
Future Generation Computer Systems 65 (2016) 111–121
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Data adapter for querying and transformation between SQL and
NoSQL database
Ying-Ti Liao a, Jiazheng Zhou a, Chia-Hung Lu a, Shih-Chang Chen a, Ching-Hsien Hsu b,c,∗,
Wenguang Chen d, Mon-Fong Jiang e, Yeh-Ching Chung a

a Department of Computer Science, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
b School of Mathematics and Big Data, Foshan University, China
c Department of Computer Science and Information Engineering, Chung Hua University, Hsinchu, Taiwan, ROC
d Department of Computer Science and Technology, Tsinghua University, Beijing, China
e is-land Systems Inc., Hsinchu, 300, Taiwan, ROC

h i g h l i g h t s

• This paper presents data adapter to make possible the automated transformation of multi-structured data in Relational Database (RDB) and NoSQL
systems.

• With the proposed data adapter, a seamless mechanism is provided for constructing hybrid database systems.
• With the proposed data adapter, hybrid database systems can be performed in an elastic manner, i.e., access can be either RDB or NoSQL, depending

on the size of data.

a r t i c l e i n f o

Article history:
Received 23 July 2015
Received in revised form
6 February 2016
Accepted 10 February 2016
Available online 10 March 2016

Keywords:
Big data
NoSQL
Data adapter
Hybrid database
Cloud computing
Database services

a b s t r a c t

As the growing of applications with big data in cloud computing become popular, many existing systems
expect to expand their service to support the explosive increase of data. We propose a data adapter
system to support hybrid database architecture including a relational database (RDB) andNoSQL database.
It can support query from application and deal with database transformation at the same time. We
provide threemodes of query approach in data adapter system: blocking transformationmode (BT mode),
blocking dump mode (BD mode), and direct access mode (DA mode). We provide a data synchronization
mechanism and describe the design and implementation in detail. This paper focuses on velocity with
proposed three modes and partly variety with data stored in RDB, NoSQL database and temporary files.
With the proposed data adapter system, we can provide a seamless mechanism to use RDB and NoSQL
database at the same time.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

BIG data and hybrid database system are becoming popular
as cloud service blooms. NoSQL databases are also growing in
popularity for big data applications. Most of the existing systems
are based on RDB, but with the growth of data size, enterprise
tends to handle big datawith NoSQL database for analysis or wants
to get faster access on big data. Instead of replacing RDB with
NoSQL database, enterprises and research organizations integrate

∗ Corresponding author at: School of Mathematics and Big Data, Foshan
University, China.

E-mail address: robertchh@gmail.com (C.-H. Hsu).

http://dx.doi.org/10.1016/j.future.2016.02.002
0167-739X/© 2016 Elsevier B.V. All rights reserved.
the both databases. User applications interact with RDB to handle
small and middle scale of data; NoSQL database serves as system
back-end data pool for analysis and batched read/write operations,
or periodic back-up destinations from RDB.

The database integration may affect the original system design.
In the original system, application interacts with relational
database using SQL. Since NoSQL database cannot be accessed
by SQL, application needs to modify the design to access both
RDB and NoSQL database. Mechanism of data transformation from
RDB to NoSQL database is needed when integrating the original
system with NoSQL database. The transformation process forces
application to suspend and to wait for data synchronization. The
transformation may take a long time if data is in large scale. It
is a critical issue for some real-time, non-stopping service like
scientific analysis or online web applications.

http://dx.doi.org/10.1016/j.future.2016.02.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.02.002&domain=pdf
mailto:robertchh@gmail.com
http://dx.doi.org/10.1016/j.future.2016.02.002

112 Y.-T. Liao et al. / Future Generation Computer Systems 65 (2016) 111–121
This paper proposes a data adapter system that integrates RDB
and NoSQL database, and can handle database transformation. The
main features of the data adapter are listed as follows.

1. SQL Interface to RDB and NoSQL Database.We offer a general
SQL interface to access bothRDB andNoSQLdatabase. It consists
of a SQL query parser and Apache Phoenix [1] as a SQL translator
to connect HBase [2] as a NoSQL database, and MySQL JDBC
driver as a RDB connector. With this SQL interface, application
does not need to modify the queries or handle NoSQL queries,
and can remain the original systemdesign to access bothMySQL
and HBase.

2. DB Converter. We design a database converter to handle
database transformation with a table synchronization mecha-
nism. The database converter transforms data from MySQL to
HBase database with Apache Sqoop and Apache Phoenix bulk
load tool. The synchronization mechanism synchronizes data
after finishing transformation for each MySQL table by patch-
ing the blocked queries during transformation.

3. Query Approach. We propose three modes of query approach:
blocking transformationmode (BT mode), blocking dumpmode
(BD mode), and direct access mode (DA mode). Each mode
provides different policies of how application can access RDB.

This paper integrates above query approach and tools for
querying and data transformation between RDB and NoSQL
databases. The rest of paper is organized as follows. Section 2
describes existing problems and related work. Section 3 shows
the design concept and introduces each component of the data
adapter we propose. Section 4 points out the database consistency
problem, and shows how to perform synchronization mechanism,
along with three modes of query approach. Section 5 gives the
theoretical analysis of synchronization time and synchronization
overhead. Section 6 shows the experimental results and analysis of
the data adapter system. Section 7 concludes this paper and shows
the future work.

2. Related work

A cluster is a powerful architecture for computer science ap-
plications in many perspectives. For instance, a Hadoop cluster
can be built with commodity hardware to access large amount of
data. Furthermore, users can build their cloud platformwith Open-
Stack [3], an open source cloud computing software. Users can de-
cide the frameworks to be used but have to handle maintenance
issues on their own. While the software stack for big data store,
computing and analysis is determined, there are still some impor-
tant issues needed to be considered for integration, such as secu-
rity. Ali et al. [4] provide a survey which shows security issue of
sharing resource on cloud platform. Chang et al. [5] present a cloud
computing adoption framework to meet the requirements of busi-
ness cloud. They consolidate the proposed framework with Open-
Stack security andmultilayered security. In otherwords, userswho
build their cloud platform will have to not only solve the security
issues but also encounter lots of challenges. Consequently, users
will have less time for developing big data applications. Some use
online cloud platforms instead of building their own clusters to
focus on the design and implementation of big data applications.
Hashem et al. [6] give a comparison of Google, Microsoft, Ama-
zon and Cloudera big data cloud platforms and classify big data for
users to understand the relationship between cloud platforms and
big data. A lot of tools are developed for developing big data an-
alytics system, but there is no one-size-fits-all solution. Chen and
Zhang [7] discuss big data tools in different perspectives and sug-
gest 7 principles for designing a big data system. They also show
both opportunities and challenges while handling big data issues.
For developers who try to leverage big data frameworks with ex-
pected performance, Barbierato et al. [8] propose away to evaluate
performance of a big data system via SIMTHESys framework. Au-
thors use elements of the SIMTHESysBigData modelling language
on this framework to represent the main elements of MapReduce
paradigm. They also take ApacheHive [9], which generatesMapRe-
duce tasks, as an example to demonstrate how to model HiveQL
queries with SIMTHESysBigData modelling language.

There have been numbers of works on different NoSQL
databases [10], e.g. BigTable [11], HBase [2,12], MongoDB [13], and
Cassandra [14], for big data [15,16]. NoSQL databases provide effi-
cient big data storage and access requirements. In this paper, HBase
is as a NoSQL database in the data adapter system. HBase is built on
top of Hadoop distributed file system (HDFS) [17], which is a dis-
tributed framework that allows for distributed processing of large
data set across clusters of computers. MapReduce framework [18]
provides scalable computing services on Hadoop [19].

While NoSQL database has ability to manage big data, RDB
still has superiority with middle or small scale of data. There are
many studies of hybrid database system trying to integrate both
databases. Cattell [20] examines a number of SQL and NoSQL data
stores designed to scale simple OLTP-style application; the authors
in the literature [21] point out the need of hybrid data storage in
Internet of Things (IoT) area, and present a two-layer architecture
based on a hybrid storage system that is able to support a federated
cloud scenario in Platform as a Service (PaaS).

The design of hybrid database system architecture and the
way of performing data transformation depend on the types
of application services. Doshi et al. [22] classify the application
the types of data growth enterprises experience, namely Vertical
Growth (VG), Chronological Growth (CG) and Horizontal Growth
(HG). Appropriate approaches are provided for blending SQL and
NewSQL platforms for each data growth. There is an integrator
used to synchronize data between RDB and NewSQL database.
HBase and Hive backend are integrated to facilitate programming
sophistication.

This paper focuses on the CG-like category which transforms
data from RDB to NoSQL database. The architecture, which
integrates RDB and NoSQL database, offers the capabilities to
manage dramatically growing data and handle real-time queries.
Thus, methods of SQL-to-NoSQL translator and schema mapping
are needed when performing queries among different databases
withmigrated data. There are two basic strategies tomigrate tables
from RDB to HBase. One is to migrate all tables of a database
in RDB to a table in HBase and gives different column family
names for each RDB tables. The other way is to create a table in
HBase for each table in RDB. JackHare [23] migrates data from
MySQL to HBase with later one because it is not suggested to have
too many column families in a HBase table. A schema mapping
strategy is also proposed to translate data model from MySQL to
HBase. JackHare performs logic operations of SQL commands via
MapReduceprograms. Authors describe theway JackHare supports
SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY, JOIN,
and AGGREGATE functions via MapReduce for most frequently
used SQL commands. Rith et al. [24] identify a subset of SQL
commands to access NoSQL databases. Cassandra and MongoDB
are integrated because CQL, a query language for Cassandra, is
similar to SQL and MongoDB is allowed to perform complex
queries. Therefore authors translate SQL commands to connected
NoSQL databases by implementing a middleware using C# with
ANTLR as a SQL parser and SQL grammar based on Macroscope,
a.Net library, to narrow the gap of using NoSQL databases.
Roijackers [25] proposes an abstraction architecture with triple
notation data model to store data. This work hides details of
NoSQL. Users can understand this system easier. Simple queries
are used to access both RDB and NoSQL database instead of ANSI-
SQL commands. Transformation methods to triples are needed
to be implemented for different NoSQL database. Performance

Y.-T. Liao et al. / Future Generation Computer Systems 65 (2016) 111–121 113
Fig. 1. Transformation types between RDB and NoSQL databases.

of INSERT/UPDATE query is bad since this paper makes nested
data very complicated for enhancing read performance. Li [26]
proposes a two-phase transformation process of relational tables
from relational databases to HBase. The first phase is a heuristic
approach transform a relational schema of a relational database to
a HBase schema with data model and features required by HBase.
The second phase helps with data mapping between source and
target schema via an extended technique of nestedmapping based
on [27]. Maghfirah [28] proposes a data model to keep constraints
information and enhance the process of database migration from
MySQL to HBase. Constraints and relationships between tables
can be stored in XML files. It helps systems to improve the
process of SQL validation. With constraints information, system
can check if any INSERT/UPDATE/DELETE/DROP query violates
integrity constraints.

Fig. 1 shows data transformation in two aspects. One is the
type of data distributions between databases while the other one
is the direction of data transformation to be performed between
databases. Our work focuses on Type A that both RDB and NoSQL
database have same copies of tables, and the direction of data
transformation is from RDB to NoSQL database.

The design of a flexible and modularized data converter is im-
portant. We provide a data adapter that contains a database con-
verter using Sqoop [29] to perform data dump. Sqoop is a data
converter designed for efficiently transforming bulk data between
RDB and NoSQL database. Some researchers also use Sqoop as data
converter in hybrid database system [30,31]. Transformation be-
tween two databases encounters table synchronization problem.
Cho and Garcia-Molina [32] show how to refresh a local copy of an
autonomous data source to maintain data consistency. They fur-
ther define synchronization policies and analytical study how ef-
fective the various policies are, and show their improvement.

3. The data adapter system

The data adapter system is highly modularized, layered
between application anddatabases. It is responsible for performing
queries from applications and data transformation between
databases at the same time. The system provides a SQL interface
parsing query statements to access both a relational database and
a NoSQL database.

We offer a mechanism to control the database transformation
process and let applications perform queries whether target data
(table) are being transformed or not. After data are transformed,
we provide a patch mechanism to synchronize inconsistent
tables. We present the data adapter system with its design and
implementation in following sections.
Fig. 2. Original system with RDB only.

Fig. 3. System architecture with data adapter and its components.

3.1. System architecture

Most of the applications usually interact with relational
databases as shown in Fig. 2. If the developers decide to use
NoSQL database due to the growth of data along with the original
relational database, the transformation between these two kinds
of databases is needed. Without the proposed system, developers
have to stop their service, modify application design to connect to
NoSQL database for service expansion or data analysis. In order
to provide a non-stopping service while the transformation is
performed, we propose the data adapter system.

Without the data adapter, the original systemallows application
to only connect to a relational database. Fig. 3 gives the architecture
of the proposed data adapter system which consists of four
components: (1) a relational database, (2) a NoSQL database, (3)
DB Adapter, and (4) DB Converter. The system is the coordinator
between applications and two databases. It controls query flow
and transformation process. The DB Converter is responsible for
data transformation and reporting transformation progress to DB
Adapter for further actions.

In the proposal, applications access databases through the DB
Adapter. The DB Adapter parses query, submits query, and gets
result set from databases. It needs some necessary information
such as transformation progress from DB Converter, and then
decides when the query can be performed to access database.
The DB Converter transforms data from a relational database to a
NoSQL database. The data adapter system accepts queries while
the transformation is performed, the data in two databases may
not be consistent. The DB Adapter will detect and ask DB Converter
to perform synchronization process to maintain data consistency.

114 Y.-T. Liao et al. / Future Generation Computer Systems 65 (2016) 111–121
Fig. 4. A Phoenix table in HBase.

3.2. Components design and implementation

The data adapter system consists of two parts as shown in
Fig. 3: DB Adapter and DB Converter. The DB Adapter is responsible
for communicating with applications, two databases, and DB
Converter. DB Converter is responsible for converting data from
a relational database to HBase, and synchronizing inconsistent
tables. We describe the design and implementation of each
component as follows.

Apache HBase is a scalable NoSQL database based on Hadoop
framework. Data models of tables in HBase are quite different
from ones in MySQL. To solve this issue, Phoenix is employed to
create tables as clones ofMySQL tables. Rowkey, column family and
column qualifier of HBase are handle by Phoenix, too.

Apache Phoenix is a SQL translator for HBase. It allows database
users who are familiar with SQL to access HBase with frequently
used SQL commands. Instead of creating MapReduce jobs, Phoenix
accesses HBase with coprocessor and makes results of queries
returned faster. However, the value of rowkey and name of column
family must be generated specifically when creating tables by
Phoenix. Fig. 4 shows the value of rowkey is the value of column
of primary key and name of column family is ‘‘_0’’. We need to
convert data according to the requirements, otherwise, Phoenix
cannot access any data in HBase.

DB adapter system can be designed to connect with different
databases as data source. In this paper, it is designed to support
MySQL and HBase. MySQL JDBC driver is used to connect with
MySQL while Phoenix provides client and server jar files used to
connect with HBase. We perform SQL queries from application
through translator and let the translator handle SQL statement
translation. When users need different NoSQL database instead
of HBase, it is necessary to find a proper SQL translator for
data adapter. Besides, we have to develop new methods for data
converter to migrate data from RDB to NoSQL database.

SQL parser is an interface which accepts queries from applica-
tions, parses queries, extracts and sends necessary information to
controller. Parser can tell the difference between read and write
queries and pass the information to controller to put write queries,
which might be affected by transformation progresses, in a queue
if necessary.

Controller controls the progress of table transformation, query
flow, and table synchronization according to proposed modes of
query approach. Queries which perform insert, delete or update
operations on a table which is being transformed to HBase are put
in a queue by controller. Data in tables is not allowed to bemodified
in specific steps for different strategies. Submission control and
sync control are two components in controllers. Submission control
not only communications with converter but also recorders the
transformation progress in local metadata store. In this paper, a
table is a transformation unit. The order of tables to be transformed
by converter is also decided by submission control. Sync control
is responsible for performing synchronization process after each
table is transformed. A SQLite database is used to record all
necessary information such as table transformation status, and this
database is kept updating by controller and DB converter.

DB converter consists of two parts: dumper and transformer.
The data transformation flow in DB converter is shown in Fig. 5.
Sqoop is employed as the dumper to export data from RDB to
CSV format files for transformer phase. Sqoop first selects a range
of table and divides data into splits namely files of partial data.
Each split is handled by a mapper. Sqoop does not block tables
Fig. 5. Transformation flow.

Fig. 6. The example of data inconsistency.

because of performing operations using MapReduce. Applications
can submit queries to access any table which is involved in a
data transformation process. In transformer phase of DB converter,
Phoenix Bulk Load is used to load CSV files and convert data into
HFiles for HBase via MapReduce operation. Another reason to use
Phoenix Bulk Load is because Phoenix is a SQL translator in this
system. Phoenix needs specific information while accessing tables
inHBase. Phoenix Bulk Load not only coverts data intoHBase tables
but also generates information required by Phoenix. In our system
design, transformer and translator are considered as a pair of
components. The data format used in this system such as data type
and schema mapping must be compatible with both transformer
and translator. Otherwise, translator cannot understand the output
result of transformer.

4. Query approach

The data adapter provides a mechanism that application
can access both relational and NoSQL database whether data
transformation is performing or not. An important design is
took into consideration which is to decide when and how to
execute query. Database accessing may change data and affect the
tables in different transformation stages. Hence, data inconsistence
between source database and destination database may occur
when performing queries and data transformation on a table at
the same time. Fig. 6 gives an example of how tables becoming
inconsistent during the transformation process.

In Fig. 6, there is an RDB table on the left-hand side and we
want to dump and transform data into NoSQL database on the
right-hand side. The RDB table is divided into 3 splits S1, S2, and
S3. The DB converter performs the transformation process in the
order of S1, S2, and S3. At time t1, the DB converter completes
the transformation for S1, and performs the transformation for S2.
At time t2, the DB converter completes the transformation for S2,
and performs the transformation of S3. Meanwhile, there is a write
query arrives in our system and it affects S2 and S3. The data in RDB
table and NoSQL table becomes inconsistent (S2 and S2’). At time

Y.-T. Liao et al. / Future Generation Computer Systems 65 (2016) 111–121 115
Fig. 7. Blocking transformation mode.

t3,DB converter completes the transformation of S3’ and thewhole
process is done. Since S3 becomes S3’ before transformation, we
can find S3’ in RDB table which is identical to S3’ in NoSQL table.
As the result shows, the data between RDB table (S1, S2’, S3’) and
NoSQL table (S1, S2, S3’) is inconsistent.

The main idea of synchronizing tables is to perform the same
query (patch) on inconsistent NoSQL tables. We propose three
modes of query approach for applications in our system. The data
adapter blocks queries according to each modes with different
strategies. After data is transformed fromRDB table toNoSQL table,
there may be some inconsistent data needed to be synchronized.
Data adapter will then patch the queries on NoSQL tables. After
that, data between RDB and NoSQL database will be the same. In
following section, three modes of query approach, i.e. BT, BD and
DA, are proposed to solve this issue.

4.1. Blocking transformation mode (BT mode)

Fig. 7 shows details of Blocking Transformation mode (BT
mode). Since read query will not affect RDB tables, for all coming
read queries, the data adapter will execute them immediately.
Therefore, we need to concentrate on dealing with write queries.
In BT mode, themain strategy is that the data adapter will block all
queries that will affect the tables being transformed.

In the transformation process, we treat a table as a transforma-
tion unit. There are three stages in BT mode transformation flow:
waiting stage, transformation stage and finish stage. Waiting stage
means the tables stay in RDB and are not transformed. Queries
from application will be performed only on RDB in this stage. In
the transformation stage, RDB table is accessed and transformed by
DB converter into HBase table. Meanwhile, if there is a query wants
to access the transformed table in transformation stage, the query
will be blocked by controller and wait for transformation finishes.
In finish stage, table finished transformation from RDB to HBase.
The data adapter will then patch the blocked queries on HBase. Af-
ter the synchronization is done, for the following queries, the data
adapter can perform them on the table both in RDB and HBase to
keep data synchronized. The performance of BT mode will be af-
fected seriously by transformation time.

4.2. Blocking dump mode (BD mode)

Blocking Dump mode (BD mode) improves BT mode by further
dividing transformation stage into dump stage and transform stage.
It can reduce the influence by transformation time. The details of
BD mode are shown in Fig. 8.

To find the opportunemoment to performwrite queries in RDB
as early as possible during the transformation, we want to find
a point in transformation process. Since transformation consists
of two stages (dump stage and transform stage), we find that the
best point is the moment right after dump stage, i.e., the point
between dump stage and transform stage. The reasons are described
Fig. 8. Blocking dump mode.

as follows. In dump stage, data in tables are dumped from RDB
to dump files (CSV format files) in HDFS, and queries will be
blocked to prevent from data consistency between RDB tables and
dump files. In transform stage, Phoenix Bulk Load reads CSV format
files in HDFS to create HBase table. Clearly, the transformer will
not access RDB in transform stage. So in transform stage, we can
perform queries in RDB, but need to block queries to patch to
HBase later. After a table finishes transformation, it will enter finish
stage. We perform patch process at the beginning of finish stage to
synchronize tables between RDB and HBase.

In BD mode, transformation will cause table inconsistent in
transform stage. However, queries of application will only be
blocked in dump stage. It can improve the performance tremen-
dously, but application still has to wait until dump stage finishes.

4.3. Direct access mode (DA mode)

The strategy of Direct Access mode (DA mode) is to isolate the
application execution and database transformation process. Appli-
cation can perform queries at any stage on RDB. No matter table is
in dump stage or transform stage, the queries will be performed on
RDB immediately, and the queries will be in a local queue waiting
to be patched later.

Data inconsistency problem in DA mode is more serious than
the problem in BD mode since query result may be transformed
partially due to query interrupt in dump stage. It causes newandold
data of the result set will in HBase. But databases will be eventu-
ally consistent after performing synchronization process. DAmode
uses synchronizationmechanism to solve data inconsistency prob-
lem so that application can totally ignore the data transformation
process. Since we allow queries enter dump stage, the competi-
tion between executed queries and dumper will affect RDB per-
formance slightly.

In Table 1, we compare how the queries from application are
applied on RDB during transformation. We can see DA mode can
offer best accessibility for application. Both BT mode and BDmode
may let application wait until transformation process is done to
enter finish stage.

In addition, applying queries on HBase has to wait until table
finishes transformation. Queries from application in waiting stage
will be executed right awaybecause at this time table does not start
transformation. Queries in dump and transform stage will be put
into a queue, waiting for synchronization process in finish stage.
If queries from application arrive in finish stage, the queries can
be performed directly on RDB and HBase since they are already
synchronized.

5. Theoretical analysis

In this section, we analyse the performance of the data adapter
regarding to synchronization time and overhead. Different modes
of query approach all need to apply patches since they perform

116 Y.-T. Liao et al. / Future Generation Computer Systems 65 (2016) 111–121
Table 1
Query access on RDB with three modes.

Waiting stage Dump stage Transform stage Finish stage

BT mode ◦ × × ◦

BD mode ◦ × ◦ ◦

DA mode ◦ ◦ ◦ ◦
Table 2
The algorithm of synchronization overhead minimization.

For (i = 1; i ≤ n; i + +)
For (j = i; j ≤ n; j + +)
find all combinations of T1, T2, . . . , Tn starts with Ti
store found combinations in list L

EndFor
EndFor
For (i = 1; i ≤ n; i + +)
find highest query frequency fi of Ti during the period of time thf
remove the combination related to the found Ti with the highest query frequency fi

from L
EndFor
While (L still has table combination)
calculate the number of queries needs to be patched

EndWhile
choose the table combination with smallest number of queries needs to be patched
queries and transformation at the same time. To synchronize the
data in RDB and HBase, different number of patches have to be
performed after each table is transformed. In the view of HBase,
we analyse the synchronization time and the number of patches to
be applied to have consistent data. We define two terms as follows
for better understanding:

1. Synchronization Time. The synchronization time means the
very first time both RDB and HBase have the same data.

2. Synchronization Overhead. During database transformation,
we use patches and apply them on HBase to keep data
consistency between RDB and HBase. The number of patches
is the synchronization overhead in the view of the data adapter.

5.1. Synchronization time

To synchronize tables between RDB and HBase requires oper-
ations of converting tables and patching queries. Fig. 9 illustrates
different period of time of operations in the synchronization pro-
cess. Tables are converted one by one. The order given in Fig. 9 is
T1, T2, . . . , Tn−1, Tn for n tables. Table T1 is converted first, related
write queries, P1, is patched later in HBase. After finishing the oper-
ation of converting table T1, the operation of P1 is then performed
and data converter starts converting table T2 at the same time. As-
sume the patching time is much less than converting time for each
table and most of the patching time is overlapped with convert-
ing time of next table. The synchronization time, ttotal, is the sum of
converting time for all tables and patching time for the last table.
Therefore, the ttotal is

ttotal =

n
k=1

tk + α ∗ Pn (1)

where tk is the time for converting table k, α is the average single-
query patching time, and Pn is the number of queries to be patched
which is given as follows.

pn=qn ∗ fn (2)

where qn denotes the number of all queries to be performed while
converting table tn, and fn denotes the frequency of queries related
to table tn.

Eq. (1) shows to find the best synchronization time is to find the
table with smallest number of queries to be patched. However, it
Fig. 9. Time of converting tables and patch queries.

will be hard to the table if the frequency of queries to be performed
varies and tables are asked to be converted in a specified period of
time, e.g. 1:00–2:00 AM.

5.2. Synchronization overhead

The number of patches represents the synchronization over-
head. Some applications may frequently access one specific table
in a period of time. For example, an online shopping service may
frequently insert new transactions into a table, and other actions
like updating customers’ information or goods information do not
occur so frequently. If we transform the table that is being mod-
ified with large number of transactions, it will cause large num-
ber of patches, and increase the synchronization overhead. At the
same time, when data adapter apply the patches in HBase, it will
also affect the performance of transformation. To minimize syn-
chronization overhead of table Tn is to find the period of time thf
that queries accessing Tn with highest frequency fn and avoid con-
verting this table during thf . So we need to find an optimal table
order to minimize the total number of patches. We propose an al-
gorithm showing in Table 2.We give a double for loop to find every
table combinations at first. A for loop is then used to filter out the
table combinations with highest cost in terms of patching queries
for each table. A while loop is used after the for loop to calculate
the number of queries needs to be patched for the left table com-
binations. Finally, we choose the table combination with smallest
cost in terms of patching queries.

Y.-T. Liao et al. / Future Generation Computer Systems 65 (2016) 111–121 117
Table 3
The environment information in detail.

Component information

Hardware and OS
CPU AMD Opteron(tm)

Processor with 32 cores, 64-bit, 2600 MHz
Memory 128 GB
OS Ubuntu 13.04 server version

Data adapter

RDB MySQL 5.5 37
NoSQL database Apache HBase 0.94
Hadoop Apache Hadoop 1.2.1
Phoenix Phoenix 2.2.2
Sqoop Sqoop 1.4.4

Implementation JAVA language
Table 4
RDB table information.

Set Table Row count Size

A
Books 7,984,586 500 MB
Customers 6,676,899 500 MB
Transactions 11,233,058 530 MB

B
Books 15,969,171 1 GB
Customers 13,353,798 1 GB
Transactions 22,466,116 1.1 GB

C
Books 15,969,171 1 GB
Customers 6,676,899 500 MB
Transactions 33,699,174 1.6 GB

The table order ofminimum synchronization time and the table
order ofminimum synchronization overheadmay not be the same.
In the view of application, it concerns optimal synchronization
time, so it can get consistent state of RDB and HBase faster. In
the view of data adapter, it concerns how to minimize number
of patches to reduce overhead during table transformation, and it
also can reduce the competition of patching and transformation in
HBase.

6. Experimental results

This section reports our empirical comparison of the proposed
threemodes of query approach.Wewill evaluate the performances
of our data adapter system and analyse results.

6.1. Evaluation environment

Table 3 gives the experimental environment and configurations.
In MapReduce process, we can set the max number of mappers
by ourselves. In the experiments, we set this value to the number
of CPU cores, i.e. 32 mappers, to get the best performance. We
also divide RDB into 4 splits/file in dumper; this means we use
4 mappers in Sqoop import process in all following experiments.
Transformer (Phoenix Bulk Load) decides appropriate number of
mappers to transform the data according to the data size.

We use Amazon Elastic MapReduce test data [33] as our RDB
data source. The database contains three tables: books, customers,
and transactions. We generate three sets with different sizes for
experiments. Table 4 lists the detailed information.

Based on the AWS test data schema, the query generator
generates synthetic read/write queries, and the ratio of read/write
queries is 50/50. A read query only contains SELECT statement
which selects one rowwith specific primary key value, and always
can be applied to RDB because RDB has full set of data. A write
query may contain one of INSERT, UPDATE and DELETE, and it will
only affect one rowwith specific primary key.Wewill focus on the
discussion of write queries in experiments.
Fig. 10. DB converter transformation time.

6.2. DB converter transformation

We use 3 sets of data to perform transformation fromMySQL to
HBase andmeasure the performance ofDB converter with each set.
First, we define some terms as follows:
1. Application Turnaround Time. We define turnaround time as

the time period from application is submitted into our system
with data adapter to the time application finishes.

2. Application Idle Time. Idle time means that during the
application is running, application may be blocked by the data
adapter depending on different stages with different modes of
query approach. We sum the total blocking time by the data
adapter and define it as the idle time.

3. Application Waiting Time. An application submitted into the
systemmayhave towait for previous application to be accepted
by the data adapter, and the waiting time varies according to
modes of query approach. Waiting time measures the time
period from application submission to the time application
starts execution.
Fig. 10 gives the transformation time of DB converter without

any incoming query. Transformation time is affected by RDB table
size. Time for Set B and set C take is longer than the time for set
A. Set C takes less time than set B does although sizes of both sets
are the same. The reason is the number of mappers is decided by
Phoenix Bulk Load depends on the input file size. The largest table
in set C is larger than the largest table in set B, so Phoenix Bulk
Load asks more computing resources to transform data and results
in less transformation time. The numbers of mappers in dumper
and transformer are given in Table 5.

Transformation time consists of three parts: (1) the time of
dumper exports data fromRDB toHDFS, (2) the time of transformer
imports data into HBase, (3) the time of system sets up and cleans
up the job. We show the ratio of transformation time with three
sets in Fig. 11. The proportions of RDB dump in three sets are very
close because dumper dumps data into HDFS with MapReduce in
parallel. Transformer takes the most of the transformation time
because it uses only one reducer to write data into HBase, and it
cannot be parallelized; the proportions of transformation in three
sets are similar. The proportions of setup and cleanup of three sets
are similar. We can notice that the proportion in Set A is a little
larger than proportions in Set B and Set C since the size of Set A is
smaller.

118 Y.-T. Liao et al. / Future Generation Computer Systems 65 (2016) 111–121
Table 5
Size and number of mappers in DB converter.

Table Size #Mappers in dumper #Mappers in transformer

Set A
Books 500 MB 4 8
Customers 500 MB 4 8
Transactions 530 MB 4 8

Set B
Books 1 GB 4 16
Customers 1 GB 4 16
Transactions 1.1 GB 4 18

Set C
Books 1 GB 4 16
Customers 500 MB 4 8
Transactions 1.6 GB 4 28
Fig. 11. Time ratio of transformation.

6.3. Single application with multiple queries

In this section, we want to simulate behaviours of a single
threaded application that one query comes after another sequen-
tially. We generate 10,000 queries for a single application. Queries
are performed serially and data adapter accepts queries one by one.
There is no dependency among queries. For instance, a record is
updated by a query. This record will not be deleted by another
query later. After submitting an application into the system with
data adapter, we can observer if the turnaround time is affected
by different modes of query approach, and the size of database to
be transformed in the experimental results. We check the correct-
ness of data in tables every time after each experiment and data
is correct. Besides, controller in the proposal receives information
of status of tables from transformer. Queries are performed ac-
cording to the information. If a table is being transformed, con-
troller will make queries accessing the proper tables in proper
time.

Fig. 12 shows application turnaround time with three query
modes. Application takes longest time to finish its job in BT mode
since queries will be blocked until the involved tables finish
transformation. We also observe that data transformation time is
longer when data size is larger, so application turnaround time
with BT mode in Set B and Set C will be longer than the time in
Set. We can find that application turnaround time in BDmode and
DA mode drop significantly comparing with BT mode. Although
BD mode blocks queries with involved tables in dump stage,
the dump time is extremely short comparing to transformation
time. In DA mode, it will not block any query both in dump and
transform stages, so theDA performs a little bit better than BDmode
does.

The influence of data size is obvious in BT mode, but not in
BD and DA modes. Because dump time does not greatly arise
with larger data size, so there is only little influence on BD mode.
DA mode takes shortest turnaround time among three modes.
The turnaround time is nearly close to the application execution
time RDB since DA mode does not block any query of application.
The main influence factor of application turnaround time is the
blocking time of different modes of query approach.

The application turnaround time is equal to the sum of
application execution time and application idle time. In Fig. 13,
we further show the application idle time. Since the application
execution time is almost the same within three modes, we can
find that the application idle time is proportional to application
turnaround time.
Fig. 12. Application turnaround time.

Fig. 13. Application idle time.

6.4. Multiple applications behaviours

Since the performance of single application would be affected
by different factors observed in the previous section, we are
interested in the behaviour of multiple applications in the
data adapter system and find that the results are similar to
those presented in single application experiments except the
applicationwaiting time.We examine thewaiting time ofmultiple
applications by submitting only one query for one application
every fixed period during DB transformation is performed, and
observe how different modes of query approach affect application
waiting time. We only set one query for one application and
observe that the result is obvious. If one application can contain
more than one query, the result would be far more obvious.

The result shows in Fig. 14.Weuse Set B in the experiments, and
set the application submission time to 1 s. For application waiting
time, since it only considers the application arrival time and when
it will be executed in the system, we find that results in three
modes are very different. The average application waiting time of
BT mode is the longest one among three modes.

In our experiments, we make average of the total waiting time
of each application submitted during transformation process. We

Y.-T. Liao et al. / Future Generation Computer Systems 65 (2016) 111–121 119
Table 6
RDB table information.

Table Size (GB) Row count #Mappers in dumper #Mappers in transformer

Books 10 157,377,584 4 161
Customers 10 131,912,211 4 161
Transactions 10 211,603,925 4 162
Fig. 14. Average application waiting time.

can find waiting time in BT mode is extremely larger than the
time in BD mode and DA mode because application with write
queries is blockedwith involved tables in transformation. Before an
application can be executed, the previous applications in the queue
need to be executed first. If the previous applications are blocked,
the waiting time of current application will also be affected. In BD
mode, average waiting time is short since the proportion of dump
time is short in transformation process. InDAmode, there is nearly
no waiting time since the applications will not be blocked. The
data adapter only spends very little time to parse each query to
get necessary information, so the waiting time in DAmode is equal
to the parsing overhead of each query.

6.5. Results on cloud platform

To verify performance of the proposal, we examine BT, BD and
DA on an OpenStack (Grizzly) cloud platform hosted at NTHU with
larger data set B. Table 6 give the details of data set. We generate
100,000 write queries as a single application and submit it to data
adapter while performing data transformation.

Due to limited resources, there are two virtual machines (VMs)
used for the experiment. Both VMs contains 12 virtual CPUs and
42 GB memory. The VM as master node has 4TB disk space while
the VMas datanode has 2TB disk space. Fig. 15 gives the application
turnaround time for BT, BD and DA modes of the proposal. The
turnaround time increased but the performance observed is similar
to the performance given in Section 6.3. Because of blocking
queries in both dump stage and transform stage, BT requires more
time than BD and DA do. Besides, large data set requires more time
for dump stage and transform stage. It takes all three modes more
than 75,000 s for data transformation process. BT needs 6.7% of its
turnaround time to patch queries since it blocks all queries in data
transformation process.While blocking queries only in dump stage,
it costs less than 1% of the turnaround time for BD to patch queries
after transform stage. DA blocks no queries during the process of
data transformation and needs nearly no extra time for patching
queries after the process of data transformation. Comparing results
in Sections 6.3 and 6.5, we have similar observation that patching
queries requires more turnaround time especially when queries
are blocked during the whole process of data transformation,
e.g. 88% in Section 6.3 and 6.7% in Section 6.5 for BT.
Fig. 15. Application turnaround time.

6.6. Summary

We discuss the advantages and disadvantages of three modes
of query approach in this section:

BT mode is suitable for batch applications instead of real-time
services. Some applications can toleratemaintaining time required
by systems which will stop systems from executing queries. BT
mode has less impact on these applications which submit queries
during a specific time period. The advantage of BT mode is with
less complexity of Patch processes since write-related queries are
blocked during dump and transform stages. The disadvantage of BT
mode is with longest data synchronization time when comparing
BT mode with BD and DAmodes.

BD mode allows queries to be executed after dump stage and
is suitable for applications which allows little delay in terms of
performing write-related queries. The advantage of BD mode is
that patch process can be started earlier but the disadvantage is
with higher Patch cost.

DA mode allows performing write-related queries without
blocking queries in dump stage because Sqoop is employed to
convert data from MySQL to CSV files. Sqoop does not lock
tables and it makes perform queries in dump stage possible.
The advantage of DA mode is almost delay-free during data
transformation in dump and transform stages. The disadvantage is
DAmode has highest cost of Patch process among three modes.

Experiments shows the pros and cons of the proposal. Users
can choose BT, BD and DA modes of query approach for different
scenarios, namely batch applications, real-time services or other
kinds of systemswith specific requirements of performing queries.

7. Conclusions and future work

A flexible and highly modularized data adapter for hybrid
database system is proposed in this paper. The data adapter
uses a general SQL layer accepting queries from application
services, so that original application does not need to change the
design. The data adapter also controls query flow during database
transformation. We implement a prototype system and show the
design concept of whole system. We also present three modes
(BT, BD, and DA modes) of query approach with different blocking
policies to perform data transformation from MySQL to HBase. In
order words, this paper focuses on velocity with BT, BD, and DA
modes of query approach and partly variety with data stored in
MySQL, CSV files and HBase for different stages.

We provide theoretical analysis of synchronization time and
synchronization overhead. The most important two factors are
table transformation order and the characteristics of queries. We

120 Y.-T. Liao et al. / Future Generation Computer Systems 65 (2016) 111–121
provide a solution to minimize the synchronization time. We also
calculate the number of patches and offer an algorithm tominimize
the synchronization overhead.

We examine factors that influence application performance
in the data adapter, including different database sizes, different
table sizes, and application types; each of them is examined
with different modes of query approach. The results show size
affects the turnaround time of single application. In BT mode,
it is influenced the most because of the long blocking time in
data transformation stage. The idle time of single application in
BT mode is the longest, and it is the shortest in DA mode, since
application in DA mode can totally be executed regardless of
database transformation. The application waiting time in BT mode
takes the longest time.

In the future, we will focus on speeding up DB converter and try
to evaluate performance with suitable models. As showed in our
experiments, data size directly affects performance of applications
and data adapter. We also want to support more complicated SQL
queries by enhancing the SQL parser and translator between data
adapter and applications. The data adapter now can offer real-time
access with NoSQL database but cannot efficiently perform batch
operations on NoSQL database. We will put emphasis on how to
speed up SQL query execution. With the flexibility of the proposed
data adapter system, we will offer more connectors to deal with
different types of databases to support various services. Security
is also an important issue as mention in related work. We mainly
describe the functionalities, e.g. SQL query, datamigration and data
synchronization. To improve the data adapter to avoid data being
hacked and compromised, it is necessary to design and integrate
security components in the future.

Acknowledgement

The work was supported by the Ministry of Science and
Technology of Taiwan (No. NSC 101-2221-E-007-028).

References

[1] Apache Phoenix. Available: https://phoenix.apache.org/.
[2] Apache HBase. Available: http://hbase.apache.org/.
[3] OpenStack. Available: https://www.openstack.org/.
[4] M. Ali, S.U. Khan, A.V. Vasilakos, Security in cloud computing: Opportunities

and challenges, Inform. Sci. 305 (2015) 357–383.
[5] V. Chang, Y.-H. Kuo,M. Ramachandran, Cloud computing adoption framework:

A security framework for business clouds, Future Gener. Comput. Syst. 57
(2016) 24–41.

[6] I.A.T. Hashem, I. Yaqoob, N.B. Anuar, S. Mokhtar, A. Gani, S.U. Khan, The rise of
‘‘big data’’ on cloud computing: Review and open research issues, Inf. Syst. 47
(2015) 98–115.

[7] C.L.P. Chen, C.-Y. Zhang, Data-intensive applications, challenges, techniques
and technologies: A survey on Big Data, Inform. Sci. 275 (2014) 314–347.

[8] E. Barbierato, M. Gribaudo, M. Iacono, Performance evaluation of NoSQL big-
data applications using multi-formalism models, Future Gener. Comput. Syst.
37 (2014) 345–353.

[9] Apache Hive. Available: https://hive.apache.org/.
[10] J. Han, E. Haihong, G. Le, J. Du, Survey on NoSQL database, in: 6th Inter-

national Conference on Pervasive Computing and Applications, ICPCA, 2011,
pp. 363–366.

[11] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, et al.,
Bigtable: A distributed storage system for structured data, ACMTrans. Comput.
Syst. (TOCS) 26 (2008) 4.

[12] M.N. Vora, Hadoop-HBase for large-scale data, in: International Conference on
Computer Science and Network Technology, ICCSNT, 2011, pp. 601–605.

[13] K. Chodorow, MongoDB: The Definitive Guide, O’Reilly Media, Inc., 2013.
[14] A. Lakshman, P. Malik, Cassandra: a decentralized structured storage system,

ACM SIGOPS Oper. Syst. Rev. 44 (2010) 35–40.
[15] N. Leavitt, Will NoSQL databases live up to their promise? Computer 43 (2010)

12–14.
[16] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, et al. Big data:

The next frontier for innovation, competition, and productivity, 2011.
[17] D. Borthakur, HDFS architecture guide, HADOOP APACHE PROJECT, 2008.

http://hadoop.apache.org/common/docs/current/hdfsdesign.
[18] J. Dean, S. Ghemawat,MapReduce: simplified data processing on large clusters,

Commun. ACM 51 (2008) 107–113.
[19] Apache Hadoop. Available: http://hadoop.apache.org/.
[20] R. Cattell, Scalable SQL and NoSQL data stores, ACM SIGMOD Rec. 39 (2011)

12–27.
[21] M. Fazio, A. Celesti, M. Villari, A. Puliafito, The need of a hybrid storage
approach for IoT in PaaS cloud federation, in: 28th International Conference
on Advanced Information Networking and Applications Workshops, WAINA,
2014, pp. 779–784.

[22] K.A. Doshi, T. Zhong, Z. Lu, X. Tang, T. Lou, G. Deng, Blending SQL and NewSQL
approaches: Reference architectures for enterprise big data challenges, in:
2013 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery, CyberC, 2013, pp. 163–170.

[23] W.-C. Chung, H.-P. Lin, S.-C. Chen, M.-F. Jiang, Y.-C. Chung, JackHare: a
framework for SQL to NoSQL translation usingMapReduce, Autom. Softw. Eng.
(2013) 1–20.

[24] J. Rith, P.S. Lehmayr, K. Meyer-Wegener, Speaking in tongues: SQL access
to NoSQL systems, in: Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC’14, 2014, pp. 855–857.

[25] J. Roijackers, Bridging SQL and NoSQL (Master’s thesis), Eindhoven University
of Technology, 2012.

[26] C. Li, Transforming relational database into HBase: A case study, in: 2010
IEEE International Conference on Software Engineering and Service Sciences,
ICSESS, 2010, pp. 683–687.

[27] A. Fuxman,M.Hernandez, C. Ho, R.Miller, P. Papotti, L. Popa, Nestedmappings:
schema mapping reloaded, in: Proceedings of the 32nd International
Conference on Very Large Data Bases, VLDB, 2006, pp. 67–78.

[28] I. Maghfirah, Constraints preserving in schema transformation to enhance
databasemigration fromMySQL toHBase (Master’s thesis), National TsingHua
University, 2014.

[29] Apache Sqoop. Available: http://sqoop.apache.org/.
[30] O.V. Joldzic, D.R. Vukovic, The impact of cluster characteristics on HiveQL

query optimization, in: 21st Telecommunications Forum, TELFOR, 2013,
pp. 837–840.

[31] T. Kim, H. Chung, W. Choi, J. Choi, J. Kim, Cost-based join processing scheme in
a hybrid RDB and hive system.

[32] J. Cho, H. Garcia-Molina, Synchronizing a database to improve freshness, in:
ACM Sigmod Record, 2000, pp. 117–128.

[33] Amazon Elastic MapReduce Testing Data. Available:
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/query-
impala-generate-data.html.

Ying-Ti Liao received her B.S. degree in Computer
Science from National Taipei University in 2012, M.S.
degree in Computer Science from National Tsing Hua
University in 2014. She is currently a research assistant
in the Department of Computer Science, National Tsing
Hua University. Her research interests include Cloud
Computing and Big Data.

Jiazheng Zhou received his B.S. degree in Computer Sci-
ence from National Chengchi University in 2002, M.S. de-
gree and Ph.D. degree in Computer Science from National
Tsing Hua University in 2004 and 2011. He is currently
a Postdoc in the Department of Computer Science, Na-
tional Tsing Hua University. His research interests include
Cluster Computing, InterconnectionNetwork, High Perfor-
mance Computing, Cloud Computing, and Big Data.

Chia-Hung Lu is a master student of Computer Science in
National Tsing Hua University. He received his B.S degree
in Computer Science from National Tsing Hua University
in 2014. His research interests are related to Big Data and
Cloud Infrastructure.

Shih-Chang Chen received his B.S. and M.S. degrees in
Computer Science from Chung Hua University, Taiwan,
in 2003 and 2005, Ph.D. degree in Ph.D. Program in
Engineering Science from Chung Hua University in 2010.
He is currently a postdoctoral research fellow in Computer
& Communication Research Center at National Tsing Hua
University. His research interests include Parallel and
Distributed Systems, Cloud Computing and Big Data.

https://phoenix.apache.org/
http://hbase.apache.org/
https://www.openstack.org/
http://refhub.elsevier.com/S0167-739X(16)30008-5/sbref4
http://refhub.elsevier.com/S0167-739X(16)30008-5/sbref5
http://refhub.elsevier.com/S0167-739X(16)30008-5/sbref6
http://refhub.elsevier.com/S0167-739X(16)30008-5/sbref7
http://refhub.elsevier.com/S0167-739X(16)30008-5/sbref8
https://hive.apache.org/
http://refhub.elsevier.com/S0167-739X(16)30008-5/sbref11
http://refhub.elsevier.com/S0167-739X(16)30008-5/sbref13
http://refhub.elsevier.com/S0167-739X(16)30008-5/sbref14
http://refhub.elsevier.com/S0167-739X(16)30008-5/sbref15
http://hadoop.apache.org/common/docs/current/hdfsdesign
http://refhub.elsevier.com/S0167-739X(16)30008-5/sbref18
http://hadoop.apache.org/
http://refhub.elsevier.com/S0167-739X(16)30008-5/sbref20
http://refhub.elsevier.com/S0167-739X(16)30008-5/sbref23
http://refhub.elsevier.com/S0167-739X(16)30008-5/sbref25
http://refhub.elsevier.com/S0167-739X(16)30008-5/sbref28
http://sqoop.apache.org/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/query-impala-generate-data.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/query-impala-generate-data.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/query-impala-generate-data.html

Y.-T. Liao et al. / Future Generation Computer Systems 65 (2016) 111–121 121
Ching-HsienHsu is a professor in department of computer
science and information engineering at ChungHuaUniver-
sity, Taiwan. His research includes high performance com-
puting, cloud computing, big data intelligence, parallel and
distributed systems, ubiquitous/pervasive computing and
intelligence. Dr. Hsu is an IEEE senior member.

Wenguang Chen received the B.S. and Ph.D. degrees
in computer science from Tsinghua University in 1995
and 2000 respectively. He was the CTO of Opportunity
International Inc. from 2000 to 2002. Since January 2003,
he joined Tsinghua University. He is now a professor
and associate head in Department of Computer Science
and Technology, TsinghuaUniversity. His research interest
is in parallel and distributed computing, programming
model and mobile cloud computing. He is leading the
PACMAN Group now.
Mon-Fong Jiang received a B.S. degree in Applied Math-
ematics from National Chung Hsing University in 1994,
and the M.S. and Ph.D. degrees in Computer and Infor-
mation Science from National Chiao Tung University in
1996 and 2000, respectively. His research interests include
machine learning, parallel computing, and semiconduc-
tor engineering data analysis systems. He is currently Vice
President of is-land Systems Inc., a Hsinchu Science Park
company in Taiwan.

Yeh-Ching Chung received a B.S. degree in Information
Engineering from Chung Yuan Christian University in
1983, and the M.S. and Ph.D. degrees in Computer and In-
formation Science from Syracuse University in 1988 and
1992, respectively. He joined the Department of Informa-
tion Engineering at Feng Chia University as an associate
professor in 1992 and became a full professor in 1999.
From 1998 to 2001, he was the chairman of the depart-
ment. In 2002, he joined the Department of Computer Sci-
ence at National Tsing Hua University as a full professor.
His research interests include parallel and distributed pro-

cessing, cloud computing, and embedded systems. He is a seniormember of the IEEE
computer society.

	Data adapter for querying and transformation between SQL and NoSQL database
	Introduction
	Related work
	The data adapter system
	System architecture
	Components design and implementation

	Query approach
	Blocking transformation mode (BT mode)
	Blocking dump mode (BD mode)
	Direct access mode (DA mode)

	Theoretical analysis
	Synchronization time
	Synchronization overhead

	Experimental results
	Evaluation environment
	DB converter transformation
	Single application with multiple queries
	Multiple applications behaviors behaviours
	Results on cloud platform
	Summary

	Conclusions and future work
	Acknowledgement
	References

