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Abstract Big Data refers to the massive amounts of structured and unstructured data
being produced every day from a wide range of sources. Big Data is difficult to work
with and needs a large number of machines to process it, as well as software capable
of running in a distributed environment. MapReduce is a recent programming model
that simplifies writing distributed programs on distributed systems. For MapReduce
to work it needs to divide work amongst computers in a network. Consequently, the
performance of MapReduce is dependent on how evenly it distributes the workload.
This paper proposes an adaptive sampling mechanism for total order partitioning that
can reduce memory consumption whilst partitioning with a trie-based sampling mech-
anism (ATrie). The performance of the proposed algorithm is compared to a state of
the art trie-based partitioning system (ETrie). Experiments show the proposed mech-
anism is more adaptive and more memory efficient than previous implementations.
Since ATrie is adaptive, its performance depended on the type of data used. A per-
formance evaluation of a 2-level ATrie shows it uses 2.43 times less memory for case
insensitive email addresses, and uses 1,024 times less memory for birthdates compared
to that of a 2-level ETrie. These results show the potential of the proposed method.

Keywords MapReduce · Load balance · Partitioning · Sampling · Cloud computing ·
Hadoop

K. Slagter (B) · Y.-C. Chung
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
e-mail: kennslagter@sslab.cs.nthu.edu.tw

Y.-C. Chung
e-mail: ychung@cs.nthu.edu.tw

C.-H. Hsu (B)
Department of Computer Science, Chung Hua University, Hsinchu, Taiwan, ROC
e-mail: chh@chu.edu.tw

123



490 Int J Parallel Prog (2015) 43:489–507

1 Introduction

Over the past decades, computer technology has become increasingly ubiquitous.
Personal computers, smart phones, tablets and an ever-growing number of embed-
ded devices can now all connect and communicate with each other via the internet.
Computing devices have numerous uses and are essential for businesses, scientists,
governments, engineers and the everyday consumer. What all these devices have in
common is the potential to generate data. Essentially data can come from anywhere.
Sensors gathering climate data, a person posting to a social media site, or a cell phone
GPS signal are example sources of data.

The popularity of Internet alongside a sharp increase in the network bandwidth
available to users has resulted in the generation of huge amounts of data. Furthermore,
the types of data created are as broad and diverse as the reasons for generating it.
Consequently, most types of data tend to have their own unique set of characteristics
as well as how that data is distributed.

Data that is not read or used has little worth, and can be a waste of space and
resources. Conversely, data that is operated on or analyzed can be of inestimable value.
For instance, data mining in business can help companies increase profits by predicting
consumer behavior, or discover hitherto unknown facts in science or engineering data.
Unfortunately, the amount of data generated can often be too large for a single computer
to process in a reasonable amount of time. Furthermore, the data itself may be too
large to store on a single machine. Therefore, in order to reduce the time it takes to
process the data, and to have the storage space to store the data, software engineers
have to write programs that can execute on two or more computers and distribute
the workload amongst them. While conceptually, the computation to perform maybe
simple, historically the implementation has been difficult.

In response to these very same issues, engineers at Google developed the Google
File System (GFS) [6], a distributed file system architecture model for large-scale data
processing and created the MapReduce [4] programming model. The MapReduce pro-
gramming model is a programming abstraction that hides the underlying complexity
of distributed data processing. Consequently, the myriad minutiae on how to paral-
lelize computation, distribute data and handle faults no longer become an issue. This
is because the MapReduce framework handles all these details internally, and removes
the onus of having to deal with these complexities from the programmer.

Hadoop [1] is an open source software implementation of MapReduce, written in
Java, originally developed by Yahoo!. Hadoop is used by various universities and com-
panies including EBay, FaceBook, IBM, LinkedIn, and Twitter. Hadoop was created
in response to the need for a MapReduce framework that was unencumbered by pro-
prietal licenses, as well as the growing need for the technology in Cloud computing
[24].

Since its conception, Hadoop has continued to grow in popularity amongst busi-
nesses and researchers. As researchers and software engineers use Hadoop they have
at the same time attempted to improve upon it by enhancing features it already has, by
adding additional features to it, or by using it as a basis for higher-level applications
and software libraries. Pig, HBase, Hive and ZooKeeper are all examples of commonly
used extensions to the Hadoop framework [1].
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Similarly, this paper also focuses on Hadoop and investigates the load balancing
mechanism in Hadoop’s MapReduce framework for small to medium sized clusters.
This is an important area of research for several reasons. Firstly, many clusters that use
Hadoop are of modest size. Often small companies, researchers and software engineers
do not have the resources to develop large cluster environments themselves, and often
clusters of a modest size are all that is required for certain computations. Furthermore,
it is common for developers creating Hadoop applications to use a single computer
running a set of virtual machines as their environment. Limited processing power and
memory necessitates a limited number of nodes in these environments.

Furthermore, this paper delves into the world of trie-based sampling and partition-
ing algorithms and presents a more intelligent adaptive method for handling memory
consumption and partitioning. For this purpose, we compare our ATrie method with
that of ETrie. A 2-level ETrie is a trie-based sampling algorithm with equivalent
functionality to the sampling algorithm used by TeraSort [18]. To function, an ETrie
requires enough space to tally 4096 character combinations. The proposed method,
ATrie, is also a trie-based sampling algorithm. However, ATrie analyzes its samples
before it determines its space requirements. Therefore, the memory consumed by
ATrie is dependent on the type of data used. For instance, when analyzing case insen-
sitive emails a 2-level ETrie required 2.43 times more memory than a 2-level ATrie.
Alternatively, a 2-Level ETrie required 1,024 times more memory than ATrie when
handling 1,000,000 birthdates. Furthermore, the difference in memory requirements
grew exponentially as the number of levels of each trie increased.

In summary, this paper presents the following contributions:

• A method for improving the work load distribution amongst nodes in the MapReduce
framework.

• An adaptive method for reducing the required memory footprint and more intelligent
string handling.

• A way to leverage users domain knowledge by providing them a regular expression
based parser with which to access the adaptive methods proposed.

The rest of this paper is organized as follows. Section 2 presents some background
information on MapReduce and its inner workings. Section 3 introduces an adaptive
load balancing methodology that can better utilize memory and improves load balanc-
ing. Section 4 contains experimental results and a discussion of this paper’s findings.
Section 5 presents related work. Section 6 concludes this paper and briefly discusses
future work.

2 Background and Preliminaries

2.1 MapReduce

MapReduce [4] is a programming model developed as a way for programs to cope
with large amounts of data. It achieves this goal by distributing the workload amongst
multiple computers and then working on the data in parallel. From the programmers
perspective MapReduce is a relatively easy way to create distributed applications
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compared to traditional methods. It is for this reason MapReduce has become popular
and is now a key technology in Cloud Computing.

Programs that execute on a MapReduce framework need to divide the work into two
phases known as Map and Reduce. Each Phase has key-value pairs for both input and
output [27]. To implement these phases a programmer needs to specify two functions, a
map function called a Mapper and its corresponding reduce function called a Reducer.

When a MapReduce program is executed on Hadoop it is expected to be run on
multiple computers or nodes. Therefore, a master node is required to run all the required
services needed to coordinate the communication between Mappers and Reducers. An
input file (or files) is then split up into fixed sized pieces called input splits. These splits
are then passed to the Mappers who then work in parallel to process the data contained
within each split. As the Mappers process the data they partition the output. Each
Reducer then gathers the data partition designated for them by each Mapper, merges
them, processes them and produces the output file. An example of this dataflow is
shown in Fig. 1.

It is the partitioning of the data that determines the workload for each reducer. In
the MapReduce framework the workload must be balanced in order for resources to be
used efficiently [12]. An imbalanced workload means that some reducers have more
work to do than others. This means that there can be reducers standing idle while other
reducers are still processing the workload designated to them. This increases the time
for completion since the MapReduce job is not complete until all reducers finish their
workload.

2.2 HashCodes

Hadoop uses a hash code as its default method to partition key-value pairs. The hash
code itself can be expressed mathematically and is presented in this paper as the
following equation.
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Fig. 2 HashCode Partitioner

HashCode = Wn × 31n−1 + Wn−1 × 31n−2 + · · · + W1 × 310

=
T otalW ord∑

n=1

Wn × 31n−1. (1)

The hash code presented in Eq. (1) is the default hash code used by a string object
in Java, the programming language on which Hadoop is based. In this equation Wn

represents the nth element in a string. The reason integer 31 is used in this equation
is because it is a prime number. Hash codes traditionally use prime numbers because
they have a better chance of generating a unique value when multiplied with another
number.

A partition function typically uses the hash code of the key and the modulo of
reducers to determine which reducer to send the key-value pair to. It is important
then that the partition function evenly distributes key-value pairs amongst reducers
for proper workload distribution.

Figure 2 shows how the hash code works for a typical partitioner. In this example
there are three reducers, and three strings. Each string comes from a key in a key-
value pair. The first string is “ant”. The string “ant” consists of three characters. The
characters ‘a’, ’n’ and ‘t’ have the corresponding decimal ASCII values of 97, 110, and
116. These values are then used with Eq. (1) to get the hash code value of 96743. Since
there are three reducers, a modulo of 3 is used which gives a value of 2. The value is
then incremented by one in the example as there is no reducer 0, which changes the
value to 3. This means the key-value pair will be sent to reducer 3. Following the same
methodology, the strings “boy” and “cat” are assigned to reducers 2 and 1 respectively.

2.3 TeraSort

In April 2008, Hadoop broke the world record in sorting a Terabyte of data by using
its TeraSort [18] method. Winning first place it managed to sort 1TB of data in 209 s
(3.48 min). This was the first time either a Java program or an open source program
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had won the competition. TeraSort was able to accelerate the sorting process by dis-
tributing the workload evenly within the MapReduce framework. This was done via
data sampling and the use of a trie [19]. Although the original goal of TeraSort was to
sort 1TB of data as quickly as possible, it has since been integrated into Hadoop as a
benchmark.

Overall, the TeraSort algorithm is very similar to the standard MapReduce sort. Its
efficiencies rely on how it distributes its data between the Mappers and Reducers. To
achieve a good load balance TeraSort uses a custom partitioner. The custom partitioner
uses a sorted list of N−1 sampled keys to define a range of keys for each reducer. In
particular a key is sent to a reducer i if it resides within a range such that sample[i−1]
<= key < sample[i]. This ensures that the output of reducer i is always less than the
output for reducer i+1.

Before the partitioning process for TeraSort begins it samples the data and extracts
keys from the input splits. The keys are then saved to a file in the distributed cache
[21]. A partitioning algorithm then processes the keys in the file. Since the original
goal of TeraSort was to sort data as quickly as possible, its implementation adopted a
space for time approach. For this purpose, TeraSort uses a two level trie to partition
the data.

A trie, or prefix tree, is an ordered tree used to store strings. Throughout this
paper, a trie that limits strings stored in it to two characters is called a two level trie.
Correspondingly, a three level trie stores strings of up to three characters in length, a
four level trie stores strings of up to four characters in length and an n level trie stores
strings of up to n characters in length.

This two level trie is built using cut points derived from the sampled data. Cut points
are obtained by dividing a sorted list of strings by the total number of partitions and
then selecting a string from each dividing point. The partitioner then builds a two level
trie based on these cut points. Once the trie is built using these cutpoints the partitioner
can begin its job of partition strings based on where in the trie that string would go if
it were to be inserted in the trie.

2.4 XTrie

The XTrie algorithm provides a way to improve the cut point algorithm inherited
from TeraSort [22]. One of the problems with the TeraSort algorithm is that it uses
quicksort algorithm to handle cut points. By using quicksort, TeraSort needs to store
all the keys it samples in memory and that reduces the possible sample size, which
reduces the accuracy of the selected cut points and this affects load balancing [18].
Another problem TeraSort has is that it only considers the first two characters of a
string during partitioning. This also reduces the effectiveness of the TeraSort load
balancing algorithm.

A trie has two advantages over the quicksort algorithm. Firstly, the time complexity
for insertion and search of the trie algorithm is O(k) where k is the length of the key.
Meanwhile the quicksort algorithm best and average case is O(n log n) and in the
worst case O(n2) where n is the number of keys in its sample. Secondly, a trie has a
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fixed memory footprint. This means the number of samples entered into the trie can
be extremely large if so desired.

One way to represent a trie is as an array accessed via a trie code. A trie code is
similar to a hashcode but the codes it produces occur in sequential ASCIIbetical order.
The equation for the trie code is as follows:

T rieCode = Wn × 256n−1 + Wn−1 × 256n−2 + · · · + W1 × 2560

=
T otalW ord∑

n=1

Wn × 256n−1 (2)

The problem with using a conventional trie is that it fails to reflect strings that share
the same prefix. This can result in an uneven distribution of keys and an imbalanced
workload. In order to ameliorate this problem XTrie uses a counter for each node in
the trie. By using a counter, keys have proportional representation and the partitioner
can distribute the total number of keys amongst reducers more evenly. The algorithm
for the XTrie is presented as follows:

2.5 ETrie

One of the problems that XTrie has is that the memory requirements of the trie increases
rapidly with each character it analyzes. The reason for this is because that in order for
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Table 1 Space requirements for
an XTrie

n-Level Space requirement

1 256

2 65,536

3 16,777,216

4 4,294,967,296

Table 2 Space requirements for
an ETrie

n-Level Space requirement

1 64

2 4,096

3 262,144

4 16,777,216

the XTrie to scan n characters of a string, it increases the array size quickly as it space
requirement increases at a rate of 256n . Consequently, XTries tend to be 2-Level tries.
The accuracy of a 2-level XTrie is the same as that of TeraSort as its partitioner uses
a 2-level trie (Table 1).

In order to improve memory consumption requirements an ETrie was proposed
[22]. The ETrie used a ReMap method whereby a ReMap chart identified those ASCII
characters that were commonly used in English text and essentially filtered out those
characters that were not of interest. This reduced the number of considered characters
to 64. Consequently, the space requirements needed to represent the ETrie was now
64n. Although this caused the ETrie to lose a bit of accuracy compared to the same
n-level XTrie, the improved the space requirements of the ETrie meant it could better
partition data due to it being able to use a trie with more levels (Table 2).

The improved space requirements of an ETrie means that ETries are 3-level tries.
Consequently, ETries provide a finer grain with which to create partitions, and thus
more even workload distribution.

3 Background and Preliminaries

The method presented by ETrie is designed for English text. Although it substantially
reduces memory consumption, there are ways to improve further the breadth and depth
of Trie being used. One way to improve this is by adding a preliminary pass, whereby
each string is analyzed prior to construction of the trie. Using an adaptive trie has
several benefits. Firstly, it conserves memory by reducing the scope of characters it
needs to consider when building the trie. Secondly, it can create deeper trie for a
specified amount of memory. This means better decisions can be made on how to
partition data since decisions can be made using a finer grain of granularity. Thirdly,
an adaptive trie avoids problems arising from fixed prefixes or internal patterns that
can cause poor partitioning (Tables 3, 4).

To create an adaptive trie one needs an adaptive triecode (ATC). The ATC is built
by using multiple ReMap charts, each chart corresponding to the nth character of
each sampled string including any null characters used to terminate the string. In
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Table 3 Visibility charts

Character 1 Character 2 Character 3

Hex ASCII Visible Hex ASCII Visible Hex ASCII Visible

0x61 a True 0x61 a True 0x61 a False

0x62 b True 0x62 b False 0x62 b False

0x63 c True 0x63 c False 0x63 c False

0x64 d True 0x64 d False 0x64 d False

0x65 e True 0x65 e False 0x65 e False

0x66 f True 0x66 f False 0x66 f False

0x67 g False 0x67 g True 0x67 g True

0x6d m False 0x6d m False 0x6d m True

0x6e n False 0x6e n True 0x6e n False

0x6f o False 0x6f o True 0x6f o False

0x72 r False 0x72 r True 0x72 r False

0x74 t False 0x74 t False 0x74 t True

0x77 w False 0x77 w False 0x77 w True

Other False Other False Other False

Table 4 ReMap charts

Character 1 Character 2 Character 3

Hex ASCII Code Hex ASCII Code Hex ASCII Code

0x61 a 0 0x61 a 0 0x61 a Undefined

0x62 b 1 0x62 b Undefined 0x62 b Undefined

0x63 c 2 0x63 c Undefined 0x63 c Undefined

0x64 d 3 0x64 d Undefined 0x64 d Undefined

0x65 e 4 0x65 e Undefined 0x65 e Undefined

0x66 f 5 0x66 f Undefined 0x66 f Undefined

0x67 g Undefined 0x67 g 1 0x67 g 0

0x6d m Undefined 0x6d m undefined 0x6d m 1

0x6e n Undefined 0x6e n 2 0x6e n Undefined

0x6f o Undefined 0x6f o 3 0x6f o Undefined

0x72 r Undefined 0x72 r 4 0x72 r Undefined

0x74 t Undefined 0x74 t undefined 0x74 t 2

0x77 w Undefined 0x77 w undefined 0x77 w 3

Other Undefined Other Undefined Other Undefined

Total 6 Total 5 Total 4

order to create the ReMap charts a preliminary analysis pass over the strings marks
the corresponding ReMap chart to identify which of the nth characters are visible
amongst all the strings. Once these charts are marked for visibility the individual
ReMap charts can built.
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Consider the set of three letter keys { “ant”, “arm”, “art”, “bat”, “cat”, “cot”, “cow”,
“dog”, “eat”, “egg”, “fat”, “fog” }. In order to build an adaptive trie code we first need
to create a set of visibility charts. As we wish to consider all three characters in each
string when building our adaptive trie code, we need to have three visibility charts.
Once the three visibility charts have been generated each character is enumerated in
each of the charts and the sum value of each chart is then determined.

Once the ReMap charts have been generated, the adaptive trie and the associated
adaptive trie code has to be created. If the trie is stored as a fixed memory size array,
then the space requirements for the trie is equal to the multiplied total of visible
characters in each chart a shown in the following equation:

Let Ci = total number of visible characters in visibility chart i

Let T = size of the array needed for the trie

Then T =
T otalCharts∑

i=1

Ci (3)

If a memory limit is to be imposed upon the adaptive trie space, then the number of
ReMap charts can be reduced until the memory requirements are satisfied.

The adaptive trie code now needs an adaptive trie code to access it. The adaptive
trie code is calculated using an irregular number system. Our decimal number system
is is known as a base 10 number system. Any number in our counting system can
be calculated by adding a series of 10n digits. For instance the number 214 can be
represented as 2 × 102 + 1 × 101 + 4 × 100. The XTrieCode works in a similar
way except it uses base 256 to index an array. In a similar fashion the ETrieCode uses
base 64 to index an array. However the adaptive trie does not use a fixed base value,
instead it uses the multiplied total number of visible characters in each chart. This can
be expressed mathematically as the following equation:

Let Ci = total number of visible characters in visibility chart i

AT C = (Wn × (Ci−1 × Ci−2 × · · · × C1))+
(Wn−1 × (Ci−2 × Ci−3 × · · · × C1)) + · · · + (W2 × C1) + W1

(4)

For example, the string “cat” can be represented as the set of ASCII characters { ‘c’,
‘a’, ‘t’ }. ReMapping each character using the tables above this converts the string
to the set of numbers { 2, 0, 2 }. Then using Eq. 5 the subsequent adaptive trie code
would be

“cat” = {‘c’ = 2, ‘a’ = 0, ‘t’ = 2} = (2 × (5 × 4)) + (0 × (4)) + 2 = 42

Once the values of C0 to Ci are calculated they remain fixed throughout the lifetime
of the adaptive trie. Therefore once they are calculated they can be stored and reused
for the sake of efficiency. A listing of each string and subsequent adaptive trie code is
presented in the following table.

In some circumstances, the user knows the type or form of the strings being analyzed
ahead of time. In some situations these strings can be described in advance using a
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Table 5 Adaptive Trie codes
String ReMap Adaptive

TrieCode

ant { 0, 2, 2 } 10

arm { 0, 4, 1 } 17

art { 0, 4, 2 } 18

bat { 1, 0, 2 } 22

cat { 2, 0, 2 } 42

cot { 2, 3, 2 } 54

cow { 2, 3, 3 } 55

dog { 3, 3, 0 } 72

eat { 4, 0, 2 } 82

egg { 4, 1, 0 } 84

fat { 5, 0, 2 } 102

fog { 5, 3, 0 } 112

regular expression. Consider the situation whereby the user is sorting numbers (as
strings), dates, internet ip addresses, ISBN or other pattern of ASCII characters. The
user can then use regular expression to create an RE-Trie. Using regular expressions
one can build a trie based on domain knowledge. For instance consider the scenario
of series of dates (Table 5).

1977-05-31
1976-09-15
1982-02-23
1996-08-16
1996-04-30

These strings can be represented using the following regular expression:

Regular Expression = [0 − 9]{4} − (((0[13578]|(10|12))

−(0[1 − 9]|[1 − 2][0 − 9]|3[0 − 1]))
|(02 − (0[1 − 9]|[1 − 2][0 − 9]))|
((0[469]|11) − (0[1 − 9]|[1 − 2][0 − 9]|30))) (5)

Which matches the date format YYYY-MM-DD (Year-Month-Date). This regular
expression also validates month and number of days in a month (including leap year
dates). Using this information a regular expression parser can be used to build an
adaptive triecode. The advantage of having a regular expression used to build an
adaptive trie is that one can avoid doing a preliminary pass, which means not having
to read all strings twice.

4 Performance Evaluation and Analysis

To evaluate the performance of the proposed algorithms this study investigates how
well the algorithms distribute the workload, and looks at how well the memory is
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utilized. Experiments conducted in this study were done using three different test
sets.

One test set used email addresses extracted from a 338MB server mail log. A second
test used the same test set but with all the email addresses in lowercase. A third test
set used 1,000,000 random birthdates.

In order to compare the different methodologies presented in this paper and deter-
mine how balanced the workload distributions are, this study uses a metric called the
uneven rate. The uneven rate α is calculated using the following equations:

Let V = optimal partition size = total keys / total partitions

Let Sn = number of keys in partition n.

Let �Sn = |Sn − V |
Then α = �Sn + �Sn−1 + · · · + �S1

T otal Parti tions
÷ V

α =
∑T otal Parti tions

n=1 �Sn

T otal Parti tions
÷ V (6)

Whether using an ATrie or an XTrie [22], the load balance of an n-level trie exhibits
the same behavior. When using an ETrie [22], the load balance exhibits slightly worse
performance for an n-level trie. TeraSort uses a 2-level trie, so its performance is
similar to a 2-level XTrie and a 2-level ATrie when it comes to load balancing. There
is a large difference however in memory consumption, speed of processing sampled
data, and the amount of sampled data that can be handled by XTrie, ETrie and ATrie,
which makes a difference.

In our first test case we examine what happens when we use a trie to partition a set
of case sensitive email addresses. The results are shown in Figs. 3 and 4. As typical
of trie based paritioning, as n increases for an n−level trie, the unevenness decreases.
This is because as n increases the number of characters being considered in the string
increases, making it easier to make a more even partitioning decision (Fig. 5).

Fig. 3 Comparison of unevenness for an adaptive trie for case sensitive email addresses
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Fig. 4 Memory consumed by adaptive trie for case sensitive email addresses

Fig. 5 Comparison of unevenness for an adaptive trie for case insensitive email addresses

Table 6 Space needed by Tries
for case sensitive email
addresses

Depth Space
needed by
ATrie

Space
needed by
ETrie

Space
needed by
XTrie

1 67 64 256

2 4,489 4,096 65,536

3 300,763 262,144 16,777,216

4 20,451,884 16,777,216 4,294,967,296

Notice in Fig. 4, that both ATrie and ETrie exhibit similar performance regarding
memory consumption. In fact the ATrie has slightly worse memory requirements than
ETrie since email addresses contain characters other than letters and numbers (Table 6).

However, this is not the case if we assume Email addresses to be case insensitive
and convert them all to lowercase. In such a situation, ATrie automatically adapts to
use less memory as shown in Table 7 and shown in Fig. 6. The ATrie now needs about
7 times less space than it did previously.
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Table 7 Space needed by Tries
for case insensitive email
addresses

Depth Space
needed by
ATrie

Space
needed by
ETrie

Space
needed by
XTrie

1 41 64 256

2 1,681 4,096 65,536

3 68,921 262,144 16,777,216

4 2,894,682 16,777,216 4,294,967,296

Fig. 6 Memory consumed by adaptive trie for case insensitive email addresses

Fig. 7 Comparison of unevenness for an adaptive trie for 1,000,000 birthdates

Figure 7 is a comparison of the unevenness amongst reducers when partitioning a set
of 1,000,000 birthdates. As expected as the number of reducers increase the unevenness
increases. Furthermore, as n increases for an n-level ATrie, the unevenness decreases,
however the unevenness is much more pronounced as compared to prior test cases.
The reason for the unevenness is due to the related data format. Note, birthdates in the
source file are all recorded using the same format YYYY-MM-DD. Furthermore, since
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Fig. 8 Memory consumed by adaptive trie for 1,000,000 birthdates

Table 8 Space needed by Tries
for Birthdates

Depth Space
needed by
ATrie

Space
needed by
ETrie

Space
needed by
XTrie

1 2 64 256

2 4 642 2562

3 40 643 2563

4 400 644 2564

5 400 645 2565

6 800 646 2566

7 8,000 647 2567

8 8,000 648 2568

9 32,000 649 2569

10 320,000 6410 25610

these are birthdates all values in the source file span from 1920-01-01 to 2013-04-01.
When using 1-level trie only the first character represented are “1” and “2”. Dates
from 1920 to 1999 are therefore all sent to the same reducer, while dates from 2000 to
2013 are sent to another reducer. However, once enough characters are recognized by
the trie the problem disappears. As shown in Fig. 7, unevenness decreases once it is
parsed by a 7-level trie. However, as shown in the table below, this is impossible level
for Etrie or Xtrie to handle as the space requirements become prohibitive, as shown
in Fig. 8 and Table 8.

Figure 9, shows experimental results comparing the proposed trie based approach
versus the approach used by TeraSort. The physical machine used in this experiment
had 2 Intel Xeon CPUs running at 2.93Ghz, with 6 cores per CPU. An 11GB text file
was used as input. Experimental results showed that as the number of levels in the
trie increased the amount of unevenness decreased, and consequently the time taken
decreased. The time taken for the 2-level trie approach and the traditional TeraSort
approach were the same due to them both producing an identical set of cut points.

This paper presents an adaptive sampling mechanism for total order partitioning,
which is used for sorting in this paper. Although, TeraSort is a standard benchmark
for sorting, it only uses 100,000 samples, which is insufficient number of samples
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Fig. 9 Response time
comparison between trie based
methods versus traditional
Terasort

for accurate partitioning [18]. Furthermore, comparing the time to partition randomly
generated output, especially if the output is evenly distributed, is likely to be incon-
clusive. For these reasons, a response time comparison using TeraSort data has been
omitted.

5 Related Work

Sorting is a fundamental concept and is required step in countless algorithms. Various
sorting algorithms have been created over the years including bubble sort, quick sort,
merge sort and so on. Different sorting algorithms are better equipped for sorting
different problems. Burst Sort [9] is a sorting algorithm designed for sorting strings in
large data collections. The implementation involves building a burst trie, which is an
efficient data structure for storing strings, and requires no more memory than a binary
tree. The burst trie is fast as a trie but was not as fast as a hash table. The TeraSort
algorithm also uses these trie methods as a way to sort data but does so under the
context of the Hadoop architecture and the MapReduce framework.

An important issue for the MapReduce framework is the concept of load balancing.
Over the years a lot of research has been done on the topic of load balancing. Many
of these algorithms can be found worldwide in various papers and have been used by
frameworks and systems prior to the existence of the MapReduce framework [13,23].
Some of the less technical load balancing techniques are round robin, random or
shortest remaining processing time. While these techniques are well known, they
have been found either inappropriate or inadequate for the task of sorting data on the
MapReduce framework.

In the MapReduce framework the workload must be balanced in order for resources
to be used efficiently. An imbalanced workload means that some reducers have more
work to do than others do. This means that there can be reducers standing idle while
other reducers are still processing the workload designated to them. This increases
the time for completion since the MapReduce job cannot complete until all reducers
finish their workload.

By default, Hadoop’s workload is balanced with a hash function. However, this
methodology is generic and not optimal for many applications. For instance, RanKloud
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[2] uses its own uSplit mechanism for partitioning large media data sets. The uSplit
mechanism is needed to reduce data replication costs and wasted resources that are
specific to its media based algorithms.

In order to improve load balancing and provide better performance when sampling
and partitioning XTrie and ETrie partitioning algorithms were introduced [22]. These
algorithms used a fixed amount of memory, and were more efficient than the method
employed by TeraSort. However, the method had some drawbacks as it needed a large
memory footprint if it was to handle strings using a common prefix, a problem this
paper attempts to address.

In order to work around perceived limitations of the MapReduce model various
extend or change the MapReduce model have been presented. BigTable [3] was intro-
duced by Google to manage structured data. BigTable resembles a database but does not
support a full relational database model. It uses Rows with consecutive keys grouped
into tablets, which form the unit of distribution and load balancing. And suffers from
the same load and memory balancing problems faced by shared-nothing databases.
The open source version of BigTable is Hadoop’s HBase [8] which mimics the same
functionality of BigTable.

Due to its simplicity of use, the MapReduce model is quite popular and has sev-
eral implementations [14,16,17]. Therefore there has been a variety of research on
MapReduce in order to improve the performance of the framework or the performance
of specific applications like datamining [20,28], graph mining [10], text analysis [25]
or genetic algorithms [11,26] that run on the framework.

Occasionally researchers find the MapReduce framework to be too strict or inflex-
ible in its current implementation. Therefore, researchers sometimes suggest new
frameworks or suggest new implementations as a solution. One such framework is
Dynamically ELastic MApReduce(DELMA) [5].

DELMA is a framework that follows the MapReduce paradigm, just like Hadoop
MapReduce. However, it is capable of growing and shrinking its cluster size, as jobs
are underway. This framework extends the MapReduce framework so that nodes can
be added or removed while applications are running on the system. Such a system is
likely to have interesting load balancing issues which is beyond the scope of our paper.

Another alternative framework to MapReduce is Jumbo [7]. In [7] the authors state
that some of the properties of MapReduce makes load balancing difficult. Furthermore,
Hadoop does not provide many provisions for workload balancing. For these reasons,
the authors created Jumbo a flexible framework that processes data in a different way
from MapReduce. One of the drawbacks of MapReduce is that multiple jobs may be
required for some complex algorithms, which limits load balancing efficiency. Due to
the way it handles data, Jumbo is able to execute these complex algorithms in a single
job. The Jumbo framework may be a useful tool with which to research load balancing
but it is not compatible with current MapReduce technologies.

Finally, To work around load balancing issues derived from joining tables in Hadoop
[15] introduces an adaptive MapReduce algorithm for multiple joins using Hadoop
that works without changing its environment. It does so by taking tuples from smaller
tables and redistributing them amongst reducers via ZooKeeper which is a centralized
coordination service. Our paper also attempts to do workload balancing in Hadoop
without modifying the underlying structure but focuses on sorting text.
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6 Conclusion and Future Work

In this paper, we have presented an Adaptive Trie that is capable of reducing memory
consumption as well as automatically adapt for strings that have set formats and
prefixes. Furthermore, this paper presented two ways to build and Adaptive Trie,
either automatically by reading the source data with a preliminary pass, or manually
by utilizing a simplified regular expression parser. The proposed Adaptive Trie was
also compared against XTrie and ETrie, and it is shown how the proposed method can
be used to build tries with greater number of levels given a fixed memory constraint. In
future work we plan to evaluate and enhance our proposed methods for heterogeneous
environments. Additionally, we would like to extend this work so that it can handle
data types other than strings.
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