
Computers & Security 120 (2022) 102781

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

KPointer: Keep the code pointers on the stack point to the right code

YongGang Li a , Yeh-Ching Chung

b , Yu Bao

a , Yi Lu

a , ShanQing Guo

c , GuoYuan Lin

a , ∗

a The School of Computer Science and Technology in the China University of Mining and Technology, Xuzhou, Jiangsu, 221116, PR China
b The School of Data Science, CUHK(SZ), Shenzhen, Guangdong, 518172, PR China
c The School of Cyber Science and Technology, Shandong University, Jinan, Shandong, 250100, PR China

a r t i c l e i n f o

Article history:

Received 5 November 2021

Revised 23 May 2022

Accepted 29 May 2022

Available online 2 June 2022

Keywords:

Integrity

System architectures

Security and protection

Software and system safety

Code reuse attacks

a b s t r a c t

Affected by vulnerabilities, the control data on the stack is easily destroyed, which provides the most

convenient conditions for code reuse attacks (CRAs). The operating system (OS) does not impose strict

restrictions on the control flow paths. It allows instructions to jump to any location in the same address

space. The OS will prevent code execution if and only if an execution error occurs. However, attackers can

use stack overflow to accurately tamper with the control data on the stack and avoid execution errors.

Although canary technology has been widely adopted, it turns out that this method can be bypassed.

The traditional shadow stack technology can only protect the backward control flow and is invalid for

the forward control flow. In contrast, the defense effect of the control flow integrity methods is better.

Unfortunately, they either cannot get rid of the source code dependence on the protected objects, or can-

not provide high-precision instruction boundaries. All these problems make it difficult to eliminate the

CRAs based on stack overflow. Faced with these problems, this paper proposes a new security method

KPointer. It filters the vulnerable data by tracking the overwriting operation to the stack data. Next, these

data will be tracked to locate the jump instructions related to them. Finally, we use new security strate-

gies to determine whether the current instruction is illegal. Experiments and analysis show that KPointer

has a good protection effect on the CRAs based on stack overflow. It does not depend on the source code

of the protected objects and only introduces 2.7% performance overhead to the CPU.

© 2022 Elsevier Ltd. All rights reserved.

1

i

a

l

b

c

Y

c

t

B

2

a

s

g

C

i

t

c

n

b

e

f

p

t

c

f

“

(

j

n

m

m

c

h

0

. Introduction

In the OS, the stack is used to store local variables and specific

nformation of the execution entities. Control data (such as return

ddresses and function pointers) are mixed with a large number of

ocal variables on the stack. The out-of-bounds behavior generated

y execution entities may damage the control data when the lo-

al variables on the stack are overwritten. CRAs (Guo et al., 2018 ;

uan et al., 2015) use this feature to launch the most extensive

ontrol flow integrity (CFI) (Van der Veen and Andriesse, 2015) at-

acks on the OS. ROP (Return-Oriented Programming) (Payer and

arresi, 2015) and JOP (Jump-Oriented Programming) (Li et al.,

018) are the two basic attacks of CRAs, and other attack variants

re derived from them.

The entire attack process of CRAs consists of three key steps:

earching for gadgets, tampering with control data, and connecting

adgets. Tampering with control data is a necessary operation of

RAs. Currently, the vast majority of CRAs use overflow vulnerabil-

ties to tamper with control data. Stack overflow vulnerabilities are
∗ Correspondence author.

E-mail address: liyg@cumt.edu.cn (G. Lin) .

t

F

(

ttps://doi.org/10.1016/j.cose.2022.102781

167-4048/© 2022 Elsevier Ltd. All rights reserved.
he most common in all overflow vulnerabilities. As a result, the

ontrol data on the stack has become the preferred target of CRAs

To defend against CRAs, the direct method is completely elimi-

ating gadgets (Fu et al., 2016). Unfortunately, it is almost impossi-

le. There are many gadget forms, and new forms are constantly

merging. For example, the granularity of gadgets has changed

rom a code snippet containing only a few instructions to a com-

lete function containing more instructions. Therefore, it is difficult

o collect all gadget forms. In addition, the code has non-aligned

haracteristics, and different alignments will derive different code

orms. For example, if rip points to the first byte of the binary code

ff 25 ff e0 27 00 ”, the executed instruction is jmpq ∗0 × 27e0ff

%rip) ; if rip points to the third byte, the executed instruction is

mpq ∗%rax . As a result, only disassembling the executable file can-

ot enumerate all gadgets. To make matters worse, different align-

ent combinations will produce massive amounts of code, which

akes it extremely difficult to analyze and eliminate all gadgets.

Although gadgets cannot be completely eliminated, researchers

an prevent attackers from gaining available gadgets. To achieve

his goal, methods such as address randomization (Larsen and

ranz, 2020), memory hiding (Fu et al., 2018) and code encryption

 Qiu et al., 2016) were proposed. However, methods such as canary,

https://doi.org/10.1016/j.cose.2022.102781
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102781&domain=pdf
mailto:liyg@cumt.edu.cn
https://doi.org/10.1016/j.cose.2022.102781

Y. Li, Y.-C. Chung, Y. Bao et al. Computers & Security 120 (2022) 102781

s

d

a

m

n

S

n

c

a

i

s

l

t

I

l

d

m

(

r

t

l

m

o

m

t

a

A

j

s

c

a

t

T

f

t

H

t

t

s

b

l

b

n

b

m

i

w

c

s

f

s

b

d

g

o

(

(

(

2

t

t

w

2

s

S

p

d

fi

d

r

s

m

t

c

i

S

c

d

t

a

t

s

2

t

c

o

G

m

i

g

i

a

i

t

(

p

a

t

t

e

d

n

a

2

p

tack address randomization and function pointer hiding have been

efeated by memory leakage (Fu et al., 2018 ; Guo et al., 2018),

nd shadow stack can be bypassed by LOP (Lan et al., 2015). To

ake matters worse, attackers have developed code probing tech-

iques, such as (Bittau and Belay, 2016 ; Gawlik et al., 2016 ; Lu and

ong, 2015 ; Oikonomopoulos et al., 2016). No matter how to ma-

ipulate code, code probing can still collect enough information to

onstruct available gadgets.

CFI does not care about diversified gadgets, nor does it worry

bout information leakage. It formulates the boundary of the jump

nstructions so that the control flow can only jump to a legal po-

ition. However, there are still serious challenges in defining the

egal boundary. The analysis of Li (Li and Wang, 2020) shows that

he existing CFI methods still cannot work out a perfect boundary.

n practice, static CFIs have boundary accuracy problems, which

eads to the risk of bypassing. High-precision dynamic CFIs are

ifficult to get rid of the dependence on the source code, which

akes them invalid for the objects that do not contain source code

such as the loaded libraries). In addition, the target set of the indi-

ect control transfer (ICT) instructions will increase dramatically as

he amount of software code increases. This will increase the work-

oad of the security tools, thereby affecting the OS performance.

Facts have proved that it is difficult for the existing general

ethods to have an ideal defense effect on CRAs based on stack

verflow. The fundamental reason is that the general security

ethods do not fully consider the inherent relationship between

he stack data and the code logic. We take the shadow stack as

n example to illustrate the impact of ignoring such relationship.

rbitrary jump (Bittau and Belay, 2016) can make the control flow

ump to an operand c3 (may be part of the operand, but not an in-

truction), and make the operand become the opcode ret (machine

ode is also c3). Since the shadow stack mechanism does not set

 detection point at an operand, the c3 at this position does not

rigger data verification when it is executed as an instruction ret .

herefore, the shadow stack mechanism can be bypassed success-

ully. In fact, c3 at this position is essentially an operand rather

han an opcode, and it has no relationship with any stack data.

owever, when it becomes an opcode, it can read the stack data

o hijack the control flow.

In practice, the relationship between code and data depends on

he execution logic of the code. Each piece of control data on the

tack has a relationship with a specific instruction, and it cannot

e used by other instructions other than the related one. Such re-

ationship means that the specific control data can only be used

y the specific instructions. Moreover, the specific stack data can-

ot be arbitrarily modified. For example, the return address cannot

e modified before it is used by the instruction ret . The deploy-

ent of CRAs will inevitably break the relationship between the

ndirect control transfer (ICT) instructions and the control data. If

e can find the relationship between code and data is broken, we

an detect CRAs. μCFI (Hu et al., 2018) uses this method to con-

truct a highly accurate ICT boundary, and thus has a strong de-

ense against CFI attacks. However, it has a dependency on the

ource code, which makes it invalid for the loaded libraries.

If a security method can not only determine the relationship

etween control data and ICT instructions, but also get rid of the

ependence on source code, it is an ideal method. Focusing on this

oal, we propose KPointer to defend against CRAs based on stack

verflow. Its main contributions are as follows:

1) Establish a mechanism to identify vulnerable data. An identifi-

cation mechanism is used to determine whether the overwrit-

ten stack data is vulnerable data in this paper.

2) Establish a method to locate ICT instruction related with the

vulnerable data. A multi-code space mechanism is built to lo-
2
cate ICT instructions. And a data back-tracing mechanism is

proposed to find the transfer path of the vulnerable data.

3) Formulate new security strategies to detect CRAs. Security poli-

cies that follow the rules of instruction execution and data up-

date are built to defend against stack overflow-based CRAs.

. Related works

Researchers have conducted extensive research on CFI protec-

ion, which mainly includes three categories: control data protec-

ion, jump target confusion, and CF path restriction. In this section,

e describe these methods separately.

.1. Control data protection

Due to lack of memory safety in C/C ++ , security vulnerabilities

uch as buffer overflows are frequently found (Sui and Ye, 2016 ;

zekeres and Payer, 2013 ; Ye and Su, 2014), which provides the

ossibility for attackers to destroy control data. Protecting control

ata can effectively mitigate CRAs. StackGuard (Cowan et al., 1998)

lls a random value between the local variable and the return ad-

ress, and verifies whether the value is changed when the function

eturns. But attackers can still bypass this method by exploiting

ome information disclosure vulnerabilities (Riq, Nov 1, 2021). Al-

ost all shadow stack methods, such as (Fan and Sui, 2017), have

he same problem. Similarly, Data hiding (Fu et al., 2018) and en-

ryption (Qiu et al., 2016) have been defeated by memory prob-

ng technology (Bittau and Belay, 2016 ; Gawlik et al., 2016 ; Lu and

ong, 2015 ; Oikonomopoulos et al., 2016).

Moreover, the most security methods are only valid for the

ontrol data with relatively fixed positions (such as return ad-

resses). Especially the function pointers (local variables) stored on

he stack, their storage locations are not fixed and may be recycled

t any time. The existing methods can only find them by modifying

he source code or performing compilation analysis, which leads to

ource code dependence.

.2. Jump target confusion

The attacker needs to transfer control flow to the gadgets af-

er tampering with control data. Obfuscating the jump targets

an make it difficult to gain the gadget addresses. The current

bfuscation methods mainly use address randomization (Marco-

isbert and Ripoll, 2019).

CCFIR (Zhang et al., 2017) is a coarse-grained randomization

ethod for binary code, which can be bypassed by the method

n (LucasDavi et al., 2014). Marlin (Gupta et al., 2013) is a fine-

rained randomization method, and it decomposes the binary file

nto multiple parts with functions as code blocks. Then all parts

re mixed up. ILR (Hiser et al., 2012) even can randomize each

nstruction. The purpose of these methods is to prevent the at-

acker from knowing the address of gadgets. However, CLONE-ROP

 Szekeres and Payer, 2013) can obtain the address by cloning the

arent process. Although STABILIZER (Curtsinger and Berger, 2013)

nd RUNTIMEASLR (Kangjie et al., 2016) can use periodic or real-

ime randomization to overcome the process cloning problem,

he high cost makes the both methods impractical. In addition,

xecute-only memory (XOM) (Kwon et al., 2019) also has a certain

efensive effect on CRAs. But it doesn’t work for arbitrary jmp[9].

The root cause of the flaws in these methods is the gadgets can-

ot be completely eliminated. Attackers can still obtain the gadget

ddress by process cloning, information leaking, etc.

.3. CF path limitation

The hijacked control flow will change the original execution

aths. Researchers use the path restriction (Bounov et al., 2016 ;

Y. Li, Y.-C. Chung, Y. Bao et al. Computers & Security 120 (2022) 102781

G

T

o

g

r

(

2

d

C

b

B

t

g

d

fi

t

i

s

d

fl

3

b

a

t

c

c

n

P

i

s

p

s

f

c

b

a

s

c

D

C

m

4

j

c

t

fi

E

l

t

n

w

H

c

t

i

i

f

E

Fig. 1. The architecture of CFTS.

u

c

w

t

d

d

K

r

s

r

fl

h

t

f

H

a

f

s

i

d

t

t

n

t

t

a

K

o

i

m

f

c

m

f

o

t

t

r

a

a

I

e et al., 2016 ; Mashtizadeh et al., 2015 ; Niu and Tan, 2015 ;

ice and Roeder, 2014) to prevent ICT instructions from jumping

utside the specified area. πCFI (Niu and Tan, 2015) is a fine-

rained method based on MCFI (Niu and Tan, 2014). However, it

equires operating source code and is invalid for the loaded objects

such as the loaded library). Similarly, although μCFI (Hu et al.,

018) has a good defensive effect, it cannot get rid of the depen-

ence on the source code. Besides, there exist more coarse-grained

FI methods including KCoFI (Criswell and Dautenhahn, 2014),

inCFI (Zhang and Sekar, 2013), and O-CFI (Mohan et al., 2015), etc.

ut the coarse-grained control flow graphs are too permissive so

hat they are still possible to mount attacks in general.

The ideal CFI methods need to determine the unique jump tar-

et of each ICT instruction when it is executed. However, due to

ifferent input and execution conditions, the jump targets are dif-

cult to be determined. Moreover, the control flow graphs built by

he existing methods may cause the status explosion problem. That

s, too many redundant ICT targets have been covered in a huge

et. On the one hand, these targets will increase the analysis bur-

en, on the other hand, they may also introduce dangerous control

ow paths.

. Assumptions and threat model

First, we assume that attackers can use the overflow vulnera-

ility to tamper with the control data on the stack. Second, we

ssume that the attacker cannot tamper with the code. In practice,

he code segment will be mapped as non-writable. The attacker

an only write the code by turning off the write protection of the

ode pages. Fortunately, we can use hardware virtualization tech-

ology to limit this operation, and we can also use EPT (Enhanced

age Table) technology to prevent all execution entities from writ-

ng the code segment. Third, we only consider the CRAs based on

tack overflow. Other CFI attack forms are not considered in this

aper. Fourth, we assume that all functions that can overwrite the

tack data are known. In the known attack scenarios, CRAs use the

unctions that can manipulate memory or string to tamper with

ontrol data. Most of these functions are called in the form of li-

rary functions (such as memcpy and fd_read). We only need to

nalyze the corresponding library files to get them. Although some

pecial functions or inline functions will be involved in the user

ode, we can still identify them through binary analysis. Moreover,

EP is enabled by default. To successfully deploy different types of

RAs, we turn off ASLR. In fact, ASLR does not affect the deploy-

ent of KPointer.

. Overall design of KPointer

The control data on stack includes the return address (backward

ump), the code pointer (forward jump), and the reference to the

ode pointer. However, the control data and non-control data on

he stack are mixed together and their storage locations are not

xed, which brings challenges to the control data identification.

xisting methods use compiler-based techniques to mark and ana-

yze code pointers on the stack. But these methods cannot be used

o protect the objects that do not contain source code, such as dy-

amic libraries. In scenarios where the source code is not available,

e can’t determine whether the data on the stack is control data.

ow to locate and identify the control data on the stack is the first

hallenge KPointer faces.

The update frequency of stack data is high, and it is difficult

o predict. Tracking every piece of data in real time will inevitably

ntroduce huge performance overhead. To make matters worse, it

s difficult to analyze whether the loaded data is control data. In

act, only the data used as operands by instructions is control data.

ven if we can know all the contents on the stack, it is difficult for
3

s to analyze which piece of data will be used as an operand. If we

an know the relationship between the stack data and instructions,

e can determine whether the data is used as an operand.

The existing security methods take all the ICT instructions as

he detection targets. They have the problem of excessive redun-

ancy targets. For the CRAs based on stack overflow, how to re-

uce the redundancy of the target objects is the second challenge

Pointer faces. In a real attack scenario, only the ICT instructions

elated to the control data on stack will be used by CRAs based on

tack overflow. Therefore, finding such instructions can reduce the

edundancy.

After CRAs destroy the control data on the stack, the control

ow will jump to a gadget chain. Traditionally, CFI method uses a

igh-precision boundary set to identify illegal jumps. However, it

urns out it is difficult to formulate a high-precision boundary set

or ICT instructions (Li and Wang, 2020) without the source code.

ow to formulate new security strategies without source code to

chieve strong CFI protection is the third challenge that KPointer

aces.

We find that CRAs will destroy the relationship between ICT in-

tructions and control data. In addition, the illegal stack overwrit-

ng operations may also destroy the characteristics of the original

ata on the stack, and even reveal the attacker’s overflow inten-

ion. In theory, the security strategies developed around these at-

ack characteristics can detect CRAs.

According to the above analysis, KPointer needs to find the vul-

erable control data on the stack. Then the relationship between

he control data and ICT instructions should be identified. Finally,

he relationship between control data and ICT instructions will be

nalyzed to determine whether CRAs exist. To achieve these goals,

Pointer must have the ability to monitor and control the behavior

f the executing entities. The overall design of KPointer is shown

n Fig. 1 .

KPointer is composed of resource controller, stack monitor, ICT

onitor and legitimacy detector. Resource controller is responsible

or monitoring and controlling the behavior of execution entities. It

an control their resource access, which can provide basic deploy-

ent conditions for other components. Stack monitor is responsible

or finding the vulnerable control data and setting it as the target

bject to be protected. Accurately identifying the vulnerable con-

rol data on the stack can reduce the number of target objects,

hereby reducing meaningless protection operations. ICT monitor is

esponsible for locating ICT instructions that are related to vulner-

ble control data. CRAs will use such ICT instructions as gadgets,

nd the tampered control data is the operand of the instructions.

n practice, not all ICT instructions can be used in CRAs. For ex-

Y. Li, Y.-C. Chung, Y. Bao et al. Computers & Security 120 (2022) 102781

a

I

i

o

t

s

b

d

r

o

5

c

a

n

t

w

5

s

e

s

w

s

e

c

n

I

t

o

a

C

V

c

e

V

p

e

t

t

t

5

a

p

l

c

A

c

c

s

t

(

v

e

t

t

a

Fig. 2. Memory control mechanism.

Fig. 3. Event control mechanism.

p

l

5

O

t

c

e

t

a

s

w

e

g

a

a

c

t

i

i

r

b

d

t

c

b

V

mple, in the code snippet " mov 0 × 400880 %rax, jmp ∗%rax ", the

CT instruction jmp ∗%rax cannot jump to the next gadget. Because

n this code snippet, the attacker cannot tamper with the operand

f the ICT instruction. Only the ICT instructions that are related

o vulnerable control data can be used as CRAs gadgets. The in-

tructions that can be used by CRAs are the meaningful objects to

e tracked and analyzed. The legitimacy detector is responsible for

etermining whether CRA is occurring in the OS. If a CRA is occur-

ing, the legitimacy detector will immediately block the execution

f the current execution entity.

. The implementation of KPointer

In this chapter, we introduce the implementation of the four

omponents of KPointer. The content includes: how to monitor

nd control the behavior of execution entities, how to find vul-

erable control data on the stack, how to locate the ICT instruc-

ions related to the vulnerable control data, and how to determine

hether CRAs are occurring in the OS.

.1. Monitor and control the resource access

The behavior characteristics of all execution entities will be

hown through the resources they access (such as memory, CPU,

tc.), which cannot be hidden. By monitoring the accessed re-

ources, we can know the state changes of the execution entity

ithout the source code. In addition, by manipulating the re-

ources of the target object, we can control the behavior of the

xecution entity.

However, the current OS does not provide the resource ac-

ess control interfaces. Although the binary instrumentation does

ot depend on the source code, it requires manual intervention.

n addition, binary instrumentation can only manipulate instruc-

ions and cannot manipulate memory (especially a large amount

f memory). In response to these problems, we propose a resource

ccess control model to control memory and specific events.

The VMX (virtual machine extensions) technology in modern

PUs can provide new execution modes for the OS, VMX root and

MX non-root . The model we proposed uses VMCS (virtual machine

ontrol structures) to develop a series of control strategies. Any op-

ration that violates the strategies will cause the OS to switch from

MX non-root mode to VMX root mode (called system trap in this

aper). In the VMX root , we can detect and modify the state of the

xecution entity to monitor and control its behavior. After the sys-

em trap event is over, the OS will return to VMX non-root again

o continue execution. Below, we introduce the implementation of

he control model in detail.

.1.1. Monitor and control memory

This mechanism is used to adjust the memory permission and

rea dynamically, as shown in Fig. 2 . EPT (Extended Page Tables)

rovides the basic ability to set memory permissions. Through the

ast three bits (w, r , and x) of the EPT’s last-level page tables, we

an control the memory permission with page granularity (4KB).

ny memory access that violates the permission settings will be

aptured by KPointer.

To adjust the memory area that the target objects can ac-

ess, KPointer introduces two methods: page redirection and EPT

witching. Page redirection can make the same virtual address map

o different physical memory by alternately rewriting EPT entries

 this_item and that_item in Fig. 2). It can dynamically redirect each

irtual page to any location in the entire physical memory. How-

ver, it will trigger a system trap. EPT switching uses the instruc-

ion vmfunc to switch the entire EPT without causing any system

rap. Therefore, compared with page redirection, it is not only suit-

ble for large-scale memory switching, but also introduces less
4
erformance overhead. However, the number of available EPTs is

imited by the capacity of the EPTP list to only 512.

.1.2. Monitor and control the specific events

The event control mechanism can control specific events in the

S, as shown in Fig. 3 . It can set breakpoints, inject general pro-

ection exceptions (#GP), rewrite CPU context, set interrupt ex-

eptions, set process switching exceptions and inject system trap

vents (such as int3 and vmcall).

We can enable up to 4 breakpoints (including data and instruc-

ion breakpoints) at the same time by setting the registers dr0 ∼dr3

nd dr6 ∼dr7 . Then, the bit 1 of exception bitmap in VMCS will be

et to be 1 . When an execution entity accesses the breakpoints, it

ill trigger a system trap. The breakpoints can be used to track the

xecution entities with a single instruction or a single byte as the

ranularity.

If there is an operation that needs to be blocked immediately,

 general protection exception will be injected into the OS by en-

bling the vm-entry interruption field in VMCS. Then, the next exe-

ution will trigger a system trap, and the subsequent operations of

he execution entity will be terminated.

The action of the execution entity can be controlled by rewrit-

ng the CPU context in VMCS. For example, rewriting the rip reg-

ster in VMCS can control the execution paths, and modifying the

bp and rsp can change the stack frame of the function. Moreover,

y setting the TF bit of the eflag register and the BS bit of the

r6 register, the single-step debugging mode is enabled. After that,

he OS will trigger a system trap after each instruction. Then, we

an monitor the execution of each instruction. For other events to

e monitored, such as in3 , we just need to set the corresponding

MCS fields.

Y. Li, Y.-C. Chung, Y. Bao et al. Computers & Security 120 (2022) 102781

Fig. 4. Stack overwrite detection method.

5

f

l

a

l

t

t

d

T

e

F

a

a

t

b

t

e

t

b

t

o

c

t

d

t

c

a

s

e

G

i

A

t

W

c

w

v

n

c

w

t

b

b

t

t

Fig. 5. The detection method of control data.

m

c

a

c

w

w

t

F

b

r

g

w

(

s

a

p

d

T

t

d

w

s

5

n

d

t

p

t

f

v

c

t

a

t

w

t

t

t

b

d

e

I

i

5

t

∼

W

d

.2. Find the vulnerable control data on the stack

Stack overflows are caused by memory or string manipulation

unctions and they lacate in dynamic libraries. For example, the

ibrary function fd_read in wget can be used to overwrite the return

ddress on the stack (CVE-2017-13089). In theory, monitoring such

ibrary functions can detect potential attacks. However, it’s difficult

o judge the legitimacy of these functions at binary level. Because

he memory overwritten by these functions is not fixed, and it’s

ifficult to predict whether the overwritten content is control data.

he key to solving this problem is we can identify whether there

xists control data overwritten by these functions on the stack.

In practice, not all control data on the stack can be attacked.

irst of all, whether it is the return address or the function pointer,

n attacker needs to use a stack overflow to tamper with it. In

ddition, the control data must have been assigned before being

ampered, and the tampered control data cannot be assigned again

efore being read. Otherwise, the execution entity will restore the

ampered control data to a legal value according to the original ex-

cution logic, which loses the meaning of tampering with the con-

rol data. In general, only those control data that can be changed

y the overwriting function are vulnerable control data.

According to the above analysis, the vulnerable control data on

he stack has two basic characteristics: it can be changed by an

verwriting function, and it is a piece of address data pointing to

ode. To identify such data, we must be able to detect whether

he overwriting function is writing address data to the stack. The

etection method is shown in Fig. 4 .

Generally, execution entities need to use specific library func-

ions to overwrite stack data. Modern code is position-independent

ode (PIC). The execution entity needs to use PLT (Procedure Link-

ge Table) and GOT (Global Offset Table) to call library functions,

uch as memcpy . Therefore, we can detect the intention that the

xecution entity overwrites the stack by monitoring the PLT and

OT.

Our targets are the functions with stack overwrite capabil-

ty, including strcat, strcpy, memcpy, fscanf , which is shown as

ppendix B . The first instruction jmpq ∗got_func_entry in PLT en-

ries calling these functions will be rewritten as jmpq ∗check_entry .

hen these functions are called, the control flow will jump to

heck_entry instead of the library function. Check_entry will verify

hether these functions attempt to write data to the stack. If yes,

mcall will be executed to trigger a system trap; if not, the origi-

al instruction jmpq ∗got_func_entry will be executed to make the

ontrol flow follow as the original path. This method can detect

hether the execution entity attempt to overwrite the stack data.

Moreover, all " rep xx xx xx " and LOOP code blocks are also po-

ential targets to be monitored. By detecting whether the code

lock can write data whose size is non-fixed into the stack, it can

e determined whether it is a target. For example, if " %es:(%rdi) " in

he instruction " rep stos %rax, %es:(%rdi) " points to the stack, and

he number of bytes written is determined by rcx , it should be
5
onitored. We rewrite these instructions and redirect them into

heck code. The check code can automatically verify whether they

re continuously writing data to the stack. In short, if a code block

an continuously overwrite the stack and the number of bytes

ritten is not fixed, it is a code block that can continuously over-

rite stack data, and it will be monitored.

After the overwriting intention is detected, we check whether

here is address data on stack. The detection method is shown in

ig. 5 . After check_entry triggers a system trap, a shadow stack will

e created for the current execution entity. We can switch the cur-

ent native stack to shadow stack by rewriting the guest rsp and

uest rbp fields in VMCS. After that, the overwriting functions will

rite data to the shadow stack. Finally, the changed address data

called changed data) can be detected by comparing the native

tack and shadow stack. The target address data we are concerned

bout has two characteristics. One is the data directly or indirectly

oints to the code before being overwritten, and the other is it still

irectly or indirectly points to the code after being overwritten.

hat is, they are code pointers or references to the memory con-

aining code pointers. Such address data may be vulnerable control

ata and is called suspicious data in this paper. How to determine

hether these data are control data will be introduced in the next

ection.

.3. Locate ICT instructions related to control data

The suspicious data found in Section 5.2 is not necessarily vul-

erable control data. Even these address data may not be control

ata. The non-control data is not the operand of the ICT instruc-

ion, and it cannot be used by CRAs. CRAs can be successfully de-

loyed if and only if the tampered data is used as the operand of

he ICT instruction. If an ICT instruction uses the suspicious data

ound in Section 5.2 as an operand, it is an instruction related to

ulnerable control data. And the suspicious data is the vulnerable

ontrol data. Therefore, the key to locating such an instruction is

o detect whether any suspicious data is used as a jump target by

n ICT instruction.

After identifying the suspicious data, we can track each instruc-

ion, and we can also track the transfer path of each data to detect

hether the suspicious data is used by ICT instructions. However,

his method introduces a lot of redundant operations. In real at-

ack scenario, the tampered control data will be read and passed

o the ICT instruction. Only suspicious data that has been read can

e used by CRAs. Therefore, we only need to track the suspicious

ata that has been read. At the same time, we take the read op-

ration of the suspicious data as the trigger condition for tracking

CT instructions. This method can reduce redundant operations and

mprove detection efficiency.

.3.1. Detect the suspicious data reading

To detect the suspicious data reading operation, we need to set

he suspicious data as unreadable. There are 4 debug registers (dr0

dr3) in a CPU core that can be used to set reading breakpoints.

hen the suspicious data is less than or equal to 4, we use the

ebug registers to set them as unreadable. When the suspicious

Y. Li, Y.-C. Chung, Y. Bao et al. Computers & Security 120 (2022) 102781

Fig. 6. The stack offset mechanism.

Fig. 7. The locating mechanism of ICT instructions.

d

a

i

d

c

d

w

w

s

t

e

s

n

w

o

t

h

b

m

l

a

s

5

a

i

w

i

c

t

d

t

w

n

o

p

Fig. 8. New GOT space.

p

t

t

a

t

w

d

c

s

A

a

K

n

I

r

e

u

l

c

c

t

f

o

P

c

d

c

fi

G

e

t

t

n

s

o

t

l

n

E

T

V

n

t

n

w

s

t

i

a

f

t

I

e

ata exceeds 4 pieces, we use the stack offset mechanism to put

ll the suspicious data in an unreadable page(s), as shown in Fig. 6 .

In the stack offset mechanism, we move the overwritten data

n the shadow stack to the memory head, until the first suspicious

ata is at the head of the memory page. In this way, all the suspi-

ious data and the current content pointed to by rsp are located in

ifferent pages. The page(s) where the suspicious data is located

ill be set as unreadable. Therefore, any suspicious data reading

ill trigger a system trap. It should be noted that in addition to

uspicious data, there are original data in unreadable page(s). And

he original data reading will also trigger a system trap. We will

nable these operations to obtain their target data through single-

tep debugging.

Compared with the breakpoint method, the stack offset mecha-

ism is less efficient. The stack offset mechanism will be activated

hen and only when there are more than 4 pieces of control data

verwritten on the stack. Fortunately, we did not find a situation

hat triggers the stack offset mechanism in our experiments. We

ave analyzed a large number of source code including libc, lm-

ench, nbench , and speccpu2006 , and found none of them overwrite

ore than 4 pieces of control data on the stack. Therefore, we be-

ieve that the stack offset mechanism only exists in very rare situ-

tions or attack scenarios, and its activation frequency will be very

mall.

.3.2. Locating ICT instructions related to suspicious data

Next, we check whether the suspicious data being read is used

s the operand by an ICT instruction. The suspicious data be-

ng read may not be control data. Therefore, we must determine

hether it is control data. For control data, we also need to track

ts transfer path to locate the ICT instruction related to it. Suspi-

ious data may be directly used as the operand of an ICT instruc-

ion, or it may be used after being changed. The changed control

ata is not the same as the original data, which brings challenges

o suspicious data tracking.

To track suspicious data and locate the related ICT instructions,

e establish a location mechanism, as shown in Fig. 7 . We create a

ew code space for the execution entity, its size is the same as the

riginal code space. The two code spaces use different addressing

age tables, and both point to the same physical code. For exam-
6
le, if the original code space range is 0 × 40 0 0 0 0 ∼0 × 4090 0 0 ,

he new code space may be 0 × 68ff40 0 0 0 0 ∼0 × 68ff4090 0 0 . Next,

he last page table PTE of the original code will be set as unread-

ble (set by EPT). Finally, the guest rip in VMCS will be rewritten

o make it point to the new code space. Therefore, the control flow

ill flow in the new code space instead of the original code space.

In the new code space, all instructions with consecutive ad-

resses and all relative jump instructions can be successfully exe-

uted. These instructions are based on rip to calculate the next in-

truction. So, their next instructions are still in the new code space.

nd they can accurately locate the real physical code. In contrast,

ll ICT instructions will trigger a system trap and be captured by

Pointer. The reason is the ICT instructions will jump to the origi-

al code space, and the PTE in this space is unreadable. As a result,

CT instructions will trigger system traps due to accessing the un-

eadable PTE.

Considering some code is shared, we also need to ensure other

xecution entities can call the shared code in the original space. In

ser space, multiple threads share the same application code and

ibrary code, and different processes share all library code. For pro-

esses, our method does not affect their library function calls. Be-

ause we only change the PTE permissions of a certain process, not

he permissions of the entire library. The page tables used by dif-

erent processes are not the same. Therefore, library function calls

f other processes will not trigger any system trap due to PTE.

However, the new code space will cause call errors when using

LT. Because PLT uses the address in rip as the base address to cal-

ulate the GOT address. After adding a relative offset, the new ad-

ress will point to entries in the GOT. But the current rip has been

hanged to point to new code space, which makes PLT unable to

nd the original GOT. To solve this problem, we established a new

OT for the new code space, as shown in Fig. 8 . The new GOT was

xactly the same as the original GOT when it was first created. Af-

er that, all entries that point to the code will be modified (plus

he offset between the two code spaces) to make it point to the

ew library space. Therefore, the code call lib@plt in the new code

pace can also jump to the library function through the new GOT.

For threads, they share the same page tables. The PTE of the

riginal code space is unreadable, which will cause other threads

o be unable to access the original code space. To solve this prob-

em, we need to enable threads other than the target thread to

ormally call the code in the original code space. We create a new

PT for the target thread, and other threads use the original EPT.

his method can be achieved by rewriting the EPTP field in the

MCS corresponding to the specific CPU core. The PTE of the origi-

al code space is unreadable in the new EPT, while it is readable in

he original EPT. Therefore, the target thread jumping to the origi-

al space will trigger a system trap, but other threads will not.

After locating the ICT instruction, we need to determine

hether it is related to suspicious data. If the ICT instruction takes

uspicious data as an operand, the data needs to be transferred

o the ICT instruction. The entire transfer process starts with the

nstruction reading data and ends with the ICT instruction. For ex-

mple, the instructions " pop %rax; pop %rbx; jmp ∗%rax " can trans-

er suspicious data on the stack to the ICT instruction " jmp ∗%rax "

hrough rax . We trace all instructions related to the operand of the

CT instruction. The tracing path is opposite to the order of the ex-

cuted instructions. The whole process starts with ICT instruction

Y. Li, Y.-C. Chung, Y. Bao et al. Computers & Security 120 (2022) 102781

Fig. 9. The reverse tracking of suspicious data.

Fig 10. Data chain violating condition 1.

Fig. 11. Data chains violating condition 2.

a

c

t

c

t

t

c

T

S

j

a

d

c

a

t

t

m

I

t

r

i

t

r

p

Fig. 12. Tracing memory reference.

Fig. 13. The legitimacy judgment of ICT instructions.

b

m

t

l

t

a

c

l

m

a

a

t

c

t

a

5

w

m

a

a

T

l

i

b

d

t

a

f

t

w

t

m

(

o

t

t

nd ends with the instruction reading data. If these instructions

an form a complete data transfer chain, the current ICT instruc-

ion is related to the suspicious data. The tracing process of suspi-

ious data is shown in Fig. 9 .

The relative jump instructions in the new code space can con-

inue to execute without triggering a system trap. These instruc-

ions divide all the executed instructions into several discontinuous

ode blocks. The transfer path of suspicious data is in these blocks.

o collect these instruction blocks, we use Intel BTS (Branch Trace

tore, enabled by setting the bit 3 of MSR_DEBUGCTL) to record

ump instructions.

To determine that the ICT instruction and the suspicious data

re related, two strict conditions need to be met. First, the entire

ata transfer chain must start with the instruction reading suspi-

ious data and end with the ICT instruction. Second, there is one

nd only one data transfer chain in the entire transfer process. The

wo data transfer processes in Figs. 10 and 11 violate the above

wo conditions respectively.

Both the ICT instruction locating method and the data tracing

ethod designed in this paper have strong anti-interference. Any

CT instruction can be captured as long as it attempts to jump to

he original code space. At the same time, the new code space is

andom, and it is difficult to probe. As for the suspicious data, even

f it is changed many times during transfer process, it can still be

raced back. The data tracing method can even trace the attacker’s

eference to the memory containing function pointers (ie, indirect

ointers), as shown in Fig. 12 . Because it focuses on the correlation
7
etween data transfer instructions. No matter what kind of attack

ethod it is, it cannot eliminate the correlation between instruc-

ions.

When the address pointed to by the rsp register exceeds the

ocation of the suspicious data, and the CPU context does not con-

ain any suspicious data, the current tracking will be terminated. In

ddition, all suspicious data under the location pointed to by the

urrent rsp will be destroyed to prevent them from being used ma-

iciously. Every time an ICT instruction is detected, we will deter-

ine whether the conditions for terminating the tracking process

re met at this moment.

It should be noted that the events such as system call, interrupt,

nd process switching during the tracking process will not affect

he normal execution of the OS. Because we do not restrict the

ode permissions of the kernel and other execution entities. For

he legal long jump, we will filter them out by searching setjmp

nd longjmp and allow them to jump to the target position.

.4. Determining the legitimacy of ICT instructions

After locating the ICT instruction related to the suspicious data,

e need to determine whether it is legal. The legitimacy judgment

ethod is shown in Fig. 13 .

For the backward jump instruction ret , we do not allow it to use

ny overwritten data as the return target. In practice, the return

ddress will not be changed in any way before it is used by ret .

herefore, if ret uses suspicious data as the return address, it’s il-

egal. Moreover, if the return address is rewritten but not changed,

t also cannot be used by ret .

The data that the attacker attempts to tamper with may not

e in the current function stack frame. Another word, the target

ata to be tampered is located at the upper memory of the re-

urn address. Therefore, the attacker needs to go over the return

ddress to tamper with the target data. The OS adds a canary be-

ore the return address to protect it. The attacker needs to keep

he canary unchanged. Besides, an inappropriate return address

ill cause an exception leading to process crash. Therefore, the at-

acker has to keep the return address unchanged. Attackers can use

emory probing (such as BROP (Bittau and Belay, 2016) and CROP

 Gawlik et al., 2016)) to gain the canary and return address. During

verwriting the stack data, the attacker can bypass the stack pro-

ection mechanism as long as it rewrites the two original values to

he original location on the stack.

Y. Li, Y.-C. Chung, Y. Bao et al. Computers & Security 120 (2022) 102781

b

u

j

a

a

o

t

t

i

t

f

m

m

I

p

w

t

o

o

s

t

r

T

s

o

b

t

o

“

r

t

t

t

t

s

c

s

o

a

i

a

j

u

b

s

l

o

6

e

a

6

R

s

t

K

W

a

a

f

I

(

C

i

d

a

d

T

c

t

a

t

o

o

w

f

c

w

t

m

c

p

t

b

a

d

c

t

2

M

I

e

n

v

r

I

n

n

n

a

T

L

f

e

s

m

b

Fortunately, we can find the canary and return address have

een rewritten through the shadow stack mechanism. When ret

ses a return address that has been rewritten but not changed, we

udge it as illegal. Moreover, all the overwritten data will be judged

s illegal. This design can limit the attacker’s overwriting range to

 function stack frame on the stack.

For the forward jump instructions that call library functions, all

perations that jump to library functions through PLT are legal. If

he instruction call/jmp ∗register uses suspicious data as an operand

o make control flow jump to other libraries, it will be judged as

llegal.

All library functions in Linux are PIC. The user does not need

o know the location of the library, and he can reach the target

unction through PLT and GOT. In practice, all library files will be

apped into a series of discontinuous virtual spaces. The code

ust use PLT and GOT to jump between different mapping spaces.

n contrast, CRAs will directly jump to the library code without

assing PLT and GOT. Based on this difference, we can determine

hether the library function is legally called. This design restricts

he gadgets that can be used by attackers to the mapping space of

ne executable file.

In summary, the above method puts three restrictions on CRAs:

nly forward jump instructions can be used; only control data in a

ingle function stack frame can be tampered with; only gadgets in

he mapping space of a single executable file can be used. These

estrictions can defend most CRAs.

However, there are still some clever CRAs that can be deployed.

o improve the defense effect, we formulate some new security

trategies, which are shown as the flowing.

First, for the control data itself, if it originally points to the head

f the function, it will not point to the inside of the function after

eing overwritten; if it originally points to the inside of the func-

ion, then it will not point to the head of the function after being

verwritten.

Second, for ICT instructions related to target control data,

jmp ∗” only allows control flow jumping to the inside of the cur-

ent function, while “call ∗” can only jump to the head of the func-

ion. It should be noted that “longjmp ” can be gained by parsing

he “longjmp() ” function in the ELF file, and we allow it to jump to

he target address.

Third, stack data that is continuously overwritten should have

he same properties except for the data structures and classes

tored on the stack. For example, the overwritten strings are all

haracter data, and function pointers do not appear in them.

Fourth, for data structures and classes, their member variables

hould maintain the same properties before and after they are

verwritten. In addition, we found function pointers inside them

re rarely overwritten continuously after being assigned. Therefore,

f the function pointer is continuously overwritten, and other non-

ddress data is changed at the same time, the operation will be

udged to be illegal.

Fifth, control data does not become non-control data after being

pdated, and non-control data does not become control data after

eing overwritten.

In summary, the attack behavior in the same ELF file is also

ubject to multiple conditions. All control flow transfers that vio-

ate the above policy are illegal, and the previous stack overwrite

peration is also illegal.

. Evaluation

We conduct all experiments on a Dell T440 server, which is

quipped with two 10-core Intel Xeon silver 4210 2.2 GHz CPUs

nd 128GB memory. The OS is Ubuntu-16.04 with kernel 4.15.0.
8
.1. Security Analysis

To evaluate KPointer’s defense effect on back-forward attacks,

IPE (Wilander et al., 2011) test suite is implemented. It con-

ists of 850 buffer-overflow attacks that can tamper with the re-

urn addresses. We use RIPE to attack the OS 480 times, and test

Pointer’s defense action. The test results are shown in Table 1 .

e find the native OS has a certain defense effect on back-forward

ttacks caused by stack overflow. But it can still be bypassed by

bout 8% of attacks. In contrast, KPointer can prevent all back-

orward attacks.

KPointer has strong protection effect on backward instructions.

t does not indirectly mark the return address like StackGuard

 Cowan et al., 1998), nor does it hide the code pointers like

odeArmor (Burow et al., 2017). Instead, KPointer verifies the legit-

macy of the backward jump by tracing the changes of the control

ata on which the instruction ret depends. As long as the return

ddress has been manipulated, even if the value of the return ad-

ress is not changed, KPointer can detect such abnormal behavior.

herefore, whether it is canary probing or memory leak, KPointer

annot be bypassed.

To verify the effect of KPointer on forward control flow pro-

ection, we test four real-word applications (Nginx, Proftpd, Mcrypt

nd TORQUE) containing stack overflow vulnerabilities. To simulate

he JOP attack, we add a null function null_call() to the source code

f these four applications (ngx_http_request_body.c of Nginx, netio.c

f Proftpd, extra.c of Mcrypt , and disrsi_.c of TORQUE). After that,

e call null_call() through a function pointer (local variable) in the

unction containing a vulnerability. We deploy the compiled appli-

ation in the OS to simulate a no-source execution scenario. Finally,

e use 4 JOPs based on stack overflow vulnerabilities to attack

he above programs, and check the defense effects of the security

ethods.

Attack 1 targets the web server Nginx . It constructs the JOP

hain based on the existing knowledge of Nginx and libc , and ex-

loits the stack buffer overflow vulnerability (CVE-2013-2028) to

amper with the pointer of null_call .

Attack 2 targets the ftp server Proftpd . It first locates gadgets

y scanning the Proftpd executable and libc . Then, it reads the load

ddresses of libc from /proc/pid/maps to determine the absolute ad-

ress of gadgets. Finally, it sends the buffer containing the JOP

hain to Proftpd via an unauthorized FTP link, which will replace

he pointer of null_call on stack through the vulnerability (CVE-

010-4221) in Proftpd .

Attack 3 targets Mcrypt . It first obtains the load addresses of

crypt and libc from the /proc/pid/maps to construct the JOP chain.

t then sends the JOP chain to Mcrypt through a pipe. Next, it

xecutes the JOP chain through tampering with the pointer of

ull_call, which is achieved by exploiting a stack buffer overflow

ulnerability (CVE-2012-4409) in Mcrypt .

Attack 4 targets the TORQUE resource manager server. It first

eads the load address of the pbs_server and constructs a JOP chain.

t then sends the JOP chain to TORQUE through an unauthorized

etwork connection, and exploits the stack buffer overflow vul-

erability (CVE-2014-0749) in TORQUE to modify the pointer of

ull_call .

The results show that KPointer can detect and block these

ttacks. In contrast, MCFI (Niu and Tan, 2014), πCFI (Niu and

an, 2015), CFI-LB (Khandaker et al., 2019), OS-CFI (Khandaker and

iu, 2019), μCFI (Hu et al., 2018) and PARTS (Liljestrand et al., 2019)

ailed to detect any of the above attacks. Because, these methods

ither rely on source code, or do not support the protection of

hared libraries.

To compare the defense effect of KPointer with the similar

ethods, we analyze their defense effect against stack overflow-

ased CRAs. The results are shown in Table 2 .

Y. Li, Y.-C. Chung, Y. Bao et al. Computers & Security 120 (2022) 102781

Table 1

Real attack defense.

Methods total attacks successful attacks partly attacks failed attacks

Native OS 480 37(7.7%) 2(0.4%) 441(91.9%)

KPointer 480 0 0 480(100%)

Table 2

The defensive effects of security methods against stack overflow-based CRAs.
√

: success protection,

×:failed to protect, � :partial success protection.

Attack types MCFI πCFI CFI-LB OS-CFI μCFI PARTS KPointer

code pointer overwrite � � �
√ √ √ √

return address overwrite
√ √ × × √ √ √

tail call attack � � × × √ √ √

vatbale injection � � �
√ √ × √

setjmp/longjmp
√ √ × × × × √

function type confusion
√ √ √ × × × ×

shared library gadgets × × × × × × √

Table 3

Static statistics of instructions and data related to control flow transfer.

APP call ∗ jmp ∗ ret FPoS RA FPoH FPoD

Nginx 309 33 1276 244 1276 124 975

Redis 742 682 6368 14 6368 1 3838

Httpd 1222 259 6928 48 6928 33 84

s

t

e

(

A

s

t

c

t

e

t

R

(

J

b

c

o

o

o

a

m

t

m

6

t

t

t

m

i

e

s

c

n

i

F

d

F

t

s

a

d

o

s

m

s

c

p

a

b

t

O

c

t

n

w

t

g

t

p

m

o

t

t

a

t

s

t

f

o

c

t

r

o

The results show that KPointer has better defense effect on

tack overflow-based CRAs. However, it doesn’t detect function

ype confusion. Because KPointer’s defense targets are executable

ntities without source code. They have lost high-level semantics

including function types, parameter types, variable types, etc.).

s a result, KPointer has no effect on function type confusion. It

hould be noted that once the control data used in the above at-

ack is not on the stack, KPointer will lose its effect.

We count the number of control flow transfer instructions and

ontrol data in real applications, as shown in Table 3 . FPoS: func-

ion pointers on stack; RA: return addresses; FPoH: function point-

rs on heap; FPoD: function pointers on data segment. The statis-

ics show that the amount of control data on the stack (FPos and

A) is the largest. In a real execution scenario, whether it is ROP

 Payer and Barresi, 2015), JOP (Li et al., 2018), LOP (Lan et al., 2015),

IT-ROP (Ahmed and Xiao, 2020) or any other CRA variant, it will

e detected by KPointer as long as it needs to tamper with the

ontrol data on the stack.

However, KPointer cannot protect control data (less than 50%)

n the heap and data segments. According to our observation, most

f the control data in the heap and data segment exist in the form

f function pointers, which all point to the head of functions. In

ddition, control data in the heap and data segments resides in

emory longer and changes less frequently than control data on

he stack. These features are beneficial for us to build conservation

odels.

.2. Performance analysis

We use SpecCPU2006 to test the performance loss of CPU in-

roduced by KPointer, as shown in Fig. 14 . The results show that

he average performance loss is 2.7%. During the test, we found

hat the system trap frequency is a key factor affecting the perfor-

ance. The test program will be suspended when a system trap

s triggered. KPointer will take over the control flow until the trap

vent is over. In the whole process, the test program will lose a

hort period of execution time, causing its execution time to be-

ome longer.
9
SpecCPU2006 focuses on testing the CPU performance, and can-

ot test other performances well. To make up for this shortcom-

ng, we use other applications as benchmarks, which is shown as

ig. 15 .

Apache, Lighttpd, and Nginx focus on network performance. Re-

is and Memtester focus on memory performance. Gzip, Tar, and

IO focus on IO performance. All test items are measured against

heir respective runtimes when KPointer is not running. The results

how that the performance loss of each test item is less than 8%,

nd the average performance loss of all test items is 4.2%.

The above applications do not generate too much suspicious

ata during the test. Therefore, we cannot observe the performance

f KPointer when it tracks suspicious data and ICT instructions. To

olve this problem, we modified RIPE (Wilander et al., 2011) to

ake it generate suspicious data. Two function pointers are de-

igned, and they point to an empty function respectively. Before

alling the overwriting functions (such as memcpy and strcpy), one

ointer is stored on the stack. After that, the overwriting functions

re called to write data to the stack, and the function pointer will

e changed to another function pointer by the overwriting func-

ions. In fact, neither of the two empty functions will be called.

therwise, KPointer will judge it as an illegal operation and kill the

urrent process, which will prevent us from continuing to observe

he performance of KPointer tracking ICT instructions. It should be

oted that we put the function pointer at 32 bytes from the over-

riting start address. Therefore, when the number of the overwrit-

en bytes exceeds 32, RIPE will generate a piece of suspicious data.

During the test, the number of bytes written to the stack will

radually increase. We record the running speed of the target func-

ions and RIPE before and after the KPointer deployment. The ex-

eriment results are shown in Figs. 16 and 17 . The 0 in abscissa

eans that the function writes data to the other memory instead

f the stack.

In Fig. 16 , when the overwriting functions do not write data

o the stack, the effect of KPointer on them is not obvious. When

hey write a small amount of data to the stack, KPointer will have

 significant impact on them. Because when the overwriting func-

ions write data to the stack, KPointer has to create a shadow

tack for them. The system trap, stack creation, and stack migra-

ion caused by this operation will affect the execution speed of the

unctions.

As the number of the overwritten bytes increases, the impact

f KPointer on the overwriting functions will become smaller. Be-

ause the more bytes are written, the longer the execution time of

he functions. The time for KPointer to build the shadow stack is

elatively fixed, about 2μs. Therefore, the longer the running time

f the function, the smaller the relative impact of KPointer.

Y. Li, Y.-C. Chung, Y. Bao et al. Computers & Security 120 (2022) 102781

Fig. 14. Speccpu test results. The abscissa is the test pro.gram. The ordinate on the left is "base run time", which corresponds to the bar graph; the ordinate on the right is

the performance degradation factor, which corresponds to the line graph.

Fig. 15. The performance loss of real applications.

Fig. 16. The running speed attenuation of the overwriting functions. The abscissa

indicates the number of bytes written to the stack. The ordinate represents the

speed attenuation factor of each function after deploying KPointer.

Fig. 17. The running speed attenuation of RIPE. The abscissa indicates the number

of bytes written to the stack. The ordinate represents the impact of the overwriting

functions on RIPE after the deployment of KPointer.

i

c

f

T

l

s

s

e

w

c

W

t

d

c

s

t

s

o

R

h

e

p

g

K

r

i

t

i

s

t

t

g

t

o

t

o

t

p

c

T

V

p

c

s

c

p

s

i

t

p

m

p

l

I

It should be noted that the speed attenuation factor of memcpy

s extremely large at the beginning, and then rapidly decreases. Be-

ause when the number of the copied bytes is small, the library

unction memcpy will be replaced by the instruction rep stos xx xx .

he running speed of the rep stos xx xx is much higher than the

ibrary function memcpy . The time that KPointer builds a shadow

tack is dozens of times the execution time of the instruction rep

tos xx xx . When memcpy copies more bytes, the library function is

nabled. Then, the execution time of memcpy is increasing rapidly,

hich makes the relative impact of KPointer smaller.
10
Fig. 17 shows that the impact of KPointer on RIPE will in-

rease as the number of bytes written into the stack increases.

hen the overwriting functions does not write data to the stack,

he impact of KPointer on RIPE is between 2% and 3.5%. When

ata is written but no suspicious data is generated, the impact in-

reases to 4% ∼6%. At this point, KPointer needs to create a shadow

tack for the current execution entity. In addition, KPointer has

o create a new code space and migrate control flow to the new

pace. These operations will slow down RIPE. When the number

f bytes written into the stack reaches 64, the running speed of

IPE continues to slow down. Because at this time the process

as generated suspicious data (located at the 32 nd byte). Then,

ach ICT instruction will trigger a system trap. Fortunately, the im-

act of KPointer will not increase too much, and it will stabilize

radually.

To further test the performance overhead of the OS caused by

Pointer, we introduce some microbenchmarks. The experiment

esults are shown in Table 4 . We found KPointer does not signif-

cantly affect the execution speed of instructions other than the

arget ICT instructions. In contrast, it has a greater impact on ICT

nstructions related to suspicious data. Because the target ICT in-

truction triggers a system trap when it is executed, the processing

ime of a system trap exceeds 500ns. Next, KPointer determines

he legitimacy of the ICT instruction based on the security strate-

ies. The whole process requires about 3.3μs, which is far more

han the execution time of an ICT instruction. Moreover, the mem-

ry exception caused by the EPT permission settings will also affect

he running speed of the process. In short, all the time-consuming

perations are caused by system traps.

Based on the above experiments, we can draw the conclusion

hat the system trap is the main factor that KPointer introduces

erformance overhead. The system traps generated by KPointer in-

lude unconditional traps and conditional traps.

Unconditional traps are caused by the specific instructions.

hese instructions include CPUID, GETTSEC, INVD, XSETBV and all

MX instructions except VMFUNC . The overhead they introduce is

ositively related to the number and frequency that the program

alls these instructions.

The conditional traps are triggered by the security strategies

et by KPointer, including memory permission exceptions and spe-

ific events (such as executing int3). The performance overhead de-

ends on how often the system traps occur. For example, if the in-

tructions jmp ∗register appear frequently after the suspicious data

s detected, they will introduce a large performance overhead due

o the frequent system traps.

In addition to affecting the performance of the OS and ap-

lications, KPointer also occupies some memory. These memories

ainly include KPointer’s code segment, data segment and EPT

age table (switched by vmfunc). The first two are fixed and total

ess than 4MB. The latter is related to the memory size of the OS.

n this paper, indexing 128GB of memory requires about 257MB of

Y. Li, Y.-C. Chung, Y. Bao et al. Computers & Security 120 (2022) 102781

Table 4

Micro benchmarks (Nanoseconds).

No KPointer With KPointer (After overwriting the control data on the stack)

call addr library call ret jmp addr jmp/call ∗reg call addr library call ret jump addr system trap ept exception jmp/call ∗reg

2.78 3.09 2.69 1.37 1.39 2.78 3.1 2.71 1.37 579.61 1109.79 3271.83

Fig. 18. Comparison with existing methods. Binary-based methods are red, source-based methods are green.

Fig. 19. Illegal jump generates an illegal instruction.

E

o

6

m

t

s

i

b

m

p

m

w

w

d

C

c

i

s

o

o

t

i

c

t

i

t

s

t

l

s

d

f

K

t

u

t

s

n

l

p

s

i

k

a

o

a

o

w

t

(

i

t

x

b

w

M

A

M

l

n

i

u

i

a

PT page tables, and the two sets of EPT page tables require a total

f 514MB of memory.

.3. Comparison with existing methods

To evaluate existing security methods, we extend the evaluation

ethod proposed in (Burow et al., 2017). We add a new evalua-

ion indicator CFR (control flow tracking redundancy) on the ba-

is of the evaluation indicators CF, RP, SAP.F, SAP.B and Q used

n (Burow et al., 2017). A detailed description of all factors can

e found in the Appendix A . The results of KPointer and existing

ethods are shown in Fig. 18 . The results show that the overall

erformance of KPointer is relatively balanced.

KPointer detects whether suspicious control data is updated by

onitoring the stack overwrite function. It can approach a scenario

here an attacker exploits a stack overflow vulnerability to tamper

ith control data. Based on this method, KPointer can greatly re-

uce the redundancy of traced instructions, thereby improving the

FR score.

By migrating control flow into a separate space, KPointer can

apture all ICT instructions (such as “call ∗” and “jmp ∗”) includ-

ng the illegal instructions shown in Fig. 19 . Because in a separate

pace, the current address space is not the same as the original

ne. The operands of ICT instructions are stored in writable mem-

ry, and they still point to the original address space. So, the con-

rol flow will jump from the current address space to the orig-

nal address space. Since the last page table PTE of the original

ode segment is unreadable, the control flow transfer will be cap-

ured. Therefore, the CFT performance of KPointer is good. Whether

t is ROP, JOP, COOP, SROP or LOP, as long as the attacker uses

he overflow vulnerability to tamper with the control data on the
11
tack, KPointer can find it through control flow monitoring and

racing, and use the security detection strategies to determine its

egitimacy. Therefore, KPointer has a good defense effect against

tack overflow-based CRAs and their variants. In addition, KPointer

oes not rely on source code and can track the control flow trans-

er instructions in shared libraries. Based on these performances,

Pointer improved its CFT, Q, AP.F and AP.B.

The reason why KPointer’s AP.F performs well is that it only

races the ICT instructions after the stack overwrite operation, and

ses a more granular security policy. Moreover, KPointer will de-

ect whether the return address has been tampered with after the

tack overwrite operation, which makes its AP.B perform good. Fi-

ally, according to the SpecCPU2006 test, KPointer only introduces

ess than 3% performance overhead to the CPU. Therefore, its RP

erformance is also good.

On the whole, KPointer is better than the current comprehen-

ive methods (such as IFCC, O-CFI and PathArmor) when fight-

ng against the CRAs based on stack overflow. To the best of our

nowledge, most security methods (such as πCFI, MCFI, HW-asst,

nd CCFI, etc.) fail to detect the illegal instructions converted from

perands (shown in Fig. 19). Because they only set checkpoints

t the locations of legal instructions (opcodes), and ignore the

perands with specific forms (ie, illegal instructions, such as c3,

hose binary forms are the same as the jump instructions, but

hey are only operands rather than opcodes.). If an active method

such as a compiler-based method) attempts to detect all illegal

nstructions, the checkpoints should be set at all the positions of

he operands with specific forms. Due to the unaligned nature of

86 code, the method requires a byte-by-byte search for all possi-

le illegal instructions. There are a large number of such operands,

hich can seriously affect the execution efficiency of applications.

issing illegal instructions not only lowers CFT, but also lowers Q,

P.F, and AP.B.

Moreover, the compiler-based methods, such as IFCC, πCFI,

CFI, CCFI, and VTI, require the support of source code, which

eads to the protection failure on the loaded libraries. Kernel-CFI

eeds to analyze the pointers in the source code of kernel, which

s invalid for other kernel objects (such as loadable kernel mod-

les) that have no source code. These characteristics can negatively

mpact on their CFT, Q, AP.F and AP.B.

Both πCFI and MCFI are context-sensitive methods, and their Q

nd AF.B have good performance. In general, the shadow stack can

Y. Li, Y.-C. Chung, Y. Bao et al. Computers & Security 120 (2022) 102781

r

A

o

w

L

t

a

i

e

i

f

T

d

r

d

b

d

G

g

m

a

C

b

f

C

h

m

c

t

s

a

g

m

s

t

j

s

t

d

w

c

t

t

a

m

f

m

6

i

p

i

u

p

i

i

n

s

w

t

t

b

F

r

t

a

v

s

m

a

b

W

u

r

t

a

i

b

a

t

q

f

t

o

7

a

d

t

o

s

s

i

K

fl

D

w

e

t

p

i

c

C

d

a

p

r

G

&

A

a

i

t

f

etain the original return address, which is helpful for improving

F.B. Lockdown has a higher AF.B based on this method. The meth-

ds using hardware-assisted techniques can achieve better results

ith less overhead, such as O-CFI using MPX and PathArmor using

BR. Comprehensive and reasonable security policies have a posi-

ive effect on improving the Q, AP.F and AP.B. For example, HW-

sst can ensure the correctness of the return address by verify-

ng each instruction ret , and it has a better AP.B. In contrast, O-CFI

mploying address randomization can be bypassed by code prob-

ng, which affects its Q. At the same time, O-CFI builds a target set

or jump instructions, but the elements in the set are not unique.

herefore, its AF.B and AF.F do not perform well. Since CFIGuard

etects all indirect jumps, it has better Q. However, this method

elies on high-precision CFG. Especially for shared libraries that

o not contain source code, the jump relationship between code

locks is not clear, which may be changed with the input and con-

itions. A low-precision CFG will reduce the AP.B and AP.F of CFI-

uard. If a method can approximate the real attack scenario to the

reatest extent and detect the code in the scenario in a targeted

anner, it can get an ideal CFR. On the contrary, the more attack-

gnostic code involved in security methods, such as HW-asst and

FIGuard, the lower their CFR.

Although KPointer has some advantages when defending CRAs

ased on stack overflow, it still has some shortcomings. First and

oremost, KPointer is only defensive against stack overflow based

RAs. If the tampered control data is on the heap, the KPointer

as no effect. Second, in special execution scenarios, KPointer will

isjudge. If a function uses a full copy method (such as mem-

py(struct_pointer, memory_pointer, sizeof(struct xxxx))) to update

he data structure (containing a function pointer that has been as-

igned), when the function pointer in the data structure is used as

n operand, KPointer will judge the current legal operation as ille-

al. Third, in special execution scenarios, KPointer will miss judg-

ent. When an attacker can construct all gadgets " jmp ∗" inside a

ame function, and he will not destroy the pointing feature of con-

rol data and the jump feature of ICT instructions, KPointer cannot

udge they are illegal. If the function pointer array in the function

tack frame is stored adjacent to a piece of control data, the con-

rol data (keeping the same pointing characteristics after being up-

ated) cannot be judged to be illegal even it has been tampered

ith.

These weaknesses can negatively impact CFT, Q and AP.F. If the

orrupted control data is on heap, KPointer cannot detect the con-

rol data’s update, and it will not trace the subsequent ICT instruc-

ions. Therefore, CFT, Q and AP.F are affected. Misjudgment directly

ffects AP.F, while omission directly affects Q. In fact, misjudg-

ents and omissions are rare. We ran Nginx, Redis and SpecCPU

or more than 12 hours respectively, and KPointer did not have any

isjudgments or omissions.

.4. Limitations

Currently, KPointer still has some inherent flaws. First, KPointer

s only defensive against stack overflow-based CRAs. If the tam-

ered control data is on the heap, KPointer has no effect. Second,

t only has a protection effect on user space code. Compared with

ser space, the function calls in kernel space do not require the

articipation of PLT and GOT, which makes our security strategies

nvalid. In fact, KPointer is also effective for backward control flow

n the kernel. For forward control flow, KPointer needs to adopt

ew tracking methods and security strategies. Third, KPointer only

upports Linux under the x86 architecture with VMX and EPT,

hich is invalid for the ARM architecture and Windows. We plan

o expand KPointer to ARM architecture and Windows in our fu-

ure work.
12
Moreover, as described in Section 6.3 , KPointer has the possi-

ility of misjudgment and omission in special execution scenarios.

ortunately, we have not found the special execution scenarios in

eal applications (such as SpecCPU2006, Lmbench, Nbench, Memme-

er, Ngnix, Apache , and Redis). Because, after the data structure is

ssigned and before being reclaimed, it rarely updates its member

ariables in a complete copy manner. Typically, overwriting data

tructures with memcpy only happens during initialization. At this

oment, the function pointer in the data structure has not been

ssigned an address (usually its value is 0). Therefore, it does not

ecome the object to be detected, and there is no false positive.

hen a specific member variable in the data structure needs to be

pdated, the user generally assigns the target value directly to it,

ather than completely overwriting the entire data structure. Fur-

hermore, the attacker constructs all gadgets in a single function,

nd these gadgets conform to the specific code form and behav-

oral capabilities required for the attack, which is almost impossi-

le. The reason is that the gadgets that match the attack form and

ttack capability have strict screening conditions. Therefore, the at-

acker needs a large amount of binary code to filter out enough

ualified gadgets. The amount of binary code contained in a single

unction is difficult to meet this requirement. In short, KPointer has

he possibility of misjudgment and omission in theory, but it rarely

ccurs in real execution scenarios.

. Conclusion

This paper proposes a security method KPointer to defend

gainst CRAs based on stack overflow. KPointer finds suspicious

ata by detecting the functions that can overwrite stack data. After

hat, a new code space was established to track the transfer path

f the suspicious data and locate the ICT instructions related to the

uspicious data. Finally, KPointer uses the correlation between in-

tructions and data to build security strategies to detect the legit-

macy of ICT instructions. The experiment and analysis show that

Pointer has a good defense effect on CRAs based on stack over-

ow. It introduces 2.7% performance overhead to the CPU.

eclaration of Competing Interest

We declare that we have no financial and personal relationships

ith other people or organizations that can inappropriately influ-

nce our work. And there is no professional or other personal in-

erest of any nature or kind in any product, service and/or com-

any that could be construed as influencing the position presented

n, or the review of, the manuscript entitled, “KPointer: Keep the

ode pointers on the stack point to the right code”.

RediT authorship contribution statement

YongGang Li: Conceptualization, Methodology, Software, Vali-

ation, Writing – original draft, Writing – review & editing, Project

dministration. Yeh-Ching Chung: Writing – review & editing, Su-

ervision, Funding acquisition. Yu Bao: Data curation, Writing –

eview & editing. Yi Lu: Formal analysis, Investigation. ShanQing

uo: Formal analysis, Supervision. GuoYuan Lin: Writing – review

 editing, Supervision, Funding acquisition.

ppendix A

In fact, the six indicators (CFT, CFR, RP, Q, AP.F, AP.B) are

ll inspired by Burow[44]. Except for the RP, other evaluation

ndicators are obtained according to the qualitative analysis of

he security methods’ protypes. Their specific meanings are as

ollows:

Y. Li, Y.-C. Chung, Y. Bao et al. Computers & Security 120 (2022) 102781

Table 5

The functions detected by KPointer.

Header File Functions

< string.h > strcpy(), strncpy(),strccpy(), strcat(), strdup(),

memcpy(), bcpy(), getchar()

< stdio.h > scanf(), sprintf(), snprintf(), fprintf(),

vsprintf(), sscanf(), fscanf(), gets(),

fgets(),vfscanf(),vscanf(), vsscanf, getc(), fgetc()

< libgen.h > streadd(), strcadd(), strecpy(), strtrns()

< stdlib.h > realpath()

< conio.h > getch()

c

t
∗

j

"

t

t

g

s

w

T

t

t

A

r

s

r

d

l

o

C

t

l

b

"

t

i

r

e

t

o

b

c

m

t

s

w

h

t

Q

p

T

w

i

c

Q

i

t

b

a

fl

t

t

n

Q

S

i

t

I

s

a

j

(

o

a

e

a

c

t

s

p

S

c

c

a

m

m

A

O

w

c

m

h

t

i

b

v

A

a

t

g

l

b

n

o

R

A

B

B

CFT : Control Flow Transfer. It refers to jump instructions that

an be tracked by security tools, which may be used in CRAs. The

raced instructions include "call ∗%register", "call ∗(%register)", call

value(%register), "call ∗(%register, %register, value)", "call ∗pointer", "

mp ∗%register", "jmp ∗(%register)", "jmp ∗address(, %register, value)",

ret", "retn value" , and "retf value" . The more indirect jump instruc-

ions a security tool can trace, the higher the CFT score. In fact,

hese instructions may be legal instructions or illegal instructions

enerated by an attacker through an arbitrary jump. An example is

hown in Fig. 19 . In a normal execution scenario, the control flow

ould jump to the address 3a43 via the instruction " jmp ∗rax ".

hen, the code " 74 c3 " (" je 3a08 ") will be executed. If the attacker

ampered with the control data to make the control flow jump to

he address 3a44 , the code to be executed becomes " c3 " (" retq ").

ctually the " c3 " in the legal code " 74 c3 " is only an operand (a

elative offset to the current location), not an opcode. Such an in-

truction is called illegal instruction. This reduces CFT if the secu-

ity scheme cannot track and detect such illegal instructions. Ad-

itionally, the instructions being traced may be located in shared

ibraries that have no source code and have been loaded into mem-

ry. A method that fails to track instructions in a library lowers the

FT score.

CFR : Control Flow Redundancy. It refers to the additional con-

rol flow introduced by security methods to track and detect the

egitimacy of potential attack targets, whose jump instructions can

e hijacked by attackers. For example, to check the instruction

 ret ", the security method rewrites the instruction with some code

o check its return address; if the return address used by " ret " is

mpossible to be tampered with, the checking code will generate

edundant control flow. In general, security methods assume that

very control flow transfer instruction can be used by attackers po-

entially. Therefore, all control flow transfer instructions are traced

r checked. However, in a real attack scenario, only those code

locks whose control data or condition data can be tampered with

an become attack vectors. So, many checks for control flow are

eaningless. The main factor affecting CFR is the accuracy of iden-

ifying attack scenarios. The more we can approximate real attack

cenarios and accurately detect potential attack targets, the more

e can reduce control flow redundancy and thus improve CFR.

RP : Reported Performance. It refers to the performance over-

ead reported in the paper. The lower the performance overhead,

he higher the score.

Q : Qualitative Security. Generally speaking, the factors affecting

 mainly include three aspects: the attack principles, the defense

rinciples and the characteristics of the objects to be attacked.

herefore, we qualitatively analyze Q around the three aspects. If

e can identify all possible attack scenarios and make the jump

nstructions in attack scenarios only jump to legitimate targets, we

an get the ideal Q. So, we define Q as follows:

 =

tar _ num ∑

n =1

P n ∗ 1

L n
13
Tar_num represents the total number of control flow transfer

nstructions. Pn represents the probability of the n

th control flow

ransfer instruction that can be maliciously used. It is determined

y the attack principles and the characteristics of the objects to be

ttacked. Ln represents the jump target number of the n

th control

ow transfer instruction in the attack scenario. It is determined by

he defense principles of the method to be evaluated. For the code

hat cannot be used by an attacker, its Pn is 0. Therefore, it does

ot have any effect on improving Q, which is reasonable to portray

. The larger the Pn , the greater the risk of the n

th instruction.

o, the more a security method protects this instruction, the more

ts effort contributes to improving Q. In practice, each control flow

ransfer instruction has only one jump target when it is executed.

n other words, the ideal value of Ln is 1. The larger the Ln , the

maller the Q, which is in line with the security meaning of Q.

AP.F : Analysis Precision for Forward Control Flow. In fact, not

ll forward control flow can be constructed as gadgets. A forward

ump instruction used as a gadget must satisfy: 1) its operand

ie, the jump target) must be located in writable memory; 2) the

perand can be tampered with. These two conditions must be met

t the same time, otherwise it cannot be used as a gadget. For

xample, since the jump target " address " in the instruction " call

ddress " is fixed to a non-writable code segment, this instruction

annot be used as a gadget. The closer the target to be traced by

he security method is to these two conditions, the higher its AP.F

core.

Furthermore, in modern program structures, there are some im-

licit jump rules for forward control flow, such as the rules in

ection 5.4 . For security methods that focus on jumping rules, the

loser they can approximate these rules in judging the legality of

ontrol flow, the higher the AP.F score.

Moreover, it is legal for a forward jump instruction to have one

nd only one jump target each time it is executed. For security

ethods that set an instruction boundary, the closer they approxi-

ated this ideal instruction boundary, the higher the AP.F score.

AP.B : Analysis Precision for Backward Control Flow. Similar to

P.B, not all backward jump instructions can be used as gadgets.

nly if the return address has the possibility of being tampered

ith, the return instruction corresponding to the return address

an be used as a gadget. The more a security method can approxi-

ate the execution scenario of tampering with return address, the

igher its AP.B score.

In addition, whether the security method can accurately judge

he legitimacy of the return address before the control flow returns

s also an important basis for evaluating AP.B. For example, canary-

ased methods can cause false positives due to the leaked canary

alue, which results in a lower AP.B score.

ppendix B

The functions in Table 5 can write data to the stack, and they

re all detection objects of KPointer. Under certain conditions,

hey may cause stack overflows. Although some functions (such as

etc()) cannot directly cause stack overflow, they are possible in a

oop code block. For example, in a looping code block, the num-

er of getchar() calls controlled by the input, and it can write a

on-fixed-size string to the stack, which may also cause a stack

verflow.

eferences

hmed, S., Xiao, Y., et al., 2020. Methodologies for quantifying (Re-) randomization

security and timing under JIT-ROP. In: Proc. the ACM SIGSAC Conference on Com-

puter and Communications Security , pp. 1803–1820 .
ittau, A., Belay, A., et al., 2016. Hacking blind. In: Proc. the IEEE Symposium on Se-

curity and Privacy , pp. 227–242 .
ittau, A., Belay, A., 2016. Hacking blind. In: Proc. the IEEE Symposium on Security

and Privacy . IEEE, pp. 227–242 .

http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0046
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0041

Y. Li, Y.-C. Chung, Y. Bao et al. Computers & Security 120 (2022) 102781

B

B

C

C

C

F

F

F

F

G

G

G

G

G

G

H

H

K

K

K

K

L

L

L

L

L

L

L

M

M

M

N

N

O

P

Q

R

S

S

T

V

W

Y

Y

Z

Z

Y
n

H
p

H
c

Y

f
v

d

Y
e

I

s

Y

N

t

o

S
n

s
2

S
c

l

a
a

G
h

v

b

t

s

ounov, Dimitar, et al., 2016. Protect-ing C ++ dynamic dispatch through VTable in-
terleaving. In: Proc. NDSS .

urow, N., Carr, S.A., Nash, J., Larsen, P., Franz, M., Brunthaler, S., Payer, M., 2017.
Control-flow integrity: Precision, security, and performance. ACM Comput. Surv.

50 (1), 1–33 .
owan, C., Pu, C., Maier, D., et al., 1998. Stackguard: Automatic adaptive detection

and prevention of buffer-overflow at-tacks. In: Proc. USENIX Security Symposium ,
98, pp. 63–78 .

riswell, J., Dautenhahn, N., 2014. KCoFI: Complete control-flow integrity for com-

modity operating system kernels. In: Proc. IEEE Symposium on Security and Pri-
vacy , pp. 292–307 .

urtsinger, C., Berger, E.D., 2013. STABILIZER: Statistically sound performance evalu-
ation. Proc. Acm Sigarch Comput. Architect. News 41 (1), 219–228 .

an, X., Sui, Y., 2017. Boosting the precision of virtual call integrity protection with
partial pointer analysis for C ++ . In: Proc. t he 26th ACM SIGSOFT International

Symposium on Software Testing and Analysis , pp. 329–340 .

u, J., Jin, R., Lin, Y., et al., 2018. Function risk assessment under memory leakage. In:
Proc. International Conference on Networking and Network Applications (NaNA) ,

pp. 284–291 .
u, J., Jin, R., Lin, Y., et al., 2018. Function risk assessment under memory leakage. In:

Proc. International Conference on Networking and Network Applications (NaNA) ,
pp. 284–291 .

u, J., Lin, Y., Zhang, X., 2016. Code reuse attack mitigation based on function

randomization without symbol table. In: Proc. IEEE Trustcom/BigDataSE/ISPA ,
pp. 394–401 .

awlik, R., Kollenda, B., Koppe, P., Garmany, B., Holz, T., 2016. Enabling client-side
crash-resistance to overcome diversification and information hiding. Proc. NDSS

16, 21–24 .
awlik, R., Kollenda, B., Koppe, P., et al., 2016. Enabling client-side crash-resis-

tance to overcome diversification and information hiding. In: Proc. the NDSS ,

pp. 21–24 .
e, X., Talele, N., Payer, M., et al., 2016. Fine-grained control-flow integrity for kernel

software. In: Proc. IEEE European Symposium on Security and Privacy (EuroS&P) ,
pp. 179–194 .

uo, Y., Chen, L., Shi, G., 2018. Function-oriented programming: A new class of code
reuse attack in c applications. In: Proc. IEEE Conference on Communications and

Network Security , pp. 1–9 .

uo, Y., Chen, L., Shi, G., 2018. Function-oriented programming: A new class of code
reuse attack in c applications. In: Proc. IEEE Conference on Communications and

Network Security (CNS) , pp. 1–9 .
upta, A., Kerr, S., Kirkpatrick, M.S., et al., 2013. Marlin: A fine grained randomiza-

tion approach to defend against ROP at-tacks. In: Proc. International Conference
on Network and System Security , pp. 293–306 .

iser, J., Nguyen-Tuong, A., Co, M., et al., 2012. ILR: Where’d my gadgets go? In:

Proc. Symposium on Security and Privacy , pp. 571–585 .
u, H., Qian, C., Yagemann, C., et al., 2018. Enforcing unique code target property

for control-flow integrity. In: Proc. the ACM SIGSAC Conference on Computer and
Communications Security , pp. 1470–1486 .

angjie, Lu † , S, Nürnberger, Backes, M., et al., 2016. How to make ASLR win the
clone wars: Runtime re-randomization. In: Proc. 23rd Network and Distributed

System Security Symposium (NDSS) .
handaker, Mustakimur Rahman, Liu, Wenqing, et al., 2019. Origin-sensitive control

flow integrity. In: Proc. 28th {USENIX} Security Symposium ({USENIX} Security 19) ,

pp. 195–211 .
handaker, M., Naser, A., Liu, W., et al., 2019. Adaptive call-site sensitive control

flow integrity. In: Proc. 2019 IEEE European Symposium on Security and Privacy
(EuroS&P) , pp. 95–110 .

won, D., Shin, J., Kim, G., et al., 2019. {uXOM}: Efficient {eXecute-Only} Memory on
{ARM}{Cortex-M}. In: Proc. the 28th USENIX Security Symposium (USENIX Security

19) , pp. 231–247 .

an, B., Li, Y., Sun, H., et al., 2015. Loop-oriented programming: A new code reuse
attack to bypass modern defenses. In: Proc. IEEE Trustcom/BigDataSE/ISPA , 1,

pp. 190–197 .
arsen, P., Franz, M., 2020. Adoption challenges of code randomization. In: Pro. the

7th ACM Workshop on Moving Target Defense , pp. 45–49 .
iljestrand, H., Nyman, T., Wang, K., Perez, C.C., Ekberg, J.-E., Asokan, N., 2019. {PAC}

it up: Towards pointer integrity using {ARM} pointer authentication. In: Proc.

28th {USENIX} Security Symposium ({USENIX} Security 19) , pp. 177–194 .
i, Y., Wang, M., et al., 2020. Finding cracks in shields: On the security of control

flow integrity mechanisms. In: Proc. The ACM SIGSAC Conference on Computer
and Communications Security , pp. 1821–1835 .

i, Y., Dai, Z., Li, J., 2018. A control flow integrity checking technique based on hard-
ware support. In: Proc. 3rd Advanced Information Technology, Electronic and Au-

tomation Control Conference , pp. 2617–2621 .

u, K., Song, C., et al., 2015. ASLR-Guard: Stopping address space leakage for code
reuse attacks. In: Proc. the 22nd ACM SIGSAC Conference on Computer and Com-

munications Security , pp. 280–291 .
ucasDavi, Ahmad-RezaSadeghi, Daniel, Lehmann, Fabian-Monrose, 2014. Stitch-

ing the gadgets: On the ineffectiveness of coarse-grained control-flow in-
tegrity protection. In: Proc. the 23rd USENIX Conference on Security Symposium ,

pp. 401–416 .

arco-Gisbert, H., Ripoll, Ripoll I., 2019. Address space layout randomization next
generation. Applied Sciences 9 (14), 2928–2952 .

ashtizadeh, A.J., Bittau, A., Boneh, D., et al., 2015. CCFI: Cryptographically enforced
control flow integrity. In: Proc. the 22nd ACM SIGSAC Conference on Computer

and Communications Security , pp. 941–951 .
14
ohan, V., Larsen, P., Brunthaler, S., et al., 2015. Opaque control-flow integrity. In:
Proc. NDSS , 26, pp. 27–30 .

iu, B., Tan, G., 2014. Modular control-flow integrity. In: Proc. the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation , pp. 577–587 .

iu, B., Tan, G., 2015. Per-Input Control-Flow Integrity. In: Proc. the 22nd ACM SIGSAC
Conference on Computer and Communications Security , pp. 914–926 .

ikonomopoulos, A., Athanasopoulos, E., Bos, H., et al., 2016. Poking holes in infor-
mation hiding. In: Proc. the 25th {USENIX} Security Symposium , pp. 121–138 .

ayer, M., Barresi, A., et al., 2015. Fine-grained control-flow integrity through binary

hardening. In: Proc. International Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment , pp. 144–164 .

iu, P., Lyu, Y., Zhai, D., et al., 2016. Physical unclonable functions-based linear en-
cryption against code reuse attacks. In: proc. 53nd ACM/EDAC/IEEE Design Au-

tomation Conference (DAC) , pp. 1–6 .
iq, Gera Riq “Advances in format String Exploitation.”, Ruben Boonen. https://

www.fuzzysecurity.com/index.html Accessed().

ui, Y., Ye, D., Su, Y., Xue, J., 2016. Eliminating redundant bounds checks in dynamic
buffer overflow detection using weakest preconditions. IEEE Trans. Reliabil. 65

(4), 1682–1699 .
zekeres, Laszlo, Payer, Mathias, et al., 2013. SoK: Eternal war in memory. In: Proc.

IEEE Symposium on Security and Privacy , pp. 48–62 .
ice, C., Roeder, T., et al., 2014. Enforcing Forward-edge Control-flow Integrity

in GCC & LLVM. In: Proc the 23rd USENIX Conference on Security Symposium ,

pp. 941–955 .
an der Veen, V., Andriesse, D., et al., 2015. Practical context-sensitive CFI. In:

Proc. the 22nd ACM SIGSAC Conference on Computer and Communications Secu-
rity , pp. 927–940 .

ilander, J., Nikiforakis, N., Younan, Y., et al., 2011. RIPE: Runtime intrusion preven-
tion evaluator. In: Proc. the 27th Annual Computer Security Applications Confer-

ence , pp. 41–50 .

e, D., Su, Y., et al., 2014. WPBOUND: Enforcing spatial memory safety efficiently
at runtime with weakest preconditions. In: Proc . the International Symposium on

Software Reliability Engineering , pp. 88–99 .
uan, P., Zeng, Q., Ding, X., 2015. Hardware-assisted fine-grained code-reuse attack

detection. In: Proc. International Symposium on Recent Advances in Intrusion De-
tection , pp. 66–85 .

hang, M., Sekar, R., 2013. Control flow integrity for {COTS} binaries. In: Proc. 22nd

{USENIX} Security Symposium , pp. 337–352 .
hang, Chao, Wei, Tao, Chen, Zhaofeng, et al., 2017. Practical control flow integrity

and randomization for binary executables. In: Proc. IEEE Symposium on Security
and Privacy , pp. 559–573 .

ong-Gang Li received the PhD degree from the University of Science and Tech-
ology of China in 2019. He was a postdoctoral fellow in the Chinese University of

ong Kong, Shenzhen. Now, he is an associate professor with the School of Com-
uter Science and Technology in the China University of Mining and Technology.

is research interests include computer architecture, virtualization principle, cloud
omputing, and system security.

eh-Ching Chung , received Ph.D. degrees in Computer and Information Science

rom Syracuse University in 1992. Currently, he is a Professor of the Chinese Uni-
ersity of Hong Kong (CUHK), Shenzhen. His research interests include parallel and

istributed processing and system software.

u Bao , received the PhD degree from Tongji University in 2011. Now, he is a staff
ngineer at security Department of Computer Science and Information Technology

nstitute, China University of Mining and teach. His research includes information

ecurity and privacy in AI distributed network and cyber security in IoT.

i Lu, graduated from the Chengdu University of Information Technology in 2020.

ow, he is a graduate student at the School of Computer Science and Technology in
he China University of Mining and Technology. His research interests include code

ptimization, and cloud computing.

hanQing Guo is currently a professor with the School of Cyber Science and Tech-
ology at Shandong University. He received his M.S. and Ph.D. degrees in computer

cience from Ocean University, China, in 2003, and Nanjing University, China, in
006 respectively. He joined the School of Computer Science and Technology at

handong University as an assistant professor in 2006. His research interests in-
lude AI Security, Data-driven Security, Software and System Security. He has pub-

ished in TSE, TDSC, S&P, USENIX Security, ICDE and other venues. He also serves as

 program committee member or a reviewer for various international conferences
nd journals, e.g., ISSRE, ICSME and Computer & Security.

uoYuan Lin , received the PhD degree from the Nanjing University in 2011. Now

e is the deputy dean of School of computer science and technology of China Uni-

ersity of mining and technology. He has long been engaged in the research of cy-
erspace security, information security, cloud computing, cloud security, informa-

ion project research and development, operating system architecture and system

ecurity.

http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0048
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0047
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0050
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0013
https://www.fuzzysecurity.com/index.html
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00176-6/sbref0026

	KPointer: Keep the code pointers on the stack point to the right code
	1 Introduction
	2 Related works
	2.1 Control data protection
	2.2 Jump target confusion
	2.3 CF path limitation

	3 Assumptions and threat model
	4 Overall design of KPointer
	5 The implementation of KPointer
	5.1 Monitor and control the resource access
	5.1.1 Monitor and control memory
	5.1.2 Monitor and control the specific events

	5.2 Find the vulnerable control data on the stack
	5.3 Locate ICT instructions related to control data
	5.3.1 Detect the suspicious data reading
	5.3.2 Locating ICT instructions related to suspicious data

	5.4 Determining the legitimacy of ICT instructions

	6 Evaluation
	6.1 Security Analysis
	6.2 Performance analysis
	6.3 Comparison with existing methods
	6.4 Limitations

	7 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Appendix A
	Appendix B
	References

