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A B S T R A C T   

Cancer is a kind of non-communicable disease, progresses with uncontrolled cell growth in the body. The 
cancerous cell forms a tumor that impairs the immune system, causes other biological changes to malfunction. 
The most common kinds of cancer are breast, prostate, leukemia, lung, and colon cancer. The presence of the 
disease is identified with the proper diagnosis. Many screening procedures are suggested to find the presence of 
the condition under different stages. Medical practitioners further analyze these electronic health records to 
diagnose and treat the individual. In some cases, misdiagnosis can happen due to manual error or misinter
pretation of the data. To avoid these issues, this paper presents an effective computer-aided diagnosis system 
supported by intelligence learning models. A machine learning-based feature modeling is proposed to improve 
predictive performance. From the University of California, Irvine repository, breast, cervical, and lung cancer 
datasets are accessed to conduct this experimental study. Supervised learning algorithms are employed to train 
and validate the optimal features reduced by the proposed system. Using the 10-Fold cross-validation method, 
the trained and performance model is evaluated with validation metrics such as accuracy, f-score, precision, and 
recall. The study’s outcome attained 99.62%, 96.88%, and 98.21% accuracy on breast, cervical, and lung cancer 
datasets, respectively, which exhibits the proposed system’s efficacy. Moreover, this system acts as a miscella
neous tool for capturing the pattern from many clinical trials for multiple types of cancer disease.   

1. Introduction 

Disease prediction systems are highly critical in its functionality as it 
involves finding the presence or absence of a medical condition in an 
individual. It relatively involves different factors, varying characteris
tics, multifaceted and real-world aspects [1,2]. In recent times, there is 
an increasing demand for data-driven, accurate predictive models to 
enhance the precise identification of future events [3]. Several medical 
associations and patient counseling programs provide cancer screening 
recommendations and guidance. Consult a doctor on the different rec
ommendations, and together you can see what is right for you depending 
on your cancer risk factors. Laboratory tests, such as urine and blood 

tests, will help the doctor detect cancer-induced anomalies. For 
example, predictive models with leukemia may show the unusual 
number or type of white blood cell in a popular blood test called the total 
blood count. The doctor gathers a sample of the cells in the laboratory 
for examination during a biopsy. A model is obtained through any 
means. Dependent on the form of cancer and its location, the biopsy 
technique is right for you. A biopsy is the way to detect cancer certainly, 
in most cases. 

It concerns developing systems to facilitate the end-users of the 
application having a more interactive and user-friendly environment. In 
the view of medical procedures, the physician or medical expert ana
lyses the clinical records of the individuals to diagnose the condition 
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with their experience, otherwise domain knowledge [4-6]. Across the 
globe, many healthcare providers are adopting the computer-assisted 
diagnosis system to facilitate medical practitioners for an accurate 
diagnosis [7,8]. Applications in the medical field need special attention 
to developing decision support systems. Clinical data contains hidden 
information, usually beyond human competencies and understandabil
ity [9]. Finding the pattern is difficult and raised more demand for 
developing new computational methodologies. In this current scenario, 
the data extracted from a real-time environment is highly prone to noise 
and erroneous information [10,11]. The existing mechanisms are not 
perfectly fitted to the requirement of the current challenges. Therefore, 
an effective solution is indeed important to address the need to make 
better diagnostic systems. This paper examined new techniques to fill 
the gap and limitations of the existing methods. In general, the outcome 
of a predictive model strongly depends on the input parameters [12]. 
Also, most of the time, the features are more chaotic than simple factors. 
It is not feasible to select all the features to build the model, as it might 
be prone to noise, incorrect inputs. The predictive model’s performance 
solely depends on the significant features identified for effective sample 
categorization [13]. A small change in the parameters affects the results 
on different scales. 

In many cases, the data is from a real-time environment, where the 
chance of inconsistency is high, and the quality is often not up to the 
mark [14-16]. Hence, this paper aims to investigate the existing models, 
finding a better mechanism to improve performance. The desired 
objective is to find the feature subsets from all the datasets incorporated 
in this experiment for effective disease diagnosis. Supervised machine 
learning algorithms were employed to test and evaluate the system’s 
efficacy based upon its results. The healthcare industry has long been an 
early adopter and has greatly benefited from technological innovations. 
In several health fields, computer education, including innovative 
medical techniques, the processing of patient data and records and 
chronic diseases, is currently playing a key role in computer technology. 
Today, machine learning helps streamline administration in hospitals, 
map and manage infectious conditions, and customize patient care. It 
may affect the productivity of hospitals and health systems and decrease 
care costs. 

This manuscript is framed with multiple sections as follows. “Back
ground study” section discusses various algorithms and frameworks 
developed as a tool for disease diagnosis from previous literature. The 
proposed methodology is briefed in detail in multiple sub-modules that 
include dataset information. The proposed feature selection method’s 
working process follows with machine learning methods with neat 
sketches in the “Materials and methods” section. Next, the model vali
dation and performance evaluation process are detailed in the “Results” 
section. Finally, in the “conclusion” section, the findings and their sig
nificance are portrayed with proper reports and graphical analysis. In 
order to find the disease in various phases, a variety of screening tech
niques are recommended. Medics examine the electronic medical re
cords more carefully to identify and manage the client. In certain 
situations, a manual mistake or misinterpretation of the data may cause 
an error in diagnostics. This paper provides an effective computer-aided 
diagnostic method with intelligence learning models to prevent these 
problems. In order to boost predictive efficiency a computer dependent 
functional simulation is proposed. This experimental research is being 
performed by the University of California, Irvine repository and by ev
idence on breast, cervical and lung cancer. Supervised learning algo
rithms are used for the preparation and evaluation by the proposed 
method of ideal features. 

2. Background STUDY 

In recent times, the predictive models have shown their importance 
in many fields that are not limited to healthcare, weather modeling, 
stock forecasting, intelligence, self-trajectory targeted missiles, etc. 
Many applications were constructed with the support of intelligence 

algorithms to perform critical operations from the past data. As the 
healthcare field is more sensitive over other relative fields, special 
attention becomes inevitable. In the absence of complex algorithms for 
decades back, simple models were built to handle the data with small- 
scale sizes. Nevertheless, these algorithms play an important role, and 
some of them still act as a backbone to the algorithm of recent times and 
provides the baseline for them. 

A breast cancer detection tool is developed to perform knowledge- 
based statistical analysis through different algorithms. Naïve Bayes, 
J48, support vector machine, CART, and radial basis network were 
employed to make the predictive model. The algorithms’ performance is 
validated through various performance metrics, such as accuracy, 
specificity, and precision [17]. In another experiment, probabilistic 
models are tested with a breast cancer dataset to determine the best 
performing method. Initially, the dataset is preprocessed to replace the 
empty values with a high-frequency number. Then the data is trans
formed into a MySQL database. Furthermore, the probability of pre
dicting the samples based on its class label is calculated and constructed 
a table based on the values. New unseen samples are given as test inputs 
to evaluate the model’s working ability [18]. 

Like the probabilistic evaluation, the weighted naïve Bayes model is 
proposed to improve the existing simple naïve Bayes algorithm [19]. 
Optimization algorithms gain more attention due to their precision in 
finding the best solution overall available candidate solutions. A breast 
cancer diagnosis system is developed based on the genetically optimized 
model on a neural network algorithm to improve the model’s effec
tiveness. The weight and structure of the algorithm are altered for the 
changes in genetic operations during every cycle. Under different pro
portions of the dataset, the model performance is evaluated with metrics 
[20]. 

The pronostic of breast cancer is focused on past data and classi
ficators have been established based on their trend in another work. It 
involves many techniques in each phase of the data mining cycle. The 
best model with optimal pre-processing design and feature selection 
method is highlighted based on the model score. The random tree and 
C4.5 are identified as the best over other combinations [21]. Hybrid 
machine learning models usually combine two or more existing models 
to improve their ability by sharing their properties to enhance perfor
mance. The decision tree is fused with the support vector machine al
gorithm to predict breast cancer in an attempt. Compared with other 
classifiers such as for instance-based learning, naïve Bayes, and 
sequential minimal optimization algorithms, the proposed model is 
compared. The performance of the DT-SVM model [58] is said to be 
effective [22]. 

The cells’ physical behavior inspires immune algorithms in living 
beings to resist viruses by building a strong immunity system. Inspired 
by the mechanism, artificial resistant algorithms were constructed to 
find the optimal features for effective prediction [57] of the samples. 
The proposed algorithm has multiple characteristics, such as clonal se
lection, cell behavior, and non-linear operations, for the system’s 
effectiveness. It acts as a semi-supervised algorithm and could handle 
labeled and unlabeled data at a time. This algorithm had shown signif
icant improvement in the results with 99.51% accuracy on the Wis
consin breast cancer dataset [23]. 

In a related application, a multilevel lung cancer diagnostic model is 
proposed with fuzzy weighting based preprocessing, feature extraction 
with principal component analysis, and artificial immune recognition 
system based classification. The number of features is reduced to four 
principal components from 57 initial features. Once the feature vectors 
are identified, the data is preprocessed with a fuzzy-based weighting 
method. The model attained 100% accuracy on the lung cancer dataset 
with an artificial immune recognition algorithm and identified it as a 
promising model for other systems [24]. In another instance, a 
borderline-SMOTE fused with the AIRS model is proposed to estimate 
the level of brain metastasis from the data extracted from lung cancer 
samples. This system effectively handles the class imbalance problems 

C.-H. Hsu et al.                                                                                                                                                                                                                                  



Measurement 175 (2021) 109145

3

and is performing well on real-time models [25]. 
Expert systems are mainly aimed to find effective pipelines made to 

construct a better framework to diagnose multiple diseases. A machine 
learning-based expert system is developed for lung cancer diagnosis 
using general discriminant analysis and the least square support vector 
machine classifier. This model focuses on two phases as feature extrac
tion and reduction, then classification. The proposed method gained 
96.87% accuracy and showed better results than other experimental 
studies [26]. An automated diagnosis system for lung cancer is devel
oped with a nature-inspired genetic algorithm and relative fuzzy-based 
extreme learning machines. This model reduces the dimension spaces 
with a genetic algorithm and is inputted into a fuzzy inference system, 
which is already trained with revolutionary learning methods. This 
method is more profound in the effective diagnosis of the condition and 
be used for other clinical systems [27]. 

A support vector machine-based rough set hybrid method is pro
posed to select the breast cancer dataset’s optimal predictor features. In 
this method, the SVM classifier’s chosen subset from the rough set model 
is evaluated in every cycle. Until the best subset is identified, this process 
generates feature sets with different combinations. This model finds the 
five best informative features, which are less more useful for better 
prediction [28]. 

Wrapper based feature selection methods find the best combination 
of features with the guidance of a learning model, which validates the 
performance of every subset generated. In this model, three wrapper 
methods such as sequential forward, backward, and optimized 
evolutionary-based selection are performed on multiple datasets. In 
addition to other models, the sequential forward selection’s perfor
mance and the decision tree model proved successful [29]. The life ex
pectancy of post-operative lung cancer affected individuals is 
systematically calculated through machine learning algorithms. Super
vised machine learning classifiers are employed to validate the dataset’s 
performance with a 10-fold cross-validation scheme where the multi
layered perceptron model attained 82.3% accuracy, followed by J48 
with 81.8% [30]. 

Centered on the genetically optimized model, a breast cancer 
detection method is built using a neural network algorithm to boost 
efficacy of the model. For changes in genetic operations over each stage, 
the weight and composition of the algorithm is affected. The model 
performance is evaluated with metrics in different proportions of the 
dataset. 

3. Materials and methods 

3.1. Dataset description 

In order to find the disease in various phases, a variety of screening 
techniques are recommended. Medics examine the electronic medical 
records more carefully to identify and manage the client. In certain 
situations, a manual mistake or misinterpretation of the data may cause 
an error in diagnostics. This paper provides an effective computer-aided 
diagnostic method with intelligence learning models to prevent these 
problems. In order to boost predictive efficiency a computer dependent 
functional simulation is proposed. This experimental research is being 
performed by the University of California, Irvine repository and by ev
idence on breast, cervical and lung cancer. Supervised learning algo
rithms are used for the preparation and evaluation by the proposed 
method of ideal features 

This experimental work is carried out with the dataset fetched from 
the UCI repository. Three datasets of different cancer types were used in 
this study. Those are breast [31,32], lung [33,34], and cervical cancers 
[35,36] with a different number of samples and features. This disease 
diagnosis model focuses on finding a specific subset of informative 
features to improve the system’s predictive performance. Each dataset 
contains different health factors as parameters from which the condi
tion’s presence or absence is traced out. The medical experts labeled all 

the samples in the dataset. This proposed framework intends to learn the 
hidden pattern from the input features, and the trained model, the 
performance of the system is evaluated with unseen data. In Fig. 1, the 
complete workflow process of the proposed system is depicted in 
graphical representation. The detailed information about the datasets is 
given in Table 1. 

3.2. Data preprocessing 

All three datasets accessed in this experiment contains missing values 
and noisy information. The missing values are imputed with frequently 
occurred entries in all the features [37]. Cancer is a type of illness that 
cannot be spread, progressing through cell development in the body. 
The cancer cell develops tumors that affects the immune system and 
induces other biological changes. Breast, leukemia, lung and bowel 
cancer are the most prevalent forms of cancer. It is known that the 
disorder arises with the right diagnosis. In order to find the disease in 
various phases, a variety of screening techniques are recommended. 

3.3. Feature selection 

In a definitive pipeline of a machine learning framework, feature 
selection is an inevitable phase before training the model. This part deals 
with finding the most informative, useful predictor attributes to increase 
the predictive model’s performance in training and evaluation. Many 
feature selection techniques are developed with different baselines in 
statistical and other mathematical derivatives [12,38-40]. It searches for 
the best subset from the entire features in 

The dataset under various mechanisms. In general, three effective 
strategies, such as filter, embedded, and wrapper techniques [41-43], 
hold most of the available feature selection methods under their cate
gories. Out of which, nature-inspired, meta-heuristic global optimization 
algorithms play an important role in identifying the best solution, i.e., 
optimal parameters from all the solution space features. In this paper, a 
genetic algorithm combined with the correlation method is proposed as 
a feature optimization technique for effective feature selection. The 
following section discusses the implemented methods in detail and ex
hibits the significance of the proposed technique’s features based on the 
model performance. 

3.4. Genetic algorithm 

In the early 1962′s, the foundation of genetic algorithm (GA) on top 
of adaptive systems was proposed by John Holland. Later in 1975, in the 
book named “Adaptation in Natural and Artificial Systems,” the concept 
of GA is published by Holland and their team [44,45]. The genetic al
gorithm is a nature-inspired search algorithm commonly used in 
computing systems to find approximate solutions to complex search and 
optimization problems. These algorithms are generalized as heuristics 
among the global search. In specific, this algorithm mimics the natural 
selection processes like selection, mutation(m), inheritance, crossover 
(c) (otherwise, recombination) from the evolutionary theory [46]. 

This evolution was initiated from an initial set of the population with 
randomly selected chromosomes in every generation. The chromo
some’s fitness was individually calculated and based on the fitness score; 
the new population is derived with strong chromosomes. This newly 
generated population is then used for the next iteration on finding the 
optimal solution. The algorithm’s termination criteria are usually 
defined when the number of maximum generations is performed or the 
fitness level becomes saturated on a specific population. The main 
drawback is, there is no specific way to declare the best-identified 
population is the optimal point of convergence in a solution space. 
The initial phase in a genetic algorithm is defining the people with the 
collection of individuals as chromosomes. In this population, each 
chromosome represents a candidate solution. A combination of ’0s and 
1 s“ is formed as strings, each reflecting the state of the characteristics if 
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a bit represents 0 in a chromosome. The fitness function(FF) for that 
particular chromosome will not be evaluated. 

In contrast, the bit with 1 will be seen as a selected function. This bit 
flip in a chromosome is randomly assigned, and in the next phases, the 
genetic operations(GP) will be performed on the population (P) [47-49]. 
The working process of GA is given in Fig. 2, and the parameters are 
explained in Table 2.  

Generic Pseudocode of GA 
1: initialize GP on P 

2: Check FF on Pl 
3: while (!termination_condition) do 
4: Identify(best_FF) based on GP 
5: Generate (m &c) 
6: Evaluate (Fitness Score) 
7: Replace the individuals < fitness score over top-scored chromosomes 
8: end while  

The fitness function, the otherwise objective function in a genetic 

algorithm, calculates the individual’s fitness in the population. The 
fitness function’s definition is framed on different aspects, usually in
volves the maximization or minimization functions to evaluate the 
scores. The fitness function adopted in the genetic algorithm is given 
below. 

FitnessFunctionF = Acc(x)

The two important genetic operators of the algorithm are crossover 
and mutation. A single point crossover and a bit-flip mutation method 
are used to perform the genetic operation. The roulette wheel selection 
method selects the candidates in the random population. 

3.5. Correlation based feature selection 

In statistics, correlation is an important term that implies the simi
larity measures to calculate the relationship between two features [50]. 
The features are linearly dependent if the correlation factor is one and 
the reverse if the value is 0. In information theory, correlation-based 
feature ranking is an effective method to find the feature with higher 
importance. The optimal subset from the given features in a dataset is 
identified by finding the strong correlation between the feature and 
target variable and at the same time weak correlation between the 
features, which is having an independent relationship [51]. The general 
formula to calculate the correlation between a pair of attributes (x, y) in 
a linear correlation is given equation (1). 

r =

∑
i(xi − xi)(yi − yi)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i
(xi − xi)

2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

i
(yi − yi)

2
√ (1) 

The merit calculated for the feature subset for the k number of fea
tures in S is given in eqn. (2) 

Fig. 1. The workflow of the Proposed GA-CFS based Cancer Diagnosis System.  

Table 1 
Dataset information.  

Description Factors Datasets 
F/D Breast 

Cancer 
Cervical 
Cancer 

Lung Cancer 

Dataset 
Characteristics 

Multivariate Multivariate Multivariate 

Attribute 
Characteristics 

Integer Integer, Real Integer 

Attribute Count 10 36 56 
Total Instances 699 858 32 
Missing Values Present Present Present 
Category Classification Classification Classification 
Data Repository University of California, Irvine  
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Msk =
krcf

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k + k(k − 1)rff

√ (2) 

rcf denotes the average of feature-target correlations, rff states the 
average of feature-feature mapped correlations. The features are 
selected based on the following equation given below. If the correlation 
factor is one and the opposite is 0, the features are linearly dependent. 
Correlation-based role ranking is an important tool for finding the 
function of higher significance in information theory. The optimal 
subset of the features given in a dataset is defined by detecting a strong 
correlation between the function and the target variable, while even a 
weak correlation between the features is found. 

CFS =
max
sk

[
rcf 1 + rcf 2 + ⋯ + rcfk

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k + 2(rf 1f 2 + ⋯ + rfifj + ⋯ + rfkfk− 1)

√

]

(3) 

The above equation can be represented as an optimization problem 
as, 

CFS =
max

x ∈ {0, 1}n

[
(
∑n

i=1aixi
2)

∑n
i=1xi+

∑n
i∕=j2bijxixj

n

]

(4)  

3.6. Proposed GA-CFS algorithm 

Let F be the complete feature sample set with attributes {A1, A2, A3… 
An} where n is the individual number of attributes in a dataset. Here, the 
process of selecting the optimal feature is defined as finding d, the most 
information attribute in F >=d. The objective of the proposed algorithm 
is to identify the predictor attribute subset (i.e., d < F). Crossover and 
mutation are the two primary genetic operators of the algorithm. The 
genetic surgery is done using a single point crossover and bit-flip mu
tation process. The process of selection of roulette wheels selects the 
random number of applicants.  

Algorithm: GA - CFS 
initialize i = 0, pop(i) = 0 

evaluate pop(i) = 0 
while (!termination_condition()) do 
popp(i) = pop(i).generateParents(); 
popc(i) = reproduce(popp); 
mutation(popc(i)); 
fitness_evaluation(popp(i)); 
calculate corr(popp(in,y) 
evaluate new_fitness(corr(popp(in,y))); 
if(finess_evaluation(popp(i)) < corr(popp(in,y)) 
fitnessnew = corr(popp(in,y)) 
pop(i + 1) = generate_next(fitnessnew, pop(i)); 
i = i + 1 
else 
pop(i + 1) = generate_next(popc(i), pop(i)); 
i = i + 1 
end if 
end while  

The processed dataset is prepared to select the predictor subsets in the 
next phase. The proposed GA-CFS algorithm takes all the features as 
inputs from which the optimal solution is identified. The genetic algo
rithm performs as given in the above pseudo-code, and while finding the 
candidate’s fitness, two distinct calculations are made. After calculating 
the fitness, the CFS technique again intends to find the optimal subset 
among the selected features by GA. In this way, every candidate selected 
by the GA is validated again with CFS to ensure the global optimum 
solution’s attainment. In table 3, the number of features determined by 
the GA-CFS algorithm is given on each dataset. 

3.7. Model training and evaluation 

The selected features are evaluated using standard machine learning 
classifiers to find the best performing pipeline. For identifying the pro
posed algorithm’s significance, other existing feature selection methods 
are employed to compare the performance variation. The training and 
validation sets are generated with a 10-fold cross-validation method 
[52]. Support vector machines, decision trees, naïve Bayes, and multi
layered perceptron neural network algorithms are trained with both sets 
[53]. The performances of the algorithms are analyzed in detail in the 
next section. The suggested GA-CFS algorithm integrates all the char
acteristics as inputs that define the optimum solution. The genetic al
gorithm is as provided for in the pseudo-code above and two distinct 
calculations are carried out when the candidate finds fitness. The CFS 
technique aims, once again to find the ideal subset of GA’s selected 
features after the fitness measurement. The effectiveness of the GA-CFS 
model has been shown to surpass all three comparable data sets with the 
neural network model over the remaining current role selection 

Fig. 2. Process of Genetic Algorithm.  

Table 2 
Parameters of genetic algorithm.  

Attributes Inputs 

Initial Population 25 
Chromosome Value Bits { 0 - Off and 1 - On} 
Total Generations 10 
Mutation Ratio 0.05 
Crossover Ratio 0.6 
Rate of Elitism 3  

Table 3 
Features selected by ga-cfs in each dataset.  

Dataset Number of features selected 

Breast Cancer 5 
Cervical Cancer 7 
Lung Cancer 7  
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methods. This system will be further updated in the future to support 
complex, high-dimensional real-time data sets. By offering an adequate 
diagnosis, this model acts as a testing guide for clinicians. 

4. Results and discussion 

This experimental work is carried out in Java Framework with the 
support of python machine learning libraries through bridges in the 
Windows platform. Breast, cervical, and lung cancer datasets were used 
to conduct the study. In every phase of the pipeline, the datasets are 
processed, starting with pre-processing, where the missing values are 
imputed. The cleaned data is then forwarded into the next phase to find 
the best features from the proposed GA-CFS algorithm. This method 
identified five breast cancer dataset features, 7 in the lung and cervical 
dataset [59]. Alongside the proposed algorithm, the datasets were tested 
against a few existing feature selection methods such as ReliefF, 
Recursive Feature Elimination (RFE), and Cuckoo search optimization 
(CSO) algorithm [54-56]. The proposed feature selection methods’ 
performance under different classifiers is calculated and explained in 
Tables 4-6. In Fig. 3, the classifiers’ accuracy on three datasets is plotted, 
and Fig. 4 shows the performance of the benchmarked feature selection 
techniques on the MLP-NN classifier. The formula of accuracy, precision, 
recall, and f-score is given as Eqn. 5,6,7,8 respectively. 

Acc =
(TP + TN)

(TP + TN + FP + FN)

Precision =
TP

(TP + FP)

Recall =
TP

(TP + FN)

F − Score =
(2*(Re*Pre))
(Re + Pre)

Based on the results, it is observed that the proposed GA-CFS with 
MLP-NN algorithm attained better results over other combinations of 
feature selection methods with classification models with optimized 
parameter tabulated in 

Moreover, the number of selected features becomes less compared 
with ReliefF, RFE, and CSO. It minimized the models’ computational 
effort to find the data’s discriminative patterns and revealed the most 
important parameters on every dataset. These parameters could act as a 
potential factor to effectively diagnose the condition of the individual. In 
all the datasets accompanied by SVM with Gaussian kernels, NB and 
LDA, the MLP-NN has demonstrated better performance. The effective
ness of the GA-CFS model has been shown to surpass all three compa
rable data sets with the neural network model over the remaining 
current role selection methods. 

5. Conclusion 

The computational methods have shown prominence in the medical 
field and can provide profound solutions for complex systems. These 
systems are more beneficial for medical practitioners to make a better 
decision based on the models’ guidelines, which are represented as 
knowledge captured and gathered from intelligence algorithms. This 

study presents an effective algorithmic model for better classification of 
the clinical data labeled manually by the experts. The proposed algo
rithm finds the genetic algorithm’s informative features with the support 
of correlation-based feature selection, where each chromosome gener
ated by the genetic algorithm is further reduced by calculating the 
correlation between the features in the subset. This proposed GA-CFS 
algorithm method provides a promising way to find the optimal solu
tion. Later, the identified subset is trained with various supervised 
classification algorithms to benchmark the models’ performance. 
Among all, the MLP-NN has shown better results in all the datasets 
followed with SVM with Gaussian kernel, NB, and LDA. The GA-CFS 
model’s efficacy is proven to outperform all three benchmarked data
sets over the rest of the existing feature selection methods with the 
neural network model. In the future, this system is further modified to 
serve well on complex, high-dimensional, real-time datasets. This model 

Table 4 
Performance of the proposed ga-cfs algorithm on breast cancer dataset in (%).  

Classifier Accuracy Precision Recall F-Score 

DT 82.06 84.2 83.71 87.91 
SVM 84.20 83.1 84.97 88.29 
LDA 77.15 78.2 76.51 80.21 
MLP-NN 99.62 96.12 97.02 98.70  

Table 5 
Performance of the proposed ga-cfs algorithm on cervical cancer dataset in java 
framework (%).  

Classifier Accuracy Precision Recall F-Score 

DT 86.40 87.22 88.18 89.71 
SVM 87.03 85.41 86.81 86.98 
LDA 81.1 80.29 81.22 82.51 
MLP-NN 96.88 96.92 97.47 98.12  

Table 6 
Performance of the proposed ga-cfs algorithm on lung cancer dataset in (%).  

Classifier Accuracy Precision Recall F-Score 

DT 88.05 89.72 87.14 89.81 
SVM 86.80 85.61 84.31 85.69 
LDA 79.61 80.24 79.81 80.21 
MLP-NN 98.21 94.62 95.30 96.70  

Fig. 3. Accuracy of the classifiers of the proposed GA-CFS Algorithm on three 
datasets (%). 

Fig. 4. Comparison of accuracy obtained under different feature selection 
methods on MLP-NN (%). 
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serves as a diagnostic tool for medical practitioners by assisting them 
with an adequate diagnosis. 
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[45] U. Stańczyk, Feature evaluation by filter, wrapper, and embedded approaches, in: 
Feature Selection for Data and Pattern Recognition, Springer, Berlin, Heidelberg, 
2015, pp. 29–44. 

[46] J.H. Holland, J.S. Reitman, Cognitive systems based on adaptive algorithms, in: 
Pattern-directed inference systems, Academic Press, 1978, pp. 313–329. 

[47] Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. 
[48] H. Mühlenbein, July). Parallel genetic algorithms, population genetics and 

combinatorial optimization, in: Workshop on Parallel Processing: Logic, 
Organization, and Technology, Springer, Berlin, Heidelberg, 1989, pp. 398–406. 

[49] W.M. Spears, V. Anand, A study of crossover operators in genetic programming, 
Springer, Berlin, Heidelberg, 1991, pp. 409–418. 

[50] C. Kane, M. Schoenauer, Genetic operators for two-dimentional shape 
optimization, Springer, Berlin, Heidelberg, 1995, pp. 355–369. 

[51] O. Kramer, Genetic algorithms, in: Genetic algorithm essentials, Springer, Cham, 
2017, pp. 11–19. 

[52] Hall, M. A. (1999). Correlation-based feature selection for machine learning. 

C.-H. Hsu et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0263-2241(21)00170-6/h0005
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0005
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0010
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0010
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0010
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0020
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0020
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0025
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0025
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0025
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0025
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0030
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0030
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0035
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0035
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0040
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0040
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0045
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0045
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0045
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0050
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0050
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0050
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0050
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0055
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0055
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0055
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0060
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0060
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0065
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0065
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0070
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0070
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0070
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0075
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0075
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0075
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0080
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0080
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0080
https://doi.org/10.1007/s12083-019-00823-2
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0090
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0090
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0090
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0095
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0095
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0095
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0100
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0100
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0100
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0105
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0105
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0115
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0115
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0115
https://doi.org/10.1007/s11042-018-6648-3
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0125
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0125
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0125
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0130
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0130
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0130
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0135
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0135
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0135
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0135
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0140
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0140
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0145
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0145
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0145
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0150
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0150
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0150
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0155
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0155
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0155
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0180
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0180
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0180
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0190
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0190
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0190
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0195
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0195
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0210
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0210
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0220
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0220
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0220
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0225
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0225
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0225
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0230
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0230
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0240
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0240
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0240
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0245
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0245
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0250
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0250
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0255
http://refhub.elsevier.com/S0263-2241(21)00170-6/h0255


Measurement 175 (2021) 109145

8

[53] Yu, L., & Liu, H. (2003). Feature selection for high-dimensional data: A fast 
correlation-based filter solution. In Proceedings of the 20th international 
conference on machine learning (ICML-03) (pp. 856-863). 

[54] T.T. Wong, Performance evaluation of classification algorithms by k-fold and 
leave-one-out cross validation, Pattern Recogn. 48 (9) (2015) 2839–2846. 

[55] S.B. Kotsiantis, I. Zaharakis, P. Pintelas, Supervised machine learning: A review of 
classification techniques, Emerging artificial intelligence applications in computer 
engineering 160 (2007) 3–24. 
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