Computational Biology and Chemistry 58 (2015) 62-68

journal homepage: www.elsevier.com/locate/compbiolchem

Computational Biology and Chemistry

=

Contents lists available at ScienceDirect

Computational
Biology and
Chemistry

CUDA ClustalW: An efficient parallel algorithm for progressive multiple @ .
sequence alignment on Multi-GPUs

Che-Lun Hung?, Yu-Shiang Lin", Chun-Yuan Lin “*, Yeh-Ching Chung", Yi-Fang Chung ¢

2 Department of Computer Science and Communication Engineering, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung City 43301,

Taiwan

b Department of Computer Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu City 30013, Taiwan
< Department of Computer Science and Information Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Taoyuan City 33302, Taiwan

ARTICLE INFO

Article history:

Received 13 November 2014

Received in revised form 14 May 2015
Accepted 14 May 2015

Available online 21 May 2015

Keywords:

Progressive multiple sequence alignment
GPU

CUDA

Clustalw

Parallel computing

ABSTRACT

For biological applications, sequence alignment is an important strategy to analyze DNA and protein
sequences. Multiple sequence alignment is an essential methodology to study biological data, such as
homology modeling, phylogenetic reconstruction and etc. However, multiple sequence alignment is a
NP-hard problem. In the past decades, progressive approach has been proposed to successfully align
multiple sequences by adopting iterative pairwise alignments. Due to rapid growth of the next generation
sequencing technologies, a large number of sequences can be produced in a short period of time. When
the problem instance is large, progressive alignment will be time consuming. Parallel computing is a
suitable solution for such applications, and GPU is one of the important architectures for contemporary
parallel computing researches. Therefore, we proposed a GPU version of ClustalW v2.0.11, called CUDA
ClustalW v1.0, in this work. From the experiment results, it can be seen that the CUDA ClustalW v1.0 can
achieve more than 33 x speedups for overall execution time by comparing to ClustalW v2.0.11.

©2015 Elsevier Ltd. All rights reserved.

1. Introduction

In computational biology, sequence alignment is of priority
concern and many methods have been developed to solve sequence
alignment-related problems for biological applications. Needleman
and Wunsch (Needleman and Wunsch, 1970) developed the well-
known dynamic programming algorithm for solving global pairwise
alignment problem. A similar algorithm was proposed by Smith and
Waterman (Smith and Waterman, 1981) to solve the local pairwise
alignment problem. Besides the pairwise alignment problem, the
multiple sequence alignment problem was also elucidated and
several methods were developed to obtain the optimal solution
(Carrillo and Lipman, 1988). However, it was demonstrated that
using the dynamic programming algorithm to solve the multiple
sequence alignment problem is an NP-hard problem (Wang and
Jiang, 1994). Many approximation and heuristic algorithms for
multiple sequence alignment were developed in the past, i.e.
ClustalW (Thompson et al., 1994), a progressive multiple sequence
alignment tool. Progressive multiple sequence alignment

* Corresponding author.
E-mail addresses: clhung@pu.edu.tw (C.-L. Hung), cyulin@mail.cgu.edu.tw
(C.-Y. Lin).

http://dx.doi.org/10.1016/j.compbiolchem.2015.05.004
1476-9271/© 2015 Elsevier Ltd. All rights reserved.

(Thompson et al,, 1994; Feng and Doolittle, 1987; Notredame
et al., 2000a) is the commonly used approach to align a set of
sequences by repeatedly aligning pairs of sequences and previously
generated alignments. The idea of progressive multiple sequence
alignment is to align pairs of sequences according to the orders in the
phylogenetic tree (called guide tree) which was built by the
similarity scores (formed as a distance matrix) calculated from each
pair of sequences. Multiple sequence alignment tools have been used
to discover DNA motif (Wong and Zhang, 2014), predict disease
(Wong et al.,, 2013) and etc.

Due to the rapid growth of the biotechnology, such as next
generation sequencing, the output size of sequencing data has
increased at a rate that outpaces the Moore’s law. In 2007, a single
sequencing run could produce about one gigabase (Gb) size of
sequence data. By 2011, it has approximately reached a terabase
(Tb) size of sequence data in a single sequencing run. Over the past
four years it has grown nearly 1000 times. When the problem
instance is large, progressive alignment will be time consuming.
Therefore, how to analyze a large number of sequences is an
important issue. Parallel computing is a suitable solution to solve
this problem. For example, ClustalW-MPI (Li, 2003) has been
proposed to successfully solve the parallelization problem of
distance matrix calculation by using message passing interface
(MPI) library on a PC cluster. However, it needs a lot of budget to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiolchem.2015.05.004&domain=pdf
mailto:clhung@pu.edu.tw
mailto:cyulin@mail.cgu.edu.tw
http://dx.doi.org/10.1016/j.compbiolchem.2015.05.004
http://dx.doi.org/10.1016/j.compbiolchem.2015.05.004
http://www.sciencedirect.com/science/journal/14769271
www.elsevier.com/locate/compbiolchem

C.-L. Hung et al./ Computational Biology and Chemistry 58 (2015) 62-68 63

maintain a PC cluster system. Current high-end graphics process-
ing units (GPUs) are very popular in the high performance
computing community due to contain up to hundreds cores per
chip. GPU has massive multi-threaded processors; moreover, the
thousands of threads can be executed simultaneously to fully
utilize GPU computing power. Compute Unified Device Architec-
ture (CUDA) (Nickolls et al., 2008) could access GPUs and has made
the supercomputing available to the mass.

Several algorithms or tools have been ported on GPUs with CUDA
in computational biology, such as MUMmerGPU (Schatz et al., 2007;
Trapnell and Schatz, 2009), CUDA-MEME (Liu et al., 2010a), CUDA-
BLASTP (Liu et al., 2011), and etc. For pairwise alignment, several
works for Smith and Waterman algorithm have been implemented
on GPUs (Manavski and Valle, 2008; Liu et al., 20094, 2010b; Sandes
and Melo, 2010). Most of them were based on the inter-task
parallelization (Liu et al., 2009a) to calculate the similarity score
(without alignment results) of each pair of input sequences by one
thread. Only a few of literatures tried to use the intra-task
parallelization (Liu et al., 2009a) to calculate the similarity score
of each pair of input sequences by one thread block. Although the
inter-task parallelization can achieve higher performance on GPUs
than the intra-task parallelization, it is suitable for shorter sequences
by comparing with the intra-task parallelization as mentioned in the
literature (Liu et al., 2009a). The reason is that the sizes of device
memory, registers and shared memory on GPU are limited. In the
literature (Liuetal.,2009a), a threshold is set to 3072 for the length of
database sequence. If the length of database sequence is less than the
threshold, the Smith and Waterman computation is done by inter-
task parallelization, otherwise by intra-task parallelization. Few
works were presented to calculate the sequence alignment results
not only similarity scores for long sequences by using Smith and
Waterman algorithm on GPUs (Khajeh-Saeed et al.,2010; Sandes and
Melo, 2011). Lee et al. (Lee et al., 2013) proposed a Smith-Waterman
algorithm with a frequency-based filtration method on GPUs rather
than merely accelerating the comparisons yet expending computa-
tional resources to handle such unnecessary comparisons. For
multiple sequence alignment (MSA), Liu et al. proposed a tool MSA-
CUDA (Liu et al., 2009b) to parallelize all three stages of ClustalW
v2.0.9 processing pipeline by using inter-task parallelization.
Although they also implemented the distance matrix calculation
stage in MSA-CUDA by using intra-task parallelization, it only
achieved about 10x speedups for 1000 sequences with length of
858 by comparing to ClustalW v2.0.9 on single-GPU. Lin and Lin
proposed GPU-REMuSiC v1.0 (Lin and Lin, 2014) for constrained
multiple sequence alignment by using intra-task parallelization to
do the distance matrix calculation step on single- and multi-GPUs.
They summarized the previous research for parallel dynamic
programming algorithms on CPUs and then defined eight imple-
mentation types of dynamic programming on GPUs. The distance
matrix calculation step in GPU-REMusSiC v1.0 adopted the Needle-
man and Wunsch algorithm to calculate the optimal similarity score,
and it was implemented by the Synchronous Row Multiple Threads
(SRMT) type.

Hence, in this work, we proposed a GPU version of ClustalWw
v2.0.11, called CUDA ClustalW v1.0, by using intra-task paralleliza-
tion on single- and multi-GPUs. In CUDA ClustalW v1.0, the
distance matrix calculation step was implemented by the
Synchronous Diagonal Multiple Threads (SDMT) type (Lin and Lin,
2014). Moreover, several optimization methods were designed to
improve the performance of CUDA ClustalW v1.0. From the
experimental results, the CUDA ClustalW v1.0 can achieve about
22x speedups for 1000 sequences with length of 1523 in the
distance matrix calculation step by comparing to ClustalW
v2.0.11 on single-GPU. For the overall execution time, the CUDA
ClustalW v1.0 can achieve about 33x speedups by comparing to
ClustalW v2.0.11 on two-GPUs.

2. CUDA Clustalw v1.0

In general, the procedure of progressive multiple sequence
alignment, such as ClustalW, can be divided into three steps: (1)
the distance matrix calculation, (2) the guide tree creation, and (3)
the progressive alignment. In distance matrix calculation step, the
similarity scores were calculated from each pair of sequences by
using the pairwise alignment algorithm, such as Needleman and
Wunsch algorithm. For aligning two sequences both with length of
n, the time and space complexity both are O(n?) by using
Needleman and Wunsch algorithm. For k sequences in the
progressive multiple sequence alignment, it needs to do
k?/2 pairwise alignments and the total time complexity is O
(k*n?). In guide tree creation step, a rooted or unrooted
phylogenetic tree was built according to the calculated distance
matrix by using phylogenetic tree construction algorithm. The
time complexity of this step is O(k?) for most of phylogenetic tree
construction algorithms. The built guide tree could be used to
decide the orders of following progressive alignment step. In
progressive alignment step, the required pairwise alignment
results were generated according to the orders in guide tree.
Although this step still needs to use pairwise alignment algorithm
to obtain the pairwise alignment results, and then combines the
previously generated alignments (a group of aligned sequences),
the number of times of pairwise alignments in this step generally is
far less than that in the distance matrix calculation step. Therefore,
in most of cases, the computation time of distance matrix
calculation step occupied more than 90 percent of overall
execution time by progressive multiple sequence alignment.
Hence, in CUDA ClustalW v1.0, we focused on the GPU
implementation of distance matrix calculation step. In addition,
several optimization methods by considering the memory usage,
load balancing, and threads/thread blocks adjustment were
designed to enhance the performance of CUDA ClustalW v1.0.

2.1. Distance matrix calculation step

As mentioned above, in distance matrix calculation step, the
similarity scores were calculated from each pair of sequences by
using pairwise alignment algorithm. The space complexity is O(n?)
by using Needleman and Wunsch algorithm for aligning two
sequences both with length of n. For real biological applications,
the length of sequences may be large and the memory requirement
cannot be met by a PC (CPU) or a graphic card (GPU). Therefore, in
practice, the pairwise alignment algorithm used in ClustalW is
consisted of three paths: forward path, reverse path, divide and
conquer path. This idea is proposed by Hirschberg algorithm
(Hirschberg, 1977) for solving the longest common subsequence
problem. When using the dynamic programming algorithm to
align two sequences, the process can be seen as the score
calculations in a two-dimensional array. By using the Hirschberg
algorithm, this two-dimensional array will be divided into forward
array and reverse array equally. In the forward array, the forward
path is to calculate the scores from left-top to right-down.
Similarly, in the reverse array, the reverse path is to calculate
the scores from right-down to left-top. The computations of the
forward array and reverse array can be done concurrently. The
dependency of dynamic programming algorithm in the forward
path and the reverse path is shown in Fig. 1, respectively. In order to
reduce the space complexity from O(n?) to O(n), the entire forward
array or reverse array could not be stored in memory. Only the
scores in the last row of forward array and reverse array can be
stored in memory, respectively. Hence, after doing the computa-
tions of the forward path and reverse path, the scores in the last
row of forward array are merged (addition operation) with those of
reverse array. Then a break point with the maximal score in an

64 C.-L. Hung et al./ Computational Biology and Chemistry 58 (2015) 62-68

forward path

iter1

| iterd / '

iter2

iter3 % % —1 L

iter4 EEA

iter5 L~ L~

reverse path

iterd4 a—.
iter3 I T I - e
iter2| |1~ 'f
iter1 | P4

Fig. 1. The dependency of dynamic programming algorithm in the forward path and the reverse path, respectively.

optimal path could be found. This break point then is used to divide
the original two-dimensional array into two sub-arrays according
to the substitution, insertion or deletion cases (a pair of characters
(include gap) aligned by two sequences). Afterward, each sub-
array will be divided into forward array and reverse array again and
repeats the above actions. Fig. 2 shows the concept of forward path
and reverse path. While all break points in an optimal path are
found, a divide and conquer path is used to calculate the similarity
score of two sequences. The details of divide and conquer path can
be found in the literatures (Korf and Zhang, 2000; Rajko and Aluru,
2004). In CUDA ClustalW v1.0, we follow the design of ClustalW. In
order to do the computations in forward array and reverse array
concurrently, the threads in a thread block are divided into two
parts, one for forward array and another for reverse array. Only one
thread in a thread block is then used to merge the scores in the last
row of forward array and reverse array, find the break point, and
divide the original two-dimensional array into two sub-arrays. In
ClustalW, the implementation of divide and conquer path is done
by the recursive function. Although newer CUDA version supports
the recursive function, the implementation in CUDA ClustalW
v1.0 is done by the loop function with the stacks in order to be used
for the older CUDA version.

For k sequences in CUDA ClustalW v1.0, there are k?/2 pairwise
alignments in distance matrix calculation step. CUDA ClustalW
v1.0 used intra-task parallelization to assign a pairwise alignment
to a thread block. For a pairwise alignment in a thread block, there
are two directions, row (column) and diagonal, of calculating
scores in a two-dimensional array. According to the dependency of
dynamic programming algorithm (Fig. 1), the computation of each
array element in a diagonal is independent. When the maximal
length of a diagonal is larger than the number of threads in a thread
block, the computation of a diagonal can be asynchronous or

synchronous. Since the implementation of asynchronous
Forward Path
- o) “‘ Break poin 2
Forward Bath-— " S
N MIT ™ /
N Break Point 1 ¢
\\\ \\~
N,
Ml \~\\\ / M 12 ‘\
*!E;:- = .. Reverse Path
s‘\ ™. Forward Path
\\\\ \~ -
M2 S \x\ Break Point 3
| ~,
seteesibat M2l ~a.\/
R\
}
) M2
Reverse Path

Fig. 2. The concept of forward path and reverse path.

computation in a thread block is difficult, the implementation of
CUDA ClustalW v1.0 adopted the synchronous computation.
Therefore, the distance matrix calculation step in CUDA ClustalW
v1.0 was implemented by the Synchronous Diagonal Multiple
Threads (SDMT) type (Lin and Lin, 2014). An example of using SDMT
type to do the distance matrix calculation step is shown in Fig. 3.
For a pairwise alignment, in the forward path or reverse path, the
inputs are two sequences and a substitution matrix. The
substitution matrix is used to determine the score of each pair
of characters aligned by two sequences. The output is a similarity
score. A simple way is to allocate the inputs and output into the
global memory of GPU device. All of similarity scores from pairwise
alignments were stored in a distance matrix located at the global
memory.

2.2. Optimization methods for distance matrix calculation step

In CUDA ClustalW v1.0, the GPU implementation of distance
matrix calculation step is based on the intra-task parallelization
and SDMT type. For GPU, there are several memory architectures,
hundreds cores, and large memory bandwidth. It is worth to
improve the performance of CUDA ClustalW v1.0 by using these
advantages. Several optimization methods were designed for
distance matrix calculation step and evaluated in this work. All of
these methods are summarized as follows.

2.2.1. Load balancing strategy

Using intra-task parallelization, a pairwise alignment is
assigned to a thread block. Although the number of thread blocks
can be declared large, the number of streaming multiprocessors in
a graphic card is limited. In general, a streaming multiprocessor
can deal with one thread block or more. The occupancy is
determined by the shared memory usage and register usage. For k
sequences in CUDA ClustalW v1.0, there are k?/2 pairwise align-
ments. For a kernel function, it only deals with a fixed number M of
pairwise alignments with the similar length of sequences. This
number M is the several times of number of streaming multi-
processors. After finishing a kernel function, the similarity scores
calculated are copied from device (GPU) memory into host (GPU)
memory and then next kernel function is started.

2.2.2. Streaming technique

When using the load balancing strategy mentioned above, the
input data for M pairwise alignments are copied from host memory
into device memory at first, then the similarity scores are
calculated by device, and finally the similarity scores are copied
from device memory into host memory. By this way, the
computation step should be delayed waiting for data transfer
step. Therefore, the streaming technique, a pipeline of asynchro-
nous data transmission, can be used to overlap the data transfer
time and computation time.

2.2.3. Memory allocation
For a pairwise alignment, the inputs are two sequences and a
substitution matrix. These two sequences should be accessed by

C.-L. Hung et al./ Computational Biology and Chemistry 58 (2015) 62-68

sequence] sequencel

sequencel

(T 1T

65

sequencel sequencel

(T TT]

sequencel

[TTT]
[]

sequence2
sequence2

sequence2

) T 000 |
g i S il e
§ 4 §
@ irsto stepl step2 step3
{; thread 1 sequencel
@ finished
000
3 L X . .
f |
step7

stepS stepb

Fig. 3. An example of using SDMT type to do the distance matrix calculation step in CUDA ClustalW v1.0.

each thread in a thread block to query the substitution matrix.
When input sequences are copied from host memory into device
memory, each pair of sequences for a thread block are accessed and
stored in the shared memory. Since the substitution matrix is read-
only and the size of it is less than 4 k byte, it will be stored in the
texture memory. The distance matrix is stored in the global
memory.

2.2.4. Unsigned char data type

When each pair of sequences for a thread block are accessed and
stored in the shared memory, the shared memory usage will affect
the occupancy of streaming multiprocessors. Hence, the sequences
are stored by using the unsigned char data type, not int, in order to
reduce the shared memory usage. Although it may cause bank
conflict, the performance can be improved obviously by increasing
the occupancy of streaming multiprocessors.

2.2.5. Precision adjustment

When calculating the similarity scores on GPU, the used
division operator is a single-precision floating-point operation.
Since the single-precision floating-point operations in CUDA are
not designed according to the IEEE-754 standard. The similarity
scores calculated by CPU and GPU may be different. This result may
cause the alignment results generated by CPU and GPU are
inconsistent. In CUDA ClustalW v1.0, _fdiv_rn() function was used
to replace the built-in division operator. It is worth to note that the
goal of this optimization method is to avoid the precision problem
by using division operator on GPU. We cannot guarantee that the
alignment results by CUDA ClustalW v1.0 are the same with those
by ClustalW for any test set. As mentioned in the literature (Vouzis
and Sahinidis, 2011), the most of GPU implementations of BLAST
are not guaranteed to give results identical to NCBI-BLAST. In the
past, most of GPU implementations are done by rewriting the

(a) 1000 sequences 256 blocks ®) 1000 sequences 512 blocks
50 50
40 - 40 —
§ 30 —4—32threads _§- 30 s —— 2threads
H ——64threads b —i— €4threads
2 20 - a 20 -
128threads 128threads
* / ——256threads 10 // —— 256threads
0 —+—512thrcads 0 S12threads
97 498 1002 1523 97 498 1002 1523
length length
(C) 1000 sequences 1024 blocks
50
) /l//-
_5' 30 —o—32tkreads
4 ——354tkrcads
2 20
128threads
’ / —<256threads
0 =—=3512threads
97 498 1002 1523

length

Fig. 4. Speedups of distance matrix calculation step by comparing CUDA ClustalW v1.0 with ClustalW v2.0.11 under various numbers of threads in a thread block and various

numbers of thread blocks in a grid.

66 C.-L. Hung et al./ Computational Biology and Chemistry 58 (2015) 62-68

800 1000 sequences 64 threads

/00
U0
500

400 m 256klock

Al m S12klock
200
100

o — 1

1024block
97 498 1002 1523

second

length

Fig. 5. Execution time of distance matrix calculation step by CUDA ClustalW
v1.0 under the 64 threads in a thread block and various numbers of thread blocks in
a grid.

programs according to the original algorithm. The result obtained
by this way is very different to that by the original program. Few
GPU implementations are done by modifying the necessary
functions in the original program. Even by this way, the result
by GPU implementation has slight difference by comparing with
that by the original program (Vouzis and Sahinidis, 2011). In CUDA
ClustalW v1.0, we shares many data structures with ClustalW and
only modify the necessary functions in ClustalW.

2.2.6. Thread and thread block adjustment

On GPU, the number of threads in a thread block and the
number of thread blocks in a grid will affect the performance of
CUDA ClustalW v1.0. Hence, the CUDA ClustalW v1.0 was evaluated
by various numbers of threads in a thread block and the number of
thread blocks in a grid for test sequences in the experimental tests
(see Section 3). The best choice is to set 64 and 1024 for the number
of threads in a thread block and the number of thread blocks in a
grid, respectively.

2.2.7. Multi-GPUs implementation

The CUDA ClustalW v1.0 can be used on Multi-GPUs by using
OpenMP library. The number of graphic cards inserted in PCI-E will
be detected by CUDA ClustalW v1.0 and then fully utilize their
computing power. CUDA ClustalW v1.0 assumes a homogeneous
environment and assigns fixed number of pairwise alignments to
each graphic card.

3. Experimental tests

The CUDA ClustalW v1.0 was implemented and evaluated on a
test platform. There are three versions for the CUDA ClustalW v1.0.
The version 1 was implemented with optimization methods: load
balancing strategy,streaming technique, memory allocation, precision
adjustment, and thread and thread block adjustment. The version
2 was implemented under the version 1 with the optimization
method: unsigned char data type. The version 3 (Final version) was
implemented under the version 2 with the optimization method:
multi-GPUs implementation. In the test platform, the host (CPU) is
Intel Xeon X5550 2.67 GHz with 24GB DDRIII-1333 RAM running

Table 1

the CentOS v5.3 operating system. The devices (GPU) have two
NVIDIA Tesla C2050 cards with kernel v2.6.18. The C compiler is gcc
v4.1.2 and the CUDA compiler is nvcc v3.0. The ClustalW
v2.0.11 was compiled with the option ‘02’ and the CUDA ClustalW
v1.0 was compiled with the options ‘-arch=sm_13" and ‘-use_-
fast_math’.

The test protein sequences were downloaded from the NCBI
website (www.ncbi.nlm.nih.gov/), and these sequences can be
classified into eight test sets: (1) 100 sequences with length of 97,
(2) 100 sequences with length of 498, (3) 100 sequences with
length of 1002, (4) 100 sequences with length of 1523, (5)
1000 sequences with length of 97, (6) 1000 sequences with length
of 498, (7) 1000 sequences with length of 1002, (8) 1000 sequences
with length of 1523. At first, the CUDA ClustalW v1.0 (Final version)
was evaluated by various numbers of threads in a thread block and
the number of thread blocks in a grid for test set-8. Fig. 4 shows the
speedups of distance matrix calculation step by comparing CUDA
ClustalW v1.0 with ClustalW v2.0.11 under various numbers of
threads in a thread block and various numbers of thread blocks in a
grid. In Fig. 4, the best speedups achieved by CUDA ClustalW
v1.0 all are under the 64 threads in a thread block. Fig. 5 shows the
execution time of distance matrix calculation step by CUDA
ClustalW v1.0 for test set-8 under the 64 threads in a thread block
and various numbers of thread blocks in a grid. From Fig. 5, the
lowest execution time of distance matrix calculation step by CUDA
ClustalW v1.0 all are under the 1024 thread blocks in a grid. The
best choice is to set 64 and 1024 for the number of threads in a
thread block and the number of thread blocks in a grid,
respectively. The following tests all are based on this choice.

Tables 1 and 2 show the overall execution time by ClustalW
v2.0.11 and CUDA ClustalW v1.0 on 100 and 1000 sequences,
respectively. From Table 1, the execution time by CUDA ClustalW
v1.0 is larger than that of ClustalW v2.0.11 for the test set-1. The
reason is that the size of test data is too small. For other test sets,
execution time by CUDA ClustalW v1.0 is all shorter than that of
ClustalW v2.0.11. Besides, the performance by CUDA ClustalW v1.0
(version 2) can be improved greatly by comparing to its version 1. It
shows that the occupancy of streaming multiprocessors can affect
the performance. However, the performance of its final version is
not improved obviously by comparing to its version 2 due to the
small size of test data. For all of test sets in Table 2, the execution
time by CUDA ClustalW v1.0 is all shorter than that of ClustalW
v2.0.11. Moreover, the performance by CUDA ClustalW v1.0
(version 2) can be improved greatly by comparing to its version
1. Similarly, the performance by its final version can be improved
greatly by comparing to its version 2. It shows that CUDA ClustalW
v1.0 is useful for multi-GPUs. In the experimental tests, a program,
bali_score, downloaded from the Balibase benchmark (Thompson
et al,, 1999) (http://www.lbgi.fr/balibase/) was used to compare
the alignment results by CUDA ClustalW v1.0 with those by
ClustalW v2.0.11. In bali_score program, the reference alignment is
set to the alignment results by ClustalW v2.0.11, and then the
alignment results by CUDA ClustalW v1.0 is the test alignment. Two
scores, Sum-of-Pairs score (SP) and the Total-Column score (TC),

Overall execution time by ClustalW v2.0.11 and CUDA ClustalW v1.0 on 100 sequences.

Execution time (second)

Sequence Length

Tool 97

ClustalW v2.0.11 1370
CUDA ClustalW v1.0 (version 1) 3.489
CUDA ClustalW v1.0 (version 2) 3.159

CUDA ClustalW v1.0 (Final version) 4317

498 1002 1523
32.090 142.690 328.800
9.182 23.083 45.846
7193 18.303 36.936
8.031 18.256 35.569

http://www.lbgi.fr/balibase/

C.-L. Hung et al./ Computational Biology and Chemistry 58 (2015) 62-68

Table 2

67

Overall execution time by ClustalW v2.0.11 and CUDA ClustalW v1.0 on 1000 sequences.

Execution time (second)

Sequence Length

Tool 97

Clustalw v2.0.11 131.200
CUDA ClustalW v1.0 (version 1) 67.846
CUDA ClustalW v1.0 (version 2) 38.397
CUDA ClustalW v1.0 (Final version) 29.335

498 1002 1523
2882.440 12020.400 29320.200
435.723 1177.930 2456.230
237.146 711.489 1559.380
136.594 408.880 892.664

Table 3
SP and TC scores by ClustalW v2.0.11 and CUDA ClustalW v1.0 on 100 and
1000 sequences.

Number of sequences TC score

100

Sequence length SP score

97 0.99
498 1
1002
1523
97
498
1002
1523

1000

_ e e e e e
S U U U UG Y

were used to estimate the accuracy of a test alignment comparing
to reference alignment. The maximal values of these two scores
both are 1, means that the test alignment is identically to the
reference alignment in aligning. Table 3 shows the SP and TC scores
by CUDA ClustalW v1.0 on these eight test sets. From Table 3, we
can observe that most of alignment results of CUDA ClustalW
v1.0 are identical to those of ClustalW v2.0.11, even though the
alignment results of minor cases are not identical, they are also
highly similar.

Fig. 6 shows the speedups of distance matrix calculation step by
comparing CUDA ClustalW v1.0 with ClustalW v2.0.11. From Fig. 6,
the speedup increases when the size of test data increases. On
single-GPU, CUDA ClustalW v1.0 can achieve 22x speedups by
comparing to ClustalW v2.0.11. The speedup by CUDA ClustalW
v1.0 can be double (43 x) on two-GPUs. For overall execution time,
CUDA ClustalW v1.0 can achieve 19x and 33x speedups by
comparing to ClustalW v2.0.11 on single- and two-GPUs. T-coffee
(Notredame et al., 2000b), MUSCLE (Robert, 2004), and MAFFT
(Katoh et al., 2002) are also famous multiple sequence alignment
tools. In general, none of these tools and ClustalW dominates the
field of multiple sequence alignment. By considering the compu-
tation time of these tools, MUSCLE is the fastest tool and T-coffee is
the slowest tool among them. G-MSA (Blazewicz et al., 2013) is a
GPU version of T-coffee on multi-GPUs. Hence, the CUDA ClustalW
v1.0 also was used to compare with them. T-coffee v10.00.
r1613 and MUSCLE v3.8.425 both were downloaded from the

100 sequences with pairwise

50

40
2 30 -
o
b4 M Version 1
2 20

= Version 2
10 i Final version
. mll ,
97 498 1002 1523
length

speedup

Execution time comparisons

Adll

100/97 100/498 100/1002
test sets (no. sequences/sequence length)

®MUSCLE (1 cpu core)

¥ ClustalW (1 cpu core)
T-coffee (8 cpu cores)
CUDA ClustalW (1 GPU)

BG-MSA (1 GPU)

Execution time (log10, second)

10071523
Fig. 7. Overall execution time (represented by log10) by these tools on four test sets.

EMBL-EBI website (http://www.ebi.ac.uk/). G-MSA was down-
loaded from the homepage listed in the literature. The downloaded
T-coffee will detect the number of CPU cores and then fully utilize
their computing power. Another test platform was used to test
CUDA ClustalW v1.0, G-MSA, ClustalW v2.0.11, T-coffee v10.00.
11613, and MUSCLE v3.8.425. In this test platform, the host is Intel
i7CPU 920 2.67 GHz (8 cores) with 6GB RAM running the Linux
version 3.0.0-12-generic operating system. The device is one
NVIDIA Tesla K20c card. The C compiler is gcc v4.4.6 and the CUDA
compiler is nvcc v5.0. The test sets 1-4 above were also used to
evaluate these four tools. Fig. 7 shows the overall execution time
(represented by logyo) by using these tools with four test sets. Due
to the constraint in G-MSA, the test sets (100/1002) and (100/1523)
cannot be aligned by G-MSA. From Fig. 7, MUSCLE v3.8.425 also is
the fastest tool and T-coffee v10.00.r1613 is the slowest tool.
However, for large size of test sets, the execution time by CUDA
ClustalW v1.0 is close to that of MUSCLE v3.8.425. This result
expands the range of applications by using ClustalW.

4. Conclusion

In this study, CUDA ClustalW v1.0 was proposed. CUDA
ClustalW v1.0 used intra-task parallelization and SDMT type to
implement the distance matrix calculation step. Moreover, several
optimization methods were designed and implemented in CUDA
ClustalW v1.0 by considering the memory usage, load balancing,

1000 sequences with pairwise

50
40 —
30
m Version 1
20
M Version 2
10 Final version
o | melll ‘ ,
97 498 1002 1523
length

Fig. 6. Speedups of distance matrix calculation step by comparing CUDA ClustalW v1.0 with ClustalW v2.0.11.

http://www.ebi.ac.uk/

68 C.-L. Hung et al./ Computational Biology and Chemistry 58 (2015) 62-68

and threads/thread blocks adjustment. The experimental results
showed that the CUDA ClustalW v1.0 could achieve satisfied
speedups by comparing with ClustalW v2.0.11 for a large number
of long sequences. The CUDA ClustalW v1.0 could be included into
other multiple sequence alignment tools. The software of CUDA
ClustalW v1.0 and the test sets can be downloaded at http://
140.114.91.64/cuda-clustalw/.

Acknowledgments

The authors would like to thank the National Science Council of
the Republic of China, Taiwan, for partially supporting this research
under Contract Nos. NSC100-2221-E-126-007-MY3, NSC100-
2221-E-182-057-MY3, and NSC103-2632-E-126 -001-MY3.

References

Blazewicz, ., Frohmberg, W., Kierzynka, M., 2013. P.l Wojciechowski G-MSA-A GPU-
based, fast and accurate algorithm for multiple sequence alignment. J. Parallel
Distrib. Comput. 73, 32-41.

Carrillo, H., Lipman, D.J., 1988. The multiple sequence alignment problem in biology.
SIAM J. Appl. Math. 48, 1073-1082.

Feng, D.F., Doolittle, A.F., 1987. Progressive sequence alignment as a prerequisite to
correct phylogenetic trees. J. Mol. Evol. 25, 351-360.

Hirschberg, D.S., 1977. Algorithm for the longest common subsequence problem. J.
ACM 24 (4), 664-675.

Katoh, K., Misawa, K., Kuma, K., Miyata, T., 2002. MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res.
30, 3059-3066.

Khajeh-Saeed, A., Poole, S., Perot,].B., 2010. Acceleration of the Smith-Waterman
algorithm using single and multiple graphics processors.]. Comput. Phys. 229
(11), 4247-4258.

Korf, R.E., Zhang, W., 2000. Divide and conquer frontier search applied to optimal
sequence alignment. Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on Innovative Applications of
Artificial Intelligence 910-916.

Lee, S.T,, Lin, C.Y., Hung, C.L., 2013. GPU-Based cloud service for Smith-Waterman
algorithm using frequency distance filtration scheme. BioMed Res. Int. 2013
Article ID 721728.

Li, K.B., 2003. ClustalW-MPI: ClustalW analysis using distributed and parallel
computing. Bioinformatics 19 (12), 1585-1586.

Lin, C.Y., Lin, Y.S., 2014. Efficient parallel algorithm for multiple sequence alignments
with regular expression constraints on graphics processing units. Int. J. Comput.
Sci. Eng. 9 (1/2), 11-20.

Liu, Y., Maskell, D.L., Schmidt, B., 2009a. CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units. BMC
Res. Notes 2, 73.

Liu, Y., Schmidt, B., Maskell, D.L., 2009b. MSA-CUDA: multiple sequence alignment
on graphics processing units with CUDA. ASAP 121-128.

Liu, Y., Schmidt, B., Liu, W., Maskell, D.L., 2010a. CUDA-MEME: accelerating motif
discovery in biological sequences using CUDA-enabled graphics processing
units. Pattern Recogn. Lett. 31, 2170-2177.

Liu, Y., Schmidt, B., Maskell, D.L., 2010b. CUDASW++2.0: enhanced Smith-
Waterman protein database search on CUDA-enabled GPUs based on SIMT and
virtualized SIMD abstractions. BMC Res. Notes 3, 93.

Liu, W,, Schmidt, B., Muller-Wittig, W., 2011. CUDA-BLASTP: accelerating BLASTP on
CUDA-enabled graphics hardware. [EEE/ACM Trans. Comput. Biol. Bioinf. 8 (6),
1678-1684.

Manavski, S.A., Valle, G., 2008. CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinf. 9 (Suppl 2),
s10.

Needleman, S.B., Wunsch, C.D., 1970. A general method applicable to the search for
similarities in the amino acid sequence of two proteins.]. Mol. Biol. 48, 443-453.

Nickolls, J., Buck, I, Garland, M., Skadron, K., 2008. Scalable parallel programming
with CUDA. ACM Queue 6, 40-53.

Notredame, C., Higgins, D.G., Heringa, J., 2000a. T-Coffee: a novel method for fast
and accurate multiple sequence alignment. J. Mol. Biol. 302, 205-217.

Notredame, C., Higgins, D.G., Heringa,]., 2000b. T-Coffee: a novel method for fast
and accurate multiple sequence alignment.]J. Mol. Biol. 302, 205-217.

Rajko, S., Aluruy, S., 2004. Space and time optimal parallel sequence alignments. IEEE
Trans. Parallel Distrib. Syst. 15 (12), 1070-1081.

Robert, C.E., 2004. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res. 32 (5), 1792-1797.

Sandes, F.D.O., Melo, A.C.M.A.D., 2010. CUDAlign: using GPU to accelerate the
comparison of megabase genomic sequences. PPOPP 137-146.

Sandes, F.D.O., Melo, A.C.M.A.D., 2011. Smith-Waterman alignment of huge
sequences with gpu in linear space. IPDPS 1199-1211.

Schatz, M.C,, Trapnell, C., Delcher, A.L,, Varshney, A., 2007. High-throughput
sequence alignment using Graphics Processing Units. BMC Bioinf. 8, 474.

Smith, T.F,, Waterman, M.S., 1981. Identification of common molecular
subsequences. J. Mol. Biol. 147, 195-197.

Thompson,].D., Higgins, D.G., Gibson, TJ., 1994. CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice. Nucleic
Acids Res. 22 (22), 4673-4680.

Thompson,].D., Plewniak, F., Poch, 0., 1999. BAIiBASE: a benchmark alignment
database for the evaluation of multiple alignhment programs. Bioinformatics 15,
87-88.

Trapnell, C., Schatz, M.C., 2009. Optimizing data intensive GPGPU computations for
DNA sequence alignment. Parallel Comput. 35, 429-440.

Vouzis, P.D., Sahinidis, N.V., 2011. GPU-BLAST: using graphics processors to
accelerate protein sequence alignment. Bioinformatics 27 (2), 182-188.

Wang, L., Jiang, T., 1994. On the complexity of multiple sequence alignment. J.
Comput. Biol. 1, 337-348.

Wong, K.C., Zhang, Z., 2014. SNPdryad: predicting deleterious non-synonymous
human SNPs using only orthologous protein sequences. Bioinformatics 30 (8),
1112-1119.

Wong, K.C., Chan, T.M,, Peng, C., Li, Y., Zhang, Z., 2013. DNA motif elucidation using
belief propagation. Nucleic Acids Res. 41 (16), e153.

http://140.114.91.64/cuda-clustalw/
http://140.114.91.64/cuda-clustalw/
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0005
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0005
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0005
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0010
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0010
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0015
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0015
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0020
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0020
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0025
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0025
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0025
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0030
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0030
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0030
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0035
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0035
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0035
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0035
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0040
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0040
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0040
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0045
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0045
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0050
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0050
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0050
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0055
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0055
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0055
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0060
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0060
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0065
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0065
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0065
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0070
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0070
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0070
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0075
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0075
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0075
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0080
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0080
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0080
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0085
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0085
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0090
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0090
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0095
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0095
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0100
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0100
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0105
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0105
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0110
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0110
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0115
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0115
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0120
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0120
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0125
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0125
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0130
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0130
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0135
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0135
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0135
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0135
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0140
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0140
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0140
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0145
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0145
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0150
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0150
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0155
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0155
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0160
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0160
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0160
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0165
http://refhub.elsevier.com/S1476-9271(15)30009-8/sbref0165

	CUDA ClustalW: An efficient parallel algorithm for progressive multiple sequence alignment on Multi-GPUs
	1 Introduction
	2 CUDA ClustalW v1.0
	2.1 Distance matrix calculation step
	2.2 Optimization methods for distance matrix calculation step
	2.2.1 Load balancing strategy
	2.2.2 Streaming technique
	2.2.3 Memory allocation
	2.2.4 Unsigned char data type
	2.2.5 Precision adjustment
	2.2.6 Thread and thread block adjustment
	2.2.7 Multi-GPUs implementation

	3 Experimental tests
	4 Conclusion
	Acknowledgments
	References

