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Workload Balancing via Graph Reordering
on Multicore Systems

YuAng Chen
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Abstract—In a shared-memory multicore system, the intrinsic irregular data structure of graphs leads to poor cache utilization, and
therefore deteriorates the performance of graph analytics. To address the problem, prior works have proposed a variety of lightweight
reordering methods with focus on the optimization of cache locality. However, there is a compromise between cache locality and
workload balance. Little insight has been devoted into the issue of workload imbalance for the underlying multicore system, which
degrades the effectiveness of parallel graph processing. In this work, a measurement approach is proposed to quantify the imbalance
incurred by the concentration of vertices. Inspired by it, we present Cache-aware Reorder (Corder), a lightweight reordering method
exploiting the cache hierarchy of multicore systems. At the shared-memory level, Corder promotes even distribution of computation
loads amongst multicores. At the private-cache level, Corder facilitates cache efficiency by applying further refinement to local vertex
order. Comprehensive performance evaluation of Corder is conducted on various graph applications and datasets. Experimental
results show that Corder yields speedup of up to 2.59x and on average 1.45 x , which significantly outperforms existing lightweight
reordering methods. To identify the root causes of performance boost delivered by Corder, multicore activities are investigated in terms
of thread behavior, cache efficiency, and memory utilization. Statistical analysis demonstrates that the issue of imbalanced thread
execution time dominates other factors in determining the overall graph processing time. Moreover, Corder achieves remarkable

advantages in cross-platform scalability and reordering overhead.

Index Terms—Multicore system, cache locality, workload balance, graph processing

1 INTRODUCTION

RAPH analytics has been a fast growing research field cov-

ering applications in diverse domains, such as protein
structure identification [1], social network analysis [2], and
fraud detection [3]. At the same time, data generated in these
domains continuously grow in size and complexity, which
require efficient processing systems for large-scale graphs.

To achieve high performance, various graph processing
frameworks have been designed for different use scales. Ata
small scale where resources are limited (e.g., a laptop with 4
cores and 16 GB memory), the out-of-core frameworks utilize
the external memory (e.g., disks) to temporarily offload the
work [4], [5]. At a larger scale, such as a server-class multi-
core machine with 40 cores and 256 GB memory, shared-
memory frameworks are able to exploit high parallelism as
well as high capacity [6], [7]. When the graph size is too large
(e.g., Terabytes) to fit into a single machine, the graph proc-
essing scales out to a cluster of multiple machines by deploy-
ing distributed-memory frameworks [8], [9].

In this paper, we narrow down our research scope
within the shared-memory graph processing on the sin-
gle-machine multicore system. Without the overheads of
intensive disk accesses and network traffics, the shared-
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memory frameworks oftentimes outperform their disk-based
and distributed counterparts [9], [10]. Nevertheless, suffering
from highly randomized memory access patterns, the com-
puting power of underlying multicore platforms still remains
very much underutilized [11], [12].

The main reason accounting for the inefficiency of
shared-memory multicore graph processing is the irregular
pointer-based data structure of graphs. It behaves as the
opposite of regular sequential data structure, e.g., arrays
and matrices. When a graph is processed, a large volume of
communication is invoked between computations at each
vertex or edge. For the memory, the irregular pattern of
communication is translated into random memory accesses
in terms of data loads and stores.

Moreover, the irregular connectivity incurs a distinctive
property commonly found in natural graph datasets: the
skewed power-law degree distribution, in which a tiny frac-
tion of vertices contribute to the majority of edges [13], [14].
These vertices are called hot vertices, while the remaining
vertices with less connections are named cold vertices. Cast-
ing a graph into the memory, hot vertices are preferable for
caching, because they comprise a large portion of computa-
tion but a minor portion of memory usage. As for the cold
vertices, they scatter all over the memory and are randomly
accessed, thereby causing high cache misses rate.

Hot vertices randomly spread throughout the whole
graph but not evenly. Naturally, they tend to aggregate and
occur in concentration, which we refer to as graph locality.
The impact of graph locality on cache behaviors is inter-
preted as cache locality [11], [12], [15], [16]. Characterized by
the reference pattern, cache locality can be further classified
into two types: temporal and spatial. A group of high-degree
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vertices shows high temporal locality if frequently accessed.
Also, they exhibit high spatial locality if stored in nearby
memory allowing for continuous reading and writing.

Besides the cache efficiency, the irregularity of graphs
also affects the effectiveness of parallel computing scheme.
Some local subgraphs (i.e., subsets of a graph that is parti-
tioned according to certain criteria or algorithms) inside the
graph accommodate more vertices or richer connections
than others. Therefore, they tend to demand intensive com-
putation. The difference among subgraphs raises imbal-
anced workloads amongst working threads in a parallel
graph processing system [11].

To utilize graph locality and improve cache efficiency, a
variety of lightweight graph reordering methods have been
proposed [15], [17], [18]. These approaches, in principle,
reorder vertices such that hot vertices and cold ones are sep-
arated into different memory locations. Therefore, hot verti-
ces are allocated in contiguous memory space and
frequently requested by processor cores. At a result, they
have higher chances to be retained within the cache lines,
which allows for better cache utilization.

However, graph reordering does not necessarily guaran-
tee performance boost. In de facto, it often leads to a slow-
down if an improper strategy is deployed [15]. The
gathering of hot vertices aggravates the imbalanced distri-
bution of computation load [18], forcing the main process to
wait for the longest thread to synchronize. Moreover, reor-
dering techniques inevitably disrupt the internal structure
of graphs [17], such as communities of common friends in
social graphs. The finer-grained the reordering is, the more
structural information it loses.

To overcome aforementioned limitations, we propose
Cache-aware Reorder, namely Corder, a lightweight reordering
method based on the characteristics of cache. Our contribu-
tions can be summarized as three folds:

e We demonstrate that graph analytics in multicore
systems suffers from imbalanced workloads, besides
poor cache locality. A novel metric, namely Locality-
Skew, is designed to quantify the inherent imbalance
inside graphs. It incorporates the knowledge of
graph locality and power-law skew. Further, it can
be used to evaluate the impact of graph reordering
techniques on the balance of a graph.

e Inspired by the analysis above, we present Corder,
an efficient reordering method with the awareness of
cache. First, a graph is partitioned by Corder to fit
the vertex subsets into the private caches of multi-
cores. Then, in the main memory, Corder facilitates
load balance by evenly distributing hot vertices
across the partitions. Finally, within the cache, it
enhances graph locality via separating hot vertices
from cold ones.

e Tolocate the source of performance gain achieved by
Corder, we investigate the multicore activities in the
aspects of thread behaviors, cache utilities and mem-
ory dynamics. Based on statistical approaches, a per-
formance model is derived that profiles the relative
importance of the aforementioned three factors.
Numerical results show that the thread holds a dom-
inant position in contributing the acceleration.
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TABLE 1
Graph Properties in Terms of Hot Vertices Percentages (V),
Edge Coverage of Hot Vertices (E), and Average Degree (D)

Graphs Descriptions V(%) E (%) D
urand Synthetic Graph[19] 51 59 32
kron Synthetic Graph[19] 8 93 31
pld Pay-Level-Domain[20] 12 88 14
live Live Journal[21] 24 80 14
wiki Wiki Links[22] 19 94 9

twitter Twitter Follower[23] 9 79 35
mpi Twitter Influence[24] 11 81 38

Following the introduction, Section 2 offers preliminaries
and related state-of-the-art research. Section 3 describes the
designs of Skew-Locality and Corder in detail. Section 4
presents extensive performance evaluations in both theory
and experimentation. Finally, this paper is concluded in
Section 5.

2 BACKGROUND AND RELATED WORK

2.1 Basic Concepts
2.1.1 Skewed Degree Distribution

It is rare to see that a real-world graph that is not skewed
with respect to its degree distribution [13], [14]. The skewed
degree distribution, following the power law, means that a
small fraction of vertices are responsible for a major faction
of edges. Mathematically, the portion of vertices that have k
connections to other vertices can be formulated as p(k) ~
k7Y, where y is a parameter empirically ranging in [2,3] .
Such inequality can be interpreted differently in various
contexts. For instance, a celebrity has enormous social influ-
ence in social network graphs, or a search engine website
sends billions of requests to other websites on web graphs.

In this paper, we use out-degree as the default measure-
ment for the degree of a vertex. Vertices with degrees higher
than the average degree of the graph is considered as the
hot vertices, while the rest of vertices in the graph are the
cold ones. Table 1 lists the percentage of hot vertices and
their edge coverage across various graphs. Detailed descrip-
tions regarding these graphs are provided in Table 4 in Sec-
tion 4. In skewed graphs, 8-24 percent hot vertices compose
79-94 percent edges. Graph urand is not skewed, since over
half of vertices in it are classified as hot.

2.1.2 Graph Locality

The placement of graph vertices and the relationship among
them pose non-negligible impact on graph locality. Con-
sider the examples in Fig. 1 and assume the vertices are
stored in an array in the order of vertex ID. We suppose that
a graph algorithm examines the relationship between every
vertex and its neighbors in sequence. Our goal is to observe
the access pattern relating to vertices 0 and 1. In the random
graph of Fig. 1a, vertex 0 and its neighboring vertices 2 and
5 are first evaluated, then followed by the vertex 1 and its
adjacent vertices 3 and 4. Therefore, the access pattern is 0-
2-5-1-3-4, where each vertex is visited only once (i.e., poor
temporal locality), and vertices are not co-located in the
array (i.e., poor spatial locality).
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(a) Random graph (b) Reordered graph
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(c) Adjacency matrix of (a) (d) Adjacency matrix of (b)

Fig. 1. Graphs and their belonging adjacency matrices. Graph (b) is reor-
dered from graph (a) by assigning continuous ID numbers to neighboring
vertices. The reordered vertices constitute two diagonal blocks, which
are depicted with shadow color in matrix (d).

The graph in Fig. 1b is optimized on the vertex order, such
that nearby vertices are labeled with close ID number. As a
result, the access pattern corresponding to vertices 0 and 1
becomes 0-1-2-1-0-2 in the reordered graph. This pattern
achieves good temporal-spatial locality, because vertices 0,
1,2 are repeatedly accessed in continuous memory space.

The graph locality can also be directly observed from the
adjacency matrix. Fig. 1c presents the adjacency matrix of
the random graph. The elements of the matrix, representing
the connections of vertices, are sparsely distributed. By con-
trast, the reordered adjacency matrix in Fig. 1d, containing
two dense diagonal blocks, exhibits better graph locality.

2.2 Related Work
2.2.1 Graph Reordering

The random and sparse distribution of hot vertices in mem-
ory incurs severe underutilization of caches. To improving
cache efficiency, prior works have proposed various graph
reordering methods [12], [15], [17], [18]. These aim to search
for an (approximately) optimal permutation of vertex order
to improve graph locality, such that frequently accessed
vertices are placed together. The examples of state-of-the-
art graph reordering methods are described as follows:

Gorder [12] offers significant performance boost to graph
applications by leveraging the internal structure of graphs.
It undertakes a sophisticated analysis of the connectivity of
vertices. Consecutive IDs are relabeled to vertices that share
common neighbors. Hence, these neighboring data are
reused in cache when vertices are consecutively processed.
Nevertheless, Gorder tends to cost hours to accomplish the
reordering procedure, while the graph applications are typi-
cally executed within minutes or even seconds (see Table 8).
For this reason, it is impractical to deploy Gorder, especially
when the graph is constantly changing.

Gorder can be considered as a representative example of
heavyweight reordering methods that require prohibitively
high overhead [12], [25], [26], [27]. Calling for pragmatism,
lightweight degree-based reordering methods with low
computation complexity are proposed [15], [17], [18]:
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Original Sorting
[3]19] s [49]22]13]33] 8 [27]11]00]36]  [s0]49]36]33]27]22]10]13] 1] 8 [5]3]
vl v2 v3 v4d v5i v6 v7 v8 v9 vi0 vil vi2 vil v4 vi2 v7 v9 v5 v2 v6 vio v8 v3 vl
FBC HC
[o0]40]36[33]27]22] 3 [10] 5 [13] 8 [ur]  [49]22]33]27]00]36] 3 [1o] s [13] 8 [u1]
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Random
[27]90]13]22]11]19] 5 [36] 3 [49] 8 33
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[49]90]33]22]27]36 [19][13[11] 3] 5 [ 8]
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Fig. 2. Vertex placement by different reordering techniques. The degrees
of vertices are filled inside the box. Cold vertices (degree < 20) are
painted with grey, hot vertices are colored, and very hot vertices (degree
> 40) are depicted with darker shade. Indexes below the box are the orig-
inal vertex IDs.

Sorting places all vertices in descending order of degree. It
is the most straightforward method for degree-based reorder-
ing. However, as illustrated in Fig. 2, the original graph struc-
ture is entirely reorganized, even including the relative order
of the vertices. Moreover, sorting leads to extremely imbal-
anced workloads, imposing a considerable adverse effect on
the overall performance of parallel graph processing.

Frequency Based Clustering (FBC) [18], also referred to as
Hub Sorting, only applies sorting to hot vertices, while
keeping remaining cold vertices unsorted. FBC improves
the graph locality at the cost of fully rearranging the struc-
ture of hot vertices. Nonetheless, it still incurs high imbal-
ance due to the sorting of hot vertices

Hub Clustering (HC) [15] is a variation of FBC. It separates
hot and cold vertices into two memory spaces. HC does not
employ sorting to any vertices. Therefore, the relative
orders of hot vertices and cold vertices are maintained in
their respective segments. HC reaches an optimal compro-
mise between workload balance and graph locality.

Degree Based Grouping (DBG) [17] employs coarse-grain
sorting to the graph. Vertices are allocated into different
groups with exclusive degree ranges: [0,%) and [2""' D, 2"D),
wheren =0,1,2,...and Dis the average degree. Then, these
groups are sorted in descending order. To preserve graph
structure, the relative order of vertices inside each group
remains intact. DBG can be viewed as an intermediate
between Sorting and HC. Fig. 2 visualizes the degree-based
vertex placement policy. In addition, the random reordering
(RND) is used as a benchmark for later analysis. RND shuf-
fles a graph, therefore completely eliminating the graph
locality and structure. On the other hand, it generates a uni-
formly distributed random permutation of vertices, which
yields a uniform distribution of workloads.

In brief, prior reordering methods mainly focus on
enhancing the graph locality for performance boost by con-
centrating hot vertices. However, the experimental results
in Section 4 shows that the scalability of these methods is
seriously limited. They are effective only in a particular
framework. In most cases, the performance of downstream
graph applications is deteriorated due to imbalanced work-
loads caused by the concentration of hot vertices.

Besides graph reordering, various optimization techniques
are proposed to enhance cache locality [28]. For example,
graph-specialized cache management is designed to enhance
the spatial-temporal locality at the last level cache [29]. Cache-
aware partitioning/blocking methodologies subdivide a
graph into cache-able subgraphs for the improvement of
graph locality [11], [18], [30]. Oftentimes, the data layouts are
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fine-tuned to cooperate with the proactive graph caching
strategies [4], [10], [31].

2.2.2 High-Performance Graph Processing

A diversity of graph analytics frameworks have been devel-
oped for high-performance graph processing. Many of these
can be generalized into two types: vertex-centric and edge-
centric.

The vertex-centric paradigm is widely adopted in contem-
porary frameworks [6], [32], [33], [34], [35]. It enables every
thread to process arbitrary vertices in a graph. This paradigm
propagates data through the graph in one of two directions: a
vertex pushes data along its outgoing edges; otherwise, it
pulls the data along its incoming edges. In the pushing flow,
a race condition occurs when multiple threads access a com-
mon vertex. Hence, heavy use of synchronization primitives
is involved during graph processing, including atomic oper-
ations and mutexes. In the pulling flow, locks are removed,
but a full scan of incoming edges is required. Therefore, a
redundancy is introduced when only a subset of vertices are
active in an iteration [36].

To improve cache locality and alleviate thread conten-
tion, the edge-centric paradigm is utilized [4], [37]. Such
paradigm streams on edges instead of vertices, so the graph
data are prefetched before being processed. Nevertheless, it
delivers suboptimal results to graph applications with
dynamic active vertices, such as BFS. This is because all
edges, including the unrelated ones, are streamed in every
iteration [28].

With the awareness of cache hierarchy, a series of partition-
centric graph processing frameworks are designed based on
Compressed Sparse Row (CSR) segmentation [7], [18], [30],
[38]. The input graph along the vertex array of the CSR format
is first subdivided into partitions, such that the vertex set of
each partition can fit into the cache. Then, each partition is
exclusively processed by one core, so that random accesses
are limited to local partition within the cache. Finally,
updated results of each partition are propagated via inter-
partition edges to the destination partitions. The partition-
centric paradigm significantly improves cache performance
and completely avoid atomic operations as well as mutexes.

Connecting two partitions in different cores, the inter-
partition edge (inter-edge) is a distinct advantage of the par-
tition-centric graph framework over the vertex-centric one
[7]. An inter-edge transfers the message (e.g., updated rank
value in PageRank application [39]) from a source vertex to
a target partition. After being received, the message is then
forwarded to destination vertices via local propagation.
Through this process, multiple vertex-to-vertex edges are
compressed into to a single inter-edges. The exercise of
edge compression significantly reduces the memory traffic,
and thus boosts the performance of graph processing [30].

3 CACHE-AWARE REORDERING

We propose a cache-aware graph reordering method,
named Corder, by following the partition-centric paradigm.
In this paradigm, graph algorithms are parallelized by
unrolling loops with dynamic schedulers [7]; that is, loop
iterations are dynamically assigned to threads for workload
balance. Based on the dynamic scheduling policy, Corder is
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Fig. 3. Conceptual design of Corder. Grey cycles represent subgraphs.
Different grey colors and sizes indicate imbalanced workloads. Corder
reorders the graph such that the vertex subset of each subgraph can fit
into the private caches of multicores with fairly balanced loads. Within
the cache, hot vertices and cold ones are segmented to improve cache
locality.

aimed to further fine-tune the computational cost of each
iteration via replacing the data (i.e., reordering the graph).
The abstraction of Corder is illustrated in Fig. 3.

For the design of Corder, we first dig deeper into the
property of graphs in Section 3.1. A metric, namely Local-
ity-Skew, is formulated to estimate the inherent imbalance
inside a graph. Accordingly, in Section 3.2, we present a
swap-based reordering method that evenly distributes the
hot vertices for load balance. Then, in Section 3.3, to opti-
mize cache locality, hot vertices are locally concentrated
within L2 cache. Finally, Section 3.4 generalizes the prior
procedures and proposes Corder, which facilitates efficient
implementation and exploits high parallelism.

Additionally, it is worth mentioning that finding the
optimal partitioning as well as ordering scheme for a graph
has been proved to be a NP-hard problem [12], [40]. Hence,
the idea of Corder is developed based on the heuristics
from the widely used graph processing frameworks and
reordering methods. Though Corder is initially devised as
an accelerator for the partition-centric graph processing par-
adigm, it exhibits strong scalability onto the vertex-centric
frameworks too (see Section 4.7).

3.1 Estimating Imbalance

Despite the improvement in graph locality, the aggregation
of hot vertices aggravates the uneven placement of hot verti-
ces among subgraphs, and thus exacerbates load imbalance
in a multicore system. To quantify the skewed distribution
of graph locality incurred by concentration of vertices, we
define the term ”Locality-Skew”.

To the best of our knowledge, there is no means to quan-
titatively measure the graph locality [11], [15]. The closest
analogy is provided by Gorder, where the locality of two
vertices is calculated for co-placement [12]. The extensive
calculation of vertex pairs throughout the entire graph
causes an excessively high computational cost (see Table 8).
Hence, our primary task is to provide an efficient measure-
ment approach for the graph locality. Given that the graph
locality is mainly determined by the connectivity among the
vertices in local subgraphs, the measurement task could be
decomposed into two steps: (1) partition the graph, and (2)
approximate the connectivity.

We perform the partitioning based on the characteristic
of cache hierarchy. For a modern multicore machine, its
cache is typically comprised of three level hierarchy accord-
ing to the speed/storage. Level-1 (L1) cache operates at the
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highest accessing speed but with the smallest storage capac-
ity. Level-2 (L2) cache holds the medium-size storage by
sacrificing the speed. Last Level cache (LLC) offers the low-
est speed but the largest capacity. Every core is assigned
with its own private L1 and L2 caches, whilst the LLC is
shared between cores. According to these features, we split
the vertex set of a graph into numerous partitions, the size
of which is fixed to L2 cache size. Hence, each subgraph
along its vertex array can be fitted in the private L2 cache of
one core. The design choice of L2 cache achieves a balance
between speed and storage.

Since the size of a vertex subset is predetermined, the
graph locality now depends on the connectivity of vertices
inside the subgraph. Here, we simply approximate the con-
nectivity of a subgraph by accumulating the degrees of all
vertices inside it. This is because, on one hand, the degree
represents the number of edges one vertex is connected to.
Vertices with higher degrees are likely to involve heavier
computation. Thus, subgraphs with larger sum of degrees
tend to associate with larger workloads. On the other hand,
the summation of degrees is a simple arithmetic operation
that requires no in-depth analysis, e.g., leveraging the inter-
nal structure of graphs.

In concise words, we evaluate the graph locality by the
cumulative total of vertex degrees in a subgraph with a fixed size
of vertex array equal to L2 cache. Furthermore, the localities
(i.e., total sum of degrees) of different subgraphs vary with
the skewed distribution of degrees. To measure the varia-
tion, we thereby introduce ”Locality-Skew”.

The calculation of Locality-Skew consists of three steps.
First, the locality of each subgraph is obtained. Next, sub-
graphs are sorted by their localities in descending order.
Therefore, the subgraphs at the top are loaded with much
higher localities than these at the end. Last, the total locality
of top \ percent subgraphs is divided by the counterpart of
end A percent to compute Locality-Skew

1)

L(s
Locality-Skew = z:set%

)
Zsee'ndA (5) .

In Eq. (1), s is the sorted subgraphs, L(-) stands for the
locality of a subgraph (i.e., the sum of degrees). Table 2
presents the measurement of Locality-Skew with varied A
(denoted as L-S)) across different graphs. urand is a per-
fectly unskewed and balanced graph. kron and pld are
slightly imbalanced. The imbalances of live and wiki become
severer as their L-S grow higher. As for twitter and mpi, hot
vertices are concentrated in the 1 percent subgraphs, exhib-
iting extremely unequal distribution.

By absorbing the knowledge of graph locality and skewed
degree distribution together, Locality-Skew offers us a new
perspective to observe the features of a graph. For instance,
the conventional measurement in Table 1 indicates kron is
highly skewed, because 8 percent vertices compose 93 per-
cent edges in this graph. Nevertheless, as listed in Table 2, its
L-5y9, = 1.20 implies that it is, in fact, fairly balanced.

It should be emphasized that we aim to provide an effi-
cient estimation regarding the graph property rather than a
precise solution. Researchers have devoted much effort to
designing fine-grained algorithms for the exploration of
graph features, including graph reordering [12], graph
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TABLE 2
Locality-Skew of Graphs With Varied A
A 1% 10% 20% 30% 40% 50%
urand 1.00 1.00 1.00 1.00 1.00 1.00
kron 1.20 1.13 1.10 1.08 1.07 1.06
pld 2.83 1.86 1.61 1.46 1.36 1.29
live 25.89 21.24 13.19 9.34 6.54 4.48
wiki 39.12 17.60 12.04 9.03 7.17 5.69
twitter 192.12 30.61 15.56 10.47 7.90 6.35
mpi 43243 56.12 22.69 12.82 8.21 5.93

The larger a value, the more imbalanced a graph.

partitioning [41], subgraph finding [42] and community
detection [43]. However, the complexity of these algorithms
prohibits their deployments in the context of “lightweight”.
Although our approaches, such as partitioning a graph by
the L2 cache and sorting subgraphs instead of vertices, are
rather coarse-grained, they considerably simplify imple-
mentation process and reduce computation complexity.
Moreover, The estimation results clearly reveal the hidden
property of graphs, and inspires a new direction in optimiz-
ing graph analytics: workload balance.

3.2 Balancing Workloads

The summation of vertex degrees allows us to approximate
the locality of L2-cache-sized subgraphs. More importantly,
we are able to estimate the imbalance of workloads among
these subgraphs based on Locality-Skew. To address the
issue of imbalance, we develop a reordering strategy that
swaps the hot vertices out of the overloaded subgraph.

Algorithm 1. Swap Reorder

Input:graph
Output:subgraphs
1: subgraphs [Ngw ] < split (graph, Ngw)
2: for all sub € subgraphs do
/* is current sub overflowed with hot vertices? */
4 if isOverFlow (sub) then
5. /* swap hot vertices for cold ones with next subgraph */
6 swap (sub.hotVtx, sub.next.coldvtx)
7. else
8
9
0:

swap (sub.coldvtx, sub.next.hotVtx)
end if

10: end for

Algorithm 1 generalizes the procedure of Swap Reorder, a
swap-based reordering method. The initial step in line 1 is to
split the graph into partitions in accordance with the L2 cache.
The number of subgraphs (i.e., partitions) is determined by
the number of vertices N, in the graph and the size of L2
cache: Ny, = N, /Size(L2). Then, based on the percentages of
hot vertices P, listed in Table 1, we can calculate the total
number of hot vertices in a graph dataset: N;, = P, - N,. To
equate the workloads, hot vertices are reallocated, such that
each subgraph contains n = N}, /Ny, hot vertices. If the num-
ber of hot vertices in a subgraph exceeds the threshold n, this
subgraph is considered as overflowed (e.g., line 4). Once a
subgraph is overflowed, its extra hot vertices will be swapped
for cold ones with the next subgraph (e.g., line 6), and vice
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TABLE 3
Locality-Skew of Graphs With Varied \ After
Applying Swap Reorder

A 1% 10% 20% 30% 40% 50%
urand 1.00 1.00 1.00 1.00 1.00 1.00
kron 1.23 1.14 1.11 1.09 1.07 1.06
pld 2.54 1.67 1.48 1.37 1.30 1.25
live 2.98 2.69 2.40 2.13 1.92 1.69
wiki 6.27 3.00 2.37 2.01 1.78 1.61
twitter 63.79 14.04 7.81 5.56 4.34 3.57
mpi 21.53 6.85 443 3.38 2.79 2.40

The larger a value, the more imbalanced a graph.

versa. The vertices to be modified are decided on a first-come-
first-served basis, so their relative order is preserved.

Table 3 lists the results of Locality-Skew after swapping.
The L-S of urand remains unchanged as 1.00, since it is
already well balanced. The imbalance of kron is slightly
enlarged as its L-Sy¢, increases from 1.20 to 1.23. The rest of
graphs achieve a substantial reduction in L-S, such as the L-
Sy, of mpi declining from 432.43 to 21.53.

3.3 Improving Graph Locality

Enlightened by aforementioned degree-based reordering
techniques, we spot an opportunity for further optimization
in graph locality. We adapt HC, which globally manipulates
the vertex order at the level of main memory, to the level of
local L2 cache. More specifically, after the deployment of
Swap Reorder, the vertex order inside each subgraph within
the L2 cache is further refined by classifying hot and cold
vertices into two segments. As presented in Algorithm 2, it
is simply just to append hubCluster to swapReorder.
From the memory-cache hierarchy point of view, the work-
load is balanced in the main memory, and then the graph
locality is improved in the private L2 cache.

Algorithm 2. Swap Reorder + Local HC

Input:graph

Output:subgraphs

: subgraphs = swapReorder (graph)
. /* local vertex reordering */

: for all sub € subgraphs do in parallel
hubCluster (sub)

: end for

However, a drawback of Swap Reorder is the interdepen-
dence of subgraphs, which leads to high computational com-
plexity. To preserve the relative order, the swapping of
vertices is incurred by every subgraph with the next one in a
sequential order. This prohibits the swapping process from
being parallelized. Considering the best case for Algorithm
1, the vertex distribution of a graph is so balanced that every
subgraph contains exactly n hot vertices. No subgraph is
overflowed nor underflowed; hence, vertices are counted
but never swapped. As a result, the time complexity of Algo-
rithm 1is O(N,). Then, in Algorithm 2, the local HC that clas-
sifies vertices into hot or cold vertices allows for parallelism.
Its time complexity is O(N,/N;), where N, is the number of
threads. Adding these together, the time complexity of Algo-
rithm 2 is O(N, + N,/ N,) in the best case.
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3.4 An Efficient Version - Corder

The sequential execution of Swap Reorder underutilizes the
capacity of the multicore system. It induces high overhead
costs and challenges the practical deployment of Algorithm
2. To parallelize the reordering procedure, an efficient ver-
sion is thereby needed for pragmatism. Based on previous
discussions, we organize the essential ideas of Swap Reor-
der plus local HC as follows:

1)  The vertex set of a graph is subdivided into cache-
able disjoint partitions of size equivalent to the L2
cache.

2)  Each subgraph contains the same ratio of hot/cold
vertices as the original graph.

3) Hot and cold vertices are segregated into two seg-
ments inside the subgraph.

4)  The relative order of vertices in the hot segment as
well as the cold one is preserved.

Accordingly, we propose Cache-aware Reorder (Corder), an
efficient and effective algorithm fulfilling these ideas. The
programming steps of Corder are outlined in Algorithm 3.
It consists of two phases: collecting and distributing. In the
collecting phase of lines 2-6, hot vertices and cold vertices
are respectively collected into two distinct vectors. In the
distributing phase of lines 10-12, n hot vertices and 7 cold
vertices are distributed from the vectors to all subgraphs,
wheren = P, - N/Ngygyand 7 = (1 — B,) - N/ Ngyp.

Algorithm 3. Corder

Input:graph
Output:subgraphs
1: /* collect phase */
2: for all vertex € graph.vertices do in parallel
3: if isHot (vertex) then
4 hotVertices.add (vertex)
5: else
6: coldvVertices.add (vertex)
7
8

end if
: end for
1 /* distribute phase * /
10: for all sub € subgraphs do in parallel
11:  move n vertices from hotVertices to sub
12:  move n vertices from coldvertices to sub
13: end for

NeJ

Compared with Algorithms 1 and 2, Corder exhibits its
advantages in four aspects. First of all, the conditional state-
ment isHot (vertex) of line 3 in Algorithm 3 is signifi-
cantly simpler than the isOverFlow(sub) of line 4 in
Algorithm 1. The former function verifies whether a single
vertex is hot by simply comparing its degree with the aver-
age degree. By contrast, the later examines whether a sub-
graph is overflowed by checking all included vertices. This
demands additional memory to record overflowing vertices.
Second, distributing hot/cold vertices over all subgraphs
(e.g., lines 11 and 12 in Algorithm 3) is easier than swapping
them between subgraphs (e.g., lines 6 ad 8 in Algorithm 1).
The distributing operation is nothing but to concatenate two
subvectors, which is independent for every subgraph. Con-
trariwise, the swapping operation requires current subgraph
to interact with the next subgraph(s) for vertex exchanging.
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Fig. 4. Vertex placement after applying Corder. Assuming a private
cache can hold six vertices, the graph of twelve vertices is partitioned
into two subgraphs. In each subgraph, hot vertices (colored) are placed
in the front of the cold ones (grey).

Third, the concatenation of hot and cold vertices (e.g., lines
11 and 12 in Algorithm 3) coincides with the completion of
local HC (e.g., lines 3 and 4 in Algorithm 2). Therefore, local
vertex reordering is not needed anymore. Last but not the
least, the simplicity of Corder allows both collect and distrib-
ute phases to be parallelized, thereby significantly reducing
overall reordering time.

The time complexity of the collecting phase and the dis-
tributing phase in Algorithm 3 are both O(N,/N;). Therefore,
the time complexity of Corder is O(N,/N;+ N,/N;) =
O(N,/Ny). It performs significantly faster than Algorithm 2,
the best-case result of which is O(N, + N,/ ;).

The vertex replacement result of Corder is exemplified in
Fig. 4. A graph is partitioned into two subgraphs. Each sub-
graph contains the same number of hot vertices. Hence, the
workload amongst two subgraphs (and therefore two proc-
essing cores) are roughly comparable. Inside the subgraph,
hot vertices and cold vertices are segregated into two differ-
ent memory locations. The grouping of hot vertices facili-
tates cache locality. At the meantime, the relative orders of
hot vertices and cold ones are respectively maintained as
original, so that the graph structure is preserved.

We expect that Corder can boost the performance of
skewed graphs, e.g., all graphs except urand. In particular,
the more “imbalanced” (i.e., higher Locality-Skew) a graph
is, the better improvement Corder will lead to.

4 EVALUATION

The performance of Corder is evaluated based on both theo-
retical and experimental approaches. First, a performance
model for Corder is constructed, which incorporates multi-
core activities in diverse aspects. Then, we compare Corder
with with state-of-the-art lightweight reordering methods.
The behaviors of the multicore system are analyzed under
the guideline of the proposed model. Besides, extensive
experiments are undertaken to investigate the optimal parti-
tion size of Corder as well as its scalability onto vertex-cen-
tric paradigm.

4.1 A Performance Model for Corder
In this section, a theoretical evaluation is conducted to pro-
file the correlation between Corder and various hardware
activities in multicore systems. As previously described,
Corder directly introduces two factors into the performance
variability of graph processing on multicore systems: work-
load balance and cache utility. Besides, it might also raise
memory traffic. This is because Corder balances the work-
load by evenly distributing hot vertices among partitions in
different cores, thus elevating the inter-partition communi-
cation through the memory (verified in Section 4.4.3).

In the partition-centric paradigm, the number of inter-
edges after compression poses substantial impact on the
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memory traffic (i.e., read + store) volume [30]. Since the
access to memory is slower than the access to cache and CPU
computation by orders of magnitude, it is considered as one
of the most important factor in deciding the execution time
of partition-centric graph processing [38]. Therefore, for a
comprehensive analysis of underlying multicore systems,
the memory dynamics is also taken into account as an indi-
rect factor brought by Corder.

Thereby, the multicore activities are examined in three
aspects: workload imbalance, cache utility, and memory
dynamics. Particularly, we characterize the workload imbal-
ance among multicores by the the longest thread execution time
T, which signifies the most imbalanced load in a multi-
threaded task and bottlenecks the parallel computing. The
cache utility is represented by the L2 cache misses C, as the
cache efficiency is improved by Corder within the L2 caches
of each processor core. Also, following prior works [30], [38],
the memory dynamics is featured by memory accesses volume
M. A simple linear model, which quantitatively portrays the
contributions from the three factors, is proposed as follows:

speedup o wy - r(T) + wy - r(C) + ws - r(M). 2)

Function 7(-) stands for the ratio of original result to the
reordered result; that is, it accounts for the speedup of
threads r(T'), the efficiency of cache r(C') or the efficiency of
memory (M) respectively. For example, »(T') = {original
thread execution time}/{thread execution time after reor-
dering}. Thus, the model in Eq. (2) defines that the speedup
of overall graph processing is proportional to the sum of
improvements in thread performance, cache and memory
efficiencies. Coefficients wy, wy and ws express the weights
of their corresponding factors in this model.

Based on the variations of their weights, the relationship
of T, C, M can be classified into three typical cases:

Case 1:One factor plays a dominant role in deciding the graph
processing time: w; > > wjz; > 00,5 €({1,2,3}).

Case 2: More than one factors offer comparable and non-triv-
ial contributions to the performance: w; ~ w;z; > 0.

Case 3:At least one factor counteracts against others with a
negative weight: w; < 0.

It should be emphasized that the above cases do not list
out all possible situations, nor occur in mutual exclusive-
ness. They are enumerated due to their representativeness
in explaining the behavior of the model. Many other cases
can be described by mixing these three.

Fig. 5 exemplifies the three cases in Kiviat charts. Cases 1
and 2 are straightforward: the performance gain delivered
by Corder attributes to the shortened thread time, reduced
cache misses and/or decreased memory traffic. However,
in Case 3 of Fig. 5¢, the negative weight ws; < 0, belonging
to r(M), indicates a performance loss. The memory accesses
are raised, while both thread time and cache misses are low-
ered. When the loss from memory outweighs the gains from
thread and cache, the graph processing is expected to be
decelerated, and vice versa.

The performance model of Eq. (2) depicts the relative
importance of different multicore activities in building up
the effectiveness of Corder. The coefficients in this model
allow us to locate the root cause of the speedup offered by
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(a) Case 1

(b) Case 2 (c) Case 3

Fig. 5. The coefficients w;, w,, w; of performance model in three different
cases. Case 1: one factor (with w;) dominates others. Case 2: all factors
contribute equally. Case 3: one factor (with w;) is negatively correlated.

Corder; that is, the larger the weight value, the more impor-
tant the corresponding factor. To obtain the values of those
weights, comprehensive experiments are to be performed,
which are detailed in following sections.

4.2 Experiment Setup

In our development environment, a dual-processor server is
used. Each processor consists of 10 cores and each core has
2 threads. To eliminate contention on private caches, only 1
thread is enabled per core. In the memory hierarchy, the
sizes of L1 cache, L2 cache, LLC and DRAM are 64 KB, 1
MB, 13.75 MB, 256 GB respectively.

Corder is developed in C++ on the basis of GPOP [7], a
novel cache-aware graph processing framework designed
for multicore systems. GPOP stores graphs in CSR for mem-
ory efficiency. It partitions a graph into subgraphs by
equally splitting the vertex array into cache-able subsets.
Each subgraph is exclusively processed by one core within
its own cache. Following the authors” instruction, GPOP is
parameterized with 20 threads and 1 MB partition size. A
vertex occupies an unsigned 32-bit integer, so one subgraph
contains 256K vertices. For reordering methods HC, FBC
and DBG, we use the open-sourced code from the authors.
All programs are compiled using G++ 9.3.0 with optimiza-
tion level O3. The parallelization is realized with OpenMP.
Our code is publicly accessible on GitHub."

The performance of reordering techniques are evaluated
on every pair of graph applications and graph datasets. The
experimental results are obtained by averaging 5 rounds of
executions. The activities of cache and memory are mea-
sured using the perf [44] and 1likwid [45] tools respec-
tively on Linux. Also, the hottest vertex with the richest
connections in every graph dataset is sorted out. They are
used as the input for root-dependent applications that
require a root vertex as the starting point for traversing,
such as BFS and SSSP.

Graph Datasets. We select seven large graphs for evalua-
tion. The statistic summary in Table 4 presents their num-
bers of vertices, numbers of edges, maximum degrees and
references. In addition, the inter-edges per subgraph after
compression is presented.

Graphs live, twitter and mpi are collected from social net-
works to depict user relationships [21], [23], [24]. Extracted
by web crawlers, pld and wiki model the hyperlinks among
the web pages [20], [22]. kron is a synthetic graph generated
by Graph500 Kronecker generator with the scale of 23 [19].
Using the same tool, urand is generated, but follows uniform
random distribution [19]. Here, urand serves as an example

1. https:/ / github.com/yuang-chen/Corder-TPDS-21
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TABLE 4

Statistic Summary of Graphs (K: Thousand, M: Million, B: Billion)
Graphs  Vertices Edges MaxDeg.  Refer. Inter
urand 67.1M 2.1B 66 [19] 7.9M
kron 67.1M 2.1B 1.0M [19] 2.8M
pld 42.9M 0.6B 3.9M [20] 1.eM
live 4.8M 68.5M 2.0M [21] 0.8M
wiki 18.3M 0.2B 9300 [22] 0.5M
twitter 41.7M 1.5B 3.0M [23] 2.3M
mpi 52.6M 2.0B 0.8M [24] 1.6M

Inter stands for the inter-edges per subgraph.

of “not skewed and well balanced” graphs, though our work
focuses on the optimization of skewed graphs. For this rea-
son, the performance of urand is not taken into account when
the we calculate the average result over the graphs.

Graph Applications. Performance experiments are applied
on six representative applications:

e Pagerank (PR): a algorithm that iteratively computes
the ranks of vertices based on their own attributes
and edges. It is a fundamental algorithm widely
applied in numerous academic and industrial sce-
narios [39].

e Pagerank Delta (PR-§): a variant of pagerank where
vertices will be deactivated when their rank updates
are smaller than a threshold §. Compared to PR, it
allows faster converging rate and requires less mem-
ory traffic.

e Connected Component (CC): find subgraphs, or
namely components, where any two vertices can be
connected by a path. Components are isolated from
others, in each of which vertices share the same label.

e Single Source Shortest Path (SSSP): from a given root
vertex, compute the shortest distance to all vertices in
a weighted graph by using Bellman Ford algorithm.

e Breadth-First Search (BFS): traverse the graph start-
ing from a given root vertex layerwise.

e Parallel Nibble (PN): near a given vertex, discover a
local cluster, the internal connections of which are
enormously richer than its external connections
[46]. The implementation is parallelized for optimi-
zation [47].

In particular, PR is the most sensitive application to the
vertex order among the six. In every iteration of PR, all ver-
tices stay active; that is, the property data of vertices are
updated and propagated. By contrast, in other applications,
only a subset of vertices participate in the computation.
Since a vertex is deactivated and omitted from execution, its
order becomes irrelevant. To this end, we select the hottest
vertex as the root vertex as the input for those applications
for the maximum activation.

4.3 Execution Time

Table 5 presents the graph processing time after applying
different graph reordering methods. The processing time of
graphs with original order (Orig.) is provided as the baseline
for comparison. We can obtain the speedup by: speedup =
{original processing time}/{reordered processing time} =1/
slowdown. Therefore, speedup > 1 indicates performance
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TABLE 5
Graph Processing Time of Graph Applications in Seconds After Applying Different Graph Reordering Methods
Orig. Corder HC DBG FBC Sort RND Orig. Corder HC DBG  FBC Sort RND
Pagerank (1 iteration) Pagerank Delta
urand 1.23 1.19 1.13  1.16 114  1.21 1.15 7.24 7.92 7.92 7.59 8.58 10.54  8.17
kron 0.75 0.56 082 398 415 443 0.99 5.17 4.17 780 3428 3494 3338 35.63
pld 0.27 0.24 026 066 0.62 0.68 0.55 2.32 2.29 3.01 5.08 4.87 5.21 2.79
live 0.06 0.04 006 010 012 012 0.05 0.35 0.26 0.47 0.66 0.73 0.82 0.41
wiki 0.20 0.12 022 023 023 023 0.09 1.33 0.76 1.38 1.32 1.40 1.39 0.63
twitter  0.76 0.45 095 1.40 1.64 181 0.72 7.81 3.58 10.70 1336 16.88 18.89 742
mpi 1.74 1.09 1.66 1.70 1.82 205 097 1647 7.95 1340 1130 1316 1375 6.34
Connected Component Single Source Shortest Path
urand 3.54 3.34 355 317 3.10 3.00 3.00 8.13 7.58 8.00 8.12 8.75 7.34 8.07
kron 2.09 1.14 221 687 794 745 234 1.81 1.53 3.94 8.08 9.65 9.72 2.25
pld 0.91 0.79 1.11 1.55 1.45 1.66 0.84 1.23 1.11 1.67 2.23 2.15 2.63 1.27
live 0.48 0.29 030 028 029 036 038 0.53 0.49 0.97 0.98 1.10 1.19 0.68
wiki 0.97 0.60 1.08 0.60 065 0.69 0.57 0.96 0.75 1.75 1.45 1.54 1.48 0.76
twitter  1.81 1.36 331 331 395 419 1.89 2.52 1.54 5.89 6.02 6.29 6.73 2.35
mpi 4.87 1.88 418 375 385 400 218 6.16 3.54 9.79 5.42 5.77 6.29 3.14
Breadth-First Search Parallel Nibble

urand 2.23 2.44 225 219 223 220 2.11 2.88 2.92 291 2.80 2.74 247 2.39
kron 1.35 1.26 1.08 325 371 355 263 0.76 0.68 0.69 1.46 1.43 1.40 0.77
pld 0.84 0.72 0.67 1.38 1.29 148 1.04 6.55 6.25 3.07 7.38 7.44 6.54 6.57
live 0.21 0.19 028 035 038 049 0.52 8.17 5.16 12.09 1327 14.87 1521 10.19
wiki 0.40 0.29 043 048 052 055 0.36 5.52 3.38 5.81 6.22 5.75 5.64 291
twitter ~ 1.29 1.09 149 243 256 351 1.42 3.12 2.59 2.97 3.51 3.30 3.54 3.22
mpi 2.20 1.70 207 275 314 322 219 3.50 2.21 3.58 2.81 243 2.84 2.93

The original processing time (Orig.) without reordering is provided as the baseline for comparison.

improvement, while speedup < 1 (or slowdown > 1)
means performance deterioration.

Corder outperforms state-of-the-art reordering methods
in two aspects. First, it achieves the highest acceleration on
the skewed graphs, which is up to 2.59x and on average
1.45 x . Second, Corder consistently boosts the performance
of every graph application on every skewed graph. Slight
slowdown occurs on graph urand, as it is an artificial graph
with completely uniform distribution. Moreover, by analyz-
ing the characteristics of graph datasets and graph applica-
tions, we acquire following findings:

Finding 1. The deployment of contemporary lightweight
reordering techniques, including HC, FBC, DBG and Sort,
often leads to considerable slowdowns. The average slow-
downs of them are 1.09 x , 1.37 x , 1.43x and 1.54x respec-
tively. The observation contradicts with the statement
reported by [12], [15], [17] that speedup is expected. This
contradiction ascribes to the “processing paradigm”.

The wvertex-centric paradigm (e.g., Ligra), as originally
implemented underneath HC, FBC and DBG, addresses the
graph at the granularity of vertex per thread. As a result,
the issue of workload imbalance is relatively trivial, even
though the degrees and corresponding workloads of the
vertices could vary from 0 to millions as listed in Table 4.

The partition-centric paradigm adopted in our work, how-
ever, treats the graph at a much coarser granularity. A parti-
tion containing over hundred thousand vertices (e.g.,
262,144 vertices in our experiment) acts as the basic unit for
single thread to process. Hence, with the use of HC, FBC,
DBG and Sort, hot vertices are concentrated into a small
fraction of subgraphs. As listed in Table 6, the L-Syy of

graphs are significantly enlarged by those reordering meth-
ods. The gathering of hot vertices heavily exacerbates the
imbalance issue and consequently becomes the primary rea-
son for performance degradation. Contrariwise, Corder and
RND lower the L-S of graphs and effectively alleviate the
problem of workload imbalance. Thus, the execution time is
shortened (though not always for RND).

Finding 2. Random reordering is occasionally beneficial
to the performance. Sometimes it provides performance
improvement even higher than Corder, such as PR on graph
wiki. From the perspective of statistics, random reordering
can be interpreted as uniformly distributing hot vertices
across all subgraphs. After applying RND, subgraphs not
only accommodate the same number of hot vertices, but
also incur almost identical workloads. As presented the
RND column in Table 6, RND achieves the smallest L-Syqg,

TABLE 6
Locality-Skew (A = 20%) of Graphs After Graph Reordering

Orig. Corder HC FBC DBG  Sort RND
urand  1.00 1.00 134 147 133 1.632 1.00
kron 1.10 111 57.71 5771 95.01 00 1.11
pld 1.61 148 3230 3230 5248 0 1.22
live 1319 240 2507 2650 3094 84.81 1.01
wiki 12.04 237 7090 7090 156.45 0 1.02
twitter 1556  7.81  21.27 21.28 2830 10147 1.42
mpi 2269 443 4255 4255 98.01 74639 1.05
oo indicates that the sum of degrees over ending subgraphs, i.e., 3= c..q, L(s)

in Eq. (1), is zero.
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TABLE 7
L2 Cache Misses (in Billions) During 20 Iterations of Pagerank
After Applying Different Reordering Methods

Orig. Corder HC DBG FBC SRT RND
urand 4195  40.78 4190 4256 4270 4275 44.41
kron 1536 11.75 1522 21.14 19.82 20.86 29.86
pld 6.28 5.12 690 672 772 742 9.87
live 0.49 0.56 052 061 067 070 1.05
wiki 1.11 1.08 118 135 148 146 262
twitter  9.61 9.82 996 1372 13.05 16.08 23.72
mpi 1097 11.88 1322 1636 17.16 1876 32.51

in comparison with other reordering techniques. The prob-
lem of workload imbalance is solved by randomization.

However, the random placement of vertices completely
destroys natural graph structure and eliminates graph local-
ity. As the graph locality vanishes, cache misses are dramati-
cally increased. For RND, there is an inevitable conflict
between workload balance and graph locality. The overall
performance is undermined when the loss from graph locality
outweighs the gain from workload balance, and vice versa.

As shown in Table 6, graph pld is fairly balanced as its L-
Sagy, in the original order is low: 1.61. Applying RND on the
graph, the L-Syyy is further reduced to 1.22, whereas the
cache misses (e.g., for PR) are increased from 6.28 Billions to
9.87 Billions as in Table 7. In such scenario, the cache miss
dominates the workload balance. Consequently, the execu-
tion time of PR per iteration on graph pld is extended from
0.27s to 0.55s due to the increased cache misses by RND. On
the contrary, in the case of graph mpi that suffers from
severe imbalance, RND effectively reduces the inequality of
workloads, lowering L-Sypy from 22.64 to 1.05. Cache
misses, though increased from 10.97 Billions to 32.51 Bil-
lions, are compensated by balanced workloads. As a result,
the overall processing time of PR is shortened from 1.74s to
0.97s by the use of RND.

Finding 3. The higher Locality-Skew a graph is associated
with, the better result Corder delivers. This meets our
expectation proposed in the end of Section 3. Fig. 6 visual-
izes the correlation between the L-Syy, of graphs in original
order and the speedups offered by Corder. Graph applica-
tions are increasingly accelerated as the Locality-Skew of
graphs rises. For instance, graph mpi with L-Syyy = 22.69
achieves 1.81x speedup on average of all applications. By
contrast, the average gain of graph pld with L-Syyy, = 1.61 is
significantly lower, which is 1.10x speedup. The ascending

— 1 1 ; ]
254 @ pr 0 f A 40
PR-8 |
v sssp i
& BFS : 3
Q2.0—' 4 NP U s 4
5 1 | %
LS = = Average Speedup| | | 420 o
8 Locality-Skew P /Y é‘
% 154 SN NS S ' ,,,,,, 4.——“1,. ,,,,, §
‘ -7 e | | 3
- " *
- - ! Y ’
M & s i * | $ |
- * v ! . [
1.04— *’ """""" i S R S
T ; ; ; T T T
ur kr  pld lj wl tw  mpi

Fig. 6. The correlation between speedup and Locality-Skew (A = 20%).
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Fig. 7. The impact of Corder on thread behaviors and cache efficiency.
The speedups (left) of graph processing, critical thread, and average
thread are plotted with the improvement of cache efficiency (right). The
results are calculated by the mean of different graph applications with 90
percent confidence interval.

trend of speedup towards the growing L-S,q, validates the
effectiveness of Corder in balancing workloads.

4.4 Multicore Activities With Corder
4.4.1 Thread Behavior

In a multicore system where synchronization is required,
the processing time of a parallel region mainly depends on
the thread with the longest execution time. We define such
thread as the critical thread, which is positioned in the most
imbalanced point in a multi-threaded task. Meanwhile, we
define the average thread as the representative of all threads.
The performance of the average thread is nothing but the
arithmetic mean of all threads within the parallel region.
Fig. 7 illustrates the speedups of graph processing, the
belonging critical threads and the average threads.

It can be observed that the performance of the process is
tightly related with the critical thread. As the Locality-Skew
grows from graph urand to mpi, the process and the critical
thread are simultaneously accelerated. Corder addresses the
imbalance issue by shortening the critical thread, and conse-
quently accelerates the overall graph processing. Moreover,
the correlation between the critical thread and the overall
performance indicates that the performance gain mainly
results from the balanced workloads (i.e., shortened critical
threads). In Section 4.5, we will present detailed verification.

Although the overall process is boosted by Corder, the
average thread completion speed may be actually slowed
down. For instance, for PR on graph live, the overall proc-
essing time reduces from 63 ms to 39 ms per iteration (i.e.,
1.61x speedup), as its critical thread time decreases from 44
ms to 31 ms (i.e., 1.42x speedup). Meanwhile, its average
thread time of increases from 18 ms to 21 ms (i.e., 1.16x
slowdown). As Fig. 7 depicts, the behavior of the average
thread is closely related with the cache efficiency, which is
to be detailed in the next section.

4.4.2 Cache Utility

Since our optimization on the cache utility is focused on the
L2 cache, we collect the L2 cache misses for evaluation. In
particular, we characterize the improvement of cache efficiency
(ICE) by the cache misses prior and subsequent to the
deployment of graph reordering: ICE = {original cache
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misses}/{reordered cache misses}. When ICE > 1, cache
misses are reduced and therefore the cache is better utilized,
and vice versa. Due to space limit, only a subset of concrete
data regarding the cache misses are presented in this paper,
such as Table 7.

As depicted in Fig. 7, the ICE delivered by Corder shows
that the behavior of the average thread corresponds with
the trend of cache efficiency. Sometimes, the cache efficiency
deteriorates due to the increased graph edges (see explana-
tions in Section 4.4.3). Accordingly, the average speed of
threads declines. However, the slowdown of the average
threads cannot prevents the the overall processing from
being speeded up.

For instance, the cache misses of PR on live grow from
0.49 Billions to 0.56 Billions (i.e., ICE = 0.86). At the same
time, its average thread time extends from 18ms to 21ms
(i.e., 1.16 x slowdown). This phenomenon follows our com-
mon sense: poor cache utilization decelerates the execution
of (a majority of) threads. Nevertheless, as discussed in last
section, the critical thread is accelerated, which plays a cru-
cial role in deciding the processing time of a parallel region.
The reduction in execution time of critical thread compen-
sates the increased computing cost of other threads. For this
reason, the graph processing is accelerated.

To conclude, cache efficiency exhibits less importance
compared to the issue of workload balance. Its behavior
synchronizes with the average thread. However, its impact
on the overall performance of graph processing is shad-
owed by the critical thread, specially for the graphs with
high L-S, such as wiki, twitter and mpi.

4.4.3 Memory Dynamics

Corder leads to an upsurge of inter-edges, which acts as a
side effect to the partition-centric paradigm. The lower part
of Fig. 8 shows the ratio of compressed edges (i.e., inter-
edges) compared to original vertex-to-vertex edges. After
employing Corder, hot vertices are evenly distributed
among subgraphs, incurring frequent message exchanges
between them inside different processing cores. Therefore,
the inter-edges of graphs, representing the core-to-core com-
munication, are increased.

The inflation of graph inter-edges results in heavier com-
putation loads, thus more cache misses (discussed in
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Section 4.4.2) and memory traffic. Fig. 8 presents the growth
of memory accesses (upper) due to the addition of edges
(lower). Compared to graphs with low L-S (e.g., kr), skewed
graphs with high L-S (e.g., mpi) tend to invoke less memory
accesses per edge and thus consume lower memory band-
width . Also, the impact of Corder on the skewed graphs
are significantly larger too.

Corder burdens the efficiency of memory (i.e., (M) in
Eq. (2)) because of the raised memory accesses incurred by
additional inter-edges. The accesses to memory are typically
slower than those to caches by orders of magnitude. Hence,
the extra memory accesses might potentially decelerate the
graph processing, though its negative impact is compen-
sated by the improvement from other factors, such as the
shortened critical thread. Comparing Fig. 7 with Fig. 8, it
shows an inverse correlation between the speedup of graph
processing and the memory efficiency; that is, the higher
the speedup, the more the memory accesses, and the poorer
the memory efficiency. Therefore, we expect a negative coef-
ficient for r(M).

4.5 The Derivation of Performance Model

Based on previous discussions, we obtain a preliminary
observation about the influential factors for the speedup of
partition-centric graph processing in the multicore system:
the workload imbalance among threads dominates the cache
efficiency and the memory efficiency, and moreover, the latter
behaves oppositely to the trend of speedup.

For concreteness, we perform a multivariate regression
on the observed data. It characterizes the association among
the input variables and explains the dependence of the out-
come on the inputs [48]. Specifically, we feed the model in
Eq. (2) with the critical thread execution time, L2 cache
misses and memory accesses. First, for simplicity, we only
use the experimental results from PageRank, during which
all vertices stay active. The fitted model is given as follows:

speedup = 0.87 - r(T) + 0.27 - r(C') — 0.16 - r(M). 3)

Eq. (3) validates our observation. The importance of the
critical thread outweighs other factors. Cache efficiency is
improved, though its contribution is relatively minor. Also,
the memory access is associated with a negative coefficient,
indicating it is itself a (minor) cost for the speedup. We visu-
alize the fitted model in Fig. 9a. As described in Section 4.1,
this model employs a mix of Case 1 and Case 3. Then, we
use all data collected from all graph applications for regres-
sion. The resulting model is depicted in Fig. 9b and formu-
lated as follow:

speedup = 0.92 - r(T) + 0.05 - r(C) + 0.08 - r(M). 4)

As Eq. (4) shows, the importance of the critical thread is
further elevated, while the other two are drastically
decreased. Such adjustment originates from the active ver-
tex set — a new factor introduced by all graph algorithms
except for PR. In every iteration, the active vertices dynami-
cally change according to the internal structure of the graph,
which considerably complicates the performance model
(and goes beyond the scope of this paper). As a
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(a) Model of Eqg. 3

(b) Model of Eq. 4

Fig. 9. The coefficients of performance models fitting the experimental
data of PageRank (a) and all graph applications (b).

consequence, the weight of imbalanced threads is enlarged,
falling into the category of Case 1.

The models proposed for Corder also explain the behav-
iors of other reordering methods. For example, as discussed
in Findings 2, RND substantially boosts the performance of
PageRank on the highly skewed graph mpi. After deploying
RND, though the cache misses are increased by 3x as in
Table 7, the critical thread execution time is accelerated by
8 x . Since the importance of critical thread (i.e., workload
imbalance) outweighs the cache efficiency, the overall exe-
cution time is consequently shortened.

Lastly, it is worth noting that the performance models in
Egs. (3) and (4) are derived to rank the relative importance
of the thread performance, cache utilization and memory
traffic from a statistical point of view. The models simplifies
the interaction among the counted factors and neglects
many other issues, such as the dynamic active vertices and
the choice of root vertex. Hence, we do not expect to solely
rely on these models to precisely predict the performance of
a given graph application.

4.6 Sensitivity Analysis of Partition Size

The partition size of Corder represents a trade-off. Small sub-
graphs facilitate fine-granularity workload balance; whereas
large subgraphs promote high locality and preserve better
graph structure. At the extreme, if each subgraph is so small
that it contains only a single vertex, Corder becomes the RND
reordering. On the other side, if the subgraph is large enough
to feature the same size as original graph, there exist only one
subgraph including all vertices. In such sense, Corder eventu-
ates to be HC. However, as Table 5 shows, neither of them
promises performance boost.

In order to evaluate the impact of Corder’s partition size
on the execution time of graph processing, we examine the
performance of PR on various graphs. The PR is selected as
the benchmark application for demonstration due to its
high sensitivity to vertex order. Fig. 10 presents the execu-
tion time with partition size of Corder varying from 128 KB
(32K vertices) to 16 MB (4M vertices). Meanwhile, the
underlying GPOP is fixed with 1 MB partition size to elimi-
nate extraneous variables.

As in prior experiments, graph urand remains almost
unaffected by partition size due to its low graph locality
and uniform distribution of vertex degree. For skewed
graphs, there is a distinguish threshold at 1M bytes, which
equals the size of L2 cache. As long as the partition size
varies within 1M, Corder achieves the same level of
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Fig. 10. The impact of partition size on the execution time. The time is
normalized by the result of unordered graph.

acceleration. In this range, 1M is preferable to other options
because it results in less disruption to graph structure.

Nevertheless, once the partitioning size exceeds the
capacity of L2 cache, the vertices are spilled over from L2
into LLC. The spillover incurs drastic increase of cache
misses as well as memory traffic. Hence, the computation is
decelerated. As an exception, kron is not heavily influenced
by the partition size ranging from 128K to 8M due to its
well balanced workload (e.g., low Locality-Skew). The parti-
tion size of 16M, however, diminishes its internal balance,
and thus slows the execution down.

4.7 Scalability Onto Vertex-Centric Paradigm

With the awareness of cache hierarchy, Corder is developed
based on the recently proposed partition-centric graph proc-
essing paradigm. Nevertheless, the conventional vertex-cen-
tric paradigm is popularly adopted in numerous graph
frameworks over the past decades [6], [33], [35], [49]. The reor-
dering methods proposed for the vertex-centric framework
(e.g., Ligra), such as HC, FBC and DBG, often deteriorate the
performance of graph analytics when deployed in the parti-
tion-centric GPOP. Hence, in reverse, it is necessary to investi-
gate the scalability of Corder onto the vertex-centric platforms.

Fig. 11 compares the speedups of four different frame-
works. Three of the four are programmed in vertex-centric
paradigm, including Ligra, Polymer and the Non-Uniform
Memory Access scheduled Ligra (NUMA-Ligra). The parti-
tion-centric one, PCPM [30], is designed for efficient Pag-
erank algorithm. Again, we use PR as the benchmark
application because of its sensitivity to vertex order. Over-
all, Corder demonstrates higher scalability than any other
reordering methods. It consistently achieves speedups (at
least no slowdown) for skewed graphs across all frame-
works, except for live in NUMA-ligra.

PCPM. The partition-centric PCPM behaves similarly to
GPOP. The aggravation of hot vertices promoted by HC, FBC,
DBG and Sort intensified the issue of workload imbalance.
Therefore, the speed of graph processing is degraded. RND
leads to performance boost, when graphs exhibit inherent
high imbalance (i.e., high Locality-Skew), such as mpi and
twitter. It results in a slowdown, when the vertices are already
well distributed in the graphs (e.g., kron and pld). Corder,
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Fig. 11. Speedups in different graph processing frameworks. The lighter
the color, the higher the speedup. Corder delivers consistent perfor-
mance boost across all frameworks.

with the optimization of workload balance as well as graph
locality, consistently achieves speedups for the skewed
graphs, which isup to 1.77x and on average 1.41x.

Ligra. Unexpectedly, the performance of vertex-centric
Ligra oftentimes deteriorates when HC, FBC and DBG are
deployed. Corder is the only reordering method that accel-
erates the execution of all graphs with speedup of up to
1.64x (on average 1.37x).

A key feature of Ligra-based PageRank is the atomic
update of data [6]. Atomic operations are used to ensure the
correctness of multiple threads accessing a common vertex.
It is an expensive synchronizing operation that stalls the
execution of other threads.

As hot vertices are concentrated via graph reordering
(e.g., DBG), collisions between threads are more prone to
occur. Therefore, the parallel execution of multi-threads is
frequently stalled by atomics, shrinking to single-thread
processing. In other words, the problem of thread blocking
is exacerbated by the concentration of hot vertices, which
outweighs the benefit from enhanced graph locality. An
abnormality is graph mpi with L-S = 432.43 (A = 1%). Since
mpi already suffers from severe thread blocking due to its
high skew, the side effect of graph reordering is relatively
minor on it. Consequently, enjoying the enhancement of
graph locality, mpi achieves substantial speedup.

Polymer. Polymer is implemented based on the code of
Ligra and follows the vertex-centric paradigm. However,
the effect of reordering techniques on Polymer is insignifi-
cant. With the awareness of NUMA, Polymer evenly parti-
tions and allocates graph data in the local memory of
NUMA nodes. This minimizes the effectiveness of graph
reordering. Hence, compared with other frameworks, the
performance variation of Polymer across the graphs and
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TABLE 8
Reordering Overhead in Seconds
Mapping
Composing
Corder HC FBC  DBG  Gorder

urand 0.393 0912 1.008 0.091 >1h  3.081+0.271
kron 0222 0192 0.700 0.104 >1h  2151+0.125
pld 0.154 0136 0.435 0.164 >1h  0.825+£0.035
live 0.017  0.029 0.058 0.007 66.8 0.073 % 0.000
wiki 0.060 0115 0.214 0.027 220.6  0.250 + 0.007
twitter 0.113  0.114 0.370 0.049 >1h 0901 +0.042
mpi 0.153  0.185 0.574 0.169 >1h  1.520 £0.065
PRIter. 0284 0398 0879 0.175 >1000 1.840

The overhead consists of the mapping time and composing time. For Gorder,
the reordering process is terminated once it exceeds 1 hour. The last row lists
the average number of iterations of PR on original graphs needed to amortize
the time cost.

reordering techniques is trivial. Corder performs as the only
reordering method that does not cause a slowdown.

Nevertheless, the advancement of Polymer is achieved at
the price of sophisticated optimizing techniques. To utilize
the NUMA feature, it redesigns the data layout, and
requires graph partitioning as well as thread binding.
Together, these implementations contribute to thousands of
lines of codes. Moreover, such complexity produces stag-
gering overhead. For instance, the preprocessing overhead
of Polymer ranges from 7.61s of live to 346s of urand. On the
other hand, Corder caters to NUMA without manipulation
of underlying framework. It involves less coding effort, e.g.,
about hundred lines of codes. Also, it introduces minimum
overhead, which is to be discussed in following section.

NUMA-Ligra. Though NUMA-Ligra facilitates graph
processing with the support of NUMA too, it differs from
Polymer. NUMA-Ligra is enabled by the command line util-
ity on Linux-based NUMA machines. The NUMA schedul-
ing and memory placement are automated by the NUMA
policy kernel [50]. Simply with one line of command (e.g.,
numactl [-options] program), users can execute a pro-
gram with specific NUMA policy.

The interleave memory allocation of NUMA-Ligra allevi-
ates the workload imbalance incurred by graph reordering.
Moreover, compared with Polymer, it ensures the graph
locality enhanced by those methods. Therefore, graphs with
low locality, e.g., kron and pld, acquires substantial perfor-
mance boost due to the enhancement of graph locality using
HC, FBC and DBG. Other graphs, which are already associ-
ated with high locality, achieve limited improvement (e.g.,
wiki, twitter and mpi) or even degradation (e.g., live).

4.8 Reordering Overhead
The practicality of a reordering method is heavily influ-
enced by the overhead it imposes. For instance, as listed in
Table 8, it costs Gorder 66.8 seconds to finish the computa-
tion on the smallest graph live. Nonetheless, the down-
stream graph applications typically ends in 10 seconds even
without reordering preprocessing. Considering such differ-
ence, the overhead of Gorder is prohibitively expensive.
The reordering overhead consists of two phases: mapping
and composing. In the mapping phase, a new vertex ID is
assigned to every vertex in the original graph by a reordering
method. Thereby, a mapping pair of vertex IDs prior and after
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the reordering assignment is created, which point to the same
vertex. For instance, pair(old, new) = (v1,v100). In the com-
posing phase, a new graph is constructed based on the new
IDs of vertices. The composition of a graph (e.g., CSR, edge
list or adjacency matrix) is decided by the data layout imple-
mented in underlying graph frameworks. Adding up the
mapping time and the composing time, we acquire the result
of the reordering overhead.

To compare the overheads, we deploy the reordering
algorithms proposed by prior works, including HC, FBC,
DBG and Gorder, using the open-sourced code provided by
the authors. The source code of HC, FBC, DBG is developed
in the framework of Ligra. Hence, to provide a fair compari-
son, we re-implement Corder and evaluate its overhead in
Ligra too.

Table 8 presents the reordering overheads in terms of the
mapping time and the composing time. The mapping time
reflects the efficiency of a reordering algorithm. Corder offers
the fastest mapping speed for graph mpi. Overall, it is the sec-
ond fastest reordering algorithm only behind DBG. On aver-
age, the mapping time of Corder can be amortized by 0.284
iteration of PR on the original graph. Featuring a lightweight
design of parallelism, Corder achieves high efficiency.

The composing time is independent of the reordering
methods, but subject to the size of a graph. Compared with
the mapping phase, the composing phase charges time cost
by an order of magnitude, which is 1.84 iterations on aver-
age. Hence, the overall reordering overhead, especially for
applications such as BFS that finishes within 3 seconds and
can be roughly amortized by 2 or 3 iterations of PR, is a
non-trivial consideration.

5 CONCLUSION

Graph reordering functions as a critical prerequisite to facil-
itate the processing of large-scale graphs. In this work, we
demonstrate that workload imbalance severely deteriorates
the performance of parallel graph processing. A novel mea-
surement approach, i.e., Locality-Skew, is proposed to esti-
mate the imbalance in a graph. Inspired by it, we present
Corder, a reordering method designed for multicore sys-
tems with awareness of the cache hierarchy. First, Corder
partitions a graph into subgraphs, of which the vertex sub-
sets fit into L2 cache. Then, Corder adopts two optimization
strategies to facilitate graph processing. Within the shared
memory, hot vertices are evenly distributed across sub-
graphs. Inside the local cache, hot vertices are concentrated
to improve graph locality.

Our evaluation shows the effectiveness of Corder not
only in a variety of graph datasets and graph applications,
but also in diverse graph analytics frameworks. Moreover,
we analyze and rank the influential factors correlating with
Corder in the multicore systems, including thread behavior,
cache and memory efficiencies. Amongst them, the balanc-
ing of thread execution time plays the most weighty role in
the boost of graph processing.

The future work includes the integration of cache-aware
reordering methodology with NUMA. Besides, we plan to
investigate the difference in behaviors for directed graphs
when hot vertices are classified by in-degrees instead of
out-degrees.
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