Future Generation Computer Systems 140 (2023) 282-298

Contents lists available at ScienceDirect 2
FiBICIS!
Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs Te—
MagBox: Keep the risk functions running safely in a magic box N
YongGang Li**, GuoYuan Lin?, Yeh-Ching Chung®, YaoWen Ma?, Yi Lu?, Yu Bao? s,

2 The School of Computer Science and Technology in the China University of Mining and Technology, Xuzhou, Jiangsu, 221116, PR China
b The School of Data Science, CUHK(SZ), Shenzhen, Guangdong, 518172, PR China

ARTICLE INFO ABSTRACT

Article history:

Received 19 July 2022

Received in revised form 16 October 2022
Accepted 31 October 2022

Available online 4 November 2022

Address space layout randomization (ASLR) has been widely deployed in operating systems (OS) to
hide memory layout, which mitigates code reuse attacks (CRAs). Unfortunately, the memory probing
techniques can still provide attackers with enough information to bypass ASLR. Although the control
flow integrity (CFI) methods are not affected by code probing, they face the precision problem of
control flow graphs (CFG). To make matters worse, most methods rely on the source code of the targets
to be protected, which leads to their restrictions on the protection of the objects without source code.
To solve these problems, MagBox is proposed in this paper. It identifies the risk functions that can
provide gadgets for CRAs by detecting and analyzing attackers’ code probing activities. If the function
is probed, it will be moved to a new address space. After that, the control flow transfers of the function
will be tracked and analyzed in real time to judge their legitimacy. Experiment results and analysis

Keywords:

Integrity

System architecture
Security and protection
Software and system safety

show that MagBox can mitigate CRAs, and only introduces 3.4% performance overhead to the CPU.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

CRAs can be used to hijack the control flow. ROP (Return-
Oriented Programming) and JOP (Jump-Oriented Programming)
are two typical attacks in CRAs [1]. Moreover, attackers have
developed a variety of variants, such as tiny-jop [2], LOP [3], and
CALL-ROP [4], etc. These attacks are adjusted to fight against the
existed defense models, making them lose their detection and
defense effects.

ASLR [5], especially the fine-grained ASLR, changes the mem-
ory layout, which makes the attacker unable to get gadgets.
Unfortunately, attackers have developed a variety of probing
techniques including allocation oracle, arbitrary write, arbitrary
read, and arbitrary jump [6], etc. Based on these techniques,
attackers can still obtain the available gadgets [7]. Attackers can
also get the hidden code address through process cloning [8] and
side-channel attacks [9].

The CRA defense methods based on CFI does not pay attention
on the code addresses [10]. They only care about whether the
control flow path is legal. The static CFI analyzes the source code
of the application to construct a CFG offline [11,12]. The ideal CFG
covers all possible control flow paths of the application. However,
the control flow paths cannot be accurately enumerated all the
time due to the different execution conditions, such as the input.
Worse, the CFG of the complex software will be so large that the
state explosion problem is inevitable.

* Corresponding author.
E-mail address: liyg@cumt.edu.cn (Y. Li).

https://doi.org/10.1016/j.future.2022.10.035
0167-739X/© 2022 Elsevier B.V. All rights reserved.

The dynamic CFI tracks and analyzes the control flow paths
in real time, which can get rid of the dependence on static
CFG [13]. In practice, there are many types of instructions that can
transfer control flow (called control flow transfer instructions in
this paper). To ensure that no jump branch is missed, the existed
methods track all control flow transfer instructions. However,
not all control flow transfer instructions can be used as gadgets,
which leads to a lot of unnecessary tracking.

In addition, the current CFI methods (such as MCFI [14] and
IFCC [15]) rely on the logical information (such as the control flow
transfer condition) provided by the source code of the objects
to be protected. Therefore, their protection effect on the objects
(such as the loaded library code) without source code is very
limited.

In summary, both ASLR and CFI have their limitations. ASLR
can be bypassed by various memory probing technologies, and
loses its protection effect. On the one hand, CFI relies on the
source code, causing the protection failure to the library code. On
the other hand, a lot of meaningless control flow tracking is in-
troduced, which affects CFI's execution efficiency and protection
accuracy.

Since the ASLR is widely used, memory probing has become a
key step for deploying CRAs [16]. It can provide code addresses
or code forms for attackers. Dur to the huge size of the available
address space (as much as 128 TB for the user space), the area
of an application occupies only a small part of the entire space. If
there are no known gadgets, attackers need to search for the code
snippets meeting gadget forms in the huge space. For example,
BROP [7] modify the return address bite by bite to find the

https://doi.org/10.1016/j.future.2022.10.035
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.10.035&domain=pdf
mailto:liyg@cumt.edu.cn
https://doi.org/10.1016/j.future.2022.10.035

Y. Li, G. Lin, Y.-C. Chung et al.

instruction “pop register; ret”. If a gadget is known but its address
is unknown, the attacker needs to crack the address. For example,
the side channel attack [9] uses the cache hits of the page tables
at all levels to obtain the 12nd to 48th bits of the virtual address.

The probed code block that can transfer control flow to a
non-fixed position will be selected by attackers to perform the
malicious activities. Such code block contains an ICT (indirect
control transfer) instruction (such as ret, call *xx, and jmp *xx)
whose control data stores in a writable area. The function to
which the probed ICT instruction belongs is called risk function
in this paper.

If we look the memory probing from another light, it can
help not only attackers but defenders as well. First, the memory
probing activity can expose the attack intensions. Finding attack-
ers’ malicious attempts before the CRA deployment can help us
take defense measures in advance. Second, the probed memory
exposes the risk function that may be selected by an attacker.
Finding the risk functions can allow us to track and detect the
specific code that may be used as a gadget, instead of all the
jump instructions. The MagBox proposed in this paper exploits
the attacker’s probing activities to discover risk functions and
track their control flow transfers to judge whether they are called
legally.

How to perceive the memory probing and identify the risk
function selected by the attacker is the first challenge faced by
MagBox. Under the ASLR protection, the existed attack tech-
nologies cannot get a complete gadget chain or all the accurate
addresses of gadgets through a single memory probing. Multiple
memory probing is unavoidable for attackers, which exposes the
attacker’s probing intention. There exist differences between the
probing activities and the normal activities. These differences can
be used to perceive attackers’ memory probing.

For CRAs, only the code that can transfer control flow to a
non-fixed position may be selected as a gadget. In theory, both
the static method based on source code analysis and the dynamic
method based on binary scanning according to specific code
forms can actively detect the risk code. However, the risk code is
selected by us, not attackers, whose probability of being used by
an attacker is very low. If a probed code snippet can transfer the
control flow to a non-fixed position, it is likely to be selected by
the attacker. Therefore, we can identify the risk function through
the probing activity and probing results of the attackers.

How to track the control flow of the risk function in real
time and determine its legitimacy is another challenge faced by
MagBox. In the native OS, we lack the ability to monitor and
control the execution entity, which makes it difficult to track
control flow in real time. To solve this problem, we must have
the ability to monitor and control the behavior of execution
entities. Then, we can track the activity of control flow transfer
instructions and record the control flow paths of the risk function,
which are the basis for formulating security strategies. Last, the
legitimacy of the risk function can be judged based on the security
strategies.

In summary, the contributions of MagBox are as follows:

(1) Build a model perceiving memory probing. The model cre-
ates a fake space mechanism that can passively perceives
the memory probing activities and identify the rusk func-
tions.

Build a control flow tracking model at binary level. The
risk function will be migrated to a new address space with
a specific permission configuration. In the new address
space, its control flow transfers will be monitored and
analyzed.

Build new security strategies for judging the legitimacy of
risk functions. The historical control flow paths and the
current instruction types will be combined to judge the risk
function’s legitimacy.

283

Future Generation Computer Systems 140 (2023) 282-298
2. Related works

To defend against CRAs, researchers have conducted many
researches. The current methods mainly focus on CFI protection
and ASLR.

2.1. CFI protection

CRAs will cause abnormal instruction sequences in applica-
tions. For example, the ROP needs to use the instruction ret
to connect all gadgets together, resulting in frequent ret in the
control flow paths, while there is no instruction call in pairs with
it. In [17], whether the call and ret appear in pairs is used as
a criterion for identifying ROP. It can detect some ROP, but not
effective on ROP variants (such as COOP [18]). DROP [19] believes
that the maximum number of instructions is less than 5 in a
single gadget, and the number of gadgets should be more than
3. Following the prerequisites set by DROP, SCRAP [20] defends
against JOP by analyzing the attack feature logic and filtering out
false function calls in the attack. However, tracing all the jump
branches will significantly reduce the execution speed of the
target process. kBouncer [21] first reads and analyzes the jump
branches provided by LBR (Last Branch Recording) registers. Then
it checks whether ret and call are stored in the memory pointed to
by two adjacent registers. However, attackers can obfuscate the
two adjacent LBR registers with invalid code, causing detection
failure.

Other methods analyze the legitimacy of control flow paths
to detect CRAs. wCFI [22] is a fine-grained method based on
MCFI [14]. It maps the application code into two types (writable
and non-writable) to gain the code write permission, which de-
rives a high-risk attack surface and poses a threat because of the
writeable code. CFIGuard [23] is a fully transparent CRA detection
engine for user applications. It uses LBR and Performance Monitor
Unit (PMU) to monitor every executed indirect branch during the
lifetime of a process. Similar with kBouncer [21], the historical
information of the LBR may be confused by the attacker, leading
to detection failure. IFCC [15] guarantees CFI by modifying GCC
and LLVM. But it is only valid for forward-edge. When compiling
the application program, uCFI [24] identifies those instructions
that may affect the jump branches and allows the program to
record some necessary execution data. When the program is run-
ning, «CFI monitors it in another process, records environmental
data on some key instructions, and judges whether the jump path
meets expectations. The tracking accuracy of uCFI is very high,
but it significantly reduces the execution speed of the process.

There exist more coarse-grained CFI methods including KCoFI
[25], CCFIR [26], binCFI [27], O-CFI [28], and PAL [29] etc. The
coarse-grained CFGs are easier to build, even without access to
source code. But on the downside, the coarse-grained CFGs are
too permissive so that it is still possible to mount attacks in
general.

2.2. ASLR

ASLR changes the code layout in memory, so that an at-
tacker cannot know the code address. Marlin [30] decomposes the
binary file of the application into multiple code blocks with func-
tion as a granularity. Then it randomly distributes all the parts.
Compared with Marlin, ILR [31] can randomize each instruction
in a program. However, JIT-ROP [32] can bypass the two methods,
leading to defense failure. Isomeron [33] combines the instruction
paths and code addresses together for randomization. The prob-
lem is it only performs randomization once when the process is
loaded. Due to the memory disclosure vulnerability [34], Clone-
Probing [8] can obtain the address by cloning the address space
of the parent process.

Y. Li, G. Lin, Y.-C. Chung et al.

To solve the clone problem, researchers perform periodic or
real-time randomization. STABILIZER [35] periodically random-
izes the code and stack addresses. However, its efficiency is
affected by the length of the randomization cycle. Compared with
STABILIZER, RUNTIMEASLR [8] only randomizes the address of
the child process when the parent process is cloned. However,
STABILIZER and RUNTIMEASLR have no defense against CRAs
caused by memory leaks [36,37].

3. Assumptions and threat models

First, we assume the address spaces of execution entities have
been randomized with the function granularity. Attackers must
probe memory to find enough gadgets, which is similar with
Buddy [16]. Now, ASLR has been widely adopted by the OS. The
randomized objects cover multiple granularities such as pages,
functions, code blocks, and even instructions. Code randomization
at function granularity shuffles the distribution of all functions
in memory. Therefore, the address disclosure of any one function
will not expose the addresses of other functions. For the random-
ized code, attackers must probe code multiple times to obtain
enough gadgets.

Second, we assume the application code will not be
re-randomized when it restarts without re-compilation. In most
scenarios, randomization happens during compilation. The mem-
ory layout is fixed after the code is compiled. In practice, random-
izing all code in real time is nearly impossible. Application code
can be re-randomized when the process crashes or restarts, but
this cannot be applied to the loaded libraries it relies on. Because,
changing the memory layout of the shared library will affect other
running processes, thereby causing execution errors.

Third, we assume that attackers can probe the applications in
user space. Current probing methods include allocation oracle,
arbitrary write, arbitrary read, arbitrary jump, process cloning,
side-channel attacks, and data leak, which have been proven to
be feasible, such as [6,7,38,39].

Fourth, we assume that attackers cannot modify the applica-
tion code. The code segment of all the processes will be mapped
as non-writable, and any code writing will trigger a segment fault.
Although the attacker can turn off the write protection of the code
by manipulating the cr0 register, cr0 can be protected by the cr0
shadow in VMCS [40].

Fifth, we assume the attacked process can capture the signal
(such as SIGSEGV) and respond to it. In practice, in addition to
SIGSTOP and SIGKILL, the process can capture all other signals. Ap-
plications (such as Nginx) use this mechanism to prevent process
crashes or restart the crashed process immediately. Based on this
mechanism, an attacker can repeatedly probe the address space
of a process.

Moreover, we do not consider attacks with privileged code
execution abilities, and the memory layout cannot be obtained
by reading /proc/pid/mem. The threat model in this paper focuses
on the following 7 types of memory probing.

Vector 1: Allocation Oracle (such as [38]). It uses memory allo-
cation functions (such as malloc and new) to allocate an area to
the process. Although allocation oracle cannot get the accurate
address, it can know which area has been mapped to the process
according to the return results.

Vector 2: Arbitrary Write (such as the vulnerability-based over-
flow). It can perform a write operation to arbitrary memory. On
the one hand, arbitrary write can directly modify the control
data in the writable memory (such as tampering with the return
address), and on the other hand, it can also be used to probe
the properties of the target memory. For example, if a segment

284

Future Generation Computer Systems 140 (2023) 282-298

fault generated when writing data to the mapped memory, the
unwritable data or code must be there.

Vector 3: Process Cloning Probing [8]. It uses the cloned child
process to probe the memory layout of the parent process, which
can avoid the parent process’s crash caused by illegal access.

Vector 4: Arbitrary Read (such as heart bleed [41]). It can di-
rectly read the content, including code and data, from arbitrary
memory.

Vector 5: Data-Leak [42]. Attackers can exploit DOP [42] to read
the relative offset in PLT (Procedure Linkage Table), and then
they can get the randomized address of GOT (Global Offset Ta-
ble), where stores all the library function addresses need by the
current process.

Vector 6: Arbitrary Jump (such as BROP [7]). It can redirect the
control flow to any position. Then the available gadgets can be
located by analyzing to the crash information caused by the
control flow transfer.

Vector 7: Side-channel Attack [9]. It uses the cache hits of the
page tables at all levels to crack the 12th to 48th bits of the virtual
address step by step.

4. Overall design of MagBox

The first challenge faced by MagBox is how to perceive at-
tackers’ memory probing. Any memory probing has its unique
behavior characteristics. These characteristics are the keys that
MagBox perceives memory probing.

In user space, only a small part of the address space is mapped
to the process, and most of the remaining address space is un-
mapped. Therefore, the probing operation has a high probability
of falling into the unmapped space if it has no knowledge about
the current address. The access to the unmapped space will
trigger a segment fault, which generates the signal SIGSEGV. In
addition to accessing unmapped memory, an attacker may also
trigger a segment fault due to a permission exception.

The probing to the mapped memory may cause execution
errors because of the unknown memory layout. For example,
an arbitrary jump can transfer control flow to an instruction’s
operand instead of the opcode. A non-existent assembly instruc-
tion or an illegal instruction will inevitably cause an execution
error, which generates the signal SIGILL.

Whether an attacker attempts to find the mapped memory in
a huge address space, or search for the available gadgets in the
memory of unknown layout, he needs to repeatedly manipulate
memory (such as read or execute). An exception will be thrown
for any probing failure. As a result, attack Vectors 2, 3, 4, 5, 6
will trigger the signal SIGSEGV or SIGILL with a high probability
due to the ASLR, especially the fine-grained ASLR. Normally, if a
process triggers the signal SIGSEGV or SIGILL, the OS will simply
kill it. However, the OS allows the process to handle the signals
SIGSEGV and SIGILL by itself to avoid process crash. This provides
favorable conditions for attackers to repeatedly probe the code
space.

Vector 1 and Vector 7 do not generate any signals, while they
also have their own unique characteristics. Vector 1 needs to fre-
quently allocate memory for the execution entity, and constantly
adjust the size of the allocated memory. Vector 7 will execute the
code blocks n*512 GB, n*8 GB, n*2 MB, and n*4 kB away from the
target instruction, respectively.

These characteristics mentioned above can be used by MagBox
to perceive the attacker’s memory probing activities. Therefore,
the problem of how to perceive memory probing turns into how
to collect and identify these behavior characteristics of execution
entities.

Y. Li, G. Lin, Y.-C. Chung et al.

The second challenge faced by MagBox is how to identify and
track risk functions. Risk functions can provide attackers with
available gadgets, which are potential candidates for CRAs. In fact,
a risk function contains at least a piece of arbitrary jump code,
which can be in the form of ret, jmp/call *register, jmp/call *pointer,
etc. The purpose of attackers’ probing is to find the gadgets that
contain arbitrary jump code. More seriously, some risk functions
can be used directly without probing. The attacker can deploy the
attack by designing the input of the risk function according to the
known vulnerabilities. Fortunately, such a single function cannot
be used to build a complete gadget chain containing multiple
gadgets. However, the risk function itself can also probe memory
to search for the available gadgets. For example, BROP [7] can
constantly tamper with return addresses based on stack overflow,
which can find more available gadgets. In theory, the risk function
can not only provide gadgets for CRAs, but also be used as a
probing tool by attackers to find more gadgets, which is very
dangerous. The risk functions can be identified by perceiving and
analyzing memory probing activities.

In fact, not all memory probing activities are triggered by
attackers. Some misoperations can also cause the illusion of mem-
ory probing. For example, unreasonable memory references (such
as wild pointers) may cause an arbitrary read that generates
a signal SIGSEGV. Furthermore, even the risk functions are not
always malicious. Risk functions that are picked and used by at-
tackers will exhibit malicious properties during execution. These
malicious properties are contained in the control flow transfers
of the risk functions. Therefore, the control flow transfers of the
risk functions need to be tracked and collected to judge their
legitimacy.

The third challenge faced by MagBox is how to judge whether
a risk function is called legally. A risk function behaves mali-
ciously if and only if its control flow is hijacked by an attacker.
Afterwards, it can probe memory through an arbitrary jump, or
be connected into a gadget chain.

The differences between legal calls and illegal calls will show
up in the control flow paths of risk functions. For example, the
code jmp *rax (a gadget) in the risk function will jump directly
to the library function without going through the PLT, which is
obviously illegal. However, not all control flow paths’ legitimacy
can be judged through a single jump. So, we need to combine the
history paths and the current instruction to judge whether the
risk function is called legally.

Around the three challenges mentioned above, the overall
architecture of MagBox is designed as a multi-module coupled
structure, as shown in Fig. 1. First, MagBox builds a resource
access control module. This module is based on EPT (Extended
Page Table) and VMX (Virtual Machine Extensions). It can monitor
the running state of the execution entities in real time. Moreover,
it can also capture specific events in the OS, such as the process
creation and specific instructions’ execution.

Next, a fake space mechanism is built. When a process is cre-
ated, we allocate a large-scale fake space for it. We use memory
virtualization to map the fake space to a physical page (fake page
in Fig. 1) that is unreadable, unwritable and inexecutable. So, a
large part of unmapped space become mapped space. Therefore,
the new problem faced by attackers is how to filter out the real
code segment from a huge fake space. In the original probing
case, the access outside the mapped space only triggers SIGSEGYV,
which does not hinder the subsequent probing if attackers can
handle the signal by themselves. When the fake space is enabled,
the access outside the mapped space will fall into the fake space
with a high probability. The probability is determined by the size
of the fake space, and we will describe it in Section 5.2. Any
access to fake space will trigger an access exception ((1)), which
will be perceived by MagBox. Through exception analysis, we can
identify the risk functions.

285

Future Generation Computer Systems 140 (2023) 282-298

user code 6 magic box
man (o | fake space |, capture 8.
P probing jump target tracing
app code 7. ~and
mep B — judging
fake to |) migrate :
page <«——| fake space migratd security
: = tracing strategy
library code |} and engine
jud gin;
map (o \f capture Judging
|| fake space Iprobmg

| Resource Access Control

col lrol confrol
iiid
control ~ - control
m (mr&et evcnts @:
1331

LB B B B

Fig. 1. The overall design of MagBox.

However, memory probing may also access areas outside the
fake space, including mapped and unmapped areas, which cannot
be captured by MagBox. The mapped area includes executable
code segments and non-executable data segments. SIGSEGV will
be triggered if the memory access is in an unmapped area, or the
control flow is transferred to the data segment. If control flow is
arbitrarily transferred to a code segment, it may execute an illegal
instruction, causing the signal SIGILL. To capture these signals,
the fake space mechanism also monitors the system call signal.
Therefore, if an attacker attempts to handle SIGSEGV and SIGILL by
himself, his probing intention will be perceived. The function that
can trigger SIGSEGV or SIGILL will be treated as a risk function,
which may be picked by attackers. If the attacker does not handle
the two signals, the OS will kill the current process, preventing it
from further probing.

After the risk function is identified, its control flow needs to
be tracked. If the risk code inside the risk function can be used
to illegally transfer the control flow, it means that the control
data on which the risk code relies can be tampered with by
attackers. As a result, all control flow transfers of this function are
untrusted. For example, if an attacker can exploit a stack overflow
vulnerability to tamper with a certain return address of a risk
function, it can also tamper with other control data (such as a
function pointer) that has been loaded on the stack by controlling
the number of bytes to be overwritten. Therefore, all the control
flow transfers of the risk function need to be tracked to judge
their legitimacy.

To track the control flow transfers of the risk function, the risk
function will be migrated to a magic box (2)). Magic box is a new
set of process address space. For example, the native code space
of the process is 0x400000-0x480000, and the new code space in
the magic box may be 0x5fd0700000-0x5fd0780000. The binary
code of the risk function will be copied to the magic box. Initially,
there is only the risk function in magic box, and all other spaces
are redirected to a physical page that is unreadable, unwritable
and inexecutable. Any ICT instruction that jumps out of the risk
function will trigger an exception, which will be captured by
MagBox.

The control flow transfers of risk functions are not always
malicious, but they are potential targets for attackers. Therefore, a
security strategy engine is needed to determine their legitimacy.
The security strategy engine routes legitimate control flow to the
appropriate location and prevents illegal control flow transfers

(®).

5. The implementation of MagBox

MagBox has 3 basic tasks: identifying the risk function, track-
ing the control flow of the risk function, and judging the legiti-
macy of the control flow transfers. In this chapter, we introduce
the implementation of MagBox in detail around the 3 tasks.

Y. Li, G. Lin, Y.-C. Chung et al.

memory (_Trapping Policies)
events

access

execution
events

execute
memory instructions

TML)MT

Fig. 2. Resource access control mechanism.

switch fo guest

control resource access

5.1. Build resource access control mechanism

To accomplish the three tasks mentioned above, the processes’
access to resources, such as CPU and memory, needs to be mon-
itored and controlled. The native OS does not provide users with
resource access control interfaces. MagBox uses virtualization
technology to control processes’ access to resources, which is
shown in Fig. 2.

This mechanism uses the VMX Non-Root and VMX Root to
divide the native OS into two modes: guest and host [43]. Under
normal cases, the memory access and instruction execution are
performed in the guest. When a specific event occurs, the OS
will fall from the guest mode to the host mode (called system
trap in this paper). The events that trigger system traps include
memory events and execution events, which are set by trapping
policies. After the system trap occurs, the current process will be
suspended, and the control flow will be taken over by MagBox. In
host, we can detect the running state of the current process, ma-
nipulate the resource to be accessed, set specific trapping events,
and determine the direction of the subsequent control flow. In
short, the resource access control mechanism provides the basic
operating conditions to monitor and control the behaviors of
execution entities.

5.1.1. Set memory events

The resource access control mechanism uses EPT to manage
all physical memory. It can manage the permissions (read, write,
and execution) of the memory by modifying the last three bits of
the entry in the last level page tables of EPT. Any memory access
that violates permission settings will trigger a system trap. This
method can manage the memory permissions with page granu-
larity, but every adjustment requires the OS to fall into the host.
In contrast, the instruction vmfunc can switch the entire set of
EPT without triggering a system trap. By modifying the entire set
of EPT, we can adjust the memory permissions in a wide range.

In addition to managing memory permissions, this mechanism
can also manage the space range of the memory allocated to
processes. It uses the kernel function do_mmap in the host to
expand the process’s virtual address space. By modifying the
addressing page tables of the newly added virtual addresses, we
can redirect the memory access to a specific physical page. In
addition, by rewriting the entries in the last-level page table of
the EPT, we can also achieve physical page redirection.

5.1.2. Set execution events
Event control includes two steps: event injection and event
capture. The corresponding fields (such as vm-execution) in VMCS

286

Future Generation Computer Systems 140 (2023) 282-298

(Virtual Machine Control Structure) will be modified to inject
new events into the OS. These events can change the execution
entities’ running state, target resource, and control flow paths.
When a specific event occurs, the OS will fall into the host. Then,
we know which specific event occurs. The controlled events in-
clude breakpoint setting, general protection exception injection,
specific instruction capturing and context rewriting.

Breakpoints can be divided into data breakpoints and instruc-
tion breakpoints. When setting a breakpoint, the instruction ad-
dress should be written into the debugging registers (DrO~Dr3).
Then the R/W bits corresponding to the debugging register in Dr7
is set to enable it a writing breakpoint, reading breakpoint, or ex-
ecuting breakpoint. When the OS operates the breakpoint in guest
mode, it will trigger a system trap. By setting breakpoints, we
can control the execution entity’s resource access and instruction
execution with byte granularity.

The malicious activity can be stopped by injecting a general
protection exception into the OS. When an activity needs to be
stopped, MagBox sets the bit 31 of the vm-entry interruption in
VMCS to 1. Then it sets bits 10:8 to 011 (hardware exception).
Finally, bits 7:0 are set to 00001011 (interrupt 13 #GP). After that,
the OS will generate a #GP when running in the guest again,
which prevents the current operation.

Some fields in VMCS provide basic conditions to capture the
execution of specific instructions (such as int3, mov to cr3 and hit,
etc.). The execution of these instructions will cause system traps.

When the OS falls into host, we can reset the CPU context
by rewriting the guest fields in VMCS. For example, the control
flow redirection can be realized by rewriting the guest rip in
VMCS. The new CPU context determines the execution entity’s
control flow path and target resource, which provides conditions
for controlling the OS’s behavior.

5.2. Perceive memory probing and identify risk functions

Due to ASLR (especially the fine-grained ASLR), attackers can-
not know the accurate address of the target function before code
probing. The purpose of code probing is to search for the code
with potential attack capabilities (gadget or dispatcher-gadget),
or crack the randomized address. If the code probing can be
detected, on the one hand, we can detect the probing intention
of the attacker; on the other hand, we can locate the potential
gadget (i.e., arbitrary jump code) that may be selected by the
attacker. For example, if an attacker uses the arbitrary jump code
to probe available gadgets, the arbitrary jump code itself is a
gadget or a dispatcher-gadget [44]. The idea of MagBox is to use
the attacker’s code probing ability to identify the risk functions
containing gadgets.

The fake space mechanism is designed to perceive the memory
probing, as shown in Fig. 3. When a target process is created, we
use the kernel function do_mmap to allocate a huge fake space
(about 30 TB in this paper) for it. The fake space will be redirected
to an unreadable, unwritable and inexecutable physical page (fake
code in Fig. 3) by rewriting the corresponding page table entries. It
should be noted that there is no relationship between the permis-
sion set by do_mmap and the permission set by EPT. For example,
a memory area can be mapped as readable and executable, but
it may be set as unreadable and inexecutable by EPT, which is
transparent to attackers.

In addition, fake space mechanism modifies the system call
signal to capture the activity that the current process handles the
signals SIGSEGV and SIGILL. The signal in the system call table will
be redirected to a new code block that can detect if there is a
signal SIGSEGV or SIGILL to be handled. If yes, it executes instruc-
tion int3 to trigger a system trap. After that, MagBox records the
instruction triggering the signal. The risk function can be located
by analyzing the instruction.

Y. Li, G. Lin, Y.-C. Chung et al.

user code N
fake space fal;e
de/data eoce
app code/da /data
fake space
library code/data

fak real
e space code
/data

> > —

Fig. 3. Fake space mechanism. Gray: represent the virtual fake space, the fake
space addressing items, and the fake code that are unreadable, unwritable,
and inexecutable. Blue: represent the user’s native virtual address space, the
addressing table entries of the native space, and the real binary code that is
executable.

Among the currently known probing technologies, allocation
oracle, arbitrary write, and process cloning (i.e., Vectors 1, 2, 3)
cannot accurately locate the gadgets that are known in specific
forms, nor can they filter out the gadgets that are unknown but
available. They are often used as aids in conjunction with other
probing techniques. Therefore, we cannot identify risk functions
by analyzing the activities of Vectors 1, 2, 3. But they still expose
the attacker’s probing intentions, and will be stopped by MagBox.

Vector 1. Under the protection of the fake space, the memory
areas probed by allocation oracle (Vector 1) cover all fake spaces.
The native code area of the process occupies only a small part of
all the mapped areas. Attackers cannot identify which segment is
the real code from the mapped areas. This makes the allocation
oracle lose the probing meaning.

Vector 2. Arbitrary write (Vector 2) can trigger an arbitrary
jump by tampering with control data, which will be discussed
later. It can also probe the attributes of the memory according
to the crash information. If the mapped space has been known
(provided by Vector 1), writing data to different addresses in
the space will cause different results. If the data can be written
into the target address without any exception, the probed target
is a writable data area. If the signal SIGSEGV is triggered, the
probed target is in an unwritable data area or a code segment.
This information can help attackers to further reduce the memory
range to be probed. In fact, Vector 2 is difficult to bypass the fake
space mechanism. When it probes code segment, it either triggers
SIGSEGV or triggers an EPT violation, which will be captured by
MagBox.

Vector 3. The address space of the child process is the same
as the address space of the parent process, and the crash of the
child process does not affect its parent process. Vector 3 can use
this feature to frequently probe memory layout without leading
to parent process crash.

MagBox detects process cloning by checking the system call
fork. The cloned process contains a same address space (including
the fake address space) with parent process. MagBox sets the
address space of child process to the exact same permission
configuration as the address space of parent process. Therefore,
the memory probing to the child process can also be perceived,
which makes the Vector 3 unable to bypass MagBox.

Vector 4. Unlike the above 3 Vectors, arbitrary read (Vector 4)
can read the code and directly probe the available gadgets. In the
process address space, the code segment, data segment, heap and
stack are all readable. Therefore, Vector 4 can read a lot content
from memory. For example, heart bleed can read 64 kB memory
in one probing.

The contents that processes can read are limited to the data
area. In the known attack scenarios, the attacker needs to cross
the data area to read the code segment. For example, if Heart-
Bleed wants to read the process code, it needs to continuously

287

Future Generation Computer Systems 140 (2023) 282-298

reduce the pl in the function memcpy (bp, pl, payload) until the pl
points to the code segment.

The fake space mechanism sets the adjacent areas of each code
segment to be unreadable. The size of the unreadable area is far
larger than the size of the code segment. Unless the attacker can
know the specific code segment range, it will read an unreadable
area at a high probability, which can be captured by MagBox.
For example, if the code space of the process is 30 MB and the
fake space is 30 TB, the attacker’s single probing success rate
is only 1/1000000. Moreover, attackers need to repeatedly probe
memory to get available gadgets, and any failure will be captured.
Therefore, under the protection of MagBox, Vector 4 cannot read
meaningful code, and cannot probe the risk function containing
gadgets.

Although the attacker can read some control data through Vec-
tor 4, the small amount of control data does not provide enough
gadgets to the attacker. In ASLR with function as granularity, a
single piece of control data can only reveal the address of a single
function.

Vector 5. DOP [42] exploits data-leak (Vector 5) to read the
relative address stored in PLT to obtain the GOT address, where
stores all the library function addresses called by the current
process. Compared with other memory leakage, Vector 5 can
bypass fine-grained ASLR and get more addresses through simple
calculation units.

To detect Vector 5, the PLT will be set to be unreadable (set by
EPT). In normal scenarios, the process does not read its own code,
let alone read the library code it relies on. Therefore, the setting
does not affect the normal execution of the process. When the
attacker reads PLT, his activity will be captured by MagBox.

It should be noted that we do not set all the code to be
unreadable, which is expensive. In Linux, the code is loaded to
the memory when it is executed for the first time. Therefore,
we cannot set all the code to be unreadable at one time, which
may miss the attack process. Although we can track the code
page allocation by setting the present tag (p) or hooking the page
fault handler, this will seriously reduce the running speed of the
process. We only set the PLT to be unreadable, and the code
reading probing is handled by fake space mechanism mentioned
above.

Vector 6. For arbitrary jump (Vector 6), when the control flow
jumps to fake space, the OS will fall into host. After that, we
can get the address of the arbitrary jump code through the LBR
registers. It should be noted that we do not need to worry the
attacker will confuse the information stored in the LBR. Because
when an abnormal instruction occurs, we only check the top
pair of the LBR registers, not all of them. If the attacker still
uses the method obfuscating LBR to prevent us from analyzing
his behavior, then he will expose himself faster. The reason is
that frequent jumps will increase the probability of jumping to
the fake space, which increases the risk of illegal control flow
transfers being detected.

When the control flow jumps to a mapped but inexecutable
area, SIGSEGV will be triggered. When the control flow jumps to
illegal instructions, SIGILL will be triggered. Under fine-grained
ASLR, it is impossible to jump to the available gadgets every time,
even he knows which area is the real code segment. The attacker
will inevitably trigger SIGSEGV or SIGILL in the multiple probing
activities. For example, we implement BROP by modifying the
return address to a 64-bit random value, which triggers SIGSEGV
at a probability of more than 99%. If only the last 12 bits of the
return address are modified to a random value, the probability of
triggering SIGILL is than 90%; If such operations are continuously
performed 3 times, the probability of triggering SIGILL is more
than 99%. Therefore, almost all the arbitrary jump cannot avoid
MagBox’s detection.

Y. Li, G. Lin, Y.-C. Chung et al.

The code block containing ICT instructions can transfer the
control flow to a non-fixed position. If it transfers the control flow
into the fake space or triggers the signals SIGSEGV or SIGILL, it
means that the control data can be maliciously tampered with.
The function in which such a code block resides is a risk function.

Vector 7. Vector 7 exploits the TLB hit information to crack
the 12th to 47th bits of the randomized address. In the process of
converting a 64-bit virtual address to a physical address, the 12th
to 20th, 21st to 29th, 30th to 38th, and 39th to 47th bits of the
virtual address respectively indicate the index values of the page
tables at 4 levels. Each entry in the 1st to 4th level page tables
can index 4 kB, 2 MB, 1 GB, and 512 GB memory, respectively. To
obtain the last 3 bits of the index value of the page table at each
level, Vector 7 needs to access the memory which is separated
from the virtual address by n*4 kB, n*2 MB, n*1 GB, and n*512 GB
respectively (n < 8). For example, to get the index value of the
virtual address V in the third-level page table, Vector 7 needs to
execute V 4+ n*1 GB (n < 8) in sequence until the current cache
line is filled.

The areas away from the code segment n*1 GB and n*512 GB (n
< 8) are mapped as unreadable, unwritable, and inexecutable, if
these areas have not been mapped. When Vector 7 visits these
areas, it will be captured by MagBox. As a result, an attacker
cannot crack the bits 30th~32nd and 39th~41st of the virtual ad-
dress. However, before the current probing, Vector 7 has already
cracked the address bits15th~20th, 24th~29th, 33rd~38th, and
42nd~47th. Although we can prevent the current address from
being completely cracked, the information entropy of the code
address being probed has become very limited, which can greatly
reduce the difficulty of the attack. When perceiving Vector 7,
MagBox will determine the function where the probed code is
located as a risk function.

In summary, when the Vectors 1~5 is detected, attackers
cannot obtain available gadgets or crack the randomized address.
Therefore, the probed function does not provide them with mean-
ingful code or addresses. In contrast, Vector 6 itself is an available
gadget. Such a vector even can be directly used as a gadget or
a probing tool without probing. For example, BROP only needs
to know the relative offset between the array boundary and the
return address, and it can use the stack overflow vulnerability
to tamper with the return address to perform code probing. For
Vector 7, when it is detected, the attacker has cracked most bits
of the target address. Therefore, the functions containing Vector
6 or Vector 7 has the risk of being used maliciously, and they will
be treated as risk functions.

5.3. Track control flow

A risk function contains at least one code block with potential
attack capabilities, which can transfer control flow to the next
gadget. Therefore, the control flow transfers of the risk function
need to be tracked to determine their legitimacy.

In the native address space, risk functions are mixed with
other code. To track all the control flow that jumps out of the
risk function, the traditional method directly modifies the jump
branches of the risk function. However, this method is usually
compiler-based. It needs to identify risk functions before the code
is compiled. This contradicts the original intention of dynami-
cally identifying risk functions. Control flow tracking can also be
achieved by changing the code permissions in the native space.
For example, when the risk function is executed, we set all other
code as inexecutable. So, when the control flow jumps out of
the risk function, it will be captured. However, the granularity
of permission adjustment is pages, and the risk function does not
occupy an integer number of pages. Therefore, directly adjusting
the permissions of the risk function will affect the execution of
other code.

288

Future Generation Computer Systems 140 (2023) 282-298

native space magic box
GOT redirect | _take space
fake space GOT
PLT Lgredirect | fake space
i - PLT
other code
other code ||
\ virtual space |/ "~ -
I~_COpY SilCode Nia unexecutable
f\[, rewrite ~ ‘—?1—(——‘
’ = y ake
INT3| 3 I
other code (,, |_code |
adj_code _[<W™Me”
fake space other code .-
target data virtual space
a | fake space_
ata redirect™_ target data_
fake space fake space |

Fig. 4. The risk function migration.

To track the control flow transfers of the risk function, we
migrate the risk function to a magic box with specific space
structure and permission configuration, as shown in Fig. 4. The
virtual space size of the magic box is the same as the native space
of the process, and they do not overlap. The page(s) where the
risk function is located will be completely copied to the magic
box. In the magic box, except for the binary code of the risk
function, all other copied binary code (adj_code) will be rewritten
to Oxcc (int3). At the same time, we set the instruction int3 as a
system trap event. Another word, the magic box only contains
the risk function’s code and the modified code Oxcc, and the rest
of the space is fake space that is unreadable, unwritable, and
inexecutable.

It should be noted that we do not migrate the PLT, GOT and
data segments on which the risk function relies to the magic box.
When the risk function accesses the PLT, GOT or data segments,
a system trap will be triggers. After that, we redirect the memory
access in the magic box to the real physical page(s) corresponding
to the PLT, GOT or data segment. This design can limit the re-
sources that can be accessed by risk functions and ensure normal
data access.

The control flow paths of the risk function are shown in Fig. 5,
and the control flow transfer method is shown as Algorithm 1.
When a risk function is migrated to the magic box, the head
of the risk function in the native space will be rewritten as
jmp $ept_switch (D). The code in ept_switch uses the instruction
vmfunc to switch the current EPT to a new set of EPT. In the
new EPT, the code in native space is inexecutable, while the risk
function in the magic box is executable. To prevent the attacker
from directly jumping to the ICT instructions of the risk function
in the native space, the ICT instructions will be marked with int3.
In addition, the EPT switching code in ept_switch and ept_back
will be set to be unreadable and unwritable to prevent the EPT
index v_0 and v_1 from leaking. At the same time, v_0 and v_1
have been randomized to prevent fake vmfunc attacks. Moreover,
it can also prevent the magic box address from being leaked.

Algorithm 1: The control flow (CF) transfer method
Input: The CF that jumps to the risk function (RF) header in native space
Output: The CF that returns the RF in native space
1. Rewrite(RF, jmp $ept_switch) // rewrite the RF’s header
2. Foreach RF header— CF do
Transfer(CF, ept_switch) // transfer CF to ept_switch
Foreach ept_switch < CF do
Switch(EPT 1, EPT 2) // switch EPT
RetAddr = DumpRetAddr(rbp) // record return address
PushAddr(ept_back) // store the return address on stack
Transfer(CF, MagicBox) // transfer CF to Magic Box
Foreach MagicBox < CF do
If ept_back < CF then
Switch(EPT 2, EPT 1) // switch EPT
CheckRetAddr(RetAddr, rbp) //check the return address
Transfer(CF, NativeSpace) // transfer CF to native space
NativeSpace «— CF

Y. Li, G. Lin, Y.-C. Chung et al.

native space

------------- 2

function head
Il
e

S ——

{_jmp $ept_switch j

ept_switch

mov 0 %rax
mov $v_1 %rcx
vmfunc
jmp $ret_dump
push $ept_back
jmp $func_box

4
b

1. ept_back Jupp - magic box
(i mov 0 %rax C] 77;11}1::&(;1;;1;;(17”
TP mov $v_0 %rex jump I

vmfunc 9.
jmp $ret_check
ret

ret
I

Fig. 5. Control flow transfers between the native space and the magic box. Blue
spaces: risk functions in two spaces. Red instruction: The instructions affecting
control flow transfers.

When the risk function in the native space is called again,
the control flow will jump to ept_switch for EPT switching ().
After that, the stack will be adjusted to protect the return ad-
dress, which will be described in the next section. The address
of ept_back whose code can restore back the original EPT will
be pushed onto the stack. Next, the instruction jmp $func_box
redirects the control flow to the risk function header in the magic
box ((®). At this point, the risk function starts to be executed.
When the risk function returns to its caller, the instruction ret
will use the address of ept_back previously pushed onto the stack
to redirect control flow to ept_back (@). After the original EPT
is restored, the instruction ret is called again. Then, the stack is
recovered, and ret uses the real return address of the risk function
in the native space ((®). Finally, control flow returns to the native
space again. In MagBox, unless the control flow jumps out of the
risk function, it will not trigger any system trap.

In the magic box, any control flow that jumps out of the risk
function will trigger a system trap because of int3 or permission
exception. The legal control flow will be redirected to the native
space, and the illegal control flow will be stopped by injecting a
general protection exception into the OS. How to determine the
control flow’s legitimacy will be introduced in the next section.

5.4. Judge the legitimacy of control flow

CRAs redirect control flow to the selected gadgets by tamper-
ing with the control data associated with arbitrary jump code
(ICT instructions). Not all control flow transfer instructions can
be used as gadgets. Only those instructions whose jump targets
pointed by the writable control data can be used as gadgets or
dispatcher-gadgets. Other instructions will be judged to be legal.

The illegal control flow transfers between gadgets have their
unique characteristics. These characteristics are key to developing
security strategies. The security strategies adopted by MagBox are
as follows:

(1) The instruction call address is legal when it transfers control
flow outside the risk function.

(2) The return address cannot be changed before the ret is
executed.

(3) jmp * only transfers control flow to the inside of the current
function, and call * can only jump to the head of other
functions. It should be noted that longjmp can be gained
by parsing the longjmp() function in the ELF file, and we
allow it to jump to the target address.

(4) If without going through PLT, call and jmp cannot transfer
the control flow to a library from application code, nor can
transfer it to any other libraries from the current library.

289

Future Generation Computer Systems 140 (2023) 282-298

magic box ept_back

"~ call address jump” | mov O %rax
T ooahs | mov $v_0 %rcx
******h* ****** vmfunc
77777777777777 push $ept_switch

Il 6.| :mov 0x146 %rax |
I———————————————Ele € mov 0 %rdi i
i __call $ept_back |syscall |

ept_switch

jmp $native_code
. s 9F
native Space jump

mov 0 %rax
mov $v_1 %rcx
vmfunc

imov 0x146 %rax
imov 1 %rdi
isyscall

Fig. 6. Legal control flow redirection. Blue: risk functions in two spaces. Green:
protect the return address.

(5) The jump targets of ICT instructions must conform to the
code alignment forms in the ELF file.

(6) For the control data, if it originally points to the head of
the function, it will not point to the inside of the function
after being overwritten; if it originally points to the inside
of the function, it will not point to the head of the function
after being overwritten.

(7) Control data does not become non-control data after being
updated, and non-control data does not become control
data after being updated.

(8) For the control data in the form of local variable, it cannot
be modified by the code that can write non-fixed number
of bytes into memory after it has been assigned but not
read.

5.4.1. Transfer the legal control flow

For the legal control flow transfer instruction call address, we
do not need to track its control flow. It will be directly redirected
to the native space. The redirection path is shown in Fig. 6, and
the control flow transfer method is shown as algorithm 2.

Algorithm 2: The legal control flow (CF) redirection

Input: The CF transfer caused by call address in magic box

Output: The CF that returns magic box

1. Rewrite(RF, call $ept_back) // rewrite the call address in RF

2. Foreach call address € MagicBox do

3. Transfer(CF, ept_back) // transfer CF to ept_back

. Foreach ept_back — CF do
Switch(EPT 2, EPT 1) // switch EPT
PushAddr(ept_switch) // store the return address on stack
Syscall(0x146, 0) // set a breakpoint to protect return address

Transfer(CF, NativeSpace) // transfer CF to native space

9. Foreach NativeSpace< CF do

If ept_switch < CF then

Switch(EPT 1, EPT 2) // switch EPT

4
5.
6.
7
8

12. Syscall(0x146, 1) // cancel the breakpoint
13. Transfer(CF, MagicBox) // transfer CF to Magic Box
14. MagicBox«— CF

The instruction call address in magic box is rewritten as jmp
ept_back (D). When the instruction is executed, the control flow
will be redirected to ept_back (2)). After the EPT switch is com-
pleted and the address of ept_switch is pushed onto the stack, the
control flow will directly jump back to the native space (). After
the execution ends in the native space, control flow will jump
to ept_switch through the instruction ret, because the address of
the ept_switch has been pushed onto the stack (@). After the EPT

Y. Li, G. Lin, Y.-C. Chung et al.

switch is completed, the control flow returns to the magic box
again ((®). For the risk function migrated to the magic box, we
locate all instructions call address and redirect their control flow
to ept_back. As a result, these instructions do not trigger system
traps when executed, which reduces performance overhead.

5.4.2. Protect the backward control flow

There are two types of return addresses to be protected. One
is the return address generated when other functions call the
risk function. The other is the return address generated when the
risk function calls other functions. For the former, we record the
return address when other functions call the risk function, which
is shown as the jmp $ret_dump in Fig. 5. Before the ret in the risk
function is executed, we check whether the return address stored
on the stack is the same with the recoded one, which is shown
as the jmp $ret_check in Fig. 5.

In fact, after the risk function is migrated to the magic box, the
control data on the stack includes the ept_back address and the
original return address. Both can be tampered with by the stack
overflow. However, this does not affect the security of MagBox.
First, the code in the native space is inexecutable. Even if an
attacker can tamper with ept_back address, he cannot execute the
code in the native space. The reason is if without EPT switch, the
code is inexecutable. Second, if the attacker executes ept_back,
then he will be detected due to the changed return address.

In the risk function, the return address is generated by the
instructions call address and the call *xx. call *xx will trigger a
system trap due to transferring the control flow to the native
code space. After that, MagBox sets a writing break point to the
position which stores the return address on the stack. When the
legal control flow returns, the breakpoint will be canceled. When
attackers tamper with the return address, the breakpoint will be
triggered, which will be captured by MagBox.

Compared with call *xx, call address does not trigger a system
trap. It runs in ring3. Therefore, we cannot directly protect the
return address by setting breakpoints, otherwise it will cause
execution errors. To solve this problem, we added a new system
call ret_pro to OS. Its system call number is 326 (0 x 146), and
it has a parameter flag. When call address is called in magic box,
the control flow will be redirected to ept_back. Then, the 346th
system call will be executed and the OS enters the ring0. If the
flag is 0, the 16 bytes (the return address and the ept_switch
address) pointed by the register rsp are set to be unwritable by
the register dr2 and dr3, which is shown as the green dotted
frame in Fig. 6. If flag is 1, ret_pro will cancel the breakpoints
set by dr2 and dr3. As a result, attackers cannot tamper with the
return address and ept_back address stored on the stack.

5.4.3. Protect the forward control flow

The security strategies 3~8 are used to protect the forward
control flow transfers. When ICT instructions (call *xx and jmp *xx)
in magic box transfers control flow to the native space, a system
trap will be triggered. After that, we exploit these security strate-
gies to judge the legitimacy of the forward control flow transfers.
Security strategies 3~5 can be used directly when a system trap
is triggered by ICT instructions. In contrast, the strategies 6~8
need to locate the control data of ICT instructions.

When call *xx or jmp *xx is captured due to the system trap, we
first analyze the executed code blocks recoded by LBR to find the
operations related with the control data, including data reading
and data writing. However, LBR can only record 16 code blocks,
and it may not be able to record all the operations related with
control data. If LBR is not enough, we will enable Intel PT when
the risk function is called again to capture more code blocks. The
method locating the control data of ICT instructions is shown
as Fig. 7. In fact, even multiple memory dereferences can be

290

Future Generation Computer Systems 140 (2023) 282-298

y S = code block 1
-——— [Y ———
el T lealOx 12e 3(%rip)1\ %rdx // reading control data
heap/stack/data pop %rdi \
segment mov %rax, %rbx
LBR/Intel PT jmp block_2 // transfer control flow
Entry | /, code block 2 3
Exist 1 > mov 0x48(%sp).%er8
Entry 2 add $0xc8 %rdx // update control data
Exist 2 lea 0x3e98 5(%orip),%rsi '&
Entry 3 ~—y jmp block_3 // transfer control flow
S \. code block 3 2
sub $0x38,%rsp
moV %orsp,%r12
mov %rdx, %rax// transfer control data
jmp *%rax // ICT instruction jl)

1. Analyze the instruction jmp *%rax to get the rax that stores control data;
2. Trace back to get the instruction mov %rdx, %rax that transfers control
data to rax through rdx;

3. Trace back to get the instruction add $0xc8 %rdx that updates rdx;

4. Repeat step 2 until the control data can be located.

Fig. 7. Locate the control data.

905: 48 8b 45 a8 mov -0x58(%tbp),%rax // pass a pointer on stack to rax
909: 48 8b40 10 mov 0x10(%rax),%rax// pass the value in the memory
pointed to by pointer+0x10 on the stack to rax

90d: bf 1000000 mov $0x1le%edi // setting a parameter

912: ffdo callqg *%rax // call the function pointed by *(pointer+0xI 0)

Fig. 8. Locate multiple memory dereferences.

detected. Because during the memory dereferencing process, the
code iteratively reads the data in the memory into the registers
until the end of the dereferencing, as shown in Fig. 8.

The objects storing control data include heap, stack and data
segment. The types of control data include local variables and
global variables. The former is stored in the stack or heap, and
the latter is stored in the heap or data segment. If the control data
is a global variable, it may have been tampered with before the
risk function is called. As a result, we cannot detect the changes
of the control data during the running of the risk function, which
makes strategies 6~7 unable to be applied.

Fortunately, under fine-grained ASLR, the attacker does not
know the code address until the code is probed. That is, the
multiple code probing is inevitable. When an attacker repeatedly
tampers with the same global variable (control data) to find
available gadgets, we can collect all the changed values of the
control data. After that, the strategies 6~7 can be used to judge
the legitimacy of the control flow transfers.

For the control data in the form of local variable, it is not
defined and assigned until the risk function is executed. It be-
comes invalid after the risk function exits. Therefore, we only
need to observe the changes in the target control data during
the risk function running. In addition to complying with security
strategies 3~7, the control data must also comply with security
strategy 8.

If the control data in the form of local variable is stored in the
heap, we need to locate the heap allocation (malloc or new), and
calculate the offset between the location of the control data and
the first address of the heap. If the control data is stored on the
stack, we need to calculate the offset between the location of the
control data and the start address of the current function stack
frame. Then, we can get the location of the control data.

To tamper with local variables, attackers need to call the
functions or code blocks that can overwrite memory. Although
printf (¥n) can accurately modify the target data, it has obvious
attack characteristics and is easily detected. It outputs a lot of

Y. Li, G. Lin, Y.-C. Chung et al.

Future Generation Computer Systems 140 (2023) 282-298

Table 1
Library functions adopted by CRAs.
Header Functions
(string.h) strepy(), strnepy(), streepy(), strcat(), strdup(), memcpy(), bepy(), getchar()
(stdio.h) scanf(), sprintf(), snprintf(), fprintf(), vsprintf(), sscanf(), fscanf(), gets(), fgets(), vfscanf(), vscanf(), vsscanf, getc(), fgetc()
(libgen.h) streadd(), strcadd(), strecpy(), strtrns()
(stdlib.h) realpath()
(conio.h) getch()
App code rep Xx xx xx xx, LOOP code block
code_L1 ~ code 2 code_3 code_4 record the control data that has been written into memory and
initialization > @ by Creading >-»-ICT instruction the control data that has been read, respectively. If the two
location_0 location 0 d, _code S 7 location_0 location_0 pieces of data are the same, it means that there is no additional
no data control data 1 control data2 | | control data3 control data modification between the assignment statement and
To IT. T, T > the memory reading statement. Otherwise, there must be an

compare

Fig. 9. Track the control data processing.

0 or spaces, or modifies a complete control data byte by byte,
which reveal its attack intention. By checking the parameters
of printf, we can filter out the printf with potential attack in-
tention. In addition, the deployment conditions of printf attack
are very strict. The attacker needs to precisely control several
parameters, which can only be done through external input, such
as (scanf(“%s”, buffer); printf(buffer)). The attacker also needs to
accurately calculate the offset between the target data and the
input, which is almost impossible under the ASLR protection.
Therefore, printf (¥n) is hardly adopted by CRAs.

Compared with printf (%n), the functions that can continuously
write non-fixed number of bytes into memory are more likely to
be adopted by CRAs, which are shown in Table 1. These functions
have a common feature that they can cause memory overflow un-
der specific conditions. Although some functions (such as getc())
cannot directly cause overflow, they are possible in a loop struc-
ture. For example, in a looping code block, the number of calling
getchar() is controlled by the input, and the code block can write
a non-fixed-size string to the stack, which may also cause a stack
overflow. Moreover, all the instructions rep xx xx xx and LOOP
code blocks that can write multiple bytes to memory can also be
adopted by attackers. For example, if Zes:(%rdi) in the instruction
rep stos %rax, ¥es:(%rdi) points to the stack, and the number of
bytes to be written is determined by rcx, this code block can cause
stack overflow when rcx can be controlled.

For the control data in the form of local variable, attackers
must tamper with it after it has been assigned. Otherwise, the
tampered data will be restored to a legal value by the legal assign-
ment statement. Different from the legal control data processing,
the illegal one will add an additional writing operation between
the data writing and data reading, which is done by the functions
or code blocks mentioned above. If we can find this additional
writing operation, we can detect the illegal control flow transfer.

We set a breakpoint to capture data reading and data writ-
ing at the location of the control data. When the risk function
is called, the operations (reading and writing) on the location
of the control data will trigger system traps. Those assignment
statements (or functions) and memory reading statements (or
functions) are recorded. Combined with the code blocks collected
by the LBR/Intel PT, we can screen out the assignment state-
ment and memory reading statement related to the control flow
transfer, as shown in Fig. 9.

In the magic box, the code blocks containing assignment state-
ments (such as mov Zrax, 0x279ee7(%rip) and call memcpy@plt)
and the code blocks containing memory reading statements (such
as mov 0x277092(%rip), %rdi and strcpy@plt) will be redirected
to two different functions, respectively. The two functions can

291

additional write operation between the write operation and the
read operation, which will be reflected by setting a com_flag. It
should be noted that tracking control data does not trigger any
system traps.

In Fig. 9, code_2 and code_3 determine where code_4 will
transfer the control flow. The propagation path of the control data
is a—b—c, which is provided by LBR/Intel PT. If a code_5 that
can rewrite the control data is added between code_2 and code_3,
then code_2 will no longer be able to determine the control flow
transfer of code_4. At the same time, the propagation path of the
control data becomes a—d— e—>c. At this point, com_flag is 1.

In practice, even if com_flag is 1, it does not mean that the
current control flow transfer is illegal. To judge the legitimacy of
the control flow transfer, we need to check 3 things when there
is a system trap caused by an ICT instruction. The first thing is
to check whether the code that transfers control flow is code_4. If
the control flow transfer code is not code_4, it means that the risk
function contains another ICT instruction. The newly discovered
ICT instruction is a new detection target that has its own control
data propagation paths. The second thing is to check whether the
control data propagation path that can determine code_4’s control
flow transfer has been changed. That is, whether the control data
propagation path used by code_4 has been changed from the
original a— b— c to the current a—d—e—>c or some other paths.
The third thing is to check whether the new write operation is
performed by the function or code block in Table 1. If the above
three checking results are all yes, the current control flow transfer
will be judged to be illegal.

When the control data is stored in data structures, arrays,
or classes, it may be initialized by the functions mentioned in
Table 1, which may lead to a misjudgment of strategy 8. However,
after the control data is written into memory and before it is read,
data update is rarely performed by these functions. To verify this
strategy, we analyzed various applications such as Redis, Spec-
CPU2006, Lmbench, Apache, libc, gzip, tar, and codeblocks, etc (more
than 200,000 code lines), and found no data update violating
strategy 8.

6. Evaluation

We conduct all experiments on a Lenovo desktop equipped
with an i7 CPU and 32 GB memory. The OS is Ubuntu-16.04 with
kernel 4.4.0.

6.1. Security evaluation

To verify the defense effect of MagBox against CRAs, we use
ROPgadget [45] to search for available gadgets and gadget chains.
After that, we manually trace the transfer paths of the control
flow according to the nodes in the gadget chain. Finally, we use
the security strategies proposed in this paper to analyze whether

Y. Li, G. Lin, Y.-C. Chung et al.

Table 2

Attack defense of MagBox.
App LoC Total gadgets Gadget chain Effective
400.perlbench 169909 100750 5 Yes
401.bzip2 8293 3942 1 Yes
403.gcc 521038 254156 29 Yes
416.gamess 466415 207929 2 Yes
435.gromacs 108 559 28496 3 Yes
450.soplex 41428 23553 5 Yes
453.povray 155163 45722 12 Yes
454.calculix 166765 53729 7 Yes
456.hmmer 35992 13063 3 Yes
465.tonto 165470 82489 3 Yes
470.1bm 1155 487 6 Yes
471.omnetpp 47903 56954 2 Yes
481.wrf 214948 75310 27 Yes
482.sphinx3 25090 7065 3 Yes

MagBox can detect illegal control flow transfers. The experiment
results are shown in Table 2. The results show that MagBox can
detect all illegal control flow transfers. Because, these control
flow transfer activities violate one of the security strategies 1~8.

Theoretically, MagBox has the possibility of missing judgment.
Suppose an application contains enough memory vulnerabilities,
and each vulnerability can trigger an arbitrary jump call *xx. At
the same time, a memory area (such as Vtable) containing multi-
ple function pointers can be read or rewritten, and these pointers
can just build a complete gadget chain. Then, the gadget chain can
bypass strategies 1~8. Fortunately, such harsh conditions hardly
exist in real applications.

To verify MagBox’s defense against real code probing attacks
and CRAs, we simulate and deploy the following attacks:

Allocation Oracle. We deploy Allocation Oracle attacks in Nginx
1.6.2. During the attack, ngx_create_pool () is used to probe the
mapped areas. Under MagBox protection, Allocation Oracle can
still get the mapped areas. However, all the areas it probes are
very large. The real process code segment and libraries are hidden
in these huge mapped areas. As a result, Allocation Oracle cannot
get any available code address from these areas. Even the memory
area where the sensitive data (such as Vtable) stores, if they
are hidden in a huge fake space, they are difficult to locate by
Allocation Oracle.

Arbitrary Write. Most of Arbitrary Write attacks are initiated
through memory vulnerabilities. We deploy Arbitrary Write in
wget-1.19.1 to probe the hidden code segment. The function
skip_short_body () passes a controllable parameter to fd_read()
to overwrite the current function stack frame. Due to the fine-
grained ASLR, the specific code address cannot be known. When
arbitrarily tampering with the return address, the probability of
triggering signal SIGSEGV is so high that it is easy to be captured
by MagBox.

Process Clone. The process clone itself does not probe mem-
ory. It can provide other probing technologies with the same
address space as the parent process address space, thereby avoid-
ing directly probing the parent process. We deploy ImageMagick
7.0.7-16, and add a fork () to create a child process. In the child
process, the stack overflow vulnerability (CVE-2017-17880) in
coders/webp.c/WriteWEBPImage will be triggered to change the
return address to a random value. The result shows that the signal
SIGSEGV or SIGILL will be generated, which can be captured by
MagBox.

Arbitrary read. We deploy HeartBleed in openssl-1.0.1¢ to sim-
ulate arbitrary read. To read the process code, the parameter pl
of the memcpy (bp, pl, payload) in openssl will gradually decrease.
This operation can extend the leaked data from the data area to

292

Future Generation Computer Systems 140 (2023) 282-298

the code area. When the signal SIGSEGV is triggered, the current
process will be restarted for the next round of code probing.
Under the protection of MagBox, HeartBleed will trigger EPT
exception when accessing the fake space, and the signal SIGSEGV
will be triggered when accessing an unmapped area, which will
be captured by MagBox.

Data leakage. We use the DOP to simulate data-leakage based
on the method proposed by Hu [42] to extract the GOT ad-
dress stored in PLT. When we tried to copy the address of the
function system in PLT to the local variable *p, MagBox detects
and prevents the current operation. The reason is the PLT is
unreadable.

Arbitrary jump. We use BROP [7] to simulate arbitrary jump.
We exploit the function ngx_http_parse_chunked to trigger the
vulnerability CVE-2013-2028 in nginx 1.3.9, which can arbitrarily
tamper with the return address. According to our observations,
if only the last 12 bits of the return address are tampered with,
SIGILL or SIGSEGV will be triggered when up to 5 code blocks
are executed continuously. If the return address is tampered
with a random 48-bit address, the probability of triggering SIGILL,
SIGSEGV and EPT exception exceeds 99%. Whether it is SIGILL,
SIGSEGV, or the EPT exception, it will be captured by MagBox.

Side-channel probing. To simulate side-channel probing, we im-
itate the principle of AnC [9] to construct a C program, which
contains a loop structure that allows users to use the function
mmap() mapping multiple specified memory areas. At the same
time, users can access the mapped areas at will. In the exper-
iment, we found that MagBox cannot detect the activities of
cracking the address bits15th~20th, 24th~29th, 33rd~38th, and
42nd~47th. When cracking the 30th~32nd and 39th~41st of the
virtual address, an EPT exception is triggered, which is captured
by MagBox.

In fact, MagBox cannot prevent all code probing. For example,
BROP may have done several code probing and got some available
gadgets before triggering the signal SIGILL. Fortunately, as long as
one probing step can be detected during the whole code probing,
MagBox can prevent an attacker from building a complete gadget
chain. Because eliminating any node in a gadget chain makes the
subsequent gadgets unable to be executed. At the same time, the
function related to illegal control flow transfer will be regarded
as a risk function, which will be migrated to the magic box.
Afterwards, the control flow transfers of the risk function are
monitored, which prevents the probed code from being used as
gadgets again.

However, MagBox does not have a defensive effect against all
CRAs. If attackers can obtain available gadgets without code prob-
ing, MagBox will lose its detection and defense effects. Because
the attackers will not reveal any risk functions to MagBox if there
is no code probing. The absence of risk functions means MagBox
will not track any control flow, even if the OS is under attack. For-
tunately, technologies such as ASLR, memory hiding, and pointer
encryption make it difficult for attackers to gain gadgets without
code probing. Code probing has gradually become a necessary
part of CRAs.

6.2. Performance evaluation

Lmbench. we use Lmbench to test the runtime overhead of
the OS introduced by MagBox, as shown in Fig. 10. The results
show that the average overhead introduced by MagBox to OS is
2.3%.

SpecCPU2006. We use SpecCPU2006 to test the CPU perfor-
mance loss caused by MagBox, as shown in Fig. 11. The results
indicate that the average overhead introduced by MagBox is 3.4%.

Y. Li, G. Lin, Y.-C. Chung et al.

16p/64K mmmm—

8%
%6%
|51
= 4%
g
>
- I II I I I I
o% I ol 1.
= 5 a = o] > = 3 4]
s ¥ &£ T 2z § £ E 2 ¥ %
= 5 = & = 5w & £ %
E = B § 20 £ 5 N R
5 R= = =
processor lantency computing context switching
lantency lantency

Future Generation Computer Systems 140 (2023) 282-298

IIIII IIIIIll 1 -||
o Qo = s el 1*3 —
£ &8 2 & & 3 £ % & % 5 0§
E e 8 5] o} E 1 = 2]
< 5 8 £ 8 & 3 2 = =
© v i s B = °) 5 =)
S S - S = o1 2 5]
— Q. s} = s} = =1
= —
g
£
local file lantency local communication mem
communication bandwidths lantency

Fig. 10. Lmbench test results. The abscissa indicates the test items, and the ordinate indicates the performance degradation factor. The average attenuation factors
of each group (from left to right) are 3.6%, 1.4%, 2.1%, 2.1%, 3%, 1.6 and 0.9%, respectively. The average attenuation factor of all tested items is 2.3%.

3000 I native

e

000

ruunng ti
= 2
s}
s}

test items

I MagBox

—a— performance loss

s
X X
overhead

N
ES

Fig. 11. SpecCPU2006 test results. The abscissa indicates the test items. The ordinate on the left indicates the test standard value, which corresponds to the bar
graph; the ordinate on the right indicates the performance degradation factor, which corresponds to the line graph. The average attenuation factor of all tested items

is 3.4%.

IOMeter. We use IOMeter to measure the performance of
MagBox on I/O, which is shown in Fig. 12. The results show that
the average overhead to I/O Throughput and I/O Running Time
introduced by MagBox is 7.3% and 4.3%, respectively.

Web benchmark. We use Apache httpd to test MagBox’s per-
formance overhead to the network, as shown in Table 3. It shows
the average processing time (ms) of httpd with different config-
urations. The results indicate that the overhead introduced by
MagBox on the network are about 3% to 4%. Moreover, to observe
the impact of MagBox on network throughput, we test the im-
pact of MagBox on Apache, Nginx and Lighthttpd under different
workloads. The experimental results are shown in Fig. 13. The
results show that MagBox incurs 3%~9% overhead in network
throughput.

In summary, MagBox does not introduce excessive perfor-
mance overhead to the OS, CPU, I/O, and networks. The main rea-
son is that MagBox will not actively track all the jump branches.
If and only when a risk function appears, MagBox migrates the
risk function to a magic box to monitor and analyze its control
flow transfers. This design can greatly reduce the redundancy of
the control flow transfers to be tracked and detected.

In our experiments, we found the benchmarks mentioned
above have no code probing activities. Therefore, there is no risk
function to be tracked. To test the overhead introduced by track-
ing the risk function, we use binary rewriting technology to mark
the benign functions (including library functions) in SpecCPU2006
as risk functions. After that, we test the output of SpecCPU2006
again. The test results are shown in Fig. 14. The results show that
the performance overhead introduced by MagBox will increase
as the number of the risk functions increases. When the num-
ber of the risk functions reaches 20, the performance overhead
introduced by MagBox exceeds 15%.

MagBox will detect the code probing activities and migrate
the risk function in which the probed code resides to a magic

293

Total Raw Run

Maximum Raw Transaction
Maximum Raw Write Response
Maximum Raw Read Response
Total Raw Transaction
Total Raw Write Response
Total Raw Read Response
Maximum Transaction
Maximum Write Response
Maximum Read Response
Maximum Response
Average Transaction
Average Write Response
Average Read Response
Average Response
Transactions per Second
Write MBps (Decimal)
Read MBps (Decimal)
MBps (Decimal)

Write MiBps (Binary)

Read MiBps (Binary)
MiBps (Binary)

Write IOps

Read IOps

10ps

Write I/Os

Read I/Os

Bytes Written

Bytes Read

I/O running Time

1/0 throughput

0% 3% 6%

overhead

9%

Fig. 12. IOMeter test results. The ordinate indicates the test items, and the
abscissa indicates the overhead.

box. Next, the ICT instructions jumping out of the risk function
will cause a system trap, whose legitimacy will be judged. The
frequency of system traps directly affects the execution speed of

Y. Li, G. Lin, Y.-C. Chung et al.

Future Generation Computer Systems 140 (2023) 282-298

Table 3
Overhead incurred to httpd under MagBox with various numbers of worker processes and workloads. s = 1 MB.
Level c=1 c=16 c =64 c= 128 c = 256
worker Orig. MagBox Loss Orig. MagBox Loss Orig. MagBox Loss Orig. MagBox Loss Orig. MagBox Loss
p=1 176 18.1 2.84% 156 159 1.92% 148 155 473% 148 153 338% 141 144 2.13%
p=2 169 174 296% 113 116 265% 107 109 1.87% 108 112 370% 112 115 2.68%
p=3 172 175 1.74% 101 109 7.92% 105 111 571% 112 121 8.04% 124 125 0.81%
p=4 176 177 057% 99 10.4 5.05% 9.8 10.3 510% 106 107 094% 135 139 2.96%
p=5 168 172 238% 102 106 392% 104 106 192% 104 107 288% 135 141 4.44%
p=6 164 173 5.49% 103 105 194% 105 112 6.67% 9.9 10.2 3.03% 124 13 4.84%
p=7 185 196 5.95% 9.8 10.4 6.12% 9.7 10.2 515% 107 112 467% 119 127 6.72%
p=38 16,5 169 242% 103 104 097% 109 11 092% 103 109 5.83% 126 129 2.38%
Average 3.04% 3.81% 4.01% 4.06% 3.37%
In addition, when ICT instructions jump out of the risk function,
9% they take significantly more time in the magic box than in the
- native space, which is caused by system traps. In contrast, the call
= 6% s address oqu needs to switch the EPT W1Fhout trlgggrlng syst?m
3 traps. So, it executes faster. Compared with the ret in the native
% space, the ret in the magic box needs to cancel the breakpoint
3 3% L set at the stack in which the return address resides through
a new system call. As a result, it takes more time. In magic
—®— Apache B Nginx ~ —o— lighthttpd box, jmp* takes more time than jmp address, which is caused by
0% system traps and control flow tracking. Compared with the page
c=1 c=16 c=64 =128 =256 walk in the native OS, after the EPT is enabled, the page walk
test items increases the access steps to the EPT, which leads to increased
time-consuming. Although we introduce EPT, the time required
o by handling page faults does not increase significantly.
(a). p=4, s=1MB. b .
We count the number of control flow transfer instructions
9% in typical applications, as shown in Table 5. The results show
that the proportion of ICT instructions in all control flow transfer
instructions is small. Another word, most control flow transfer
g 6% instructions are legal, which are not available to attackers. There-
% = u fore, avoiding the legal instructions triggering system traps can
3 \. greatly reduce the performance overhead. By switching EPT and
© 3% adding a new system call, MagBox avoids the legal call address,
. . jmp address and ret in the magic box triggering system traps.
—®— Apache —#—Nginx —4— lighthttpd Based on the above experiments and analysis, we can conclude
0% that the system traps caused by MagBox is the main factor affect-
s=1KB s=256KB s=IMB s=8MB s=16MB ing the OS performance. They can be divided into unconditional
. traps and conditional traps. In the guest, the execution of the
test items
instructions cpuid, gettsec, invd, xsetbv and all VMX instructions
(b). p=4, c=16. except vmfunc will cause system traps unconditionally. According

Fig. 13. Network throughput overhead. a: Slowdown of number of requests per
second incurred to web servers. b. Overhead of data transfer incurred to web
servers.

the current process. The more risk functions, the more system
traps triggered by tracking the control flow. Fortunately, the OS
will not always be probed or attacked. In most scenarios, there is
no risk functions in our OS. Taking a step back, if a risk function
is detected, it is worth sacrificing part of the performance of a
process to ensure the security of the process and the OS.

Micro benchmarks. To further observe the key factors affecting
performance in MagBox, we introduce some microbenchmarks, as
shown in Table 4. The meanings of the symbols in the table are as
follows: n_call, call address in native space; n_jump, jmp address
in native space; n_ret, ret in native space; m_call, call address that
transfers control flow out of risk functions in magic box; m_call*,
call *xx that transfers control flow out of risk functions in magic
box; m_ret®, ret that transfers control flow to risk functions after
executing call * in magic box; m_jmp, jmp address that transfers
control flow in risk functions in magic box. It shows that a system
trap takes much longer time than other normal code execution.
In comparison, the EPT switch caused by vmfunc takes less time.

294

to our observations, the execution frequency of these instructions
in different applications varies greatly. The system traps they
cause will directly affect the running speed of the processes.

Conditional traps are triggered by the specific events set by
MagBox, including breakpoint access, general protection excep-
tion, process creation, control flow jumps out of risk functions,
etc. After MagBox handles the trap events, the OS will switch back
to guest again. During the mode switching, the current process
will be suspended, which increases the runtime overhead. The
system trap and event handling caused by these events will slow
down the execution speed of the process.

Performance on heavily loaded 0S. Since the MagBox exclusive
CPU when a system trap is triggered, it is necessary to know
how MagBox performs when the OS is heavily loaded. Same with
Buddy [16], we also use the stress-ng to control the CPU usage
so that it ranges 5% to 99%. Then, we run SpecCPU2006 with and
without MagBox, and record the runtime overhead introduced by
MagBox, which is shown as Fig. 15. The results indicate MagBox
is a practical solution in protecting CPU intensive programs.

Memory occupied. MagBox’s code occupy less 1 MB memory.
During its operation, it will allocate physical memory for magic
box. The size of the physical memory depends on the size and
number of risk functions. Fortunately, the memory occupied by

Y. Li, G. Lin, Y.-C. Chung et al.

18% M O suspicious functions 5 suspicious functions

10 suspicious functions

Future Generation Computer Systems 140 (2023) 282-298

15 suspicious functions g 20 suspicious functions

T 12%
S
—; | |
o
>
) Ml | | || | il |I
o | . . |
) & > > & > o] <
& & &§Q ¥ O & oQ\é% o‘*Qﬁ & ¥ %Q&Q & e «&“4:3 v@‘@ ~o“"Qq, “a% o 50&8% & &&0
S U N AR S RS N N MM M R N RS S RS
3 N SN NN NN SN K & o 59 o
S s bfvb‘ %@“v & SEE A N IR @b‘ S & W0 » &;o“
B ;) > Q R
5 w2 - > »
test items

Fig. 14. Function migration test. The abscissa indicates the test items, and the ordinate indicates the performance degradation factor. Different colors represent

different numbers of functions.

Table 4
Micro benchmarks (nanoseconds).
Native OS 0S with MagBox
n_call n_jmp n_ret page walk vmfunc system trap m_call m_ret m_call* m_ret* m_jmp m_jmp* page walk
3.01 224 1.99 13.73 111.58 567.83 143.26 25.61 1229.73 27.39 227 1181.85 54.39
0.1 10.05 0.8 =0.99
5 008
£ 006
5 0.04 |
=]
I il Ll T I
o 1 T Iy
> S S > o PO
D RN $ S & & & o &
‘oéfb "5*;5Q «\)@% ~ \\%‘Y'Q \05\\@ b?&‘b '\-bz?’ QQQ Qek J 3 S @_\o bt\Q® %Q\\\ 0 302? Q\x;‘} VS’% bi\?& 9060 V&& L,‘b%\@ O‘T’Q\Q
RO 9‘3% SBT o 0 @T & @& @9@ ® S q}*&
= = . = ®
test items
Fig. 15. Overhead of SPEC when CPU is in various load levels. The average overheads of CPU usage 5%~99% are 2.5%, 2.9%, 3.1%, 3.8%, 6%, 6.8%.
Table 5 _ _ percentage of the kth control flow transfer instructions in appli-
The number of control flow transfer instructions. cations and libraries.P¥, , represents the probability that the kth
App call addr jmp addr ret call jmp* attack scenario can be identified. F_I¥,, and B_I¥,, respectively
httpd-2.4.37 34843 15194 5809 1224(2.1%) 142(0.2%) represent the number of the illegal forward illegal instructions
redis-6.0.6 34564 11983 4875 558(1.1%) 621(1.2%) and the number of the illegal backward instructions in the kth
nginx-1.6.2 5904 3395 1342 327(3%) 35(0.3%)

the risk functions in the entire memory space is not very large. For
example, skip_short_body, the only known risk function in wget,
only occupies 1.5 kB memory, which accounts for only 0.3% of
the total wget code size. In addition, MagBox will allocate page
tables for fake space. In MagBox, most of the fake space has only
one page at each level of page tables. The entries in each level
of page table point to their next level of page table, and all the
entries in the current level of page table are the same. Therefore,
we do not need to allocate too many page tables for fake space. In
contrast, EPT occupies more memory. In our deployment (32 GB
memory), a set of EPT occupies about 64 MB memory. If there is
no risk function to be tracked, we only need one set of EPT; if
there are risk functions to be tracked in the OS, we need two sets
of EPT.

6.3. Comparison with existing methods

We compare MagBox with the existing CFI solutions according
to the analysis method proposed in [46]. The results are shown
in Fig. 16. There are 4 indicators, RP, CF, AP.A and AP.B. Except for
RP, all other indicators are the qualitative result that analyzes the
security method s defense principles, which is shown as metrics
(1)~(3). P app and P,,b respectively represent the probability that
the kth control flow transfer instruction can be tracked in the

application and library. I¥ and I¥ respectively represent the

app lib

attack scenario. F_IX, and B_I¥, respectively represent the number
of all tracked forward instructions and the number of all tracked
backward instructions in the kth attack scenario.

CF refers to the control flow transfer instructions tracked by
methods, which may be adopted by CRAs. The tracked instruc-
tions include call *%register, call *(%register), call *value(%register),
call *(%register, Zregister, value), call *pointer, jmp *%register, jmp
*(%register), jmp *address(, Zregister, value), ret, retn value, and retf
value. The more such instructions a method can track, the higher
the CF score. Additionally, the instructions being tracked may
be in shared libraries that have no source code and have been
loaded into memory. A method that fails to track instructions
in a library lowers its CF score. RP refers to the performance
overhead reported in the paper. The lower the performance over-
head, the higher the RP score. AP.F and AP.B are used to indicate
the method’s analysis precision for the control flow. Not all the
control flow transfer instructions can be adopted by CRAs. In fact,
they can only be used by CRAs in specific attack scenarios (such as
memory leak scenarios). Therefore, the better a method can filter
out potential attack scenarios, the higher its analysis precision is.
In addition, the more effective the security strategies, the higher
the AP.F and AP.B scores.

N
CF= Z(ngp It’;pp + Pl?b x Il’;b) (1)
F_ k
AP.F = Z Pattack F aﬁac (2)

—all
295

Y. Li, G. Lin, Y.-C. Chung et al.

Future Generation Computer Systems 140 (2023) 282-298

CF RP CF RP CF RP CF RP CF RP CF RP
AP.F AP.B AP.F AP.B AP.F AP.B AP.F AP.B AP.F AP.B APF APB
(a) MCFI[15] (b) nCFI[14] (c) IFCC[32] (d)CFIGuard[33] (e) O-CFI[38] (i MagBox(our method)
CF RP CF RP CF RP CF RP CF RP CF RP
')|4 v "'/ v .4 v
APF AP.B APF AP.B APF AP.B AP.F AP.B APF AP.B APF AP.B
(g) PathArmor[34] (h)kBouncer[13] (i)CCFIR[17] (j)ROPecker[35] (k)KCoFI[16] (I)bin-CFI[36]

Fig. 16. Method comparison. CF: Control flow to be monitored. RP: The reported performance in papers. AP.F: The forward branch (such as call and jmp, etc.) analysis
precision. AP.B: The back forward branch (return instructions ret) analysis precision [47-49].

k
Pk % B—Iattack
attack B Ik

—all

N
APB =" (3)
k=1

MagBox has some advantages in execution efficiency and de-
fense effect. Because only the risk functions probed by the at-
tacker are our targets, which can greatly reduce the number of
instructions to be tracked. As a result, its performance overhead
is not too high, and the AP.F and AP.B are perform well. Moreover,
MagBox tracks control flow transfers at binary level dynamically,
which reduces the complexity of legitimacy judgment. No matter
what the control flow transfer instruction is, it will be detected
when it is transferred outside or into the risk function, which
improves its CF score. In a word, whether it is ROP, JOP, LOP, or
COOP, as long as it is under fine-grained ASLR, it needs to probe
the code, which can be detected and analyzed by MagBox.

The compiler-based methods, such as IFCC, = CFI, and MCF]I,
require the support of source code, which leads to the protection
failure on the loaded libraries. This characteristics can negatively
impact on their CF, AP.F and AP.B. The methods using hardware-
assisted techniques can achieve better results with less overhead,
such as O-CFI using MPX and PathArmor using LBR. ROPecker
detects an ROP attack at run-time by checking the presence of
a sufficiently long chain of gadgets in past and future execution
flow, with the assistance of the taken branches recorded in the
LBR and an efficient technique combining offline analysis with
run-time emulation [50]. However, it is invalid to JOP, LOP, and
COOP, etc. CFIGuard detects all indirect jumps, and it relies on
a high-precision CFG. For shared libraries that do not contain
source code, the jump relationship between code blocks is not
clear, which may be changed with the input and conditions. A
low-precision CFG will reduce the AP.B and AP.F of CFIGuard.

7. Conclusions

To mitigate CRAs, this paper proposes MagBox. Under the
protection of ASLR, attackers need to use code probing technol-
ogy to obtain code information, such as code forms and code
addresses. Detecting and preventing code probing can mitigate
CRAs. MagBox uses the fake space mechanism to detect the
attacker’s code probing. Using the attacker’s probing ability, Mag-
Box can identify and locate risk functions. Then, the risk functions
will be migrated to a magic box with specific space structure and
memory permissions. After that, all the instructions that jump out
of the risk function will be monitored and analyzed in real time.
Experiments show that MagBox has good defense effects on CRAs,
and it introduces low overhead to the OS and CPU.

However, MagBox still has some limitations. First, MagBox is
only valid in user space. Compared with user space, the kernel

296

code segment is completely shared. Moreover, there are many
data structures containing function pointers in the kernel space.
The attacker can obtain the address of the kernel code by reading
kernel data, and he does not need to probe the kernel code
frequently. This can reduce the risk of the probed code being
exposed, which avoids the illegal control flow being tracked
and analyzed by MagBox. Second, MagBox only supports Linux
and the processors with X86 architecture. In future research, we
will try to promote MagBox to Windows and deploy it on Arm
processors.

CRediT authorship contribution statement

YongGang Li: Conceptualization, Methodology, Software, Val-
idation, Writing - original draft, Writing - review & editing,
Project administration. GuoYuan Lin: Writing - review & edit-
ing, Supervision. Yeh-Ching Chung: Writing - review & editing,
Supervision. YaoWen Ma: Formal analysis, Investigation. Yi Lu:
Formal analysis, Investigation. Yu Bao: Data curation, Writing —
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Data availability

No data was used for the research described in the article.

References

(1

[2

Y.G. Li, Y.C. Chung, Y. Bao, et al., KPointer: Keep the code pointers on the
stack point to the right code, Comput. Secur. (2022) 102781.

Stephen Checkoway, et al., Return-oriented programming without returns,
in: Proc. the 17th ACM Conference on Computer and Communications
Security, 2010, pp. 559-572.

B. Lan, Y. Li, et al., Loop-oriented programming: a new code reuse attack
to bypass modern defenses, in: Proc. IEEE Trustcom/BigDataSE/ISPA, 2015,
pp. 190-197.

R. Strackx, Y. Younan, et al., Breaking the memory secrecy assumption, in:
Proc. the Second European Workshop on System Security, 2009, pp. 1-8.
W.L. Mow, S.K. Huang, H.C. Hsiao, LAEG: Leak-based AEG using dynamic
binary analysis to defeat ASLR, in: Proc. IEEE Conference on Dependable
and Secure Computing, DSC, 2022, pp. 1-8.

K. Lu, C. Song, B. Lee, S.P. Chung, et al., ASLR-guard: Stopping address space
leakage for code reuse attacks, in: Proc. the 22nd ACM SIGSAC Conference
on Computer and Communications Security, 2015, pp. 280-291.

A. Bittau, A. Belay, et al., Hacking blind, in: Proc. the IEEE Symposium on
Security and Privacy, IEEE, 2016, pp. 227-242.

Kangjie Lu, et al, How to make ASLR win the clone wars: Runtime
re-randomization, in: Proc. NDSS, 2016.

3]

[4

[5]

[6

(7

[8

http://refhub.elsevier.com/S0167-739X(22)00358-2/sb1
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb1
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb1
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb2
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb2
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb2
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb2
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb2
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb3
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb3
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb3
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb3
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb3
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb4
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb4
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb4
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb5
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb5
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb5
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb5
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb5
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb6
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb6
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb6
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb6
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb6
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb7
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb7
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb7
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb8
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb8
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb8

Y. Li,

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

G. Lin, Y.-C. Chung et al.

B. Gras, K. Razavi, E. Bosman, et al., ASLR on the line: Practical cache
attacks on the MMU, NDSS 17 (2017) 26.

J. Li, L. Chen, G. Shi, et al., ABCFI: Fast and lightweight fine-grained
hardware-assisted control-flow integrity, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 39 (11) (2020) 3165-3176.

P. Muntean, M. Neumayer, Z. Lin, et al., Analyzing control flow integrity
with LLVM-CFI, in: Proc. the 35th Annual Computer Security Applications
Conference, 2019, pp. 584-597.

R. Ding, C. Qian, C. Song, et al., Efficient protection of path-sensitive
control security, in: Pro. the 26th {USENIX} Security Symposium ({USENIX}
Security 17), 2017, pp. 131-148.

X. Ge, W. Cui, et al., Griffin: Guarding control flows using intel processor
trace, ACM SIGPLAN Not. 52 (4) (2017) 585-598.

B. Niu, G. Tan, Modular control-flow integrity, in: Proc. Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2014, pp. 577-587.

C. Tice, T. Roeder, P. Collingbourne, Enforcing forward-edge control-flow
integrity in {gcc} & {llvm]}, in: Proc. 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014, pp. 941-955.

K. Lu, M. Xu, C. Song, et al., Stopping memory disclosures via diversification
and replicated execution, IEEE Trans. Dependable Secure Comput. 18 (1)
(2018) 160-173.

Z. Huang, T. Zheng, Y. Shi, A. Li, A dynamic detection method against
ROP and JOP, in: Proc. 2012 International Conference on Systems and
Informatics, 2012, pp. 1072-1077.

Felix Schuster, et al., Counterfeit object-oriented programming: On the
difficulty of preventing code reuse attacks in C++ applications, in: Proc.
IEEE Symposium on Security and Privacy, 2015.

P. Chen, H. Xiao, X. Shen, DROP: Detecting return-oriented programming
malicious code, in: Proc. International Conference on Information Systems
Security, 2009, pp. 163-177.

M. Kayaalp, T. Schmitt, et al., SCRAP: Architecture for signature-based
protection from code reuse attacks, in: Proc. IEEE 19th International
Symposium on High Performance Computer Architecture, HPCA, 2013, pp.
258-269.

V. Pappas, M. Polychronakis, et al., Transparent {ROP} exploit mitigation
using indirect branch tracing, in: Proc. 22nd {USENIX} Security Symposium,
2013, pp. 447-462.

B. Niu, G. Tan, Per-input control-flow integrity, in: Proc. Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security,
2015, pp. 914-926.

P. Yuan, Q. Zeng, X. Ding, Hardware-assisted fine-grained code-reuse
attack detection, in: Proc. International Symposium on Recent Advances
in Intrusion Detection, 2015, pp. 66-85.

Hong Hu, et al, Enforcing unique code target property for control-
flow integrity, in: Pro. the ACM SIGSAC Conference on Computer and
Communications Security, 2018.

J. Criswell, N. Dautenhahn, KCoFI: Complete control-flow integrity for
commodity operating system kernels, in: Proc. IEEE Symposium on Security
and Privacy, IEEE, 2014, pp. 292-307.

C. Zhang, T. Wei, Z. Chen, L. Duan, et al., Practical control flow integrity
and randomization for binary executables, in: Proc. 2013 IEEE Symposium
on Security and Privacy, 2013, pp. 559-573.

M. Zhang, R. Sekar, Control flow integrity for {cots} binaries, in: Proc. 22nd
{USENIX} Security Symposium, 2013, pp. 337-352.

V. Mohan, P. Larsen, S. Brunthaler, et al., Opaque control-flow integrity, in:
Proc. NDSS, Vol. 26, 2015, pp. 27-30.

S. Yoo,]. Park, S. Kim, et al., {In-kernel}{control-flow} integrity on com-
modity {oses} using {arm} pointer authentication, in: Proc. USENIX Security
Symposium (USENIX Security 22), 2022, pp. 89-106.

A. Gupta, S. Kerr, et al., Marlin: A fine grained randomization approach to
defend against ROP attacks, in: Proc. International Conference on Network
and System Security, 2013, pp. 293-306.

]. Hiser, A. Nguyen-Tuong, et al., ILR: Where’d my gadgets go? in: Proc.
IEEE Symposium on Security and Privacy, 2012, pp. 571-585.

K.Z. Snow, F. Monrose, et al., Just-in-time code reuse: On the effectiveness
of fine-grained address space layout randomization, in: Proc. 2013 IEEE
Symposium on Security and Privacy, 2013, pp. 574-588.

Davi. Lucas, et al., Isomeron: Code randomization resilient to (just-in-time)
return-oriented programming, in: Proc. NDSS, 2015.

J. Seibert, H. Okhravi, et al., Information leaks without memory disclosures:
Remote side channel attacks on diversified code, in: Proc. Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security,
2014, pp. 54-65.

C. Curtsinger, E.D. Berger, Stabilizer: Statistically sound performance
evaluation, Proc. ACM SIGARCH Comput. Archit. News 41 (1) (2013)
219-228.

E. Goktas, E. Athanasopoulos, M. Polychronakis, H. Bos, G. Portokalidis, Size
does matter: Why using gadget-chain length to prevent code-reuse attacks
is hard, in: Proc. 23rd {USENIX} Security Symposium, 2014, pp. 417-432.

297

Future Generation Computer Systems 140 (2023) 282-298

[37] J. Ying, R. Hou, L. Zhao, et al., CPP: A lightweight memory page man-

[38]

[39]

[40]

[41]

[42]

[43]

[44]

agement extension to prevent code pointer leakage, J. Syst. Archit. (130)
(2022) 102679.

A. Oikonomopoulos, E. Athanasopoulos, et al., Poking holes in informa-
tion hiding, in: Proc. the 25th {USENIX} Security Symposium, 2016, pp.
121-138.

R. Gawlik, B. Kollenda, P. Koppe, et al., Enabling client-side crash-resistance
to overcome diversification and information hiding, in: Proc. the NDSS, Vol.
16, 2016, pp. 21-24.

https://www.intel.cn/content/www/cn/zh/architecture-and-technology/
64-ia-32-architectures-software-developer-vol-3c-part-3-manual.html.

L. Zhang, D. Choffnes, D. Levin, et al., Analysis of SSL certificate reissues and
revocations in the wake of heartbleed, in: Pro. the Conference on Internet
Measurement Conference, 2014, pp. 489-502.

H. Hu, S. Shinde, S. Adrian, et al., Data-oriented programming: On the
expressiveness of non-control data attacks, in: Proc. IEEE Symposium on
Security and Privacy, SP, 2016, pp. 969-986.

Y.G. Li, Y.C. Chung, K. Hwang, et al., Virtual wall: Filtering rootkit attacks
to protect linux kernel functions, IEEE Trans. Comput. 70 (10) (2021)
1640-1653.

Y. Guo, L. Chen, G. Shi, Function-oriented programming: A new class
of code reuse attack in c applications, in: Pro. IEEE Conference on
Communications and Network Security, CNS, 2018, pp. 1-9.

[45] J. Salwan, ROPgadget-Gadgets Finder and Auto-Roper. http://shell-storm.

[46]

[47]

[48]

[49]
[50]

org/project/ROPgadget.

N. Burow, S.A. Carr, J. Nash, et al, Control-flow integrity: Precision,
security, and performance, ACM Comput. Surv. 50 (1) (2017) 1-33.

V. Van der Veen, D. Andriesse, E. Goktas, et al., Practical context-
sensitive CFI, in: Proc. the 22nd ACM SIGSAC Conference on Computer
and Communications Security, 2015, pp. 927-940.

M. Zhang, R. Sekar, Control flow integrity for {cots} binaries, in: Proc. 22nd
{USENIX} Security Symposium, 2013, pp. 337-352.

V. Mohan, et al., Opaque control-flow integrity, in: NDSS Symposium, 2015.

Y. Cheng, Z. Zhou, M. Yu, X. Ding, et al., ROPecker: A generic and practical
approach for defending against ROP attack, in: Proc. 21th NDSS, 2014.

Yong-Gang Li, received the PhD degree from the Uni-
versity of Science and Technology of China in 2019. He
was a postdoctoral fellow in the Chinese University of
Hong Kong, Shenzhen. Now, he is an associate professor
with the School of Computer Science and Technology
in the China University of Mining and Technology.
His research interests include computer architecture,
virtualization principle, cloud computing, and system
security.

Guo-Yuan Lin, received the PhD degree from the Nan-
jing University in 2011. Now he is the deputy dean of
with the School of Computer Science and Technology
in the China University of Mining and Technology. He
has long been engaged in the research of cyberspace
security, information security, and system security.

Yeh-Ching Chung, received Ph.D. degrees in Computer
and Information Science from Syracuse University in
1992. Currently, he is a Professor of the Chinese Uni-
versity of Hong Kong (CUHK), Shenzhen. His research
interests include parallel and distributed processing
and system software.

Yao-Wen Ma, is a graduate student at the School of
Computer Science and Technology in the China Univer-
sity of Mining and Technology. His research interests
include container architecture and cloud computing.

http://refhub.elsevier.com/S0167-739X(22)00358-2/sb9
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb9
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb9
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb10
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb10
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb10
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb10
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb10
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb11
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb11
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb11
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb11
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb11
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb12
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb12
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb12
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb12
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb12
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb13
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb13
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb13
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb14
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb14
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb14
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb14
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb14
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb15
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb15
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb15
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb15
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb15
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb16
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb16
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb16
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb16
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb16
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb17
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb17
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb17
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb17
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb17
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb18
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb18
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb18
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb18
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb18
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb19
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb19
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb19
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb19
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb19
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb20
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb20
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb20
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb20
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb20
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb20
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb20
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb21
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb21
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb21
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb21
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb21
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb22
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb22
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb22
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb22
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb22
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb23
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb23
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb23
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb23
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb23
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb24
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb24
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb24
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb24
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb24
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb25
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb25
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb25
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb25
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb25
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb26
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb26
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb26
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb26
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb26
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb27
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb27
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb27
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb28
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb28
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb28
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb29
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb29
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb29
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb29
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb29
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb31
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb31
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb31
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb32
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb32
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb32
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb32
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb32
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb33
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb33
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb33
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb35
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb35
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb35
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb35
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb35
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb36
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb36
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb36
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb36
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb36
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb37
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb37
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb37
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb37
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb37
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb38
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb38
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb38
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb38
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb38
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb39
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb39
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb39
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb39
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb39
https://www.intel.cn/content/www/cn/zh/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.html
https://www.intel.cn/content/www/cn/zh/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.html
https://www.intel.cn/content/www/cn/zh/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.html
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb41
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb41
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb41
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb41
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb41
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb42
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb42
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb42
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb42
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb42
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb43
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb43
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb43
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb43
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb43
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb44
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb44
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb44
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb44
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb44
http://shell-storm.org/project/ROPgadget
http://shell-storm.org/project/ROPgadget
http://shell-storm.org/project/ROPgadget
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb46
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb46
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb46
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb47
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb47
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb47
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb47
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb47
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb48
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb48
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb48
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb49
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb50
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb50
http://refhub.elsevier.com/S0167-739X(22)00358-2/sb50

Y. Li, G. Lin, Y.-C. Chung et al. Future Generation Computer Systems 140 (2023) 282-298

Yi Lu, is a graduate student at the School of Computer
Science and Technology in the China University of
Mining and Technology. His research interests include
code optimization and cloud computing.

Yu Bao, received the PhD degree from Tongji University
in 2011. Now, he is a staff engineer at security Depart-
ment of Computer Science and Information Technology
Institute, China University of Mining and teach. His
research includes information security and privacy in
Al distributed network and cyber security in IoT.

298

	MagBox: Keep the risk functions running safely in a magic box
	INTRODUCTION
	Related Works
	CFI Protection
	ASLR

	Assumptions And Threat Models
	Overall Design of MagBox
	The Implementation of MagBox
	Build resource access control mechanism
	Set memory events
	Set execution events

	Perceive memory probing and identify risk functions
	Track control flow
	Judge the legitimacy of control flow
	Transfer the legal control flow
	Protect the backward control flow
	Protect the forward control flow

	Evaluation
	Security Evaluation
	Performance Evaluation
	Comparison with existing methods

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

