Computers & Security 132 (2023) 103377

Computers
& ity

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

What you can read is what you can’t execute )

YongGang Li** JiaZhen Cai? Yu Bao? Yeh-Ching Chung®

Check for
updates

aSchool of Computer Science and Technology in CUMT, Xuzhou, Jiangsu 221116, PR China
b Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China

ARTICLE INFO

Article history:

Received 20 April 2023
Revised 11 June 2023
Accepted 30 June 2023
Available online 1 July 2023

Keywords:

Code reuse attacks
Operating systems
Software and system safety
Access control

Code probes

ABSTRACT

Due to the address space layout randomization (ASLR), code reuse attacks (CRAs) require memory probes
to get available gadgets. Code reading is the basic way to obtain code information. In theory, setting the
code to be unreadable can prevent code reading. However, the pages are loaded dynamically, and the
existing methods cannot set all code as unreadable at one time. They can only control code permissions
page-by-page via time-consuming page tracking. Moreover, since some special users need to read code,
turning off the read permission will affect their execution. To solve these problems, this paper proposes
a method AntiRead. It rebuilds the buddy system for memory allocation. The new buddy system places
code pages in a specific memory pool to manage their read permissions. In the presence of AntiRead,
what is obtained by adversaries through code reading is either randomized code or non-executable code.
Experiments and analysis show that AntiRead can prevent the code that has been read from being used as
gadgets without affecting the normal code reading. In addition, the CPU overhead introduced by AntiRead

is 1.8%.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

CRAs is a control flow hijacking technology. It does not need
to inject any code, but instead uses existing code snippets in
the operating system (OS) as malicious payloads (called gadgets).
Before an attack, the adversary must prepare all gadgets to build a
gadget chain (Jang. 2022; Lu et al,, 2021). The form of each gadget
must conform to specific forms (such as pop rax; jmp *rax), and the
address of each gadget must be known. Under the protection of
ASLR, especially the fine-grained ASLR, the addresses and forms of
code blocks are invisible to the adversaries. Therefore, they must
perform code probing to obtain available gadgets (Lu et al., 2021).

Recent researches have demonstrated ASLR can be bypassed by
exploiting a memory leakage vulnerability to harvest code pointers
and disclose code memory on-the-fly (Zhang et al., 2017). Code
reading is a basic method that is used by a variety of probing
technologies. For example, attackers can obtain the library func-
tion addresses by reading PLT (procedure linkage table), which is
essentially code reading (Hu et al., 2016).

The basic way to prevent code reading is the execute-only
policy, which turns off the read permission of code. Such a policy
can be implemented using page table manipulation (Backes et al.,
2014), split TLBs (Gionta et al., 2015), hardware virtualization
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extensions (Crane et al., 2015; Werner et al., 2016), or a form of
software-fault isolation (K et al., 2016; Pomonis et al., 2017).

However, the existing methods have some limitations. First,
some methods rely on source code, which is invalid for the closed-
source objects. For example, Readactor (Crane et al., 2015) needs
to analyze source code to separate the mixed page containing code
and data, which makes it unable to protect the loaded library code.
Second, some methods introduce huge overhead to identify the
physical pages used to store code and dynamically disable their
reading permissions. For example, Heisenbyte (Tang et al., 2015)
introduces over 60% overhead to perlbench. Third, almost all meth-
ods ignore the negative effects of turning off the read permission.
The existing methods assume all users don’t read the code. This
is the basic premise that the application can still run normally af-
ter the code read permission is turned off. However, some special
users, such as debuggers, require reading code. Although we can
read the code of the target process in debug mode, this method is
not applicable to all scenarios. For example, the code read in debug
mode may be different from the code read in the scenario of re-
randomization (Yun et al., 2020). The best way to solve this prob-
lem is to enable the read permission of the code pages when they
are being read, and ensure the code snippets that have been read
cannot be used as gadgets. Forth, some methods, such as NEAR
(Werner et al., 2016), cannot protect the page, in which the code is
swapped into memory again. That is, if a code page is loaded into
memory again after being swapped to the disk, it may be loaded
into a readable page, which leads to a protection failure.
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One of the reasons causing the above problems is the existing
methods cannot preset all binary code of the target process to be
unreadable. In fact, it is not easy to achieve this purpose. Because
the OS will not load all code into memory at once. Before the code
is called for the first time, it is in the disk rather than the mem-
ory. Therefore, the code pages cannot be known or predicted in ad-
vance, which makes the permissions of the binary code cannot be
preset. Now, there are two methods to solve this problem. One is
to mark the target code via the compiler. Then, the code pages can
be obtained when the code is called. Such a method needs to ma-
nipulate the source code and cannot protect the closed-source ob-
jects. The other is to track the page allocation and code accesses to
identify code execution and code reading. Such a method requires
frequent intervention in code execution, which will incur signifi-
cant overhead.

Another reason for the above problems is directly disabling the
read permission of code pages will cause some negative effects. In
practice, both the debugger and the system-level optimizer need
to read the code of applications and even the shared libraries. The
unreadable code will lead to a failure.

To solve these problems, this paper proposes a novel method
AntiRead. It can protect the closed-source objects including shared
libraries. AntiRead combines virtualization technology to rebuild
the memory allocation system buddy system, which can preset all
code pages to be unreadable and avoid the huge overhead caused
by tracking the accesses to code pages. It can also ensure the
swapped code pages cannot be read after they are loaded into
memory again. In the presence of AntiRead, the code that have
been read can still be called but cannot be used as gadgets. In
summary, the contributions are as follows:

(1) Propose a system to manage code pages. This method rebuilds
the buddy system. It can set all the code pages to be unread-
able before code loading, which reduces the overhead of track-
ing code accesses.

(2) Propose a mechanism to defend against malicious code reading.
It can prevent the binary code that has been read from being
used as gadgets. Meanwhile, the legal applications can read the
code they need.

(3) Implement the protype of AntiRead in Linux. To the best of our
knowledge, AntiRead is the first method that can preset all code
pages as unreadable. It has good defense effect on the code
probes based on code reading and only introduces 1.8% over-
head to CPU.

2. Related works

The adversary can obtain the code address and code forms
by reading code, which is a basic way to build a gadget chain
(Li et al, 2022, Schloegel et al., 2021). In response to such prob-
ing attacks, researchers have proposed various security solutions,
including ASLR and execute-only memory (XOM).

2.1. ASLR methods

ASLR scrambles the memory distribution, making the addresses
of the target objects unknown to the adversary. As a result, the
adversary cannot connect gadgets together, even if their forms
are known. The existing objects protected by ASLR include code
pages (Crane et al., 2016), functions (Conti et al., 2016), basic
blocks (Wartell et al., 2012), and instructions (Hiser and Nguyen-
Tuong, 2012). ASLR has been widely used in the OS.

However, the calling relationship between code objects will be-
come more and more complex as the code size increases. Ran-
domizing the whole code segment or the entire memory ob-
ject requires modifying the instruction paths between all code
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objects to maintain the original execution logic, which is time-
consuming. Moreover, fine-grained randomization increases the
operation complexity. To accurately profile the calling relationship
between code objects, many ASLR methods have to analyze the
source code. Remix (Chen et al., 2016) is a LLVM-based method and
it adds extra nop paddings to change the code addresses, which
allows runtime flexibility for moving code inside functions. TASR
modifies GCC and the dynamic linker to rerandomize the memory
layout during runtime before the adversary can take advantage of
any stolen knowledge (Bigelow et al., 2015).

Adelie is a kernel ASLR method and proposes the mechanisms
for stack re-randomization, address encryption, and continuous
ASIR on Linux modules (Nikolaev and Nadeem, 2022). Shuffler is
a runtime ASLR solution and it randomizes code asynchronously
in a separate thread (Williams-King et al., 2016). CodeArmor vir-
tualizes the code space to completely decouple code pointer val-
ues from the concrete location of their targets in the memory ad-
dress space (Chen et al., 2017). PT-Rand randomizes the location of
page tables and tackles several challenges to ensure that the loca-
tion of page tables is not leaked(Davi et al., 2017). The main idea
behind ASLR-GUARD is to render leak of data pointer useless in
deriving code address by separating code and data, provide a se-
cure storage for code pointers, and encode the code pointers when
they are treated as data (Lu et al., 2015). CoDaRR continuously re-
randomizes the masks used in load operations and storage oper-
ations, and re-masks all the related memory objects, which can
maintain the transparency of code execution (Rajasekaran et al.,
2020).

However, it turns out that the ASLR can be bypassed by code
probing technologies such as JIT-ROP (Ahmed et al., 2020). Because
there is no ASLR that can completely hide all the code and code
pointers. An adversary can still obtain the addresses and forms of
the target code directly or indirectly. In addition, almost all ASLR
methods randomize the whole code segment or the entire memory
object, such as (Backes and Niirnberger, 2014; Sun and Lui, 2016;
Giuffrida et al., 2012), which is complex and time-consuming. In
practice, under the protection of fine-grained ASLR, adversaries
cannot speculate all addresses through a single leak or probe.
Therefore, most code information is still unknown to adversaries.
That is, there is no need to randomize all the code.

AntiRead also adopts a fine-grained ASLR method. Unlike exist-
ing methods, AntiRead only randomizes the code page that is being
read, not the whole code segment or the entire memory object.
Moreover, AntiRead does not require the randomized code to be
executable. Based on the above design principles, it does not need
to maintain the complex calling relationship between code objects,
which is the key to have high efficiency.

2.2. XOM methods

Existing XOM methods disable the read permissions of code
pages, thereby preventing code information leakage. XnR ensures
the code can still be executed by the processor, but it cannot be
read as data (Backes et al., 2014). HideM uses the split-TLB ar-
chitecture, commonly found in CPUs, to enable fine-grained exe-
cution and read permission on memory (Gionta et al., 2015). NO-
RAX leverages a combination of MMU permission bits to retrofit
XOM to ARM binaries (Chen et al., 2017). In contrast, KRX enforces
XOM on architectures that lack native support for marking memory
pages as execute-only and employs strong memory isolation mech-
anisms, avoiding the use of information hiding to guard against JIT-
ROP attacks (Ahmed et al., 2020). Central to Heisenbyte is the con-
cept of destructive code reading - code is garbled right after it is
read (Tang et al., 2015). Readactor (Crane et al., 2015) protects both
statically and dynamically generated code. It uses a compiler-based
code generation paradigm that uses hardware features provided by
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modern CPUs to enable XOM and hide code pointers from leakage
to the adversary. NEAR (Werner et al., 2016) foregoes the problems
of XnR (Backes et al., 2014) and provides strong security guaran-
tees against just-in time attacks in commodity binaries.

However, the existing methods have some limitations, making
them difficult to be widely adopted. XnR is susceptible to disclo-
sure attacks via indirect code references. CodeArmor are ineffective
against brute force attacks, such as code reading via HeartBleed
(Li and Guoyuan, 2023). Readactor relies on source code. Heisen-
byte has no protection effect on shared libraries. More seriously,
all methods that prohibit code reading ignore the negative effects
caused by closing the read permission of the code. Moreover, some
methods introduce significant overhead when tracking code access.

Compared with existing methods, AntiRead does not completely
disable the read permission of code. Therefore, the applications
that need to read code can still get what they want. Meanwhile,
AntiRead can prevent the code that has been read from being used
as gadgets, which is a capability that existing ASLR methos do not
have.

3. Assumptions and threat models

First, we assume the fine-grained ASLR is in use, and adver-
saries cannot infer the locations of all gadgets from a leaked code
pointer. In practice, the operation granularities of the existing ASLR
methods include pages, functions, basic blocks and instructions.
Second, we assume adversaries can continuously probe the code
without worrying about the interruption of code probes caused by
process crash. For the code-reading-based probe, it may trigger ex-
ceptions when reading the unmapped area, which leads to process
crash. While, the OS allows applications to handle exceptions by
themselves to avoid process crash. Third, we assume adversaries
can hijack the control flow by modifying return addresses or func-
tion pointers through memory vulnerabilities. Fourth, we assume
adversaries cannot obtain memory layout through /proc files.

There are three types of probing attacks based on code reading.
The 3 attack vectors are as follows:

Vector 1. It gradually moves from the leaked data segment to
the code segment. HeartBleed (Zhang et al., 2014), a classic at-
tack, can disclose 64KB data at a time. By correcting the data
pointer multiple times, the target area can gradually approach the
code segment. The adversary can identify the real code segment
by checking the binary forms (such as the most common function
header 55 48 89 e5). Although an adversary may read unmapped
areas, this does not prevent code reading activities. Because the
adversary can restart the process, and can also handle the error
signal SIGSGEV itself.

Vector 2. It directly reads the code via the leaked code pointer,
and recursively read the code in the mapped area pointed by in-
direct addresses in code pages. The typical representative of this
attack is JIT-ROP (Ahmed et al., 2020). Since dynamically compiled
code is used, all compiler-based methods are invalid for such at-
tacks.

Vector 3. It obtains the target addresses by reading the code
pointers stored in the continuous memory. The typical attack is
data leakage (Liljestrand et al., 2019). It obtains the GOT (global
offset table) address where stores all library function pointers
needed by the current process through the relative address stored
in PLT.

3.1. Overall design

In the original OS, the code is readable. To defend against the
probes based on code reading, the existing mthods directly dis-
abling the read permission of the code. The existing memory sys-
tem does not distinguish which pages are used to store code and
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Fig. 1. Overall architecture of AntiRead.

which pages are used to store data. In addition, all code pages of
the process are not allocated at once. Therefore, before the code is
executed, we do not know which page needs to be set as unread-
able. Moreover, the OS cannot directly disable read permissions
of memory pages. To identify each code page, all page allocation
needs to be tracked. To disable the read permission of the code
pages, all code access needs to be detected. Such designs trigger
significant runtime delays. In addition, disabling the read permis-
sion of all code pages will affect the normal code reading activities.

AntiRead can solve the above problems, as shown in Fig. 1. It
consists of two parts, the front end and the back end. The front end
works offline and has the component permission manager. The back
end works online and includes the components splitter and probed
page handler. The front end provides a code pool and a data pool
for the back end. The back end allocates memory for the process
according to the execution scenarios, and ensures the code that has
been read can’t be used by CRAs.

The permission manager reconstructs the memory allocation
system buddy system. It places physical pages in the code pool and
data pool, and sets different permissions for them. Then, the user
code pages can only be allocated from the unreadable code pool
(MD~@®), and the data pages and kernel pages can only be allo-
cated from the readable data pool. The permission manager does
not introduce huge overhead like XnR (up to 526% in Jan’s test
(Werner et al., 2016)) because it does not need to track every code
page allocation and code access on-the-fly.

A mixed page contains both code and data. If the page is di-
rectly set as unreadable, the data in the page will not be able to
be read normally. To map the code and data in the mixed page to
unreadable and readable separately, the code and data need to be
stored in different pages. When the process is loaded, the mixed
page is identified by the splitter. Splitter migrates the code in the
mixed page to a new space, which can place the code and data in
separate pages. The new code page is executable but unreadable,
while the original page is readable but non-executable (@)).

The idea behind probed code handler is to disable the execution
permission of the target code (instead of the code segment) and
randomize its memory layout when it is being read. Therefore, the
attacker cannot execute the detected code, even if it already knows
the code address. In addition, splitter also ensures that the code
that has been read can still be legally called. To achieve the above
purposes, we replace the code page (p) that is being read with a
readable but non-executable code page (A). Meanwhile, the code
page that is being read will be mapped to an executable page (v)
in a new address space. Afterwards, all control flows that jump to
A will be captured and analyzed. All illegal control flows will be
blocked, while the legal control flows will be redirected to v.

It should be noted that the code in v will be copied into A.
Then, the code in A will be randomized at function and code block
granularities. All the relative addresses of the jump instructions
(such as call/jmp address) in A are modified to make them point
to the new address space. Therefore, if an adversary reads code
pages recursively starting from the probed page like JIT-ROP, it will
read the contents of the new address space, as shown in (1)~(4).
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For read requests in the new address space, AntiRead copies each
code page that is being read and sets it to be readable but non-
executable. Therefore, the code obtained by the adversary is either
randomized or non-executable.

The above designs require the capabilities of monitoring, track-
ing and controlling the OS resources and the process behaviors. To
achieve this purpose, we combine VMX (Virtual Machine Exten-
sion) root and VMX non-root to divide the running modes of the
original OS into two types, host and guest (Li and Chung, 2022).
In a general scenario, the OS runs in the guest. When a specific
event occurs, the running mode of the OS will switch from guest to
host, which is called a system trap. Combined with EPT (Extended
Page Tables) and VMX, AntiRead can set various system trap events
including process switching, the execution of specific instructions
(such as int3), interrupts, and debug exceptions, etc. During han-
dling system traps, the process is suspended, and its resources and
state can be detected and modified. After that, AntiRead can con-
trol the execution of the process by modifying the VMCS (virtual
machine control structures) fields. The control events include in-
jecting general protection exceptions, setting breakpoints, modify-
ing CPU context, and redirecting control flow. For example, after
modifying the guest rip in VMCS, the control flow can be redi-
rected. In summary, AntiRead can monitor, track and control the
execution of processes.

4. Implementation of AntiRead

Next, we introduce the implementation of permission manager,
splitter, and probed code handler in detail.

4.1. Permission manager

The existing XOM methods require tracking page allocation and
code access to disable the read permission of code, which is a key
factor that incurs overhead. If all code pages of the target object
can be set as unreadable in advance, runtime overhead will be re-
duced. To achieve this goal, the permission manager combines with
EPT technology to reconstruct the memory allocation system buddy
system, as shown in Fig. 2.

In Linux, the code page allocation in user space is done by the
buddy system. Physical memory is organized by the zone list, zone
and page. In NUMA architecture, the buddy system uses two zone
lists for each node to manage all memory zones. The first zone
list is used to manage the zones directly connected to the current
CPU, and the second zone list is used to manage all zones. When
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Fig. 2. New buddy system.
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a page fault occurs, the buddy system will select a specific number
of pages from a zone in the two zone lists (the first is preferred)
for the process. The original buddy system does not differentiate
between code pages and data pages, which poses a challenge for
identifying code pages.

Compared with the original buddy system, permission manager
doubles the number of zone lists and zones. In the new buddy sys-
tem, all the memory directly connected to the current CPU is di-
vided into two categories. One is used to allocate for user code,
called code pool; the other is used to allocate for other objects
other than user code (such as kernel code and user data, etc.),
called data pool. The zones contained in the code pool are called
code zones, and the zones in the data pool are called data zones.
code_list_current points to the code zones that directly connected to
the current CPU, and code_list_all points to all code zones, includ-
ing the code zones connected to other CPUs. data_list_current points
to data zones directly connected to the current CPU, data_list_all
points to all data zones, including the data zones connected to other
CPUs. Based on the above designers, code pages and data pages in
user space can be separated.

Next, code pages and data pages can be pre-set with different
permissions. We respectively set code zones and data zones to be
unreadable and readable via EPT_1. To prevent code zones from
being tampered with, we also set them to be unwritable. When
a page fault occurs, the modified function __alloc_pages_nodemask
(a kernel function used to allocate pages) allocates pages from
code pool or data pool according to the fault type. The fault type
(code page fault or data page fault) can be determined by check-
ing wether the fault address stored in the register cr2 points to
code areas.

It should be noted that the code pages cannot be set to be both
unreadable and writable at the same time. Otherwise, it will cause
an EPT misconfiguration. When loading code, the code page must
be writable. Otherwise, an EPT exception will be triggered. There-
fore, we cannot complete code loading with EPT_1 due to the un-
readable and unwritable code pool. To solve this problem, we must
set the code pages as writable and readable during code loading. If
and only if a code page fault occurs in user space, we execute the
VMX instruction vmfunc at the head of the function filemap_fault (a
function that moves code from an ELF file into memory) to switch
EPT to EPT_2. At this point, the code page is readable and writable.
When filemap_fault returns, vmfunc is executed again to switch EPT
back to EPT_1. At this point, the code page has been loaded into
memory, and the code page is executable but unreadable and un-
writable.

However, JIT applications do not use filemap_fault to load code
into the solidified code segment. It loads code into a code cache,
which is essentially an executable heap. The OS still uses al-
loc_pages_nodemask to allocate memory for the code cache. There-
fore, the physical page obtained by JIT is executable but unread-
able and unwritable. When it loads code into the page, an EPT
exception is triggered. After that we switch the EPT to EPT_2. It
should be noted that the entire code cache will be set as non-
executable in EPT_2. Therefore, executing any code in the code
cache will cause an EPT exception, which means that the code has
been loaded into memory at this time. After that, we switch the
EPT back to EPT_1. Unlike loading pre-compiled code, JIT intro-
duces two system traps between loading the code and executing
the code.

When the code page that has been swapped out is called again,
the kernel function do_swap_page will allocate a new physical page
for it. This page may be in the assigned swapper_space, or it may
come from a page allocated by the function _get_free_page. To
ensure the replaced page is executable but unreadable, we de-
tect whether the allocated page comes from code pool before the
do_swap_page returns. If not, we set the page to be executable but
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unreadable. Therefore, the pages that are swapped in again are still
unreadable.

We also create a set of remapping tables for the OS through In-
tel VT-d, which will mask the physical memory in the code pool. As
a result, an adversary cannot read user code through DMA (direct
memory access).

We divide all pages into two parts, which may cause the prob-
lem of unbalanced memory between the code pool and data pool.
For example, there are many free pages left in the code pool, while
there are few free pages left in the data pool. To solve this prob-
lem, the numbers of pages contained in the code pool and data pool
are not absolutely fixed. When there are no enough free pages, the
buddy system calls __alloc_pages_slowpath to free some pages that
have not been recalled. If the current allocation requirements can-
not be met after __alloc_pages_slowpath returns, it indicates that
there are few free pages left in the current pool. When the nopage
in __alloc_pages_slowpath is executed, we extract half of the free
pages in another pool and migrate them to the current pool.

In summary, when a code reading occurs, the activity will trig-
ger a system trap, and it will be captured. Moreover, the EPT
switch caused by vmfunc does not cause a system trap, and the
overhead it introduces is significantly smaller than handling a sys-
tem trap.

4.2. Splitter

The idea behind the Splitter is to store the mixed code and data
in different pages and give them different permissions, as shown
in in Fig. 3.

First, splitter needs to distinguish between code and data in the
mixed page. The mixed page is in executable code pages. The data
in the mixed page includes ELF headers and .rodata, and they can
be identified by analyzing the sections stored in ELF files.

Sceond, the code (C-1) in the mixed page will be migrated from
the original space (V-1) to a new space (V-2). The original mixed
page will be set as readable and non-executable. Therefore, the
data in this page can be accessed normally, while the code cannot
be called. To prevent the readable code in the mixed page from
leaking memory layout, C-1 will be randomized w at the granular-
ity of code blocks.

Third, splitter should ensure the legal control flow and data ac-
cess can reach the right locations. When C-1 is called, an excep-
tion is triggered. After that, the control flow will be redirected to
the migrated code C-2 in V-2 by setting the guest rip in VMCS. If
the excepted instruction is call/jmp addr, the operand addr will be
fixed to point to C-2. When it is called again, the control flow di-
rectly jumps to C-2 without triggering an exception. If the jump
target of the instruction call/jmp addr in V-2 is not in C-2, we also
modify its operand so that it can directly jump to the right code.
Since call/jmp *reg/pointer in C-2 uses an absolute address, it can
directly jump back to V-1. All data accesses in V-2 can be captured
due to triggering permission exceptions. After that, they will be
redirected to V-1.

To sum up, splitter can ensure the data in the mixed page can
be accessed normally. Meanwhile, the code in V-1 is obfuscated,
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and the code in V-2 is unreadable, which can prevent code infor-
mation leakage.

4.3. Probed code handler

Although the existing XOM methods can prevent code informa-
tion from being read, it also stops the legal code reading. For the
code that is being called, we can directly disable its execution per-
mission, which can prevent the leaked code from being used as
gadgets. However, such a design also prevents the protected code
page from being called legally. Especially for multithreaded sce-
narios, the code that is being read may is being called by other
threads.

To solve the above problems, we should ensure the code can be
read nomally. Meanwhile, the code that has been read cannot be
used as a gadget, while it can be called legally. The main idea be-
hind the probed code handler is to disable the execution permission
of the code page that is being read in the original space and mi-
grate it to an executable page in a new space. The implementation
of probed code handler is shown in Fig. 4.

The original code page v that is being read will be replaced
by a non-executable and randomized code page A, as shown in
Algorithm 1. Then, v will be mapped to the new space (line 4).
When the original code that has been read is called again, the con-
trol flow will be transferred to the non-executable A, which trig-

Algorithm 1
The method handling probed code page.

Input: p, the probed code page; Ins, the excepted instruction; func, the
function reading code; ret_addr, the return addresses on stack.
Output: NULL

1. If abnormal_access(p)=1 then [/ find the code reading

2 ¥ =Build_new_space() /[ build a new address space

3 v € ¥ [| the new page is in Y

4. Exchange_mmap(p, v, ¥) /[ map p to v in new space

5. ML=allocate_data_page(sizeof(p)); // allocate a data page X

6 Code_copy(p, A) [/ copy the code of p into A

7 Reorder()) // Randomize the memory layout of A

8. Foreach indirect_addressei do

9. Redirect(indirect_address, ¥) [[redirect indirect_ address to
10. End Foreach

11. RedirectCF(Ins, v) /| redirect the control flow to v

12. Foreach indirect_address ev do

13. If jmp/call indirect_address triggers a system trap then

14. RedirectCF (jmp/call indirect_address, OrigSpace)

15. End If

16. End Foreach

17. End If

18. If A«<Ins then /[ the control flow jumps to A and causes exceptions
19. RedirectCF(Ins, v) [/ redirect the control flow to v

20. End If

21.  If A rip € {func, v} && A ret_addr € {func, v} then

22. Exchange_mmap(v, p, OrigSpace) || map v to p in OrigSpace
23. End If
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gers a system trap. Next, we redirect the control flow from A to
v by modifying the field guest rip in VMCS (line 11). Based on this
design, we not only ensure the code can be read normally, but also
ensure the code that has been read cannot be used as a gadget.

The new virtual space is the same size as the original space,
and it also contains the virtual spaces of code segments and data
segments. In the new space, except v, other virtual pages in the
code segment will be redirected to a page that is unreadable, un-
writable and non-executable. Therefore, the control flow can only
be transferred to v, otherwise an EPT exception will be triggered.
The virtual pages corresponding to the data segment in the new
space will be mapped to the real physical data pages correspond-
ing to the original space, which ensures the code in v can access
the original data.

A is allocated to replace p, which can be achieved by modifying
the item in the last-level page tables of the EPT. A and p include
the same code. While, the memory layout of the functions and the
code blocks in A is randomized (line 7). After that, we modify the
operands of the current instruction that attempts to read code to
ensure the right code can still be read. The code block we select
for randomization uses jmp xxxx or ret as an exit, whose next in-
struction is antother code block’s entry. Randomizing such code
blocks will not affect the execution logic of the code. Because they
have no return relationship with their adjacent code blocks like call
XXXX, nor are they affected by the execution conditions like jne.

Considering some attacks (such as JIT-ROP) can read more code
pages recursively through indirect addresses stored in A (such as
the address in call address), we fix the indirect addresses contained
in A. All indirect addresses in A will be modified to make them
point to the new address space (lines 8-10). When an adversary re-
cursively reads the code page with the modified address, it will be
captured due to EPT exceptions. After that, we copy the code page
to be read into another readable but non-executable data page A-1
that is in the new space. The relative address in A-1 points to the
code in the new space. Therefore, we need not to modify its indi-
rect addresses. When A-1 is read by adversaries, what they obtain
are in non-executable pages. In this kind of push, we will allocate
readable but non-executable pages (A-2, A-3, ..., A-n) for the ob-
jects with code reading needs until the end of the reading activi-
ties. This design can prevent an adversary from building a gadget
chain. For the applications that need to read the code, they can
still read the right code. Although the relative address of the code
has been changed, this does not have any impact on the execution
logic of the code.

To ensure the code in the new space can call other code in
the original space, we should redirect the control flow to the right
location. For the jmp/call address in v, when it triggers a system
trap, we directly redirect the control flow to the original space by
modifying the guest rip in VMCS (lines 12-16). For the instruction
jmp/call *reg/pointer that use absolute addresses, they can jump di-
rectly back to the original address without any corrections.

Each control flow transfer instruction jumping to A will trig-
ger a system trap, which introduces significant overhead. To reduce
the overhead, we map the v in the new space back to the origi-
nal space after the read activity is completed (lines 21-23). Since
the content read by an attacker is either randomized code or non-
executable code, the code snippets in v cannot be used as gadgets,
even they are mapped back to the original space.

For the shared library, its memory layout in the current process
is the same as that in other processes. Even if their base addresses
may be different, the offset between two different base addresses
can be inferred from the leaked pointers, such as the return ad-
dresses. Then the base address can be calculated based on the off-
set. As a result, the memory layout of the shared library can be
used in different processes once it has been known by attackers.
To make matters worse, the new space used by the above design
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Fig. 5. The implementation of page code handler.
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Fig. 6. The mechanism of data redirection.

will affect the normal execution of the shared code in the parallel
processes. The reason is the new space is only mapped to the ad-
dress space of the current process, not all processes. Therefore, the
control flow of other processes cannot be transferred into the new
space. In addition, the direct manipulation to shared library may
cause execution conflicts, unless all processes calling the shared
code are suspended. The idea to solve these problems is to convert
the shared library code that is being read into the private code of
the current process, as shown in Fig. 5.

The shared code page that is being read will be copied to a new
physical page. Next, the last level of the page table is modified to
map the virtual address of the shared code page to the new phys-
ical page. Then, the target to be protected becomes a private code
page, which does not affect other processes calling the original li-
brary code. As a result, we can manipulate the private library code
as it handles the application code. From the attacker’s perspective,
the code he reads is randomized code, which is different from the
code layout in the address space of other processes.

In the presence of fine-grained ASLR, an adversary cannot in-
fer the memory layout of the entire process through a single
leaked function pointer. Unfortunately, in addition to the indirect
addresses in the code, Vtable (virtual table) and GOT also contain
rich address information. Once they are read by adversaries, many
function pointers will be disclosed.

To prevent adversaries from getting addresses in Vtable and
GOT, we build a data redirection mechanism, as shown in Fig. 6.
Vtables can be identified by scanning the content in .rodata. In
contrast, the GOT is stored in the writable area and its address
(relative address) is stored in PLT in the code segment. An EPT ex-
ception is triggered when an adversary reads PLT. After that, we
can speculate the adversary may have the intention to probe the
GOT.

The data in Vtable will be rewritten when the process code is
loaded into memory. The data in GOT will be rewritten when PLT
is read. After data rewriting, they respectively point to Vtable site
and GOT site instead of the original targets. Both Vtable site and



Y. Li, J. Cai, Y. Bao et al.

GOT site are executable but unreadable. What in Vtable site and
GOT site is only the transfer code that can redirect control flow
to the target code. When adversaries get the addresses in Vtable
or GOT, what they get is just the address of transfer code, not the
real address of the target function. Therefore, an adversary cannot
infer the gadgets contained in the function based on the first ad-
dress of the probed pointer.

Unlike Vtable, the entries in GOT are not loaded into memory at
once. Therefore, the function pointers in GOT cannot be rewritten
all at once. We can only modify the function pointer written into
GOT one by one. After PLT is read, GOT will be set as unwritable
to capture the entry to be written. When an EPT exception occurs
in GOT, GOT will be adjusted to be writable, and the single-step
debug mode is enabled by setting the registers drO~dr7. After the
entry is written into GOT, a system trap is triggered. Next, the en-
try will be modified to point to the GOT site. Finally, the single-step
debug mode is canceled, and the write permission of GOT also be
canceled. In this way, every function pointer written into GOT can
be hidden before it can be read.

5. Evaluation

We conduct all experiments on a Linux server, which is
equipped with two 10-core Intel Xeon silver CPUs and 128GB
memory. The OS is Ubuntu18.04 with kernel 4.16. It should be
noted that all performance evaluation results are the average of 10
runs.

5.1. Security evaluation

The protection effect on Vector 1. The adversary can start from
the data area and gradually move closer to the code segment un-
til the code is read. During this period, the adversary may read
the unmapped area, which triggers the signal SIGSGEV and causes
process crash. However, the adversary can perform the next round
of code probing after restarting the process. We deploy such an
attack HeartBleed in openssl-1.0.1c to simulate Vector 1. To read
the process code, the parameter pl of the memcpy (bp, pl, pay-
load) in openssl gradually decreases. This operation can extend the
leaked content from the data area to the code area. When the sig-
nal SIGSEGV is triggered, the current process will be restarted for
the next round of code probing. In our test, HeartBleed read the
first code page after about 1200 probes. We found the code read
by HeartBleed is not in the same order as the code in the origi-
nal code page. The indirect addresses (such as the address in call
address) are also not the same as the addresses contained in the
executable code pages.

The protection effect on Vector 2. The adversary can also use
the leaked code pointers to read the code directly. Under the
AntiRead’s protection, no matter how the adversary reads the
code page, the code he can get is either re-randomized or non-
executable. Because an EPT exception will be triggered due to the
code reading. After that, the code pages that are being read will be
mapped to a new space. Meanwhile, the pages an adversary can
read will be re-randomized, and the indirect addresses in the page
will be modified. As a result, what adversaries read cannot be used
as gadgets. For the indirect addresses contained in the code page
that has been read, they no longer point to the executable code
pages, which makes adversaries, such as JIT-ROP, unable to recur-
sively read the executable code.

To observe the changes of code layout and code forms be-
fore and after code reading, we use a loadable kernel module
(LKM) to read the code of perlbench in SpecCPU2006, as shown
in Fig. 7. The result shows that the layout of the code that has
been read is different from the layout of the original code. In fact,
both the base address of the function and the relative position
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of the code block inside the function have changed. For exam-
ple, after the code at 0 x 40394b is read, its address becomes
0 x 403e24; the distance between the original code block and the
function head is 0 x 3db, while the distance between the random-
ized code block and the function head is 0 x 504. After that, we
read the code at 0xff59ba60 through the indirect address stored
in [0 x 403e35~0 x 403e38]. What we read in 0xff59ba60 is the
same as the code in the original address 0 x 48aa60. However,
the code in 0xff59ba60 is non-executable. In summary, for Vector
1 and Vector 2, the code they can read is either randomized or
non-executable. As a result, what the attackers obtain cannot be
used as gadgets for CRAs. Even the CRAs with complete functions
as gadgets cannot be deployed.

The protection effect on Vector 3. For the code pointers stored in
GOT and Vtable, they have been modified to point to the transfer
site instead of the original functions. Therefore, adversaries cannot
guess the real code snippets in the target functions based on what
they read.

The protection effect on the cloned process. The existing attacks
can obtain child processes with the same address space as the par-
ent process through process clone. The code information obtained
by the adversary from the child process can be used to build a gad-
get chain in the parent process without causing a crash of the par-
ent process. Under the protection of AntiRead, the code cloned by
the child process is still unreadable. For the code pages that have
been read in the child process, they will be re-randomized. There-
fore, the code layout obtained by reading the child process code
is different from the layout of the code in the parent process. Al-
though adversaries can obtain non-randomized code through Vec-
tor 2, the code is stored in non-executable pages. As a result, an
adversary cannot build a gadget chain based on the cloned pro-
cess.

In summary, the users with code reading requirements (such as
debuggers) can still obtain the code with normal logic. Although
such code can also be obtained by attackers, they cannot be used
to form a gadget chain. To verify this conclusion, we use an LKM
to read the code in perlbench and gcc, and observe the jump num-
bers of the illegal control flow in the code that has been read and
randomized. The results are shown in Fig. 8.

Before the test, we use ROPgadgets [42] to search for avail-
able gadgets in the binary code of perlbench and gcc. They con-
tain 100750 and 254156 gadgets, respectively. Then, we randomly
select 200 gadgets from each gadget group. Next, we use LKM to
read the code page containing the selected gadgets to trigger the
code randomization done by AntiRead. Finally, we redirect the con-
trol flow to the selected gadgets by manually modifying the return
addresses, and observe the jump numbers of illegal control flow
through LBR (Last Branch Record) register group.

The results show that the illegal control flow can only jump 5
times in the randomized code at most. In most cases, the jump
number of illegal control flow is less than or equal to 1. Therefore,
we believe that even though attackers can still get the right code
forms, they cannot build a complete gadget chain.

5.2. Performance evaluation

We use SpecCPU2006 to meature the CPU overhead introduced
by AntiRead, as shown in Fig. 9. Meanwhile, we use an LKM to read
code pages with different proportions from high address to low ad-
dress, which simulates Vectorl. The results show that when there
is no code reading, AntiRead introduces an average of 1.8% over-
head to the CPU. When all the code is read, AntiRead introduces
about 48.4% CPU overhead on average.

We also use the indirect address in the code page (such as the
address in call address) to recursively read the code pages with dif-
ferent proportions, which simulates Vector 2. In this scenario, the



Y. Li, ]. Cai, Y. Bao et al.

Computers & Security 132 (2023) 103377

. 0, 0,
o 28;3;—:’8 2;15{9439“) 00 r;c])g\ll Oo/l(%)f%aéiﬁraxﬂ) 48aa60: 48 83 ec 08 sub  $0x8,%rsp ®
= : o oo 48aab4: 48 2b 3535828 00 sub 0x28f835(%rip), %rsi %
@ || 403953: 48 89 df mov  %rbx,%rdi 48236b- d b %rd b76( e
£7] 403956: ba02 00 0000 mov $0x2 %edx aabb: 48 89 3d 76 eb 28 00 mov %rdi,0x28eb76(%ri dp) g
£ || 40395b: e8 007108 00 callg 48aa60 48aa72: 48 8b 3d 2ff428 00 mov 0x28f42f(%r|p) %I =
Z | 403960: 48 89 c3 mov  %raxd%rbx 48aar9: 48 c1 fe 03 sar $0x3, %rsi =2
® || 403963: 9 0a ff ff ff jmpq 403872 Before 48aa7d: 8d b4 3280000000 lea 0x80(%rdx,%rsi,1),%esi i

) reading Original code
Z || 403e24: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1) ff59ba60: 48 83 ec 08 sub $0x8,%rsp z
< || 403e29: 4889 de mov  %rbx,%rsi ff59ba64: 482b 35351828 00 sub 0x28f835(%r|p) %rsi 2
Z || 403e2c: 4889 df mov  %rbx,%rdi ff59babb: 48 893d 76 eb 28 00 mov %rdi,0x28eb76(%rip) &
®<| 403e2f: ba 02000000 mov $0x2,%edx ff59ba72: 48 8b3d 2ff428 00 mov 0x28f42f(%r|p) %rdi 2
S || 403e34: e8277c19ff callq ff59ba60 ff59ba79: 48 c1fe 03 sar  $0x3,%rsi =
£.|| 403e39: 4889 c3 mov  %rax,%rbx o ff59ba7d: 8d b4 32 800000 00 lea =
— . H er o, o, ) o
= || 403e3c: €9310a 11ff jmpq ff514872 reading 0x80(%rdx, %rsi,1),%esi Code read via indirect address || ©

Fig. 7. The code changes in permissions, memory layout, and forms after code reading occurs.
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impact of AntiRead on the CPU is shown in Fig. 10. The results
show that the overhead introduced by AntiRead will gradually in-
crease with the size of the code being read. However, compared
with handling the code reading based on Vector 1, AntiRead has
less overhead in handling the code reading based on Vector 2. For
example, when handling 20% of the code, AntiRead introduces an

average of 12.4 and 10.3% CPU overhead in the two execution sce-
narios, respectively.

When handling Vector 1, AntiRead should copy the code, adjust
permissions, randomize the code and modify the indirect addresses
in the code page. After the code reading ends, the original code
page should be restored. In contrast, AntiRead only needs to per-
form the above operations on the first code page being read when
handling Vector 2. For the code pages that are read recursively, An-
tiRead only needs to copy them to the new space without other
operations. Therefore, AntiRead can handle Vector 2 faster.

Although AntiRead introduces significant overhead when han-
dling Vector 1, this overhead is not permanent. To verify this con-
clusion, we use web applications to measure the impact of An-
tiRead on their running speed before and after code reading, as
shown in Fig. 11. For the web servers, the number of work pro-
cesses is 4, the number of connections is 8, and the size of the
requested file is increasing. We use an LKM to read different pro-
portions of code from high address to low address in continuous
virtual memory. During code reading, we measure the data trans-
fer speed of the web applications. After 5 minutes, we measure
the data transfer speed again. The results show that AntiRead sig-
nificantly slow down the speed of applications when handling the
code that is being read. After AntiRead finishes the code handling,
this impact will become smaller, and even be equal to the impact
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Fig. 14. The impact on the time of loading process.
before handling the code. The reason is that AntiRead will map
the code that has been read back to the original address space af- JTT::g: .
. . . 1 est.
ter the code reading is finished. After that, the control flow can
be directly transfered to the original code without triggering any Benchmark Orig. AntiRead Overhead
system trap. Therefore, we do not need to track and redirect the Richards 38421 37257 3.03%
control flows, which is the same as executing the code that is not DeltaBlue 59788 57174 4.37%
read. Crypto 32006 30398 5.02%
Although in the extreme cases, AntiRead will slow down the RayTrace 78125 74695 4'39f
. . A . . ) EarleyBoyer 43076 41992 2.52%
running sp.eed of yveb applications by times, this does not mean it RegExp 5937 5621 532%
has a significant impact on network. In fact, code reading activi- Splay 22006 21439 2.58%
ties only occur in specific scenarios. Most of the time, the code in NavierStokes 32015 30914 3.44%

the application and library will not be read. To measure the im-
pact of the AntiRead on network in normal scenarios, we measure
the running speed of the web applications when there is no code
reading, as shown in Fig. 12. For the web servers, the number of
work processes is 4. The results indicate the average overhead on
the network is about 3.3%.

We use IOMeter to measure the impact of AntiRead on I/O, as
shown in Fig. 13. The results show that the I/O throughput is re-
duced by 2.3%, the I/O response time is increased by 2.9% on aver-
age.

When the process starts, AntiRead uses the new buddy system
to allocate code pages for it. The code loading will trigger the EPT
switch, thus increasing the time of loading process, as shown in

Fig. 14. The results show that AntiRead increases the load time by
2-18%.

In addition, we also use V8 Benchmark Suite-Version 7 to test
the impact of AntiRead on JIT code, and the results are shown in
Table 1. The results show that AntiRead reduces the running speed
of JIT code by 3.8% on average.

AntiRead sets the permissions of the code to be unreadable be-
fore the process runs. It doesn’t use complex mechanisms to adjust
code page permissions on-the-fly. Therefore, its overhead on run-
ning processes is not so high. It should be noted that the JIT code



Y. Li, J. Cai, Y. Bao et al.

1000 60
40
500
20
0 0
Q N N sle Q sl

Q\o \c \o g\a \n \w \n o
PSS r\,@@ob%@\@e\

Computers & Security 132 (2023) 103377

30000 8000
20000 6000
4000
10000 2000
0 0

Q r§\e §\° ng\“ %QQ\E\QQQ\Q Q q’QQ\o b(QQ\Q ‘QQQ\Q %QQ\Q\QQQ\Q
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figures are Apache, Sqlite, redis server, and ngnix in sequence.

Table 2

Micro test (ns).
CAddr CReg CARO CAR> CRR? CRR® ST
2.7 2.8 9221 2.7 945.5 2.9 516

CAddr: call the code that is never read with call/jmp address; CReg: call the
code that is never read with call/jmp *register/pointer; CAR": call the code that
is read n minutes ago with call/jmp address; CRRn: call the code that n minutes
ago with call/jmp *register/pointer; ST: system trap.

can cause two system traps before executing the code. Therefore,
AntiRead has a larger impact on it.

To analyze the root cause of the overhead more clearly, we use
some micro benchmarks to test AntiRead, as shown in Table 2. The
running speed of the code before and after being read will be mea-
sured successively. The results show that the operations handling
system traps are the main factors introducing overhead. For exam-
ple, call *register triggers a system trap when it jumps to the code
that is being read. Therefore, its execution time is longer. In con-
trast, when it calls the code that has been read 5 minutes ago,
there is no system trap needs to be handled by AntiRead. There-
fore, its execution time is only 2.9ns.

In addition, the instructions cpuid, gettsec, invd, xsetbv and all
VMX instructions except vmfunc will trigger system traps uncon-
ditionally. Their execution frequency will affect the running speed
of the process, which is an important factor causing different over-
head for different applications.

When code reading occurs, AntiRead allocates readable page(s)
in the new space. After the code reading ends, the code page(s) in
the new space will be recycled. To verify this conclusion, we use
an LKM to read the code and observe the change in code size, as
shown in Fig. 15. The results show that the memory overhead in-
troduced by AntiRead does not increase indefinitely. The reason is
AntiRead will recycle code pages in the new space with the target
process execution. When a system trap occurs, AntiRead checks if
the addresses of the code pages that have been read are stored on
the stack. If not, the code pages in the new space will be recy-
cled. Meanwhile, the code in the original space will be restored. In
contrast, the memory virtualization adopted by AntiRead requires

more memory. To cover all physical pages (128GB), two EPTs re-
quire about 513MB memory.

Moreover, AntiRead needs to change 650 lines of kernel code
and add 400 lines of kernel code, which will not significantly in-
crease the kernel size.

5.3. Comparison with existing methods

We compare the defense effect of existing methods and their
performance, as shown in Table 3. The comparison indicates An-
tiRead can achieve better protection with less overhead. The rea-
son is AntiRead sets the code page as unreadable in advance via
the new buddy system, which avoids time-consuming tracking of
code access and dynamic adjustment of code permissions.

In contrast, the methods relying on source code, such as kRX
(Ahmed et al., 2020), are invalid for the shared library code. Ex-
cept for AntiRead and TASR (Bigelow et al., 2015), all methods di-
rectly block code reading activities, or provide a fake code area
with them. In the presence of such methods, benign programs can-
not get the code with original execution logic. TASR is a random-
ization method that randomizes the entire code segment when an
attacker sends code out. Similarly, AntiRead randomizes the code
page being read when the code reading activity occurs. Meanwshile,
the code that has been read will be set as non-executable. The le-
gal calls to this page will be transferred to a new space where
stores the original code, which can ensure the probed code can
still be called normally. Compared with TASR (Bigelow et al., 2015),
AntiRead does not need to randomize the entire code segment, nor
does it need to restore the complex call relationship between code
blocks after randomization. In addition, most methods are invalid
for DMA-based code reading probes. With the help of Intel VT-d,
AntiRead can hide the target code from DMA activities.

5.4. Limitations

AntiRead still has some limitations. First, it can only protect
the indirect pointers stored in code segments and direct pointers
stored in GOT and Vtable. It is invalid for the pointers stored in
heap, stack and data segments.

Table 3
Comparison with existing methods.
CA RD CcP AOCR NS VL. NR 0

AntiRead v N * X N N v 1.8%
XnR[5] N X X X Vv X X 2.2%
Heisenbyte[11] J X X X N X X 16.5%
TASR[14] v N N v X X v 2.1%
CodeArmor{28] * X N X J J X 6.9%
Readactor[7] Vv X N X X X X 6.4%
HideM[6] v X X X N N X 2%~6.5%
Near[8] N X X X v VA X 5.7%
KR*X (Pomonis et al., 2017) Vv X X X X X X 4.04%

CA: direct code reading; RD: code reading via DMA; CP: code pointer leaks; AOCR: code probing via AOCR (Robert and Skowyra (2017)); NS: effective without
source code. VL: valid for library code. O: overhead; NR: no negative impact on legitimate code reading and subsequent execution. *: partially valid.
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Second, AntiRead requires the x86 processors equipped with
the hardware-assisted virtualization technologies VT-x and VT-d. If
there is no such hardware surpport, AntiRead cannot be deployed.

Third, AntiRead cannot defend against AOCR (Robert and
Skowyra, 2017). In fact, except for the runtime randomization
methods, such as TASR (Bigelow et al., 2015), all methods that
restrict code read permissions are invalid for AOCR. AOCR does
not need to read any code, which is obviously beyond the protec-
tion scope of AntiRead. For runtime randomization methods, such
as (Giuffrida et al., 2012; Curtsinger and Berger, 2013; Wang and
Wuy, 2019; Lu et al., 2016; Wang et al., 2017; Hawkins et al., 2017;
Friedman and Musliner, 2015), they are not perfect. They face the
problem of selecting randomization points, which directly affects
their work efficiency and defense effect. Although frequent ran-
domization can achieve better protection effect, it causes greater
overhead. Moreover, the existing randomization methods take the
whole code segment or the entire memory object as the tar-
get, and they need to solve the complex calling relationship be-
tween code objects. More seriously, most fine-grained randomiza-
tion methods rely on source code, which makes them invalid for
closed-source objects.

6. Conclusions

This paper proposes a method AntiRead to prevent adversaries
from building gadgets with the code that has been read. Unlike
existing methods, it does not completely disable the read access to
the code. Instead, it allows any application to read the code, in-
cluding adversaries and legitimate processes that need to read the
code. Once the code is read, it will lose the execution permission
in the original space. Then, the code that has been read will be
re-randomized in the original space to prevent address leakage. At
the same time, the executable code page(s) will be prepared in the
new space to ensure that the code that has been read can be called
legally. After the code reading is finished, the original code will
be mapped back to the original address space. To the best of our
knowledge, AntiRead is the first method that can preset all code
pages as unreadable, thus achieving better results with less over-
head. Experiments and analysis show that AntiRead can prevent
the code that has been read from being used as gadgets without
affecting other applications to read the code legally. Furthermore,
AntiRead introduces 1.8% overhead to CPU.
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