++

320 OpenMP API – Version 5.0 November 2018

Fortran
If a new list item is created then a new list item of the same type, type parameter, and rank is1
allocated. The new list item inherits all default values for the type parameters from the original list2
item. The value of the new list item becomes that of the original list item in the map initialization3
and assignment.4

If the allocation status of the original list item with the ALLOCATABLE attribute is changed in the5
host device data environment and the corresponding list item is already present in the device data6
environment, the allocation status of the corresponding list item is unspecified until a mapping7
operation is performed with a map clause on entry to a target, target data, or8
target enter data region.9

Fortran
The map-type determines how the new list item is initialized.10

If a map-type is not specified, the map-type defaults to tofrom.11

The close map-type-modifier is a hint to the runtime to allocate memory close to the target device.12

Execution Model Events13

The target-map event occurs when a thread maps data to or from a target device.14

The target-data-op event occurs when a thread initiates a data operation on a target device.15

Tool Callbacks16

A thread dispatches a registered ompt_callback_target_map callback for each occurrence17
of a target-map event in that thread. The callback occurs in the context of the target task and has18
type signature ompt_callback_target_map_t.19

A thread dispatches a registered ompt_callback_target_data_op callback for each20
occurrence of a target-data-op event in that thread. The callback occurs in the context of the target21
task and has type signature ompt_callback_target_data_op_t.22

Restrictions23

The restrictions to the map clause are as follows:24

• A list item cannot appear in both a map clause and a data-sharing attribute clause on the same25
construct unless the construct is a combined construct.26

• Each of the map-type-modifier modifiers can appear at most once on the map clause.27

CHAPTER 2. DIRECTIVES 321

C / C++
• List items of the map clauses on the same construct must not share original storage unless they1
are the same lvalue expression or array section.2

C / C++
• If a list item is an array section, it must specify contiguous storage.3

• If multiple list items are explicitly mapped on the same construct and have the same containing4
array or have base pointers that share original storage, and if any of the list items do not have5
corresponding list items that are present in the device data environment prior to a task6
encountering the construct, then the list items must refer to the same array elements of either the7
containing array or the implicit array of the base pointers.8

• If any part of the original storage of a list item with an explicit data-mapping attribute has9
corresponding storage in the device data environment prior to a task encountering the construct10
associated with the map clause, all of the original storage must have corresponding storage in the11
device data environment prior to the task encountering the construct.12

• If a list item is an element of a structure, and a different element of the structure has a13
corresponding list item in the device data environment prior to a task encountering the construct14
associated with the map clause, then the list item must also have a corresponding list item in the15
device data environment prior to the task encountering the construct.16

• A list item must have a mappable type.17

• threadprivate variables cannot appear in a map clause.18

• If a mapper map-type-modifier is specified, its type must match the type of the list-items passed19
to that map clause.20

• Memory spaces and memory allocators cannot appear as a list item in a map clause.21

C++
• If the type of a list item is a reference to a type T then the reference in the device data22
environment is initialized to refer to the object in the device data environment that corresponds to23
the object referenced by the list item. If mapping occurs, it occurs as though the object were24
mapped through a pointer with an array section of type T and length one.25

• No type mapped through a reference can contain a reference to its own type, or any references to26
types that could produce a cycle of references.27

• If the list item is a lambda, any pointers and references captured by the lambda must have the28
corresponding list item in the device data environment prior to the task encountering the29
construct.30

C++

322 OpenMP API – Version 5.0 November 2018

C / C++
• A list item cannot be a variable that is a member of a structure with a union type.1

• A bit-field cannot appear in a map clause.2

• A pointer that has a corresponding attached pointer must not be modified for the duration of the3
lifetime of the list item to which the corresponding pointer is attached in the device data4
environment.5

C / C++
Fortran

• List items of the map clauses on the same construct must not share original storage unless they6
are the same variable or array section.7

• A pointer that has a corresponding attached pointer and is associated with a given pointer target8
must not become associated with a different pointer target for the duration of the lifetime of the9
list item to which the corresponding pointer is attached in the device data environment.10

• If the allocation status of a list item or any subobject of the list item with the ALLOCATABLE11
attribute is unallocated upon entry to a target region, the list item or any subobject of the12
corresponding list item must be unallocated upon exit from the region.13

• If the allocation status of a list item or any subobject of the list item with the ALLOCATABLE14
attribute is allocated upon entry to a target region, the allocation status of the corresponding15
list item or any subobject of the corresponding list item must not be changed and must not be16
reshaped in the region.17

• If an array section is mapped and the size of the section is smaller than that of the whole array,18
the behavior of referencing the whole array in the target region is unspecified.19

• A list item must not be a whole array of an assumed-size array.20

• If the association status of a list item with the POINTER attribute is associated upon entry to a21
target region, the list item must be associated with the same pointer target upon exit from the22
region.23

• If the association status of a list item with the POINTER attribute is disassociated upon entry to a24
target region, the list item must be disassociated upon exit from the region.25

• If the association status of a list item with the POINTER attribute is undefined upon entry to a26
target region, the list item must be undefined upon exit from the region.27

• If the association status of a list item with the POINTER attribute is disassociated or undefined28
on entry and if the list item is associated with a pointer target inside a target region, then the29
pointer association status must become disassociated before the end of the region.30

Fortran

CHAPTER 2. DIRECTIVES 323

Cross References1

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 488.2

• ompt_callback_target_map_t, see Section 4.5.2.27 on page 492.3

2.19.7.2 defaultmap Clause4

Summary5

The defaultmap clause explicitly determines the data-mapping attributes of variables that are6
referenced in a target construct for which the data-mapping attributes would otherwise be7
implicitly determined (see Section 2.19.7 on page 314).8

Syntax9

The syntax of the defaultmap clause is as follows:10

defaultmap(implicit-behavior[:variable-category])11

Where implicit-behavior is one of:12

alloc13

to14

from15

tofrom16

firstprivate17

none18

default19

C / C++
and variable-category is one of:20

scalar21

aggregate22

pointer23

C / C++

324 OpenMP API – Version 5.0 November 2018

Fortran
and variable-category is one of:1

scalar2

aggregate3

allocatable4

pointer5

Fortran

Description6

The defaultmap clause sets the implicit data-mapping attribute for all variables referenced in the7
construct. If variable-category is specified, the effect of the defaultmap clause is as follows:8

• If variable-category is scalar, all scalar variables of non-pointer type or all non-pointer9
non-allocatable scalar variables that have an implicitly determined data-mapping or data-sharing10
attribute will have a data-mapping or data-sharing attribute specified by implicit-behavior.11

• If variable-category is aggregate or allocatable, all aggregate or allocatable variables12
that have an implicitly determined data-mapping or data-sharing attribute will have a13
data-mapping or data-sharing attribute specified by implicit-behavior.14

• If variable-category is pointer, all variables of pointer type or with the POINTER attribute15
that have implicitly determined data-mapping or data-sharing attributes will have a data-mapping16
or data-sharing attribute specified by implicit-behavior. The zero-length array section and17
attachment that are otherwise applied to an implicitly mapped pointer are only provided for the18
default behavior.19

If no variable-category is specified in the clause then implicit-behavior specifies the implicitly20
determined data-mapping or data-sharing attribute for all variables referenced in the construct. If21
implicit-behavior is none, each variable referenced in the construct that does not have a22
predetermined data-sharing attribute and does not appear in a to or link clause on a23
declare target directive must be listed in a data-mapping attribute clause, a data-sharing24
attribute clause (including a data-sharing attribute clause on a combined construct where target25
is one of the constituent constructs), or an is_device_ptr clause. If implicit-behavior is26
default, then the clause has no effect for the variables in the category specified by27
variable-category.28

CHAPTER 2. DIRECTIVES 325

2.19.7.3 declare mapper Directive1

Summary2

The declare mapper directive declares a user-defined mapper for a given type, and may define3
a mapper-identifier that can be used in a map clause. The declare mapper directive is a4
declarative directive.5

Syntax6

C / C++
The syntax of the declare mapper directive is as follows:7

#pragma omp declare mapper([mapper-identifier:]type var) \8
[clause[[,] clause] ...] new-line9

C / C++
Fortran

The syntax of the declare mapper directive is as follows:10

!$omp declare mapper([mapper-identifier:] type :: var) &11
[clause[[,] clause] ...]12

Fortran
where:13

• mapper-identifier is a base-language identifier or default14

• type is a valid type in scope15

• var is a valid base-language identifier16

• clause is map([[map-type-modifier[,] [map-type-modifier[,] ...]] map-type:] list) , where17
map-type is one of the following:18

– alloc19

– to20

– from21

– tofrom22

and where map-type-modifier is one of the following:23

– always24

– close25

326 OpenMP API – Version 5.0 November 2018

Description1

User-defined mappers can be defined using the declare mapper directive. The type and the2
mapper-identifier uniquely identify the mapper for use in a map clause later in the program. If the3
mapper-identifier is not specified, then default is used. The visibility and accessibility of this4
declaration are the same as those of a variable declared at the same point in the program.5

The variable declared by var is available for use in all map clauses on the directive, and no part of6
the variable to be mapped is mapped by default.7

The default mapper for all types T, designated by the pre-defined mapper-identifier default, is as8
follows unless a user-defined mapper is specified for that type.9

declare mapper(T v) map(tofrom: v)10

Using the default mapper-identifier overrides the pre-defined default mapper for the given type,11
making it the default for all variables of type. All map clauses with this construct in scope that map12
a list item of type will use this mapper unless another is explicitly specified.13

All map clauses on the directive are expanded into corresponding map clauses wherever this14
mapper is invoked, either by matching type or by being explicitly named in a map clause. A map15
clause with list item var maps var as though no mapper were specified.16

C++
The declare mapper directive can also appear at points in the program at which a static data17
member could be declared. In this case, the visibility and accessibility of the declaration are the18
same as those of a static data member declared at the same point in the program.19

C++

Restrictions20

The restrictions to the declare mapper directive are as follows:21

• No instance of type can be mapped as part of the mapper, either directly or indirectly through22
another type, except the instance passed as the list item. If a set of declare mapper directives23
results in a cyclic definition then the behavior is unspecified.24

• The type must be of struct, union or class type in C and C++ or a non-intrinsic type in Fortran.25

• The type must not declare a new type.26

• At least one map clause that maps var or at least one element of var is required.27

• List-items in map clauses on this construct may only refer to the declared variable var and28
entities that could be referenced by a procedure defined at the same location.29

• Each map-type-modifier can appear at most once on the map clause.30

CHAPTER 2. DIRECTIVES 327

• A mapper-identifier may not be redeclared in the current scope for the same type or for a type1
that is compatible according to the base language rules.2

Fortran
• type must not be an abstract type.3

Fortran

2.20 Nesting of Regions4

This section describes a set of restrictions on the nesting of regions. The restrictions on nesting are5
as follows:6

• A worksharing region may not be closely nested inside a worksharing, loop, task,7
taskloop, critical, ordered, atomic, or master region.8

• A barrier region may not be closely nested inside a worksharing, loop, task, taskloop,9
critical, ordered, atomic, or master region.10

• A master region may not be closely nested inside a worksharing, loop, atomic, task, or11
taskloop region.12

• An ordered region corresponding to an ordered construct without any clause or with the13
threads or depend clause may not be closely nested inside a critical, ordered, loop,14
atomic, task, or taskloop region.15

• An ordered region corresponding to an ordered construct without the simd clause16
specified must be closely nested inside a worksharing-loop region.17

• An ordered region corresponding to an ordered construct with the simd clause specified18
must be closely nested inside a simd or worksharing-loop SIMD region.19

• An ordered region corresponding to an ordered construct with both the simd and20
threads clauses must be closely nested inside a worksharing-loop SIMD region or closely21
nested inside a worksharing-loop and simd region.22

• A critical region may not be nested (closely or otherwise) inside a critical region with23
the same name. This restriction is not sufficient to prevent deadlock.24

• OpenMP constructs may not be encountered during execution of an atomic region.25

• The only OpenMP constructs that can be encountered during execution of a simd (or26
worksharing-loop SIMD) region are the atomic construct, the loop construct, the simd27
construct and the ordered construct with the simd clause.28

328 OpenMP API – Version 5.0 November 2018

• If a target update, target data, target enter data, or target exit data1
construct is encountered during execution of a target region, the behavior is unspecified.2

• If a target construct is encountered during execution of a target region and a device3
clause in which the ancestor device-modifier appears is not present on the construct, the4
behavior is unspecified.5

• A teams region can only be strictly nested within the implicit parallel region or a target6
region. If a teams construct is nested within a target construct, that target construct must7
contain no statements, declarations or directives outside of the teams construct.8

• distribute, distribute simd, distribute parallel worksharing-loop, distribute parallel9
worksharing-loop SIMD, loop, parallel regions, including any parallel regions arising10
from combined constructs, omp_get_num_teams() regions, and omp_get_team_num()11
regions are the only OpenMP regions that may be strictly nested inside the teams region.12

• The region corresponding to the distribute construct must be strictly nested inside a teams13
region.14

• If construct-type-clause is taskgroup, the cancel construct must be closely nested inside a15
task construct and the cancel region must be closely nested inside a taskgroup region. If16
construct-type-clause is sections, the cancel construct must be closely nested inside a17
sections or section construct. Otherwise, the cancel construct must be closely nested18
inside an OpenMP construct that matches the type specified in construct-type-clause of the19
cancel construct.20

• A cancellation point construct for which construct-type-clause is taskgroup must be21
closely nested inside a task construct, and the cancellation point region must be closely22
nested inside a taskgroup region. A cancellation point construct for which23
construct-type-clause is sections must be closely nested inside a sections or section24
construct. Otherwise, a cancellation point construct must be closely nested inside an25
OpenMP construct that matches the type specified in construct-type-clause.26

• The only constructs that may be nested inside a loop region are the loop construct, the27
parallel construct, the simd construct, and combined constructs for which the first construct28
is a parallel construct.29

• A loop region may not contain calls to procedures that contain OpenMP directives or calls to30
the OpenMP Runtime API.31

CHAPTER 2. DIRECTIVES 329

This page intentionally left blank

CHAPTER 3

Runtime Library Routines1

2

This chapter describes the OpenMP API runtime library routines and queryable runtime states. In3
this chapter, true and false are used as generic terms to simplify the description of the routines.4

C / C++
true means a nonzero integer value and false means an integer value of zero.5

C / C++

Fortran
true means a logical value of .TRUE. and false means a logical value of .FALSE..6

Fortran

Fortran
Restrictions7

The following restriction applies to all OpenMP runtime library routines:8

• OpenMP runtime library routines may not be called from PURE or ELEMENTAL procedures.9

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 331

3.1 Runtime Library Definitions1

For each base language, a compliant implementation must supply a set of definitions for the2
OpenMP API runtime library routines and the special data types of their parameters. The set of3
definitions must contain a declaration for each OpenMP API runtime library routine and variable4
and a definition of each required data type listed below. In addition, each set of definitions may5
specify other implementation specific values.6

C / C++
The library routines are external functions with “C” linkage.7

Prototypes for the C/C++ runtime library routines described in this chapter shall be provided in a8
header file named omp.h. This file also defines the following:9

• The type omp_lock_t;10

• The type omp_nest_lock_t;11

• The type omp_sync_hint_t;12

• The type omp_lock_hint_t (deprecated);13

• The type omp_sched_t;14

• The type omp_proc_bind_t;15

• The type omp_control_tool_t;16

• The type omp_control_tool_result_t;17

• The type omp_depend_t;18

• The type omp_memspace_handle_t, which must be an implementation-defined enum type19
with an enumerator for at least each predefined memory space in Table 2.8 on page 152;20

• The type omp_allocator_handle_t, which must be an implementation-defined enum type21
with at least the omp_null_allocator enumerator with the value zero and an enumerator22
for each predefined memory allocator in Table 2.10 on page 155;23

• The type omp_uintptr_t, which is an unsigned integer type capable of holding a pointer on24
any device;25

• The type omp_pause_resource_t; and26

• The type omp_event_handle_t, which must be an implementation-defined enum type.27

C / C++

332 OpenMP API – Version 5.0 November 2018

C++
The omp.h header file also defines a class template that models the Allocator concept in the1
omp::allocator namespace for each predefined memory allocator in Table 2.10 on page 1552
for which the name includes neither the omp_ prefix nor the _alloc suffix.3

C++
Fortran

The OpenMP Fortran API runtime library routines are external procedures. The return values of4
these routines are of default kind, unless otherwise specified.5

Interface declarations for the OpenMP Fortran runtime library routines described in this chapter6
shall be provided in the form of a Fortran include file named omp_lib.h or a Fortran 907
module named omp_lib. It is implementation defined whether the include file or the8
module file (or both) is provided.9

These files also define the following:10

• The integer parameter omp_lock_kind;11

• The integer parameter omp_nest_lock_kind;12

• The integer parameter omp_sync_hint_kind;13

• The integer parameter omp_lock_hint_kind (deprecated);14

• The integer parameter omp_sched_kind;15

• The integer parameter omp_proc_bind_kind;16

• The integer parameter omp_control_tool_kind;17

• The integer parameter omp_control_tool_result_kind;18

• The integer parameter omp_depend_kind;19

• The integer parameter omp_memspace_handle_kind;20

• The integer parameter omp_allocator_handle_kind;21

• The integer parameter omp_alloctrait_key_kind;22

• The integer parameter omp_alloctrait_val_kind;23

• An integer parameter of kind omp_memspace_handle_kind for each predefined24
memory space in Table 2.8 on page 152;25

• An integer parameter of kind omp_allocator_handle_kind for each predefined26
memory allocator in Table 2.10 on page 155;27

• The integer parameter omp_pause_resource_kind;28

• The integer parameter omp_event_handle_kind; and29

CHAPTER 3. RUNTIME LIBRARY ROUTINES 333

• The integer parameter openmp_version with a value yyyymm where yyyy and mm are1
the year and month designations of the version of the OpenMP Fortran API that the2
implementation supports; this value matches that of the C preprocessor macro _OPENMP, when3
a macro preprocessor is supported (see Section 2.2 on page 49).4

It is implementation defined whether any of the OpenMP runtime library routines that take an5
argument are extended with a generic interface so arguments of different KIND type can be6
accommodated.7

Fortran

3.2 Execution Environment Routines8

This section describes routines that affect and monitor threads, processors, and the parallel9
environment.10

3.2.1 omp_set_num_threads11

Summary12

The omp_set_num_threads routine affects the number of threads to be used for subsequent13
parallel regions that do not specify a num_threads clause, by setting the value of the first14
element of the nthreads-var ICV of the current task.15

Format16

C / C++
void omp_set_num_threads(int num_threads);17

C / C++
Fortran

subroutine omp_set_num_threads(num_threads)18
integer num_threads19

Fortran

Constraints on Arguments20

The value of the argument passed to this routine must evaluate to a positive integer, or else the21
behavior of this routine is implementation defined.22

334 OpenMP API – Version 5.0 November 2018

Binding1

The binding task set for an omp_set_num_threads region is the generating task.2

Effect3

The effect of this routine is to set the value of the first element of the nthreads-var ICV of the4
current task to the value specified in the argument.5

Cross References6

• nthreads-var ICV, see Section 2.5 on page 63.7

• parallel construct and num_threads clause, see Section 2.6 on page 74.8

• Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.9

• omp_get_num_threads routine, see Section 3.2.2 on page 335.10

• omp_get_max_threads routine, see Section 3.2.3 on page 336.11

• OMP_NUM_THREADS environment variable, see Section 6.2 on page 602.12

3.2.2 omp_get_num_threads13

Summary14

The omp_get_num_threads routine returns the number of threads in the current team.15

Format16

C / C++
int omp_get_num_threads(void);17

C / C++
Fortran

integer function omp_get_num_threads()18

Fortran

Binding19

The binding region for an omp_get_num_threads region is the innermost enclosing20
parallel region.21

CHAPTER 3. RUNTIME LIBRARY ROUTINES 335

Effect1

The omp_get_num_threads routine returns the number of threads in the team that is executing2
the parallel region to which the routine region binds. If called from the sequential part of a3
program, this routine returns 1.4

Cross References5

• nthreads-var ICV, see Section 2.5 on page 63.6

• parallel construct and num_threads clause, see Section 2.6 on page 74.7

• Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.8

• omp_set_num_threads routine, see Section 3.2.1 on page 334.9

• OMP_NUM_THREADS environment variable, see Section 6.2 on page 602.10

3.2.3 omp_get_max_threads11

Summary12

The omp_get_max_threads routine returns an upper bound on the number of threads that13
could be used to form a new team if a parallel construct without a num_threads clause were14
encountered after execution returns from this routine.15

Format16

C / C++
int omp_get_max_threads(void);17

C / C++
Fortran

integer function omp_get_max_threads()18

Fortran

Binding19

The binding task set for an omp_get_max_threads region is the generating task.20

336 OpenMP API – Version 5.0 November 2018

Effect1

The value returned by omp_get_max_threads is the value of the first element of the2
nthreads-var ICV of the current task. This value is also an upper bound on the number of threads3
that could be used to form a new team if a parallel region without a num_threads clause were4
encountered after execution returns from this routine.5

6

Note – The return value of the omp_get_max_threads routine can be used to allocate7
sufficient storage dynamically for all threads in the team formed at the subsequent active8
parallel region.9

10

Cross References11

• nthreads-var ICV, see Section 2.5 on page 63.12

• parallel construct and num_threads clause, see Section 2.6 on page 74.13

• Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.14

• omp_set_num_threads routine, see Section 3.2.1 on page 334.15

• omp_get_num_threads routine, see Section 3.2.2 on page 335.16

• omp_get_thread_num routine, see Section 3.2.4 on page 337.17

• OMP_NUM_THREADS environment variable, see Section 6.2 on page 602.18

3.2.4 omp_get_thread_num19

Summary20

The omp_get_thread_num routine returns the thread number, within the current team, of the21
calling thread.22

Format23

C / C++
int omp_get_thread_num(void);24

C / C++
Fortran

integer function omp_get_thread_num()25

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 337

Binding1

The binding thread set for an omp_get_thread_num region is the current team. The binding2
region for an omp_get_thread_num region is the innermost enclosing parallel region.3

Effect4

The omp_get_thread_num routine returns the thread number of the calling thread, within the5
team that is executing the parallel region to which the routine region binds. The thread number6
is an integer between 0 and one less than the value returned by omp_get_num_threads,7
inclusive. The thread number of the master thread of the team is 0. The routine returns 0 if it is8
called from the sequential part of a program.9

10

Note – The thread number may change during the execution of an untied task. The value returned11
by omp_get_thread_num is not generally useful during the execution of such a task region.12

13

Cross References14

• nthreads-var ICV, see Section 2.5 on page 63.15

• parallel construct and num_threads clause, see Section 2.6 on page 74.16

• Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.17

• omp_set_num_threads routine, see Section 3.2.1 on page 334.18

• omp_get_num_threads routine, see Section 3.2.2 on page 335.19

• OMP_NUM_THREADS environment variable, see Section 6.2 on page 602.20

3.2.5 omp_get_num_procs21

Summary22

The omp_get_num_procs routine returns the number of processors available to the device.23

Format24

C / C++
int omp_get_num_procs(void);25

C / C++
Fortran

integer function omp_get_num_procs()26

Fortran

338 OpenMP API – Version 5.0 November 2018

Binding1

The binding thread set for an omp_get_num_procs region is all threads on a device. The effect2
of executing this routine is not related to any specific region corresponding to any construct or API3
routine.4

Effect5

The omp_get_num_procs routine returns the number of processors that are available to the6
device at the time the routine is called. This value may change between the time that it is7
determined by the omp_get_num_procs routine and the time that it is read in the calling8
context due to system actions outside the control of the OpenMP implementation.9

Cross References10

• omp_get_num_places routine, see Section 3.2.24 on page 358.11

• omp_get_place_num_procs routine, see Section 3.2.25 on page 359.12

• omp_get_place_proc_ids routine, see Section 3.2.26 on page 360.13

• omp_get_place_num routine, see Section 3.2.27 on page 362.14

3.2.6 omp_in_parallel15

Summary16

The omp_in_parallel routine returns true if the active-levels-var ICV is greater than zero;17
otherwise, it returns false.18

Format19

C / C++
int omp_in_parallel(void);20

C / C++
Fortran

logical function omp_in_parallel()21

Fortran

Binding22

The binding task set for an omp_in_parallel region is the generating task.23

CHAPTER 3. RUNTIME LIBRARY ROUTINES 339

Effect1

The effect of the omp_in_parallel routine is to return true if the current task is enclosed by an2
active parallel region, and the parallel region is enclosed by the outermost initial task3
region on the device; otherwise it returns false.4

Cross References5

• active-levels-var, see Section 2.5 on page 63.6

• parallel construct, see Section 2.6 on page 74.7

• omp_get_num_threads routine, see Section 3.2.2 on page 335.8

• omp_get_active_level routine, see Section 3.2.21 on page 355.9

3.2.7 omp_set_dynamic10

Summary11

The omp_set_dynamic routine enables or disables dynamic adjustment of the number of12
threads available for the execution of subsequent parallel regions by setting the value of the13
dyn-var ICV.14

Format15

C / C++
void omp_set_dynamic(int dynamic_threads);16

C / C++

Fortran
subroutine omp_set_dynamic(dynamic_threads)17
logical dynamic_threads18

Fortran

Binding19

The binding task set for an omp_set_dynamic region is the generating task.20

340 OpenMP API – Version 5.0 November 2018

Effect1

For implementations that support dynamic adjustment of the number of threads, if the argument to2
omp_set_dynamic evaluates to true, dynamic adjustment is enabled for the current task;3
otherwise, dynamic adjustment is disabled for the current task. For implementations that do not4
support dynamic adjustment of the number of threads, this routine has no effect: the value of5
dyn-var remains false.6

Cross References7

• dyn-var ICV, see Section 2.5 on page 63.8

• Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.9

• omp_get_num_threads routine, see Section 3.2.2 on page 335.10

• omp_get_dynamic routine, see Section 3.2.8 on page 341.11

• OMP_DYNAMIC environment variable, see Section 6.3 on page 603.12

3.2.8 omp_get_dynamic13

Summary14

The omp_get_dynamic routine returns the value of the dyn-var ICV, which determines whether15
dynamic adjustment of the number of threads is enabled or disabled.16

Format17

C / C++
int omp_get_dynamic(void);18

C / C++
Fortran

logical function omp_get_dynamic()19

Fortran

Binding20

The binding task set for an omp_get_dynamic region is the generating task.21

CHAPTER 3. RUNTIME LIBRARY ROUTINES 341

Effect1

This routine returns true if dynamic adjustment of the number of threads is enabled for the current2
task; it returns false, otherwise. If an implementation does not support dynamic adjustment of the3
number of threads, then this routine always returns false.4

Cross References5

• dyn-var ICV, see Section 2.5 on page 63.6

• Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.7

• omp_set_dynamic routine, see Section 3.2.7 on page 340.8

• OMP_DYNAMIC environment variable, see Section 6.3 on page 603.9

3.2.9 omp_get_cancellation10

Summary11

The omp_get_cancellation routine returns the value of the cancel-var ICV, which12
determines if cancellation is enabled or disabled.13

Format14

C / C++
int omp_get_cancellation(void);15

C / C++
Fortran

logical function omp_get_cancellation()16

Fortran

Binding17

The binding task set for an omp_get_cancellation region is the whole program.18

Effect19

This routine returns true if cancellation is enabled. It returns false otherwise.20

342 OpenMP API – Version 5.0 November 2018

Cross References1

• cancel-var ICV, see Section 2.5.1 on page 64.2

• cancel construct, see Section 2.18.1 on page 263.3

• OMP_CANCELLATION environment variable, see Section 6.11 on page 610.4

3.2.10 omp_set_nested5

Summary6

The deprecated omp_set_nested routine enables or disables nested parallelism by setting the7
max-active-levels-var ICV.8

Format9

C / C++
void omp_set_nested(int nested);10

C / C++
Fortran

subroutine omp_set_nested(nested)11
logical nested12

Fortran

Binding13

The binding task set for an omp_set_nested region is the generating task.14

Effect15

If the argument to omp_set_nested evaluates to true, the value of the max-active-levels-var16
ICV is set to the number of active levels of parallelism that the implementation supports; otherwise,17
if the value of max-active-levels-var is greater than 1 then it is set to 1. This routine has been18
deprecated.19

CHAPTER 3. RUNTIME LIBRARY ROUTINES 343

Cross References1

• max-active-levels-var ICV, see Section 2.5 on page 63.2

• Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.3

• omp_get_nested routine, see Section 3.2.11 on page 344.4

• omp_set_max_active_levels routine, see Section 3.2.16 on page 350.5

• omp_get_max_active_levels routine, see Section 3.2.17 on page 351.6

• OMP_NESTED environment variable, see Section 6.9 on page 609.7

3.2.11 omp_get_nested8

Summary9

The deprecated omp_get_nested routine returns whether nested parallelism is enabled or10
disabled, according to the value of the max-active-levels-var ICV.11

Format12

C / C++
int omp_get_nested(void);13

C / C++
Fortran

logical function omp_get_nested()14

Fortran

Binding15

The binding task set for an omp_get_nested region is the generating task.16

Effect17

This routine returns true if max-active-levels-var is greater than 1 for the current task; it returns18
false, otherwise. If an implementation does not support nested parallelism, this routine always19
returns false. This routine has been deprecated.20

344 OpenMP API – Version 5.0 November 2018

Cross References1

• max-active-levels-var ICV, see Section 2.5 on page 63.2

• Determining the number of threads for a parallel region, see Section 2.6.1 on page 78.3

• omp_set_nested routine, see Section 3.2.10 on page 343.4

• omp_set_max_active_levels routine, see Section 3.2.16 on page 350.5

• omp_get_max_active_levels routine, see Section 3.2.17 on page 351.6

• OMP_NESTED environment variable, see Section 6.9 on page 609.7

3.2.12 omp_set_schedule8

Summary9

The omp_set_schedule routine affects the schedule that is applied when runtime is used as10
schedule kind, by setting the value of the run-sched-var ICV.11

Format12

C / C++
void omp_set_schedule(omp_sched_t kind, int chunk_size);13

C / C++
Fortran

subroutine omp_set_schedule(kind, chunk_size)14
integer (kind=omp_sched_kind) kind15
integer chunk_size16

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 345

Constraints on Arguments1

The first argument passed to this routine can be one of the valid OpenMP schedule kinds (except for2
runtime) or any implementation specific schedule. The C/C++ header file (omp.h) and the3
Fortran include file (omp_lib.h) and/or Fortran 90 module file (omp_lib) define the valid4
constants. The valid constants must include the following, which can be extended with5
implementation specific values:6

C / C++
typedef enum omp_sched_t {7

// schedule kinds8
omp_sched_static = 0x1,9
omp_sched_dynamic = 0x2,10
omp_sched_guided = 0x3,11
omp_sched_auto = 0x4,12

13
// schedule modifier14
omp_sched_monotonic = 0x80000000u15

} omp_sched_t;16

C / C++
Fortran

! schedule kinds17
integer(kind=omp_sched_kind), &18

parameter :: omp_sched_static = &19
int(Z’1’, kind=omp_sched_kind)20

integer(kind=omp_sched_kind), &21
parameter :: omp_sched_dynamic = &22

int(Z’2’, kind=omp_sched_kind)23
integer(kind=omp_sched_kind), &24

parameter :: omp_sched_guided = &25
int(Z’3’, kind=omp_sched_kind)26

integer(kind=omp_sched_kind), &27
parameter :: omp_sched__auto = &28

int(Z’4’, kind=omp_sched_kind)29
30

! schedule modifier31
integer(kind=omp_sched_kind), &32

parameter :: omp_sched_monotonic = &33
int(Z’80000000’, kind=omp_sched_kind)34

Fortran

Binding35

The binding task set for an omp_set_schedule region is the generating task.36

346 OpenMP API – Version 5.0 November 2018

Effect1

The effect of this routine is to set the value of the run-sched-var ICV of the current task to the2
values specified in the two arguments. The schedule is set to the schedule kind that is specified by3
the first argument kind. It can be any of the standard schedule kinds or any other implementation4
specific one. For the schedule kinds static, dynamic, and guided the chunk_size is set to the5
value of the second argument, or to the default chunk_size if the value of the second argument is6
less than 1; for the schedule kind auto the second argument has no meaning; for implementation7
specific schedule kinds, the values and associated meanings of the second argument are8
implementation defined.9

Each of the schedule kinds can be combined with the omp_sched_monotonic modifier by10
using the + or | operators in C/C++ or the + operator in Fortran. If the schedule kind is combined11
with the omp_sched_monotonic modifier, the schedule is modified as if the monotonic12
schedule modifier was specified. Otherwise, the schedule modifier is nonmonotonic.13

Cross References14

• run-sched-var ICV, see Section 2.5 on page 63.15

• Determining the schedule of a worksharing-loop, see Section 2.9.2.1 on page 109.16

• omp_set_schedule routine, see Section 3.2.12 on page 345.17

• omp_get_schedule routine, see Section 3.2.13 on page 347.18

• OMP_SCHEDULE environment variable, see Section 6.1 on page 601.19

3.2.13 omp_get_schedule20

Summary21

The omp_get_schedule routine returns the schedule that is applied when the runtime schedule22
is used.23

Format24

C / C++
void omp_get_schedule(omp_sched_t *kind, int *chunk_size);25

C / C++
Fortran

subroutine omp_get_schedule(kind, chunk_size)26
integer (kind=omp_sched_kind) kind27
integer chunk_size28

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 347

Binding1

The binding task set for an omp_get_schedule region is the generating task.2

Effect3

This routine returns the run-sched-var ICV in the task to which the routine binds. The first4
argument kind returns the schedule to be used. It can be any of the standard schedule kinds as5
defined in Section 3.2.12 on page 345, or any implementation specific schedule kind. The second6
argument chunk_size returns the chunk size to be used, or a value less than 1 if the default chunk7
size is to be used, if the returned schedule kind is static, dynamic, or guided. The value8
returned by the second argument is implementation defined for any other schedule kinds.9

Cross References10

• run-sched-var ICV, see Section 2.5 on page 63.11

• Determining the schedule of a worksharing-loop, see Section 2.9.2.1 on page 109.12

• omp_set_schedule routine, see Section 3.2.12 on page 345.13

• OMP_SCHEDULE environment variable, see Section 6.1 on page 601.14

3.2.14 omp_get_thread_limit15

Summary16

The omp_get_thread_limit routine returns the maximum number of OpenMP threads17
available to participate in the current contention group.18

Format19

C / C++
int omp_get_thread_limit(void);20

C / C++
Fortran

integer function omp_get_thread_limit()21

Fortran

348 OpenMP API – Version 5.0 November 2018

Binding1

The binding thread set for an omp_get_thread_limit region is all threads on the device. The2
effect of executing this routine is not related to any specific region corresponding to any construct3
or API routine.4

Effect5

The omp_get_thread_limit routine returns the value of the thread-limit-var ICV.6

Cross References7

• thread-limit-var ICV, see Section 2.5 on page 63.8

• omp_get_num_threads routine, see Section 3.2.2 on page 335.9

• OMP_THREAD_LIMIT environment variable, see Section 6.10 on page 610.10

• OMP_NUM_THREADS environment variable, see Section 6.2 on page 602.11

3.2.15 omp_get_supported_active_levels12

Summary13

The omp_get_supported_active_levels routine returns the number of active levels of14
parallelism supported by the implementation.15

Format16

C / C++
int omp_get_supported_active_levels(void);17

C / C++
Fortran

integer function omp_get_supported_active_levels()18

Fortran

Binding19

The binding task set for an omp_get_supported_active_levels region is the generating20
task.21

CHAPTER 3. RUNTIME LIBRARY ROUTINES 349

Effect1

The omp_get_supported_active_levels routine returns the number of active levels of2
parallelism supported by the implementation. The max-active-levels-var ICV may not have a value3
that is greater than this number. The value returned by the4
omp_get_supported_active_levels routine is implementation defined, but it must be5
greater than 0.6

Cross References7

• max-active-levels-var ICV, see Section 2.5 on page 63.8

• omp_get_max_active_levels routine, see Section 3.2.17 on page 351.9

• omp_set_max_active_levels routine, see Section 3.2.16 on page 350.10

3.2.16 omp_set_max_active_levels11

Summary12

The omp_set_max_active_levels routine limits the number of nested active parallel13
regions on the device, by setting the max-active-levels-var ICV14

Format15

C / C++
void omp_set_max_active_levels(int max_levels);16

C / C++
Fortran

subroutine omp_set_max_active_levels(max_levels)17
integer max_levels18

Fortran

Constraints on Arguments19

The value of the argument passed to this routine must evaluate to a non-negative integer, otherwise20
the behavior of this routine is implementation defined.21

350 OpenMP API – Version 5.0 November 2018

Binding1

When called from a sequential part of the program, the binding thread set for an2
omp_set_max_active_levels region is the encountering thread. When called from within3
any parallel or teams region, the binding thread set (and binding region, if required) for the4
omp_set_max_active_levels region is implementation defined.5

Effect6

The effect of this routine is to set the value of the max-active-levels-var ICV to the value specified7
in the argument.8

If the number of active levels requested exceeds the number of active levels of parallelism9
supported by the implementation, the value of the max-active-levels-var ICV will be set to the10
number of active levels supported by the implementation.11

This routine has the described effect only when called from a sequential part of the program. When12
called from within a parallel or teams region, the effect of this routine is implementation13
defined.14

Cross References15

• max-active-levels-var ICV, see Section 2.5 on page 63.16

• parallel construct, see Section 2.6 on page 74.17

• omp_get_supported_active_levels routine, see Section 3.2.15 on page 349.18

• omp_get_max_active_levels routine, see Section 3.2.17 on page 351.19

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 6.8 on page 608.20

3.2.17 omp_get_max_active_levels21

Summary22

The omp_get_max_active_levels routine returns the value of the max-active-levels-var23
ICV, which determines the maximum number of nested active parallel regions on the device.24

Format25

C / C++
int omp_get_max_active_levels(void);26

C / C++
Fortran

integer function omp_get_max_active_levels()27

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 351

Binding1

When called from a sequential part of the program, the binding thread set for an2
omp_get_max_active_levels region is the encountering thread. When called from within3
any parallel or teams region, the binding thread set (and binding region, if required) for the4
omp_get_max_active_levels region is implementation defined.5

Effect6

The omp_get_max_active_levels routine returns the value of the max-active-levels-var7
ICV, which determines the maximum number of nested active parallel regions on the device.8

Cross References9

• max-active-levels-var ICV, see Section 2.5 on page 63.10

• parallel construct, see Section 2.6 on page 74.11

• omp_get_supported_active_levels routine, see Section 3.2.15 on page 349.12

• omp_set_max_active_levels routine, see Section 3.2.16 on page 350.13

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 6.8 on page 608.14

3.2.18 omp_get_level15

Summary16

The omp_get_level routine returns the value of the levels-var ICV.17

Format18

C / C++
int omp_get_level(void);19

C / C++
Fortran

integer function omp_get_level()20

Fortran

Binding21

The binding task set for an omp_get_level region is the generating task.22

352 OpenMP API – Version 5.0 November 2018

Effect1

The effect of the omp_get_level routine is to return the number of nested parallel regions2
(whether active or inactive) that enclose the current task such that all of the parallel regions are3
enclosed by the outermost initial task region on the current device.4

Cross References5

• levels-var ICV, see Section 2.5 on page 63.6

• parallel construct, see Section 2.6 on page 74.7

• omp_get_active_level routine, see Section 3.2.21 on page 355.8

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 6.8 on page 608.9

3.2.19 omp_get_ancestor_thread_num10

Summary11

The omp_get_ancestor_thread_num routine returns, for a given nested level of the current12
thread, the thread number of the ancestor of the current thread.13

Format14

C / C++
int omp_get_ancestor_thread_num(int level);15

C / C++
Fortran

integer function omp_get_ancestor_thread_num(level)16
integer level17

Fortran

Binding18

The binding thread set for an omp_get_ancestor_thread_num region is the encountering19
thread. The binding region for an omp_get_ancestor_thread_num region is the innermost20
enclosing parallel region.21

CHAPTER 3. RUNTIME LIBRARY ROUTINES 353

Effect1

The omp_get_ancestor_thread_num routine returns the thread number of the ancestor at a2
given nest level of the current thread or the thread number of the current thread. If the requested3
nest level is outside the range of 0 and the nest level of the current thread, as returned by the4
omp_get_level routine, the routine returns -1.5

6

Note – When the omp_get_ancestor_thread_num routine is called with a value of7
level=0, the routine always returns 0. If level=omp_get_level(), the routine has the8
same effect as the omp_get_thread_num routine.9

10

Cross References11

• parallel construct, see Section 2.6 on page 74.12

• omp_get_num_threads routine, see Section 3.2.2 on page 335.13

• omp_get_thread_num routine, see Section 3.2.4 on page 337.14

• omp_get_level routine, see Section 3.2.18 on page 352.15

• omp_get_team_size routine, see Section 3.2.20 on page 354.16

3.2.20 omp_get_team_size17

Summary18

The omp_get_team_size routine returns, for a given nested level of the current thread, the size19
of the thread team to which the ancestor or the current thread belongs.20

Format21

C / C++
int omp_get_team_size(int level);22

C / C++
Fortran

integer function omp_get_team_size(level)23
integer level24

Fortran

354 OpenMP API – Version 5.0 November 2018

Binding1

The binding thread set for an omp_get_team_size region is the encountering thread. The2
binding region for an omp_get_team_size region is the innermost enclosing parallel3
region.4

Effect5

The omp_get_team_size routine returns the size of the thread team to which the ancestor or6
the current thread belongs. If the requested nested level is outside the range of 0 and the nested7
level of the current thread, as returned by the omp_get_level routine, the routine returns -1.8
Inactive parallel regions are regarded like active parallel regions executed with one thread.9

10

Note – When the omp_get_team_size routine is called with a value of level=0, the routine11
always returns 1. If level=omp_get_level(), the routine has the same effect as the12
omp_get_num_threads routine.13

14

Cross References15

• omp_get_num_threads routine, see Section 3.2.2 on page 335.16

• omp_get_level routine, see Section 3.2.18 on page 352.17

• omp_get_ancestor_thread_num routine, see Section 3.2.19 on page 353.18

3.2.21 omp_get_active_level19

Summary20

The omp_get_active_level routine returns the value of the active-level-vars ICV..21

Format22

C / C++
int omp_get_active_level(void);23

C / C++
Fortran

integer function omp_get_active_level()24

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 355

Binding1

The binding task set for the an omp_get_active_level region is the generating task.2

Effect3

The effect of the omp_get_active_level routine is to return the number of nested active4
parallel regions enclosing the current task such that all of the parallel regions are enclosed5
by the outermost initial task region on the current device.6

Cross References7

• active-levels-var ICV, see Section 2.5 on page 63.8

• omp_get_level routine, see Section 3.2.18 on page 352.9

• omp_set_max_active_levels routine, see Section 3.2.16 on page 350.10

• omp_get_max_active_levels routine, see Section 3.2.17 on page 351.11

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 6.8 on page 608.12

3.2.22 omp_in_final13

Summary14

The omp_in_final routine returns true if the routine is executed in a final task region;15
otherwise, it returns false.16

Format17

C / C++
int omp_in_final(void);18

C / C++
Fortran

logical function omp_in_final()19

Fortran

Binding20

The binding task set for an omp_in_final region is the generating task.21

356 OpenMP API – Version 5.0 November 2018

Effect1

omp_in_final returns true if the enclosing task region is final. Otherwise, it returns false.2

Cross References3

• task construct, see Section 2.10.1 on page 135.4

3.2.23 omp_get_proc_bind5

Summary6

The omp_get_proc_bind routine returns the thread affinity policy to be used for the7
subsequent nested parallel regions that do not specify a proc_bind clause.8

Format9

C / C++
omp_proc_bind_t omp_get_proc_bind(void);10

C / C++
Fortran

integer (kind=omp_proc_bind_kind) function omp_get_proc_bind()11

Fortran

Constraints on Arguments12

The value returned by this routine must be one of the valid affinity policy kinds. The C/C++ header13
file (omp.h) and the Fortran include file (omp_lib.h) and/or Fortran 90 module file (omp_lib)14
define the valid constants. The valid constants must include the following:15

C / C++
typedef enum omp_proc_bind_t {16

omp_proc_bind_false = 0,17
omp_proc_bind_true = 1,18
omp_proc_bind_master = 2,19
omp_proc_bind_close = 3,20
omp_proc_bind_spread = 421

} omp_proc_bind_t;22

C / C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 357

Fortran
integer (kind=omp_proc_bind_kind), &1

parameter :: omp_proc_bind_false = 02
integer (kind=omp_proc_bind_kind), &3

parameter :: omp_proc_bind_true = 14
integer (kind=omp_proc_bind_kind), &5

parameter :: omp_proc_bind_master = 26
integer (kind=omp_proc_bind_kind), &7

parameter :: omp_proc_bind_close = 38
integer (kind=omp_proc_bind_kind), &9

parameter :: omp_proc_bind_spread = 410

Fortran

Binding11

The binding task set for an omp_get_proc_bind region is the generating task.12

Effect13

The effect of this routine is to return the value of the first element of the bind-var ICV of the current14
task. See Section 2.6.2 on page 80 for the rules that govern the thread affinity policy.15

Cross References16

• bind-var ICV, see Section 2.5 on page 63.17

• Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.18

• omp_get_num_places routine, see Section 3.2.24 on page 358.19

• OMP_PROC_BIND environment variable, see Section 6.4 on page 604.20

• OMP_PLACES environment variable, see Section 6.5 on page 605.21

3.2.24 omp_get_num_places22

Summary23

The omp_get_num_places routine returns the number of places available to the execution24
environment in the place list.25

358 OpenMP API – Version 5.0 November 2018

Format1

C / C++
int omp_get_num_places(void);2

C / C++
Fortran

integer function omp_get_num_places()3

Fortran

Binding4

The binding thread set for an omp_get_num_places region is all threads on a device. The5
effect of executing this routine is not related to any specific region corresponding to any construct6
or API routine.7

Effect8

The omp_get_num_places routine returns the number of places in the place list. This value is9
equivalent to the number of places in the place-partition-var ICV in the execution environment of10
the initial task.11

Cross References12

• place-partition-var ICV, see Section 2.5 on page 63.13

• Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.14

• omp_get_place_num routine, see Section 3.2.27 on page 362.15

• OMP_PLACES environment variable, see Section 6.5 on page 605.16

3.2.25 omp_get_place_num_procs17

Summary18

The omp_get_place_num_procs routine returns the number of processors available to the19
execution environment in the specified place.20

CHAPTER 3. RUNTIME LIBRARY ROUTINES 359

Format1

C / C++
int omp_get_place_num_procs(int place_num);2

C / C++
Fortran

integer function omp_get_place_num_procs(place_num)3
integer place_num4

Fortran

Binding5

The binding thread set for an omp_get_place_num_procs region is all threads on a device.6
The effect of executing this routine is not related to any specific region corresponding to any7
construct or API routine.8

Effect9

The omp_get_place_num_procs routine returns the number of processors associated with10
the place numbered place_num. The routine returns zero when place_num is negative, or is greater11
than or equal to the value returned by omp_get_num_places().12

Cross References13

• place-partition-var ICV, see Section 2.5 on page 63.14

• Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.15

• omp_get_num_places routine, see Section 3.2.24 on page 358.16

• omp_get_place_proc_ids routine, see Section 3.2.26 on page 360.17

• OMP_PLACES environment variable, see Section 6.5 on page 605.18

3.2.26 omp_get_place_proc_ids19

Summary20

The omp_get_place_proc_ids routine returns the numerical identifiers of the processors21
available to the execution environment in the specified place.22

360 OpenMP API – Version 5.0 November 2018

Format1

C / C++
void omp_get_place_proc_ids(int place_num, int *ids);2

C / C++
Fortran

subroutine omp_get_place_proc_ids(place_num, ids)3
integer place_num4
integer ids(*)5

Fortran

Binding6

The binding thread set for an omp_get_place_proc_ids region is all threads on a device.7
The effect of executing this routine is not related to any specific region corresponding to any8
construct or API routine.9

Effect10

The omp_get_place_proc_ids routine returns the numerical identifiers of each processor11
associated with the place numbered place_num. The numerical identifiers are non-negative, and12
their meaning is implementation defined. The numerical identifiers are returned in the array ids and13
their order in the array is implementation defined. The array must be sufficiently large to contain14
omp_get_place_num_procs(place_num) integers; otherwise, the behavior is unspecified.15
The routine has no effect when place_num has a negative value, or a value greater than or equal to16
omp_get_num_places().17

Cross References18

• place-partition-var ICV, see Section 2.5 on page 63.19

• Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.20

• omp_get_num_places routine, see Section 3.2.24 on page 358.21

• omp_get_place_num_procs routine, see Section 3.2.25 on page 359.22

• OMP_PLACES environment variable, see Section 6.5 on page 605.23

CHAPTER 3. RUNTIME LIBRARY ROUTINES 361

3.2.27 omp_get_place_num1

Summary2

The omp_get_place_num routine returns the place number of the place to which the3
encountering thread is bound.4

Format5

C / C++
int omp_get_place_num(void);6

C / C++
Fortran

integer function omp_get_place_num()7

Fortran

Binding8

The binding thread set for an omp_get_place_num region is the encountering thread.9

Effect10

When the encountering thread is bound to a place, the omp_get_place_num routine returns the11
place number associated with the thread. The returned value is between 0 and one less than the12
value returned by omp_get_num_places(), inclusive. When the encountering thread is not13
bound to a place, the routine returns -1.14

Cross References15

• place-partition-var ICV, see Section 2.5 on page 63.16

• Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.17

• omp_get_num_places routine, see Section 3.2.24 on page 358.18

• OMP_PLACES environment variable, see Section 6.5 on page 605.19

3.2.28 omp_get_partition_num_places20

Summary21

The omp_get_partition_num_places routine returns the number of places in the place22
partition of the innermost implicit task.23

362 OpenMP API – Version 5.0 November 2018

Format1

C / C++
int omp_get_partition_num_places(void);2

C / C++
Fortran

integer function omp_get_partition_num_places()3

Fortran

Binding4

The binding task set for an omp_get_partition_num_places region is the encountering5
implicit task.6

Effect7

The omp_get_partition_num_places routine returns the number of places in the8
place-partition-var ICV.9

Cross References10

• place-partition-var ICV, see Section 2.5 on page 63.11

• Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.12

• omp_get_num_places routine, see Section 3.2.24 on page 358.13

• OMP_PLACES environment variable, see Section 6.5 on page 605.14

3.2.29 omp_get_partition_place_nums15

Summary16

The omp_get_partition_place_nums routine returns the list of place numbers17
corresponding to the places in the place-partition-var ICV of the innermost implicit task.18

CHAPTER 3. RUNTIME LIBRARY ROUTINES 363

Format1

C / C++
void omp_get_partition_place_nums(int *place_nums);2

C / C++
Fortran

subroutine omp_get_partition_place_nums(place_nums)3
integer place_nums(*)4

Fortran

Binding5

The binding task set for an omp_get_partition_place_nums region is the encountering6
implicit task.7

Effect8

The omp_get_partition_place_nums routine returns the list of place numbers that9
correspond to the places in the place-partition-var ICV of the innermost implicit task. The array10
must be sufficiently large to contain omp_get_partition_num_places() integers;11
otherwise, the behavior is unspecified.12

Cross References13

• place-partition-var ICV, see Section 2.5 on page 63.14

• Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.15

• omp_get_partition_num_places routine, see Section 3.2.28 on page 362.16

• OMP_PLACES environment variable, see Section 6.5 on page 605.17

3.2.30 omp_set_affinity_format18

Summary19

The omp_set_affinity_format routine sets the affinity format to be used on the device by20
setting the value of the affinity-format-var ICV.21

364 OpenMP API – Version 5.0 November 2018

Format1

C / C++
void omp_set_affinity_format(const char *format);2

C / C++
Fortran

subroutine omp_set_affinity_format(format)3
character(len=*),intent(in) :: format4

Fortran

Binding5

When called from a sequential part of the program, the binding thread set for an6
omp_set_affinity_format region is the encountering thread. When called from within any7
parallel or teams region, the binding thread set (and binding region, if required) for the8
omp_set_affinity_format region is implementation defined.9

Effect10

The effect of omp_set_affinity_format routine is to copy the character string specified by11
the format argument into the affinity-format-var ICV on the current device.12

This routine has the described effect only when called from a sequential part of the program. When13
called from within a parallel or teams region, the effect of this routine is implementation14
defined.15

Cross References16

• Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.17

• omp_get_affinity_format routine, see Section 3.2.31 on page 366.18

• omp_display_affinity routine, see Section 3.2.32 on page 367.19

• omp_capture_affinity routine, see Section 3.2.33 on page 368.20

• OMP_DISPLAY_AFFINITY environment variable, see Section 6.13 on page 612.21

• OMP_AFFINITY_FORMAT environment variable, see Section 6.14 on page 613.22

CHAPTER 3. RUNTIME LIBRARY ROUTINES 365

3.2.31 omp_get_affinity_format1

Summary2

The omp_get_affinity_format routine returns the value of the affinity-format-var ICV on3
the device.4

Format5

C / C++
size_t omp_get_affinity_format(char *buffer, size_t size);6

C / C++
Fortran

integer function omp_get_affinity_format(buffer)7
character(len=*),intent(out) :: buffer8

Fortran

Binding9

When called from a sequential part of the program, the binding thread set for an10
omp_get_affinity_format region is the encountering thread. When called from within any11
parallel or teams region, the binding thread set (and binding region, if required) for the12
omp_get_affinity_format region is implementation defined.13

Effect14

C / C++
The omp_get_affinity_format routine returns the number of characters in the15
affinity-format-var ICV on the current device, excluding the terminating null byte (’\0’) and if16
size is non-zero, writes the value of the affinity-format-var ICV on the current device to buffer17
followed by a null byte. If the return value is larger or equal to size, the affinity format specification18
is truncated, with the terminating null byte stored to buffer[size-1]. If size is zero, nothing is19
stored and buffer may be NULL.20

C / C++
Fortran

The omp_get_affinity_format routine returns the number of characters that are required to21
hold the affinity-format-var ICV on the current device and writes the value of the22
affinity-format-var ICV on the current device to buffer. If the return value is larger than23
len(buffer), the affinity format specification is truncated.24

Fortran
If the buffer argument does not conform to the specified format then the result is implementation25
defined.26

366 OpenMP API – Version 5.0 November 2018

Cross References1

• Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.2

• omp_set_affinity_format routine, see Section 3.2.30 on page 364.3

• omp_display_affinity routine, see Section 3.2.32 on page 367.4

• omp_capture_affinity routine, see Section 3.2.33 on page 368.5

• OMP_DISPLAY_AFFINITY environment variable, see Section 6.13 on page 612.6

• OMP_AFFINITY_FORMAT environment variable, see Section 6.14 on page 613.7

3.2.32 omp_display_affinity8

Summary9

The omp_display_affinity routine prints the OpenMP thread affinity information using the10
format specification provided.11

Format12

C / C++
void omp_display_affinity(const char *format);13

C / C++
Fortran

subroutine omp_display_affinity(format)14
character(len=*),intent(in) :: format15

Fortran

Binding16

The binding thread set for an omp_display_affinity region is the encountering thread.17

Effect18

The omp_display_affinity routine prints the thread affinity information of the current19
thread in the format specified by the format argument, followed by a new-line. If the format is20
NULL (for C/C++) or a zero-length string (for Fortran and C/C++), the value of the21
affinity-format-var ICV is used. If the format argument does not conform to the specified format22
then the result is implementation defined.23

CHAPTER 3. RUNTIME LIBRARY ROUTINES 367

Cross References1

• Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.2

• omp_set_affinity_format routine, see Section 3.2.30 on page 364.3

• omp_get_affinity_format routine, see Section 3.2.31 on page 366.4

• omp_capture_affinity routine, see Section 3.2.33 on page 368.5

• OMP_DISPLAY_AFFINITY environment variable, see Section 6.13 on page 612.6

• OMP_AFFINITY_FORMAT environment variable, see Section 6.14 on page 613.7

3.2.33 omp_capture_affinity8

Summary9

The omp_capture_affinity routine prints the OpenMP thread affinity information into a10
buffer using the format specification provided.11

Format12

C / C++
size_t omp_capture_affinity(13

char *buffer,14
size_t size,15
const char *format16

);17

C / C++
Fortran

integer function omp_capture_affinity(buffer,format)18
character(len=*),intent(out) :: buffer19
character(len=*),intent(in) :: format20

Fortran

Binding21

The binding thread set for an omp_capture_affinity region is the encountering thread.22

368 OpenMP API – Version 5.0 November 2018

Effect1

C / C++
The omp_capture_affinity routine returns the number of characters in the entire thread2
affinity information string excluding the terminating null byte (’\0’) and if size is non-zero, writes3
the thread affinity information of the current thread in the format specified by the format argument4
into the character string buffer followed by a null byte. If the return value is larger or equal to5
size, the thread affinity information string is truncated, with the terminating null byte stored to6
buffer[size-1]. If size is zero, nothing is stored and buffer may be NULL. If the format is NULL or7
a zero-length string, the value of the affinity-format-var ICV is used.8

C / C++
Fortran

The omp_capture_affinity routine returns the number of characters required to hold the9
entire thread affinity information string and prints the thread affinity information of the current10
thread into the character string buffer with the size of len(buffer) in the format specified by11
the format argument. If the format is a zero-length string, the value of the affinity-format-var ICV12
is used. If the return value is larger than len(buffer), the thread affinity information string is13
truncated. If the format is a zero-length string, the value of the affinity-format-var ICV is used.14

Fortran
If the format argument does not conform to the specified format then the result is implementation15
defined.16

Cross References17

• Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.18

• omp_set_affinity_format routine, see Section 3.2.30 on page 364.19

• omp_get_affinity_format routine, see Section 3.2.31 on page 366.20

• omp_display_affinity routine, see Section 3.2.32 on page 367.21

• OMP_DISPLAY_AFFINITY environment variable, see Section 6.13 on page 612.22

• OMP_AFFINITY_FORMAT environment variable, see Section 6.14 on page 613.23

3.2.34 omp_set_default_device24

Summary25

The omp_set_default_device routine controls the default target device by assigning the26
value of the default-device-var ICV.27

CHAPTER 3. RUNTIME LIBRARY ROUTINES 369

Format1

C / C++
void omp_set_default_device(int device_num);2

C / C++
Fortran

subroutine omp_set_default_device(device_num)3
integer device_num4

Fortran

Binding5

The binding task set for an omp_set_default_device region is the generating task.6

Effect7

The effect of this routine is to set the value of the default-device-var ICV of the current task to the8
value specified in the argument. When called from within a target region the effect of this9
routine is unspecified.10

Cross References11

• default-device-var, see Section 2.5 on page 63.12

• target construct, see Section 2.12.5 on page 17013

• omp_get_default_device, see Section 3.2.35 on page 370.14

• OMP_DEFAULT_DEVICE environment variable, see Section 6.15 on page 61515

3.2.35 omp_get_default_device16

Summary17

The omp_get_default_device routine returns the default target device.18

370 OpenMP API – Version 5.0 November 2018

Format1

C / C++
int omp_get_default_device(void);2

C / C++
Fortran

integer function omp_get_default_device()3

Fortran

Binding4

The binding task set for an omp_get_default_device region is the generating task.5

Effect6

The omp_get_default_device routine returns the value of the default-device-var ICV of the7
current task. When called from within a target region the effect of this routine is unspecified.8

Cross References9

• default-device-var, see Section 2.5 on page 63.10

• target construct, see Section 2.12.5 on page 17011

• omp_set_default_device, see Section 3.2.34 on page 369.12

• OMP_DEFAULT_DEVICE environment variable, see Section 6.15 on page 615.13

3.2.36 omp_get_num_devices14

Summary15

The omp_get_num_devices routine returns the number of target devices.16

Format17

C / C++
int omp_get_num_devices(void);18

C / C++
Fortran

integer function omp_get_num_devices()19

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 371

Binding1

The binding task set for an omp_get_num_devices region is the generating task.2

Effect3

The omp_get_num_devices routine returns the number of available target devices. When4
called from within a target region the effect of this routine is unspecified.5

Cross References6

• target construct, see Section 2.12.5 on page 1707

• omp_get_default_device, see Section 3.2.35 on page 370.8

• omp_get_device_num, see Section 3.2.37 on page 372.9

3.2.37 omp_get_device_num10

Summary11

The omp_get_device_num routine returns the device number of the device on which the12
calling thread is executing.13

Format14

C / C++
int omp_get_device_num(void);15

C / C++
Fortran

integer function omp_get_device_num()16

Fortran

Binding17

The binding task set for an omp_get_devices_num region is the generating task.18

Effect19

The omp_get_device_num routine returns the device number of the device on which the20
calling thread is executing. When called on the host device, it will return the same value as the21
omp_get_initial_device routine.22

372 OpenMP API – Version 5.0 November 2018

Cross References1

• target construct, see Section 2.12.5 on page 1702

• omp_get_default_device, see Section 3.2.35 on page 370.3

• omp_get_num_devices, see Section 3.2.36 on page 371.4

• omp_get_initial_device routine, see Section 3.2.41 on page 376.5

3.2.38 omp_get_num_teams6

Summary7

The omp_get_num_teams routine returns the number of initial teams in the current teams8
region.9

Format10

C / C++
int omp_get_num_teams(void);11

C / C++
Fortran

integer function omp_get_num_teams()12

Fortran

Binding13

The binding task set for an omp_get_num_teams region is the generating task14

Effect15

The effect of this routine is to return the number of initial teams in the current teams region. The16
routine returns 1 if it is called from outside of a teams region.17

Cross References18

• teams construct, see Section 2.7 on page 82.19

• target construct, see Section 2.12.5 on page 170.20

• omp_get_team_num routine, see Section 3.2.39 on page 374.21

CHAPTER 3. RUNTIME LIBRARY ROUTINES 373

3.2.39 omp_get_team_num1

Summary2

The omp_get_team_num routine returns the initial team number of the calling thread.3

Format4

C / C++
int omp_get_team_num(void);5

C / C++
Fortran

integer function omp_get_team_num()6

Fortran

Binding7

The binding task set for an omp_get_team_num region is the generating task.8

Effect9

The omp_get_team_num routine returns the initial team number of the calling thread. The10
initial team number is an integer between 0 and one less than the value returned by11
omp_get_num_teams(), inclusive. The routine returns 0 if it is called outside of a teams12
region.13

Cross References14

• teams construct, see Section 2.7 on page 82.15

• target construct, see Section 2.12.5 on page 17016

• omp_get_num_teams routine, see Section 3.2.38 on page 373.17

374 OpenMP API – Version 5.0 November 2018

3.2.40 omp_is_initial_device1

Summary2

The omp_is_initial_device routine returns true if the current task is executing on the host3
device; otherwise, it returns false.4

Format5

C / C++
int omp_is_initial_device(void);6

C / C++
Fortran

logical function omp_is_initial_device()7

Fortran

Binding8

The binding task set for an omp_is_initial_device region is the generating task.9

Effect10

The effect of this routine is to return true if the current task is executing on the host device;11
otherwise, it returns false.12

Cross References13

• omp_get_get_initial_device routine, see Section 3.2.41 on page 376.14

• Device memory routines, see Section 3.6 on page 397.15

CHAPTER 3. RUNTIME LIBRARY ROUTINES 375

3.2.41 omp_get_initial_device1

Summary2

The omp_get_initial_device routine returns a device number that represents the host3
device.4

Format5

C / C++
int omp_get_initial_device(void);6

C / C++
Fortran

integer function omp_get_initial_device()7

Fortran

Binding8

The binding task set for an omp_get_initial_device region is the generating task.9

Effect10

The effect of this routine is to return the device number of the host device. The value of the device11
number is implementation defined. When called from within a target region the effect of this12
routine is unspecified.13

Cross References14

• target construct, see Section 2.12.5 on page 170.15

• omp_is_initial_device routine, see Section 3.2.40 on page 375.16

• Device memory routines, see Section 3.6 on page 397.17

376 OpenMP API – Version 5.0 November 2018

3.2.42 omp_get_max_task_priority1

Summary2

The omp_get_max_task_priority routine returns the maximum value that can be specified3
in the priority clause.4

Format5

C / C++
int omp_get_max_task_priority(void);6

C / C++
Fortran

integer function omp_get_max_task_priority()7

Fortran

Binding8

The binding thread set for an omp_get_max_task_priority region is all threads on the9
device. The effect of executing this routine is not related to any specific region that corresponds to10
any construct or API routine.11

Effect12

The omp_get_max_task_priority routine returns the value of the max-task-priority-var13
ICV, which determines the maximum value that can be specified in the priority clause.14

Cross References15

• max-task-priority-var, see Section 2.5 on page 63.16

• task construct, see Section 2.10.1 on page 135.17

CHAPTER 3. RUNTIME LIBRARY ROUTINES 377

3.2.43 omp_pause_resource1

Summary2

The omp_pause_resource routine allows the runtime to relinquish resources used by OpenMP3
on the specified device.4

Format5

C / C++
int omp_pause_resource(6

omp_pause_resource_t kind,7
int device_num8

);9

C / C++
Fortran

integer function omp_pause_resource(kind, device_num)10
integer (kind=omp_pause_resource_kind) kind11
integer device_num12

Fortran

Constraints on Arguments13

The first argument passed to this routine can be one of the valid OpenMP pause kind, or any14
implementation specific pause kind. The C/C++ header file (omp.h) and the Fortran include file15
(omp_lib.h) and/or Fortran 90 module file (omp_lib) define the valid constants. The valid16
constants must include the following, which can be extended with implementation specific values:17

Format18

C / C++
typedef enum omp_pause_resource_t {19

omp_pause_soft = 1,20
omp_pause_hard = 221

} omp_pause_resource_t;22

C / C++
Fortran

integer (kind=omp_pause_resource_kind), parameter :: &23
omp_pause_soft = 124

integer (kind=omp_pause_resource_kind), parameter :: &25
omp_pause_hard = 226

Fortran

378 OpenMP API – Version 5.0 November 2018

The second argument passed to this routine indicates the device that will be paused. The1
device_num parameter must be greater than or equal to zero and less than the result of2
omp_get_num_devices() or equal to the result of a call to3
omp_get_initial_device().4

Binding5

The binding task set for an omp_pause_resource region is the whole program.6

Effect7

The omp_pause_resource routine allows the runtime to relinquish resources used by OpenMP8
on the specified device.9

If successful, the omp_pause_hard value results in a hard pause for which the OpenMP state is10
not guaranteed to persist across the omp_pause_resource call. A hard pause may relinquish11
any data allocated by OpenMP on a given device, including data allocated by memory routines for12
that device as well as data present on the device as a result of a declare target or target13
data construct. A hard pause may also relinquish any data associated with a threadprivate14
directive. When relinquished and when applicable, base language appropriate15
deallocation/finalization is performed. When relinquished and when applicable, mapped data on a16
device will not be copied back from the device to the host.17

If successful, the omp_pause_soft value results in a soft pause for which the OpenMP state is18
guaranteed to persist across the call, with the exception of any data associated with a19
threadprivate directive, which may be relinquished across the call. When relinquished and20
when applicable, base language appropriate deallocation/finalization is performed.21

22

Note – A hard pause may relinquish more resources, but may resume processing OpenMP regions23
more slowly. A soft pause allows OpenMP regions to restart more quickly, but may relinquish fewer24
resources. An OpenMP implementation will reclaim resources as needed for OpenMP regions25
encountered after the omp_pause_resource region. Since a hard pause may unmap data on the26
specified device, appropriate data mapping is required before using data on the specified device27
after the omp_pause_region region.28

29

The routine returns zero in case of success, and nonzero otherwise.30

Tool Callbacks31

If the tool is not allowed to interact with the specified device after encountering this call, then the32
runtime must call the tool finalizer for that device.33

CHAPTER 3. RUNTIME LIBRARY ROUTINES 379

Restrictions1

The omp_pause_resource routine has the following restrictions:2

• The omp_pause_resource region may not be nested in any explicit OpenMP region.3

• The routine may only be called when all explicit tasks have finalized execution. Calling the4
routine in any other circumstances may result in unspecified behavior.5

Cross References6

• target construct, see Section 2.12.5 on page 1707

• declare target directive, see Section 2.12.7 on page 1808

• threadprivate directives, see Section 2.19.2 on page 274.9

• omp_get_num_devices, see Section 3.2.36 on page 371.10

• omp_get_get_initial_device routine, see Section 3.2.41 on page 376.11

• To pause resources on all devices at once, see Section 3.2.44 on page 380.12

3.2.44 omp_pause_resource_all13

Summary14

The omp_pause_resource_all routine allows the runtime to relinquish resources used by15
OpenMP on all devices.16

Format17

C / C++
int omp_pause_resource_all(omp_pause_resource_t kind);18

C / C++
Fortran

integer function omp_pause_resource_all(kind)19
integer (kind=omp_pause_resource_kind) kind20

Fortran

Binding21

The binding task set for an omp_pause_resource_all region is the whole program.22

380 OpenMP API – Version 5.0 November 2018

Effect1

The omp_pause_resource_all routine allows the runtime to relinquish resources used by2
OpenMP on all devices. It is equivalent to calling the omp_pause_resource routine once for3
each available device, including the host device.4

The argument kind passed to this routine can be one of the valid OpenMP pause kind as defined in5
Section 3.2.43 on page 378, or any implementation specific pause kind.6

Tool Callbacks7

If the tool is not allowed to interact with a given device after encountering this call, then the8
runtime must call the tool finalizer for that device.9

Restrictions10

The omp_pause_resource_all routine has the following restrictions:11

• The omp_pause_resource_all region may not be nested in any explicit OpenMP region.12

• The routine may only be called when all explicit tasks have finalized execution. Calling the13
routine in any other circumstances may result in unspecified behavior.14

Cross References15

• target construct, see Section 2.12.5 on page 17016

• declare target directive, see Section 2.12.7 on page 18017

• omp_get_num_devices, see Section 3.2.36 on page 371.18

• omp_get_get_initial_device routine, see Section 3.2.41 on page 376.19

• To pause resources on a specific device only, see Section 3.2.43 on page 378.20

3.3 Lock Routines21

The OpenMP runtime library includes a set of general-purpose lock routines that can be used for22
synchronization. These general-purpose lock routines operate on OpenMP locks that are23
represented by OpenMP lock variables. OpenMP lock variables must be accessed only through the24
routines described in this section; programs that otherwise access OpenMP lock variables are25
non-conforming.26

CHAPTER 3. RUNTIME LIBRARY ROUTINES 381

An OpenMP lock can be in one of the following states: uninitialized; unlocked; or locked. If a lock1
is in the unlocked state, a task can set the lock, which changes its state to locked. The task that sets2
the lock is then said to own the lock. A task that owns a lock can unset that lock, returning it to the3
unlocked state. A program in which a task unsets a lock that is owned by another task is4
non-conforming.5

Two types of locks are supported: simple locks and nestable locks. A nestable lock can be set6
multiple times by the same task before being unset; a simple lock cannot be set if it is already7
owned by the task trying to set it. Simple lock variables are associated with simple locks and can8
only be passed to simple lock routines. Nestable lock variables are associated with nestable locks9
and can only be passed to nestable lock routines.10

Each type of lock can also have a synchronization hint that contains information about the intended11
usage of the lock by the application code. The effect of the hint is implementation defined. An12
OpenMP implementation can use this hint to select a usage-specific lock, but hints do not change13
the mutual exclusion semantics of locks. A conforming implementation can safely ignore the hint.14

Constraints on the state and ownership of the lock accessed by each of the lock routines are15
described with the routine. If these constraints are not met, the behavior of the routine is16
unspecified.17

The OpenMP lock routines access a lock variable such that they always read and update the most18
current value of the lock variable. It is not necessary for an OpenMP program to include explicit19
flush directives to ensure that the lock variable’s value is consistent among different tasks.20

Binding21

The binding thread set for all lock routine regions is all threads in the contention group. As a22
consequence, for each OpenMP lock, the lock routine effects relate to all tasks that call the routines,23
without regard to which teams the threads in the contention group that are executing the tasks24
belong.25

Simple Lock Routines26

C / C++
The type omp_lock_t represents a simple lock. For the following routines, a simple lock variable27
must be of omp_lock_t type. All simple lock routines require an argument that is a pointer to a28
variable of type omp_lock_t.29

C / C++
Fortran

For the following routines, a simple lock variable must be an integer variable of30
kind=omp_lock_kind.31

Fortran

382 OpenMP API – Version 5.0 November 2018

The simple lock routines are as follows:1

• The omp_init_lock routine initializes a simple lock;2

• The omp_init_lock_with_hint routine initializes a simple lock and attaches a hint to it;3

• The omp_destroy_lock routine uninitializes a simple lock;4

• The omp_set_lock routine waits until a simple lock is available and then sets it;5

• The omp_unset_lock routine unsets a simple lock; and6

• The omp_test_lock routine tests a simple lock and sets it if it is available.7

Nestable Lock Routines8

C / C++
The type omp_nest_lock_t represents a nestable lock. For the following routines, a nestable9
lock variable must be of omp_nest_lock_t type. All nestable lock routines require an10
argument that is a pointer to a variable of type omp_nest_lock_t.11

C / C++
Fortran

For the following routines, a nestable lock variable must be an integer variable of12
kind=omp_nest_lock_kind.13

Fortran
The nestable lock routines are as follows:14

• The omp_init_nest_lock routine initializes a nestable lock;15

• The omp_init_nest_lock_with_hint routine initializes a nestable lock and attaches a16
hint to it;17

• The omp_destroy_nest_lock routine uninitializes a nestable lock;18

• The omp_set_nest_lock routine waits until a nestable lock is available and then sets it;19

• The omp_unset_nest_lock routine unsets a nestable lock; and20

• The omp_test_nest_lock routine tests a nestable lock and sets it if it is available.21

Restrictions22

OpenMP lock routines have the following restriction:23

• The use of the same OpenMP lock in different contention groups results in unspecified behavior.24

CHAPTER 3. RUNTIME LIBRARY ROUTINES 383

3.3.1 omp_init_lock and omp_init_nest_lock1

Summary2

These routines initialize an OpenMP lock without a hint.3

Format4

C / C++
void omp_init_lock(omp_lock_t *lock);5
void omp_init_nest_lock(omp_nest_lock_t *lock);6

C / C++
Fortran

subroutine omp_init_lock(svar)7
integer (kind=omp_lock_kind) svar8

9
subroutine omp_init_nest_lock(nvar)10
integer (kind=omp_nest_lock_kind) nvar11

Fortran

Constraints on Arguments12

A program that accesses a lock that is not in the uninitialized state through either routine is13
non-conforming.14

Effect15

The effect of these routines is to initialize the lock to the unlocked state; that is, no task owns the16
lock. In addition, the nesting count for a nestable lock is set to zero.17

Execution Model Events18

The lock-init event occurs in a thread that executes an omp_init_lock region after initialization19
of the lock, but before it finishes the region. The nest-lock-init event occurs in a thread that executes20
an omp_init_nest_lock region after initialization of the lock, but before it finishes the region.21

384 OpenMP API – Version 5.0 November 2018

Tool Callbacks1

A thread dispatches a registered ompt_callback_lock_init callback with2
omp_sync_hint_none as the hint argument and ompt_mutex_lock as the kind argument3
for each occurrence of a lock-init event in that thread. Similarly, a thread dispatches a registered4
ompt_callback_lock_init callback with omp_sync_hint_none as the hint argument5
and ompt_mutex_nest_lock as the kind argument for each occurrence of a nest-lock-init6
event in that thread. These callbacks have the type signature7
ompt_callback_mutex_acquire_t and occur in the task that encounters the routine.8

Cross References9

• ompt_callback_mutex_acquire_t, see Section 4.5.2.14 on page 476.10

3.3.2 omp_init_lock_with_hint and11

omp_init_nest_lock_with_hint12

Summary13

These routines initialize an OpenMP lock with a hint. The effect of the hint is14
implementation-defined. The OpenMP implementation can ignore the hint without changing15
program semantics.16

Format17

C / C++
void omp_init_lock_with_hint(18

omp_lock_t *lock,19
omp_sync_hint_t hint20

);21
void omp_init_nest_lock_with_hint(22

omp_nest_lock_t *lock,23
omp_sync_hint_t hint24

);25

C / C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 385

Fortran
subroutine omp_init_lock_with_hint(svar, hint)1
integer (kind=omp_lock_kind) svar2
integer (kind=omp_sync_hint_kind) hint3

4
subroutine omp_init_nest_lock_with_hint(nvar, hint)5
integer (kind=omp_nest_lock_kind) nvar6
integer (kind=omp_sync_hint_kind) hint7

Fortran

Constraints on Arguments8

A program that accesses a lock that is not in the uninitialized state through either routine is9
non-conforming.10

The second argument passed to these routines (hint) is a hint as described in Section 2.17.12 on11
page 260.12

Effect13

The effect of these routines is to initialize the lock to the unlocked state and, optionally, to choose a14
specific lock implementation based on the hint. After initialization no task owns the lock. In15
addition, the nesting count for a nestable lock is set to zero.16

Execution Model Events17

The lock-init event occurs in a thread that executes an omp_init_lock_with_hint region18
after initialization of the lock, but before it finishes the region. The nest-lock-init_with_hint event19
occurs in a thread that executes an omp_init_nest_lock region after initialization of the lock,20
but before it finishes the region.21

Tool Callbacks22

A thread dispatches a registered ompt_callback_lock_init callback with the same value23
for its hint argument as the hint argument of the call to omp_init_lock_with_hint and24
ompt_mutex_lock as the kind argument for each occurrence of a lock-init event in that thread.25
Similarly, a thread dispatches a registered ompt_callback_lock_init callback with the26
same value for its hint argument as the hint argument of the call to27
omp_init_nest_lock_with_hint and ompt_mutex_nest_lock as the kind argument28
for each occurrence of a nest-lock-init event in that thread. These callbacks have the type signature29
ompt_callback_mutex_acquire_t and occur in the task that encounters the routine.30

386 OpenMP API – Version 5.0 November 2018

Cross References1

• Synchronization Hints, see Section 2.17.12 on page 260.2

• ompt_callback_mutex_acquire_t, see Section 4.5.2.14 on page 476.3

3.3.3 omp_destroy_lock and4

omp_destroy_nest_lock5

Summary6

These routines ensure that the OpenMP lock is uninitialized.7

Format8

C / C++
void omp_destroy_lock(omp_lock_t *lock);9
void omp_destroy_nest_lock(omp_nest_lock_t *lock);10

C / C++
Fortran

subroutine omp_destroy_lock(svar)11
integer (kind=omp_lock_kind) svar12

13
subroutine omp_destroy_nest_lock(nvar)14
integer (kind=omp_nest_lock_kind) nvar15

Fortran

Constraints on Arguments16

A program that accesses a lock that is not in the unlocked state through either routine is17
non-conforming.18

Effect19

The effect of these routines is to change the state of the lock to uninitialized.20

Execution Model Events21

The lock-destroy event occurs in a thread that executes an omp_destroy_lock region before it22
finishes the region. The nest-lock-destroy_with_hint event occurs in a thread that executes an23
omp_destroy_nest_lock region before it finishes the region.24

CHAPTER 3. RUNTIME LIBRARY ROUTINES 387

Tool Callbacks1

A thread dispatches a registered ompt_callback_lock_destroy callback with2
ompt_mutex_lock as the kind argument for each occurrence of a lock-destroy event in that3
thread. Similarly, a thread dispatches a registered ompt_callback_lock_destroy callback4
with ompt_mutex_nest_lock as the kind argument for each occurrence of a nest-lock-destroy5
event in that thread. These callbacks have the type signature6
ompt_callback_mutex_acquire_t and occur in the task that encounters the routine.7

Cross References8

• ompt_callback_mutex_t, see Section 4.5.2.15 on page 477.9

3.3.4 omp_set_lock and omp_set_nest_lock10

Summary11

These routines provide a means of setting an OpenMP lock. The calling task region behaves as if it12
was suspended until the lock can be set by this task.13

Format14

C / C++
void omp_set_lock(omp_lock_t *lock);15
void omp_set_nest_lock(omp_nest_lock_t *lock);16

C / C++
Fortran

subroutine omp_set_lock(svar)17
integer (kind=omp_lock_kind) svar18

19
subroutine omp_set_nest_lock(nvar)20
integer (kind=omp_nest_lock_kind) nvar21

Fortran

Constraints on Arguments22

A program that accesses a lock that is in the uninitialized state through either routine is23
non-conforming. A simple lock accessed by omp_set_lock that is in the locked state must not24
be owned by the task that contains the call or deadlock will result.25

388 OpenMP API – Version 5.0 November 2018

Effect1

Each of these routines has an effect equivalent to suspension of the task that is executing the routine2
until the specified lock is available.3

4

Note – The semantics of these routines is specified as if they serialize execution of the region5
guarded by the lock. However, implementations may implement them in other ways provided that6
the isolation properties are respected so that the actual execution delivers a result that could arise7
from some serialization.8

9

A simple lock is available if it is unlocked. Ownership of the lock is granted to the task that10
executes the routine.11

A nestable lock is available if it is unlocked or if it is already owned by the task that executes the12
routine. The task that executes the routine is granted, or retains, ownership of the lock, and the13
nesting count for the lock is incremented.14

Execution Model Events15

The lock-acquire event occurs in a thread that executes an omp_set_lock region before the16
associated lock is requested. The nest-lock-acquire event occurs in a thread that executes an17
omp_set_nest_lock region before the associated lock is requested.18

The lock-acquired event occurs in a thread that executes an omp_set_lock region after it19
acquires the associated lock but before it finishes the region. The nest-lock-acquired event occurs in20
a thread that executes an omp_set_nest_lock region if the thread did not already own the21
lock, after it acquires the associated lock but before it finishes the region.22

The nest-lock-owned event occurs in a thread when it already owns the lock and executes an23
omp_set_nest_lock region. The event occurs after the nesting count is incremented but24
before the thread finishes the region.25

Tool Callbacks26

A thread dispatches a registered ompt_callback_mutex_acquire callback for each27
occurrence of a lock-acquire or nest-lock-acquire event in that thread. This callback has the type28
signature ompt_callback_mutex_acquire_t.29

A thread dispatches a registered ompt_callback_mutex_acquired callback for each30
occurrence of a lock-acquired or nest-lock-acquired event in that thread. This callback has the type31
signature ompt_callback_mutex_t.32

A thread dispatches a registered ompt_callback_nest_lock callback with33
ompt_scope_begin as its endpoint argument for each occurrence of a nest-lock-owned event in34
that thread. This callback has the type signature ompt_callback_nest_lock_t.35

CHAPTER 3. RUNTIME LIBRARY ROUTINES 389

The above callbacks occur in the task that encounters the lock function. The kind argument of these1
callbacks is ompt_mutex_lock when the events arise from an omp_set_lock region while it2
is ompt_mutex_nest_lock when the events arise from an omp_set_nest_lock region.3

Cross References4

• ompt_callback_mutex_acquire_t, see Section 4.5.2.14 on page 476.5

• ompt_callback_mutex_t, see Section 4.5.2.15 on page 477.6

• ompt_callback_nest_lock_t, see Section 4.5.2.16 on page 479.7

3.3.5 omp_unset_lock and omp_unset_nest_lock8

Summary9

These routines provide the means of unsetting an OpenMP lock.10

Format11

C / C++
void omp_unset_lock(omp_lock_t *lock);12
void omp_unset_nest_lock(omp_nest_lock_t *lock);13

C / C++
Fortran

subroutine omp_unset_lock(svar)14
integer (kind=omp_lock_kind) svar15

16
subroutine omp_unset_nest_lock(nvar)17
integer (kind=omp_nest_lock_kind) nvar18

Fortran

Constraints on Arguments19

A program that accesses a lock that is not in the locked state or that is not owned by the task that20
contains the call through either routine is non-conforming.21

390 OpenMP API – Version 5.0 November 2018

Effect1

For a simple lock, the omp_unset_lock routine causes the lock to become unlocked.2

For a nestable lock, the omp_unset_nest_lock routine decrements the nesting count, and3
causes the lock to become unlocked if the resulting nesting count is zero.4

For either routine, if the lock becomes unlocked, and if one or more task regions were effectively5
suspended because the lock was unavailable, the effect is that one task is chosen and given6
ownership of the lock.7

Execution Model Events8

The lock-release event occurs in a thread that executes an omp_unset_lock region after it9
releases the associated lock but before it finishes the region. The nest-lock-release event occurs in a10
thread that executes an omp_unset_nest_lock region after it releases the associated lock but11
before it finishes the region.12

The nest-lock-held event occurs in a thread that executes an omp_unset_nest_lock region13
before it finishes the region when the thread still owns the lock after the nesting count is14
decremented.15

Tool Callbacks16

A thread dispatches a registered ompt_callback_mutex_released callback with17
ompt_mutex_lock as the kind argument for each occurrence of a lock-release event in that18
thread. Similarly, a thread dispatches a registered ompt_callback_mutex_released19
callback with ompt_mutex_nest_lock as the kind argument for each occurrence of a20
nest-lock-release event in that thread. These callbacks have the type signature21
ompt_callback_mutex_t and occur in the task that encounters the routine.22

A thread dispatches a registered ompt_callback_nest_lock callback with23
ompt_scope_end as its endpoint argument for each occurrence of a nest-lock-held event in that24
thread. This callback has the type signature ompt_callback_nest_lock_t.25

Cross References26

• ompt_callback_mutex_t, see Section 4.5.2.15 on page 477.27

• ompt_callback_nest_lock_t, see Section 4.5.2.16 on page 479.28

CHAPTER 3. RUNTIME LIBRARY ROUTINES 391

3.3.6 omp_test_lock and omp_test_nest_lock1

Summary2

These routines attempt to set an OpenMP lock but do not suspend execution of the task that3
executes the routine.4

Format5

C / C++
int omp_test_lock(omp_lock_t *lock);6
int omp_test_nest_lock(omp_nest_lock_t *lock);7

C / C++
Fortran

logical function omp_test_lock(svar)8
integer (kind=omp_lock_kind) svar9
integer function omp_test_nest_lock(nvar)10
integer (kind=omp_nest_lock_kind) nvar11

Fortran

Constraints on Arguments12

A program that accesses a lock that is in the uninitialized state through either routine is13
non-conforming. The behavior is unspecified if a simple lock accessed by omp_test_lock is in14
the locked state and is owned by the task that contains the call.15

Effect16

These routines attempt to set a lock in the same manner as omp_set_lock and17
omp_set_nest_lock, except that they do not suspend execution of the task that executes the18
routine.19

For a simple lock, the omp_test_lock routine returns true if the lock is successfully set;20
otherwise, it returns false.21

For a nestable lock, the omp_test_nest_lock routine returns the new nesting count if the lock22
is successfully set; otherwise, it returns zero.23

392 OpenMP API – Version 5.0 November 2018

Execution Model Events1

The lock-test event occurs in a thread that executes an omp_test_lock region before the2
associated lock is tested. The nest-lock-test event occurs in a thread that executes an3
omp_test_nest_lock region before the associated lock is tested.4

The lock-test-acquired event occurs in a thread that executes an omp_test_lock region before it5
finishes the region if the associated lock was acquired. The nest-lock-test-acquired event occurs in a6
thread that executes an omp_test_nest_lock region before it finishes the region if the7
associated lock was acquired and the thread did not already own the lock.8

The nest-lock-owned event occurs in a thread that executes an omp_test_nest_lock region9
before it finishes the region after the nesting count is incremented if the thread already owned the10
lock.11

Tool Callbacks12

A thread dispatches a registered ompt_callback_mutex_acquire callback for each13
occurrence of a lock-test or nest-lock-test event in that thread. This callback has the type signature14
ompt_callback_mutex_acquire_t.15

A thread dispatches a registered ompt_callback_mutex_acquired callback for each16
occurrence of a lock-test-acquired or nest-lock-test-acquired event in that thread. This callback has17
the type signature ompt_callback_mutex_t.18

A thread dispatches a registered ompt_callback_nest_lock callback with19
ompt_scope_begin as its endpoint argument for each occurrence of a nest-lock-owned event in20
that thread. This callback has the type signature ompt_callback_nest_lock_t.21

The above callbacks occur in the task that encounters the lock function. The kind argument of these22
callbacks is ompt_mutex_test_lock when the events arise from an omp_test_lock23
region while it is ompt_mutex_test_nest_lock when the events arise from an24
omp_test_nest_lock region.25

Cross References26

• ompt_callback_mutex_acquire_t, see Section 4.5.2.14 on page 476.27

• ompt_callback_mutex_t, see Section 4.5.2.15 on page 477.28

• ompt_callback_nest_lock_t, see Section 4.5.2.16 on page 479.29

CHAPTER 3. RUNTIME LIBRARY ROUTINES 393

3.4 Timing Routines1

This section describes routines that support a portable wall clock timer.2

3.4.1 omp_get_wtime3

Summary4

The omp_get_wtime routine returns elapsed wall clock time in seconds.5

Format6

C / C++
double omp_get_wtime(void);7

C / C++
Fortran

double precision function omp_get_wtime()8

Fortran

Binding9

The binding thread set for an omp_get_wtime region is the encountering thread. The routine’s10
return value is not guaranteed to be consistent across any set of threads.11

Effect12

The omp_get_wtime routine returns a value equal to the elapsed wall clock time in seconds13
since some time-in-the-past. The actual time-in-the-past is arbitrary, but it is guaranteed not to14
change during the execution of the application program. The time returned is a per-thread time, so15
it is not required to be globally consistent across all threads that participate in an application.16

17

Note – The routine is anticipated to be used to measure elapsed times as shown in the following18
example:19

394 OpenMP API – Version 5.0 November 2018

C / C++
double start;1
double end;2
start = omp_get_wtime();3
... work to be timed ...4
end = omp_get_wtime();5
printf("Work took %f seconds\n", end - start);6

C / C++
Fortran

DOUBLE PRECISION START, END7
START = omp_get_wtime()8
... work to be timed ...9
END = omp_get_wtime()10
PRINT *, "Work took", END - START, "seconds"11

Fortran
12

3.4.2 omp_get_wtick13

Summary14

The omp_get_wtick routine returns the precision of the timer used by omp_get_wtime.15

Format16

C / C++
double omp_get_wtick(void);17

C / C++
Fortran

double precision function omp_get_wtick()18

Fortran

Binding19

The binding thread set for an omp_get_wtick region is the encountering thread. The routine’s20
return value is not guaranteed to be consistent across any set of threads.21

CHAPTER 3. RUNTIME LIBRARY ROUTINES 395

Effect1

The omp_get_wtick routine returns a value equal to the number of seconds between successive2
clock ticks of the timer used by omp_get_wtime.3

3.5 Event Routine4

This section describes a routine that supports OpenMP event objects.5

Binding6

The binding thread set for all event routine regions is the encountering thread.7

3.5.1 omp_fulfill_event8

Summary9

This routine fulfills and destroys an OpenMP event.10

Format11

C / C++
void omp_fulfill_event(omp_event_handle_t event);12

C / C++
Fortran

subroutine omp_fulfill_event(event)13
integer (kind=omp_event_handle_kind) event14

Fortran

Constraints on Arguments15

A program that calls this routine on an event that was already fulfilled is non-conforming. A16
program that calls this routine with an event handle that was not created by the detach clause is17
non-conforming.18

396 OpenMP API – Version 5.0 November 2018

Effect1

The effect of this routine is to fulfill the event associated with the event handle argument. The effect2
of fulfilling the event will depend on how the event was created. The event is destroyed and cannot3
be accessed after calling this routine, and the event handle becomes unassociated with any event.4

Execution Model Events5

The task-fulfill event occurs in a thread that executes an omp_fulfill_event region before the6
event is fulfilled if the OpenMP event object was created by a detach clause on a task.7

Tool Callbacks8

A thread dispatches a registered ompt_callback_task_schedule callback with NULL as its9
next_task_data argument while the argument prior_task_data binds to the detached task for each10
occurrence of a task-fulfill event. If the task-fulfill event occurs before the detached task finished the11
execution of the associated structured-block, the callback has ompt_task_early_fulfill as12
its prior_task_status argument; otherwise the callback has ompt_task_late_fulfill as its13
prior_task_status argument. This callback has type signature14
ompt_callback_task_schedule_t.15

Cross References16

• detach clause, see Section 2.10.1 on page 135.17

• ompt_callback_task_schedule_t, see Section 4.5.2.10 on page 470.18

C / C++

3.6 Device Memory Routines19

This section describes routines that support allocation of memory and management of pointers in20
the data environments of target devices.21

3.6.1 omp_target_alloc22

Summary23

The omp_target_alloc routine allocates memory in a device data environment.24

CHAPTER 3. RUNTIME LIBRARY ROUTINES 397

C/C++ (cont.)

Format1

void* omp_target_alloc(size_t size, int device_num);2

Effect3

The omp_target_alloc routine returns the device address of a storage location of size bytes.4
The storage location is dynamically allocated in the device data environment of the device specified5
by device_num, which must be greater than or equal to zero and less than the result of6
omp_get_num_devices() or the result of a call to omp_get_initial_device(). When7
called from within a target region the effect of this routine is unspecified.8

The omp_target_alloc routine returns NULL if it cannot dynamically allocate the memory in9
the device data environment.10

The device address returned by omp_target_alloc can be used in an is_device_ptr11
clause, Section 2.12.5 on page 170.12

Unless unified_address clause appears on a requires directive in the compilation unit,13
pointer arithmetic is not supported on the device address returned by omp_target_alloc.14

Freeing the storage returned by omp_target_alloc with any routine other than15
omp_target_free results in unspecified behavior.16

Execution Model Events17

The target-data-allocation event occurs when a thread allocates data on a target device.18

Tool Callbacks19

A thread invokes a registered ompt_callback_target_data_op callback for each20
occurrence of a target-data-allocation event in that thread. The callback occurs in the context of the21
target task and has type signature ompt_callback_target_data_op_t.22

Cross References23

• target construct, see Section 2.12.5 on page 17024

• omp_get_num_devices routine, see Section 3.2.36 on page 37125

• omp_get_initial_device routine, see Section 3.2.41 on page 37626

• omp_target_free routine, see Section 3.6.2 on page 39927

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 488.28

398 OpenMP API – Version 5.0 November 2018

C/C++ (cont.)

3.6.2 omp_target_free1

Summary2

The omp_target_free routine frees the device memory allocated by the3
omp_target_alloc routine.4

Format5

void omp_target_free(void *device_ptr, int device_num);6

Constraints on Arguments7

A program that calls omp_target_free with a non-null pointer that does not have a value8
returned from omp_target_alloc is non-conforming. The device_num must be greater than or9
equal to zero and less than the result of omp_get_num_devices() or the result of a call to10
omp_get_initial_device().11

Effect12

The omp_target_free routine frees the memory in the device data environment associated13
with device_ptr. If device_ptr is NULL, the operation is ignored.14

Synchronization must be inserted to ensure that all accesses to device_ptr are completed before the15
call to omp_target_free.16

When called from within a target region the effect of this routine is unspecified.17

Execution Model Events18

The target-data-free event occurs when a thread frees data on a target device.19

Tool Callbacks20

A thread invokes a registered ompt_callback_target_data_op callback for each21
occurrence of a target-data-free event in that thread. The callback occurs in the context of the target22
task and has type signature ompt_callback_target_data_op_t.23

Cross References24

• target construct, see Section 2.12.5 on page 17025

• omp_get_num_devices routine, see Section 3.2.36 on page 37126

• omp_get_initial_device routine, see Section 3.2.41 on page 37627

• omp_target_alloc routine, see Section 3.6.1 on page 39728

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 488.29

CHAPTER 3. RUNTIME LIBRARY ROUTINES 399

C/C++ (cont.)

3.6.3 omp_target_is_present1

Summary2

The omp_target_is_present routine tests whether a host pointer has corresponding storage3
on a given device.4

Format5

int omp_target_is_present(const void *ptr, int device_num);6

Constraints on Arguments7

The value of ptr must be a valid host pointer or NULL. The device_num must be greater than or8
equal to zero and less than the result of omp_get_num_devices() or the result of a call to9
omp_get_initial_device().10

Effect11

This routine returns non-zero if the specified pointer would be found present on device device_num12
by a map clause; otherwise, it returns zero.13

When called from within a target region the effect of this routine is unspecified.14

Cross References15

• target construct, see Section 2.12.5 on page 170.16

• map clause, see Section 2.19.7.1 on page 315.17

• omp_get_num_devices routine, see Section 3.2.36 on page 37118

• omp_get_initial_device routine, see Section 3.2.41 on page 37619

3.6.4 omp_target_memcpy20

Summary21

The omp_target_memcpy routine copies memory between any combination of host and device22
pointers.23

400 OpenMP API – Version 5.0 November 2018

C/C++ (cont.)

Format1

int omp_target_memcpy(2
void *dst,3
const void *src,4
size_t length,5
size_t dst_offset,6
size_t src_offset,7
int dst_device_num,8
int src_device_num9

);10

Constraints on Arguments11

Each device must be compatible with the device pointer specified on the same side of the copy. The12
dst_device_num and src_device_num must be greater than or equal to zero and less than the result13
of omp_get_num_devices() or equal to the result of a call to14
omp_get_initial_device().15

Effect16

length bytes of memory at offset src_offset from src in the device data environment of device17
src_device_num are copied to dst starting at offset dst_offset in the device data environment of18
device dst_device_num. The return value is zero on success and non-zero on failure. The host19
device and host device data environment can be referenced with the device number returned by20
omp_get_initial_device. This routine contains a task scheduling point.21

When called from within a target region the effect of this routine is unspecified.22

Execution Model Events23

The target-data-op event occurs when a thread transfers data on a target device.24

Tool Callbacks25

A thread invokes a registered ompt_callback_target_data_op callback for each26
occurrence of a target-data-op event in that thread. The callback occurs in the context of the target27
task and has type signature ompt_callback_target_data_op_t.28

Cross References29

• target construct, see Section 2.12.5 on page 170.30

• omp_get_initial_device routine, see Section 3.2.41 on page 37631

• omp_target_alloc routine, see Section 3.6.1 on page 397.32

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 488.33

CHAPTER 3. RUNTIME LIBRARY ROUTINES 401

C/C++ (cont.)

3.6.5 omp_target_memcpy_rect1

Summary2

The omp_target_memcpy_rect routine copies a rectangular subvolume from a3
multi-dimensional array to another multi-dimensional array. The copies can use any combination of4
host and device pointers.5

Format6

int omp_target_memcpy_rect(7
void *dst,8
const void *src,9
size_t element_size,10
int num_dims,11
const size_t *volume,12
const size_t *dst_offsets,13
const size_t *src_offsets,14
const size_t *dst_dimensions,15
const size_t *src_dimensions,16
int dst_device_num,17
int src_device_num18

);19

Constraints on Arguments20

The length of the offset and dimension arrays must be at least the value of num_dims. The21
dst_device_num and src_device_num must be greater than or equal to zero and less than22
the result of omp_get_num_devices() or equal to the result of a call to23
omp_get_initial_device().24

The value of num_dims must be between 1 and the implementation-defined limit, which must be at25
least three.26

Effect27

This routine copies a rectangular subvolume of src, in the device data environment of device28
src_device_num, to dst, in the device data environment of device dst_device_num. The volume is29
specified in terms of the size of an element, number of dimensions, and constant arrays of length30
num_dims. The maximum number of dimensions supported is at least three, support for higher31
dimensionality is implementation defined. The volume array specifies the length, in number of32
elements, to copy in each dimension from src to dst. The dst_offsets (src_offsets) parameter33
specifies number of elements from the origin of dst (src) in elements. The dst_dimensions34
(src_dimensions) parameter specifies the length of each dimension of dst (src)35

402 OpenMP API – Version 5.0 November 2018

C/C++ (cont.)

The routine returns zero if successful. If both dst and src are NULL pointers, the routine returns the1
number of dimensions supported by the implementation for the specified device numbers. The host2
device and host device data environment can be referenced with the device number returned by3
omp_get_initial_device. Otherwise, it returns a non-zero value. The routine contains a4
task scheduling point.5

When called from within a target region the effect of this routine is unspecified.6

Execution Model Events7

The target-data-op event occurs when a thread transfers data on a target device.8

Tool Callbacks9

A thread invokes a registered ompt_callback_target_data_op callback for each10
occurrence of a target-data-op event in that thread. The callback occurs in the context of the target11
task and has type signature ompt_callback_target_data_op_t.12

Cross References13

• target construct, see Section 2.12.5 on page 170.14

• omp_get_initial_device routine, see Section 3.2.41 on page 37615

• omp_target_alloc routine, see Section 3.6.1 on page 397.16

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 488.17

3.6.6 omp_target_associate_ptr18

Summary19

The omp_target_associate_ptr routine maps a device pointer, which may be returned20
from omp_target_alloc or implementation-defined runtime routines, to a host pointer.21

CHAPTER 3. RUNTIME LIBRARY ROUTINES 403

C/C++ (cont.)

Format1

int omp_target_associate_ptr(2
const void *host_ptr,3
const void *device_ptr,4
size_t size,5
size_t device_offset,6
int device_num7

);8

Constraints on Arguments9

The value of device_ptr value must be a valid pointer to device memory for the device denoted by10
the value of device_num. The device_num argument must be greater than or equal to zero and less11
than the result of omp_get_num_devices() or equal to the result of a call to12
omp_get_initial_device().13

Effect14

The omp_target_associate_ptr routine associates a device pointer in the device data15
environment of device device_num with a host pointer such that when the host pointer appears in a16
subsequent map clause, the associated device pointer is used as the target for data motion17
associated with that host pointer. The device_offset parameter specifies the offset into device_ptr18
that is used as the base address for the device side of the mapping. The reference count of the19
resulting mapping will be infinite. After being successfully associated, the buffer to which the20
device pointer points is invalidated and accessing data directly through the device pointer results in21
unspecified behavior. The pointer can be retrieved for other uses by disassociating it. When called22
from within a target region the effect of this routine is unspecified.23

The routine returns zero if successful. Otherwise it returns a non-zero value.24

Only one device buffer can be associated with a given host pointer value and device number pair.25
Attempting to associate a second buffer will return non-zero. Associating the same pair of pointers26
on the same device with the same offset has no effect and returns zero. Associating pointers that27
share underlying storage will result in unspecified behavior. The omp_target_is_present28
function can be used to test whether a given host pointer has a corresponding variable in the device29
data environment.30

Execution Model Events31

The target-data-associate event occurs when a thread associates data on a target device.32

Tool Callbacks33

A thread invokes a registered ompt_callback_target_data_op callback for each34
occurrence of a target-data-associate event in that thread. The callback occurs in the context of the35
target task and has type signature ompt_callback_target_data_op_t.36

404 OpenMP API – Version 5.0 November 2018

C/C++ (cont.)

Cross References1

• target construct, see Section 2.12.5 on page 170.2

• map clause, see Section 2.19.7.1 on page 315.3

• omp_target_alloc routine, see Section 3.6.1 on page 397.4

• omp_target_disassociate_ptr routine, see Section 3.6.6 on page 4035

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 488.6

3.6.7 omp_target_disassociate_ptr7

Summary8

The omp_target_disassociate_ptr removes the associated pointer for a given device9
from a host pointer.10

Format11

int omp_target_disassociate_ptr(const void *ptr, int device_num);12

Constraints on Arguments13

The device_num must be greater than or equal to zero and less than the result of14
omp_get_num_devices() or equal to the result of a call to15
omp_get_initial_device().16

Effect17

The omp_target_disassociate_ptr removes the associated device data on device18
device_num from the presence table for host pointer ptr. A call to this routine on a pointer that is19
not NULL and does not have associated data on the given device results in unspecified behavior.20
The reference count of the mapping is reduced to zero, regardless of its current value.21

When called from within a target region the effect of this routine is unspecified.22

The routine returns zero if successful. Otherwise it returns a non-zero value.23

After a call to omp_target_disassociate_ptr, the contents of the device buffer are24
invalidated.25

Execution Model Events26

The target-data-disassociate event occurs when a thread disassociates data on a target device.27

CHAPTER 3. RUNTIME LIBRARY ROUTINES 405

Tool Callbacks1

A thread invokes a registered ompt_callback_target_data_op callback for each2
occurrence of a target-data-disassociate event in that thread. The callback occurs in the context of3
the target task and has type signature ompt_callback_target_data_op_t.4

Cross References5

• target construct, see Section 2.12.5 on page 1706

• omp_target_associate_ptr routine, see Section 3.6.6 on page 4037

• ompt_callback_target_data_op_t, see Section 4.5.2.25 on page 488.8

C / C++

3.7 Memory Management Routines9

This section describes routines that support memory management on the current device.10

Instances of memory management types must be accessed only through the routines described in11
this section; programs that otherwise access instances of these types are non-conforming.12

3.7.1 Memory Management Types13

The following type definitions are used by the memory management routines:14

C / C++
typedef enum omp_alloctrait_key_t {15

omp_atk_sync_hint = 1,16
omp_atk_alignment = 2,17
omp_atk_access = 3,18
omp_atk_pool_size = 4,19
omp_atk_fallback = 5,20
omp_atk_fb_data = 6,21
omp_atk_pinned = 7,22
omp_atk_partition = 823

} omp_alloctrait_key_t;24
25

typedef enum omp_alloctrait_value_t {26

406 OpenMP API – Version 5.0 November 2018

omp_atv_false = 0,1
omp_atv_true = 1,2
omp_atv_default = 2,3
omp_atv_contended = 3,4
omp_atv_uncontended = 4,5
omp_atv_sequential = 5,6
omp_atv_private = 6,7
omp_atv_all = 7,8
omp_atv_thread = 8,9
omp_atv_pteam = 9,10
omp_atv_cgroup = 10,11
omp_atv_default_mem_fb = 11,12
omp_atv_null_fb = 12,13
omp_atv_abort_fb = 13,14
omp_atv_allocator_fb = 14,15
omp_atv_environment = 15,16
omp_atv_nearest = 16,17
omp_atv_blocked = 17,18
omp_atv_interleaved = 1819

} omp_alloctrait_value_t;20
21

typedef struct omp_alloctrait_t {22
omp_alloctrait_key_t key;23
omp_uintptr_t value;24

} omp_alloctrait_t;25

C / C++
Fortran

26
integer(kind=omp_alloctrait_key_kind), &27

parameter :: omp_atk_sync_hint = 128
integer(kind=omp_alloctrait_key_kind), &29

parameter :: omp_atk_alignment = 230
integer(kind=omp_alloctrait_key_kind), &31

parameter :: omp_atk_access = 332
integer(kind=omp_alloctrait_key_kind), &33

parameter :: omp_atk_pool_size = 434
integer(kind=omp_alloctrait_key_kind), &35

parameter :: omp_atk_fallback = 536
integer(kind=omp_alloctrait_key_kind), &37

parameter :: omp_atk_fb_data = 638
integer(kind=omp_alloctrait_key_kind), &39

parameter :: omp_atk_pinned = 740
integer(kind=omp_alloctrait_key_kind), &41

CHAPTER 3. RUNTIME LIBRARY ROUTINES 407

Fortran (cont.)

parameter :: omp_atk_partition = 81
2

integer(kind=omp_alloctrait_val_kind), &3
parameter :: omp_atv_false = 04

integer(kind=omp_alloctrait_val_kind), &5
parameter :: omp_atv_true = 16

integer(kind=omp_alloctrait_val_kind), &7
parameter :: omp_atv_default = 28

integer(kind=omp_alloctrait_val_kind), &9
parameter :: omp_atv_contended = 310

integer(kind=omp_alloctrait_val_kind), &11
parameter :: omp_atv_uncontended = 412

integer(kind=omp_alloctrait_val_kind), &13
parameter :: omp_atv_sequential = 514

integer(kind=omp_alloctrait_val_kind), &15
parameter :: omp_atv_private = 616

integer(kind=omp_alloctrait_val_kind), &17
parameter :: omp_atv_all = 718

integer(kind=omp_alloctrait_val_kind), &19
parameter :: omp_atv_thread = 820

integer(kind=omp_alloctrait_val_kind), &21
parameter :: omp_atv_pteam = 922

integer(kind=omp_alloctrait_val_kind), &23
parameter :: omp_atv_cgroup = 1024

integer(kind=omp_alloctratit_val_kind), &25
parameter :: omp_atv_default_mem_fb = 1126

integer(kind=omp_alloctratit_val_kind), &27
parameter :: omp_atv_null_fb = 1228

integer(kind=omp_alloctratit_val_kind), &29
parameter :: omp_atv_abort_fb = 1330

integer(kind=omp_alloctratit_val_kind), &31
parameter :: omp_atv_allocator_fb = 1432

integer(kind=omp_alloctrait_val_kind), &33
parameter :: omp_atv_environment = 1534

integer(kind=omp_alloctrait_val_kind), &35
parameter :: omp_atv_nearest = 1636

integer(kind=omp_alloctrait_val_kind), &37
parameter :: omp_atv_blocked = 1738

integer(kind=omp_alloctrait_val_kind), &39
parameter :: omp_atv_interleaved = 1840

41
type omp_alloctrait42

integer(kind=omp_alloctrait_key_kind) key43

408 OpenMP API – Version 5.0 November 2018

integer(kind=omp_alloctrait_val_kind) value1
end type omp_alloctrait2

3
integer(kind=omp_allocator_handle_kind), &4

parameter :: omp_null_allocator = 05

Fortran

3.7.2 omp_init_allocator6

Summary7

The omp_init_allocator routine initializes an allocator and associates it with a memory8
space.9

Format10

C / C++
omp_allocator_handle_t omp_init_allocator (11

omp_memspace_handle_t memspace,12
int ntraits,13
const omp_alloctrait_t traits[]14

);15

C / C++
Fortran

integer(kind=omp_allocator_handle_kind) &16
function omp_init_allocator (memspace, ntraits, traits)17
integer(kind=omp_memspace_handle_kind),intent(in) :: memspace18
integer,intent(in) :: ntraits19
type(omp_alloctrait),intent(in) :: traits(*)20

Fortran

Constraints on Arguments21

The memspace argument must be one of the predefined memory spaces defined in Table 2.8.22

If the ntraits argument is greater than zero then the traits argument must specify at least that many23
traits. If it specifies fewer than ntraits traits the behavior is unspecified.24

Unless a requires directive with the dynamic_allocators clause is present in the same25
compilation unit, using this routine in a target region results in unspecified behavior.26

CHAPTER 3. RUNTIME LIBRARY ROUTINES 409

Binding1

The binding thread set for an omp_init_allocator region is all threads on a device. The2
effect of executing this routine is not related to any specific region that corresponds to any construct3
or API routine.4

Effect5

The omp_init_allocator routine creates a new allocator that is associated with the6
memspace memory space and returns a handle to it. All allocations through the created allocator7
will behave according to the allocator traits specified in the traits argument. The number of traits in8
the traits argument is specified by the ntraits argument. Specifying the same allocator trait more9
than once results in unspecified behavior. The routine returns a handle for the created allocator. If10
the special omp_atv_default value is used for a given trait, then its value will be the default11
value specified in Table 2.9 for that given trait.12

If memspace is omp_default_mem_space and the traits argument is an empty set this13
routine will always return a handle to an allocator. Otherwise if an allocator based on the14
requirements cannot be created then the special omp_null_allocator handle is returned.15

The use of an allocator returned by this routine on a device other than the one on which it was16
created results in unspecified behavior.17

Cross References18

• Memory Spaces, see Section 2.11.1 on page 152.19

• Memory Allocators, see Section 2.11.2 on page 152.20

3.7.3 omp_destroy_allocator21

Summary22

The omp_destroy_allocator routine releases all resources used by the allocator handle.23

Format24

C / C++
void omp_destroy_allocator (omp_allocator_handle_t allocator);25

C / C++
Fortran

subroutine omp_destroy_allocator (allocator)26
integer(kind=omp_allocator_handle_kind),intent(in) :: allocator27

Fortran

410 OpenMP API – Version 5.0 November 2018

Constraints on Arguments1

The allocator argument must not represent a predefined memory allocator.2

Unless a requires directive with the dynamic_allocators clause is present in the same3
compilation unit, using this routine in a target region results in unspecified behavior.4

Binding5

The binding thread set for an omp_destroy_allocator region is all threads on a device. The6
effect of executing this routine is not related to any specific region that corresponds to any construct7
or API routine.8

Effect9

The omp_destroy_allocator routine releases all resources used to implement the allocator10
handle. Accessing any memory allocated by the allocator after this call results in unspecified11
behavior.12

If allocator is omp_null_allocator then this routine will have no effect.13

Cross References14

• Memory Allocators, see Section 2.11.2 on page 152.15

3.7.4 omp_set_default_allocator16

Summary17

The omp_set_default_allocator routine sets the default memory allocator to be used by18
allocation calls, allocate directives and allocate clauses that do not specify an allocator.19

Format20

C / C++
void omp_set_default_allocator (omp_allocator_handle_t allocator);21

C / C++
Fortran

subroutine omp_set_default_allocator (allocator)22
integer(kind=omp_allocator_handle_kind),intent(in) :: allocator23

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 411

Constraints on Arguments1

The allocator argument must be a valid memory allocator handle.2

Binding3

The binding task set for an omp_set_default_allocator region is the binding implicit task.4

Effect5

The effect of this routine is to set the value of the def-allocator-var ICV of the binding implicit task6
to the value specified in the allocator argument.7

Cross References8

• def-allocator-var ICV, see Section 2.5 on page 63.9

• Memory Allocators, see Section 2.11.2 on page 152.10

• omp_alloc routine, see Section 3.7.6 on page 413.11

3.7.5 omp_get_default_allocator12

Summary13

The omp_get_default_allocator routine returns a handle to the memory allocator to be14
used by allocation calls, allocate directives and allocate clauses that do not specify an15
allocator.16

Format17

C / C++
omp_allocator_handle_t omp_get_default_allocator (void);18

C / C++
Fortran

integer(kind=omp_allocator_handle_kind)&19
function omp_get_default_allocator ()20

Fortran

Binding21

The binding task set for an omp_get_default_allocator region is the binding implicit task.22

412 OpenMP API – Version 5.0 November 2018

Effect1

The effect of this routine is to return the value of the def-allocator-var ICV of the binding implicit2
task.3

Cross References4

• def-allocator-var ICV, see Section 2.5 on page 63.5

• Memory Allocators, see Section 2.11.2 on page 152.6

• omp_alloc routine, see Section 3.7.6 on page 413.7

C / C++

3.7.6 omp_alloc8

Summary9

The omp_alloc routine requests a memory allocation from a memory allocator.10

Format11

C
void *omp_alloc (size_t size, omp_allocator_handle_t allocator);12

C
C++

void *omp_alloc(13
size_t size,14
omp_allocator_handle_t allocator=omp_null_allocator15

);16

C++

Constraints on Arguments17

Unless dynamic_allocators appears on a requires directive in the same compilation unit,18
omp_alloc invocations that appear in target regions must not pass omp_null_allocator19
as the allocator argument, which must be a constant expression that evaluates to one of the20
predefined memory allocator values.21

CHAPTER 3. RUNTIME LIBRARY ROUTINES 413

C/C++ (cont.)

Effect1

The omp_alloc routine requests a memory allocation of size bytes from the specified memory2
allocator. If the allocator argument is omp_null_allocator the memory allocator used by the3
routine will be the one specified by the def-allocator-var ICV of the binding implicit task. Upon4
success it returns a pointer to the allocated memory. Otherwise, the behavior specified by the5
fallback trait will be followed.6

Allocated memory will be byte aligned to at least the alignment required by malloc.7

Cross References8

• Memory allocators, see Section 2.11.2 on page 152.9

3.7.7 omp_free10

Summary11

The omp_free routine deallocates previously allocated memory.12

Format13

C
void omp_free (void *ptr, omp_allocator_handle_t allocator);14

C
C++

void omp_free(15
void *ptr,16
omp_allocator_handle_t allocator=omp_null_allocator17

);18

C++

Effect19

The omp_free routine deallocates the memory to which ptr points. The ptr argument must point20
to memory previously allocated with a memory allocator. If the allocator argument is specified it21
must be the memory allocator to which the allocation request was made. If the allocator argument22
is omp_null_allocator the implementation will determine that value automatically. Using23
omp_free on memory that was already deallocated or that was allocated by an allocator that has24
already been destroyed with omp_destroy_allocator results in unspecified behavior.25

414 OpenMP API – Version 5.0 November 2018

Cross References1

• Memory allocators, see Section 2.11.2 on page 152.2

C / C++

3.8 Tool Control Routine3

Summary4

The omp_control_tool routine enables a program to pass commands to an active tool.5

Format6

C / C++
int omp_control_tool(int command, int modifier, void *arg);7

C / C++
Fortran

integer function omp_control_tool(command, modifier)8
integer (kind=omp_control_tool_kind) command9
integer modifier10

Fortran

Description11

An OpenMP program may use omp_control_tool to pass commands to a tool. An application12
can use omp_control_tool to request that a tool starts or restarts data collection when a code13
region of interest is encountered, that a tool pauses data collection when leaving the region of14
interest, that a tool flushes any data that it has collected so far, or that a tool ends data collection.15
Additionally, omp_control_tool can be used to pass tool-specific commands to a particular16
tool.17

The following types correspond to return values from omp_control_tool:18

C / C++
typedef enum omp_control_tool_result_t {19

omp_control_tool_notool = -2,20
omp_control_tool_nocallback = -1,21
omp_control_tool_success = 0,22
omp_control_tool_ignored = 123

} omp_control_tool_result_t;24

C / C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 415

Fortran
integer (kind=omp_control_tool_result_kind), &1

parameter :: omp_control_tool_notool = -22
integer (kind=omp_control_tool_result_kind), &3

parameter :: omp_control_tool_nocallback = -14
integer (kind=omp_control_tool_result_kind), &5

parameter :: omp_control_tool_success = 06
integer (kind=omp_control_tool_result_kind), &7

parameter :: omp_control_tool_ignored = 18

Fortran
If the OMPT interface state is inactive, the OpenMP implementation returns9
omp_control_tool_notool. If the OMPT interface state is active, but no callback is10
registered for the tool-control event, the OpenMP implementation returns11
omp_control_tool_nocallback. An OpenMP implementation may return other12
implementation-defined negative values strictly smaller than -64; an application may assume that13
any negative return value indicates that a tool has not received the command. A return value of14
omp_control_tool_success indicates that the tool has performed the specified command. A15
return value of omp_control_tool_ignored indicates that the tool has ignored the specified16
command. A tool may return other positive values strictly greater than 64 that are tool-defined.17

Constraints on Arguments18

The following enumeration type defines four standard commands. Table 3.1 describes the actions19
that these commands request from a tool.20

C / C++
typedef enum omp_control_tool_t {21

omp_control_tool_start = 1,22
omp_control_tool_pause = 2,23
omp_control_tool_flush = 3,24
omp_control_tool_end = 425

} omp_control_tool_t;26

C / C++
Fortran

integer (kind=omp_control_tool_kind), &27
parameter :: omp_control_tool_start = 128

integer (kind=omp_control_tool_kind), &29
parameter :: omp_control_tool_pause = 230

integer (kind=omp_control_tool_kind), &31
parameter :: omp_control_tool_flush = 332

integer (kind=omp_control_tool_kind), &33
parameter :: omp_control_tool_end = 434

Fortran

416 OpenMP API – Version 5.0 November 2018

Tool-specific values for command must be greater or equal to 64. Tools must ignore command1
values that they are not explicitly designed to handle. Other values accepted by a tool for command,2
and any values for modifier and arg are tool-defined.3

TABLE 3.1: Standard Tool Control Commands

Command Action

omp_control_tool_start Start or restart monitoring if it is off. If monitoring
is already on, this command is idempotent. If
monitoring has already been turned off permanently,
this command will have no effect.

omp_control_tool_pause Temporarily turn monitoring off. If monitoring is
already off, it is idempotent.

omp_control_tool_flush Flush any data buffered by a tool. This command may
be applied whether monitoring is on or off.

omp_control_tool_end Turn monitoring off permanently; the tool finalizes
itself and flushes all output.

Execution Model Events4

The tool-control event occurs in the thread that encounters a call to omp_control_tool at a5
point inside its corresponding OpenMP region.6

Tool Callbacks7

A thread dispatches a registered ompt_callback_control_tool callback for each8
occurrence of a tool-control event. The callback executes in the context of the call that occurs in the9
user program and has type signature ompt_callback_control_tool_t. The callback may10
return any non-negative value, which will be returned to the application by the OpenMP11
implementation as the return value of the omp_control_tool call that triggered the callback.12

Arguments passed to the callback are those passed by the user to omp_control_tool. If the13
call is made in Fortran, the tool will be passed NULL as the third argument to the callback. If any of14
the four standard commands is presented to a tool, the tool will ignore the modifier and arg15
argument values.16

Cross References17

• OMPT Interface, see Chapter 4 on page 41918

• ompt_callback_control_tool_t, see Section 4.5.2.29 on page 49519

CHAPTER 3. RUNTIME LIBRARY ROUTINES 417

This page intentionally left blank

CHAPTER 4

OMPT Interface1

2

This chapter describes OMPT, which is an interface for first-party tools. First-party tools are linked3
or loaded directly into the OpenMP program. OMPT defines mechanisms to initialize a tool, to4
examine OpenMP state associated with an OpenMP thread, to interpret the call stack of an OpenMP5
thread, to receive notification about OpenMP events, to trace activity on OpenMP target devices, to6
assess implementation-dependent details of an OpenMP implementation (such as supported states7
and mutual exclusion implementations), and to control a tool from an OpenMP application.8

4.1 OMPT Interfaces Definitions9

C / C++
A compliant implementation must supply a set of definitions for the OMPT runtime entry points,10
OMPT callback signatures, and the special data types of their parameters and return values. These11
definitions, which are listed throughout this chapter, and their associated declarations shall be12
provided in a header file named omp-tools.h. In addition, the set of definitions may specify13
other implementation-specific values.14

The ompt_start_tool function is an external function with C linkage.15

C / C++

CHAPTER 4. OMPT INTERFACE 419

4.2 Activating a First-Party Tool1

To activate a tool, an OpenMP implementation first determines whether the tool should be2
initialized. If so, the OpenMP implementation invokes the initializer of the tool, which enables the3
tool to prepare to monitor execution on the host. The tool may then also arrange to monitor4
computation that executes on target devices. This section explains how the tool and an OpenMP5
implementation interact to accomplish these tasks.6

4.2.1 ompt_start_tool7

Summary8

In order to use the OMPT interface provided by an OpenMP implementation, a tool must implement9
the ompt_start_tool function, through which the OpenMP implementation initializes the tool.10

Format11

C
ompt_start_tool_result_t *ompt_start_tool(12

unsigned int omp_version,13
const char *runtime_version14

);15

C

Description16

For a tool to use the OMPT interface that an OpenMP implementation provides, the tool must define17
a globally-visible implementation of the function ompt_start_tool. The tool indicates that it18
will use the OMPT interface that an OpenMP implementation provides by returning a non-null19
pointer to an ompt_start_tool_result_t structure from the ompt_start_tool20
implementation that it provides. The ompt_start_tool_result_t structure contains21
pointers to tool initialization and finalization callbacks as well as a tool data word that an OpenMP22
implementation must pass by reference to these callbacks. A tool may return NULL from23
ompt_start_tool to indicate that it will not use the OMPT interface in a particular execution.24

A tool may use the omp_version argument to determine if it is compatible with the OMPT interface25
that the OpenMP implementation provides.26

420 OpenMP API – Version 5.0 November 2018

Description of Arguments1

The argument omp_version is the value of the _OPENMP version macro associated with the2
OpenMP API implementation. This value identifies the OpenMP API version that an OpenMP3
implementation supports, which specifies the version of the OMPT interface that it supports.4

The argument runtime_version is a version string that unambiguously identifies the OpenMP5
implementation.6

Constraints on Arguments7

The argument runtime_version must be an immutable string that is defined for the lifetime of a8
program execution.9

Effect10

If a tool returns a non-null pointer to an ompt_start_tool_result_t structure, an OpenMP11
implementation will call the tool initializer specified by the initialize field in this structure before12
beginning execution of any OpenMP construct or completing execution of any environment routine13
invocation; the OpenMP implementation will call the tool finalizer specified by the finalize field in14
this structure when the OpenMP implementation shuts down.15

Cross References16

• ompt_start_tool_result_t, see Section 4.4.1 on page 433.17

4.2.2 Determining Whether a First-Party Tool Should be Initialized18

An OpenMP implementation examines the tool-var ICV as one of its first initialization steps. If the19
value of tool-var is disabled, the initialization continues without a check for the presence of a tool20
and the functionality of the OMPT interface will be unavailable as the program executes. In this21
case, the OMPT interface state remains inactive.22

Otherwise, the OMPT interface state changes to pending and the OpenMP implementation activates23
any first-party tool that it finds. A tool can provide a definition of ompt_start_tool to an24
OpenMP implementation in three ways:25

• By statically-linking its definition of ompt_start_tool into an OpenMP application;26

• By introducing a dynamically-linked library that includes its definition of ompt_start_tool27
into the application’s address space; or28

CHAPTER 4. OMPT INTERFACE 421

Inactive
Runtime

(re)start
tool-var Pending

Find next tool

Return

value r

Active

Call

ompt_start_tool

Found?Inactive
Runtime shutdown

or pause

Call

r->initialize

Return

value

enabled

disabled

r=non-null

r=NULLyes

no

1

0

FIGURE 4.1: First-Party Tool Activation Flow Chart

• By providing, in the tool-libraries-var ICV, the name of a dynamically-linked library that is1
appropriate for the architecture and operating system used by the application and that includes a2
definition of ompt_start_tool.3

If the value of tool-var is enabled, the OpenMP implementation must check if a tool has provided4
an implementation of ompt_start_tool. The OpenMP implementation first checks if a5
tool-provided implementation of ompt_start_tool is available in the address space, either6
statically-linked into the application or in a dynamically-linked library loaded in the address space.7
If multiple implementations of ompt_start_tool are available, the OpenMP implementation8
will use the first tool-provided implementation of ompt_start_tool that it finds.9

If the implementation does not find a tool-provided implementation of ompt_start_tool in the10
address space, it consults the tool-libraries-var ICV, which contains a (possibly empty) list of11
dynamically-linked libraries. As described in detail in Section 6.19 on page 617, the libraries in12
tool-libraries-var are then searched for the first usable implementation of ompt_start_tool13
that one of the libraries in the list provides.14

If the implementation finds a tool-provided definition of ompt_start_tool, it invokes that15
method; if a NULL pointer is returned, the OMPT interface state remains pending and the16

422 OpenMP API – Version 5.0 November 2018

implementation continues to look for implementations of ompt_start_tool; otherwise a1
non-null pointer to an ompt_start_tool_result_t structure is returned, the OMPT2
interface state changes to active and the OpenMP implementation makes the OMPT interface3
available as the program executes. In this case, as the OpenMP implementation completes its4
initialization, it initializes the OMPT interface.5

If no tool can be found, the OMPT interface state changes to inactive.6

Cross References7

• tool-libraries-var ICV, see Section 2.5 on page 63.8

• tool-var ICV, see Section 2.5 on page 63.9

• ompt_start_tool function, see Section 4.2.1 on page 420.10

• ompt_start_tool_result_t type, see Section 4.4.1 on page 433.11

4.2.3 Initializing a First-Party Tool12

To initialize the OMPT interface, the OpenMP implementation invokes the tool initializer that is13
specified in the ompt_start_tool_result_t structure that is indicated by the non-null14
pointer that ompt_start_tool returns. The initializer is invoked prior to the occurrence of any15
OpenMP event.16

A tool initializer, described in Section 4.5.1.1 on page 457, uses the function specified in its lookup17
argument to look up pointers to OMPT interface runtime entry points that the OpenMP18
implementation provides; this process is described in Section 4.2.3.1 on page 424. Typically, a tool19
initializer obtains a pointer to the ompt_set_callback runtime entry point with type signature20
ompt_set_callback_t and then uses this runtime entry point to register tool callbacks for21
OpenMP events, as described in Section 4.2.4 on page 425.22

A tool initializer may use the ompt_enumerate_states runtime entry point, which has type23
signature ompt_enumerate_states_t, to determine the thread states that an OpenMP24
implementation employs. Similarly, it may use the ompt_enumerate_mutex_impls runtime25
entry point, which has type signature ompt_enumerate_mutex_impls_t, to determine the26
mutual exclusion implementations that the OpenMP implementation employs.27

If a tool initializer returns a non-zero value, the OMPT interface state remains active for the28
execution; otherwise, the OMPT interface state changes to inactive.29

CHAPTER 4. OMPT INTERFACE 423

Cross References1

• ompt_start_tool function, see Section 4.2.1 on page 420.2

• ompt_start_tool_result_t type, see Section 4.4.1 on page 433.3

• ompt_initialize_t type, see Section 4.5.1.1 on page 457.4

• ompt_callback_thread_begin_t type, see Section 4.5.2.1 on page 459.5

• ompt_enumerate_states_t type, see Section 4.6.1.1 on page 498.6

• ompt_enumerate_mutex_impls_t type, see Section 4.6.1.2 on page 499.7

• ompt_set_callback_t type, see Section 4.6.1.3 on page 500.8

• ompt_function_lookup_t type, see Section 4.6.3 on page 531.9

4.2.3.1 Binding Entry Points in the OMPT Callback Interface10

Functions that an OpenMP implementation provides to support the OMPT interface are not defined11
as global function symbols. Instead, they are defined as runtime entry points that a tool can only12
identify through the lookup function that is provided as an argument with type signature13
ompt_function_lookup_t to the tool initializer. A tool can use this function to obtain a14
pointer to each of the runtime entry points that an OpenMP implementation provides to support the15
OMPT interface. Once a tool has obtained a lookup function, it may employ it at any point in the16
future.17

For each runtime entry point in the OMPT interface for the host device, Table 4.1 provides the18
string name by which it is known and its associated type signature. Implementations can provide19
additional implementation-specific names and corresponding entry points. Any names that begin20
with ompt_ are reserved names.21

During initialization, a tool should look up each runtime entry point in the OMPT interface by22
name and bind a pointer maintained by the tool that can later be used to invoke the entry point. The23
entry points described in Table 4.1 enable a tool to assess the thread states and mutual exclusion24
implementations that an OpenMP implementation supports, to register tool callbacks, to inspect25
registered callbacks, to introspect OpenMP state associated with threads, and to use tracing to26
monitor computations that execute on target devices.27

Detailed information about each runtime entry point listed in Table 4.1 is included as part of the28
description of its type signature.29

Cross References30

• ompt_enumerate_states_t type, see Section 4.6.1.1 on page 498.31

• ompt_enumerate_mutex_impls_t type, see Section 4.6.1.2 on page 499.32

424 OpenMP API – Version 5.0 November 2018

• ompt_set_callback_t type, see Section 4.6.1.3 on page 500.1

• ompt_get_callback_t type, see Section 4.6.1.4 on page 502.2

• ompt_get_thread_data_t type, see Section 4.6.1.5 on page 503.3

• ompt_get_num_procs_t type, see Section 4.6.1.6 on page 503.4

• ompt_get_num_places_t type, see Section 4.6.1.7 on page 504.5

• ompt_get_place_proc_ids_t type, see Section 4.6.1.8 on page 505.6

• ompt_get_place_num_t type, see Section 4.6.1.9 on page 506.7

• ompt_get_partition_place_nums_t type, see Section 4.6.1.10 on page 507.8

• ompt_get_proc_id_t type, see Section 4.6.1.11 on page 508.9

• ompt_get_state_t type, see Section 4.6.1.12 on page 508.10

• ompt_get_parallel_info_t type, see Section 4.6.1.13 on page 510.11

• ompt_get_task_info_t type, see Section 4.6.1.14 on page 512.12

• ompt_get_task_memory_t type, see Section 4.6.1.15 on page 514.13

• ompt_get_target_info_t type, see Section 4.6.1.16 on page 515.14

• ompt_get_num_devices_t type, see Section 4.6.1.17 on page 516.15

• ompt_get_unique_id_t type, see Section 4.6.1.18 on page 517.16

• ompt_finalize_tool_t type, see Section 4.6.1.19 on page 517.17

• ompt_function_lookup_t type, see Section 4.6.3 on page 531.18

4.2.4 Monitoring Activity on the Host with OMPT19

To monitor the execution of an OpenMP program on the host device, a tool initializer must register20
to receive notification of events that occur as an OpenMP program executes. A tool can use the21
ompt_set_callback runtime entry point to register callbacks for OpenMP events. The return22
codes for ompt_set_callback use the ompt_set_result_t enumeration type. If the23
ompt_set_callback runtime entry point is called outside a tool initializer, registration of24
supported callbacks may fail with a return value of ompt_set_error.25

All callbacks registered with ompt_set_callback or returned by ompt_get_callback use26
the dummy type signature ompt_callback_t.27

Table 4.2 shows the valid registration return codes of the ompt_set_callback runtime entry28
point with specific values of its event argument. For callbacks for which ompt_set_always is29

CHAPTER 4. OMPT INTERFACE 425

TABLE 4.1: OMPT Callback Interface Runtime Entry Point Names and Their Type Signatures

Entry Point String Name Type signature

“ompt_enumerate_states” ompt_enumerate_states_t

“ompt_enumerate_mutex_impls” ompt_enumerate_mutex_impls_t

“ompt_set_callback” ompt_set_callback_t

“ompt_get_callback” ompt_get_callback_t

“ompt_get_thread_data” ompt_get_thread_data_t

“ompt_get_num_places” ompt_get_num_places_t

“ompt_get_place_proc_ids” ompt_get_place_proc_ids_t

“ompt_get_place_num” ompt_get_place_num_t

“ompt_get_partition_place_nums” ompt_get_partition_place_nums_t

“ompt_get_proc_id” ompt_get_proc_id_t

“ompt_get_state” ompt_get_state_t

“ompt_get_parallel_info” ompt_get_parallel_info_t

“ompt_get_task_info” ompt_get_task_info_t

“ompt_get_task_memory” ompt_get_task_memory_t

“ompt_get_num_devices” ompt_get_num_devices_t

“ompt_get_num_procs” ompt_get_num_procs_t

“ompt_get_target_info” ompt_get_target_info_t

“ompt_get_unique_id” ompt_get_unique_id_t

“ompt_finalize_tool” ompt_finalize_tool_t

426 OpenMP API – Version 5.0 November 2018

the only registration return code that is allowed, an OpenMP implementation must guarantee that1
the callback will be invoked every time that a runtime event that is associated with it occurs.2
Support for such callbacks is required in a minimal implementation of the OMPT interface. For3
callbacks for which the ompt_set_callback runtime entry may return values other than4
ompt_set_always, whether an OpenMP implementation invokes a registered callback never,5
sometimes, or always is implementation-defined. If registration for a callback allows a return code6
of omp_set_never, support for invoking such a callback may not be present in a minimal7
implementation of the OMPT interface. The return code from registering a callback indicates the8
implementation-defined level of support for the callback.9

Two techniques reduce the size of the OMPT interface. First, in cases where events are naturally10
paired, for example, the beginning and end of a region, and the arguments needed by the callback at11
each endpoint are identical, a tool registers a single callback for the pair of events, with12
ompt_scope_begin or ompt_scope_end provided as an argument to identify for which13
endpoint the callback is invoked. Second, when a class of events is amenable to uniform treatment,14
OMPT provides a single callback for that class of events, for example, an15
ompt_callback_sync_region_wait callback is used for multiple kinds of synchronization16
regions, such as barrier, taskwait, and taskgroup regions. Some events, for example,17
ompt_callback_sync_region_wait, use both techniques.18

Cross References19

• ompt_set_result_t type, see Section 4.4.4.2 on page 438.20

• ompt_set_callback_t type, see Section 4.6.1.3 on page 500.21

• ompt_get_callback_t type, see Section 4.6.1.4 on page 502.22

4.2.5 Tracing Activity on Target Devices with OMPT23

A target device may or may not initialize a full OpenMP runtime system. Unless it does, it may not24
be possible to monitor activity on a device using a tool interface based on callbacks. To25
accommodate such cases, the OMPT interface defines a monitoring interface for tracing activity on26
target devices. Tracing activity on a target device involves the following steps:27

• To prepare to trace activity on a target device, a tool must register for an28
ompt_callback_device_initialize callback. A tool may also register for an29
ompt_callback_device_load callback to be notified when code is loaded onto a target30
device or an ompt_callback_device_unload callback to be notified when code is31
unloaded from a target device. A tool may also optionally register an32
ompt_callback_device_finalize callback.33

CHAPTER 4. OMPT INTERFACE 427

TABLE 4.2: Valid Return Codes of ompt_set_callback for Each Callback

Return code abbreviation N S/P A
ompt_callback_thread_begin *
ompt_callback_thread_end *
ompt_callback_parallel_begin *
ompt_callback_parallel_end *
ompt_callback_task_create *
ompt_callback_task_schedule *
ompt_callback_implicit_task *
ompt_callback_target *
ompt_callback_target_data_op *
ompt_callback_target_submit *
ompt_callback_control_tool *
ompt_callback_device_initialize *
ompt_callback_device_finalize *
ompt_callback_device_load *
ompt_callback_device_unload *
ompt_callback_sync_region_wait * * *
ompt_callback_mutex_released * * *
ompt_callback_dependences * * *
ompt_callback_task_dependence * * *
ompt_callback_work * * *
ompt_callback_master * * *
ompt_callback_target_map * * *
ompt_callback_sync_region * * *
ompt_callback_reduction * * *
ompt_callback_lock_init * * *
ompt_callback_lock_destroy * * *
ompt_callback_mutex_acquire * * *
ompt_callback_mutex_acquired * * *
ompt_callback_nest_lock * * *
ompt_callback_flush * * *
ompt_callback_cancel * * *
ompt_callback_dispatch * * *

N = ompt_set_never S = ompt_set_sometimes
P = ompt_set_sometimes_paired A = ompt_set_always

428 OpenMP API – Version 5.0 November 2018

• When an OpenMP implementation initializes a target device, the OpenMP implementation1
dispatches the device initialization callback of the tool on the host device. If the OpenMP2
implementation or target device does not support tracing, the OpenMP implementation passes3
NULL to the device initializer of the tool for its lookup argument; otherwise, the OpenMP4
implementation passes a pointer to a device-specific runtime entry point with type signature5
ompt_function_lookup_t to the device initializer of the tool.6

• If a non-null lookup pointer is provided to the device initializer of the tool, the tool may use it to7
determine the runtime entry points in the tracing interface that are available for the device and8
may bind the returned function pointers to tool variables. Table 4.3 indicates the names of9
runtime entry points that may be available for a device; an implementations may provide10
additional implementation-defined names and corresponding entry points. The driver for the11
device provides the runtime entry points that enable a tool to control the trace collection interface12
of the device. The native trace format that the interface uses may be device specific and the13
available kinds of trace records are implementation-defined. Some devices may allow a tool to14
collect traces of records in a standard format known as OMPT trace records. Each OMPT trace15
record serves as a substitute for an OMPT callback that cannot be made on the device. The fields16
in each trace record type are defined in the description of the callback that the record represents.17
If this type of record is provided then the lookup function returns values for the runtime entry18
points ompt_set_trace_ompt and ompt_get_record_ompt, which support collecting19
and decoding OMPT traces. If the native tracing format for a device is the OMPT format then20
tracing can be controlled using the runtime entry points for native or OMPT tracing.21

• The tool uses the ompt_set_trace_native and/or the ompt_set_trace_ompt22
runtime entry point to specify what types of events or activities to monitor on the device. The23
return codes for ompt_set_trace_ompt and ompt_set_trace_native use the24
ompt_set_result_t enumeration type. If the ompt_set_trace_native /or the25
ompt_set_trace_ompt runtime entry point is called outside a device initializer, registration26
of supported callbacks may fail with a return code of ompt_set_error.27

• The tool initiates tracing on the device by invoking ompt_start_trace. Arguments to28
ompt_start_trace include two tool callbacks through which the OpenMP implementation29
can manage traces associated with the device. One allocates a buffer in which the device can30
deposit trace events. The second callback processes a buffer of trace events from the device.31

• If the device requires a trace buffer, the OpenMP implementation invokes the tool-supplied32
callback function on the host device to request a new buffer.33

• The OpenMP implementation monitors the execution of OpenMP constructs on the device and34
records a trace of events or activities into a trace buffer. If possible, device trace records are35
marked with a host_op_id—an identifier that associates device activities with the target operation36
that the host initiated to cause these activities. To correlate activities on the host with activities37
on a device, a tool can register a ompt_callback_target_submit callback. Before the38
host initiates each distinct activity associated with a structured block for a target construct on39
a device, the OpenMP implementation dispatches the ompt_callback_target_submit40
callback on the host in the thread that is executing the task that encounters the target construct.41

CHAPTER 4. OMPT INTERFACE 429

TABLE 4.3: OMPT Tracing Interface Runtime Entry Point Names and Their Type Signatures

Entry Point String Name Type Signature

“ompt_get_device_num_procs” ompt_get_device_num_procs_t

“ompt_get_device_time” ompt_get_device_time_t

“ompt_translate_time” ompt_translate_time_t

“ompt_set_trace_ompt” ompt_set_trace_ompt_t

“ompt_set_trace_native” ompt_set_trace_native_t

“ompt_start_trace” ompt_start_trace_t

“ompt_pause_trace” ompt_pause_trace_t

“ompt_flush_trace” ompt_flush_trace_t

“ompt_stop_trace” ompt_stop_trace_t

“ompt_advance_buffer_cursor” ompt_advance_buffer_cursor_t

“ompt_get_record_type” ompt_get_record_type_t

“ompt_get_record_ompt” ompt_get_record_ompt_t

“ompt_get_record_native” ompt_get_record_native_t

“ompt_get_record_abstract” ompt_get_record_abstract_t

430 OpenMP API – Version 5.0 November 2018

Examples of activities that could cause an ompt_callback_target_submit callback to1
be dispatched include an explicit data copy between a host and target device or execution of a2
computation. This callback provides the tool with a pair of identifiers: one that identifies the3
target region and a second that uniquely identifies an activity associated with that region. These4
identifiers help the tool correlate activities on the target device with their target region.5

• When appropriate, for example, when a trace buffer fills or needs to be flushed, the OpenMP6
implementation invokes the tool-supplied buffer completion callback to process a non-empty7
sequence of records in a trace buffer that is associated with the device.8

• The tool-supplied buffer completion callback may return immediately, ignoring records in the9
trace buffer, or it may iterate through them using the ompt_advance_buffer_cursor10
entry point to inspect each record. A tool may use the ompt_get_record_type runtime11
entry point to inspect the type of the record at the current cursor position. Three runtime entry12
points (ompt_get_record_ompt, ompt_get_record_native, and13
ompt_get_record_abstract) allow tools to inspect the contents of some or all records in14
a trace buffer. The ompt_get_record_native runtime entry point uses the native trace15
format of the device. The ompt_get_record_abstract runtime entry point decodes the16
contents of a native trace record and summarizes them as an ompt_record_abstract_t17
record. The ompt_get_record_ompt runtime entry point can only be used to retrieve18
records in OMPT format.19

• Once tracing has been started on a device, a tool may pause or resume tracing on the device at20
any time by invoking ompt_pause_trace with an appropriate flag value as an argument.21

• A tool may invoke the ompt_flush_trace runtime entry point for a device at any time22
between device initialization and finalization to cause the device to flush pending trace records.23

• At any time, a tool may use the ompt_start_trace runtime entry point to start tracing or the24
ompt_stop_trace runtime entry point to stop tracing on a device. When tracing is stopped25
on a device, the OpenMP implementation eventually gathers all trace records already collected26
on the device and presents them to the tool using the buffer completion callback.27

• An OpenMP implementation can be shut down while device tracing is in progress.28

• When an OpenMP implementation is shut down, it finalize each device. Device finalization29
occurs in three steps. First, the OpenMP implementation halts any tracing in progress for the30
device. Second, the OpenMP implementation flushes all trace records collected for the device31
and uses the buffer completion callback associated with that device to present them to the tool.32
Finally, the OpenMP implementation dispatches any ompt_callback_device_finalize33
callback registered for the device.34

Restrictions35

Tracing activity on devices has the following restriction:36

• Implementation-defined names must not start with the prefix ompt_, which is reserved for the37
OpenMP specification.38

CHAPTER 4. OMPT INTERFACE 431

Cross References1

• ompt_callback_device_initialize_t callback type, see Section 4.5.2.19 on2
page 482.3

• ompt_callback_device_finalize_t callback type, see Section 4.5.2.20 on page 484.4

• ompt_get_device_num_procs runtime entry point, see Section 4.6.2.1 on page 518.5

• ompt_get_device_time runtime entry point, see Section 4.6.2.2 on page 519.6

• ompt_translate_time runtime entry point, see Section 4.6.2.3 on page 520.7

• ompt_set_trace_ompt runtime entry point, see Section 4.6.2.4 on page 521.8

• ompt_set_trace_native runtime entry point, see Section 4.6.2.5 on page 522.9

• ompt_start_trace runtime entry point, see Section 4.6.2.6 on page 523.10

• ompt_pause_trace runtime entry point, see Section 4.6.2.7 on page 524.11

• ompt_flush_trace runtime entry point, see Section 4.6.2.8 on page 525.12

• ompt_stop_trace runtime entry point, see Section 4.6.2.9 on page 526.13

• ompt_advance_buffer_cursor runtime entry point, see Section 4.6.2.10 on page 527.14

• ompt_get_record_type runtime entry point, see Section 4.6.2.11 on page 528.15

• ompt_get_record_ompt runtime entry point, see Section 4.6.2.12 on page 529.16

• ompt_get_record_native runtime entry point, see Section 4.6.2.13 on page 530.17

• ompt_get_record_abstract runtime entry point, see Section 4.6.2.14 on page 531.18

4.3 Finalizing a First-Party Tool19

If the OMPT interface state is active, the tool finalizer, which has type signature20
ompt_finalize_t and is specified by the finalize field in the21
ompt_start_tool_result_t structure returned from the ompt_start_tool function, is22
called when the OpenMP implementation shuts down.23

Cross References24

• ompt_finalize_t callback type, see Section 4.5.1.2 on page 45825

432 OpenMP API – Version 5.0 November 2018

4.4 OMPT Data Types1

The C/C++ header file (omp-tools.h) provides the definitions of the types that are specified2
throughout this subsection.3

4.4.1 Tool Initialization and Finalization4

Summary5

A tool’s implementation of ompt_start_tool returns a pointer to an6
ompt_start_tool_result_t structure, which contains pointers to the tool’s initialization7
and finalization callbacks as well as an ompt_data_t object for use by the tool.8

Format9

C / C++
typedef struct ompt_start_tool_result_t {10

ompt_initialize_t initialize;11
ompt_finalize_t finalize;12
ompt_data_t tool_data;13

} ompt_start_tool_result_t;14

C / C++

Restrictions15

The ompt_start_tool_result_t type has the following restriction:16

• The initialize and finalize callback pointer values in an ompt_start_tool_result_t17
structure that ompt_start_tool returns must be non-null.18

Cross References19

• ompt_start_tool function, see Section 4.2.1 on page 420.20

• ompt_data_t type, see Section 4.4.4.4 on page 440.21

• ompt_initialize_t callback type, see Section 4.5.1.1 on page 457.22

• ompt_finalize_t callback type, see Section 4.5.1.2 on page 458.23

CHAPTER 4. OMPT INTERFACE 433

4.4.2 Callbacks1

Summary2

The ompt_callbacks_t enumeration type indicates the integer codes used to identify OpenMP3
callbacks when registering or querying them.4

Format5
C / C++

typedef enum ompt_callbacks_t {6
ompt_callback_thread_begin = 1,7
ompt_callback_thread_end = 2,8
ompt_callback_parallel_begin = 3,9
ompt_callback_parallel_end = 4,10
ompt_callback_task_create = 5,11
ompt_callback_task_schedule = 6,12
ompt_callback_implicit_task = 7,13
ompt_callback_target = 8,14
ompt_callback_target_data_op = 9,15
ompt_callback_target_submit = 10,16
ompt_callback_control_tool = 11,17
ompt_callback_device_initialize = 12,18
ompt_callback_device_finalize = 13,19
ompt_callback_device_load = 14,20
ompt_callback_device_unload = 15,21
ompt_callback_sync_region_wait = 16,22
ompt_callback_mutex_released = 17,23
ompt_callback_dependences = 18,24
ompt_callback_task_dependence = 19,25
ompt_callback_work = 20,26
ompt_callback_master = 21,27
ompt_callback_target_map = 22,28
ompt_callback_sync_region = 23,29
ompt_callback_lock_init = 24,30
ompt_callback_lock_destroy = 25,31
ompt_callback_mutex_acquire = 26,32
ompt_callback_mutex_acquired = 27,33
ompt_callback_nest_lock = 28,34
ompt_callback_flush = 29,35
ompt_callback_cancel = 30,36
ompt_callback_reduction = 31,37
ompt_callback_dispatch = 3238

} ompt_callbacks_t;39

C / C++

434 OpenMP API – Version 5.0 November 2018

4.4.3 Tracing1

OpenMP provides type definitions that support tracing with OMPT.2

4.4.3.1 Record Type3

Summary4

The ompt_record_t enumeration type indicates the integer codes used to identify OpenMP5
trace record formats.6

Format7

C / C++
typedef enum ompt_record_t {8

ompt_record_ompt = 1,9
ompt_record_native = 2,10
ompt_record_invalid = 311

} ompt_record_t;12

C / C++

4.4.3.2 Native Record Kind13

Summary14

The ompt_record_native_t enumeration type indicates the integer codes used to identify15
OpenMP native trace record contents.16

Format17

C / C++
typedef enum ompt_record_native_t {18

ompt_record_native_info = 1,19
ompt_record_native_event = 220

} ompt_record_native_t;21

C / C++

CHAPTER 4. OMPT INTERFACE 435

4.4.3.3 Native Record Abstract Type1

Summary2

The ompt_record_abstract_t type provides an abstract trace record format that is used to3
summarize native device trace records.4

Format5

C / C++
typedef struct ompt_record_abstract_t {6

ompt_record_native_t rclass;7
const char *type;8
ompt_device_time_t start_time;9
ompt_device_time_t end_time;10
ompt_hwid_t hwid;11

} ompt_record_abstract_t;12

C / C++

Description13

An ompt_record_abstract_t record contains information that a tool can use to process a14
native record that it may not fully understand. The rclass field indicates that the record is15
informational or that it represents an event; this information can help a tool determine how to16
present the record. The record type field points to a statically-allocated, immutable character string17
that provides a meaningful name that a tool can use to describe the event to a user. The start_time18
and end_time fields are used to place an event in time. The times are relative to the device clock. If19
an event does not have an associated start_time (end_time), the value of the start_time (end_time)20
field is ompt_time_none. The hardware identifier field, hwid, indicates the location on the21
device where the event occurred. A hwid may represent a hardware abstraction such as a core or a22
hardware thread identifier. The meaning of a hwid value for a device is implementation defined. If23
no hardware abstraction is associated with the record then the value of hwid is ompt_hwid_none.24

4.4.3.4 Record Type25

Summary26

The ompt_record_ompt_t type provides an standard complete trace record format.27

436 OpenMP API – Version 5.0 November 2018

Format1

C / C++
typedef struct ompt_record_ompt_t {2

ompt_callbacks_t type;3
ompt_device_time_t time;4
ompt_id_t thread_id;5
ompt_id_t target_id;6
union {7

ompt_record_thread_begin_t thread_begin;8
ompt_record_parallel_begin_t parallel_begin;9
ompt_record_parallel_end_t parallel_end;10
ompt_record_work_t work;11
ompt_record_dispatch_t dispatch;12
ompt_record_task_create_t task_create;13
ompt_record_dependences_t dependences;14
ompt_record_task_dependence_t task_dependence;15
ompt_record_task_schedule_t task_schedule;16
ompt_record_implicit_task_t implicit_task;17
ompt_record_master_t master;18
ompt_record_sync_region_t sync_region;19
ompt_record_mutex_acquire_t mutex_acquire;20
ompt_record_mutex_t mutex;21
ompt_record_nest_lock_t nest_lock;22
ompt_record_flush_t flush;23
ompt_record_cancel_t cancel;24
ompt_record_target_t target;25
ompt_record_target_data_op_t target_data_op;26
ompt_record_target_map_t target_map;27
ompt_record_target_kernel_t target_kernel;28
ompt_record_control_tool_t control_tool;29

} record;30
} ompt_record_ompt_t;31

C / C++

Description32

The field type specifies the type of record provided by this structure. According to the type, event33
specific information is stored in the matching record entry.34

Restrictions35

The ompt_record_ompt_t type has the following restriction:36

• If type is set to ompt_callback_thread_end_t then the value of record is undefined.37

CHAPTER 4. OMPT INTERFACE 437

4.4.4 Miscellaneous Type Definitions1

This section describes miscellaneous types and enumerations used by the tool interface.2

4.4.4.1 ompt_callback_t3

Summary4

Pointers to tool callback functions with different type signatures are passed to the5
ompt_set_callback runtime entry point and returned by the ompt_get_callback6
runtime entry point. For convenience, these runtime entry points expect all type signatures to be7
cast to a dummy type ompt_callback_t.8

Format9

C / C++
typedef void (*ompt_callback_t) (void);10

C / C++

4.4.4.2 ompt_set_result_t11

Summary12

The ompt_result_t enumeration type corresponds to values that the ompt_set_callback,13
ompt_set_trace_ompt and ompt_set_trace_native runtime entry points return.14

Format15

C / C++
typedef enum ompt_set_result_t {16

ompt_set_error = 0,17
ompt_set_never = 1,18
ompt_set_impossible = 2,19
ompt_set_sometimes = 3,20
ompt_set_sometimes_paired = 4,21
ompt_set_always = 522

} ompt_set_result_t;23

C / C++

438 OpenMP API – Version 5.0 November 2018

Description1

Values of ompt_set_result_t, may indicate several possible outcomes. The2
omp_set_error value indicates that the associated call failed. Otherwise, the value indicates3
when an event may occur and, when appropriate, dispatching a callback event leads to the4
invocation of the callback. The ompt_set_never value indicates that the event will never occur5
or that the callback will never be invoked at runtime. The ompt_set_impossible value6
indicates that the event may occur but that tracing of it is not possible. The7
ompt_set_sometimes value indicates that the event may occur and, for an8
implementation-defined subset of associated event occurrences, will be traced or the callback will9
be invoked at runtime. The ompt_set_sometimes_paired value indicates the same result as10
ompt_set_sometimes and, in addition, that a callback with an endpoint value of11
ompt_scope_begin will be invoked if and only if the same callback with an endpoint value of12
ompt_scope_end will also be invoked sometime in the future. The ompt_set_always value13
indicates that, whenever an associated event occurs, it will be traced or the callback will be invoked.14

Cross References15

• Monitoring activity on the host with OMPT, see Section 4.2.4 on page 425.16

• Tracing activity on target devices with OMPT, see Section 4.2.5 on page 427.17

• ompt_set_callback runtime entry point, see Section 4.6.1.3 on page 500.18

• ompt_set_trace_ompt runtime entry point, see Section 4.6.2.4 on page 521.19

• ompt_set_trace_native runtime entry point, see Section 4.6.2.5 on page 522.20

4.4.4.3 ompt_id_t21

Summary22

The ompt_id_t type is used to provide various identifiers to tools.23

Format24

C / C++
typedef uint64_t ompt_id_t;25

C / C++

CHAPTER 4. OMPT INTERFACE 439

Description1

When tracing asynchronous activity on devices, identifiers enable tools to correlate target regions2
and operations that the host initiates with associated activities on a target device. In addition,3
OMPT provides identifiers to refer to parallel regions and tasks that execute on a device. These4
various identifiers are of type ompt_id_t.5

ompt_id_none is defined as an instance of type ompt_id_t with the value 0.6

Restrictions7

The ompt_id_t type has the following restriction:8

• Identifiers created on each device must be unique from the time an OpenMP implementation is9
initialized until it is shut down. Identifiers for each target region and target operation instance10
that the host device initiates must be unique over time on the host. Identifiers for parallel and task11
region instances that execute on a device must be unique over time within that device.12

4.4.4.4 ompt_data_t13

Summary14

The ompt_data_t type represents data associated with threads and with parallel and task regions.15

Format16

C / C++
typedef union ompt_data_t {17

uint64_t value;18
void *ptr;19

} ompt_data_t;20

C / C++

Description21

The ompt_data_t type represents data that is reserved for tool use and that is related to a thread22
or to a parallel or task region. When an OpenMP implementation creates a thread or an instance of23
a parallel or task region, it initializes the associated ompt_data_t object with the value24
ompt_data_none, which is an instance of the type with the data and pointer fields equal to 0.25

440 OpenMP API – Version 5.0 November 2018

4.4.4.5 ompt_device_t1

Summary2

The ompt_device_t opaque object type represents a device.3

Format4

C / C++
typedef void ompt_device_t;5

C / C++

4.4.4.6 ompt_device_time_t6

Summary7

The ompt_device_time_t type represents raw device time values.8

Format9

C / C++
typedef uint64_t ompt_device_time_t;10

C / C++

Description11

The ompt_device_time_t opaque object type represents raw device time values.12
ompt_time_none refers to an unknown or unspecified time and is defined as an instance of type13
ompt_device_time_t with the value 0.14

4.4.4.7 ompt_buffer_t15

Summary16

The ompt_buffer_t opaque object type is a handle for a target buffer.17

Format18

C / C++
typedef void ompt_buffer_t;19

C / C++

CHAPTER 4. OMPT INTERFACE 441

4.4.4.8 ompt_buffer_cursor_t1

Summary2

The ompt_buffer_cursor_t opaque type is a handle for a position in a target buffer.3

Format4

C / C++
typedef uint64_t ompt_buffer_cursor_t;5

C / C++

4.4.4.9 ompt_dependence_t6

Summary7

The ompt_dependence_t type represents a task dependence.8

Format9

C / C++
typedef struct ompt_dependence_t {10

ompt_data_t variable;11
ompt_dependence_type_t dependence_type;12

} ompt_dependence_t;13

C / C++

Description14

The ompt_dependence_t type is a structure that holds information about a depend clause. For15
task dependences, the variable field points to the storage location of the dependence. For doacross16
dependences, the variable field contains the value of a vector element that describes the17
dependence. The dependence_type field indicates the type of the dependence.18

Cross References19

• ompt_dependence_type_t type, see Section 4.4.4.23 on page 450.20

442 OpenMP API – Version 5.0 November 2018

4.4.4.10 ompt_thread_t1

Summary2

The ompt_thread_t enumeration type defines the valid thread type values.3

Format4

C / C++
typedef enum ompt_thread_t {5

ompt_thread_initial = 1,6
ompt_thread_worker = 2,7
ompt_thread_other = 3,8
ompt_thread_unknown = 49

} ompt_thread_t;10

C / C++

Description11

Any initial thread has thread type ompt_thread_initial. All OpenMP threads that are not12
initial threads have thread type ompt_thread_worker. A thread that an OpenMP13
implementation uses but that does not execute user code has thread type ompt_thread_other.14
Any thread that is created outside an OpenMP implementation and that is not an initial thread has15
thread type ompt_thread_unknown.16

4.4.4.11 ompt_scope_endpoint_t17

Summary18

The ompt_scope_endpoint_t enumeration type defines valid scope endpoint values.19

Format20

C / C++
typedef enum ompt_scope_endpoint_t {21

ompt_scope_begin = 1,22
ompt_scope_end = 223

} ompt_scope_endpoint_t;24

C / C++

CHAPTER 4. OMPT INTERFACE 443

4.4.4.12 ompt_dispatch_t1

Summary2

The ompt_dispatch_t enumeration type defines the valid dispatch kind values.3

Format4

C / C++
typedef enum ompt_dispatch_t {5

ompt_dispatch_iteration = 1,6
ompt_dispatch_section = 27

} ompt_dispatch_t;8

C / C++

4.4.4.13 ompt_sync_region_t9

Summary10

The ompt_sync_region_t enumeration type defines the valid synchronization region kind11
values.12

Format13

C / C++
typedef enum ompt_sync_region_t {14

ompt_sync_region_barrier = 1,15
ompt_sync_region_barrier_implicit = 2,16
ompt_sync_region_barrier_explicit = 3,17
ompt_sync_region_barrier_implementation = 4,18
ompt_sync_region_taskwait = 5,19
ompt_sync_region_taskgroup = 6,20
ompt_sync_region_reduction = 721

} ompt_sync_region_t;22

C / C++

4.4.4.14 ompt_target_data_op_t23

Summary24

The ompt_target_data_op_t enumeration type defines the valid target data operation values.25

444 OpenMP API – Version 5.0 November 2018

Format1

C / C++
typedef enum ompt_target_data_op_t {2

ompt_target_data_alloc = 1,3
ompt_target_data_transfer_to_device = 2,4
ompt_target_data_transfer_from_device = 3,5
ompt_target_data_delete = 4,6
ompt_target_data_associate = 5,7
ompt_target_data_disassociate = 68

} ompt_target_data_op_t;9

C / C++

4.4.4.15 ompt_work_t10

Summary11

The ompt_work_t enumeration type defines the valid work type values.12

Format13

C / C++
typedef enum ompt_work_t {14

ompt_work_loop = 1,15
ompt_work_sections = 2,16
ompt_work_single_executor = 3,17
ompt_work_single_other = 4,18
ompt_work_workshare = 5,19
ompt_work_distribute = 6,20
ompt_work_taskloop = 721

} ompt_work_t;22

C / C++

4.4.4.16 ompt_mutex_t23

Summary24

The ompt_mutex_t enumeration type defines the valid mutex kind values.25

CHAPTER 4. OMPT INTERFACE 445

Format1

C / C++
typedef enum ompt_mutex_t {2

ompt_mutex_lock = 1,3
ompt_mutex_test_lock = 2,4
ompt_mutex_nest_lock = 3,5
ompt_mutex_test_nest_lock = 4,6
ompt_mutex_critical = 5,7
ompt_mutex_atomic = 6,8
ompt_mutex_ordered = 79

} ompt_mutex_t;10

C / C++

4.4.4.17 ompt_native_mon_flag_t11

Summary12

The ompt_native_mon_flag_t enumeration type defines the valid native monitoring flag13
values.14

Format15

C / C++
typedef enum ompt_native_mon_flag_t {16

ompt_native_data_motion_explicit = 0x01,17
ompt_native_data_motion_implicit = 0x02,18
ompt_native_kernel_invocation = 0x04,19
ompt_native_kernel_execution = 0x08,20
ompt_native_driver = 0x10,21
ompt_native_runtime = 0x20,22
ompt_native_overhead = 0x40,23
ompt_native_idleness = 0x8024

} ompt_native_mon_flag_t;25

C / C++

4.4.4.18 ompt_task_flag_t26

Summary27

The ompt_task_flag_t enumeration type defines valid task types.28

446 OpenMP API – Version 5.0 November 2018

Format1

C / C++
typedef enum ompt_task_flag_t {2

ompt_task_initial = 0x00000001,3
ompt_task_implicit = 0x00000002,4
ompt_task_explicit = 0x00000004,5
ompt_task_target = 0x00000008,6
ompt_task_undeferred = 0x08000000,7
ompt_task_untied = 0x10000000,8
ompt_task_final = 0x20000000,9
ompt_task_mergeable = 0x40000000,10
ompt_task_merged = 0x8000000011

} ompt_task_flag_t;12

C / C++

Description13

The ompt_task_flag_t enumeration type defines valid task type values. The least significant14
byte provides information about the general classification of the task. The other bits represent15
properties of the task.16

4.4.4.19 ompt_task_status_t17

Summary18

The ompt_task_status_t enumeration type indicates the reason that a task was switched19
when it reached a task scheduling point.20

Format21

C / C++
typedef enum ompt_task_status_t {22

ompt_task_complete = 1,23
ompt_task_yield = 2,24
ompt_task_cancel = 3,25
ompt_task_detach = 4,26
ompt_task_early_fulfill = 5,27
ompt_task_late_fulfill = 6,28
ompt_task_switch = 729

} ompt_task_status_t;30

C / C++

CHAPTER 4. OMPT INTERFACE 447

Description1

The value ompt_task_complete of the ompt_task_status_t type indicates that the task2
that encountered the task scheduling point completed execution of the associated structured-block3
and an associated allow-completion-event was fulfilled. The value ompt_task_yield indicates4
that the task encountered a taskyield construct. The value ompt_task_cancel indicates5
that the task was canceled when it encountered an active cancellation point. The value6
ompt_task_detach indicates that a task with detach clause completed execution of the7
associated structured-block and is waiting for an allow-completion-event to be fulfilled. The value8
ompt_task_early_fulfill indicates that the allow-completion-event of the task is fulfilled9
before the task completed execution of the associated structured-block. The value10
ompt_task_late_fulfill indicates that the allow-completion-event of the task is fulfilled11
after the task completed execution of the associated structured-block. The value12
ompt_task_switch is used for all other cases that a task was switched.13

4.4.4.20 ompt_target_t14

Summary15

The ompt_target_t enumeration type defines the valid target type values.16

Format17

C / C++
typedef enum ompt_target_t {18

ompt_target = 1,19
ompt_target_enter_data = 2,20
ompt_target_exit_data = 3,21
ompt_target_update = 422

} ompt_target_t;23

C / C++

4.4.4.21 ompt_parallel_flag_t24

Summary25

The ompt_parallel_flag_t enumeration type defines valid invoker values.26

448 OpenMP API – Version 5.0 November 2018

Format1

C / C++
typedef enum ompt_parallel_flag_t {2

ompt_parallel_invoker_program = 0x00000001,3
ompt_parallel_invoker_runtime = 0x00000002,4
ompt_parallel_league = 0x40000000,5
ompt_parallel_team = 0x800000006

} ompt_parallel_flag_t;7

C / C++

Description8

The ompt_parallel_flag_t enumeration type defines valid invoker values, which indicate9
how an outlined function is invoked.10

The value ompt_parallel_invoker_program indicates that the outlined function11
associated with implicit tasks for the region is invoked directly by the application on the master12
thread for a parallel region.13

The value ompt_parallel_invoker_runtime indicates that the outlined function14
associated with implicit tasks for the region is invoked by the runtime on the master thread for a15
parallel region.16

The value ompt_parallel_league indicates that the callback is invoked due to the creation of17
a league of teams by a teams construct.18

The value ompt_parallel_team indicates that the callback is invoked due to the creation of a19
team of threads by a parallel construct.20

4.4.4.22 ompt_target_map_flag_t21

Summary22

The ompt_target_map_flag_t enumeration type defines the valid target map flag values.23

CHAPTER 4. OMPT INTERFACE 449

Format1

C / C++
typedef enum ompt_target_map_flag_t {2

ompt_target_map_flag_to = 0x01,3
ompt_target_map_flag_from = 0x02,4
ompt_target_map_flag_alloc = 0x04,5
ompt_target_map_flag_release = 0x08,6
ompt_target_map_flag_delete = 0x10,7
ompt_target_map_flag_implicit = 0x208

} ompt_target_map_flag_t;9

C / C++

4.4.4.23 ompt_dependence_type_t10

Summary11

The ompt_dependence_type_t enumeration type defines the valid task dependence type12
values.13

Format14

C / C++
typedef enum ompt_dependence_type_t {15

ompt_dependence_type_in = 1,16
ompt_dependence_type_out = 2,17
ompt_dependence_type_inout = 3,18
ompt_dependence_type_mutexinoutset = 4,19
ompt_dependence_type_source = 5,20
ompt_dependence_type_sink = 621

} ompt_dependence_type_t;22

C / C++

4.4.4.24 ompt_cancel_flag_t23

Summary24

The ompt_cancel_flag_t enumeration type defines the valid cancel flag values.25

450 OpenMP API – Version 5.0 November 2018

Format1

C / C++
typedef enum ompt_cancel_flag_t {2

ompt_cancel_parallel = 0x01,3
ompt_cancel_sections = 0x02,4
ompt_cancel_loop = 0x04,5
ompt_cancel_taskgroup = 0x08,6
ompt_cancel_activated = 0x10,7
ompt_cancel_detected = 0x20,8
ompt_cancel_discarded_task = 0x409

} ompt_cancel_flag_t;10

C / C++

4.4.4.25 ompt_hwid_t11

Summary12

The ompt_hwid_t opaque type is a handle for a hardware identifier for a target device.13

Format14

C / C++
typedef uint64_t ompt_hwid_t;15

C / C++

Description16

The ompt_hwid_t opaque type is a handle for a hardware identifier for a target device.17
ompt_hwid_none is an instance of the type that refers to an unknown or unspecified hardware18
identifier and that has the value 0. If no hwid is associated with an19
ompt_record_abstract_t then the value of hwid is ompt_hwid_none.20

Cross References21

• ompt_record_abstract_t type, see Section 4.4.3.3 on page 436.22

CHAPTER 4. OMPT INTERFACE 451

4.4.4.26 ompt_state_t1

Summary2

If the OMPT interface is in the active state then an OpenMP implementation must maintain thread3
state information for each thread. The thread state maintained is an approximation of the4
instantaneous state of a thread.5

Format6

C / C++
A thread state must be one of the values of the enumeration type ompt_state_t or an7
implementation-defined state value of 512 or higher.8

typedef enum ompt_state_t {9
ompt_state_work_serial = 0x000,10
ompt_state_work_parallel = 0x001,11
ompt_state_work_reduction = 0x002,12

13
ompt_state_wait_barrier = 0x010,14
ompt_state_wait_barrier_implicit_parallel = 0x011,15
ompt_state_wait_barrier_implicit_workshare = 0x012,16
ompt_state_wait_barrier_implicit = 0x013,17
ompt_state_wait_barrier_explicit = 0x014,18

19
ompt_state_wait_taskwait = 0x020,20
ompt_state_wait_taskgroup = 0x021,21

22
ompt_state_wait_mutex = 0x040,23
ompt_state_wait_lock = 0x041,24
ompt_state_wait_critical = 0x042,25
ompt_state_wait_atomic = 0x043,26
ompt_state_wait_ordered = 0x044,27

28
ompt_state_wait_target = 0x080,29
ompt_state_wait_target_map = 0x081,30
ompt_state_wait_target_update = 0x082,31

32
ompt_state_idle = 0x100,33
ompt_state_overhead = 0x101,34
ompt_state_undefined = 0x10235

} ompt_state_t;36

C / C++

452 OpenMP API – Version 5.0 November 2018

Description1

A tool can query the OpenMP state of a thread at any time. If a tool queries the state of a thread that2
is not associated with OpenMP then the implementation reports the state as3
ompt_state_undefined.4

The value ompt_state_work_serial indicates that the thread is executing code outside all5
parallel regions.6

The value ompt_state_work_parallel indicates that the thread is executing code within the7
scope of a parallel region.8

The value ompt_state_work_reduction indicates that the thread is combining partial9
reduction results from threads in its team. An OpenMP implementation may never report a thread10
in this state; a thread that is combining partial reduction results may have its state reported as11
ompt_state_work_parallel or ompt_state_overhead.12

The value ompt_state_wait_barrier indicates that the thread is waiting at either an13
implicit or explicit barrier. An implementation may never report a thread in this state; instead, a14
thread may have its state reported as ompt_state_wait_barrier_implicit or15
ompt_state_wait_barrier_explicit, as appropriate.16

The value ompt_state_wait_barrier_implicit indicates that the thread is waiting at an17
implicit barrier in a parallel region. An OpenMP implementation may report18
ompt_state_wait_barrier for implicit barriers.19

The value ompt_state_wait_barrier_implicit_parallel indicates that the thread is20
waiting at an implicit barrier at the end of a parallel region. An OpenMP implementation may21
report ompt_state_wait_barrier or ompt_state_wait_barrier_implicit for22
these barriers.23

The value ompt_state_wait_barrier_implicit_workshare indicates that the thread24
is waiting at an implicit barrier at the end of a worksharing construct. An OpenMP implementation25
may report ompt_state_wait_barrier or ompt_state_wait_barrier_implicit26
for these barriers.27

The value ompt_state_wait_barrier_explicit indicates that the thread is waiting in a28
barrier region. An OpenMP implementation may report ompt_state_wait_barrier for29
these barriers.30

The value ompt_state_wait_taskwait indicates that the thread is waiting at a taskwait31
construct.32

The value ompt_state_wait_taskgroup indicates that the thread is waiting at the end of a33
taskgroup construct.34

The value ompt_state_wait_mutex indicates that the thread is waiting for a mutex of an35
unspecified type.36

CHAPTER 4. OMPT INTERFACE 453

The value ompt_state_wait_lock indicates that the thread is waiting for a lock or nestable1
lock.2

The value ompt_state_wait_critical indicates that the thread is waiting to enter a3
critical region.4

The value ompt_state_wait_atomic indicates that the thread is waiting to enter an atomic5
region.6

The value ompt_state_wait_ordered indicates that the thread is waiting to enter an7
ordered region.8

The value ompt_state_wait_target indicates that the thread is waiting for a target9
region to complete.10

The value ompt_state_wait_target_map indicates that the thread is waiting for a target11
data mapping operation to complete. An implementation may report12
ompt_state_wait_target for target data constructs.13

The value ompt_state_wait_target_update indicates that the thread is waiting for a14
target update operation to complete. An implementation may report15
ompt_state_wait_target for target update constructs.16

The value ompt_state_idle indicates that the thread is idle, that is, it is not part of an17
OpenMP team.18

The value ompt_state_overhead indicates that the thread is in the overhead state at any point19
while executing within the OpenMP runtime, except while waiting at a synchronization point.20

The value ompt_state_undefined indicates that the native thread is not created by the21
OpenMP implementation.22

4.4.4.27 ompt_frame_t23

Summary24

The ompt_frame_t type describes procedure frame information for an OpenMP task.25

Format26

C / C++
typedef struct ompt_frame_t {27

ompt_data_t exit_frame;28
ompt_data_t enter_frame;29
int exit_frame_flags;30
int enter_frame_flags;31

} ompt_frame_t;32

C / C++

454 OpenMP API – Version 5.0 November 2018

Description1

Each ompt_frame_t object is associated with the task to which the procedure frames belong.2
Each non-merged initial, implicit, explicit, or target task with one or more frames on the stack of a3
native thread has an associated ompt_frame_t object.4

The exit_frame field of an ompt_frame_t object contains information to identify the first5
procedure frame executing the task region. The exit_frame for the ompt_frame_t object6
associated with the initial task that is not nested inside any OpenMP construct is NULL.7

The enter_frame field of an ompt_frame_t object contains information to identify the latest still8
active procedure frame executing the task region before entering the OpenMP runtime9
implementation or before executing a different task. If a task with frames on the stack has not been10
suspended, the value of enter_frame for the ompt_frame_t object associated with the task may11
contain NULL.12

For exit_frame, the exit_frame_flags and, for enter_frame, the enter_frame_flags field indicates that13
the provided frame information points to a runtime or an application frame address. The same14
fields also specify the kind of information that is provided to identify the frame, These fields are a15
disjunction of values in the ompt_frame_flag_t enumeration type.16

The lifetime of an ompt_frame_t object begins when a task is created and ends when the task is17
destroyed. Tools should not assume that a frame structure remains at a constant location in memory18
throughout the lifetime of the task. A pointer to an ompt_frame_t object is passed to some19
callbacks; a pointer to the ompt_frame_t object of a task can also be retrieved by a tool at any20
time, including in a signal handler, by invoking the ompt_get_task_info runtime entry point21
(described in Section 4.6.1.14). A pointer to an ompt_frame_t object that a tool retrieved is22
valid as long as the tool does not pass back control to the OpenMP implementation.23

24

Note – A monitoring tool that uses asynchronous sampling can observe values of exit_frame and25
enter_frame at inconvenient times. Tools must be prepared to handle ompt_frame_t objects26
observed just prior to when their field values will be set or cleared.27

28

4.4.4.28 ompt_frame_flag_t29

Summary30

The ompt_frame_flag_t enumeration type defines valid frame information flags.31

CHAPTER 4. OMPT INTERFACE 455

Format1

C / C++
typedef enum ompt_frame_flag_t {2

ompt_frame_runtime = 0x00,3
ompt_frame_application = 0x01,4
ompt_frame_cfa = 0x10,5
ompt_frame_framepointer = 0x20,6
ompt_frame_stackaddress = 0x307

} ompt_frame_flag_t;8

C / C++

Description9

The value ompt_frame_runtime of the ompt_frame_flag_t type indicates that a frame10
address is a procedure frame in the OpenMP runtime implementation. The value11
ompt_frame_application of the ompt_frame_flag_t type indicates that an exit frame12
address is a procedure frame in the OpenMP application.13

Higher order bits indicate the kind of provided information that is unique for the particular frame14
pointer. The value ompt_frame_cfa indicates that a frame address specifies a canonical frame15
address. The value ompt_frame_framepointer indicates that a frame address provides the16
value of the frame pointer register. The value ompt_frame_stackaddress indicates that a17
frame address specifies a pointer address that is contained in the current stack frame.18

4.4.4.29 ompt_wait_id_t19

Summary20

The ompt_wait_id_t type describes wait identifiers for an OpenMP thread.21

Format22

C / C++
typedef uint64_t ompt_wait_id_t;23

C / C++

456 OpenMP API – Version 5.0 November 2018

Description1

Each thread maintains a wait identifier of type ompt_wait_id_t. When a task that a thread2
executes is waiting for mutual exclusion, the wait identifier of the thread indicates the reason that3
the thread is waiting. A wait identifier may represent a critical section name, a lock, a program4
variable accessed in an atomic region, or a synchronization object that is internal to an OpenMP5
implementation. When a thread is not in a wait state then the value of the wait identifier of the6
thread is undefined.7

ompt_wait_id_none is defined as an instance of type ompt_wait_id_t with the value 0.8

4.5 OMPT Tool Callback Signatures and Trace Records9

The C/C++ header file (omp-tools.h) provides the definitions of the types that are specified10
throughout this subsection.11

Restrictions12

• Tool callbacks may not use OpenMP directives or call any runtime library routines described in13
Section 3.14

4.5.1 Initialization and Finalization Callback Signature15

4.5.1.1 ompt_initialize_t16

Summary17

A callback with type signature ompt_initialize_t initializes use of the OMPT interface.18

Format19

C / C++
typedef int (*ompt_initialize_t) (20

ompt_function_lookup_t lookup,21
int initial_device_num,22
ompt_data_t *tool_data23

);24

C / C++

CHAPTER 4. OMPT INTERFACE 457

Description1

To use the OMPT interface, an implementation of ompt_start_tool must return a non-null2
pointer to an ompt_start_tool_result_t structure that contains a non-null pointer to a tool3
initializer with type signature ompt_initialize_t. An OpenMP implementation will call the4
initializer after fully initializing itself but before beginning execution of any OpenMP construct or5
completing execution of any environment routine invocation.6

The initializer returns a non-zero value if it succeeds.7

Description of Arguments8

The lookup argument is a callback to an OpenMP runtime routine that must be used to obtain a9
pointer to each runtime entry point in the OMPT interface. The initial_device_num argument10
provides the value of omp_get_initial_device(). The tool_data argument is a pointer to11
the tool_data field in the ompt_start_tool_result_t structure that ompt_start_tool12
returned. The expected actions of an initializer are described in Section 4.2.3.13

Cross References14

• omp_get_initial_device routine, see Section 3.2.41 on page 376.15

• ompt_start_tool function, see Section 4.2.1 on page 420.16

• ompt_start_tool_result_t type, see Section 4.4.1 on page 433.17

• ompt_data_t type, see Section 4.4.4.4 on page 440.18

• ompt_function_lookup_t type, see Section 4.6.3 on page 531.19

4.5.1.2 ompt_finalize_t20

Summary21

A tool implements a finalizer with the type signature ompt_finalize_t to finalize the tool’s22
use of the OMPT interface.23

Format24

C / C++
typedef void (*ompt_finalize_t) (25

ompt_data_t *tool_data26
);27

C / C++

458 OpenMP API – Version 5.0 November 2018

Description1

To use the OMPT interface, an implementation ofompt_start_tool must return a non-null2
pointer to an ompt_start_tool_result_t structure that contains a non-null pointer to a tool3
finalizer with type signature ompt_finalize_t. An OpenMP implementation will call the tool4
finalizer after the last OMPT event as the OpenMP implementation shuts down.5

Description of Arguments6

The tool_data argument is a pointer to the tool_data field in the7
ompt_start_tool_result_t structure returned by ompt_start_tool.8

Cross References9

• ompt_start_tool function, see Section 4.2.1 on page 420.10

• ompt_start_tool_result_t type, see Section 4.4.1 on page 433.11

• ompt_data_t type, see Section 4.4.4.4 on page 440.12

4.5.2 Event Callback Signatures and Trace Records13

This section describes the signatures of tool callback functions that an OMPT tool may register and14
that are called during runtime of an OpenMP program. An implementation may also provide a trace15
of events per device. Along with the callbacks, the following defines standard trace records. For the16
trace records, tool data arguments are replaced by an ID, which must be initialized by the OpenMP17
implementation. Each of parallel_id, task_id, and thread_id must be unique per target region. Tool18
implementations of callbacks are not required to be async signal safe.19

Cross References20

• ompt_id_t type, see Section 4.4.4.3 on page 439.21

• ompt_data_t type, see Section 4.4.4.4 on page 440.22

4.5.2.1 ompt_callback_thread_begin_t23

Summary24

The ompt_callback_thread_begin_t type is used for callbacks that are dispatched when25
native threads are created.26

CHAPTER 4. OMPT INTERFACE 459

Format1

C / C++
typedef void (*ompt_callback_thread_begin_t) (2

ompt_thread_t thread_type,3
ompt_data_t *thread_data4

);5

C / C++

Trace Record6

C / C++
typedef struct ompt_record_thread_begin_t {7

ompt_thread_t thread_type;8
} ompt_record_thread_begin_t;9

C / C++

Description of Arguments10

The thread_type argument indicates the type of the new thread: initial, worker, or other. The11
binding of the thread_data argument is the new thread.12

Cross References13

• parallel construct, see Section 2.6 on page 74.14

• teams construct, see Section 2.7 on page 82.15

• Initial task, see Section 2.10.5 on page 148.16

• ompt_data_t type, see Section 4.4.4.4 on page 440.17

• ompt_thread_t type, see Section 4.4.4.10 on page 443.18

4.5.2.2 ompt_callback_thread_end_t19

Summary20

The ompt_callback_thread_end_t type is used for callbacks that are dispatched when21
native threads are destroyed.22

460 OpenMP API – Version 5.0 November 2018

Format1

C / C++
typedef void (*ompt_callback_thread_end_t) (2

ompt_data_t *thread_data3
);4

C / C++

Description of Arguments5

The binding of the thread_data argument is the thread that will be destroyed.6

Cross References7

• parallel construct, see Section 2.6 on page 74.8

• teams construct, see Section 2.7 on page 82.9

• Initial task, see Section 2.10.5 on page 148.10

• ompt_record_ompt_t type, see Section 4.4.3.4 on page 436.11

• ompt_data_t type, see Section 4.4.4.4 on page 440.12

4.5.2.3 ompt_callback_parallel_begin_t13

Summary14

The ompt_callback_parallel_begin_t type is used for callbacks that are dispatched15
when parallel and teams regions start.16

Format17

C / C++
typedef void (*ompt_callback_parallel_begin_t) (18

ompt_data_t *encountering_task_data,19
const ompt_frame_t *encountering_task_frame,20
ompt_data_t *parallel_data,21
unsigned int requested_parallelism,22
int flags,23
const void *codeptr_ra24

);25

C / C++

CHAPTER 4. OMPT INTERFACE 461

Trace Record1

C / C++
typedef struct ompt_record_parallel_begin_t {2

ompt_id_t encountering_task_id;3
ompt_id_t parallel_id;4
unsigned int requested_parallelism;5
int flags;6
const void *codeptr_ra;7

} ompt_record_parallel_begin_t;8

C / C++

Description of Arguments9

The binding of the encountering_task_data argument is the encountering task.10

The encountering_task_frame argument points to the frame object that is associated with the11
encountering task.12

The binding of the parallel_data argument is the parallel or teams region that is beginning.13

The requested_parallelism argument indicates the number of threads or teams that the user14
requested.15

The flags argument indicates whether the code for the region is inlined into the application or16
invoked by the runtime and also whether the region is a parallel or teams region. Valid values17
for flags are a disjunction of elements in the enum ompt_parallel_flag_t.18

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a19
runtime routine implements the region associated with a callback that has type signature20
ompt_callback_parallel_begin_t then codeptr_ra contains the return address of the call21
to that runtime routine. If the implementation the region is inlined then codeptr_ra contains the22
return address of the invocation of the callback. If attribution to source code is impossible or23
inappropriate, codeptr_ra may be NULL.24

Cross References25

• parallel construct, see Section 2.6 on page 74.26

• teams construct, see Section 2.7 on page 82.27

• ompt_data_t type, see Section 4.4.4.4 on page 440.28

• ompt_parallel_flag_t type, see Section 4.4.4.21 on page 448.29

• ompt_frame_t type, see Section 4.4.4.27 on page 454.30

462 OpenMP API – Version 5.0 November 2018

4.5.2.4 ompt_callback_parallel_end_t1

Summary2

The ompt_callback_parallel_end_t type is used for callbacks that are dispatched when3
parallel and teams regions ends.4

Format5

C / C++
typedef void (*ompt_callback_parallel_end_t) (6

ompt_data_t *parallel_data,7
ompt_data_t *encountering_task_data,8
int flags,9
const void *codeptr_ra10

);11

C / C++

Trace Record12

C / C++
typedef struct ompt_record_parallel_end_t {13

ompt_id_t parallel_id;14
ompt_id_t encountering_task_id;15
int flags;16
const void *codeptr_ra;17

} ompt_record_parallel_end_t;18

C / C++

Description of Arguments19

The binding of the parallel_data argument is the parallel or teams region that is ending.20

The binding of the encountering_task_data argument is the encountering task.21

The flags argument indicates whether the execution of the region is inlined into the application or22
invoked by the runtime and also whether it is a parallel or teams region. Values for flags are a23
disjunction of elements in the enum ompt_parallel_flag_t.24

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a25
runtime routine implements the region associated with a callback that has type signature26
ompt_callback_parallel_end_t then codeptr_ra contains the return address of the call to27
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the28
return address of the invocation of the callback. If attribution to source code is impossible or29
inappropriate, codeptr_ra may be NULL.30

CHAPTER 4. OMPT INTERFACE 463

Cross References1

• parallel construct, see Section 2.6 on page 74.2

• teams construct, see Section 2.7 on page 82.3

• ompt_data_t type, see Section 4.4.4.4 on page 440.4

• ompt_parallel_flag_t type, see Section 4.4.4.21 on page 448.5

4.5.2.5 ompt_callback_work_t6

Summary7

The ompt_callback_work_t type is used for callbacks that are dispatched when worksharing8
regions, loop-related regions, and taskloop regions begin and end.9

Format10

C / C++
typedef void (*ompt_callback_work_t) (11

ompt_work_t wstype,12
ompt_scope_endpoint_t endpoint,13
ompt_data_t *parallel_data,14
ompt_data_t *task_data,15
uint64_t count,16
const void *codeptr_ra17

);18

C / C++

Trace Record19

C / C++
typedef struct ompt_record_work_t {20

ompt_work_t wstype;21
ompt_scope_endpoint_t endpoint;22
ompt_id_t parallel_id;23
ompt_id_t task_id;24
uint64_t count;25
const void *codeptr_ra;26

} ompt_record_work_t;27

C / C++

464 OpenMP API – Version 5.0 November 2018

Description of Arguments1

The wstype argument indicates the kind of region.2

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a3
scope.4

The binding of the parallel_data argument is the current parallel region.5

The binding of the task_data argument is the current task.6

The count argument is a measure of the quantity of work involved in the construct. For a7
worksharing-loop construct, count represents the number of iterations of the loop. For a8
taskloop construct, count represents the number of iterations in the iteration space, which may9
be the result of collapsing several associated loops. For a sections construct, count represents10
the number of sections. For a workshare construct, count represents the units of work, as defined11
by the workshare construct. For a single construct, count is always 1. When the endpoint12
argument signals the end of a scope, a count value of 0 indicates that the actual count value is not13
available.14

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a15
runtime routine implements the region associated with a callback that has type signature16
ompt_callback_work_t then codeptr_ra contains the return address of the call to that17
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return18
address of the invocation of the callback. If attribution to source code is impossible or19
inappropriate, codeptr_ra may be NULL.20

Cross References21

• Worksharing constructs, see Section 2.8 on page 86 and Section 2.9.2 on page 101.22

• Loop-related constructs, see Section 2.9 on page 95.23

• taskloop construct, see Section 2.10.2 on page 140.24

• ompt_data_t type, see Section 4.4.4.4 on page 440.25

• ompt_scope_endpoint_t type, see Section 4.4.4.11 on page 443.26

• ompt_work_t type, see Section 4.4.4.15 on page 445.27

4.5.2.6 ompt_callback_dispatch_t28

Summary29

The ompt_callback_dispatch_t type is used for callbacks that are dispatched when a30
thread begins to execute a section or loop iteration.31

CHAPTER 4. OMPT INTERFACE 465

Format1

C / C++
typedef void (*ompt_callback_dispatch_t) (2

ompt_data_t *parallel_data,3
ompt_data_t *task_data,4
ompt_dispatch_t kind,5
ompt_data_t instance6

);7

C / C++

Trace Record8

C / C++
typedef struct ompt_record_dispatch_t {9

ompt_id_t parallel_id;10
ompt_id_t task_id;11
ompt_dispatch_t kind;12
ompt_data_t instance;13

} ompt_record_dispatch_t;14

C / C++

Description of Arguments15

The binding of the parallel_data argument is the current parallel region.16

The binding of the task_data argument is the implicit task that executes the structured block of the17
parallel region.18

The kind argument indicates whether a loop iteration or a section is being dispatched.19

For a loop iteration, the instance.value argument contains the iteration variable value. For a20
structured block in the sections construct, instance.ptr contains a code address that identifies21
the structured block. In cases where a runtime routine implements the structured block associated22
with this callback, instance.ptr contains the return address of the call to the runtime routine. In23
cases where the implementation of the structured block is inlined, instance.ptr contains the return24
address of the invocation of this callback.25

466 OpenMP API – Version 5.0 November 2018

Cross References1

• sections and section constructs, see Section 2.8.1 on page 86.2

• Worksharing-loop construct, see Section 2.9.2 on page 101.3

• taskloop construct, see Section 2.10.2 on page 140.4

• ompt_data_t type, see Section 4.4.4.4 on page 440.5

• ompt_dispatch_t type, see Section 4.4.4.12 on page 444.6

4.5.2.7 ompt_callback_task_create_t7

Summary8

The ompt_callback_task_create_t type is used for callbacks that are dispatched when9
task regions or initial tasks are generated.10

Format11

C / C++
typedef void (*ompt_callback_task_create_t) (12

ompt_data_t *encountering_task_data,13
const ompt_frame_t *encountering_task_frame,14
ompt_data_t *new_task_data,15
int flags,16
int has_dependences,17
const void *codeptr_ra18

);19

C / C++

Trace Record20

C / C++
typedef struct ompt_record_task_create_t {21

ompt_id_t encountering_task_id;22
ompt_id_t new_task_id;23
int flags;24
int has_dependences;25
const void *codeptr_ra;26

} ompt_record_task_create_t;27

C / C++

CHAPTER 4. OMPT INTERFACE 467

Description of Arguments1

The binding of the encountering_task_data argument is the encountering task. This argument is2
NULL for an initial task.3

The encountering_task_frame argument points to the frame object associated with the encountering4
task. This argument is NULL for an initial task.5

The binding of the new_task_data argument is the generated task.6

The flags argument indicates the kind of the task (initial, explicit, or target) that is generated.7
Values for flags are a disjunction of elements in the ompt_task_flag_t enumeration type.8

The has_dependences argument is true if the generated task has dependences and false otherwise.9

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a10
runtime routine implements the region associated with a callback that has type signature11
ompt_callback_task_create_t then codeptr_ra contains the return address of the call to12
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the13
return address of the invocation of the callback. If attribution to source code is impossible or14
inappropriate, codeptr_ra may be NULL.15

Cross References16

• task construct, see Section 2.10.1 on page 135.17

• Initial task, see Section 2.10.5 on page 148.18

• ompt_data_t type, see Section 4.4.4.4 on page 440.19

• ompt_task_flag_t type, see Section 4.4.4.18 on page 446.20

• ompt_frame_t type, see Section 4.4.4.27 on page 454.21

4.5.2.8 ompt_callback_dependences_t22

Summary23

The ompt_callback_dependences_t type is used for callbacks that are related to24
dependences and that are dispatched when new tasks are generated and when ordered constructs25
are encountered.26

468 OpenMP API – Version 5.0 November 2018

Format1

C / C++
typedef void (*ompt_callback_dependences_t) (2

ompt_data_t *task_data,3
const ompt_dependence_t *deps,4
int ndeps5

);6

C / C++

Trace Record7

C / C++
typedef struct ompt_record_dependences_t {8

ompt_id_t task_id;9
ompt_dependence_t dep;10
int ndeps;11

} ompt_record_dependences_t;12

C / C++

Description of Arguments13

The binding of the task_data argument is the generated task.14

The deps argument lists dependences of the new task or the dependence vector of the ordered15
construct.16

The ndeps argument specifies the length of the list passed by the deps argument. The memory for17
deps is owned by the caller; the tool cannot rely on the data after the callback returns.18

The performance monitor interface for tracing activity on target devices provides one record per19
dependence.20

Cross References21

• ordered construct, see Section 2.17.9 on page 250.22

• depend clause, see Section 2.17.11 on page 255.23

• ompt_data_t type, see Section 4.4.4.4 on page 440.24

• ompt_dependence_t type, see Section 4.4.4.9 on page 442.25

CHAPTER 4. OMPT INTERFACE 469

4.5.2.9 ompt_callback_task_dependence_t1

Summary2

The ompt_callback_task_dependence_t type is used for callbacks that are dispatched3
when unfulfilled task dependences are encountered.4

Format5

C / C++
typedef void (*ompt_callback_task_dependence_t) (6

ompt_data_t *src_task_data,7
ompt_data_t *sink_task_data8

);9

C / C++

Trace Record10

C / C++
typedef struct ompt_record_task_dependence_t {11

ompt_id_t src_task_id;12
ompt_id_t sink_task_id;13

} ompt_record_task_dependence_t;14

C / C++

Description of Arguments15

The binding of the src_task_data argument is a running task with an outgoing dependence.16

The binding of the sink_task_data argument is a task with an unsatisfied incoming dependence.17

Cross References18

• depend clause, see Section 2.17.11 on page 255.19

• ompt_data_t type, see Section 4.4.4.4 on page 440.20

4.5.2.10 ompt_callback_task_schedule_t21

Summary22

The ompt_callback_task_schedule_t type is used for callbacks that are dispatched when23
task scheduling decisions are made.24

470 OpenMP API – Version 5.0 November 2018

Format1

C / C++
typedef void (*ompt_callback_task_schedule_t) (2

ompt_data_t *prior_task_data,3
ompt_task_status_t prior_task_status,4
ompt_data_t *next_task_data5

);6

C / C++

Trace Record7

C / C++
typedef struct ompt_record_task_schedule_t {8

ompt_id_t prior_task_id;9
ompt_task_status_t prior_task_status;10
ompt_id_t next_task_id;11

} ompt_record_task_schedule_t;12

C / C++

Description of Arguments13

The prior_task_status argument indicates the status of the task that arrived at a task scheduling14
point.15

The binding of the prior_task_data argument is the task that arrived at the scheduling point.16

The binding of the next_task_data argument is the task that is resumed at the scheduling point.17
This argument is NULL if the callback is dispatched for a task-fulfill event.18

Cross References19

• Task scheduling, see Section 2.10.6 on page 149.20

• ompt_data_t type, see Section 4.4.4.4 on page 440.21

• ompt_task_status_t type, see Section 4.4.4.19 on page 447.22

4.5.2.11 ompt_callback_implicit_task_t23

Summary24

The ompt_callback_implicit_task_t type is used for callbacks that are dispatched when25
initial tasks and implicit tasks are generated and completed.26

CHAPTER 4. OMPT INTERFACE 471

Format1

C / C++
typedef void (*ompt_callback_implicit_task_t) (2

ompt_scope_endpoint_t endpoint,3
ompt_data_t *parallel_data,4
ompt_data_t *task_data,5
unsigned int actual_parallelism,6
unsigned int index,7
int flags8

);9

C / C++

Trace Record10

C / C++
typedef struct ompt_record_implicit_task_t {11

ompt_scope_endpoint_t endpoint;12
ompt_id_t parallel_id;13
ompt_id_t task_id;14
unsigned int actual_parallelism;15
unsigned int index;16
int flags;17

} ompt_record_implicit_task_t;18

C / C++

Description of Arguments19

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a20
scope.21

The binding of the parallel_data argument is the current parallel region. For the implicit-task-end22
event, this argument is NULL.23

The binding of the task_data argument is the implicit task that executes the structured block of the24
parallel region.25

The actual_parallelism argument indicates the number of threads in the parallel region or the26
number of teams in the teams region. For initial tasks, that are not closely nested in a teams27
construct, this argument is 1. For the implicit-task-end and the initial-task-end events, this28
argument is 0.29

The index argument indicates the thread number or team number of the calling thread, within the30
team or league that is executing the parallel or teams region to which the implicit task region31
binds. For initial tasks, that are not created by a teams construct, this argument is 1.32

The flags argument indicates the kind of the task (initial or implicit).33

472 OpenMP API – Version 5.0 November 2018

Cross References1

• parallel construct, see Section 2.6 on page 74.2

• teams construct, see Section 2.7 on page 82.3

• ompt_data_t type, see Section 4.4.4.4 on page 440.4

• ompt_scope_endpoint_t enumeration type, see Section 4.4.4.11 on page 443.5

4.5.2.12 ompt_callback_master_t6

Summary7

The ompt_callback_master_t type is used for callbacks that are dispatched when master8
regions start and end.9

Format10

C / C++
typedef void (*ompt_callback_master_t) (11

ompt_scope_endpoint_t endpoint,12
ompt_data_t *parallel_data,13
ompt_data_t *task_data,14
const void *codeptr_ra15

);16

C / C++

Trace Record17

C / C++
typedef struct ompt_record_master_t {18

ompt_scope_endpoint_t endpoint;19
ompt_id_t parallel_id;20
ompt_id_t task_id;21
const void *codeptr_ra;22

} ompt_record_master_t;23

C / C++

CHAPTER 4. OMPT INTERFACE 473

Description of Arguments1

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a2
scope.3

The binding of the parallel_data argument is the current parallel region.4

The binding of the task_data argument is the encountering task.5

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a6
runtime routine implements the region associated with a callback that has type signature7
ompt_callback_master_t then codeptr_ra contains the return address of the call to that8
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return9
address of the invocation of the callback. If attribution to source code is impossible or10
inappropriate, codeptr_ra may be NULL.11

Cross References12

• master construct, see Section 2.16 on page 221.13

• ompt_data_t type, see Section 4.4.4.4 on page 440.14

• ompt_scope_endpoint_t type, see Section 4.4.4.11 on page 443.15

4.5.2.13 ompt_callback_sync_region_t16

Summary17

The ompt_callback_sync_region_t type is used for callbacks that are dispatched when18
barrier regions, taskwait regions, and taskgroup regions begin and end and when waiting19
begins and ends for them as well as for when reductions are performed.20

Format21

C / C++
typedef void (*ompt_callback_sync_region_t) (22

ompt_sync_region_t kind,23
ompt_scope_endpoint_t endpoint,24
ompt_data_t *parallel_data,25
ompt_data_t *task_data,26
const void *codeptr_ra27

);28

C / C++

474 OpenMP API – Version 5.0 November 2018

Trace Record1

C / C++
typedef struct ompt_record_sync_region_t {2

ompt_sync_region_t kind;3
ompt_scope_endpoint_t endpoint;4
ompt_id_t parallel_id;5
ompt_id_t task_id;6
const void *codeptr_ra;7

} ompt_record_sync_region_t;8

C / C++

Description of Arguments9

The kind argument indicates the kind of synchronization.10

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a11
scope.12

The binding of the parallel_data argument is the current parallel region. For the barrier-end event13
at the end of a parallel region this argument is NULL.14

The binding of the task_data argument is the current task.15

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a16
runtime routine implements the region associated with a callback that has type signature17
ompt_callback_sync_region_t then codeptr_ra contains the return address of the call to18
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the19
return address of the invocation of the callback. If attribution to source code is impossible or20
inappropriate, codeptr_ra may be NULL.21

Cross References22

• barrier construct, see Section 2.17.2 on page 226.23

• Implicit barriers, see Section 2.17.3 on page 228.24

• taskwait construct, see Section 2.17.5 on page 230.25

• taskgroup construct, see Section 2.17.6 on page 232.26

• Properties common to all reduction clauses, see Section 2.19.5.1 on page 294.27

• ompt_data_t type, see Section 4.4.4.4 on page 440.28

• ompt_scope_endpoint_t type, see Section 4.4.4.11 on page 443.29

• ompt_sync_region_t type, see Section 4.4.4.13 on page 444.30

CHAPTER 4. OMPT INTERFACE 475

4.5.2.14 ompt_callback_mutex_acquire_t1

Summary2

The ompt_callback_mutex_acquire_t type is used for callbacks that are dispatched when3
locks are initialized, acquired and tested and when critical regions, atomic regions, and4
ordered regions are begun.5

Format6

C / C++
typedef void (*ompt_callback_mutex_acquire_t) (7

ompt_mutex_t kind,8
unsigned int hint,9
unsigned int impl,10
ompt_wait_id_t wait_id,11
const void *codeptr_ra12

);13

C / C++

Trace Record14

C / C++
typedef struct ompt_record_mutex_acquire_t {15

ompt_mutex_t kind;16
unsigned int hint;17
unsigned int impl;18
ompt_wait_id_t wait_id;19
const void *codeptr_ra;20

} ompt_record_mutex_acquire_t;21

C / C++

Description of Arguments22

The kind argument indicates the kind of the lock involved.23

The hint argument indicates the hint that was provided when initializing an implementation of24
mutual exclusion. If no hint is available when a thread initiates acquisition of mutual exclusion, the25
runtime may supply omp_sync_hint_none as the value for hint.26

The impl argument indicates the mechanism chosen by the runtime to implement the mutual27
exclusion.28

476 OpenMP API – Version 5.0 November 2018

The wait_id argument indicates the object being awaited.1

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a2
runtime routine implements the region associated with a callback that has type signature3
ompt_callback_mutex_acquire_t then codeptr_ra contains the return address of the call4
to that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the5
return address of the invocation of the callback. If attribution to source code is impossible or6
inappropriate, codeptr_ra may be NULL.7

Cross References8

• critical construct, see Section 2.17.1 on page 223.9

• atomic construct, see Section 2.17.7 on page 234.10

• ordered construct, see Section 2.17.9 on page 250.11

• omp_init_lock and omp_init_nest_lock routines, see Section 3.3.1 on page 384.12

• ompt_mutex_t type, see Section 4.4.4.16 on page 445.13

• ompt_wait_id_t type, see Section 4.4.4.29 on page 456.14

4.5.2.15 ompt_callback_mutex_t15

Summary16

The ompt_callback_mutex_t type is used for callbacks that indicate important17
synchronization events.18

Format19

C / C++
typedef void (*ompt_callback_mutex_t) (20

ompt_mutex_t kind,21
ompt_wait_id_t wait_id,22
const void *codeptr_ra23

);24

C / C++

CHAPTER 4. OMPT INTERFACE 477

Trace Record1

C / C++
typedef struct ompt_record_mutex_t {2

ompt_mutex_t kind;3
ompt_wait_id_t wait_id;4
const void *codeptr_ra;5

} ompt_record_mutex_t;6

C / C++

Description of Arguments7

The kind argument indicates the kind of mutual exclusion event.8

The wait_id argument indicates the object being awaited.9

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a10
runtime routine implements the region associated with a callback that has type signature11
ompt_callback_mutex_t then codeptr_ra contains the return address of the call to that12
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return13
address of the invocation of the callback. If attribution to source code is impossible or14
inappropriate, codeptr_ra may be NULL.15

Cross References16

• critical construct, see Section 2.17.1 on page 223.17

• atomic construct, see Section 2.17.7 on page 234.18

• ordered construct, see Section 2.17.9 on page 250.19

• omp_destroy_lock and omp_destroy_nest_lock routines, see Section 3.3.3 on20
page 387.21

• omp_set_lock and omp_set_nest_lock routines, see Section 3.3.4 on page 388.22

• omp_unset_lock and omp_unset_nest_lock routines, see Section 3.3.5 on page 390.23

• omp_test_lock and omp_test_nest_lock routines, see Section 3.3.6 on page 392.24

• ompt_mutex_t type, see Section 4.4.4.16 on page 445.25

• ompt_wait_id_t type, see Section 4.4.4.29 on page 456.26

478 OpenMP API – Version 5.0 November 2018

4.5.2.16 ompt_callback_nest_lock_t1

Summary2

The ompt_callback_nest_lock_t type is used for callbacks that indicate that a thread that3
owns a nested lock has performed an action related to the lock but has not relinquished ownership4
of it.5

Format6

C / C++
typedef void (*ompt_callback_nest_lock_t) (7

ompt_scope_endpoint_t endpoint,8
ompt_wait_id_t wait_id,9
const void *codeptr_ra10

);11

C / C++

Trace Record12

C / C++
typedef struct ompt_record_nest_lock_t {13

ompt_scope_endpoint_t endpoint;14
ompt_wait_id_t wait_id;15
const void *codeptr_ra;16

} ompt_record_nest_lock_t;17

C / C++

Description of Arguments18

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a19
scope.20

The wait_id argument indicates the object being awaited.21

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a22
runtime routine implements the region associated with a callback that has type signature23
ompt_callback_nest_lock_t then codeptr_ra contains the return address of the call to that24
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return25
address of the invocation of the callback. If attribution to source code is impossible or26
inappropriate, codeptr_ra may be NULL.27

CHAPTER 4. OMPT INTERFACE 479

Cross References1

• omp_set_nest_lock routine, see Section 3.3.4 on page 388.2

• omp_unset_nest_lock routine, see Section 3.3.5 on page 390.3

• omp_test_nest_lock routine, see Section 3.3.6 on page 392.4

• ompt_scope_endpoint_t type, see Section 4.4.4.11 on page 443.5

• ompt_wait_id_t type, see Section 4.4.4.29 on page 456.6

4.5.2.17 ompt_callback_flush_t7

Summary8

The ompt_callback_flush_t type is used for callbacks that are dispatched when flush9
constructs are encountered.10

Format11

C / C++
typedef void (*ompt_callback_flush_t) (12

ompt_data_t *thread_data,13
const void *codeptr_ra14

);15

C / C++

Trace Record16

C / C++
typedef struct ompt_record_flush_t {17

const void *codeptr_ra;18
} ompt_record_flush_t;19

C / C++

Description of Arguments20

The binding of the thread_data argument is the executing thread.21

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a22
runtime routine implements the region associated with a callback that has type signature23
ompt_callback_flush_t then codeptr_ra contains the return address of the call to that24
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return25
address of the invocation of the callback. If attribution to source code is impossible or26
inappropriate, codeptr_ra may be NULL.27

480 OpenMP API – Version 5.0 November 2018

Cross References1

• flush construct, see Section 2.17.8 on page 242.2

• ompt_data_t type, see Section 4.4.4.4 on page 440.3

4.5.2.18 ompt_callback_cancel_t4

Summary5

The ompt_callback_cancel_t type is used for callbacks that are dispatched for cancellation,6
cancel and discarded-task events.7

Format8

C / C++
typedef void (*ompt_callback_cancel_t) (9

ompt_data_t *task_data,10
int flags,11
const void *codeptr_ra12

);13

C / C++

Trace Record14

C / C++
typedef struct ompt_record_cancel_t {15

ompt_id_t task_id;16
int flags;17
const void *codeptr_ra;18

} ompt_record_cancel_t;19

C / C++

Description of Arguments20

The binding of the task_data argument is the task that encounters a cancel construct, a21
cancellation point construct, or a construct defined as having an implicit cancellation22
point.23

The flags argument, defined by the ompt_cancel_flag_t enumeration type, indicates whether24
cancellation is activated by the current task, or detected as being activated by another task. The25
construct that is being canceled is also described in the flags argument. When several constructs are26
detected as being concurrently canceled, each corresponding bit in the argument will be set.27

CHAPTER 4. OMPT INTERFACE 481

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a1
runtime routine implements the region associated with a callback that has type signature2
ompt_callback_cancel_t then codeptr_ra contains the return address of the call to that3
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return4
address of the invocation of the callback. If attribution to source code is impossible or5
inappropriate, codeptr_ra may be NULL.6

Cross References7

• omp_cancel_flag_t enumeration type, see Section 4.4.4.24 on page 450.8

4.5.2.19 ompt_callback_device_initialize_t9

Summary10

The ompt_callback_device_initialize_t type is used for callbacks that initialize11
device tracing interfaces.12

Format13

C / C++
typedef void (*ompt_callback_device_initialize_t) (14

int device_num,15
const char *type,16
ompt_device_t *device,17
ompt_function_lookup_t lookup,18
const char *documentation19

);20

C / C++

Description21

Registration of a callback with type signature ompt_callback_device_initialize_t for22
the ompt_callback_device_initialize event enables asynchronous collection of a trace23
for a device. The OpenMP implementation invokes this callback after OpenMP is initialized for the24
device but before execution of any OpenMP construct is started on the device.25

482 OpenMP API – Version 5.0 November 2018

Description of Arguments1

The device_num argument identifies the logical device that is being initialized.2

The type argument is a character string that indicates the type of the device. A device type string is3
a semicolon separated character string that includes at a minimum the vendor and model name of4
the device. These names may be followed by a semicolon-separated sequence of properties that5
describe the hardware or software of the device.6

The device argument is a pointer to an opaque object that represents the target device instance.7
Functions in the device tracing interface use this pointer to identify the device that is being8
addressed.9

The lookup argument points to a runtime callback that a tool must use to obtain pointers to runtime10
entry points in the device’s OMPT tracing interface. If a device does not support tracing then11
lookup is NULL.12

The documentation argument is a string that describes how to use any device-specific runtime entry13
points that can be obtained through the lookup argument. This documentation string may be a14
pointer to external documentation, or it may be inline descriptions that include names and type15
signatures for any device-specific interfaces that are available through the lookup argument along16
with descriptions of how to use these interface functions to control monitoring and analysis of17
device traces.18

Constraints on Arguments19

The type and documentation arguments must be immutable strings that are defined for the lifetime20
of a program execution.21

Effect22

A device initializer must fulfill several duties. First, the type argument should be used to determine23
if any special knowledge about the hardware and/or software of a device is employed. Second, the24
lookup argument should be used to look up pointers to runtime entry points in the OMPT tracing25
interface for the device. Finally, these runtime entry points should be used to set up tracing for the26
device.27

Initialization of tracing for a target device is described in Section 4.2.5 on page 427.28

Cross References29

• ompt_function_lookup_t type, see Section 4.6.3 on page 531.30

CHAPTER 4. OMPT INTERFACE 483

4.5.2.20 ompt_callback_device_finalize_t1

Summary2

The ompt_callback_device_initialize_t type is used for callbacks that finalize device3
tracing interfaces.4

Format5

C / C++
typedef void (*ompt_callback_device_finalize_t) (6

int device_num7
);8

C / C++

Description of Arguments9

The device_num argument identifies the logical device that is being finalized.10

Description11

A registered callback with type signature ompt_callback_device_finalize_t is12
dispatched for a device immediately prior to finalizing the device. Prior to dispatching a finalization13
callback for a device on which tracing is active, the OpenMP implementation stops tracing on the14
device and synchronously flushes all trace records for the device that have not yet been reported.15
These trace records are flushed through one or more buffer completion callbacks with type16
signature ompt_callback_buffer_complete_t as needed prior to the dispatch of the17
callback with type signature ompt_callback_device_finalize_t.18

Cross References19

• ompt_callback_buffer_complete_t callback type, see Section 4.5.2.24 on page 487.20

4.5.2.21 ompt_callback_device_load_t21

Summary22

The ompt_callback_device_load_t type is used for callbacks that the OpenMP runtime23
invokes to indicate that it has just loaded code onto the specified device.24

484 OpenMP API – Version 5.0 November 2018

Format1

C / C++
typedef void (*ompt_callback_device_load_t) (2

int device_num,3
const char *filename,4
int64_t offset_in_file,5
void *vma_in_file,6
size_t bytes,7
void *host_addr,8
void *device_addr,9
uint64_t module_id10

);11

C / C++

Description of Arguments12

The device_num argument specifies the device.13

The filename argument indicates the name of a file in which the device code can be found. A NULL14
filename indicates that the code is not available in a file in the file system.15

The offset_in_file argument indicates an offset into filename at which the code can be found. A16
value of -1 indicates that no offset is provided.17

ompt_addr_none is defined as a pointer with the value ~0.18

The vma_in_file argument indicates an virtual address in filename at which the code can be found.19
A value of ompt_addr_none indicates that a virtual address in the file is not available.20

The bytes argument indicates the size of the device code object in bytes.21

The host_addr argument indicates the address at which a copy of the device code is available in22
host memory. A value of ompt_addr_none indicates that a host code address is not available.23

The device_addr argument indicates the address at which the device code has been loaded in device24
memory. A value of ompt_addr_none indicates that a device code address is not available.25

The module_id argument is an identifier that is associated with the device code object.26

Cross References27

• Device directives, see Section 2.12 on page 160.28

CHAPTER 4. OMPT INTERFACE 485

4.5.2.22 ompt_callback_device_unload_t1

Summary2

The ompt_callback_device_unload_t type is used for callbacks that the OpenMP3
runtime invokes to indicate that it is about to unload code from the specified device.4

Format5

C / C++
typedef void (*ompt_callback_device_unload_t) (6

int device_num,7
uint64_t module_id8

);9

C / C++

Description of Arguments10

The device_num argument specifies the device.11

The module_id argument is an identifier that is associated with the device code object.12

Cross References13

• Device directives, see Section 2.12 on page 160.14

4.5.2.23 ompt_callback_buffer_request_t15

Summary16

The ompt_callback_buffer_request_t type is used for callbacks that are dispatched17
when a buffer to store event records for a device is requested.18

Format19

C / C++
typedef void (*ompt_callback_buffer_request_t) (20

int device_num,21
ompt_buffer_t **buffer,22
size_t *bytes23

);24

C / C++

486 OpenMP API – Version 5.0 November 2018

Description1

A callback with type signature ompt_callback_buffer_request_t requests a buffer to2
store trace records for the specified device. A buffer request callback may set *bytes to 0 if it does3
not provide a buffer. If a callback sets *bytes to 0, further recording of events for the device is4
disabled until the next invocation of ompt_start_trace. This action causes the device to drop5
future trace records until recording is restarted.6

Description of Arguments7

The device_num argument specifies the device.8

The *buffer argument points to a buffer where device events may be recorded. The *bytes argument9
indicates the length of that buffer.10

Cross References11

• ompt_buffer_t type, see Section 4.4.4.7 on page 441.12

4.5.2.24 ompt_callback_buffer_complete_t13

Summary14

The ompt_callback_buffer_complete_t type is used for callbacks that are dispatched15
when devices will not record any more trace records in an event buffer and all records written to the16
buffer are valid.17

Format18

C / C++
typedef void (*ompt_callback_buffer_complete_t) (19

int device_num,20
ompt_buffer_t *buffer,21
size_t bytes,22
ompt_buffer_cursor_t begin,23
int buffer_owned24

);25

C / C++

CHAPTER 4. OMPT INTERFACE 487

Description1

A callback with type signature ompt_callback_buffer_complete_t provides a buffer that2
contains trace records for the specified device. Typically, a tool will iterate through the records in3
the buffer and process them.4

The OpenMP implementation makes these callbacks on a thread that is not an OpenMP master or5
worker thread.6

The callee may not delete the buffer if the buffer_owned argument is 0.7

The buffer completion callback is not required to be async signal safe.8

Description of Arguments9

The device_num argument indicates the device which the buffer contains events.10

The buffer argument is the address of a buffer that was previously allocated by a buffer request11
callback.12

The bytes argument indicates the full size of the buffer.13

The begin argument is an opaque cursor that indicates the position of the beginning of the first14
record in the buffer.15

The buffer_owned argument is 1 if the data to which the buffer points can be deleted by the callback16
and 0 otherwise. If multiple devices accumulate trace events into a single buffer, this callback may17
be invoked with a pointer to one or more trace records in a shared buffer with buffer_owned = 0. In18
this case, the callback may not delete the buffer.19

Cross References20

• ompt_buffer_t type, see Section 4.4.4.7 on page 441.21

• ompt_buffer_cursor_t type, see Section 4.4.4.8 on page 442.22

4.5.2.25 ompt_callback_target_data_op_t23

Summary24

The ompt_callback_target_data_op_t type is used for callbacks that are dispatched25
when a thread maps data to a device.26

488 OpenMP API – Version 5.0 November 2018

Format1

C / C++
typedef void (*ompt_callback_target_data_op_t) (2

ompt_id_t target_id,3
ompt_id_t host_op_id,4
ompt_target_data_op_t optype,5
void *src_addr,6
int src_device_num,7
void *dest_addr,8
int dest_device_num,9
size_t bytes,10
const void *codeptr_ra11

);12

C / C++

Trace Record13

C / C++
typedef struct ompt_record_target_data_op_t {14

ompt_id_t host_op_id;15
ompt_target_data_op_t optype;16
void *src_addr;17
int src_device_num;18
void *dest_addr;19
int dest_device_num;20
size_t bytes;21
ompt_device_time_t end_time;22
const void *codeptr_ra;23

} ompt_record_target_data_op_t;24

C / C++

Description25

A registered ompt_callback_target_data_op callback is dispatched when device memory26
is allocated or freed, as well as when data is copied to or from a device.27

28

Note – An OpenMP implementation may aggregate program variables and data operations upon29
them. For instance, an OpenMP implementation may synthesize a composite to represent multiple30
scalars and then allocate, free, or copy this composite as a whole rather than performing data31
operations on each scalar individually. Thus, callbacks may not be dispatched as separate data32
operations on each variable.33

34

CHAPTER 4. OMPT INTERFACE 489

Description of Arguments1

The host_op_id argument is a unique identifier for a data operations on a target device.2

The optype argument indicates the kind of data mapping.3

The src_addr argument indicates the data address before the operation, where applicable.4

The src_device_num argument indicates the source device number for the data operation, where5
applicable.6

The dest_addr argument indicates the data address after the operation.7

The dest_device_num argument indicates the destination device number for the data operation.8

It is implementation defined whether in some operations src_addr or dest_addr may point to an9
intermediate buffer.10

The bytes argument indicates the size of data.11

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a12
runtime routine implements the region associated with a callback that has type signature13
ompt_callback_target_data_op_t then codeptr_ra contains the return address of the call14
to that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the15
return address of the invocation of the callback. If attribution to source code is impossible or16
inappropriate, codeptr_ra may be NULL.17

Cross References18

• map clause, see Section 2.19.7.1 on page 315.19

• ompt_id_t type, see Section 4.4.4.3 on page 439.20

• ompt_target_data_op_t type, see Section 4.4.4.14 on page 444.21

4.5.2.26 ompt_callback_target_t22

Summary23

The ompt_callback_target_t type is used for callbacks that are dispatched when a thread24
begins to execute a device construct.25

490 OpenMP API – Version 5.0 November 2018

Format1

C / C++
typedef void (*ompt_callback_target_t) (2

ompt_target_t kind,3
ompt_scope_endpoint_t endpoint,4
int device_num,5
ompt_data_t *task_data,6
ompt_id_t target_id,7
const void *codeptr_ra8

);9

C / C++

Trace Record10

C / C++
typedef struct ompt_record_target_t {11

ompt_target_t kind;12
ompt_scope_endpoint_t endpoint;13
int device_num;14
ompt_id_t task_id;15
ompt_id_t target_id;16
const void *codeptr_ra;17

} ompt_record_target_t;18

C / C++

Description of Arguments19

The kind argument indicates the kind of target region.20

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a21
scope.22

The device_num argument indicates the id of the device that will execute the target region.23

The binding of the task_data argument is the generating task.24

The binding of the target_id argument is the target region.25

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a26
runtime routine implements the region associated with a callback that has type signature27
ompt_callback_target_t then codeptr_ra contains the return address of the call to that28
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return29
address of the invocation of the callback. If attribution to source code is impossible or30
inappropriate, codeptr_ra may be NULL.31

CHAPTER 4. OMPT INTERFACE 491

Cross References1

• target data construct, see Section 2.12.2 on page 161.2

• target enter data construct, see Section 2.12.3 on page 164.3

• target exit data construct, see Section 2.12.4 on page 166.4

• target construct, see Section 2.12.5 on page 170.5

• target update construct, see Section 2.12.6 on page 176.6

• ompt_id_t type, see Section 4.4.4.3 on page 439.7

• ompt_data_t type, see Section 4.4.4.4 on page 440.8

• ompt_scope_endpoint_t type, see Section 4.4.4.11 on page 443.9

• ompt_target_t type, see Section 4.4.4.20 on page 448.10

4.5.2.27 ompt_callback_target_map_t11

Summary12

The ompt_callback_target_map_t type is used for callbacks that are dispatched to indicate13
data mapping relationships.14

Format15

C / C++
typedef void (*ompt_callback_target_map_t) (16

ompt_id_t target_id,17
unsigned int nitems,18
void **host_addr,19
void **device_addr,20
size_t *bytes,21
unsigned int *mapping_flags,22
const void *codeptr_ra23

);24

C / C++

492 OpenMP API – Version 5.0 November 2018

Trace Record1

C / C++
typedef struct ompt_record_target_map_t {2

ompt_id_t target_id;3
unsigned int nitems;4
void **host_addr;5
void **device_addr;6
size_t *bytes;7
unsigned int *mapping_flags;8
const void *codeptr_ra;9

} ompt_record_target_map_t;10

C / C++

Description11

An instance of a target, target data, target enter data, or target exit data12
construct may contain one or more map clauses. An OpenMP implementation may report the set of13
mappings associated with map clauses for a construct with a single14
ompt_callback_target_map callback to report the effect of all mappings or multiple15
ompt_callback_target_map callbacks with each reporting a subset of the mappings.16
Furthermore, an OpenMP implementation may omit mappings that it determines are unnecessary.17
If an OpenMP implementation issues multiple ompt_callback_target_map callbacks, these18
callbacks may be interleaved with ompt_callback_target_data_op callbacks used to19
report data operations associated with the mappings.20

Description of Arguments21

The binding of the target_id argument is the target region.22

The nitems argument indicates the number of data mappings that this callback reports.23

The host_addr argument indicates an array of host data addresses.24

The device_addr argument indicates an array of device data addresses.25

The bytes argument indicates an array of size of data.26

The mapping_flags argument indicates the kind of data mapping. Flags for a mapping include one27
or more values specified by the ompt_target_map_flag_t type.28

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a29
runtime routine implements the region associated with a callback that has type signature30
ompt_callback_target_map_t then codeptr_ra contains the return address of the call to31
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the32
return address of the invocation of the callback. If attribution to source code is impossible or33
inappropriate, codeptr_ra may be NULL.34

CHAPTER 4. OMPT INTERFACE 493

Cross References1

• target data construct, see Section 2.12.2 on page 161.2

• target enter data construct, see Section 2.12.3 on page 164.3

• target exit data construct, see Section 2.12.4 on page 166.4

• target construct, see Section 2.12.5 on page 170.5

• ompt_id_t type, see Section 4.4.4.3 on page 439.6

• ompt_target_map_flag_t type, see Section 4.4.4.22 on page 449.7

• ompt_callback_target_data_op_t callback type, see Section 4.5.2.25 on page 488.8

4.5.2.28 ompt_callback_target_submit_t9

Summary10

The ompt_callback_target_submit_t type is used for callbacks that are dispatched when11
an initial task is created on a device.12

Format13

C / C++
typedef void (*ompt_callback_target_submit_t) (14

ompt_id_t target_id,15
ompt_id_t host_op_id,16
unsigned int requested_num_teams17

);18

C / C++

Trace Record19

C / C++
typedef struct ompt_record_target_kernel_t {20

ompt_id_t host_op_id;21
unsigned int requested_num_teams;22
unsigned int granted_num_teams;23
ompt_device_time_t end_time;24

} ompt_record_target_kernel_t;25

C / C++

494 OpenMP API – Version 5.0 November 2018

Description1

A thread dispatches a registered ompt_callback_target_submit callback on the host when2
a target task creates an initial task on a target device.3

Description of Arguments4

The target_id argument is a unique identifier for the associated target region.5

The host_op_id argument is a unique identifier for the initial task on the target device.6

The requested_num_teams argument is the number of teams that the host requested to execute the7
kernel. The actual number of teams that execute the kernel may be smaller and generally will not be8
known until the kernel begins to execute on the device.9

If ompt_set_trace_ompt has configured the device to trace kernel execution then the device10
will log a ompt_record_target_kernel_t record in a trace. The fields in the record are as11
follows:12

• The host_op_id field contains a unique identifier that can be used to correlate a13
ompt_record_target_kernel_t record with its associated14
ompt_callback_target_submit callback on the host;15

• The requested_num_teams field contains the number of teams that the host requested to execute16
the kernel;17

• The granted_num_teams field contains the number of teams that the device actually used to18
execute the kernel;19

• The time when the initial task began execution on the device is recorded in the time field of an20
enclosing ompt_record_t structure; and21

• The time when the initial task completed execution on the device is recorded in the end_time22
field.23

Cross References24

• target construct, see Section 2.12.5 on page 170.25

• ompt_id_t type, see Section 4.4.4.3 on page 439.26

4.5.2.29 ompt_callback_control_tool_t27

Summary28

The ompt_callback_control_tool_t type is used for callbacks that dispatch tool-control29
events.30

CHAPTER 4. OMPT INTERFACE 495

Format1

C / C++
typedef int (*ompt_callback_control_tool_t) (2

uint64_t command,3
uint64_t modifier,4
void *arg,5
const void *codeptr_ra6

);7

C / C++

Trace Record8

C / C++
typedef struct ompt_record_control_tool_t {9

uint64_t command;10
uint64_t modifier;11
const void *codeptr_ra;12

} ompt_record_control_tool_t;13

C / C++

Description14

Callbacks with type signature ompt_callback_control_tool_t may return any15
non-negative value, which will be returned to the application as the return value of the16
omp_control_tool call that triggered the callback.17

Description of Arguments18

The command argument passes a command from an application to a tool. Standard values for19
command are defined by omp_control_tool_t in Section 3.8 on page 415.20

The modifier argument passes a command modifier from an application to a tool.21

The command and modifier arguments may have tool-specific values. Tools must ignore command22
values that they are not designed to handle.23

The arg argument is a void pointer that enables a tool and an application to exchange arbitrary state.24
The arg argument may be NULL.25

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a26
runtime routine implements the region associated with a callback that has type signature27
ompt_callback_control_tool_t then codeptr_ra contains the return address of the call to28
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the29
return address of the invocation of the callback. If attribution to source code is impossible or30
inappropriate, codeptr_ra may be NULL.31

496 OpenMP API – Version 5.0 November 2018

Constraints on Arguments1

Tool-specific values for command must be ≥ 64.2

Cross References3

• omp_control_tool_t enumeration type, see Section 3.8 on page 415.4

4.6 OMPT Runtime Entry Points for Tools5

OMPT supports two principal sets of runtime entry points for tools. One set of runtime entry points6
enables a tool to register callbacks for OpenMP events and to inspect the state of an OpenMP thread7
while executing in a tool callback or a signal handler. The second set of runtime entry points8
enables a tool to trace activities on a device. When directed by the tracing interface, an OpenMP9
implementation will trace activities on a device, collect buffers of trace records, and invoke10
callbacks on the host to process these records. OMPT runtime entry points should not be global11
symbols since tools cannot rely on the visibility of such symbols.12

OMPT also supports runtime entry points for two classes of lookup routines. The first class of13
lookup routines contains a single member: a routine that returns runtime entry points in the OMPT14
callback interface. The second class of lookup routines includes a unique lookup routine for each15
kind of device that can return runtime entry points in a device’s OMPT tracing interface.16

The C/C++ header file (omp-tools.h) provides the definitions of the types that are specified17
throughout this subsection.18

Restrictions19

OMPT runtime entry points have the following restrictions:20

• OMPT runtime entry points must not be called from a signal handler on a native thread before a21
native-thread-begin or after a native-thread-end event.22

• OMPT device runtime entry points must not be called after a device-finalize event for that device.23

4.6.1 Entry Points in the OMPT Callback Interface24

Entry points in the OMPT callback interface enable a tool to register callbacks for OpenMP events25
and to inspect the state of an OpenMP thread while executing in a tool callback or a signal handler.26
Pointers to these runtime entry points are obtained through the lookup function that is provided27
through the OMPT initializer.28

CHAPTER 4. OMPT INTERFACE 497

4.6.1.1 ompt_enumerate_states_t1

Summary2

The ompt_enumerate_states_t type is the type signature of the3
ompt_enumerate_states runtime entry point, which enumerates the thread states that an4
OpenMP implementation supports.5

Format6

C / C++
typedef int (*ompt_enumerate_states_t) (7

int current_state,8
int *next_state,9
const char **next_state_name10

);11

C / C++

Description12

An OpenMP implementation may support only a subset of the states defined by the13
ompt_state_t enumeration type. An OpenMP implementation may also support14
implementation-specific states. The ompt_enumerate_states runtime entry point, which has15
type signature ompt_enumerate_states_t, enables a tool to enumerate the supported thread16
states.17

When a supported thread state is passed as current_state, the runtime entry point assigns the next18
thread state in the enumeration to the variable passed by reference in next_state and assigns the19
name associated with that state to the character pointer passed by reference in next_state_name.20

Whenever one or more states are left in the enumeration, the ompt_enumerate_states21
runtime entry point returns 1. When the last state in the enumeration is passed as current_state,22
ompt_enumerate_states returns 0, which indicates that the enumeration is complete.23

Description of Arguments24

The current_state argument must be a thread state that the OpenMP implementation supports. To25
begin enumerating the supported states, a tool should pass ompt_state_undefined as26
current_state. Subsequent invocations of ompt_enumerate_states should pass the value27
assigned to the variable passed by reference in next_state to the previous call.28

The value ompt_state_undefined is reserved to indicate an invalid thread state.29
ompt_state_undefined is defined as an integer with the value 0.30

The next_state argument is a pointer to an integer in which ompt_enumerate_states returns31
the value of the next state in the enumeration.32

498 OpenMP API – Version 5.0 November 2018

The next_state_name argument is a pointer to a character string pointer through which1
ompt_enumerate_states returns a string that describes the next state.2

Constraints on Arguments3

Any string returned through the next_state_name argument must be immutable and defined for the4
lifetime of a program execution.5

Cross References6

• ompt_state_t type, see Section 4.4.4.26 on page 452.7

4.6.1.2 ompt_enumerate_mutex_impls_t8

Summary9

The ompt_enumerate_mutex_impls_t type is the type signature of the10
ompt_enumerate_mutex_impls runtime entry point, which enumerates the kinds of mutual11
exclusion implementations that an OpenMP implementation employs.12

Format13

C / C++
typedef int (*ompt_enumerate_mutex_impls_t) (14

int current_impl,15
int *next_impl,16
const char **next_impl_name17

);18

C / C++

Description19

Mutual exclusion for locks, critical sections, and atomic regions may be implemented in20
several ways. The ompt_enumerate_mutex_impls runtime entry point, which has type21
signature ompt_enumerate_mutex_impls_t, enables a tool to enumerate the supported22
mutual exclusion implementations.23

When a supported mutex implementation is passed as current_impl, the runtime entry point assigns24
the next mutex implementation in the enumeration to the variable passed by reference in next_impl25
and assigns the name associated with that mutex implementation to the character pointer passed by26
reference in next_impl_name.27

CHAPTER 4. OMPT INTERFACE 499

Whenever one or more mutex implementations are left in the enumeration, the1
ompt_enumerate_mutex_impls runtime entry point returns 1. When the last mutex2
implementation in the enumeration is passed as current_impl, the runtime entry point returns 0,3
which indicates that the enumeration is complete.4

Description of Arguments5

The current_impl argument must be a mutex implementation that an OpenMP implementation6
supports. To begin enumerating the supported mutex implementations, a tool should pass7
ompt_mutex_impl_none as current_impl. Subsequent invocations of8
ompt_enumerate_mutex_impls should pass the value assigned to the variable passed in9
next_impl to the previous call.10

The value ompt_mutex_impl_none is reserved to indicate an invalid mutex implementation.11
ompt_mutex_impl_none is defined as an integer with the value 0.12

The next_impl argument is a pointer to an integer in which ompt_enumerate_mutex_impls13
returns the value of the next mutex implementation in the enumeration.14

The next_impl_name argument is a pointer to a character string pointer in which15
ompt_enumerate_mutex_impls returns a string that describes the next mutex16
implementation.17

Constraints on Arguments18

Any string returned through the next_impl_name argument must be immutable and defined for the19
lifetime of a program execution.20

Cross References21

• ompt_mutex_t type, see Section 4.4.4.16 on page 445.22

4.6.1.3 ompt_set_callback_t23

Summary24

The ompt_set_callback_t type is the type signature of the ompt_set_callback runtime25
entry point, which registers a pointer to a tool callback that an OpenMP implementation invokes26
when a host OpenMP event occurs.27

500 OpenMP API – Version 5.0 November 2018

Format1

C / C++
typedef ompt_set_result_t (*ompt_set_callback_t) (2

ompt_callbacks_t event,3
ompt_callback_t callback4

);5

C / C++

Description6

OpenMP implementations can use callbacks to indicate the occurrence of events during the7
execution of an OpenMP program. The ompt_set_callback runtime entry point, which has8
type signature ompt_set_callback_t, registers a callback for an OpenMP event on the9
current device, The return value of ompt_set_callback indicates the outcome of registering10
the callback.11

Description of Arguments12

The event argument indicates the event for which the callback is being registered.13

The callback argument is a tool callback function. If callback is NULL then callbacks associated14
with event are disabled. If callbacks are successfully disabled then ompt_set_always is15
returned.16

Constraints on Arguments17

When a tool registers a callback for an event, the type signature for the callback must match the18
type signature appropriate for the event.19

Restrictions20

The ompt_set_callback runtime entry point has the following restriction:21

• The entry point must not return ompt_set_impossible.22

Cross References23

• Monitoring activity on the host with OMPT, see Section 4.2.4 on page 425.24

• ompt_callbacks_t enumeration type, see Section 4.4.2 on page 434.25

• ompt_callback_t type, see Section 4.4.4.1 on page 438.26

• ompt_set_result_t type, see Section 4.4.4.2 on page 438.27

• ompt_get_callback_t host callback type signature, see Section 4.6.1.4 on page 502.28

CHAPTER 4. OMPT INTERFACE 501

4.6.1.4 ompt_get_callback_t1

Summary2

The ompt_get_callback_t type is the type signature of the ompt_get_callback runtime3
entry point, which retrieves a pointer to a registered tool callback routine (if any) that an OpenMP4
implementation invokes when a host OpenMP event occurs.5

Format6

C / C++
typedef int (*ompt_get_callback_t) (7

ompt_callbacks_t event,8
ompt_callback_t *callback9

);10

C / C++

Description11

The ompt_get_callback runtime entry point, which has type signature12
ompt_get_callback_t, retrieves a pointer to the tool callback that an OpenMP13
implementation may invoke when a host OpenMP event occurs. If a non-null tool callback is14
registered for the specified event, the pointer to the tool callback is assigned to the variable passed15
by reference in callback and ompt_get_callback returns 1; otherwise, it returns 0. If16
ompt_get_callback returns 0, the value of the variable passed by reference as callback is17
undefined.18

Description of Arguments19

The event argument indicates the event for which the callback would be invoked.20

The callback argument returns a pointer to the callback associated with event.21

Constraints on Arguments22

The callback argument must be a reference to a variable of specified type.23

Cross References24

• ompt_callbacks_t enumeration type, see Section 4.4.2 on page 434.25

• ompt_callback_t type, see Section 4.4.4.1 on page 438.26

• ompt_set_callback_t type signature, see Section 4.6.1.3 on page 500.27

502 OpenMP API – Version 5.0 November 2018

4.6.1.5 ompt_get_thread_data_t1

Summary2

The ompt_get_thread_data_t type is the type signature of the3
ompt_get_thread_data runtime entry point, which returns the address of the thread data4
object for the current thread.5

Format6

C / C++
typedef ompt_data_t *(*ompt_get_thread_data_t) (void);7

C / C++

Binding8

The binding thread for the ompt_get_thread_data runtime entry point is the current thread.9

Description10

Each OpenMP thread can have an associated thread data object of type ompt_data_t. The11
ompt_get_thread_data runtime entry point, which has type signature12
ompt_get_thread_data_t, retrieves a pointer to the thread data object, if any, that is13
associated with the current thread. A tool may use a pointer to an OpenMP thread’s data object that14
ompt_get_thread_data retrieves to inspect or to modify the value of the data object. When15
an OpenMP thread is created, its data object is initialized with value ompt_data_none.16

This runtime entry point is async signal safe.17

Cross References18

• ompt_data_t type, see Section 4.4.4.4 on page 440.19

4.6.1.6 ompt_get_num_procs_t20

Summary21

The ompt_get_num_procs_t type is the type signature of the ompt_get_num_procs22
runtime entry point, which returns the number of processors currently available to the execution23
environment on the host device.24

CHAPTER 4. OMPT INTERFACE 503

Format1

C / C++
typedef int (*ompt_get_num_procs_t) (void);2

C / C++

Binding3

The binding thread set for the ompt_get_num_procs runtime entry point is all threads on the4
host device.5

Description6

The ompt_get_num_procs runtime entry point, which has type signature7
ompt_get_num_procs_t, returns the number of processors that are available on the host8
device at the time the routine is called. This value may change between the time that it is9
determined and the time that it is read in the calling context due to system actions outside the10
control of the OpenMP implementation.11

This runtime entry point is async signal safe.12

4.6.1.7 ompt_get_num_places_t13

Summary14

The ompt_get_num_places_t type is the type signature of the ompt_get_num_places15
runtime entry point, which returns the number of places currently available to the execution16
environment in the place list.17

Format18

C / C++
typedef int (*ompt_get_num_places_t) (void);19

C / C++

Binding20

The binding thread set for the ompt_get_num_places runtime entry point is all threads on a21
device.22

504 OpenMP API – Version 5.0 November 2018

Description1

The ompt_get_num_places runtime entry point, which has type signature2
ompt_get_num_places_t, returns the number of places in the place list. This value is3
equivalent to the number of places in the place-partition-var ICV in the execution environment of4
the initial task.5

This runtime entry point is async signal safe.6

Cross References7

• place-partition-var ICV, see Section 2.5 on page 63.8

• OMP_PLACES environment variable, see Section 6.5 on page 605.9

4.6.1.8 ompt_get_place_proc_ids_t10

Summary11

The ompt_get_place_procs_ids_t type is the type signature of the12
ompt_get_num_place_procs_ids runtime entry point, which returns the numerical13
identifiers of the processors that are available to the execution environment in the specified place.14

Format15

C / C++
typedef int (*ompt_get_place_proc_ids_t) (16

int place_num,17
int ids_size,18
int *ids19

);20

C / C++

Binding21

The binding thread set for the ompt_get_place_proc_ids runtime entry point is all threads22
on a device.23

Description24

The ompt_get_place_proc_ids runtime entry point, which has type signature25
ompt_get_place_proc_ids_t, returns the numerical identifiers of each processor that is26
associated with the specified place. These numerical identifiers are non-negative and their meaning27
is implementation defined.28

CHAPTER 4. OMPT INTERFACE 505

Description of Arguments1

The place_num argument specifies the place that is being queried.2

The ids argument is an array in which the routine can return a vector of processor identifiers in the3
specified place.4

The ids_size argument indicates the size of the result array that is specified by ids.5

Effect6

If the ids array of size ids_size is large enough to contain all identifiers then they are returned in ids7
and their order in the array is implementation defined. Otherwise, if the ids array is too small the8
values in ids when the function returns are unspecified. The routine always returns the number of9
numerical identifiers of the processors that are available to the execution environment in the10
specified place.11

4.6.1.9 ompt_get_place_num_t12

Summary13

The ompt_get_place_num_t type is the type signature of the ompt_get_place_num14
runtime entry point, which returns the place number of the place to which the current thread is15
bound.16

Format17

C / C++
typedef int (*ompt_get_place_num_t) (void);18

C / C++

Binding19

The binding thread set of the ompt_get_place_num runtime entry point is the current thread.20

Description21

When the current thread is bound to a place, ompt_get_place_num returns the place number22
associated with the thread. The returned value is between 0 and one less than the value returned by23
ompt_get_num_places, inclusive. When the current thread is not bound to a place, the routine24
returns -1.25

This runtime entry point is async signal safe.26

506 OpenMP API – Version 5.0 November 2018

4.6.1.10 ompt_get_partition_place_nums_t1

Summary2

The ompt_get_partition_place_nums_t type is the type signature of the3
ompt_get_partition_place_nums runtime entry point, which returns a list of place4
numbers that correspond to the places in the place-partition-var ICV of the innermost implicit task.5

Format6

C / C++
typedef int (*ompt_get_partition_place_nums_t) (7

int place_nums_size,8
int *place_nums9

);10

C / C++

Binding11

The binding task set for the ompt_get_partition_place_nums runtime entry point is the12
current implicit task.13

Description14

The ompt_get_partition_place_nums runtime entry point, which has type signature15
ompt_get_partition_place_nums_t, returns a list of place numbers that correspond to16
the places in the place-partition-var ICV of the innermost implicit task.17

This runtime entry point is async signal safe.18

Description of Arguments19

The place_nums argument is an array in which the routine can return a vector of place identifiers.20

The place_nums_size argument indicates the size of the result array that the place_nums argument21
specifies.22

Effect23

If the place_nums array of size place_nums_size is large enough to contain all identifiers then they24
are returned in place_nums and their order in the array is implementation defined. Otherwise, if the25
place_nums array is too small, the values in place_nums when the function returns are unspecified.26
The routine always returns the number of places in the place-partition-var ICV of the innermost27
implicit task.28

CHAPTER 4. OMPT INTERFACE 507

Cross References1

• place-partition-var ICV, see Section 2.5 on page 63.2

• OMP_PLACES environment variable, see Section 6.5 on page 605.3

4.6.1.11 ompt_get_proc_id_t4

Summary5

The ompt_get_proc_id_t type is the type signature of the ompt_get_proc_id runtime6
entry point, which returns the numerical identifier of the processor of the current thread.7

Format8

C / C++
typedef int (*ompt_get_proc_id_t) (void);9

C / C++

Binding10

The binding thread set for the ompt_get_proc_id runtime entry point is the current thread.11

Description12

The ompt_get_proc_id runtime entry point, which has type signature13
ompt_get_proc_id_t, returns the numerical identifier of the processor of the current thread.14
A defined numerical identifier is non-negative and its meaning is implementation defined. A15
negative number indicates a failure to retrieve the numerical identifier.16

This runtime entry point is async signal safe.17

4.6.1.12 ompt_get_state_t18

Summary19

The ompt_get_state_t type is the type signature of the ompt_get_state runtime entry20
point, which returns the state and the wait identifier of the current thread.21

508 OpenMP API – Version 5.0 November 2018

Format1

C / C++
typedef int (*ompt_get_state_t) (2

ompt_wait_id_t *wait_id3
);4

C / C++

Binding5

The binding thread for the ompt_get_state runtime entry point is the current thread.6

Description7

Each OpenMP thread has an associated state and a wait identifier. If a thread’s state indicates that8
the thread is waiting for mutual exclusion then its wait identifier contains an opaque handle that9
indicates the data object upon which the thread is waiting. The ompt_get_state runtime entry10
point, which has type signature ompt_get_state_t, retrieves the state and wait identifier of the11
current thread. The returned value may be any one of the states predefined by ompt_state_t or12
a value that represents any implementation specific state. The tool may obtain a string13
representation for each state with the ompt_enumerate_states function.14

If the returned state indicates that the thread is waiting for a lock, nest lock, critical section, atomic15
region, or ordered region then the value of the thread’s wait identifier is assigned to a non-null wait16
identifier passed as the wait_id argument.17

This runtime entry point is async signal safe.18

Description of Arguments19

The wait_id argument is a pointer to an opaque handle that is available to receive the value of the20
thread’s wait identifier. If wait_id is not NULL then the entry point assigns the value of the thread’s21
wait identifier to the object to which wait_id points. If the returned state is not one of the specified22
wait states then the value of opaque object to which wait_id points is undefined after the call.23

Constraints on Arguments24

The argument passed to the entry point must be a reference to a variable of the specified type or25
NULL.26

CHAPTER 4. OMPT INTERFACE 509

Cross References1

• ompt_state_t type, see Section 4.4.4.26 on page 452.2

• ompt_wait_id_t type, see Section 4.4.4.29 on page 456.3

• ompt_enumerate_states_t type, see Section 4.6.1.1 on page 498.4

4.6.1.13 ompt_get_parallel_info_t5

Summary6

The ompt_get_parallel_info_t type is the type signature of the7
ompt_get_parallel_info runtime entry point, which returns information about the parallel8
region, if any, at the specified ancestor level for the current execution context.9

Format10

C / C++
typedef int (*ompt_get_parallel_info_t) (11

int ancestor_level,12
ompt_data_t **parallel_data,13
int *team_size14

);15

C / C++

Description16

During execution, an OpenMP program may employ nested parallel regions. The17
ompt_get_parallel_info runtime entry point known, which has type signature18
ompt_get_parallel_info_t, retrieves information, about the current parallel region and any19
enclosing parallel regions for the current execution context. The entry point returns 2 if there is a20
parallel region at the specified ancestor level and the information is available, 1 if there is a parallel21
region at the specified ancestor level but the information is currently unavailable, and 0 otherwise.22

A tool may use the pointer to a parallel region’s data object that it obtains from this runtime entry23
point to inspect or to modify the value of the data object. When a parallel region is created, its data24
object will be initialized with the value ompt_data_none.25

This runtime entry point is async signal safe.26

510 OpenMP API – Version 5.0 November 2018

Between a parallel-begin event and an implicit-task-begin event, a call to1
ompt_get_parallel_info(0,...) may return information about the outer parallel team,2
the new parallel team or an inconsistent state.3

If a thread is in the state ompt_state_wait_barrier_implicit_parallel then a call to4
ompt_get_parallel_info may return a pointer to a copy of the specified parallel region’s5
parallel_data rather than a pointer to the data word for the region itself. This convention enables6
the master thread for a parallel region to free storage for the region immediately after the region7
ends, yet avoid having some other thread in the region’s team potentially reference the region’s8
parallel_data object after it has been freed.9

Description of Arguments10

The ancestor_level argument specifies the parallel region of interest by its ancestor level. Ancestor11
level 0 refers to the innermost parallel region; information about enclosing parallel regions may be12
obtained using larger values for ancestor_level.13

The parallel_data argument returns the parallel data if the argument is not NULL.14

The team_size argument returns the team size if the argument is not NULL.15

Effect16

If the runtime entry point returns 0 or 1, no argument is modified. Otherwise,17
ompt_get_parallel_info has the following effects:18

• If a non-null value was passed for parallel_data, the value returned in parallel_data is a pointer19
to a data word that is associated with the parallel region at the specified level; and20

• If a non-null value was passed for team_size, the value returned in the integer to which team_size21
point is the number of threads in the team that is associated with the parallel region.22

Constraints on Arguments23

While argument ancestor_level is passed by value, all other arguments to the entry point must be24
pointers to variables of the specified types or NULL.25

Cross References26

• ompt_data_t type, see Section 4.4.4.4 on page 440.27

CHAPTER 4. OMPT INTERFACE 511

4.6.1.14 ompt_get_task_info_t1

Summary2

The ompt_get_task_info_t type is the type signature of the ompt_get_task_info3
runtime entry point, which returns information about the task, if any, at the specified ancestor level4
in the current execution context.5

Format6

C / C++
typedef int (*ompt_get_task_info_t) (7

int ancestor_level,8
int *flags,9
ompt_data_t **task_data,10
ompt_frame_t **task_frame,11
ompt_data_t **parallel_data,12
int *thread_num13

);14

C / C++

Description15

During execution, an OpenMP thread may be executing an OpenMP task. Additionally, the thread’s16
stack may contain procedure frames that are associated with suspended OpenMP tasks or OpenMP17
runtime system routines. To obtain information about any task on the current thread’s stack, a tool18
uses the ompt_get_task_info runtime entry point, which has type signature19
ompt_get_task_info_t.20

Ancestor level 0 refers to the active task; information about other tasks with associated frames21
present on the stack in the current execution context may be queried at higher ancestor levels.22

The ompt_get_task_info runtime entry point returns 2 if there is a task region at the23
specified ancestor level and the information is available, 1 if there is a task region at the specified24
ancestor level but the information is currently unavailable, and 0 otherwise.25

If a task exists at the specified ancestor level and the information is available then information is26
returned in the variables passed by reference to the entry point. If no task region exists at the27
specified ancestor level or the information is unavailable then the values of variables passed by28
reference to the entry point are undefined when ompt_get_task_info returns.29

A tool may use a pointer to a data object for a task or parallel region that it obtains from30
ompt_get_task_info to inspect or to modify the value of the data object. When either a31
parallel region or a task region is created, its data object will be initialized with the value32
ompt_data_none.33

This runtime entry point is async signal safe.34

512 OpenMP API – Version 5.0 November 2018

Description of Arguments1

The ancestor_level argument specifies the task region of interest by its ancestor level. Ancestor2
level 0 refers to the active task; information about ancestor tasks found in the current execution3
context may be queried at higher ancestor levels.4

The flags argument returns the task type if the argument is not NULL.5

The task_data argument returns the task data if the argument is not NULL.6

The task_frame argument returns the task frame pointer if the argument is not NULL.7

The parallel_data argument returns the parallel data if the argument is not NULL.8

The thread_num argument returns the thread number if the argument is not NULL.9

Effect10

If the runtime entry point returns 0 or 1, no argument is modified. Otherwise,11
ompt_get_task_info has the following effects:12

• If a non-null value was passed for flags then the value returned in the integer to which flags13
points represents the type of the task at the specified level; possible task types include initial,14
implicit, explicit, and target tasks;15

• If a non-null value was passed for task_data then the value that is returned in the object to which16
it points is a pointer to a data word that is associated with the task at the specified level;17

• If a non-null value was passed for task_frame then the value that is returned in the object to18
which task_frame points is a pointer to the ompt_frame_t structure that is associated with the19
task at the specified level;20

• If a non-null value was passed for parallel_data then the value that is returned in the object to21
which parallel_data points is a pointer to a data word that is associated with the parallel region22
that contains the task at the specified level or, if the task at the specified level is an initial task,23
NULL; and24

• If a non-null value was passed for thread_num then the value that is returned in the object to25
which thread_num points indicates the number of the thread in the parallel region that is26
executing the task at the specified level.27

Constraints on Arguments28

While argument ancestor_level is passed by value, all other arguments to29
ompt_get_task_info must be pointers to variables of the specified types or NULL.30

CHAPTER 4. OMPT INTERFACE 513

Cross References1

• ompt_data_t type, see Section 4.4.4.4 on page 440.2

• ompt_task_flag_t type, see Section 4.4.4.18 on page 446.3

• ompt_frame_t type, see Section 4.4.4.27 on page 454.4

4.6.1.15 ompt_get_task_memory_t5

Summary6

The ompt_get_task_memory_t type is the type signature of the7
ompt_get_task_memory runtime entry point, which returns information about memory ranges8
that are associated with the task.9

Format10

C / C++
typedef int (*ompt_get_task_memory_t)(11

void **addr,12
size_t *size,13
int block14

);15

C / C++

Description16

During execution, an OpenMP thread may be executing an OpenMP task. The OpenMP17
implementation must preserve the data environment from the creation of the task for the execution18
of the task. The ompt_get_task_memory runtime entry point, which has type signature19
ompt_get_task_memory_t, provides information about the memory ranges used to store the20
data environment for the current task.21

Multiple memory ranges may be used to store these data. The block argument supports iteration22
over these memory ranges.23

The ompt_get_task_memory runtime entry point returns 1 if there are more memory ranges24
available, and 0 otherwise. If no memory is used for a task, size is set to 0. In this case, addr is25
unspecified.26

This runtime entry point is async signal safe.27

514 OpenMP API – Version 5.0 November 2018

Description of Arguments1

The addr argument is a pointer to a void pointer return value to provide the start address of a2
memory block.3

The size argument is a pointer to a size type return value to provide the size of the memory block.4

The block argument is an integer value to specify the memory block of interest.5

4.6.1.16 ompt_get_target_info_t6

Summary7

The ompt_get_target_info_t type is the type signature of the8
ompt_get_target_info runtime entry point, which returns identifiers that specify a thread’s9
current target region and target operation ID, if any.10

Format11

C / C++
typedef int (*ompt_get_target_info_t) (12

uint64_t *device_num,13
ompt_id_t *target_id,14
ompt_id_t *host_op_id15

);16

C / C++

Description17

The ompt_get_target_info entry point, which has type signature18
ompt_get_target_info_t, returns 1 if the current thread is in a target region and 019
otherwise. If the entry point returns 0 then the values of the variables passed by reference as its20
arguments are undefined.21

If the current thread is in a target region then ompt_get_target_info returns information22
about the current device, active target region, and active host operation, if any.23

This runtime entry point is async signal safe.24

CHAPTER 4. OMPT INTERFACE 515

Description of Arguments1

The device_num argument returns the device number if the current thread is in a target region.2

Th target_id argument returns the target region identifier if the current thread is in a target3
region.4

If the current thread is in the process of initiating an operation on a target device (for example,5
copying data to or from an accelerator or launching a kernel) then host_op_id returns the identifier6
for the operation; otherwise, host_op_id returns ompt_id_none.7

Constraints on Arguments8

Arguments passed to the entry point must be valid references to variables of the specified types.9

Cross References10

• ompt_id_t type, see Section 4.4.4.3 on page 439.11

4.6.1.17 ompt_get_num_devices_t12

Summary13

The ompt_get_num_devices_t type is the type signature of the14
ompt_get_num_devices runtime entry point, which returns the number of available devices.15

Format16

C / C++
typedef int (*ompt_get_num_devices_t) (void);17

C / C++

Description18

The ompt_get_num_devices runtime entry point, which has type signature19
ompt_get_num_devices_t, returns the number of devices available to an OpenMP program.20

This runtime entry point is async signal safe.21

516 OpenMP API – Version 5.0 November 2018

4.6.1.18 ompt_get_unique_id_t1

Summary2

The ompt_get_unique_id_t type is the type signature of the ompt_get_unique_id3
runtime entry point, which returns a unique number.4

Format5

C / C++
typedef uint64_t (*ompt_get_unique_id_t) (void);6

C / C++

Description7

The ompt_get_unique_id runtime entry point, which has type signature8
ompt_get_unique_id_t, returns a number that is unique for the duration of an OpenMP9
program. Successive invocations may not result in consecutive or even increasing numbers.10

This runtime entry point is async signal safe.11

4.6.1.19 ompt_finalize_tool_t12

Summary13

The ompt_finalize_tool_t type is the type signature of the ompt_finalize_tool14
runtime entry point, which enables a tool to finalize itself.15

Format16

C / C++
typedef void (*ompt_finalize_tool_t) (void);17

C / C++

Description18

A tool may detect that the execution of an OpenMP program is ending before the OpenMP19
implementation does. To facilitate clean termination of the tool, the tool may invoke the20
ompt_finalize_tool runtime entry point, which has type signature21
ompt_finalize_tool_t. Upon completion of ompt_finalize_tool, no OMPT22
callbacks are dispatched.23

CHAPTER 4. OMPT INTERFACE 517

Effect1

The ompt_finalize_tool routine detaches the tool from the runtime, unregisters all callbacks2
and invalidates all OMPT entry points passed to the tool in the lookup-function. Upon completion3
of ompt_finalize_tool, no further callbacks will be issued on any thread.4

Before the callbacks are unregistered, the OpenMP runtime should attempt to dispatch all5
outstanding registered callbacks as well as the callbacks that would be encountered during6
shutdown of the runtime, if possible in the current execution context.7

4.6.2 Entry Points in the OMPT Device Tracing Interface8

The runtime entry points with type signatures of the types that are specified in this section enable a9
tool to trace activities on a device.10

4.6.2.1 ompt_get_device_num_procs_t11

Summary12

The ompt_get_device_num_procs_t type is the type signature of the13
ompt_get_device_num_procs runtime entry point, which returns the number of processors14
currently available to the execution environment on the specified device.15

Format16

C / C++
typedef int (*ompt_get_device_num_procs_t) (17

ompt_device_t *device18
);19

C / C++

Description20

The ompt_get_device_num_procs runtime entry point, which has type signature21
ompt_get_device_num_procs_t, returns the number of processors that are available on the22
device at the time the routine is called. This value may change between the time that it is23
determined and the time that it is read in the calling context due to system actions outside the24
control of the OpenMP implementation.25

518 OpenMP API – Version 5.0 November 2018

Description of Arguments1

The device argument is a pointer to an opaque object that represents the target device instance. The2
pointer to the device instance object is used by functions in the device tracing interface to identify3
the device being addressed.4

Cross References5

• ompt_device_t type, see Section 4.4.4.5 on page 441.6

4.6.2.2 ompt_get_device_time_t7

Summary8

The ompt_get_device_time_t type is the type signature of the9
ompt_get_device_time runtime entry point, which returns the current time on the specified10
device.11

Format12

C / C++
typedef ompt_device_time_t (*ompt_get_device_time_t) (13

ompt_device_t *device14
);15

C / C++

Description16

Host and target devices are typically distinct and run independently. If host and target devices are17
different hardware components, they may use different clock generators. For this reason, a common18
time base for ordering host-side and device-side events may not be available.19

The ompt_get_device_time runtime entry point, which has type signature20
ompt_get_device_time_t, returns the current time on the specified device. A tool can use21
this information to align time stamps from different devices.22

Description of Arguments23

The device argument is a pointer to an opaque object that represents the target device instance. The24
pointer to the device instance object is used by functions in the device tracing interface to identify25
the device being addressed.26

CHAPTER 4. OMPT INTERFACE 519

Cross References1

• ompt_device_t type, see Section 4.4.4.5 on page 441.2

• ompt_device_time_t type, see Section 4.4.4.6 on page 441.3

4.6.2.3 ompt_translate_time_t4

Summary5

The ompt_translate_time_t type is the type signature of the ompt_translate_time6
runtime entry point, which translates a time value that is obtained from the specified device to a7
corresponding time value on the host device.8

Format9

C / C++
typedef double (*ompt_translate_time_t) (10

ompt_device_t *device,11
ompt_device_time_t time12

);13

C / C++

Description14

The ompt_translate_time runtime entry point, which has type signature15
ompt_translate_time_t, translates a time value obtained from the specified device to a16
corresponding time value on the host device. The returned value for the host time has the same17
meaning as the value returned from omp_get_wtime.18

19

Note – The accuracy of time translations may degrade if they are not performed promptly after a20
device time value is received and if either the host or device vary their clock speeds. Prompt21
translation of device times to host times is recommended.22

23

Description of Arguments24

The device argument is a pointer to an opaque object that represents the target device instance. The25
pointer to the device instance object is used by functions in the device tracing interface to identify26
the device being addressed.27

The time argument is a time from the specified device.28

520 OpenMP API – Version 5.0 November 2018

Cross References1

• omp_get_wtime routine, see Section 3.4.1 on page 394.2

• ompt_device_t type, see Section 4.4.4.5 on page 441.3

• ompt_device_time_t type, see Section 4.4.4.6 on page 441.4

4.6.2.4 ompt_set_trace_ompt_t5

Summary6

The ompt_set_trace_ompt_t type is the type signature of the ompt_set_trace_ompt7
runtime entry point, which enables or disables the recording of trace records for one or more types8
of OMPT events.9

Format10

C / C++
typedef ompt_set_result_t (*ompt_set_trace_ompt_t) (11

ompt_device_t *device,12
unsigned int enable,13
unsigned int etype14

);15

C / C++

Description of Arguments16

The device argument points to an opaque object that represents the target device instance. Functions17
in the device tracing interface use this pointer to identify the device that is being addressed.18

The etype argument indicates the events to which the invocation of ompt_set_trace_ompt19
applies. If the value of etype is 0 then the invocation applies to all events. If etype is positive then it20
applies to the event in ompt_callbacks_t that matches that value.21

The enable argument indicates whether tracing should be enabled or disabled for the event or events22
that the etype argument specifies. A positive value for enable indicates that recording should be23
enabled; a value of 0 for enable indicates that recording should be disabled.24

Restrictions25

The ompt_set_trace_ompt runtime entry point has the following restriction:26

• The entry point must not return ompt_set_sometimes_paired.27

CHAPTER 4. OMPT INTERFACE 521

Cross References1

• Tracing activity on target devices with OMPT, see Section 4.2.5 on page 427.2

• ompt_callbacks_t type, see Section 4.4.2 on page 434.3

• ompt_set_result_t type, see Section 4.4.4.2 on page 438.4

• ompt_device_t type, see Section 4.4.4.5 on page 441.5

4.6.2.5 ompt_set_trace_native_t6

Summary7

The ompt_set_trace_native_t type is the type signature of the8
ompt_set_trace_native runtime entry point, which enables or disables the recording of9
native trace records for a device.10

Format11

C / C++
typedef ompt_set_result_t (*ompt_set_trace_native_t) (12

ompt_device_t *device,13
int enable,14
int flags15

);16

C / C++

Description17

This interface is designed for use by a tool that cannot directly use native control functions for the18
device. If a tool can directly use the native control functions then it can invoke native control19
functions directly using pointers that the lookup function associated with the device provides and20
that are described in the documentation string that is provided to the device initializer callback.21

Description of Arguments22

The device argument points to an opaque object that represents the target device instance. Functions23
in the device tracing interface use this pointer to identify the device that is being addressed.24

The enable argument indicates whether this invocation should enable or disable recording of events.25

522 OpenMP API – Version 5.0 November 2018

The flags argument specifies the kinds of native device monitoring to enable or to disable. Each1
kind of monitoring is specified by a flag bit. Flags can be composed by using logical or to combine2
enumeration values from type ompt_native_mon_flag_t.3

To start, to pause, to flush, or to stop tracing for a specific target device associated with device, a4
tool invokes the ompt_start_trace, ompt_pause_trace, ompt_flush_trace, or5
ompt_stop_trace runtime entry point for the device.6

Restrictions7

The ompt_set_trace_native runtime entry point has the following restriction:8

• The entry point must not return ompt_set_sometimes_paired.9

Cross References10

• Tracing activity on target devices with OMPT, see Section 4.2.5 on page 427.11

• ompt_set_result_t type, see Section 4.4.4.2 on page 438.12

• ompt_device_t type, see Section 4.4.4.5 on page 441.13

4.6.2.6 ompt_start_trace_t14

Summary15

The ompt_start_trace_t type is the type signature of the ompt_start_trace runtime16
entry point, which starts tracing of activity on a specific device.17

Format18

C / C++
typedef int (*ompt_start_trace_t) (19

ompt_device_t *device,20
ompt_callback_buffer_request_t request,21
ompt_callback_buffer_complete_t complete22

);23

C / C++

CHAPTER 4. OMPT INTERFACE 523

Description1

A device’s ompt_start_trace runtime entry point, which has type signature2
ompt_start_trace_t, initiates tracing on the device. Under normal operating conditions,3
every event buffer provided to a device by a tool callback is returned to the tool before the OpenMP4
runtime shuts down. If an exceptional condition terminates execution of an OpenMP program, the5
OpenMP runtime may not return buffers provided to the device.6

An invocation of ompt_start_trace returns 1 if the command succeeds and 0 otherwise.7

Description of Arguments8

The device argument points to an opaque object that represents the target device instance. Functions9
in the device tracing interface use this pointer to identify the device that is being addressed.10

The request argument specifies a tool callback that supplies a device with a buffer to deposit events.11

The complete argument specifies a tool callback that is invoked by the OpenMP implementation to12
empty a buffer that contains event records.13

Cross References14

• ompt_device_t type, see Section 4.4.4.5 on page 441.15

• ompt_callback_buffer_request_t callback type, see Section 4.5.2.23 on page 486.16

• ompt_callback_buffer_complete_t callback type, see Section 4.5.2.24 on page 487.17

4.6.2.7 ompt_pause_trace_t18

Summary19

The ompt_pause_trace_t type is the type signature of the ompt_pause_trace runtime20
entry point, which pauses or restarts activity tracing on a specific device.21

Format22

C / C++
typedef int (*ompt_pause_trace_t) (23

ompt_device_t *device,24
int begin_pause25

);26

C / C++

524 OpenMP API – Version 5.0 November 2018

Description1

A device’s ompt_pause_trace runtime entry point, which has type signature2
ompt_pause_trace_t, pauses or resumes tracing on a device. An invocation of3
ompt_pause_trace returns 1 if the command succeeds and 0 otherwise. Redundant pause or4
resume commands are idempotent and will return the same value as the prior command.5

Description of Arguments6

The device argument points to an opaque object that represents the target device instance. Functions7
in the device tracing interface use this pointer to identify the device that is being addressed.8

The begin_pause argument indicates whether to pause or to resume tracing. To resume tracing,9
zero should be supplied for begin_pause; To pause tracing, any other value should be supplied.10

Cross References11

• ompt_device_t type, see Section 4.4.4.5 on page 441.12

4.6.2.8 ompt_flush_trace_t13

Summary14

The ompt_flush_trace_t type is the type signature of the ompt_flush_trace runtime15
entry point, which causes all pending trace records for the specified device to be delivered.16

Format17

C / C++
typedef int (*ompt_flush_trace_t) (18

ompt_device_t *device19
);20

C / C++

Description21

A device’s ompt_flush_trace runtime entry point, which has type signature22
ompt_flush_trace_t, causes the OpenMP implementation to issue a sequence of zero or more23
buffer completion callbacks to deliver all trace records that have been collected prior to the flush.24
An invocation of ompt_flush_trace returns 1 if the command succeeds and 0 otherwise.25

CHAPTER 4. OMPT INTERFACE 525

Description of Arguments1

The device argument points to an opaque object that represents the target device instance. Functions2
in the device tracing interface use this pointer to identify the device that is being addressed.3

Cross References4

• ompt_device_t type, see Section 4.4.4.5 on page 441.5

4.6.2.9 ompt_stop_trace_t6

Summary7

The ompt_stop_trace_t type is the type signature of the ompt_stop_trace runtime entry8
point, which stops tracing for a device.9

Format10

C / C++
typedef int (*ompt_stop_trace_t) (11

ompt_device_t *device12
);13

C / C++

Description14

A device’s ompt_stop_trace runtime entry point, which has type signature15
ompt_stop_trace_t, halts tracing on the device and requests that any pending trace records16
are flushed. An invocation of ompt_stop_trace returns 1 if the command succeeds and 017
otherwise.18

Description of Arguments19

The device argument points to an opaque object that represents the target device instance. Functions20
in the device tracing interface use this pointer to identify the device that is being addressed.21

Cross References22

• ompt_device_t type, see Section 4.4.4.5 on page 441.23

526 OpenMP API – Version 5.0 November 2018

4.6.2.10 ompt_advance_buffer_cursor_t1

Summary2

The ompt_advance_buffer_cursor_t type is the type signature of the3
ompt_advance_buffer_cursor runtime entry point, which advances a trace buffer cursor to4
the next record.5

Format6

C / C++
typedef int (*ompt_advance_buffer_cursor_t) (7

ompt_device_t *device,8
ompt_buffer_t *buffer,9
size_t size,10
ompt_buffer_cursor_t current,11
ompt_buffer_cursor_t *next12

);13

C / C++

Description14

A device’s ompt_advance_buffer_cursor runtime entry point, which has type signature15
ompt_advance_buffer_cursor_t, advances a trace buffer pointer to the next trace record.16
An invocation of ompt_advance_buffer_cursor returns true if the advance is successful17
and the next position in the buffer is valid.18

Description of Arguments19

The device argument points to an opaque object that represents the target device instance. Functions20
in the device tracing interface use this pointer to identify the device that is being addressed.21

The buffer argument indicates a trace buffer that is associated with the cursors.22

The argument size indicates the size of buffer in bytes.23

The current argument is an opaque buffer cursor.24

The next argument returns the next value of an opaque buffer cursor.25

Cross References26

• ompt_device_t type, see Section 4.4.4.5 on page 441.27

• ompt_buffer_cursor_t type, see Section 4.4.4.8 on page 442.28

CHAPTER 4. OMPT INTERFACE 527

4.6.2.11 ompt_get_record_type_t1

Summary2

The ompt_get_record_type_t type is the type signature of the3
ompt_get_record_type runtime entry point, which inspects the type of a trace record.4

Format5

C / C++
typedef ompt_record_t (*ompt_get_record_type_t) (6

ompt_buffer_t *buffer,7
ompt_buffer_cursor_t current8

);9

C / C++

Description10

Trace records for a device may be in one of two forms: native record format, which may be11
device-specific, or OMPT record format, in which each trace record corresponds to an OpenMP12
event and most fields in the record structure are the arguments that would be passed to the OMPT13
callback for the event.14

A device’s ompt_get_record_type runtime entry point, which has type signature15
ompt_get_record_type_t, inspects the type of a trace record and indicates whether the16
record at the current position in the trace buffer is an OMPT record, a native record, or an invalid17
record. An invalid record type is returned if the cursor is out of bounds.18

Description of Arguments19

The buffer argument indicates a trace buffer.20

The current argument is an opaque buffer cursor.21

Cross References22

• ompt_record_t type, see Section 4.4.3.1 on page 435.23

• ompt_buffer_t type, see Section 4.4.4.7 on page 441.24

• ompt_buffer_cursor_t type, see Section 4.4.4.8 on page 442.25

528 OpenMP API – Version 5.0 November 2018

4.6.2.12 ompt_get_record_ompt_t1

Summary2

The ompt_get_record_ompt_t type is the type signature of the3
ompt_get_record_ompt runtime entry point, which obtains a pointer to an OMPT trace4
record from a trace buffer associated with a device.5

Format6

C / C++
typedef ompt_record_ompt_t *(*ompt_get_record_ompt_t) (7

ompt_buffer_t *buffer,8
ompt_buffer_cursor_t current9

);10

C / C++

Description11

A device’s ompt_get_record_ompt runtime entry point, which has type signature12
ompt_get_record_ompt_t, returns a pointer that may point to a record in the trace buffer, or13
it may point to a record in thread local storage in which the information extracted from a record was14
assembled. The information available for an event depends upon its type.15

The return value of the ompt_record_ompt_t type includes a field of a union type that can16
represent information for any OMPT event record type. Another call to the runtime entry point may17
overwrite the contents of the fields in a record returned by a prior invocation.18

Description of Arguments19

The buffer argument indicates a trace buffer.20

The current argument is an opaque buffer cursor.21

Cross References22

• ompt_record_ompt_t type, see Section 4.4.3.4 on page 436.23

• ompt_device_t type, see Section 4.4.4.5 on page 441.24

• ompt_buffer_cursor_t type, see Section 4.4.4.8 on page 442.25

CHAPTER 4. OMPT INTERFACE 529

4.6.2.13 ompt_get_record_native_t1

Summary2

The ompt_get_record_native_t type is the type signature of the3
ompt_get_record_native runtime entry point, which obtains a pointer to a native trace4
record from a trace buffer associated with a device.5

Format6

C / C++
typedef void *(*ompt_get_record_native_t) (7

ompt_buffer_t *buffer,8
ompt_buffer_cursor_t current,9
ompt_id_t *host_op_id10

);11

C / C++

Description12

A device’s ompt_get_record_native runtime entry point, which has type signature13
ompt_get_record_native_t, returns a pointer that may point may point into the specified14
trace buffer, or into thread local storage in which the information extracted from a trace record was15
assembled. The information available for a native event depends upon its type. If the function16
returns a non-null result, it will also set the object to which host_op_id points to a host-side17
identifier for the operation that is associated with the record. A subsequent call to18
ompt_get_record_native may overwrite the contents of the fields in a record returned by a19
prior invocation.20

Description of Arguments21

The buffer argument indicates a trace buffer.22

The current argument is an opaque buffer cursor.23

The host_op_id argument is a pointer to an identifier that is returned by the function. The entry24
point sets the identifier to which host_op_id points to the value of a host-side identifier for an25
operation on a target device that was created when the operation was initiated by the host.26

Cross References27

• ompt_id_t type, see Section 4.4.4.3 on page 439.28

• ompt_buffer_t type, see Section 4.4.4.7 on page 441.29

• ompt_buffer_cursor_t type, see Section 4.4.4.8 on page 442.30

530 OpenMP API – Version 5.0 November 2018

4.6.2.14 ompt_get_record_abstract_t1

Summary2

The ompt_get_record_abstract_t type is the type signature of the3
ompt_get_record_abstract runtime entry point, which summarizes the context of a native4
(device-specific) trace record.5

Format6

C / C++
typedef ompt_record_abstract_t *7
(*ompt_get_record_abstract_t) (8

void *native_record9
);10

C / C++

Description11

An OpenMP implementation may execute on a device that logs trace records in a native12
(device-specific) format that a tool cannot interpret directly. A device’s13
ompt_get_record_abstract runtime entry point, which has type signature14
ompt_get_record_abstract_t, translates a native trace record into a standard form.15

Description of Arguments16

The native_record argument is a pointer to a native trace record.17

Cross References18

• ompt_record_abstract_t type, see Section 4.4.3.3 on page 436.19

4.6.3 Lookup Entry Points: ompt_function_lookup_t20

Summary21

The ompt_function_lookup_t type is the type signature of the lookup runtime entry points22
that provide pointers to runtime entry points that are part of the OMPT interface.23

CHAPTER 4. OMPT INTERFACE 531

Format1

C / C++
typedef void (*ompt_interface_fn_t) (void);2

3
typedef ompt_interface_fn_t (*ompt_function_lookup_t) (4

const char *interface_function_name5
);6

C / C++

Description7

An OpenMP implementation provides a pointer to a lookup routine that provides pointers to OMPT8
runtime entry points. When the implementation invokes a tool initializer to configure the OMPT9
callback interface, it provides a lookup function that provides pointers to runtime entry points that10
implement routines that are part of the OMPT callback interface. Alternatively, when it invokes a11
tool initializer to configure the OMPT tracing interface for a device, it provides a lookup function12
that provides pointers to runtime entry points that implement tracing control routines appropriate13
for that device.14

Description of Arguments15

The interface_function_name argument is a C string that represents the name of a runtime entry16
point.17

Cross References18

• Tool initializer for a device’s OMPT tracing interface, see Section 4.2.5 on page 427.19

• Tool initializer for the OMPT callback interface, see Section 4.5.1.1 on page 457.20

• Entry points in the OMPT callback interface, see Table 4.1 on page 426 for a list and21
Section 4.6.1 on page 497 for detailed definitions.22

• Entry points in the OMPT tracing interface, see Table 4.3 on page 430 for a list and Section 4.6.223
on page 518 for detailed definitions.24

532 OpenMP API – Version 5.0 November 2018

CHAPTER 5

OMPD Interface1

2

This chapter describes OMPD, which is an interface for third-party tools. Third-party tools exist in3
separate processes from the OpenMP program. To provide OMPD support, an OpenMP4
implementation must provide an OMPD library to be loaded by the third-party tool. An OpenMP5
implementation does not need to maintain any extra information to support OMPD inquiries from6
third-party tools unless it is explicitly instructed to do so.7

OMPD allows third-party tools such as a debuggers to inspect the OpenMP state of a live program8
or core file in an implementation-agnostic manner. That is, a tool that uses OMPD should work9
with any conforming OpenMP implementation. An OpenMP implementor provides a library for10
OMPD that a third-party tool can dynamically load. Using the interface exported by the OMPD11
library, the external tool can inspect the OpenMP state of a program. In order to satisfy requests12
from the third-party tool, the OMPD library may need to read data from, or to find the addresses of13
symbols in the OpenMP program. The OMPD library provides this functionality through a callback14
interface that the third-party tool must instantiate for the OMPD library.15

To use OMPD, the third-party tool loads the OMPD library. The OMPD library exports the API16
that is defined throughout this section and that the tool uses to determine OpenMP information17
about the OpenMP program. The OMPD library must look up the symbols and read data out of the18
program. It does not perform these operations directly, but instead it uses the callback interface that19
the tool exports to cause the tool to perform them.20

The OMPD architecture insulates tools from the internal structure of the OpenMP runtime while21
the OMPD library is insulated from the details of how to access the OpenMP program. This22
decoupled design allows for flexibility in how the OpenMP program and tool are deployed, so that,23
for example, the tool and the OpenMP program are not required to execute on the same machine.24

Generally the tool does not interact directly with the OpenMP runtime and, instead, interacts with it25
through the OMPD library. However, a few cases require the tool to access the OpenMP runtime26
directly. These cases fall into two broad categories. The first is during initialization, where the tool27
must look up symbols and read variables in the OpenMP runtime in order to identify the OMPD28
library that it should use, which is discussed in Section 5.2.2 on page 535 and Section 5.2.3 on29
page 536. The second category relates to arranging for the tool to be notified when certain events30

533

occur during the execution of the OpenMP program. For this purpose, the OpenMP implementation1
must define certain symbols in the runtime code, as is discussed in Section 5.6 on page 594. Each2
of these symbols corresponds to an event type. The runtime must ensure that control passes through3
the appropriate named location when events occur. If the tool requires notification of an event, it4
can plant a breakpoint at the matching location. The location can, but may not, be a function. It can,5
for example, simply be a label. However, the names of the locations must have external C linkage.6

5.1 OMPD Interfaces Definitions7

C / C++
A compliant implementation must supply a set of definitions for the OMPD runtime entry points,8
OMPD tool callback signatures, OMPD tool interface routines, and the special data types of their9
parameters and return values. These definitions, which are listed throughout this chapter, and their10
associated declarations shall be provided in a header file named omp-tools.h. In addition, the11
set of definitions may specify other implementation-specific values.12

The ompd_dll_locations function, all OMPD tool interface functions, and all OMPD13
runtime entry points are external functions with C linkage.14

C / C++

5.2 Activating an OMPD Tool15

The tool and the OpenMP program exist as separate processes. Thus, coordination is required16
between the OpenMP runtime and the external tool for OMPD.17

5.2.1 Enabling the Runtime for OMPD18

In order to support third-party tools, the OpenMP runtime may need to collect and to maintain19
information that it might not otherwise. The OpenMP runtime collects whatever information is20
necessary to support OMPD if the environment variable OMP_DEBUG is set to enabled.21

534 OpenMP API – Version 5.0 November 2018

Cross References1

• Activating an OMPT Tool, Section 4.2 on page 4202

• OMP_DEBUG, Section 6.20 on page 6173

5.2.2 ompd_dll_locations4

Summary5

The ompd_dll_locations global variable indicates the location of OMPD libraries that are6
compatible with the OpenMP implementation.7

Format8

C
const char **ompd_dll_locations;9

C

Description10

An OpenMP runtime may have more than one OMPD library. The tool must be able to locate the11
right library to use for the OpenMP program that it is examining. The OpenMP runtime system12
must provide a public variable ompd_dll_locations, which is an argv-style vector of13
filename string pointers that provides the name(s) of any compatible OMPD library. This variable14
must have C linkage. The tool uses the name of the variable verbatim and, in particular, does not15
apply any name mangling before performing the look up.16

The programming model or architecture of the tool and, thus, that of OMPD does not have to match17
that of the OpenMP program that is being examined. The tool must interpret the contents of18
ompd_dll_locations to find a suitable OMPD that matches its own architectural19
characteristics. On platforms that support different programming models (for example, 32-bit vs20
64-bit), OpenMP implementations are encouraged to provide OMPD libraries for all models, and21
that can handle OpenMP programs of any model. Thus, for example, a 32-bit debugger that uses22
OMPD should be able to debug a 64-bit OpenMP program by loading a 32-bit OMPD23
implementation that can manage a 64-bit OpenMP runtime.24

ompd_dll_locations points to a NULL-terminated vector of zero or more NULL-terminated25
pathname strings that do not have any filename conventions. This vector must be fully initialized26
before ompd_dll_locations is set to a non-null value, such that if a tool, such as a debugger,27
stops execution of the OpenMP program at any point at which ompd_dll_locations is28
non-null, then the vector of strings to which it points is valid and complete.29

CHAPTER 5. OMPD INTERFACE 535

Cross References1

• ompd_dll_locations_valid, see Section 5.2.3 on page 5362

5.2.3 ompd_dll_locations_valid3

Summary4

The OpenMP runtime notifies third-party tools that ompd_dll_locations is valid by allowing5
execution to pass through a location that the symbol ompd_dll_locations_valid identifies.6

Format7

C
void ompd_dll_locations_valid(void);8

C

Description9

Since ompd_dll_locations may not be a static variable, it may require runtime initialization.10
The OpenMP runtime notifies third-party tools that ompd_dll_locations is valid by having11
execution pass through a location that the symbol ompd_dll_locations_valid identifies. If12
ompd_dll_locations is NULL, a third-party tool can place a breakpoint at13
ompd_dll_locations_valid to be notified that ompd_dll_locations is initialized. In14
practice, the symbol ompd_dll_locations_valid may not be a function; instead, it may be a15
labeled machine instruction through which execution passes once the vector is valid.16

5.3 OMPD Data Types17

This section defines the OMPD types.18

5.3.1 Size Type19

Summary20

The ompd_size_t type specifies the number of bytes in opaque data objects that are passed21
across the OMPD API.22

536 OpenMP API – Version 5.0 November 2018

Format1

C / C++
typedef uint64_t ompd_size_t;2

C / C++

5.3.2 Wait ID Type3

Summary4

This ompd_wait_id_t type identifies the object on which a thread.5

Format6

C / C++
typedef uint64_t ompd_wait_id_t;7

C / C++

5.3.3 Basic Value Types8

Summary9

These definitions represent a word, address, and segment value types.10

Format11

C / C++
typedef uint64_t ompd_addr_t;12
typedef int64_t ompd_word_t;13
typedef uint64_t ompd_seg_t;14

C / C++

Description15

The ompd_addr_t type represents an unsigned integer address in an OpenMP process. The16
ompd_word_t type represents a signed version of ompd_addr_t to hold a signed integer of the17
OpenMP process. The ompd_seg_t type represents an unsigned integer segment value.18

CHAPTER 5. OMPD INTERFACE 537

5.3.4 Address Type1

Summary2

The ompd_address_t type is used to specify device addresses.3

Format4

C / C++
typedef struct ompd_address_t {5

ompd_seg_t segment;6
ompd_addr_t address;7

} ompd_address_t;8

C / C++

Description9

The ompd_address_t type is a structure that OMPD uses to specify device addresses, which10
may or may not be segmented. For non-segmented architectures, ompd_segment_none is used11
in the segment field of ompd_address_t; it is an instance of the ompd_seg_t type that has the12
value 0.13

5.3.5 Frame Information Type14

Summary15

The ompd_frame_info_t type is used to specify frame information.16

Format17

C / C++
typedef struct ompd_frame_info_t {18

ompd_address_t frame_address;19
ompd_word_t frame_flag;20

} ompd_frame_info_t;21

C / C++

538 OpenMP API – Version 5.0 November 2018

Description1

The ompd_frame_info_t type is a structure that OMPD uses to specify frame information.2
The frame_address field of ompd_frame_info_t identifies a frame. The frame_flag field of3
ompd_frame_info_t indicates what type of information is provided in frame_address. The4
values and meaning is the same as defined for the ompt_frame_t enumeration type.5

Cross References6

• ompt_frame_t, see Section 4.4.4.27 on page 4547

5.3.6 System Device Identifiers8

Summary9

The ompd_device_t type provides information about OpenMP devices.10

Format11

C / C++
typedef uint64_t ompd_device_t;12

C / C++

Description13

Different OpenMP runtimes may utilize different underlying devices. The Device identifiers can14
vary in size and format and, thus, are not explicitly represented in OMPD. Instead, device15
identifiers are passed across the interface via the ompd_device_t type, which is a pointer to16
where the device identifier is stored, and the size of the device identifier in bytes. The OMPD17
library and a tool that uses it must agree on the format of the object that is passed. Each different18
kind of device identifier uses a unique unsigned 64-bit integer value.19

Recommended values of ompd_device_t are defined in the ompd-types.h header file,20
which is available on http://www.openmp.org/.21

5.3.7 Native Thread Identifiers22

Summary23

The ompd_thread_id_t type provides information about native threads.24

CHAPTER 5. OMPD INTERFACE 539

http://www.openmp.org/

Format1

C / C++
typedef uint64_t ompd_thread_id_t;2

C / C++

Description3

Different OpenMP runtimes may use different native thread implementations. Native thread4
identifiers can vary in size and format and, thus, are not explicitly represented in the OMPD API.5
Instead, native thread identifiers are passed across the interface via the ompd_thread_id_t6
type, which is a pointer to where the native thread identifier is stored, and the size of the native7
thread identifier in bytes. The OMPD library and a tool that uses it must agree on the format of the8
object that is passed. Each different kind of native thread identifier uses a unique unsigned 64-bit9
integer value.10

Recommended values of ompd_thread_id_t are defined in the ompd-types.h header file,11
which is available on http://www.openmp.org/.12

5.3.8 OMPD Handle Types13

Summary14

OMPD handle types are opaque types.15

Format16

C / C++
typedef struct _ompd_aspace_handle ompd_address_space_handle_t;17
typedef struct _ompd_thread_handle ompd_thread_handle_t;18
typedef struct _ompd_parallel_handle ompd_parallel_handle_t;19
typedef struct _ompd_task_handle ompd_task_handle_t;20

C / C++

540 OpenMP API – Version 5.0 November 2018

http://www.openmp.org/

Description1

OMPD uses handles for address spaces (ompd_address_space_handle_t), threads2
(ompd_thread_handle_t), parallel regions (ompd_parallel_handle_t), and tasks3
(ompd_task_handle_t). Each operation of the OMPD interface that applies to a particular4
address space, thread, parallel region, or task must explicitly specify a corresponding handle. A5
handle for an entity is constant while the entity itself is alive. Handles are defined by the OMPD6
library, and are opaque to the tool.7

Defining externally visible type names in this way introduces type safety to the interface, and helps8
to catch instances where incorrect handles are passed by the tool to the OMPD library. The9
structures do not need to be defined; instead, the OMPD library must cast incoming (pointers to)10
handles to the appropriate internal, private types.11

5.3.9 OMPD Scope Types12

Summary13

The ompd_scope_t type identifies OMPD scopes.14

Format15

C / C++
typedef enum ompd_scope_t {16

ompd_scope_global = 1,17
ompd_scope_address_space = 2,18
ompd_scope_thread = 3,19
ompd_scope_parallel = 4,20
ompd_scope_implicit_task = 5,21
ompd_scope_task = 622

} ompd_scope_t;23

C / C++

Description24

The ompd_scope_t type identifies OpenMP scopes, including those related to parallel regions25
and tasks. When used in an OMPD interface function call, the scope type and the ompd handle26
must match according to Table 5.1.27

CHAPTER 5. OMPD INTERFACE 541

TABLE 5.1: Mapping of Scope Type and OMPD Handles

Scope types Handles

ompd_scope_global Address space handle for the host device

ompd_scope_address_space Any address space handle

ompd_scope_thread Any thread handle

ompd_scope_parallel Any parallel handle

ompd_scope_implicit_task Task handle for an implicit task

ompd_scope_task Any task handle

5.3.10 ICV ID Type1

Summary2

The ompd_icv_id_t type identifies an OpenMP implementation ICV.3

Format4

C / C++
typedef uint64_t ompd_icv_id_t;5

C / C++
The ompd_icv_id_t type identifies OpenMP implementation ICVs. ompd_icv_undefined6
is an instance of this type with the value 0.7

5.3.11 Tool Context Types8

Summary9

A third-party tool uses contexts to uniquely identify abstractions. These contexts are opaque to the10
OMPD library and are defined as follows:11

Format12

C / C++
typedef struct _ompd_aspace_cont ompd_address_space_context_t;13
typedef struct _ompd_thread_cont ompd_thread_context_t;14

C / C++

542 OpenMP API – Version 5.0 November 2018

5.3.12 Return Code Types1

Summary2

The ompd_rc_t type is the return code type of OMPD operations3

Format4

C / C++
typedef enum ompd_rc_t {5

ompd_rc_ok = 0,6
ompd_rc_unavailable = 1,7
ompd_rc_stale_handle = 2,8
ompd_rc_bad_input = 3,9
ompd_rc_error = 4,10
ompd_rc_unsupported = 5,11
ompd_rc_needs_state_tracking = 6,12
ompd_rc_incompatible = 7,13
ompd_rc_device_read_error = 8,14
ompd_rc_device_write_error = 9,15
ompd_rc_nomem = 10,16

} ompd_rc_t;17

C / C++

Description18

The ompd_rc_t type is used for the return codes of OMPD operations. The return code types and19
their semantics are defined as follows:20

• ompd_rc_ok is returned when the operation is successful;21

• ompd_rc_unavailable is returned when information is not available for the specified22
context;23

• ompd_rc_stale_handle is returned when the specified handle is no longer valid;24

• ompd_rc_bad_input is returned when the input parameters (other than handle) are invalid;25

• ompd_rc_error is returned when a fatal error occurred;26

• ompd_rc_unsupported is returned when the requested operation is not supported;27

• ompd_rc_needs_state_tracking is returned when the state tracking operation failed28
because state tracking is not currently enabled;29

• ompd_rc_device_read_error is returned when a read operation failed on the device;30

• ompd_rc_device_write_error is returned when a write operation failed on the device;31

CHAPTER 5. OMPD INTERFACE 543

• ompd_rc_incompatible is returned when this OMPD library is incompatible with, or is not1
capable of handling, the OpenMP program; and2

• ompd_rc_nomem is returned when a memory allocation fails.3

5.3.13 Primitive Type Sizes4

Summary5

The ompd_device_type_sizes_t type provides the “sizeof” of primitive types in the6
OpenMP architecture address space.7

Format8

C / C++
typedef struct ompd_device_type_sizes_t {9

uint8_t sizeof_char;10
uint8_t sizeof_short;11
uint8_t sizeof_int;12
uint8_t sizeof_long;13
uint8_t sizeof_long_long;14
uint8_t sizeof_pointer;15

} ompd_device_type_sizes_t;16

C / C++

Description17

The ompd_device_type_sizes_t type is used in operations through which the OMPD18
library can interrogate the tool about the “sizeof” of primitive types in the OpenMP architecture19
address space. The fields of ompd_device_type_sizes_t give the sizes of the eponymous20
basic types used by the OpenMP runtime. As the tool and the OMPD library, by definition, have the21
same architecture and programming model, the size of the fields can be given as uint8_t.22

Cross References23

• ompd_callback_sizeof_fn_t, see Section 5.4.2.2 on page 54924

544 OpenMP API – Version 5.0 November 2018

5.4 OMPD Tool Callback Interface1

For the OMPD library to provide information about the internal state of the OpenMP runtime2
system in an OpenMP process or core file, it must have a means to extract information from the3
OpenMP process that the tool is debugging. The OpenMP process on which the tool is operating4
may be either a “live” process or a core file, and a thread may be either a “live” thread in an5
OpenMP process, or a thread in a core file. To enable the OMPD library to extract state information6
from an OpenMP process or core file, the tool must supply the OMPD library with callback7
functions to inquire about the size of primitive types in the device of the OpenMP process, to look8
up the addresses of symbols, and to read and to write memory in the device. The OMPD library9
uses these callbacks to implement its interface operations. The OMPD library only invokes the10
callback functions in direct response to calls made by the tool to the OMPD library.11

5.4.1 Memory Management of OMPD Library12

The OMPD library must not access the heap manager directly. Instead, if it needs heap memory it13
must use the memory allocation and deallocation callback functions that are described in this14
section, ompd_callback_memory_alloc_fn_t (see Section 5.4.1.1 on page 546) and15
ompd_callback_memory_free_fn_t (see Section 5.4.1.2 on page 546), which are provided16
by the tool to obtain and to release heap memory. This mechanism ensures that the library does not17
interfere with any custom memory management scheme that the tool may use.18

If the OMPD library is implemented in C++, memory management operators like new and19
delete in all their variants, must all be overloaded and implemented in terms of the callbacks that20
the tool provides. The OMPD library must be coded so that any of its definitions of new or21
delete do not interfere with any that the tool defines.22

In some cases, the OMPD library must allocate memory to return results to the tool. The tool then23
owns this memory and has the responsibility to release it. Thus, the OMPD library and the tool24
must use the same memory manager.25

The OMPD library creates OMPD handles, which are opaque to the tool and may have a complex26
internal structure. The tool cannot determine if the handle pointers that the API returns correspond27
to discrete heap allocations. Thus, the tool must not simply deallocate a handle by passing an28
address that it receives from the OMPD library to its own memory manager. Instead, the API29
includes functions that the tool must use when it no longer needs a handle.30

A tool creates contexts and passes them to the OMPD library. The OMPD library does not release31
contexts; instead the tool release them after it releases any handles that may reference the contexts.32

CHAPTER 5. OMPD INTERFACE 545

5.4.1.1 ompd_callback_memory_alloc_fn_t1

Summary2

The ompd_callback_memory_alloc_fn_t type is the type signature of the callback routine3
that the tool provides to the OMPD library to allocate memory.4

Format5

C
typedef ompd_rc_t (*ompd_callback_memory_alloc_fn_t) (6

ompd_size_t nbytes,7
void **ptr8

);9

C

Description10

The ompd_callback_memory_alloc_fn_t type is the type signature of the memory11
allocation callback routine that the tool provides. The OMPD library may call the12
ompd_callback_memory_alloc_fn_t callback function to allocate memory.13

Description of Arguments14

The nbytes argument is the size in bytes of the block of memory to allocate.15

The address of the newly allocated block of memory is returned in the location to which the ptr16
argument points. The newly allocated block is suitably aligned for any type of variable, and is not17
guaranteed to be zeroed.18

Cross References19

• ompd_size_t, see Section 5.3.1 on page 536.20

• ompd_rc_t, see Section 5.3.12 on page 543.21

5.4.1.2 ompd_callback_memory_free_fn_t22

Summary23

The ompd_callback_memory_free_fn_t type is the type signature of the callback routine24
that the tool provides to the OMPD library to deallocate memory.25

546 OpenMP API – Version 5.0 November 2018

Format1

C
typedef ompd_rc_t (*ompd_callback_memory_free_fn_t) (2

void *ptr3
);4

C

Description5

The ompd_callback_memory_free_fn_t type is the type signature of the memory6
deallocation callback routine that the tool provides. The OMPD library may call the7
ompd_callback_memory_free_fn_t callback function to deallocate memory that was8
obtained from a prior call to the ompd_callback_memory_alloc_fn_t callback function.9

Description of Arguments10

The ptr argument is the address of the block to be deallocated.11

Cross References12

• ompd_rc_t, see Section 5.3.12 on page 543.13

• ompd_callback_memory_alloc_fn_t, see Section 5.4.1.1 on page 546.14

• ompd_callbacks_t, see Section 5.4.6 on page 556.15

5.4.2 Context Management and Navigation16

Summary17

The tool provides the OMPD library with callbacks to manage and to navigate context relationships.18

5.4.2.1 ompd_callback_get_thread_context_for_thread_id_fn_t19

Summary20

The ompd_callback_get_thread_context_for_thread_id_fn_t is the type21
signature of the callback routine that the tool provides to the OMPD library to map a thread22
identifier to a tool thread context.23

CHAPTER 5. OMPD INTERFACE 547

Format1

C
typedef ompd_rc_t2
(*ompd_callback_get_thread_context_for_thread_id_fn_t) (3

ompd_address_space_context_t *address_space_context,4
ompd_thread_id_t kind,5
ompd_size_t sizeof_thread_id,6
const void *thread_id,7
ompd_thread_context_t **thread_context8

);9

C

Description10

The ompd_callback_get_thread_context_for_thread_id_fn_t is the type11
signature of the context mapping callback routine that the tool provides. This callback maps a12
thread identifier to a tool thread context. The thread identifier is within the address space that13
address_space_context identifies. The OMPD library can use the thread context, for example, to14
access thread local storage.15

Description of Arguments16

The address_space_context argument is an opaque handle that the tool provides to reference an17
address space. The kind, sizeof_thread_id, and thread_id arguments represent a native thread18
identifier. On return, the thread_context argument provides an opaque handle that maps a native19
thread identifier to a tool thread context.20

Restrictions21

Routines that use ompd_callback_get_thread_context_for_thread_id_fn_t have22
the following restriction:23

• The provided thread_context must be valid until the OMPD library returns from the OMPD tool24
interface routine.25

Cross References26

• ompd_size_t, see Section 5.3.1 on page 536.27

• ompd_thread_id_t, see Section 5.3.7 on page 539.28

• ompd_address_space_context_t, see Section 5.3.11 on page 542.29

• ompd_thread_context_t, see Section 5.3.11 on page 542.30

• ompd_rc_t, see Section 5.3.12 on page 543.31

548 OpenMP API – Version 5.0 November 2018

5.4.2.2 ompd_callback_sizeof_fn_t1

Summary2

The ompd_callback_sizeof_fn_t type is the type signature of the callback routine that the3
tool provides to the OMPD library to determine the sizes of the primitive types in an address space.4

Format5

C
typedef ompd_rc_t (*ompd_callback_sizeof_fn_t) (6

ompd_address_space_context_t *address_space_context,7
ompd_device_type_sizes_t *sizes8

);9

C

Description10

The ompd_callback_sizeof_fn_t is the type signature of the type-size query callback11
routine that the tool provides. This callback provides the sizes of the basic primitive types for a12
given address space.13

Description of Arguments14

The callback returns the sizes of the basic primitive types used by the address space context that the15
address_space_context argument specifies in the location to which the sizes argument points.16

Cross References17

• ompd_address_space_context_t, see Section 5.3.11 on page 542.18

• ompd_rc_t, see Section 5.3.12 on page 543.19

• ompd_device_type_sizes_t, see Section 5.3.13 on page 544.20

• ompd_callbacks_t, see Section 5.4.6 on page 556.21

5.4.3 Accessing Memory in the OpenMP Program or Runtime22

The OMPD library may need to read from or to write to the OpenMP program. It cannot do this23
directly. Instead the OMPD library must use callbacks that the tool provides so that the tool24
performs the operation.25

CHAPTER 5. OMPD INTERFACE 549

5.4.3.1 ompd_callback_symbol_addr_fn_t1

Summary2

The ompd_callback_symbol_addr_fn_t type is the type signature of the callback that the3
tool provides to look up the addresses of symbols in an OpenMP program.4

Format5

C
typedef ompd_rc_t (*ompd_callback_symbol_addr_fn_t) (6

ompd_address_space_context_t *address_space_context,7
ompd_thread_context_t *thread_context,8
const char *symbol_name,9
ompd_address_t *symbol_addr,10
const char *file_name11

);12

C

Description13

The ompd_callback_symbol_addr_fn_t is the type signature of the symbol-address query14
callback routine that the tool provides. This callback looks up addresses of symbols within a15
specified address space.16

Description of Arguments17

This callback looks up the symbol provided in the symbol_name argument.18

The address_space_context argument is the tool’s representation of the address space of the19
process, core file, or device.20

The thread_context argument is NULL for global memory access. If thread_context is not NULL,21
thread_context gives the thread specific context for the symbol lookup, for the purpose of22
calculating thread local storage addresses. If thread_context is non-null then the thread to which23
thread_context refers must be associated with either the process or the device that corresponds to24
the address_space_context argument.25

The tool uses the symbol_name argument that the OMPD library supplies verbatim. In particular,26
no name mangling, demangling or other transformations are performed prior to the lookup. The27
symbol_name parameter must correspond to a statically allocated symbol within the specified28
address space. The symbol can correspond to any type of object, such as a variable, thread local29
storage variable, function, or untyped label. The symbol can have a local, global, or weak binding.30

The file_name argument is an optional input parameter that indicates the name of the shared library31
in which the symbol is defined, and is intended to help the third party tool disambiguate symbols32

550 OpenMP API – Version 5.0 November 2018

that are defined multiple times across the executable or shared library files. The shared library1
name may not be an exact match for the name seen by the tool. If file_name is NULL then the tool2
first tries to find the symbol in the executable file, and, if the symbol is not found, the tool tries to3
find the symbol in the shared libraries in the order in which the shared libraries are loaded into the4
address space. If file_name is non-null then the tool first tries to find the symbol in the libraries that5
match the name in the file_name argument and, if the symbol is not found, the tool then uses the6
same procedure as when file_name is NULL.7

The callback does not support finding symbols that are dynamically allocated on the call stack, or8
statically allocated symbols that are defined within the scope of a function or subroutine.9

The callback returns the symbol’s address in the location to which symbol_addr points.10

Restrictions11

Routines that use the ompd_callback_symbol_addr_fn_t type have the following12
restrictions:13

• The address_space_context argument must be non-null.14

• The symbol that the symbol_name argument specifies must be defined.15

Cross References16

• ompd_address_t, see Section 5.3.4 on page 538.17

• ompd_address_space_context_t, see Section 5.3.11 on page 542.18

• ompd_thread_context_t, see Section 5.3.11 on page 542.19

• ompd_rc_t, see Section 5.3.12 on page 543.20

• ompd_callbacks_t, see Section 5.4.6 on page 556.21

5.4.3.2 ompd_callback_memory_read_fn_t22

Summary23

The ompd_callback_memory_read_fn_t type is the type signature of the callback that the24
tool provides to read data from an OpenMP program.25

CHAPTER 5. OMPD INTERFACE 551

Format1

C
typedef ompd_rc_t (*ompd_callback_memory_read_fn_t) (2

ompd_address_space_context_t *address_space_context,3
ompd_thread_context_t *thread_context,4
const ompd_address_t *addr,5
ompd_size_t nbytes,6
void *buffer7

);8

C

Description9

The ompd_callback_memory_read_fn_t is the type signature of the read callback routines10
that the tool provides.11

The read_memory callback copies a block of data from addr within the address space to the tool12
buffer.13

The read_string callback copies a string to which addr points, including the terminating null14
byte (’\0’), to the tool buffer. At most nbytes bytes are copied. If a null byte is not among the first15
nbytes bytes, the string placed in buffer is not null-terminated.16

Description of Arguments17

The address from which the data are to be read from the OpenMP program specified by18
address_space_context is given by addr. while nbytes gives the number of bytes to be transferred.19
The thread_context argument is optional for global memory access, and in this case should be20
NULL. If it is non-null, thread_context identifies the thread specific context for the memory access21
for the purpose of accessing thread local storage.22

The data are returned through buffer, which is allocated and owned by the OMPD library. The23
contents of the buffer are unstructured, raw bytes. The OMPD library must arrange for any24
transformations such as byte-swapping that may be necessary (see Section 5.4.4 on page 554) to25
interpret the data.26

552 OpenMP API – Version 5.0 November 2018

Cross References1

• ompd_size_t, see Section 5.3.1 on page 536.2

• ompd_address_t, see Section 5.3.4 on page 538.3

• ompd_address_space_context_t, see Section 5.3.11 on page 542.4

• ompd_thread_context_t, see Section 5.3.11 on page 542.5

• ompd_rc_t, see Section 5.3.12 on page 543.6

• ompd_callback_device_host_fn_t, see Section 5.4.4 on page 554.7

• ompd_callbacks_t, see Section 5.4.6 on page 556.8

5.4.3.3 ompd_callback_memory_write_fn_t9

Summary10

The ompd_callback_memory_write_fn_t type is the type signature of the callback that11
the tool provides to write data to an OpenMP program.12

Format13

C
typedef ompd_rc_t (*ompd_callback_memory_write_fn_t) (14

ompd_address_space_context_t *address_space_context,15
ompd_thread_context_t *thread_context,16
const ompd_address_t *addr,17
ompd_size_t nbytes,18
const void *buffer19

);20

C

Description21

The ompd_callback_memory_write_fn_t is the type signature of the write callback22
routine that the tool provides. The OMPD library may call this callback to have the tool write a23
block of data to a location within an address space from a provided buffer.24

CHAPTER 5. OMPD INTERFACE 553

Description of Arguments1

The address to which the data are to be written in the OpenMP program that address_space_context2
specifies is given by addr. The nbytes argument is the number of bytes to be transferred. The3
thread_context argument is optional for global memory access, and, in this case, should be NULL.4
If it is non-null then thread_context identifies the thread-specific context for the memory access for5
the purpose of accessing thread local storage.6

The data to be written are passed through buffer, which is allocated and owned by the OMPD7
library. The contents of the buffer are unstructured, raw bytes. The OMPD library must arrange for8
any transformations such as byte-swapping that may be necessary (see Section 5.4.4 on page 554)9
to render the data into a form that is compatible with the OpenMP runtime.10

Cross References11

• ompd_size_t, see Section 5.3.1 on page 536.12

• ompd_address_t, see Section 5.3.4 on page 538.13

• ompd_address_space_context_t, see Section 5.3.11 on page 542.14

• ompd_thread_context_t, see Section 5.3.11 on page 542.15

• ompd_rc_t, see Section 5.3.12 on page 543.16

• ompd_callback_device_host_fn_t, see Section 5.4.4 on page 554.17

• ompd_callbacks_t, see Section 5.4.6 on page 556.18

5.4.4 Data Format Conversion:19

ompd_callback_device_host_fn_t20

Summary21

The ompd_callback_device_host_fn_t type is the type signature of the callback that the22
tool provides to convert data between the formats that the tool and the OMPD library use and that23
the OpenMP program uses.24

554 OpenMP API – Version 5.0 November 2018

Format1

C
typedef ompd_rc_t (*ompd_callback_device_host_fn_t) (2

ompd_address_space_context_t *address_space_context,3
const void *input,4
ompd_size_t unit_size,5
ompd_size_t count,6
void *output7

);8

C

Description9

The architecture and/or programming-model of the tool and the OMPD library may be different10
from that of the OpenMP program that is being examined. Thus, the conventions for representing11
data may differ. The callback interface includes operations to convert between the conventions,12
such as the byte order (endianness), that the tool and OMPD library use and the one that the13
OpenMP program uses. The callback with the ompd_callback_device_host_fn_t type14
signature convert data between formats15

Description of Arguments16

The address_space_context argument specifies the OpenMP address space that is associated with17
the data. The input argument is the source buffer and the output argument is the destination buffer.18
The unit_size argument is the size of each of the elements to be converted. The count argument is19
the number of elements to be transformed.20

The OMPD library allocates and owns the input and output buffers. It must ensure that the buffers21
have the correct size, and are eventually deallocated when they are no longer needed.22

Cross References23

• ompd_size_t, see Section 5.3.1 on page 536.24

• ompd_address_space_context_t, see Section 5.3.11 on page 542.25

• ompd_rc_t, see Section 5.3.12 on page 543.26

• ompd_callbacks_t, see Section 5.4.6 on page 556.27

CHAPTER 5. OMPD INTERFACE 555

5.4.5 Output: ompd_callback_print_string_fn_t1

Summary2

The ompd_callback_print_string_fn_t type is the type signature of the callback that3
tool provides so that the OMPD library can emit output.4

Format5

C
typedef ompd_rc_t (*ompd_callback_print_string_fn_t) (6

const char *string,7
int category8

);9

C

Description10

The OMPD library may call the ompd_callback_print_string_fn_t callback function to11
emit output, such as logging or debug information. The tool may set the12
ompd_callback_print_string_fn_t callback function to NULL to prevent the OMPD13
library from emitting output; the OMPD may not write to file descriptors that it did not open.14

Description of Arguments15

The string argument is the null-terminated string to be printed. No conversion or formatting is16
performed on the string.17

The category argument is the implementation-defined category of the string to be printed.18

Cross References19

• ompd_rc_t, see Section 5.3.12 on page 543.20

• ompd_callbacks_t, see Section 5.4.6 on page 556.21

5.4.6 The Callback Interface22

Summary23

All OMPD library interactions with the OpenMP program must be through a set of callbacks that24
the tool provides. These callbacks must also be used for allocating or releasing resources, such as25
memory, that the library needs.26

556 OpenMP API – Version 5.0 November 2018

Format1

C
typedef struct ompd_callbacks_t {2
ompd_callback_memory_alloc_fn_t alloc_memory;3
ompd_callback_memory_free_fn_t free_memory;4
ompd_callback_print_string_fn_t print_string;5
ompd_callback_sizeof_fn_t sizeof_type;6
ompd_callback_symbol_addr_fn_t symbol_addr_lookup;7
ompd_callback_memory_read_fn_t read_memory;8
ompd_callback_memory_write_fn_t write_memory;9
ompd_callback_memory_read_fn_t read_string;10
ompd_callback_device_host_fn_t device_to_host;11
ompd_callback_device_host_fn_t host_to_device;12
ompd_callback_get_thread_context_for_thread_id_fn_t13

get_thread_context_for_thread_id;14
} ompd_callbacks_t;15

C

Description16

The set of callbacks that the OMPD library must use is collected in the ompd_callbacks_t17
record structure. An instance of this type is passed to the OMPD library as a parameter to18
ompd_initialize (see Section 5.5.1.1 on page 558). Each field points to a function that the19
OMPD library must use to interact with the OpenMP program or for memory operations.20

The alloc_memory and free_memory fields are pointers to functions the OMPD library uses to21
allocate and to release dynamic memory.22

print_string points to a function that prints a string.23

The architectures or programming models of the OMPD library and third party tool may be24
different from that of the OpenMP program that is being examined. sizeof_type points to function25
that allows the OMPD library to determine the sizes of the basic integer and pointer types that the26
OpenMP program uses. Because of the differences in architecture or programming model, the27
conventions for representing data in the OMPD library and the OpenMP program may be different.28
The device_to_host field points to a function that translates data from the conventions that the29
OpenMP program uses to those that the tool and OMPD library use. The reverse operation is30
performed by the function to which the host_to_device field points.31

The symbol_addr_lookup field points to a callback that the OMPD library can use to find the32
address of a global or thread local storage symbol. The read_memory, read_string, and33
write_memory fields are pointers to functions for reading from and writing to global memory or34
thread local storage in the OpenMP program.35

The get_thread_context_for_thread_id field is a pointer to a function that the OMPD library can36
use to obtain a thread context that corresponds to a native thread identifier.37

CHAPTER 5. OMPD INTERFACE 557

Cross References1

• ompd_callback_memory_alloc_fn_t, see Section 5.4.1.1 on page 546.2

• ompd_callback_memory_free_fn_t, see Section 5.4.1.2 on page 546.3

• ompd_callback_get_thread_context_for_thread_id_fn_t, see Section 5.4.2.14
on page 547.5

• ompd_callback_sizeof_fn_t, see Section 5.4.2.2 on page 549.6

• ompd_callback_symbol_addr_fn_t, see Section 5.4.3.1 on page 550.7

• ompd_callback_memory_read_fn_t, see Section 5.4.3.2 on page 551.8

• ompd_callback_memory_write_fn_t, see Section 5.4.3.3 on page 553.9

• ompd_callback_device_host_fn_t, see Section 5.4.4 on page 554.10

• ompd_callback_print_string_fn_t, see Section 5.4.5 on page 55611

5.5 OMPD Tool Interface Routines12

5.5.1 Per OMPD Library Initialization and Finalization13

The OMPD library must be initialized exactly once after it is loaded, and finalized exactly once14
before it is unloaded. Per OpenMP process or core file initialization and finalization are also15
required.16

Once loaded, the tool can determine the version of the OMPD API that the library supports by17
calling ompd_get_api_version (see Section 5.5.1.2 on page 559). If the tool supports the18
version that ompd_get_api_version returns, the tool starts the initialization by calling19
ompd_initialize (see Section 5.5.1.1 on page 558) using the version of the OMPD API that20
the library supports. If the tool does not support the version that ompd_get_api_version21
returns, it may attempt to call ompd_initialize with a different version.22

5.5.1.1 ompd_initialize23

Summary24

The ompd_initialize function initializes the OMPD library.25

558 OpenMP API – Version 5.0 November 2018

Format1

C
ompd_rc_t ompd_initialize(2

ompd_word_t api_version,3
const ompd_callbacks_t *callbacks4

);5

C

Description6

A tool that uses OMPD calls ompd_initialize to initialize each OMPD library that it loads.7
More than one library may be present in a third-party tool, such as a debugger, because the tool8
may control multiple devices, which may use different runtime systems that require different9
OMPD libraries. This initialization must be performed exactly once before the tool can begin to10
operate on an OpenMP process or core file.11

Description of Arguments12

The api_version argument is the OMPD API version that the tool requests to use. The tool may call13
ompd_get_api_version to obtain the latest version that the OMPD library supports.14

The tool provides the OMPD library with a set of callback functions in the callbacks input15
argument which enables the OMPD library to allocate and to deallocate memory in the tool’s16
address space, to lookup the sizes of basic primitive types in the device, to lookup symbols in the17
device, and to read and to write memory in the device.18

Cross References19

• ompd_rc_t type, see Section 5.3.12 on page 543.20

• ompd_callbacks_t type, see Section 5.4.6 on page 556.21

• ompd_get_api_version call, see Section 5.5.1.2 on page 559.22

5.5.1.2 ompd_get_api_version23

Summary24

The ompd_get_api_version function returns the OMPD API version.25

CHAPTER 5. OMPD INTERFACE 559

Format1

C
ompd_rc_t ompd_get_api_version(ompd_word_t *version);2

C

Description3

The tool may call the ompd_get_api_version function to obtain the latest OMPD API4
version number of the OMPD library.5

Description of Arguments6

The latest version number is returned into the location to which the version argument points.7

Cross References8

• ompd_rc_t type, see Section 5.3.12 on page 543.9

5.5.1.3 ompd_get_version_string10

Summary11

The ompd_get_version_string function returns a descriptive string for the OMPD API12
version.13

Format14

C
ompd_rc_t ompd_get_version_string(const char **string);15

C

Description16

The tool may call this function to obtain a pointer to a descriptive version string of the OMPD API17
version.18

560 OpenMP API – Version 5.0 November 2018

Description of Arguments1

A pointer to a descriptive version string is placed into the location to which string output argument2
points. The OMPD library owns the string that the OMPD library returns; the tool must not modify3
or release this string. The string remains valid for as long as the library is loaded. The4
ompd_get_version_string function may be called before ompd_initialize (see5
Section 5.5.1.1 on page 558). Accordingly, the OMPD library must not use heap or stack memory6
for the string.7

The signatures of ompd_get_api_version (see Section 5.5.1.2 on page 559) and8
ompd_get_version_string are guaranteed not to change in future versions of the API. In9
contrast, the type definitions and prototypes in the rest of the API do not carry the same guarantee.10
Therefore a tool that uses OMPD should check the version of the API of the loaded OMPD library11
before it calls any other function of the API.12

Cross References13

• ompd_rc_t type, see Section 5.3.12 on page 543.14

5.5.1.4 ompd_finalize15

Summary16

When the tool is finished with the OMPD library it should call ompd_finalize before it17
unloads the library.18

Format19

C
ompd_rc_t ompd_finalize(void);20

C

Description21

The call to ompd_finalize must be the last OMPD call that the tool makes before it unloads the22
library. This call allows the OMPD library to free any resources that it may be holding.23

The OMPD library may implement a finalizer section, which executes as the library is unloaded24
and therefore after the call to ompd_finalize. During finalization, the OMPD library may use25
the callbacks that the tool earlier provided after the call to ompd_initialize.26

CHAPTER 5. OMPD INTERFACE 561

Cross References1

• ompd_rc_t type, see Section 5.3.12 on page 543.2

5.5.2 Per OpenMP Process Initialization and Finalization3

5.5.2.1 ompd_process_initialize4

Summary5

A tool calls ompd_process_initialize to obtain an address space handle when it initializes6
a session on a live process or core file.7

Format8

C
ompd_rc_t ompd_process_initialize(9

ompd_address_space_context_t *context,10
ompd_address_space_handle_t **handle11

);12

C

Description13

A tool calls ompd_process_initialize to obtain an address space handle when it initializes14
a session on a live process or core file. On return from ompd_process_initialize, the tool15
owns the address space handle, which it must release with16
ompd_rel_address_space_handle. The initialization function must be called before any17
OMPD operations are performed on the OpenMP process. This call allows the OMPD library to18
confirm that it can handle the OpenMP process or core file that the context identifies.19
Incompatibility is signaled by a return value of ompd_rc_incompatible.20

Description of Arguments21

The context argument is an opaque handle that the tool provides to address an address space. On22
return, the handle argument provides an opaque handle to the tool for this address space, which the23
tool must release when it is no longer needed.24

562 OpenMP API – Version 5.0 November 2018

Cross References1

• ompd_address_space_handle_t type, see Section 5.3.8 on page 540.2

• ompd_address_space_context_t type, see Section 5.3.11 on page 542.3

• ompd_rc_t type, see Section 5.3.12 on page 543.4

• ompd_rel_address_space_handle type, see Section 5.5.2.3 on page 564.5

5.5.2.2 ompd_device_initialize6

Summary7

A tool calls ompd_device_initialize to obtain an address space handle for a device that has8
at least one active target region.9

Format10

C
ompd_rc_t ompd_device_initialize(11

ompd_address_space_handle_t *process_handle,12
ompd_address_space_context_t *device_context,13
ompd_device_t kind,14
ompd_size_t sizeof_id,15
void *id,16
ompd_address_space_handle_t **device_handle17

);18

C

Description19

A tool calls ompd_device_initialize to obtain an address space handle for a device that has20
at least one active target region. On return from ompd_device_initialize, the tool owns the21
address space handle.22

Description of Arguments23

The process_handle argument is an opaque handle that the tool provides to reference the address24
space of the OpenMP process. The device_context argument is an opaque handle that the tool25
provides to reference a device address space. The kind, sizeof_id, and id arguments represent a26
device identifier. On return the device_handle argument provides an opaque handle to the tool for27
this address space.28

CHAPTER 5. OMPD INTERFACE 563

Cross References1

• ompd_size_t type, see Section 5.3.1 on page 536.2

• ompd_device_t type, see Section 5.3.6 on page 539.3

• ompd_address_space_handle_t type, see Section 5.3.8 on page 540.4

• ompd_address_space_context_t type, see Section 5.3.11 on page 542.5

• ompd_rc_t type, see Section 5.3.12 on page 543.6

5.5.2.3 ompd_rel_address_space_handle7

Summary8

A tool calls ompd_rel_address_space_handle to release an address space handle.9

Format10

C
ompd_rc_t ompd_rel_address_space_handle(11

ompd_address_space_handle_t *handle12
);13

C

Description14

When the tool is finished with the OpenMP process address space handle it should call15
ompd_rel_address_space_handle to release the handle, which allows the OMPD library16
to release any resources that it has related to the address space.17

Description of Arguments18

The handle argument is an opaque handle for the address space to be released.19

Restrictions20

The ompd_rel_address_space_handle has the following restriction:21

• An address space context must not be used after the corresponding address space handle is22
released.23

564 OpenMP API – Version 5.0 November 2018

Cross References1

• ompd_address_space_handle_t type, see Section 5.3.8 on page 540.2

• ompd_rc_t type, see Section 5.3.12 on page 543.3

5.5.3 Thread and Signal Safety4

The OMPD library does not need to be reentrant. The tool must ensure that only one thread enters5
the OMPD library at a time. The OMPD library must not install signal handlers or otherwise6
interfere with the tool’s signal configuration.7

5.5.4 Address Space Information8

5.5.4.1 ompd_get_omp_version9

Summary10

The tool may call the ompd_get_omp_version function to obtain the version of the OpenMP11
API that is associated with an address space.12

Format13

C
ompd_rc_t ompd_get_omp_version(14

ompd_address_space_handle_t *address_space,15
ompd_word_t *omp_version16

);17

C

Description18

The tool may call the ompd_get_omp_version function to obtain the version of the OpenMP19
API that is associated with the address space.20

CHAPTER 5. OMPD INTERFACE 565

Description of Arguments1

The address_space argument is an opaque handle that the tool provides to reference the address2
space of the OpenMP process or device.3

Upon return, the omp_version argument contains the version of the OpenMP runtime in the4
_OPENMP version macro format.5

Cross References6

• ompd_address_space_handle_t type, see Section 5.3.8 on page 540.7

• ompd_rc_t type, see Section 5.3.12 on page 543.8

5.5.4.2 ompd_get_omp_version_string9

Summary10

The ompd_get_omp_version_string function returns a descriptive string for the OpenMP11
API version that is associated with an address space.12

Format13

C
ompd_rc_t ompd_get_omp_version_string(14

ompd_address_space_handle_t *address_space,15
const char **string16

);17

C

Description18

After initialization, the tool may call the ompd_get_omp_version_string function to obtain19
the version of the OpenMP API that is associated with an address space.20

Description of Arguments21

The address_space argument is an opaque handle that the tool provides to reference the address22
space of the OpenMP process or device. A pointer to a descriptive version string is placed into the23
location to which the string output argument points. After returning from the call, the tool owns the24
string. The OMPD library must use the memory allocation callback that the tool provides to25
allocate the string storage. The tool is responsible for releasing the memory.26

566 OpenMP API – Version 5.0 November 2018

Cross References1

• ompd_address_space_handle_t type, see Section 5.3.8 on page 540.2

• ompd_rc_t type, see Section 5.3.12 on page 543.3

5.5.5 Thread Handles4

5.5.5.1 ompd_get_thread_in_parallel5

Summary6

The ompd_get_thread_in_parallel function enables a tool to obtain handles for OpenMP7
threads that are associated with a parallel region.8

Format9

C
ompd_rc_t ompd_get_thread_in_parallel(10

ompd_parallel_handle_t *parallel_handle,11
int thread_num,12
ompd_thread_handle_t **thread_handle13

);14

C

Description15

A successful invocation of ompd_get_thread_in_parallel returns a pointer to a thread16
handle in the location to which thread_handle points. This call yields meaningful results only17
if all OpenMP threads in the parallel region are stopped.18

Description of Arguments19

The parallel_handle argument is an opaque handle for a parallel region and selects the parallel20
region on which to operate. The thread_num argument selects the thread of the team to be returned.21
On return, the thread_handle argument is an opaque handle for the selected thread.22

Restrictions23

The ompd_get_thread_in_parallel function has the following restriction:24

• The value of thread_num must be a non-negative integer smaller than the team size that was25
provided as the ompd-team-size-var from ompd_get_icv_from_scope.26

CHAPTER 5. OMPD INTERFACE 567

Cross References1

• ompd_parallel_handle_t type, see Section 5.3.8 on page 540.2

• ompd_thread_handle_t type, see Section 5.3.8 on page 540.3

• ompd_rc_t type, see Section 5.3.12 on page 543.4

• ompd_get_icv_from_scope call, see Section 5.5.9.2 on page 590.5

5.5.5.2 ompd_get_thread_handle6

Summary7

The ompd_get_thread_handle function maps a native thread to an OMPD thread handle.8

Format9

C
ompd_rc_t ompd_get_thread_handle(10

ompd_address_space_handle_t *handle,11
ompd_thread_id_t kind,12
ompd_size_t sizeof_thread_id,13
const void *thread_id,14
ompd_thread_handle_t **thread_handle15

);16

C

Description17

The ompd_get_thread_handle function determines if the native thread identifier to which18
thread_id points represents an OpenMP thread. If so, the function returns ompd_rc_ok and the19
location to which thread_handle points is set to the thread handle for the OpenMP thread.20

Description of Arguments21

The handle argument is an opaque handle that the tool provides to reference an address space. The22
kind, sizeof_thread_id, and thread_id arguments represent a native thread identifier. On return, the23
thread_handle argument provides an opaque handle to the thread within the provided address space.24

The native thread identifier to which thread_id points is guaranteed to be valid for the duration of25
the call. If the OMPD library must retain the native thread identifier, it must copy it.26

568 OpenMP API – Version 5.0 November 2018

Cross References1

• ompd_size_t type, see Section 5.3.1 on page 536.2

• ompd_thread_id_t type, see Section 5.3.7 on page 539.3

• ompd_address_space_handle_t type, see Section 5.3.8 on page 540.4

• ompd_thread_handle_t type, see Section 5.3.8 on page 540.5

• ompd_rc_t type, see Section 5.3.12 on page 543.6

5.5.5.3 ompd_rel_thread_handle7

Summary8

The ompd_rel_thread_handle function releases a thread handle.9

Format10

C
ompd_rc_t ompd_rel_thread_handle(11

ompd_thread_handle_t *thread_handle12
);13

C

Description14

Thread handles are opaque to tools, which therefore cannot release them directly. Instead, when the15
tool is finished with a thread handle it must pass it to ompd_rel_thread_handle for disposal.16

Description of Arguments17

The thread_handle argument is an opaque handle for a thread to be released.18

Cross References19

• ompd_thread_handle_t type, see Section 5.3.8 on page 540.20

• ompd_rc_t type, see Section 5.3.12 on page 543.21

CHAPTER 5. OMPD INTERFACE 569

5.5.5.4 ompd_thread_handle_compare1

Summary2

The ompd_thread_handle_compare function allows tools to compare two thread handles.3

Format4

C
ompd_rc_t ompd_thread_handle_compare(5

ompd_thread_handle_t *thread_handle_1,6
ompd_thread_handle_t *thread_handle_2,7
int *cmp_value8

);9

C

Description10

The internal structure of thread handles is opaque to a tool. While the tool can easily compare11
pointers to thread handles, it cannot determine whether handles of two different addresses refer to12
the same underlying thread. The ompd_thread_handle_compare function compares thread13
handles.14

On success, ompd_thread_handle_compare returns in the location to which cmp_value15
points a signed integer value that indicates how the underlying threads compare: a value less than,16
equal to, or greater than 0 indicates that the thread corresponding to thread_handle_1 is,17
respectively, less than, equal to, or greater than that corresponding to thread_handle_2.18

Description of Arguments19

The thread_handle_1 and thread_handle_2 arguments are opaque handles for threads. On return20
the cmp_value argument is set to a signed integer value.21

Cross References22

• ompd_thread_handle_t type, see Section 5.3.8 on page 540.23

• ompd_rc_t type, see Section 5.3.12 on page 543.24

5.5.5.5 ompd_get_thread_id25

Summary26

The ompd_get_thread_id maps an OMPD thread handle to a native thread.27

570 OpenMP API – Version 5.0 November 2018

Format1

C
ompd_rc_t ompd_get_thread_id(2

ompd_thread_handle_t *thread_handle,3
ompd_thread_id_t kind,4
ompd_size_t sizeof_thread_id,5
void *thread_id6

);7

C

Description8

The ompd_get_thread_id function maps an OMPD thread handle to a native thread identifier.9

Description of Arguments10

The thread_handle argument is an opaque thread handle. The kind argument represents the native11
thread identifier. The sizeof_thread_id argument represents the size of the native thread identifier.12
On return, the thread_id argument is a buffer that represents a native thread identifier.13

Cross References14

• ompd_size_t type, see Section 5.3.1 on page 536.15

• ompd_thread_id_t type, see Section 5.3.7 on page 539.16

• ompd_thread_handle_t type, see Section 5.3.8 on page 540.17

• ompd_rc_t type, see Section 5.3.12 on page 543.18

5.5.6 Parallel Region Handles19

5.5.6.1 ompd_get_curr_parallel_handle20

Summary21

The ompd_get_curr_parallel_handle function obtains a pointer to the parallel handle for22
an OpenMP thread’s current parallel region.23

CHAPTER 5. OMPD INTERFACE 571

Format1

C
ompd_rc_t ompd_get_curr_parallel_handle(2

ompd_thread_handle_t *thread_handle,3
ompd_parallel_handle_t **parallel_handle4

);5

C

Description6

The ompd_get_curr_parallel_handle function enables the tool to obtain a pointer to the7
parallel handle for the current parallel region that is associated with an OpenMP thread. This call is8
meaningful only if the associated thread is stopped. The parallel handle must be released by calling9
ompd_rel_parallel_handle.10

Description of Arguments11

The thread_handle argument is an opaque handle for a thread and selects the thread on which to12
operate. On return, the parallel_handle argument is set to a handle for the parallel region that the13
associated thread is currently executing, if any.14

Cross References15

• ompd_thread_handle_t type, see Section 5.3.8 on page 540.16

• ompd_parallel_handle_t type, see Section 5.3.8 on page 540.17

• ompd_rc_t type, see Section 5.3.12 on page 543.18

• ompd_rel_parallel_handle call, see Section 5.5.6.4 on page 574.19

5.5.6.2 ompd_get_enclosing_parallel_handle20

Summary21

The ompd_get_enclosing_parallel_handle function obtains a pointer to the parallel22
handle for an enclosing parallel region.23

572 OpenMP API – Version 5.0 November 2018

Format1

C
ompd_rc_t ompd_get_enclosing_parallel_handle(2

ompd_parallel_handle_t *parallel_handle,3
ompd_parallel_handle_t **enclosing_parallel_handle4

);5

C

Description6

The ompd_get_enclosing_parallel_handle function enables a tool to obtain a pointer7
to the parallel handle for the parallel region that encloses the parallel region that8
parallel_handle specifies. This call is meaningful only if at least one thread in the parallel9
region is stopped. A pointer to the parallel handle for the enclosing region is returned in the10
location to which enclosing_parallel_handle points. After the call, the tool owns the handle; the11
tool must release the handle with ompd_rel_parallel_handle when it is no longer required.12

Description of Arguments13

The parallel_handle argument is an opaque handle for a parallel region that selects the parallel14
region on which to operate. On return, the enclosing_parallel_handle argument is set to a handle15
for the parallel region that encloses the selected parallel region.16

Cross References17

• ompd_parallel_handle_t type, see Section 5.3.8 on page 540.18

• ompd_rc_t type, see Section 5.3.12 on page 543.19

• ompd_rel_parallel_handle call, see Section 5.5.6.4 on page 574.20

5.5.6.3 ompd_get_task_parallel_handle21

Summary22

The ompd_get_task_parallel_handle function obtains a pointer to the parallel handle for23
the parallel region that encloses a task region.24

CHAPTER 5. OMPD INTERFACE 573

Format1

C
ompd_rc_t ompd_get_task_parallel_handle(2

ompd_task_handle_t *task_handle,3
ompd_parallel_handle_t **task_parallel_handle4

);5

C

Description6

The ompd_get_task_parallel_handle function enables a tool to obtain a pointer to the7
parallel handle for the parallel region that encloses the task region that task_handle specifies. This8
call is meaningful only if at least one thread in the parallel region is stopped. A pointer to the9
parallel regions handle is returned in the location to which task_parallel_handle points. The tool10
owns that parallel handle, which it must release with ompd_rel_parallel_handle.11

Description of Arguments12

The task_handle argument is an opaque handle that selects the task on which to operate. On return,13
the parallel_handle argument is set to a handle for the parallel region that encloses the selected task.14

Cross References15

• ompd_task_handle_t type, see Section 5.3.8 on page 540.16

• ompd_parallel_handle_t type, see Section 5.3.8 on page 540.17

• ompd_rc_t type, see Section 5.3.12 on page 543.18

• ompd_rel_parallel_handle call, see Section 5.5.6.4 on page 574.19

5.5.6.4 ompd_rel_parallel_handle20

Summary21

The ompd_rel_parallel_handle function releases a parallel region handle.22

Format23

C
ompd_rc_t ompd_rel_parallel_handle(24

ompd_parallel_handle_t *parallel_handle25
);26

C

574 OpenMP API – Version 5.0 November 2018

Description1

Parallel region handles are opaque so tools cannot release them directly. Instead, a tool must pass a2
parallel region handle to the ompd_rel_parallel_handle function for disposal when3
finished with it.4

Description of Arguments5

The parallel_handle argument is an opaque handle to be released.6

Cross References7

• ompd_parallel_handle_t type, see Section 5.3.8 on page 540.8

• ompd_rc_t type, see Section 5.3.12 on page 543.9

5.5.6.5 ompd_parallel_handle_compare10

Summary11

The ompd_parallel_handle_compare function compares two parallel region handles.12

Format13

C
ompd_rc_t ompd_parallel_handle_compare(14

ompd_parallel_handle_t *parallel_handle_1,15
ompd_parallel_handle_t *parallel_handle_2,16
int *cmp_value17

);18

C

Description19

The internal structure of parallel region handles is opaque to tools. While tools can easily compare20
pointers to parallel region handles, they cannot determine whether handles at two different21
addresses refer to the same underlying parallel region and, instead must use the22
ompd_parallel_handle_compare function.23

On success, ompd_parallel_handle_compare returns a signed integer value in the location24
to which cmp_value points that indicates how the underlying parallel regions compare. A value less25
than, equal to, or greater than 0 indicates that the region corresponding to parallel_handle_1 is,26
respectively, less than, equal to, or greater than that corresponding to parallel_handle_2. This27
function is provided since the means by which parallel region handles are ordered is28
implementation defined.29

CHAPTER 5. OMPD INTERFACE 575

Description of Arguments1

The parallel_handle_1 and parallel_handle_2 arguments are opaque handles that correspond to2
parallel regions. On return the cmp_value argument points to a signed integer value that indicates3
how the underlying parallel regions compare.4

Cross References5

• ompd_parallel_handle_t type, see Section 5.3.8 on page 540.6

• ompd_rc_t type, see Section 5.3.12 on page 543.7

5.5.7 Task Handles8

5.5.7.1 ompd_get_curr_task_handle9

Summary10

The ompd_get_curr_task_handle function obtains a pointer to the task handle for the11
current task region that is associated with an OpenMP thread.12

Format13

C
ompd_rc_t ompd_get_curr_task_handle(14

ompd_thread_handle_t *thread_handle,15
ompd_task_handle_t **task_handle16

);17

C

Description18

The ompd_get_curr_task_handle function obtains a pointer to the task handle for the19
current task region that is associated with an OpenMP thread. This call is meaningful only if the20
thread for which the handle is provided is stopped. The task handle must be released with21
ompd_rel_task_handle.22

Description of Arguments23

The thread_handle argument is an opaque handle that selects the thread on which to operate. On24
return, the task_handle argument points to a location that points to a handle for the task that the25
thread is currently executing.26

576 OpenMP API – Version 5.0 November 2018

Cross References1

• ompd_thread_handle_t type, see Section 5.3.8 on page 540.2

• ompd_task_handle_t type, see Section 5.3.8 on page 540.3

• ompd_rc_t type, see Section 5.3.12 on page 543.4

• ompd_rel_task_handle call, see Section 5.5.7.5 on page 580.5

5.5.7.2 ompd_get_generating_task_handle6

Summary7

The ompd_get_generating_task_handle function obtains a pointer to the task handle of8
the generating task region.9

Format10

C
ompd_rc_t ompd_get_generating_task_handle(11

ompd_task_handle_t *task_handle,12
ompd_task_handle_t **generating_task_handle13

);14

C

Description15

The ompd_get_generating_task_handle function obtains a pointer to the task handle for16
the task that encountered the OpenMP task construct that generated the task represented by17
task_handle. The generating task is the OpenMP task that was active when the task specified by18
task_handle was created. This call is meaningful only if the thread that is executing the task that19
task_handle specifies is stopped. The generating task handle must be released with20
ompd_rel_task_handle.21

Description of Arguments22

The task_handle argument is an opaque handle that selects the task on which to operate. On return,23
the generating_task_handle argument points to a location that points to a handle for the generating24
task.25

CHAPTER 5. OMPD INTERFACE 577

Cross References1

• ompd_task_handle_t type, see Section 5.3.8 on page 540.2

• ompd_rc_t type, see Section 5.3.12 on page 543.3

• ompd_rel_task_handle call, see Section 5.5.7.5 on page 580.4

5.5.7.3 ompd_get_scheduling_task_handle5

Summary6

The ompd_get_scheduling_task_handle function obtains a task handle for the task that7
was active at a task scheduling point.8

Format9

C
ompd_rc_t ompd_get_scheduling_task_handle(10

ompd_task_handle_t *task_handle,11
ompd_task_handle_t **scheduling_task_handle12

);13

C

Description14

The ompd_get_scheduling_task_handle function obtains a task handle for the task that15
was active when the task that task_handle represents was scheduled. This call is meaningful only if16
the thread that is executing the task that task_handle specifies is stopped. The scheduling task17
handle must be released with ompd_rel_task_handle.18

Description of Arguments19

The task_handle argument is an opaque handle for a task and selects the task on which to operate.20
On return, the scheduling_task_handle argument points to a location that points to a handle for the21
task that is still on the stack of execution on the same thread and was deferred in favor of executing22
the selected task.23

Cross References24

• ompd_task_handle_t type, see Section 5.3.8 on page 540.25

• ompd_rc_t type, see Section 5.3.12 on page 543.26

• ompd_rel_task_handle call, see Section 5.5.7.5 on page 580.27

578 OpenMP API – Version 5.0 November 2018

5.5.7.4 ompd_get_task_in_parallel1

Summary2

The ompd_get_task_in_parallel function obtains handles for the implicit tasks that are3
associated with a parallel region.4

Format5

C
ompd_rc_t ompd_get_task_in_parallel(6

ompd_parallel_handle_t *parallel_handle,7
int thread_num,8
ompd_task_handle_t **task_handle9

);10

C

Description11

The ompd_get_task_in_parallel function obtains handles for the implicit tasks that are12
associated with a parallel region. A successful invocation of ompd_get_task_in_parallel13
returns a pointer to a task handle in the location to which task_handle points. This call yields14
meaningful results only if all OpenMP threads in the parallel region are stopped.15

Description of Arguments16

The parallel_handle argument is an opaque handle that selects the parallel region on which to17
operate. The thread_num argument selects the implicit task of the team that is returned. The18
selected implicit task would return thread_num from a call of the omp_get_thread_num()19
routine. On return, the task_handle argument points to a location that points to an opaque handle20
for the selected implicit task.21

Restrictions22

The following restriction applies to the ompd_get_task_in_parallel function:23

• The value of thread_num must be a non-negative integer that is smaller than the size of the team24
size that is the value of the ompd-team-size-var that ompd_get_icv_from_scope returns.25

CHAPTER 5. OMPD INTERFACE 579

Cross References1

• ompd_parallel_handle_t type, see Section 5.3.8 on page 540.2

• ompd_task_handle_t type, see Section 5.3.8 on page 540.3

• ompd_rc_t type, see Section 5.3.12 on page 543.4

• ompd_get_icv_from_scope call, see Section 5.5.9.2 on page 590.5

5.5.7.5 ompd_rel_task_handle6

Summary7

This ompd_rel_task_handle function releases a task handle.8

Format9

C
ompd_rc_t ompd_rel_task_handle(10

ompd_task_handle_t *task_handle11
);12

C

Description13

Task handles are opaque so tools cannot release them directly. Instead, when a tool is finished with14
a task handle it must use the ompd_rel_task_handle function to release it.15

Description of Arguments16

The task_handle argument is an opaque task handle to be released.17

Cross References18

• ompd_task_handle_t type, see Section 5.3.8 on page 540.19

• ompd_rc_t type, see Section 5.3.12 on page 543.20

5.5.7.6 ompd_task_handle_compare21

Summary22

The ompd_task_handle_compare function compares task handles.23

580 OpenMP API – Version 5.0 November 2018

Format1

C
ompd_rc_t ompd_task_handle_compare(2

ompd_task_handle_t *task_handle_1,3
ompd_task_handle_t *task_handle_2,4
int *cmp_value5

);6

C

Description7

The internal structure of task handles is opaque so tools cannot directly determine if handles at two8
different addresses refer to the same underlying task. The ompd_task_handle_compare9
function compares task handles. After a successful call to ompd_task_handle_compare, the10
value of the location to which cmp_value points is a signed integer that indicates how the underlying11
tasks compare: a value less than, equal to, or greater than 0 indicates that the task that corresponds12
to task_handle_1 is, respectively, less than, equal to, or greater than the task that corresponds to13
task_handle_2. The means by which task handles are ordered is implementation defined.14

Description of Arguments15

The task_handle_1 and task_handle_2 arguments are opaque handles that correspond to tasks. On16
return, the cmp_value argument points to a location in which a signed integer value indicates how17
the underlying tasks compare.18

Cross References19

• ompd_task_handle_t type, see Section 5.3.8 on page 540.20

• ompd_rc_t type, see Section 5.3.12 on page 543.21

5.5.7.7 ompd_get_task_function22

Summary23

This ompd_get_task_function function returns the entry point of the code that corresponds24
to the body of a task.25

CHAPTER 5. OMPD INTERFACE 581

Format1

C
ompd_rc_t ompd_get_task_function (2

ompd_task_handle_t *task_handle,3
ompd_address_t *entry_point4

);5

C

Description6

The ompd_get_task_function function returns the entry point of the code that corresponds7
to the body of code that the task executes.8

Description of Arguments9

The task_handle argument is an opaque handle that selects the task on which to operate. On return,10
the entry_point argument is set to an address that describes the beginning of application code that11
executes the task region.12

Cross References13

• ompd_address_t type, see Section 5.3.4 on page 538.14

• ompd_task_handle_t type, see Section 5.3.8 on page 540.15

• ompd_rc_t type, see Section 5.3.12 on page 543.16

5.5.7.8 ompd_get_task_frame17

Summary18

The ompd_get_task_frame function extracts the frame pointers of a task.19

Format20

C
ompd_rc_t ompd_get_task_frame (21

ompd_task_handle_t *task_handle,22
ompd_frame_info_t *exit_frame,23
ompd_frame_info_t *enter_frame24

);25

C

582 OpenMP API – Version 5.0 November 2018

Description1

An OpenMP implementation maintains an ompt_frame_t object for every implicit or explicit2
task. The ompd_get_task_frame function extracts the enter_frame and exit_frame fields of3
the ompt_frame_t object of the task that task_handle identifies.4

Description of Arguments5

The task_handle argument specifies an OpenMP task. On return, the exit_frame argument points to6
an ompd_frame_info_t object that has the frame information with the same semantics as the7
exit_frame field in the ompt_frame_t object that is associated with the specified task. On return,8
the enter_frame argument points to an ompd_frame_info_t object that has the frame9
information with the same semantics as the enter_frame field in the ompt_frame_t object that is10
associated with the specified task.11

Cross References12

• ompt_frame_t type, see Section 4.4.4.27 on page 454.13

• ompd_address_t type, see Section 5.3.4 on page 538.14

• ompd_frame_info_t type, see Section 5.3.5 on page 538.15

• ompd_task_handle_t type, see Section 5.3.8 on page 540.16

• ompd_rc_t type, see Section 5.3.12 on page 543.17

5.5.7.9 ompd_enumerate_states18

Summary19

The ompd_enumerate_states function enumerates thread states that an OpenMP20
implementation supports.21

Format22

C
ompd_rc_t ompd_enumerate_states (23

ompd_address_space_handle_t *address_space_handle,24
ompd_word_t current_state,25
ompd_word_t *next_state,26
const char **next_state_name,27
ompd_word_t *more_enums28

);29

C

CHAPTER 5. OMPD INTERFACE 583

Description1

An OpenMP implementation may support only a subset of the states that the ompt_state_t2
enumeration type defines. In addition, an OpenMP implementation may support3
implementation-specific states. The ompd_enumerate_states call enables a tool to4
enumerate the thread states that an OpenMP implementation supports.5

When the current_state argument is a thread state that an OpenMP implementation supports, the6
call assigns the value and string name of the next thread state in the enumeration to the locations to7
which the next_state and next_state_name arguments point.8

On return, the third-party tool owns the next_state_name string. The OMPD library allocates9
storage for the string with the memory allocation callback that the tool provides. The tool is10
responsible for releasing the memory.11

On return, the location to which the more_enums argument points has the value 1 whenever one or12
more states are left in the enumeration. On return, the location to which the more_enums argument13
points has the value 0 when current_state is the last state in the enumeration.14

Description of Arguments15

The address_space_handle argument identifies the address space. The current_state argument must16
be a thread state that the OpenMP implementation supports. To begin enumerating the supported17
states, a tool should pass ompt_state_undefined as the value of current_state. Subsequent18
calls to ompd_enumerate_states by the tool should pass the value that the call returned in19
the next_state argument. On return, the next_state argument points to an integer with the value of20
the next state in the enumeration. On return, the next_state_name argument points to a character21
string that describes the next state. On return, the more_enums argument points to an integer with a22
value of 1 when more states are left to enumerate and a value of 0 when no more states are left.23

Constraints on Arguments24

Any string that is returned through the next_state_name argument must be immutable and defined25
for the lifetime of program execution.26

Cross References27

• ompt_state_t type, see Section 4.4.4.26 on page 452.28

• ompd_address_space_handle_t type, see Section 5.3.8 on page 540.29

• ompd_rc_t type, see Section 5.3.12 on page 543.30

584 OpenMP API – Version 5.0 November 2018

5.5.7.10 ompd_get_state1

Summary2

The ompd_get_state function obtains the state of a thread.3

Format4

C
ompd_rc_t ompd_get_state (5

ompd_thread_handle_t *thread_handle,6
ompd_word_t *state,7
ompt_wait_id_t *wait_id8

);9

C

Description10

The ompd_get_state function returns the state of an OpenMP thread.11

Description of Arguments12

The thread_handle argument identifies the thread. The state argument represents the state of that13
thread as represented by a value that ompd_enumerate_states returns. On return, if the14
wait_id argument is non-null then it points to a handle that corresponds to the wait_id wait15
identifier of the thread. If the thread state is not one of the specified wait states, the value to which16
wait_id points is undefined.17

Cross References18

• ompd_wait_id_t type, see Section 5.3.2 on page 537.19

• ompd_thread_handle_t type, see Section 5.3.8 on page 540.20

• ompd_rc_t type, see Section 5.3.12 on page 543.21

• ompd_enumerate_states call, see Section 5.5.7.9 on page 583.22

CHAPTER 5. OMPD INTERFACE 585

5.5.8 Display Control Variables1

5.5.8.1 ompd_get_display_control_vars2

Summary3

The ompd_get_display_control_vars function returns a list of name/value pairs for4
OpenMP control variables.5

Format6

C
ompd_rc_t ompd_get_display_control_vars (7

ompd_address_space_handle_t *address_space_handle,8
const char * const **control_vars9

);10

C

Description11

The ompd_get_display_control_vars function returns a NULL-terminated vector of12
NULL-terminated strings of name/value pairs of control variables that have user controllable13
settings and are important to the operation or performance of an OpenMP runtime system. The14
control variables that this interface exposes include all OpenMP environment variables, settings15
that may come from vendor or platform-specific environment variables, and other settings that16
affect the operation or functioning of an OpenMP runtime.17

The format of the strings is name=a string.18

On return, the third-party tool owns the vector and the strings. The OMP library must satisfy the19
termination constraints; it may use static or dynamic memory for the vector and/or the strings and is20
unconstrained in how it arranges them in memory. If it uses dynamic memory then the OMPD21
library must use the allocate callback that the tool provides to ompd_initialize. The tool must22
use ompd_rel_display_control_vars() to release the vector and the strings.23

Description of Arguments24

The address_space_handle argument identifies the address space. On return, the control_vars25
argument points to the vector of display control variables.26

586 OpenMP API – Version 5.0 November 2018

Cross References1

• ompd_address_space_handle_t type, see Section 5.3.8 on page 540.2

• ompd_rc_t type, see Section 5.3.12 on page 543.3

• ompd_initialize call, see Section 5.5.1.1 on page 558.4

• ompd_rel_display_control_vars type, see Section 5.5.8.2 on page 587.5

5.5.8.2 ompd_rel_display_control_vars6

Summary7

The ompd_rel_display_control_vars releases a list of name/value pairs of OpenMP8
control variables previously acquired with ompd_get_display_control_vars.9

Format10

C
ompd_rc_t ompd_rel_display_control_vars (11

const char * const **control_vars12
);13

C

Description14

The third-party tool owns the vector and strings that ompd_get_display_control_vars15
returns. The tool must call ompd_rel_display_control_vars to release the vector and the16
strings.17

Description of Arguments18

The control_vars argument is the vector of display control variables to be released.19

Cross References20

• ompd_rc_t type, see Section 5.3.12 on page 543.21

• ompd_get_display_control_vars call, see Section 5.5.8.1 on page 586.22

CHAPTER 5. OMPD INTERFACE 587

5.5.9 Accessing Scope-Specific Information1

5.5.9.1 ompd_enumerate_icvs2

Summary3

The ompd_enumerate_icvs function enumerates ICVs.4

Format5

C
ompd_rc_t ompd_enumerate_icvs (6

ompd_address_space_handle_t *handle,7
ompd_icv_id_t current,8
ompd_icv_id_t *next_id,9
const char **next_icv_name,10
ompd_scope_t *next_scope,11
int *more12

);13

C

Description14

In addition to the ICVs listed in Table 2.1, an OpenMP implementation must support the OMPD15
specific ICVs listed in Table 5.2. An OpenMP implementation may support additional16
implementation specific variables. An implementation may store ICVs in a different scope than17
Table 2.3 indicates. The ompd_enumerate_icvs function enables a tool to enumerate the18
ICVs that an OpenMP implementation supports and their related scopes.19

When the current argument is set to the identifier of a supported ICV, ompd_enumerate_icvs20
assigns the value, string name, and scope of the next ICV in the enumeration to the locations to21
which the next_id, next_icv_name, and next_scope arguments point. On return, the third-party tool22
owns the next_icv_name string. The OMPD library uses the memory allocation callback that the23
tool provides to allocate the string storage; the tool is responsible for releasing the memory.24

On return, the location to which the more argument points has the value of 1 whenever one or more25
ICV are left in the enumeration. on return, that location has the value 0 when current is the last26
ICV in the enumeration.27

588 OpenMP API – Version 5.0 November 2018

Description of Arguments1

The address_space_handle argument identifies the address space. The current argument must be2
an ICV that the OpenMP implementation supports. To begin enumerating the ICVs, a tool should3
pass ompd_icv_undefined as the value of current. Subsequent calls to4
ompd_enumerate_icvs should pass the value returned by the call in the next_id output5
argument. On return, the next_id argument points to an integer with the value of the ID of the next6
ICV in the enumeration. On return, the next_icv argument points to a character string with the7
name of the next ICV. On return, the next_scope argument points to the scope enum value of the8
scope of the next ICV. On return, the more_enums argument points to an integer with the value of 19
when more ICVs are left to enumerate and the value of 0 when no more ICVs are left.10

Constraints on Arguments11

Any string that next_icv returns must be immutable and defined for the lifetime of a program12
execution.13

TABLE 5.2: OMPD-specific ICVs

Variable Scope Meaning

ompd-num-procs-var device return value of omp_get_num_procs()
when executed on this device

ompd-thread-num-var task return value of omp_get_thread_num()
when executed in this task

ompd-final-var task return value of omp_in_final() when
executed in this task

ompd-implicit-var task the task is an implicit task

ompd-team-size-var team return value of omp_get_num_threads()
when executed in this team

Cross References14

• ompd_address_space_handle_t type, see Section 5.3.8 on page 540.15

• ompd_scope_t type, see Section 5.3.9 on page 541.16

• ompd_icv_id_t type, see Section 5.3.10 on page 542.17

• ompd_rc_t type, see Section 5.3.12 on page 543.18

CHAPTER 5. OMPD INTERFACE 589

5.5.9.2 ompd_get_icv_from_scope1

Summary2

The ompd_get_icv_from_scope function returns the value of an ICV.3

Format4

C
ompd_rc_t ompd_get_icv_from_scope (5

void *handle,6
ompd_scope_t scope,7
ompd_icv_id_t icv_id,8
ompd_word_t *icv_value9

);10

C

Description11

The ompd_get_icv_from_scope function provides access to the ICVs that12
ompd_enumerate_icvs identifies.13

Description of Arguments14

The handle argument provides an OpenMP scope handle. The scope argument specifies the kind of15
scope provided in handle. The icv_id argument specifies the ID of the requested ICV. On return,16
the icv_value argument points to a location with the value of the requested ICV.17

Constraints on Arguments18

If the ICV cannot be represented by an integer type value then the function returns19
ompd_rc_incompatible.20

The provided handle must match the scope as defined in Section 5.3.10 on page 542.21

The provided scope must match the scope for icv_id as requested by ompd_enumerate_icvs.22

590 OpenMP API – Version 5.0 November 2018

Cross References1

• ompd_address_space_handle_t type, see Section 5.3.8 on page 540.2

• ompd_thread_handle_t type, see Section 5.3.8 on page 540.3

• ompd_parallel_handle_t type, see Section 5.3.8 on page 540.4

• ompd_task_handle_t type, see Section 5.3.8 on page 540.5

• ompd_scope_t type, see Section 5.3.9 on page 541.6

• ompd_icv_id_t type, see Section 5.3.10 on page 542.7

• ompd_rc_t type, see Section 5.3.12 on page 543.8

• ompd_enumerate_icvs, see Section 5.5.9.1 on page 588.9

5.5.9.3 ompd_get_icv_string_from_scope10

Summary11

The ompd_get_icv_string_from_scope function returns the value of an ICV.12

Format13

C
ompd_rc_t ompd_get_icv_string_from_scope (14

void *handle,15
ompd_scope_t scope,16
ompd_icv_id_t icv_id,17
const char **icv_string18

);19

C

Description20

The ompd_get_icv_string_from_scope function provides access to the ICVs that21
ompd_enumerate_icvs identifies.22

CHAPTER 5. OMPD INTERFACE 591

Description of Arguments1

The handle argument provides an OpenMP scope handle. The scope argument specifies the kind of2
scope provided in handle. The icv_id argument specifies the ID of the requested ICV. On return,3
the icv_string argument points to a string representation of the requested ICV.4

On return, the third-party tool owns the icv_string string. The OMPD library allocates the string5
storage with the memory allocation callback that the tool provides. The tool is responsible for6
releasing the memory.7

Constraints on Arguments8

The provided handle must match the scope as defined in Section 5.3.10 on page 542.9

The provided scope must match the scope for icv_id as requested by ompd_enumerate_icvs.10

Cross References11

• ompd_address_space_handle_t type, see Section 5.3.8 on page 540.12

• ompd_thread_handle_t type, see Section 5.3.8 on page 540.13

• ompd_parallel_handle_t type, see Section 5.3.8 on page 540.14

• ompd_task_handle_t type, see Section 5.3.8 on page 540.15

• ompd_scope_t type, see Section 5.3.9 on page 541.16

• ompd_icv_id_t type, see Section 5.3.10 on page 542.17

• ompd_rc_t type, see Section 5.3.12 on page 543.18

• ompd_enumerate_icvs, see Section 5.5.9.1 on page 588.19

5.5.9.4 ompd_get_tool_data20

Summary21

The ompd_get_tool_data function provides access to the OMPT data variable stored for each22
OpenMP scope.23

592 OpenMP API – Version 5.0 November 2018

Format1

C
ompd_rc_t ompd_get_tool_data(2

void* handle,3
ompd_scope_t scope,4
ompd_word_t *value,5
ompd_address_t *ptr6

);7

C

Description8

The ompd_get_tool_data function provides access to the OMPT tool data stored for each9
scope. If the runtime library does not support OMPT then the function returns10
ompd_rc_unsupported.11

Description of Arguments12

The handle argument provides an OpenMP scope handle. The scope argument specifies the kind of13
scope provided in handle. On return, the value argument points to the value field of the14
ompt_data_t union stored for the selected scope. On return, the ptr argument points to the ptr15
field of the ompt_data_t union stored for the selected scope.16

Cross References17

• ompt_data_t type, see Section 4.4.4.4 on page 440.18

• ompd_address_space_handle_t type, see Section 5.3.8 on page 540.19

• ompd_thread_handle_t type, see Section 5.3.8 on page 540.20

• ompd_parallel_handle_t type, see Section 5.3.8 on page 540.21

• ompd_task_handle_t type, see Section 5.3.8 on page 540.22

• ompd_scope_t type, see Section 5.3.9 on page 541.23

• ompd_rc_t type, see Section 5.3.12 on page 543.24

CHAPTER 5. OMPD INTERFACE 593

5.6 Runtime Entry Points for OMPD1

The OpenMP implementation must define several entry point symbols through which execution2
must pass when particular events occur and data collection for OMPD is enabled. A tool can enable3
notification of an event by setting a breakpoint at the address of the entry point symbol.4

Entry point symbols have external C linkage and do not require demangling or other5
transformations to look up their names to obtain the address in the OpenMP program. While each6
entry point symbol conceptually has a function type signature, it may not be a function. It may be a7
labeled location8

5.6.1 Beginning Parallel Regions9

Summary10

Before starting the execution of an OpenMP parallel region, the implementation executes11
ompd_bp_parallel_begin.12

Format13

C
void ompd_bp_parallel_begin(void);14

C

Description15

The OpenMP implementation must execute ompd_bp_parallel_begin at every16
parallel-begin event. At the point that the implementation reaches17
ompd_bp_parallel_begin, the binding for ompd_get_curr_parallel_handle is the18
parallel region that is beginning and the binding for ompd_get_curr_task_handle is the19
task that encountered the parallel construct.20

Cross References21

• parallel construct, see Section 2.6 on page 74.22

• ompd_get_curr_parallel_handle, see Section 5.5.6.1 on page 571.23

• ompd_get_curr_task_handle, see Section 5.5.7.1 on page 576.24

594 OpenMP API – Version 5.0 November 2018

5.6.2 Ending Parallel Regions1

Summary2

After finishing the execution of an OpenMP parallel region, the implementation executes3
ompd_bp_parallel_end.4

Format5

C
void ompd_bp_parallel_end(void);6

C

Description7

The OpenMP implementation must execute ompd_bp_parallel_end at every parallel-end8
event. At the point that the implementation reaches ompd_bp_parallel_end, the binding for9
ompd_get_curr_parallel_handle is the parallel region that is ending and the binding10
for ompd_get_curr_task_handle is the task that encountered the parallel construct.11
After execution of ompd_bp_parallel_end, any parallel_handle that was acquired for the12
parallel region is invalid and should be released.13

Cross References14

• parallel construct, see Section 2.6 on page 74.15

• ompd_get_curr_parallel_handle, see Section 5.5.6.1 on page 571.16

• ompd_rel_parallel_handle, see Section 5.5.6.4 on page 574.17

• ompd_get_curr_task_handle, see Section 5.5.7.1 on page 576.18

5.6.3 Beginning Task Regions19

Summary20

Before starting the execution of an OpenMP task region, the implementation executes21
ompd_bp_task_begin.22

CHAPTER 5. OMPD INTERFACE 595

Format1

C
void ompd_bp_task_begin(void);2

C

Description3

The OpenMP implementation must execute ompd_bp_task_begin immediately before starting4
execution of a structured-block that is associated with a non-merged task. At the point that the5
implementation reaches ompd_bp_task_begin, the binding for6
ompd_get_curr_task_handle is the task that is scheduled to execute.7

Cross References8

• ompd_get_curr_task_handle, see Section 5.5.7.1 on page 576.9

5.6.4 Ending Task Regions10

Summary11

After finishing the execution of an OpenMP task region, the implementation executes12
ompd_bp_task_end.13

Format14

C
void ompd_bp_task_end(void);15

C

Description16

The OpenMP implementation must execute ompd_bp_task_end immediately after completion17
of a structured-block that is associated with a non-merged task. At the point that the implementation18
reaches ompd_bp_task_end, the binding for ompd_get_curr_task_handle is the task19
that finished execution. After execution of ompd_bp_task_end, any task_handle that was20
acquired for the task region is invalid and should be released.21

596 OpenMP API – Version 5.0 November 2018

Cross References1

• ompd_get_curr_task_handle, see Section 5.5.7.1 on page 576.2

• ompd_rel_task_handle, see Section 5.5.7.5 on page 580.3

5.6.5 Beginning OpenMP Threads4

Summary5

When starting an OpenMP thread, the implementation executes ompd_bp_thread_begin.6

Format7

C
void ompd_bp_thread_begin(void);8

C

Description9

The OpenMP implementation must execute ompd_bp_thread_begin at every10
native-thread-begin and initial-thread-begin event. This execution occurs before the thread starts11
the execution of any OpenMP region.12

Cross References13

• parallel construct, see Section 2.6 on page 74.14

• Initial task, see Section 2.10.5 on page 148.15

5.6.6 Ending OpenMP Threads16

Summary17

When terminating an OpenMP thread, the implementation executes ompd_bp_thread_end.18

Format19

C
void ompd_bp_thread_end(void);20

C

CHAPTER 5. OMPD INTERFACE 597

Description1

The OpenMP implementation must execute ompd_bp_thread_end at every native-thread-end2
and the initial-thread-end event. This execution occurs after the thread completes the execution of3
all OpenMP regions. After executing ompd_bp_thread_end, any thread_handle that was4
acquired for this thread is invalid and should be released.5

Cross References6

• parallel construct, see Section 2.6 on page 74.7

• Initial task, see Section 2.10.5 on page 148.8

• ompd_rel_thread_handle, see Section 5.5.5.3 on page 569.9

5.6.7 Initializing OpenMP Devices10

Summary11

The OpenMP implementation must execute ompd_bp_device_begin at every device-initialize12
event.13

Format14

C
void ompd_bp_device_begin(void);15

C

Description16

When initializing a device for execution of a target region, the implementation must execute17
ompd_bp_device_begin. This execution occurs before the work associated with any OpenMP18
region executes on the device.19

Cross References20

• Device Initialization, see Section 2.12.1 on page 160.21

598 OpenMP API – Version 5.0 November 2018

5.6.8 Finalizing OpenMP Devices1

Summary2

When terminating an OpenMP thread, the implementation executes ompd_bp_device_end.3

Format4

C
void ompd_bp_device_end(void);5

C

Description6

The OpenMP implementation must execute ompd_bp_device_end at every device-finalize7
event. This execution occurs after the thread executes all OpenMP regions. After execution of8
ompd_bp_device_end, any address_space_handle that was acquired for this device is invalid9
and should be released.10

Cross References11

• Device Initialization, see Section 2.12.1 on page 160.12

• ompd_rel_address_space_handle, see Section 5.5.2.3 on page 564.13

CHAPTER 5. OMPD INTERFACE 599

This page intentionally left blank

CHAPTER 6

Environment Variables1

2

This chapter describes the OpenMP environment variables that specify the settings of the ICVs that3
affect the execution of OpenMP programs (see Section 2.5 on page 63). The names of the4
environment variables must be upper case. The values assigned to the environment variables are5
case insensitive and may have leading and trailing white space. Modifications to the environment6
variables after the program has started, even if modified by the program itself, are ignored by the7
OpenMP implementation. However, the settings of some of the ICVs can be modified during the8
execution of the OpenMP program by the use of the appropriate directive clauses or OpenMP API9
routines.10

The following examples demonstrate how the OpenMP environment variables can be set in11
different environments:12

• csh-like shells:13

setenv OMP_SCHEDULE "dynamic"14

• bash-like shells:15

export OMP_SCHEDULE="dynamic"16

• Windows Command Line:17

set OMP_SCHEDULE=dynamic18

6.1 OMP_SCHEDULE19

The OMP_SCHEDULE environment variable controls the schedule kind and chunk size of all loop20
directives that have the schedule kind runtime, by setting the value of the run-sched-var ICV.21

The value of this environment variable takes the form:22

601

[modifier:]kind[, chunk]1

where2

• modifier is one of monotonic or nonmonotonic;3

• kind is one of static, dynamic, guided, or auto;4

• chunk is an optional positive integer that specifies the chunk size.5

If the modifier is not present, the modifier is set to monotonic if kind is static; for any other6
kind it is set to nonmonotonic.7

If chunk is present, white space may be on either side of the “,”. See Section 2.9.2 on page 101 for8
a detailed description of the schedule kinds.9

The behavior of the program is implementation defined if the value of OMP_SCHEDULE does not10
conform to the above format.11

Implementation specific schedules cannot be specified in OMP_SCHEDULE. They can only be12
specified by calling omp_set_schedule, described in Section 3.2.12 on page 345.13

Examples:14

setenv OMP_SCHEDULE "guided,4"15
setenv OMP_SCHEDULE "dynamic"16
setenv OMP_SCHEDULE "nonmonotonic:dynamic,4"17

Cross References18

• run-sched-var ICV, see Section 2.5 on page 63.19

• Worksharing-Loop construct, see Section 2.9.2 on page 101.20

• Parallel worksharing-loop construct, see Section 2.13.1 on page 185.21

• omp_set_schedule routine, see Section 3.2.12 on page 345.22

• omp_get_schedule routine, see Section 3.2.13 on page 347.23

6.2 OMP_NUM_THREADS24

The OMP_NUM_THREADS environment variable sets the number of threads to use for parallel25
regions by setting the initial value of the nthreads-var ICV. See Section 2.5 on page 63 for a26
comprehensive set of rules about the interaction between the OMP_NUM_THREADS environment27
variable, the num_threads clause, the omp_set_num_threads library routine and dynamic28

602 OpenMP API – Version 5.0 November 2018

adjustment of threads, and Section 2.6.1 on page 78 for a complete algorithm that describes how the1
number of threads for a parallel region is determined.2

The value of this environment variable must be a list of positive integer values. The values of the3
list set the number of threads to use for parallel regions at the corresponding nested levels.4

The behavior of the program is implementation defined if any value of the list specified in the5
OMP_NUM_THREADS environment variable leads to a number of threads that is greater than an6
implementation can support, or if any value is not a positive integer.7

Example:8

setenv OMP_NUM_THREADS 4,3,29

Cross References10

• nthreads-var ICV, see Section 2.5 on page 63.11

• num_threads clause, see Section 2.6 on page 74.12

• omp_set_num_threads routine, see Section 3.2.1 on page 334.13

• omp_get_num_threads routine, see Section 3.2.2 on page 335.14

• omp_get_max_threads routine, see Section 3.2.3 on page 336.15

• omp_get_team_size routine, see Section 3.2.20 on page 354.16

6.3 OMP_DYNAMIC17

The OMP_DYNAMIC environment variable controls dynamic adjustment of the number of threads18
to use for executing parallel regions by setting the initial value of the dyn-var ICV.19

The value of this environment variable must be one of the following:20

true | false21

If the environment variable is set to true, the OpenMP implementation may adjust the number of22
threads to use for executing parallel regions in order to optimize the use of system resources. If23
the environment variable is set to false, the dynamic adjustment of the number of threads is24
disabled. The behavior of the program is implementation defined if the value of OMP_DYNAMIC is25
neither true nor false.26

Example:27

setenv OMP_DYNAMIC true28

CHAPTER 6. ENVIRONMENT VARIABLES 603

Cross References1

• dyn-var ICV, see Section 2.5 on page 63.2

• omp_set_dynamic routine, see Section 3.2.7 on page 340.3

• omp_get_dynamic routine, see Section 3.2.8 on page 341.4

6.4 OMP_PROC_BIND5

The OMP_PROC_BIND environment variable sets the initial value of the bind-var ICV. The value6
of this environment variable is either true, false, or a comma separated list of master,7
close, or spread. The values of the list set the thread affinity policy to be used for parallel8
regions at the corresponding nested level.9

If the environment variable is set to false, the execution environment may move OpenMP threads10
between OpenMP places, thread affinity is disabled, and proc_bind clauses on parallel11
constructs are ignored.12

Otherwise, the execution environment should not move OpenMP threads between OpenMP places,13
thread affinity is enabled, and the initial thread is bound to the first place in the OpenMP place list14
prior to the first active parallel region.15

The behavior of the program is implementation defined if the value in the OMP_PROC_BIND16
environment variable is not true, false, or a comma separated list of master, close, or17
spread. The behavior is also implementation defined if an initial thread cannot be bound to the18
first place in the OpenMP place list.19

Examples:20

setenv OMP_PROC_BIND false21
setenv OMP_PROC_BIND "spread, spread, close"22

Cross References23

• bind-var ICV, see Section 2.5 on page 63.24

• proc_bind clause, see Section 2.6.2 on page 80.25

• omp_get_proc_bind routine, see Section 3.2.23 on page 357.26

604 OpenMP API – Version 5.0 November 2018

6.5 OMP_PLACES1

A list of places can be specified in the OMP_PLACES environment variable. The2
place-partition-var ICV obtains its initial value from the OMP_PLACES value, and makes the list3
available to the execution environment. The value of OMP_PLACES can be one of two types of4
values: either an abstract name that describes a set of places or an explicit list of places described5
by non-negative numbers.6

The OMP_PLACES environment variable can be defined using an explicit ordered list of7
comma-separated places. A place is defined by an unordered set of comma-separated non-negative8
numbers enclosed by braces. The meaning of the numbers and how the numbering is done are9
implementation defined. Generally, the numbers represent the smallest unit of execution exposed by10
the execution environment, typically a hardware thread.11

Intervals may also be used to define places. Intervals can be specified using the <lower-bound> :12
<length> : <stride> notation to represent the following list of numbers: “<lower-bound>,13
<lower-bound> + <stride>, ..., <lower-bound> + (<length> - 1)*<stride>.” When <stride> is14
omitted, a unit stride is assumed. Intervals can specify numbers within a place as well as sequences15
of places.16

An exclusion operator “!” can also be used to exclude the number or place immediately following17
the operator.18

Alternatively, the abstract names listed in Table 6.1 should be understood by the execution and19
runtime environment. The precise definitions of the abstract names are implementation defined. An20
implementation may also add abstract names as appropriate for the target platform.21

TABLE 6.1: Defined Abstract Names for OMP_PLACES

Abstract Name Meaning

threads Each place corresponds to a single hardware thread on the
target machine.

cores Each place corresponds to a single core (having one or more
hardware threads) on the target machine.

sockets Each place corresponds to a single socket (consisting of one or
more cores) on the target machine.

The abstract name may be appended by a positive number in parentheses to denote the length of the22
place list to be created, that is abstract_name(num-places). When requesting fewer places than23
available on the system, the determination of which resources of type abstract_name are to be24
included in the place list is implementation defined. When requesting more resources than25
available, the length of the place list is implementation defined.26

The behavior of the program is implementation defined when the execution environment cannot27
map a numerical value (either explicitly defined or implicitly derived from an interval) within the28

CHAPTER 6. ENVIRONMENT VARIABLES 605

OMP_PLACES list to a processor on the target platform, or if it maps to an unavailable processor.1
The behavior is also implementation defined when the OMP_PLACES environment variable is2
defined using an abstract name.3

The following grammar describes the values accepted for the OMP_PLACES environment variable.4

〈list〉 |= 〈p-list〉 | 〈aname〉
〈p-list〉 |= 〈p-interval〉 | 〈p-list〉,〈p-interval〉

〈p-interval〉 |= 〈place〉:〈len〉:〈stride〉 | 〈place〉:〈len〉 | 〈place〉 | !〈place〉
〈place〉 |= {〈res-list〉}
〈res-list〉 |= 〈res-interval〉 | 〈res-list〉,〈res-interval〉

〈res-interval〉 |= 〈res〉:〈num-places〉:〈stride〉 | 〈res〉:〈num-places〉 | 〈res〉 | !〈res〉
〈aname〉 |= 〈word〉(〈num-places〉) | 〈word〉
〈word〉 |= sockets | cores | threads | <implementation-defined abstract name>
〈res〉 |= non-negative integer

〈num-places〉 |= positive integer
〈stride〉 |= integer
〈len〉 |= positive integer

Examples:5

setenv OMP_PLACES threads6
setenv OMP_PLACES "threads(4)"7
setenv OMP_PLACES8

"{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}"9
setenv OMP_PLACES "{0:4},{4:4},{8:4},{12:4}"10
setenv OMP_PLACES "{0:4}:4:4"11

where each of the last three definitions corresponds to the same 4 places including the smallest12
units of execution exposed by the execution environment numbered, in turn, 0 to 3, 4 to 7, 8 to 11,13
and 12 to 15.14

Cross References15

• place-partition-var, see Section 2.5 on page 63.16

• Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.17

• omp_get_num_places routine, see Section 3.2.24 on page 358.18

• omp_get_place_num_procs routine, see Section 3.2.25 on page 359.19

606 OpenMP API – Version 5.0 November 2018

• omp_get_place_proc_ids routine, see Section 3.2.26 on page 360.1

• omp_get_place_num routine, see Section 3.2.27 on page 362.2

• omp_get_partition_num_places routine, see Section 3.2.28 on page 362.3

• omp_get_partition_place_nums routine, see Section 3.2.29 on page 363.4

6.6 OMP_STACKSIZE5

The OMP_STACKSIZE environment variable controls the size of the stack for threads created by6
the OpenMP implementation, by setting the value of the stacksize-var ICV. The environment7
variable does not control the size of the stack for an initial thread.8

The value of this environment variable takes the form:9

size | sizeB | sizeK | sizeM | sizeG10

where:11

• size is a positive integer that specifies the size of the stack for threads that are created by the12
OpenMP implementation.13

• B, K, M, and G are letters that specify whether the given size is in Bytes, Kilobytes (1024 Bytes),14
Megabytes (1024 Kilobytes), or Gigabytes (1024 Megabytes), respectively. If one of these letters15
is present, there may be white space between size and the letter.16

If only size is specified and none of B, K, M, or G is specified, then size is assumed to be in Kilobytes.17

The behavior of the program is implementation defined if OMP_STACKSIZE does not conform to18
the above format, or if the implementation cannot provide a stack with the requested size.19

Examples:20

setenv OMP_STACKSIZE 2000500B21
setenv OMP_STACKSIZE "3000 k "22
setenv OMP_STACKSIZE 10M23
setenv OMP_STACKSIZE " 10 M "24
setenv OMP_STACKSIZE "20 m "25
setenv OMP_STACKSIZE " 1G"26
setenv OMP_STACKSIZE 2000027

Cross References28

• stacksize-var ICV, see Section 2.5 on page 63.29

CHAPTER 6. ENVIRONMENT VARIABLES 607

6.7 OMP_WAIT_POLICY1

The OMP_WAIT_POLICY environment variable provides a hint to an OpenMP implementation2
about the desired behavior of waiting threads by setting the wait-policy-var ICV. A compliant3
OpenMP implementation may or may not abide by the setting of the environment variable.4

The value of this environment variable must be one of the following:5

ACTIVE | PASSIVE6

The ACTIVE value specifies that waiting threads should mostly be active, consuming processor7
cycles, while waiting. An OpenMP implementation may, for example, make waiting threads spin.8

The PASSIVE value specifies that waiting threads should mostly be passive, not consuming9
processor cycles, while waiting. For example, an OpenMP implementation may make waiting10
threads yield the processor to other threads or go to sleep.11

The details of the ACTIVE and PASSIVE behaviors are implementation defined.12

The behavior of the program is implementation defined if the value of OMP_WAIT_POLICY is13
neither ACTIVE nor PASSIVE.14

Examples:15

setenv OMP_WAIT_POLICY ACTIVE16
setenv OMP_WAIT_POLICY active17
setenv OMP_WAIT_POLICY PASSIVE18
setenv OMP_WAIT_POLICY passive19

Cross References20

• wait-policy-var ICV, see Section 2.5 on page 63.21

6.8 OMP_MAX_ACTIVE_LEVELS22

The OMP_MAX_ACTIVE_LEVELS environment variable controls the maximum number of nested23
active parallel regions by setting the initial value of the max-active-levels-var ICV.24

The value of this environment variable must be a non-negative integer. The behavior of the25
program is implementation defined if the requested value of OMP_MAX_ACTIVE_LEVELS is26
greater than the maximum number of nested active parallel levels an implementation can support,27
or if the value is not a non-negative integer.28

608 OpenMP API – Version 5.0 November 2018

Cross References1

• max-active-levels-var ICV, see Section 2.5 on page 63.2

• omp_set_max_active_levels routine, see Section 3.2.16 on page 350.3

• omp_get_max_active_levels routine, see Section 3.2.17 on page 351.4

6.9 OMP_NESTED5

The OMP_NESTED environment variable controls nested parallelism by setting the initial value of6
the max-active-levels-var ICV. If the environment variable is set to true, the initial value of7
max-active-levels-var is set to the number of active levels of parallelism supported by the8
implementation. If the environment variable is set to false, the initial value of9
max-active-levels-var is set to 1. The behavior of the program is implementation defined if the10
value of OMP_NESTED is neither true nor false.11

If both the OMP_NESTED and OMP_MAX_ACTIVE_LEVELS environment variables are set, the12
value of OMP_NESTED is false, and the value of OMP_MAX_ACTIVE_LEVELS is greater than13
1, the behavior is implementation defined. Otherwise, if both environment variables are set then the14
OMP_NESTED environment variable has no effect.15

The OMP_NESTED environment variable has been deprecated.16

Example:17

setenv OMP_NESTED false18

Cross References19

• max-active-levels-var ICV, see Section 2.5 on page 63.20

• omp_set_nested routine, see Section 3.2.10 on page 343.21

• omp_get_team_size routine, see Section 3.2.20 on page 354.22

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 6.8 on page 608.23

CHAPTER 6. ENVIRONMENT VARIABLES 609

6.10 OMP_THREAD_LIMIT1

The OMP_THREAD_LIMIT environment variable sets the maximum number of OpenMP threads2
to use in a contention group by setting the thread-limit-var ICV.3

The value of this environment variable must be a positive integer. The behavior of the program is4
implementation defined if the requested value of OMP_THREAD_LIMIT is greater than the5
number of threads an implementation can support, or if the value is not a positive integer.6

Cross References7

• thread-limit-var ICV, see Section 2.5 on page 63.8

• omp_get_thread_limit routine, see Section 3.2.14 on page 348.9

6.11 OMP_CANCELLATION10

The OMP_CANCELLATION environment variable sets the initial value of the cancel-var ICV.11

The value of this environment variable must be one of the following:12

true | false13

If set to true, the effects of the cancel construct and of cancellation points are enabled and14
cancellation is activated. If set to false, cancellation is disabled and the cancel construct and15
cancellation points are effectively ignored. The behavior of the program is implementation defined16
if OMP_CANCELLATION is set to neither true nor false.17

Cross References18

• cancel-var, see Section 2.5.1 on page 64.19

• cancel construct, see Section 2.18.1 on page 263.20

• cancellation point construct, see Section 2.18.2 on page 267.21

• omp_get_cancellation routine, see Section 3.2.9 on page 342.22

610 OpenMP API – Version 5.0 November 2018

6.12 OMP_DISPLAY_ENV1

The OMP_DISPLAY_ENV environment variable instructs the runtime to display the OpenMP2
version number and the value of the ICVs associated with the environment variables described in3
Chapter 6, as name = value pairs. The runtime displays this information once, after processing the4
environment variables and before any user calls to change the ICV values by runtime routines5
defined in Chapter 3.6

The value of the OMP_DISPLAY_ENV environment variable may be set to one of these values:7

TRUE | FALSE | VERBOSE8

The TRUE value instructs the runtime to display the OpenMP version number defined by the9
_OPENMP version macro (or the openmp_version Fortran parameter) value and the initial ICV10
values for the environment variables listed in Chapter 6. The VERBOSE value indicates that the11
runtime may also display the values of runtime variables that may be modified by vendor-specific12
environment variables. The runtime does not display any information when the13
OMP_DISPLAY_ENV environment variable is FALSE or undefined. For all values of the14
environment variable other than TRUE, FALSE, and VERBOSE, the displayed information is15
unspecified.16

The display begins with "OPENMP DISPLAY ENVIRONMENT BEGIN", followed by the17
_OPENMP version macro (or the openmp_version Fortran parameter) value and ICV values, in18
the format NAME ’=’ VALUE. NAME corresponds to the macro or environment variable name,19
optionally prepended by a bracketed device-type. VALUE corresponds to the value of the macro or20
ICV associated with this environment variable. Values are enclosed in single quotes. The display is21
terminated with "OPENMP DISPLAY ENVIRONMENT END".22

For the OMP_NESTED environment variable, the printed value is true if the max-active-levels-var23
ICV is initialized to a value greater than 1; otherwise the printed value is false.24

Example:25

% setenv OMP_DISPLAY_ENV TRUE26

The above example causes an OpenMP implementation to generate output of the following form:27

OPENMP DISPLAY ENVIRONMENT BEGIN28
_OPENMP=’201811’29
[host] OMP_SCHEDULE=’GUIDED,4’30
[host] OMP_NUM_THREADS=’4,3,2’31
[device] OMP_NUM_THREADS=’2’32
[host,device] OMP_DYNAMIC=’TRUE’33
[host] OMP_PLACES=’{0:4},{4:4},{8:4},{12:4}’34
...35

OPENMP DISPLAY ENVIRONMENT END36

CHAPTER 6. ENVIRONMENT VARIABLES 611

6.13 OMP_DISPLAY_AFFINITY1

The OMP_DISPLAY_AFFINITY environment variable instructs the runtime to display formatted2
affinity information for all OpenMP threads in the parallel region upon entering the first parallel3
region and when any change occurs in the information accessible by the format specifiers listed in4
Table 6.2. If affinity of any thread in a parallel region changes then thread affinity information for5
all threads in that region is displayed. If the thread affinity for each respective parallel region at6
each nesting level has already been displayed and the thread affinity has not changed, then the7
information is not displayed again. There is no specific order in displaying thread affinity8
information for all threads in the same parallel region.9

The value of the OMP_DISPLAY_AFFINITY environment variable may be set to one of these10
values:11

TRUE | FALSE12

The TRUE value instructs the runtime to display the OpenMP thread affinity information, and uses13
the format setting defined in the affinity-format-var ICV.14

The runtime does not display the OpenMP thread affinity information when the value of the15
OMP_DISPLAY_AFFINITY environment variable is FALSE or undefined. For all values of the16
environment variable other than TRUE or FALSE, the display action is implementation defined.17

Example:18

setenv OMP_DISPLAY_AFFINITY TRUE19

The above example causes an OpenMP implementation to display OpenMP thread affinity20
information during execution of the program, in a format given by the affinity-format-var ICV. The21
following is a sample output:22

nesting_level= 1, thread_num= 0, thread_affinity= 0,123
nesting_level= 1, thread_num= 1, thread_affinity= 2,324

Cross References25

• Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.26

• omp_set_affinity_format routine, see Section 3.2.30 on page 364.27

• omp_get_affinity_format routine, see Section 3.2.31 on page 366.28

• omp_display_affinity routine, see Section 3.2.32 on page 367.29

• omp_capture_affinity routine, see Section 3.2.33 on page 368.30

• OMP_AFFINITY_FORMAT environment variable, see Section 6.14 on page 613.31

612 OpenMP API – Version 5.0 November 2018

6.14 OMP_AFFINITY_FORMAT1

The OMP_AFFINITY_FORMAT environment variable sets the initial value of the2
affinity-format-var ICV which defines the format when displaying OpenMP thread affinity3
information.4

The value of this environment variable is a character string that may contain as substrings one or5
more field specifiers, in addition to other characters. The format of each field specifier is6

%[[[0].] size] type7

where an individual field specifier must contain the percent symbol (%) and a type. The type can be8
a single character short name or its corresponding long name delimited with curly braces, such as9
%n or %{thread_num}. A literal percent is specified as %%. Field specifiers can be provided in10
any order.11

The 0 modifier indicates whether or not to add leading zeros to the output, following any indication12
of sign or base. The . modifier indicates the output should be right justified when size is specified.13
By default, output is left justified. The minimum field length is size, which is a decimal digit string14
with a non-zero first digit. If no size is specified, the actual length needed to print the field will be15
used. If the 0 modifier is used with type of A, {thread_affinity}, H, {host}, or a type that16
is not printed as a number, the result is unspecified. Any other characters in the format string that17
are not part of a field specifier will be included literally in the output.18

TABLE 6.2: Available Field Types for Formatting OpenMP Thread Affinity Information

Short
Name

Long Name Meaning

t team_num The value returned by omp_get_team_num().

T num_teams The value returned by omp_get_num_teams().

L nesting_level The value returned by omp_get_level().

n thread_num The value returned by omp_get_thread_num().

N num_threads The value returned by omp_get_num_threads().

a ancestor_tnum The value returned by
omp_get_ancestor_thread_num(level),
where level is omp_get_level() minus 1.

table continued on next page

CHAPTER 6. ENVIRONMENT VARIABLES 613

table continued from previous page

Short
Name

Long Name Meaning

H host The name for the host machine on which the OpenMP
program is running.

P process_id The process identifier used by the implementation.

i native_thread_id The native thread identifier used by the implementation.

A thread_affinity The list of numerical identifiers, in the format of a comma-
separated list of integers or integer ranges, that represent
processors on which a thread may execute, subject to
OpenMP thread affinity control and/or other external
affinity mechanisms.

Implementations may define additional field types. If an implementation does not have information1
for a field type, "undefined" is printed for this field when displaying the OpenMP thread affinity2
information.3

Example:4

setenv OMP_AFFINITY_FORMAT5
"Thread Affinity: %0.3L %.8n %.15{thread_affinity} %.12H"6

The above example causes an OpenMP implementation to display OpenMP thread affinity7
information in the following form:8

Thread Affinity: 001 0 0-1,16-17 nid0039
Thread Affinity: 001 1 2-3,18-19 nid00310

Cross References11

• Controlling OpenMP thread affinity, see Section 2.6.2 on page 80.12

• omp_set_affinity_format routine, see Section 3.2.30 on page 364.13

• omp_get_affinity_format routine, see Section 3.2.31 on page 366.14

• omp_display_affinity routine, see Section 3.2.32 on page 367.15

• omp_capture_affinity routine, see Section 3.2.33 on page 368.16

• OMP_DISPLAY_AFFINITY environment variable, see Section 6.13 on page 612.17

614 OpenMP API – Version 5.0 November 2018

6.15 OMP_DEFAULT_DEVICE1

The OMP_DEFAULT_DEVICE environment variable sets the device number to use in device2
constructs by setting the initial value of the default-device-var ICV.3

The value of this environment variable must be a non-negative integer value.4

Cross References5

• default-device-var ICV, see Section 2.5 on page 63.6

• device directives, Section 2.12 on page 160.7

6.16 OMP_MAX_TASK_PRIORITY8

The OMP_MAX_TASK_PRIORITY environment variable controls the use of task priorities by9
setting the initial value of the max-task-priority-var ICV. The value of this environment variable10
must be a non-negative integer.11

Example:12

% setenv OMP_MAX_TASK_PRIORITY 2013

Cross References14

• max-task-priority-var ICV, see Section 2.5 on page 63.15

• Tasking Constructs, see Section 2.10 on page 135.16

• omp_get_max_task_priority routine, see Section 3.2.42 on page 377.17

6.17 OMP_TARGET_OFFLOAD18

The OMP_TARGET_OFFLOAD environment variable sets the initial value of the target-offload-var19
ICV. The value of the OMP_TARGET_OFFLOAD environment variable must be one of the20
following:21

MANDATORY | DISABLED | DEFAULT22

CHAPTER 6. ENVIRONMENT VARIABLES 615

The MANDATORY value specifies that program execution is terminated if a device construct or1
device memory routine is encountered and the device is not available or is not supported by the2
implementation. Support for the DISABLED value is implementation defined. If an3
implementation supports it, the behavior is as if the only device is the host device.4

The DEFAULT value specifies the default behavior as described in Section 1.3 on page 20.5

Example:6

% setenv OMP_TARGET_OFFLOAD MANDATORY7

Cross References8

• target-offload-var ICV, see Section 2.5 on page 63.9

• Device Directives, see Section 2.12 on page 160.10

• Device Memory Routines, see Section 3.6 on page 397.11

6.18 OMP_TOOL12

The OMP_TOOL environment variable sets the tool-var ICV, which controls whether an OpenMP13
runtime will try to register a first party tool.14

The value of this environment variable must be one of the following:15

enabled | disabled16

If OMP_TOOL is set to any value other than enabled or disabled, the behavior is unspecified.17
If OMP_TOOL is not defined, the default value for tool-var is enabled.18

Example:19

% setenv OMP_TOOL enabled20

Cross References21

• tool-var ICV, see Section 2.5 on page 63.22

• OMPT Interface, see Chapter 4 on page 419.23

616 OpenMP API – Version 5.0 November 2018

6.19 OMP_TOOL_LIBRARIES1

The OMP_TOOL_LIBRARIES environment variable sets the tool-libraries-var ICV to a list of tool2
libraries that are considered for use on a device on which an OpenMP implementation is being3
initialized. The value of this environment variable must be a list of names of dynamically-loadable4
libraries, separated by an implementation specific, platform typical separator.5

If the tool-var ICV is not enabled, the value of tool-libraries-var is ignored. Otherwise, if6
ompt_start_tool is not visible in the address space on a device where OpenMP is being7
initialized or if ompt_start_tool returns NULL, an OpenMP implementation will consider8
libraries in the tool-libraries-var list in a left to right order. The OpenMP implementation will9
search the list for a library that meets two criteria: it can be dynamically loaded on the current10
device and it defines the symbol ompt_start_tool. If an OpenMP implementation finds a11
suitable library, no further libraries in the list will be considered.12

Example:13

% setenv OMP_TOOL_LIBRARIES libtoolXY64.so:/usr/local/lib/14
libtoolXY32.so15

Cross References16

• tool-libraries-var ICV, see Section 2.5 on page 63.17

• OMPT Interface, see Chapter 4 on page 419.18

• ompt_start_tool routine, see Section 4.2.1 on page 420.19

6.20 OMP_DEBUG20

The OMP_DEBUG environment variable sets the debug-var ICV, which controls whether an21
OpenMP runtime collects information that an OMPD library may need to support a tool.22

The value of this environment variable must be one of the following:23

enabled | disabled24

If OMP_DEBUG is set to any value other than enabled or disabled then the behavior is25
implementation defined.26

Example:27

% setenv OMP_DEBUG enabled28

CHAPTER 6. ENVIRONMENT VARIABLES 617

Cross References1

• debug-var ICV, see Section 2.5 on page 63.2

• OMPD Interface, see Chapter 5 on page 533.3

• Enabling the Runtime for OMPD, see Section 5.2.1 on page 534.4

6.21 OMP_ALLOCATOR5

OMP_ALLOCATOR sets the def-allocator-var ICV that specifies the default allocator for allocation6
calls, directives and clauses that do not specify an allocator. The value of this environment variable7
is a predefined allocator from Table 2.10 on page 155. The value of this environment variable is not8
case sensitive.9

Cross References10

• def-allocator-var ICV, see Section 2.5 on page 63.11

• Memory allocators, see Section 2.11.2 on page 152.12

• omp_set_default_allocator routine, see Section 3.7.4 on page 411.13

• omp_get_default_allocator routine, see Section 3.7.5 on page 412.14

618 OpenMP API – Version 5.0 November 2018

APPENDIX A

OpenMP Implementation-Defined1

Behaviors2

3

This appendix summarizes the behaviors that are described as implementation defined in this API.4
Each behavior is cross-referenced back to its description in the main specification. An5
implementation is required to define and to document its behavior in these cases.6

• Processor: a hardware unit that is implementation defined (see Section 1.2.1 on page 2).7

• Device: an implementation defined logical execution engine (see Section 1.2.1 on page 2).8

• Device address: reference to an address in a device data environment (see Section 1.2.6 on9
page 12).10

• Memory model: the minimum size at which a memory update may also read and write back11
adjacent variables that are part of another variable (as array or structure elements) is12
implementation defined but is no larger than required by the base language (see Section 1.4.1 on13
page 23).14

• requires directive: support of requirements is implementation defined. All15
implementation-defined requirements should begin with ext_ (see Section 2.4 on page 60).16

• Requires directive: Support for any feature specified by a requirement clause on a requires17
directive is implementation defined (see Section 2.4 on page 60).18

• Internal control variables: the initial values of dyn-var, nthreads-var, run-sched-var,19
def-sched-var, bind-var, stacksize-var, wait-policy-var, thread-limit-var, max-active-levels-var,20
place-partition-var, affinity-format-var, default-device-var and def-allocator-var are21
implementation defined. The method for initializing a target device’s internal control variable is22
implementation defined (see Section 2.5.2 on page 66).23

• OpenMP context: the accepted isa-name values for the isa trait, the accepted arch-name values24
for the arch trait, and the accepted extension-name values for the extension trait are25
implementation defined (see Section 2.3.1 on page 51).26

619

• declare variant directive: whether, for some specific OpenMP context, the prototype of1
the variant should differ from that of the base function, and if so how it should differ, is2
implementation defined (see Section 2.3.5 on page 58).3

• Dynamic adjustment of threads: providing the ability to adjust the number of threads4
dynamically is implementation defined. Implementations are allowed to deliver fewer threads5
(but at least one) than indicated in Algorithm 2.1 even if dynamic adjustment is disabled (see6
Section 2.6.1 on page 78).7

• Thread affinity: For the close thread affinity policy, if T > P and P does not divide T evenly,8
the exact number of threads in a particular place is implementation defined. For the spread9
thread affinity, if T > P and P does not divide T evenly, the exact number of threads in a10
particular subpartition is implementation defined. The determination of whether the affinity11
request can be fulfilled is implementation defined. If not, the mapping of threads in the team to12
places is implementation defined (see Section 2.6.2 on page 80).13

• teams construct: the number of teams that are created is implementation defined but less than14
or equal to the value of the num_teams clause if specified. The maximum number of threads15
that participate in the contention group that each team initiates is implementation defined but less16
than or equal to the value of the thread_limit clause if specified. The assignment of the17
initial threads to places and the values of the place-partition-var and default-device-var ICVs for18
each initial thread are implementation defined (see Section 2.7 on page 82).19

• sections construct: the method of scheduling the structured blocks among threads in the20
team is implementation defined (see Section 2.8.1 on page 86).21

• single construct: the method of choosing a thread to execute the structured block is22
implementation defined (see Section 2.8.2 on page 89)23

• Worksharing-Loop directive: the integer type (or kind, for Fortran) used to compute the24
iteration count of a collapsed loop is implementation defined. The effect of the25
schedule(runtime) clause when the run-sched-var ICV is set to auto is implementation26
defined. The value of simd_width for the simd schedule modifier is implementation defined (see27
Section 2.9.2 on page 101).28

• simd construct: the integer type (or kind, for Fortran) used to compute the iteration count for29
the collapsed loop is implementation defined. The number of iterations that are executed30
concurrently at any given time is implementation defined. If the alignment parameter is not31
specified in the aligned clause, the default alignments for the SIMD instructions are32
implementation defined (see Section 2.9.3.1 on page 110).33

• declare simd directive: if the parameter of the simdlen clause is not a constant positive34
integer expression, the number of concurrent arguments for the function is implementation35
defined. If the alignment parameter of the aligned clause is not specified, the default36
alignments for SIMD instructions are implementation defined (see Section 2.9.3.3 on page 116).37

• distribute construct: the integer type (or kind, for Fortran) used to compute the iteration38
count for the collapsed loop is implementation defined. If no dist_schedule clause is39

620 OpenMP API – Version 5.0 November 2018

specified then the schedule for the distribute construct is implementation defined (see1
Section 2.9.4.1 on page 120).2

• taskloop construct: The number of loop iterations assigned to a task created from a3
taskloop construct is implementation defined, unless the grainsize or num_tasks4
clause is specified. The integer type (or kind, for Fortran) used to compute the iteration count for5
the collapsed loop is implementation defined (see Section 2.10.2 on page 140).6

C++
• taskloop construct: For firstprivate variables of class type, the number of invocations7
of copy constructors to perform the initialization is implementation defined (see Section 2.10.28
on page 140).9

C++
• Memory spaces: The actual storage resource that each memory space defined in Table 2.8 on10
page 152 represents is implementation defined.11

• Memory allocators: The minimum partitioning size for partitioning of allocated memory over12
the storage resources is implementation defined (see Section 2.11.2 on page 152). The default13
value for the pool_size allocator trait is implementation defined (see Table 2.9 on page 153).14
The associated memory space for each of the predefined omp_cgroup_mem_alloc,15
omp_pteam_mem_alloc and omp_thread_mem_alloc allocators is implementation16
defined (see Table 2.10 on page 155).17

• is_device_ptr clause: Support for pointers created outside of the OpenMP device data18
management routines is implementation defined (see Section 2.12.5 on page 170).19

• target construct: the effect of invoking a virtual member function of an object on a device20
other than the device on which the object was constructed is implementation defined (see21
Section 2.12.5 on page 170).22

• atomic construct: a compliant implementation may enforce exclusive access between23
atomic regions that update different storage locations. The circumstances under which this24
occurs are implementation defined. If the storage location designated by x is not size-aligned25
(that is, if the byte alignment of x is not a multiple of the size of x), then the behavior of the26
atomic region is implementation defined (see Section 2.17.7 on page 234).27

Fortran
• Data-sharing attributes: The data-sharing attributes of dummy arguments without the VALUE28
attribute are implementation-defined if the associated actual argument is shared, except for the29
conditions specified (see Section 2.19.1.2 on page 273).30

• threadprivate directive: if the conditions for values of data in the threadprivate objects of31
threads (other than an initial thread) to persist between two consecutive active parallel regions do32
not all hold, the allocation status of an allocatable variable in the second region is33
implementation defined (see Section 2.19.2 on page 274).34

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 621

• Runtime library definitions: it is implementation defined whether the include file omp_lib.h1
or the module omp_lib (or both) is provided. It is implementation defined whether any of the2
OpenMP runtime library routines that take an argument are extended with a generic interface so3
arguments of different KIND type can be accommodated (see Section 3.1 on page 332).4

Fortran
• omp_set_num_threads routine: if the argument is not a positive integer the behavior is5
implementation defined (see Section 3.2.1 on page 334).6

• omp_set_schedule routine: for implementation specific schedule kinds, the values and7
associated meanings of the second argument are implementation defined (see Section 3.2.12 on8
page 345).9

• omp_get_supported_active_levels routine: the number of active levels of10
parallelism supported by the implementation is implementation defined, but must be greater than11
0 (see Section 3.2.15 on page 349).12

• omp_set_max_active_levels routine: when called from within any explicit parallel13
region the binding thread set (and binding region, if required) for the14
omp_set_max_active_levels region is implementation defined and the behavior is15
implementation defined. If the argument is not a non-negative integer then the behavior is16
implementation defined (see Section 3.2.16 on page 350).17

• omp_get_max_active_levels routine: when called from within any explicit parallel18
region the binding thread set (and binding region, if required) for the19
omp_get_max_active_levels region is implementation defined (see Section 3.2.17 on20
page 351).21

• omp_get_place_proc_ids routine: the meaning of the non-negative numerical identifiers22
returned by the omp_get_place_proc_ids routine is implementation defined. The order of23
the numerical identifiers returned in the array ids is implementation defined (see Section 3.2.2624
on page 360).25

• omp_set_affinity_format routine: when called from within any explicit parallel26
region, the binding thread set (and binding region, if required) for the27
omp_set_affinity_format region is implementation defined and the behavior is28
implementation defined. If the argument does not conform to the specified format then the result29
is implementation defined (see Section 3.2.30 on page 364).30

• omp_get_affinity_format routine: when called from within any explicit parallel31
region the binding thread set (and binding region, if required) for the32
omp_get_affinity_format region is implementation defined (see Section 3.2.31 on33
page 366).34

• omp_display_affinity routine: if the argument does not conform to the specified format35
then the result is implementation defined (see Section 3.2.32 on page 367).36

622 OpenMP API – Version 5.0 November 2018

• omp_capture_affinity routine: if the format argument does not conform to the specified1
format then the result is implementation defined (see Section 3.2.33 on page 368).2

• omp_get_initial_device routine: the value of the device number of the host device is3
implementation defined (see Section 3.2.41 on page 376).4

• omp_target_memcpy_rect routine: the maximum number of dimensions supported is5
implementation defined, but must be at least three (see Section 3.6.5 on page 402).6

• ompt_callback_sync_region_wait, ompt_callback_mutex_released,7
ompt_callback_dependences, ompt_callback_task_dependence,8
ompt_callback_work, ompt_callback_master, ompt_callback_target_map,9
ompt_callback_sync_region, ompt_callback_lock_init,10
ompt_callback_lock_destroy, ompt_callback_mutex_acquire,11
ompt_callback_mutex_acquired, ompt_callback_nest_lock,12
ompt_callback_flush, ompt_callback_cancel and13
ompt_callback_dispatch tool callbacks: if a tool attempts to register a callback with the14
string name using the runtime entry point ompt_set_callback, it is implementation defined15
whether the registered callback may never or sometimes invoke this callback for the associated16
events (see Table 4.2 on page 428)17

• Device tracing: Whether a target device supports tracing or not is implementation defined; if a18
target device does not support tracing, a NULL may be supplied for the lookup function to a19
tool’s device initializer (see Section 4.2.5 on page 427).20

• ompt_set_trace_ompt and ompt_buffer_get_record_ompt runtime entry21
points: it is implementation defined whether a device-specific tracing interface will define this22
runtime entry point, indicating that it can collect traces in OMPT format. The kinds of trace23
records available for a device is implementation defined (see Section 4.2.5 on page 427).24

• ompt_callback_target_data_op_t callback type: it is implementation defined25
whether in some operations src_addr or dest_addr might point to an intermediate buffer (see26
Section 4.5.2.25 on page 488).27

• ompt_set_callback_t entry point type: the subset of the associated event in which the28
callback is invoked is implementation defined (see Section 4.6.1.3 on page 500).29

• ompt_get_place_proc_ids_t entry point type: the meaning of the numerical identifiers30
returned is implementation defined. The order of ids returned in the array is implementation31
defined (see Section 4.6.1.8 on page 505).32

• ompt_get_partition_place_nums_t entry point type: the order of the identifiers33
returned in the array place_nums is implementation defined (see Section 4.6.1.10 on page 507).34

• ompt_get_proc_id_t entry point type: the meaning of the numerical identifier returned is35
implementation defined (see Section 4.6.1.11 on page 508).36

• ompd_callback_print_string_fn_t callback function: the value of catergory is37
implementation defined (see Section 5.4.5 on page 556).38

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 623

• ompd_parallel_handle_compare operation: the means by which parallel region1
handles are ordered is implementation defined (see Section 5.5.6.5 on page 575).2

• ompd_task_handle_compare operation: the means by which task handles are ordered is3
implementation defined (see Section 5.5.7.6 on page 580).4

• OMPT thread states: The set of OMPT thread states supported is implementation defined (see5
Section 4.4.4.26 on page 452).6

• OMP_SCHEDULE environment variable: if the value does not conform to the specified format7
then the result is implementation defined (see Section 6.1 on page 601).8

• OMP_NUM_THREADS environment variable: if any value of the list specified leads to a number9
of threads that is greater than the implementation can support, or if any value is not a positive10
integer, then the result is implementation defined (see Section 6.2 on page 602).11

• OMP_DYNAMIC environment variable: if the value is neither true nor false the behavior is12
implementation defined (see Section 6.3 on page 603).13

• OMP_PROC_BIND environment variable: if the value is not true, false, or a comma14
separated list of master, close, or spread, the behavior is implementation defined. The15
behavior is also implementation defined if an initial thread cannot be bound to the first place in16
the OpenMP place list (see Section 6.4 on page 604).17

• OMP_PLACES environment variable: the meaning of the numbers specified in the environment18
variable and how the numbering is done are implementation defined. The precise definitions of19
the abstract names are implementation defined. An implementation may add20
implementation-defined abstract names as appropriate for the target platform. When creating a21
place list of n elements by appending the number n to an abstract name, the determination of22
which resources to include in the place list is implementation defined. When requesting more23
resources than available, the length of the place list is also implementation defined. The behavior24
of the program is implementation defined when the execution environment cannot map a25
numerical value (either explicitly defined or implicitly derived from an interval) within the26
OMP_PLACES list to a processor on the target platform, or if it maps to an unavailable processor.27
The behavior is also implementation defined when the OMP_PLACES environment variable is28
defined using an abstract name (see Section 6.5 on page 605).29

• OMP_STACKSIZE environment variable: if the value does not conform to the specified format30
or the implementation cannot provide a stack of the specified size then the behavior is31
implementation defined (see Section 6.6 on page 607).32

• OMP_WAIT_POLICY environment variable: the details of the ACTIVE and PASSIVE33
behaviors are implementation defined (see Section 6.7 on page 608).34

• OMP_MAX_ACTIVE_LEVELS environment variable: if the value is not a non-negative integer35
or is greater than the number of parallel levels an implementation can support then the behavior36
is implementation defined (see Section 6.8 on page 608).37

624 OpenMP API – Version 5.0 November 2018

• OMP_NESTED environment variable: if the value is neither true nor false the behavior is1
implementation defined (see Section 6.9 on page 609).2

• Conflicting OMP_NESTED and OMP_MAX_ACTIVE_LEVELS environment variables: if3
both environment variables are set, the value of OMP_NESTED is false, and the value of4
OMP_MAX_ACTIVE_LEVELS is greater than 1, the behavior is implementation defined (see5
Section 6.9 on page 609).6

• OMP_THREAD_LIMIT environment variable: if the requested value is greater than the number7
of threads an implementation can support, or if the value is not a positive integer, the behavior of8
the program is implementation defined (see Section 6.10 on page 610).9

• OMP_DISPLAY_AFFINITY environment variable: for all values of the environment variables10
other than TRUE or FALSE, the display action is implementation defined (see Section 6.13 on11
page 612).12

• OMP_AFFINITY_FORMAT environment variable: if the value does not conform to the13
specified format then the result is implementation defined (see Section 6.14 on page 613).14

• OMP_TARGET_OFFLOAD environment variable: the support of disabled is15
implementation defined (see Section 6.17 on page 615).16

• OMP_DEBUG environment variable: if the value is neither disabled nor enabled the17
behavior is implementation defined (see Section 6.20 on page 617).18

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 625

This page intentionally left blank

APPENDIX B

Features History1

2

This appendix summarizes the major changes between OpenMP API versions since version 2.5.3

B.1 Deprecated Features4

The following features have been deprecated in Version 5.0.5

• The nest-var ICV, the OMP_NESTED environment variable, and the omp_set_nested and6
omp_get_nested routines were deprecated.7

• Lock hints were renamed to synchronization hints. The following lock hint type and constants8
were deprecated:9

– the C/C++ type omp_lock_hint_t and the Fortran kind omp_lock_hint_kind;10

– the constants omp_lock_hint_none, omp_lock_hint_uncontended,11
omp_lock_hint_contended, omp_lock_hint_nonspeculative, and12
omp_lock_hint_speculative.13

B.2 Version 4.5 to 5.0 Differences14

• The memory model was extended to distinguish different types of flush operations according to15
specified flush properties (see Section 1.4.4 on page 25) and to define a happens before order16
based on synchronizing flush operations (see Section 1.4.5 on page 27).17

627

• Various changes throughout the specification were made to provide initial support of C11,1
C++11, C++14, C++17 and Fortran 2008 (see Section 1.7 on page 31).2

• Fortran 2003 is now fully supported (see Section 1.7 on page 31).3

• The requires directive (see Section 2.4 on page 60) was added to support applications that4
require implementation-specific features.5

• The target-offload-var internal control variable (see Section 2.5 on page 63) and the6
OMP_TARGET_OFFLOAD environment variable (see Section 6.17 on page 615) were added to7
support runtime control of the execution of device constructs.8

• Control over whether nested parallelism is enabled or disabled was integrated into the9
max-active-levels-var internal control variable (see Section 2.5.2 on page 66), the default value10
of which is now implementation defined, unless determined according to the values of the11
OMP_NUM_THREADS (see Section 6.2 on page 602) or OMP_PROC_BIND (see Section 6.4 on12
page 604) environment variables.13

• Support for array shaping (see Section 2.1.4 on page 43) and for array sections with non-unit14
strides in C and C++ (see Section 2.1.5 on page 44) was added to facilitate specification of15
discontiguous storage and the target update construct (see Section 2.12.6 on page 176) and16
the depend clause (see Section 2.17.11 on page 255) were extended to allow the use of17
shape-operators (see Section 2.1.4 on page 43).18

• Iterators (see Section 2.1.6 on page 47) were added to support expressions in a list that expand to19
multiple expressions.20

• The metadirective directive (see Section 2.3.4 on page 56) and declare variant21
directive (see Section 2.3.5 on page 58) were added to support selection of directive variants and22
declared function variants at a callsite, respectively, based on compile-time traits of the enclosing23
context.24

• The teams construct (see Section 2.7 on page 82) was extended to support execution on the host25
device without an enclosing target construct (see Section 2.12.5 on page 170).26

• The canonical loop form was defined for Fortran and, for all base languages, extended to permit27
non-rectangular loop nests (see Section 2.9.1 on page 95).28

• The relational-op in the canonical loop form for C/C++ was extended to include != (see29
Section 2.9.1 on page 95).30

• The default loop schedule modifier for worksharing-loop constructs without the static31
schedule and the ordered clause was changed to nonmonotonic (see Section 2.9.2 on32
page 101).33

• The collapse of associated loops that are imperfectly nested loops was defined for the34
worksharing-loop (see Section 2.9.2 on page 101), simd (see Section 2.9.3.1 on page 110),35
taskloop (see Section 2.10.2 on page 140) and distribute (see Section 2.9.4.2 on36
page 123) constructs.37

628 OpenMP API – Version 5.0 November 2018

• The simd construct (see Section 2.9.3.1 on page 110) was extended to accept the if,1
nontemporal and order(concurrent) clauses and to allow the use of atomic2
constructs within it.3

• The loop construct and the order(concurrent) clause were added to support compiler4
optimization and parallelization of loops for which iterations may execute in any order, including5
concurrently (see Section 2.9.5 on page 128).6

• The scan directive (see Section 2.9.6 on page 132) and the inscan modifier for the7
reduction clause (see Section 2.19.5.4 on page 300) were added to support inclusive and8
exclusive scan computations.9

• To support task reductions, the task (see Section 2.10.1 on page 135) and target (see10
Section 2.12.5 on page 170) constructs were extended to accept the in_reduction clause (see11
Section 2.19.5.6 on page 303), the taskgroup construct (see Section 2.17.6 on page 232) was12
extended to accept the task_reduction clause Section 2.19.5.5 on page 303), and the task13
modifier was added to the reduction clause (see Section 2.19.5.4 on page 300).14

• The affinity clause was added to the task construct (see Section 2.10.1 on page 135) to15
support hints that indicate data affinity of explicit tasks.16

• The detach clause for the task construct (see Section 2.10.1 on page 135) and the17
omp_fulfill_event runtime routine (see Section 3.5.1 on page 396) were added to support18
execution of detachable tasks.19

• To support taskloop reductions, the taskloop (see Section 2.10.2 on page 140) and20
taskloop simd (see Section 2.10.3 on page 146) constructs were extended to accept the21
reduction (see Section 2.19.5.4 on page 300) and in_reduction (see Section 2.19.5.6 on22
page 303) clauses.23

• The taskloop construct (see Section 2.10.2 on page 140) was added to the list of constructs24
that can be canceled by the cancel construct (see Section 2.18.1 on page 263)).25

• To support mutually exclusive inout sets, a mutexinoutset dependence-type was added to26
the depend clause (see Section 2.10.6 on page 149 and Section 2.17.11 on page 255).27

• Predefined memory spaces (see Section 2.11.1 on page 152), predefined memory allocators and28
allocator traits (see Section 2.11.2 on page 152) and directives, clauses (see Section 2.11 on29
page 152 and API routines (see Section 3.7 on page 406) to use them were added to support30
different kinds of memories.31

• The semantics of the use_device_ptr clause for pointer variables was clarified and the32
use_device_addr clause for using the device address of non-pointer variables inside the33
target data construct was added (see Section 2.12.2 on page 161).34

• To support reverse offload, the ancestor modifier was added to the device clause for35
target constructs (see Section 2.12.5 on page 170).36

APPENDIX B. FEATURES HISTORY 629

• To reduce programmer effort implicit declare target directives for some functions (C, C++,1
Fortran) and subroutines (Fortran) were added (see Section 2.12.5 on page 170 and2
Section 2.12.7 on page 180).3

• The target update construct (see Section 2.12.6 on page 176) was modified to allow array4
sections that specify discontiguous storage.5

• The to and from clauses on the target update construct (see Section 2.12.6 on page 176),6
the depend clause on task generating constructs (see Section 2.17.11 on page 255), and the7
map clause (see Section 2.19.7.1 on page 315) were extended to allow any lvalue expression as a8
list item for C/C++.9

• Support for nested declare target directives was added (see Section 2.12.7 on page 180).10

• New combined constructs master taskloop (see Section 2.13.7 on page 192),11
parallel master (see Section 2.13.6 on page 191), parallel master taskloop (see12
Section 2.13.9 on page 195), master taskloop simd (see Section 2.13.8 on page 194),13
parallel master taskloop simd (see Section 2.13.10 on page 196) were added.14

• The depend clause was added to the taskwait construct (see Section 2.17.5 on page 230).15

• To support acquire and release semantics with weak memory ordering, the acq_rel,16
acquire, and release clauses were added to the atomic construct (see Section 2.17.7 on17
page 234) and flush construct (see Section 2.17.8 on page 242), and the memory ordering18
semantics of implicit flushes on various constructs and runtime routines were clarified (see19
Section 2.17.8.1 on page 246).20

• The atomic construct was extended with the hint clause (see Section 2.17.7 on page 234).21

• The depend clause (see Section 2.17.11 on page 255) was extended to support iterators and to22
support depend objects that can be created with the new depobj construct.23

• Lock hints were renamed to synchronization hints, and the old names were deprecated (see24
Section 2.17.12 on page 260).25

• To support conditional assignment to lastprivate variables, the conditional modifier was26
added to the lastprivate clause (see Section 2.19.4.5 on page 288).27

• The description of the map clause was modified to clarify the mapping order when multiple28
map-types are specified for a variable or structure members of a variable on the same construct.29
The close map-type-modifier was added as a hint for the runtime to allocate memory close to30
the target device (see Section 2.19.7.1 on page 315).31

• The capability to map C/C++ pointer variables and to assign the address of device memory that32
is mapped by an array section to them was added. Support for mapping of Fortran pointer and33
allocatable variables, including pointer and allocatable components of variables, was added (see34
Section 2.19.7.1 on page 315).35

• The defaultmap clause (see Section 2.19.7.2 on page 324) was extended to allow selecting36
the data-mapping or data-sharing attributes for any of the scalar, aggregate, pointer or allocatable37

630 OpenMP API – Version 5.0 November 2018

classes on a per-region basis. Additionally it accepts the none parameter to support the1
requirement that all variables referenced in the construct must be explicitly mapped or privatized.2

• The declare mapper directive was added to support mapping of data types with direct and3
indirect members (see Section 2.19.7.3 on page 326).4

• The omp_set_nested (see Section 3.2.10 on page 343) and omp_get_nested (see5
Section 3.2.11 on page 344) routines and the OMP_NESTED environment variable (see6
Section 6.9 on page 609) were deprecated.7

• The omp_get_supported_active_levels routine was added to query the number of8
active levels of parallelism supported by the implementation (see Section 3.2.15 on page 349).9

• Runtime routines omp_set_affinity_format (see Section 3.2.30 on page 364),10
omp_get_affinity_format (see Section 3.2.31 on page 366), omp_set_affinity11
(see Section 3.2.32 on page 367), and omp_capture_affinity (see Section 3.2.33 on12
page 368) and environment variables OMP_DISPLAY_AFFINITY (see Section 6.13 on13
page 612) and OMP_AFFINITY_FORMAT (see Section 6.14 on page 613) were added to14
provide OpenMP runtime thread affinity information.15

• The omp_get_device_num runtime routine (see Section 3.2.37 on page 372) was added to16
support determination of the device on which a thread is executing.17

• The omp_pause_resource and omp_pause_resource_all runtime routines were18
added to allow the runtime to relinquish resources used by OpenMP (see Section 3.2.43 on19
page 378 and Section 3.2.44 on page 380).20

• Support for a first-party tool interface (see Section 4 on page 419) was added.21

• Support for a third-party tool interface (see Section 5 on page 533) was added.22

• Support for controlling offloading behavior with the OMP_TARGET_OFFLOAD environment23
variable was added (see Section 6.17 on page 615).24

• Stubs for Runtime Library Routines(previously Appendix A) were moved to a separate document.25

• Interface Declarations (previously Appendix B) were moved to a separate document.26

B.3 Version 4.0 to 4.5 Differences27

• Support for several features of Fortran 2003 was added (see Section 1.7 on page 31 for features28
that are still not supported).29

• A parameter was added to the ordered clause of the worksharing-loop construct (see30
Section 2.9.2 on page 101) and clauses were added to the ordered construct (see31

APPENDIX B. FEATURES HISTORY 631

Section 2.17.9 on page 250) to support doacross loop nests and use of the simd construct on1
loops with loop-carried backward dependences.2

• The linear clause was added to the worksharing-loop construct (see Section 2.9.2 on3
page 101).4

• The simdlen clause was added to the simd construct (see Section 2.9.3.1 on page 110) to5
support specification of the exact number of iterations desired per SIMD chunk.6

• The priority clause was added to the task construct (see Section 2.10.1 on page 135) to7
support hints that specify the relative execution priority of explicit tasks. The8
omp_get_max_task_priority routine was added to return the maximum supported9
priority value (see Section 3.2.42 on page 377) and the OMP_MAX_TASK_PRIORITY10
environment variable was added to control the maximum priority value allowed (see11
Section 6.16 on page 615).12

• Taskloop constructs (see Section 2.10.2 on page 140 and Section 2.10.3 on page 146) were added13
to support nestable parallel loops that create OpenMP tasks.14

• To support interaction with native device implementations, the use_device_ptr clause was15
added to the target data construct (see Section 2.12.2 on page 161) and the16
is_device_ptr clause was added to the target construct (see Section 2.12.5 on page 170).17

• The nowait and depend clauses were added to the target construct (see Section 2.12.5 on18
page 170) to improve support for asynchronous execution of target regions.19

• The private, firstprivate and defaultmap clauses were added to the target20
construct (see Section 2.12.5 on page 170).21

• The declare target directive was extended to allow mapping of global variables to be22
deferred to specific device executions and to allow an extended-list to be specified in C/C++ (see23
Section 2.12.7 on page 180).24

• To support unstructured data mapping for devices, the target enter data (see25
Section 2.12.3 on page 164) and target exit data (see Section 2.12.4 on page 166)26
constructs were added and the map clause (see Section 2.19.7.1 on page 315) was updated.27

• To support a more complete set of device construct shortcuts, the target parallel (see28
Section 2.13.16 on page 203), target parallel worksharing-loop (see Section 2.13.17 on29
page 205), target parallel worksharing-loop SIMD (see Section 2.13.18 on page 206), and30
target simd (see Section 2.13.20 on page 209), combined constructs were added.31

• The if clause was extended to take a directive-name-modifier that allows it to apply to combined32
constructs (see Section 2.15 on page 220).33

• The hint clause was addded to the critical construct (see Section 2.17.1 on page 223).34

• The source and sink dependence types were added to the depend clause (see35
Section 2.17.11 on page 255) to support doacross loop nests.36

632 OpenMP API – Version 5.0 November 2018

• The implicit data-sharing attribute for scalar variables in target regions was changed to1
firstprivate (see Section 2.19.1.1 on page 270).2

• Use of some C++ reference types was allowed in some data sharing attribute clauses (see3
Section 2.19.4 on page 282).4

• Semantics for reductions on C/C++ array sections were added and restrictions on the use of5
arrays and pointers in reductions were removed (see Section 2.19.5.4 on page 300).6

• The ref, val, and uval modifiers were added to the linear clause (see Section 2.19.4.6 on7
page 290).8

• Support was added to the map clauses to handle structure elements (see Section 2.19.7.1 on9
page 315).10

• Query functions for OpenMP thread affinity were added (see Section 3.2.24 on page 358 to11
Section 3.2.29 on page 363).12

• The lock API was extended with lock routines that support storing a hint with a lock to select a13
desired lock implementation for a lock’s intended usage by the application code (see14
Section 3.3.2 on page 385).15

• Device memory routines were added to allow explicit allocation, deallocation, memory transfers16
and memory associations (see Section 3.6 on page 397).17

• C/C++ Grammar (previously Appendix B) was moved to a separate document.18

B.4 Version 3.1 to 4.0 Differences19

• Various changes throughout the specification were made to provide initial support of Fortran20
2003 (see Section 1.7 on page 31).21

• C/C++ array syntax was extended to support array sections (see Section 2.1.5 on page 44).22

• The proc_bind clause (see Section 2.6.2 on page 80), the OMP_PLACES environment23
variable (see Section 6.5 on page 605), and the omp_get_proc_bind runtime routine (see24
Section 3.2.23 on page 357) were added to support thread affinity policies.25

• SIMD directives were added to support SIMD parallelism (see Section 2.9.3 on page 110).26

• Implementation defined task scheduling points for untied tasks were removed (see Section 2.10.627
on page 149).28

• Device directives (see Section 2.12 on page 160), the OMP_DEFAULT_DEVICE environment29
variable (see Section 6.15 on page 615), and the omp_set_default_device,30
omp_get_default_device, omp_get_num_devices, omp_get_num_teams,31

APPENDIX B. FEATURES HISTORY 633

omp_get_team_num, and omp_is_initial_device routines were added to support1
execution on devices.2

• The taskgroup construct (see Section 2.17.6 on page 232) was added to support more flexible3
deep task synchronization.4

• The atomic construct (see Section 2.17.7 on page 234) was extended to support atomic swap5
with the capture clause, to allow new atomic update and capture forms, and to support6
sequentially consistent atomic operations with a new seq_cst clause.7

• The depend clause (see Section 2.17.11 on page 255) was added to support task dependences.8

• The cancel construct (see Section 2.18.1 on page 263), the cancellation point9
construct (see Section 2.18.2 on page 267), the omp_get_cancellation runtime routine10
(see Section 3.2.9 on page 342) and the OMP_CANCELLATION environment variable (see11
Section 6.11 on page 610) were added to support the concept of cancellation.12

• The reduction clause (see Section 2.19.5.4 on page 300) was extended and the13
declare reduction construct (see Section 2.19.5.7 on page 304) was added to support user14
defined reductions.15

• The OMP_DISPLAY_ENV environment variable (see Section 6.12 on page 611) was added to16
display the value of ICVs associated with the OpenMP environment variables.17

• Examples (previously Appendix A) were moved to a separate document.18

B.5 Version 3.0 to 3.1 Differences19

• The bind-var ICV has been added, which controls whether or not threads are bound to processors20
(see Section 2.5.1 on page 64). The value of this ICV can be set with the OMP_PROC_BIND21
environment variable (see Section 6.4 on page 604).22

• The nthreads-var ICV has been modified to be a list of the number of threads to use at each23
nested parallel region level and the algorithm for determining the number of threads used in a24
parallel region has been modified to handle a list (see Section 2.6.1 on page 78).25

• The final and mergeable clauses (see Section 2.10.1 on page 135) were added to the task26
construct to support optimization of task data environments.27

• The taskyield construct (see Section 2.10.4 on page 147) was added to allow user-defined28
task scheduling points.29

• The atomic construct (see Section 2.17.7 on page 234) was extended to include read, write,30
and capture forms, and an update clause was added to apply the already existing form of the31
atomic construct.32

634 OpenMP API – Version 5.0 November 2018

• Data environment restrictions were changed to allow intent(in) and const-qualified types1
for the firstprivate clause (see Section 2.19.4.4 on page 286).2

• Data environment restrictions were changed to allow Fortran pointers in firstprivate (see3
Section 2.19.4.4 on page 286) and lastprivate (see Section 2.19.4.5 on page 288).4

• New reduction operators min and max were added for C and C++ (see Section 2.19.5 on5
page 293).6

• The nesting restrictions in Section 2.20 on page 328 were clarified to disallow closely-nested7
OpenMP regions within an atomic region. This allows an atomic region to be consistently8
defined with other OpenMP regions so that they include all code in the atomic construct.9

• The omp_in_final runtime library routine (see Section 3.2.22 on page 356) was added to10
support specialization of final task regions.11

• Descriptions of examples (previously Appendix A) were expanded and clarified.12

• Replaced incorrect use of omp_integer_kind in Fortran interfaces with13
selected_int_kind(8).14

B.6 Version 2.5 to 3.0 Differences15

• The definition of active parallel region has been changed: in Version 3.0 a parallel16
region is active if it is executed by a team consisting of more than one thread (see Section 1.2.217
on page 2).18

• The concept of tasks has been added to the OpenMP execution model (see Section 1.2.5 on19
page 10 and Section 1.3 on page 20).20

• The OpenMP memory model now covers atomicity of memory accesses (see Section 1.4.1 on21
page 23). The description of the behavior of volatile in terms of flush was removed.22

• In Version 2.5, there was a single copy of the nest-var, dyn-var, nthreads-var and run-sched-var23
internal control variables (ICVs) for the whole program. In Version 3.0, there is one copy of24
these ICVs per task (see Section 2.5 on page 63). As a result, the omp_set_num_threads,25
omp_set_nested and omp_set_dynamic runtime library routines now have specified26
effects when called from inside a parallel region (see Section 3.2.1 on page 334,27
Section 3.2.7 on page 340 and Section 3.2.10 on page 343).28

• The thread-limit-var ICV has been added, which controls the maximum number of threads29
participating in the OpenMP program. The value of this ICV can be set with the30
OMP_THREAD_LIMIT environment variable and retrieved with the31
omp_get_thread_limit runtime library routine (see Section 2.5.1 on page 64,32
Section 3.2.14 on page 348 and Section 6.10 on page 610).33

APPENDIX B. FEATURES HISTORY 635

• The max-active-levels-var ICV has been added, which controls the number of nested active1
parallel regions. The value of this ICV can be set with the OMP_MAX_ACTIVE_LEVELS2
environment variable and the omp_set_max_active_levels runtime library routine, and3
it can be retrieved with the omp_get_max_active_levels runtime library routine (see4
Section 2.5.1 on page 64, Section 3.2.16 on page 350, Section 3.2.17 on page 351 and5
Section 6.8 on page 608).6

• The stacksize-var ICV has been added, which controls the stack size for threads that the OpenMP7
implementation creates. The value of this ICV can be set with the OMP_STACKSIZE8
environment variable (see Section 2.5.1 on page 64 and Section 6.6 on page 607).9

• The wait-policy-var ICV has been added, which controls the desired behavior of waiting threads.10
The value of this ICV can be set with the OMP_WAIT_POLICY environment variable (see11
Section 2.5.1 on page 64 and Section 6.7 on page 608).12

• The rules for determining the number of threads used in a parallel region have been modified13
(see Section 2.6.1 on page 78).14

• In Version 3.0, the assignment of iterations to threads in a loop construct with a static15
schedule kind is deterministic (see Section 2.9.2 on page 101).16

• In Version 3.0, a loop construct may be associated with more than one perfectly nested loop. The17
number of associated loops is controlled by the collapse clause (see Section 2.9.2 on18
page 101).19

• Random access iterators, and variables of unsigned integer type, may now be used as loop20
iterators in loops associated with a loop construct (see Section 2.9.2 on page 101).21

• The schedule kind auto has been added, which gives the implementation the freedom to choose22
any possible mapping of iterations in a loop construct to threads in the team (see Section 2.9.2 on23
page 101).24

• The task construct (see Section 2.10 on page 135) has been added, which provides a25
mechanism for creating tasks explicitly.26

• The taskwait construct (see Section 2.17.5 on page 230) has been added, which causes a task27
to wait for all its child tasks to complete.28

• Fortran assumed-size arrays now have predetermined data-sharing attributes (see29
Section 2.19.1.1 on page 270).30

• In Version 3.0, static class members variables may appear in a threadprivate directive (see31
Section 2.19.2 on page 274).32

• Version 3.0 makes clear where, and with which arguments, constructors and destructors of33
private and threadprivate class type variables are called (see Section 2.19.2 on page 274,34
Section 2.19.4.3 on page 285, Section 2.19.4.4 on page 286, Section 2.19.6.1 on page 310 and35
Section 2.19.6.2 on page 312).36

636 OpenMP API – Version 5.0 November 2018

• In Version 3.0, Fortran allocatable arrays may appear in private, firstprivate,1
lastprivate, reduction, copyin and copyprivate clauses (see Section 2.19.2 on2
page 274, Section 2.19.4.3 on page 285, Section 2.19.4.4 on page 286, Section 2.19.4.5 on3
page 288, Section 2.19.5.4 on page 300, Section 2.19.6.1 on page 310 and Section 2.19.6.2 on4
page 312).5

• In Fortran, firstprivate is now permitted as an argument to the default clause (see6
Section 2.19.4.1 on page 282).7

• For list items in the private clause, implementations are no longer permitted to use the storage8
of the original list item to hold the new list item on the master thread. If no attempt is made to9
reference the original list item inside the parallel region, its value is well defined on exit10
from the parallel region (see Section 2.19.4.3 on page 285).11

• The runtime library routines omp_set_schedule and omp_get_schedule have been12
added; these routines respectively set and retrieve the value of the run-sched-var ICV (see13
Section 3.2.12 on page 345 and Section 3.2.13 on page 347).14

• The omp_get_level runtime library routine has been added, which returns the number of15
nested parallel regions enclosing the task that contains the call (see Section 3.2.18 on16
page 352).17

• The omp_get_ancestor_thread_num runtime library routine has been added, which18
returns, for a given nested level of the current thread, the thread number of the ancestor (see19
Section 3.2.19 on page 353).20

• The omp_get_team_size runtime library routine has been added, which returns, for a given21
nested level of the current thread, the size of the thread team to which the ancestor belongs (see22
Section 3.2.20 on page 354).23

• The omp_get_active_level runtime library routine has been added, which returns the24
number of nested active parallel regions enclosing the task that contains the call (see25
Section 3.2.21 on page 355).26

• In Version 3.0, locks are owned by tasks, not by threads (see Section 3.3 on page 381).27

APPENDIX B. FEATURES HISTORY 637

This page intentionally left blank

Index

Symbols
_OPENMP macro, 49, 611–613

A
acquire flush, 27
affinity, 80
allocate, 156, 158
array sections, 44
array shaping, 43
atomic, 234
atomic construct, 621
attribute clauses, 282
attributes, data-mapping, 314
attributes, data-sharing, 269
auto, 105

B
barrier, 226
barrier, implicit, 228

C
cancel, 263
cancellation constructs, 263

cancel, 263
cancellation point, 267

cancellation point, 267
canonical loop form, 95
capture, atomic, 234
clauses

allocate, 158
attribute data-sharing, 282

collapse, 101, 102
copyin, 310
copyprivate, 312
data copying, 309
data-sharing, 282
default, 282
defaultmap, 324
depend, 255
firstprivate, 286
hint, 260
if Clause, 220
in_reduction, 303
lastprivate, 288
linear, 290
map, 315
private, 285
reduction, 300
schedule, 103
shared, 283
task_reduction, 303

combined constructs, 185
master taskloop, 192
master taskloop simd, 194
parallel loop, 186
parallel master, 191
parallel master taskloop, 195
parallelmastertaskloopsimd,

196
parallel sections, 188
parallel workshare, 189

639

parallel worksharing-loop
construct, 185

parallel worksharing-loop SIMD
construct, 190

target parallel, 203
target parallel loop, 208
target parallel worksharing-loop

construct, 205
target parallel worksharing-loop SIMD

construct, 206
target simd, 209
target teams, 210
target teams distribute, 211
target teams distribute parallel

worksharing-loop construct, 215
target teams distribute parallel

worksharing-loop SIMD
construct, 216

target teams distribute simd,
213

target teams loop construct, 214
teams distribute, 197
teams distribute parallel

worksharing-loop construct, 200
teams distribute parallel

worksharing-loop SIMD
construct, 201

teams distribute simd, 198
teams loop, 202

compilation sentinels, 50
compliance, 31
conditional compilation, 49
constructs

atomic, 234
barrier, 226
cancel, 263
cancellation constructs, 263
cancellation point, 267
combined constructs, 185
critical, 223
declare mapper, 326
declare target, 180
depobj, 254

device constructs, 160
distribute, 120
distribute parallel do, 125
distribute parallel do simd,

126
distribute parallel for, 125
distribute parallel for simd,

126
distribute parallel worksharing-loop

construct, 125
distribute parallel worksharing-loop

SIMD construct, 126
distribute simd, 123
do Fortran, 101
flush, 242
for, C/C++, 101
loop, 128
master, 221
master taskloop, 192
master taskloop simd, 194
ordered, 250
parallel, 74
parallel do Fortran, 185
parallel for C/C++, 185
parallel loop, 186
parallel master, 191
parallel master taskloop, 195
parallelmastertaskloopsimd,

196
parallel sections, 188
parallel workshare, 189
parallel worksharing-loop

construct, 185
parallel worksharing-loop SIMD

construct, 190
sections, 86
simd, 110
single, 89
target, 170
target data, 161
target enter data, 164
target exit data, 166
target parallel, 203

640 OpenMP API – Version 5.0 November 2018

target parallel do, 205
target parallel do simd, 206
target parallel for, 205
target parallel for simd, 206
target parallel loop, 208
target parallel worksharing-loop

construct, 205
target parallel worksharing-loop SIMD

construct, 206
target simd, 209
target teams, 210
target teams distribute, 211
target teams distribute parallel

worksharing-loop construct, 215
target teams distribute parallel

worksharing-loop SIMD
construct, 216

target teams distribute simd,
213

target teams loop, 214
target update, 176
task, 135
taskgroup, 232
tasking constructs, 135
taskloop, 140
taskloop simd, 146
taskwait, 230
taskyield, 147
teams, 82
teams distribute, 197
teams distribute parallel

worksharing-loop construct, 200
teams distribute parallel

worksharing-loop SIMD
construct, 201

teams distribute simd, 198
teams loop, 202
workshare, 92
worksharing, 86
worksharing-loop construct, 101
worksharing-loop SIMD construct, 114

controlling OpenMP thread affinity, 80
copyin, 310

copyprivate, 312
critical, 223

D
data copying clauses, 309
data environment, 269
data terminology, 12
data-mapping rules and clauses, 314
data-sharing attribute clauses, 282
data-sharing attribute rules, 269
declare mapper, 326
declare reduction, 304
declare simd, 116
declare target, 180
declare variant, 58
default, 282
defaultmap, 324
depend, 255
depend object, 254
depobj, 254
deprecated features, 627
device constructs

declare mapper, 326
declare target, 180
device constructs, 160
distribute, 120
distribute parallel worksharing-loop

construct, 125
distribute parallel worksharing-loop

SIMD construct, 126
distribute simd, 123
target, 170
target update, 176
teams, 82

device data environments, 24, 164, 166
device directives, 160
device memory routines, 397
directive format, 38
directives, 37

allocate, 156
declare mapper, 326
declare reduction, 304
declare simd, 116
declare target, 180

Index 641

declare variant, 58
memory management directives, 152
metadirective, 56
requires, 60
scan Directive, 132
threadprivate, 274
variant directives, 51

distribute, 120
distribute parallel worksharing-loop

construct, 125
distribute parallel worksharing-loop SIMD

construct, 126
distribute simd, 123
do, Fortran, 101
do simd, 114
dynamic, 105
dynamic thread adjustment, 620

E
environment variables, 601

OMP_AFFINITY_FORMAT, 613
OMP_ALLOCATOR, 618
OMP_CANCELLATION, 610
OMP_DEBUG, 617
OMP_DEFAULT_DEVICE, 615
OMP_DISPLAY_AFFINITY, 612
OMP_DISPLAY_ENV, 611
OMP_DYNAMIC, 603
OMP_MAX_ACTIVE_LEVELS, 608
OMP_MAX_TASK_PRIORITY, 615
OMP_NESTED, 609
OMP_NUM_THREADS, 602
OMP_PLACES, 605
OMP_PROC_BIND, 604
OMP_SCHEDULE, 601
OMP_STACKSIZE, 607
OMP_TARGET_OFFLOAD, 615
OMP_THREAD_LIMIT, 610
OMP_TOOL, 616
OMP_TOOL_LIBRARIES, 617
OMP_WAIT_POLICY, 608

event, 396
event callback registration, 425
event callback signatures, 459

event routines, 396
execution environment routines, 334
execution model, 20

F
features history, 627
firstprivate, 286
fixed source form conditional compilation

sentinels, 50
fixed source form directives, 41
flush, 242
flush operation, 25
flush synchronization, 27
flush-set, 25
for, C/C++, 101
for simd, 114
frames, 454
free source form conditional compilation

sentinel, 50
free source form directives, 41

G
glossary, 2
guided, 105

H
happens before, 27
header files, 332
history of features, 627

I
ICVs (internal control variables), 63
if Clause, 220
implementation, 619
implementation terminology, 16
implicit barrier, 228
implicit flushes, 246
in_reduction, 303
include files, 332
internal control variables, 619
internal control variables (ICVs), 63
introduction, 1
iterators, 47

642 OpenMP API – Version 5.0 November 2018

L
lastprivate, 288
linear, 290
list item privatization, 279
lock routines, 381
loop, 128
loop terminology, 8

M
map, 315
master, 221
master taskloop, 192
master taskloop simd, 194
memory allocators, 152
memory management, 152
memory management directives

memory management directives, 152
memory management routines, 406
memory model, 23
memory spaces, 152
metadirective, 56
modifying and retrieving ICV values, 68
modifying ICVs, 66

N
nesting of regions, 328
normative references, 31

O
OMP_AFFINITY_FORMAT, 613
omp_alloc, 413
OMP_ALLOCATOR, 618
OMP_CANCELLATION, 610
omp_capture_affinity, 368
OMP_DEBUG, 617
OMP_DEFAULT_DEVICE, 615
omp_destroy_allocator, 410
omp_destroy_lock, 387
omp_destroy_nest_lock, 387
OMP_DISPLAY_AFFINITY, 612
omp_display_affinity, 367
OMP_DISPLAY_ENV, 611
OMP_DYNAMIC, 603
omp_free, 414

omp_fulfill_event, 396
omp_get_active_level, 355
omp_get_affinity_format, 366
omp_get_ancestor_thread_num, 353
omp_get_cancellation, 342
omp_get_default_allocator, 412
omp_get_default_device, 370
omp_get_device_num, 372
omp_get_dynamic, 341
omp_get_initial_device, 376
omp_get_level, 352
omp_get_max_active_levels, 351
omp_get_max_task_priority, 377
omp_get_max_threads, 336
omp_get_nested, 344
omp_get_num_devices, 371
omp_get_num_places, 358
omp_get_num_procs, 338
omp_get_num_teams, 373
omp_get_num_threads, 335
omp_get_partition_num_places,

362
omp_get_partition_place_nums,

363
omp_get_place_num, 362
omp_get_place_num_procs, 359
omp_get_place_proc_ids, 360
omp_get_proc_bind, 357
omp_get_schedule, 347
omp_get_supported_active

_levels, 349
omp_get_team_num, 374
omp_get_team_size, 354
omp_get_thread_limit, 348
omp_get_thread_num, 337
omp_get_wtick, 395
omp_get_wtime, 394
omp_in_final, 356
omp_in_parallel, 339
omp_init_allocator, 409
omp_init_lock, 384, 385
omp_init_nest_lock, 384, 385
omp_is_initial_device, 375

Index 643

OMP_MAX_ACTIVE_LEVELS, 608
OMP_MAX_TASK_PRIORITY, 615
OMP_NESTED, 609
OMP_NUM_THREADS, 602
omp_pause_resource, 378
omp_pause_resource_all, 380
OMP_PLACES, 605
OMP_PROC_BIND, 604
OMP_SCHEDULE, 601
omp_set_affinity_format, 364
omp_set_default_allocator, 411
omp_set_default_device, 369
omp_set_dynamic, 340
omp_set_lock, 388
omp_set_max_active_levels, 350
omp_set_nest_lock, 388
omp_set_nested, 343
omp_set_num_threads, 334
omp_set_schedule, 345
OMP_STACKSIZE, 607
omp_target_alloc, 397
omp_target_associate_ptr, 403
omp_target_disassociate_ptr, 405
omp_target_free, 399
omp_target_is_present, 400
omp_target_memcpy, 400
omp_target_memcpy_rect, 402
OMP_TARGET_OFFLOAD, 615
omp_test_lock, 392
omp_test_nest_lock, 392
OMP_THREAD_LIMIT, 610
OMP_TOOL, 616
OMP_TOOL_LIBRARIES, 617
omp_unset_lock, 390
omp_unset_nest_lock, 390
OMP_WAIT_POLICY, 608
ompd_bp_device_begin, 598
ompd_bp_device_end, 599
ompd_bp_parallel_begin, 594
ompd_bp_parallel_end, 595
ompd_bp_task_begin, 595
ompd_bp_task_end, 596
ompd_bp_thread_begin, 597

ompd_bp_thread_end, 597
ompd_callback_device_host

_fn_t, 554
ompd_callback_get_thread

_context_for_thread_id
_fn_t, 547

ompd_callback_memory_alloc
_fn_t, 546

ompd_callback_memory_free
_fn_t, 546

ompd_callback_memory_read
_fn_t, 551

ompd_callback_memory_write
_fn_t, 553

ompd_callback_print_string
_fn_t, 556

ompd_callback_sizeof_fn_t, 549
ompd_callback_symbol_addr

_fn_t, 550
ompd_callbacks_t, 556
ompd_dll_locations_valid, 536
ompd_dll_locations, 535
ompt_callback_buffer

_complete_t, 487
ompt_callback_buffer

_request_t, 486
ompt_callback_cancel_t, 481
ompt_callback_control

_tool_t, 495
ompt_callback_dependences_t, 468
ompt_callback_dispatch_t, 465
ompt_callback_device

_finalize_t, 484
ompt_callback_device

_initialize_t, 482
ompt_callback_flush_t, 480
ompt_callback_implicit

_task_t, 471
ompt_callback_master_t, 473
ompt_callback_mutex

_acquire_t, 476
ompt_callback_mutex_t, 477
ompt_callback_nest_lock_t, 479

644 OpenMP API – Version 5.0 November 2018

ompt_callback_parallel
_begin_t, 461

ompt_callback_parallel
_end_t, 463

ompt_callback_sync_region_t, 474
ompt_callback_device_load_t, 484
ompt_callback_device

_unload_t, 486
ompt_callback_target_data

_op_t, 488
ompt_callback_target_map_t, 492
ompt_callback_target

_submit_t, 494
ompt_callback_target_t, 490
ompt_callback_task_create_t, 467
ompt_callback_task

_dependence_t, 470
ompt_callback_task

_schedule_t, 470
ompt_callback_thread

_begin_t, 459
ompt_callback_thread_end_t, 460
ompt_callback_work_t, 464
OpenMP compliance, 31
ordered, 250

P
parallel, 74
parallel loop, 186
parallel master construct, 191
parallel master taskloop, 195
parallel master taskloop simd, 196
parallel sections, 188
parallel workshare, 189
parallel worksharing-loop construct, 185
parallel worksharing-loop SIMD

construct, 190
private, 285

R
read, atomic, 234
reduction, 300
reduction clauses, 293
release flush, 27

requires, 60
runtime, 105
runtime library definitions, 332
runtime library routines, 331

S
scan Directive, 132
scheduling, 149
sections, 86
shared, 283
simd, 110
SIMD Directives, 110
Simple Lock Routines, 382
single, 89
stand-alone directives, 42
static, 104
strong flush, 25
synchronization constructs, 223
synchronization constructs and clauses, 223
synchronization hints, 260
synchronization terminology, 9

T
target, 170
target data, 161
target memory routines, 397
target parallel, 203
target parallel loop, 208
target parallel worksharing-loop construct

construct, 205
target parallel worksharing-loop SIMD

construct, 206
target simd, 209
target teams, 210
target teams distribute, 211
target teams distribute parallel

worksharing-loop construct, 215
target teams distribute parallel

worksharing-loop SIMD
construct, 216

target teams distribute simd, 213
target teams loop, 214
target update, 176
task, 135

Index 645

task scheduling, 149
task_reduction, 303
taskgroup, 232
tasking constructs, 135
tasking terminology, 10
taskloop, 140
taskloop simd, 146
taskwait, 230
taskyield, 147
teams, 82
teams distribute, 197
teams distribute parallel worksharing-loop

construct, 200
teams distribute parallel worksharing-loop

SIMD construct, 201
teams distribute simd, 198
teams loop, 202
thread affinity, 80
threadprivate, 274
timer, 394
timing routines, 394
tool control, 415
tool initialization, 423
tool interfaces definitions, 419, 534
tools header files, 419, 534
tracing device activity, 427

U
update, atomic, 234

V
variables, environment, 601
variant directives, 51

W
wait identifier, 456
wall clock timer, 394
workshare, 92
worksharing

constructs, 86
parallel, 185
scheduling, 109

worksharing constructs, 86
worksharing-loop construct, 101

worksharing-loop SIMD construct, 114
write, atomic, 234

646 OpenMP API – Version 5.0 November 2018

	Introduction
	Scope
	Glossary
	Threading Concepts
	OpenMP Language Terminology
	Loop Terminology
	Synchronization Terminology
	Tasking Terminology
	Data Terminology
	Implementation Terminology
	Tool Terminology

	Execution Model
	Memory Model
	Structure of the OpenMP Memory Model
	Device Data Environments
	Memory Management
	The Flush Operation
	Flush Synchronization and Happens Before
	OpenMP Memory Consistency

	Tool Interfaces
	OMPT
	OMPD

	OpenMP Compliance
	Normative References
	Organization of this Document

	Directives
	Directive Format
	Fixed Source Form Directives
	Free Source Form Directives
	Stand-Alone Directives
	Array Shaping
	Array Sections
	Iterators

	Conditional Compilation
	Fixed Source Form Conditional Compilation Sentinels
	Free Source Form Conditional Compilation Sentinel

	Variant Directives
	OpenMP Context
	Context Selectors
	Matching and Scoring Context Selectors
	Metadirectives
	declare variant Directive

	requires Directive
	Internal Control Variables
	ICV Descriptions
	ICV Initialization
	Modifying and Retrieving ICV Values
	How ICVs are Scoped
	How the Per-Data Environment ICVs Work

	ICV Override Relationships

	parallel Construct
	Determining the Number of Threads for a parallel Region
	Controlling OpenMP Thread Affinity

	teams Construct
	Worksharing Constructs
	sections Construct
	single Construct
	workshare Construct

	Loop-Related Directives
	Canonical Loop Form
	Worksharing-Loop Construct
	Determining the Schedule of a Worksharing-Loop

	SIMD Directives
	simd Construct
	Worksharing-Loop SIMD Construct
	declare simd Directive

	distribute Loop Constructs
	distribute Construct
	distribute simd Construct
	Distribute Parallel Worksharing-Loop Construct
	Distribute Parallel Worksharing-Loop SIMD Construct

	loop Construct
	scan Directive

	Tasking Constructs
	task Construct
	taskloop Construct
	taskloop simd Construct
	taskyield Construct
	Initial Task
	Task Scheduling

	Memory Management Directives
	Memory Spaces
	Memory Allocators
	allocate Directive
	allocate Clause

	Device Directives
	Device Initialization
	target data Construct
	target enter data Construct
	target exit data Construct
	target Construct
	target update Construct
	declare target Directive

	Combined Constructs
	Parallel Worksharing-Loop Construct
	parallel loop Construct
	parallel sections Construct
	parallel workshare Construct
	Parallel Worksharing-Loop SIMD Construct
	parallel master Construct
	master taskloop Construct
	master taskloop simd Construct
	parallel master taskloop Construct
	parallel master taskloop simd Construct
	teams distribute Construct
	teams distribute simd Construct
	Teams Distribute Parallel Worksharing-Loop Construct
	Teams Distribute Parallel Worksharing-Loop SIMD Construct
	teams loop Construct
	target parallel Construct
	Target Parallel Worksharing-Loop Construct
	Target Parallel Worksharing-Loop SIMD Construct
	target parallel loop Construct
	target simd Construct
	target teams Construct
	target teams distribute Construct
	target teams distribute simd Construct
	target teams loop Construct
	Target Teams Distribute Parallel Worksharing-Loop Construct
	Target Teams Distribute Parallel Worksharing-Loop SIMD Construct

	Clauses on Combined and Composite Constructs
	if Clause
	master Construct
	Synchronization Constructs and Clauses
	critical Construct
	barrier Construct
	Implicit Barriers
	Implementation-Specific Barriers
	taskwait Construct
	taskgroup Construct
	atomic Construct
	flush Construct
	Implicit Flushes

	ordered Construct
	Depend Objects
	depobj Construct

	depend Clause
	Synchronization Hints

	Cancellation Constructs
	cancel Construct
	cancellation point Construct

	Data Environment
	Data-Sharing Attribute Rules
	Variables Referenced in a Construct
	Variables Referenced in a Region but not in a Construct

	threadprivate Directive
	List Item Privatization
	Data-Sharing Attribute Clauses
	default Clause
	shared Clause
	private Clause
	firstprivate Clause
	lastprivate Clause
	linear Clause

	Reduction Clauses and Directives
	Properties Common To All Reduction Clauses
	Reduction Scoping Clauses
	Reduction Participating Clauses
	reduction Clause
	task_reduction Clause
	in_reduction Clause
	declare reduction Directive

	Data Copying Clauses
	copyin Clause
	copyprivate Clause

	Data-Mapping Attribute Rules, Clauses, and Directives
	map Clause
	defaultmap Clause
	declare mapper Directive

	Nesting of Regions

	Runtime Library Routines
	Runtime Library Definitions
	Execution Environment Routines
	omp_set_num_threads
	omp_get_num_threads
	omp_get_max_threads
	omp_get_thread_num
	omp_get_num_procs
	omp_in_parallel
	omp_set_dynamic
	omp_get_dynamic
	omp_get_cancellation
	omp_set_nested
	omp_get_nested
	omp_set_schedule
	omp_get_schedule
	omp_get_thread_limit
	omp_get_supported_active_levels
	omp_set_max_active_levels
	omp_get_max_active_levels
	omp_get_level
	omp_get_ancestor_thread_num
	omp_get_team_size
	omp_get_active_level
	omp_in_final
	omp_get_proc_bind
	omp_get_num_places
	omp_get_place_num_procs
	omp_get_place_proc_ids
	omp_get_place_num
	omp_get_partition_num_places
	omp_get_partition_place_nums
	omp_set_affinity_format
	omp_get_affinity_format
	omp_display_affinity
	omp_capture_affinity
	omp_set_default_device
	omp_get_default_device
	omp_get_num_devices
	omp_get_device_num
	omp_get_num_teams
	omp_get_team_num
	omp_is_initial_device
	omp_get_initial_device
	omp_get_max_task_priority
	omp_pause_resource
	omp_pause_resource_all

	Lock Routines
	omp_init_lock and omp_init_nest_lock
	omp_init_lock_with_hint and omp_init_nest_lock_with_hint
	omp_destroy_lock and omp_destroy_nest_lock
	omp_set_lock and omp_set_nest_lock
	omp_unset_lock and omp_unset_nest_lock
	omp_test_lock and omp_test_nest_lock

	Timing Routines
	omp_get_wtime
	omp_get_wtick

	Event Routine
	omp_fulfill_event

	Device Memory Routines
	omp_target_alloc
	omp_target_free
	omp_target_is_present
	omp_target_memcpy
	omp_target_memcpy_rect
	omp_target_associate_ptr
	omp_target_disassociate_ptr

	Memory Management Routines
	Memory Management Types
	omp_init_allocator
	omp_destroy_allocator
	omp_set_default_allocator
	omp_get_default_allocator
	omp_alloc
	omp_free

	Tool Control Routine

	OMPT Interface
	OMPT Interfaces Definitions
	Activating a First-Party Tool
	ompt_start_tool
	Determining Whether a First-Party Tool Should be Initialized
	Initializing a First-Party Tool
	Binding Entry Points in the OMPT Callback Interface

	Monitoring Activity on the Host with OMPT
	Tracing Activity on Target Devices with OMPT

	Finalizing a First-Party Tool
	OMPT Data Types
	Tool Initialization and Finalization
	Callbacks
	Tracing
	Record Type
	Native Record Kind
	Native Record Abstract Type
	Record Type

	Miscellaneous Type Definitions
	ompt_callback_t
	ompt_set_result_t
	ompt_id_t
	ompt_data_t
	ompt_device_t
	ompt_device_time_t
	ompt_buffer_t
	ompt_buffer_cursor_t
	ompt_dependence_t
	ompt_thread_t
	ompt_scope_endpoint_t
	ompt_dispatch_t
	ompt_sync_region_t
	ompt_target_data_op_t
	ompt_work_t
	ompt_mutex_t
	ompt_native_mon_flag_t
	ompt_task_flag_t
	ompt_task_status_t
	ompt_target_t
	ompt_parallel_flag_t
	ompt_target_map_flag_t
	ompt_dependence_type_t
	ompt_cancel_flag_t
	ompt_hwid_t
	ompt_state_t
	ompt_frame_t
	ompt_frame_flag_t
	ompt_wait_id_t

	OMPT Tool Callback Signatures and Trace Records
	Initialization and Finalization Callback Signature
	ompt_initialize_t
	ompt_finalize_t

	Event Callback Signatures and Trace Records
	ompt_callback_thread_begin_t
	ompt_callback_thread_end_t
	ompt_callback_parallel_begin_t
	ompt_callback_parallel_end_t
	ompt_callback_work_t
	ompt_callback_dispatch_t
	ompt_callback_task_create_t
	ompt_callback_dependences_t
	ompt_callback_task_dependence_t
	ompt_callback_task_schedule_t
	ompt_callback_implicit_task_t
	ompt_callback_master_t
	ompt_callback_sync_region_t
	ompt_callback_mutex_acquire_t
	ompt_callback_mutex_t
	ompt_callback_nest_lock_t
	ompt_callback_flush_t
	ompt_callback_cancel_t
	ompt_callback_device_initialize_t
	ompt_callback_device_finalize_t
	ompt_callback_device_load_t
	ompt_callback_device_unload_t
	ompt_callback_buffer_request_t
	ompt_callback_buffer_complete_t
	ompt_callback_target_data_op_t
	ompt_callback_target_t
	ompt_callback_target_map_t
	ompt_callback_target_submit_t
	ompt_callback_control_tool_t

	OMPT Runtime Entry Points for Tools
	Entry Points in the OMPT Callback Interface
	ompt_enumerate_states_t
	ompt_enumerate_mutex_impls_t
	ompt_set_callback_t
	ompt_get_callback_t
	ompt_get_thread_data_t
	ompt_get_num_procs_t
	ompt_get_num_places_t
	ompt_get_place_proc_ids_t
	ompt_get_place_num_t
	ompt_get_partition_place_nums_t
	ompt_get_proc_id_t
	ompt_get_state_t
	ompt_get_parallel_info_t
	ompt_get_task_info_t
	ompt_get_task_memory_t
	ompt_get_target_info_t
	ompt_get_num_devices_t
	ompt_get_unique_id_t
	ompt_finalize_tool_t

	Entry Points in the OMPT Device Tracing Interface
	ompt_get_device_num_procs_t
	ompt_get_device_time_t
	ompt_translate_time_t
	ompt_set_trace_ompt_t
	ompt_set_trace_native_t
	ompt_start_trace_t
	ompt_pause_trace_t
	ompt_flush_trace_t
	ompt_stop_trace_t
	ompt_advance_buffer_cursor_t
	ompt_get_record_type_t
	ompt_get_record_ompt_t
	ompt_get_record_native_t
	ompt_get_record_abstract_t

	Lookup Entry Points: ompt_function_lookup_t

	OMPD Interface
	OMPD Interfaces Definitions
	Activating an OMPD Tool
	Enabling the Runtime for OMPD
	ompd_dll_locations
	ompd_dll_locations_valid

	OMPD Data Types
	Size Type
	Wait ID Type
	Basic Value Types
	Address Type
	Frame Information Type
	System Device Identifiers
	Native Thread Identifiers
	OMPD Handle Types
	OMPD Scope Types
	ICV ID Type
	Tool Context Types
	Return Code Types
	Primitive Type Sizes

	OMPD Tool Callback Interface
	Memory Management of OMPD Library
	ompd_callback_memory_alloc_fn_t
	ompd_callback_memory_free_fn_t

	Context Management and Navigation
	ompd_callback_get_thread_context_for_thread_id_fn_t
	ompd_callback_sizeof_fn_t

	Accessing Memory in the OpenMP Program or Runtime
	ompd_callback_symbol_addr_fn_t
	ompd_callback_memory_read_fn_t
	ompd_callback_memory_write_fn_t

	Data Format Conversion: ompd_callback_device_host_fn_t
	Output: ompd_callback_print_string_fn_t
	The Callback Interface

	OMPD Tool Interface Routines
	Per OMPD Library Initialization and Finalization
	ompd_initialize
	ompd_get_api_version
	ompd_get_version_string
	ompd_finalize

	Per OpenMP Process Initialization and Finalization
	ompd_process_initialize
	ompd_device_initialize
	ompd_rel_address_space_handle

	Thread and Signal Safety
	Address Space Information
	ompd_get_omp_version
	ompd_get_omp_version_string

	Thread Handles
	ompd_get_thread_in_parallel
	ompd_get_thread_handle
	ompd_rel_thread_handle
	ompd_thread_handle_compare
	ompd_get_thread_id

	Parallel Region Handles
	ompd_get_curr_parallel_handle
	ompd_get_enclosing_parallel_handle
	ompd_get_task_parallel_handle
	ompd_rel_parallel_handle
	ompd_parallel_handle_compare

	Task Handles
	ompd_get_curr_task_handle
	ompd_get_generating_task_handle
	ompd_get_scheduling_task_handle
	ompd_get_task_in_parallel
	ompd_rel_task_handle
	ompd_task_handle_compare
	ompd_get_task_function
	ompd_get_task_frame
	ompd_enumerate_states
	ompd_get_state

	Display Control Variables
	ompd_get_display_control_vars
	ompd_rel_display_control_vars

	Accessing Scope-Specific Information
	ompd_enumerate_icvs
	ompd_get_icv_from_scope
	ompd_get_icv_string_from_scope
	ompd_get_tool_data

	Runtime Entry Points for OMPD
	Beginning Parallel Regions
	Ending Parallel Regions
	Beginning Task Regions
	Ending Task Regions
	Beginning OpenMP Threads
	Ending OpenMP Threads
	Initializing OpenMP Devices
	Finalizing OpenMP Devices

	Environment Variables
	OMP_SCHEDULE
	OMP_NUM_THREADS
	OMP_DYNAMIC
	OMP_PROC_BIND
	OMP_PLACES
	OMP_STACKSIZE
	OMP_WAIT_POLICY
	OMP_MAX_ACTIVE_LEVELS
	OMP_NESTED
	OMP_THREAD_LIMIT
	OMP_CANCELLATION
	OMP_DISPLAY_ENV
	OMP_DISPLAY_AFFINITY
	OMP_AFFINITY_FORMAT
	OMP_DEFAULT_DEVICE
	OMP_MAX_TASK_PRIORITY
	OMP_TARGET_OFFLOAD
	OMP_TOOL
	OMP_TOOL_LIBRARIES
	OMP_DEBUG
	OMP_ALLOCATOR

	OpenMP Implementation-Defined Behaviors
	Features History
	Deprecated Features
	Version 4.5 to 5.0 Differences
	Version 4.0 to 4.5 Differences
	Version 3.1 to 4.0 Differences
	Version 3.0 to 3.1 Differences
	Version 2.5 to 3.0 Differences

	Index

