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SUMMARY

Constructing phylogenetic trees is of priority concern in computational biology, especially for developing
biological taxonomies. As a conventional means of constructing phylogenetic trees, unweighted pair group
method with arithmetic (UPGMA) is also an extensively adopted heuristic algorithm for constructing
ultrametric trees (UT). Although the UT constructed by UPGMA is often not a true tree unless the molecular
clock assumption holds, UT is still useful for the clocklike data. Moreover, UT has been successfully
adopted in other problems, including orthologous-domain classification and multiple sequence alignment.
However, previous implementations of the UPGMA method have a limited ability to handle large taxa sets
efficiently. This work describes a novel graphics processing unit (GPU)-UPGMA approach, capable of
providing rapid construction of extremely large datasets for biologists. Experimental results indicate that
the proposed GPU-UPGMA approach achieves an approximately 95× speedup ratio on NVIDIA Tesla
C2050 GPU over the implementation with 2.13GHz CPU. The developed techniques in GPU-UPGMA also
can be applied to solve the classification problem for large data set with more than tens of thousands items in
the future.Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Constructing phylogenetic trees is of priority concern in areas such as computational biology, viral
research, and biomedicine. Phylogenetic tree construction methods are either character-based or
distance-based. The character-based method is based on a variety of phylogenetic characters such as
DNA or protein sequences, directly aligned characters during tree inference rather than on pairwise
distances. It is generally more complex than distance-based method when algorithms used to create
phylogenetic trees [1]. The distanced-based method is based on the distances involving the
differences between the pairs of sequences. The distance matrix can be constructed using distances
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between the pairs of sequences, and then, a phylogenetic tree can be built using the distance matrix to
identify the evolutionary relationship between sequences. The distance-based method uses two
algorithms: cluster-based and optimality-based ones. Of those, cluster-based algorithms are used to
construct a phylogenetic tree based on a distance matrix starting from the most similar sequence
pairs. This work focused on the distanced-based method with cluster-based algorithms.

In the early stage, the conventionally used model assumes that the evolution rate remains constant
[2, 3] (called molecular clock hypothesis [4]). Based on this assumption, the phylogenetic tree is an
ultrametric trees (UT), which is a rooted, leaf labeled, and edge-weighted binary tree. In a UT, an
internal node has the same path length to each leave in its subtree. According to the literature [5],
only binary trees need to be considered because a general UT can be easily converted into a binary
tree without modifying the distances between leaves. Further examples of UTs can be found in the
literatures [6–9]. Because many of these problems are intractable and NP-hard, biologists typically
construct the trees by using heuristic algorithms. Unweighted pair group method with arithmetic
mean (UPGMA, e.g., Sneath and Sokal [10]) and neighbor-joining (NJ, e.g., Saitou and Nei [11])
are both conventional hierarchical clustering algorithms. UPGMA constructs a phylogenetic tree,
which is a UT. Although the UT constructed by UPGMA is often not a true tree unless the
molecular clock assumption holds, UT is still useful for the clocklike data and, thus, has been
compared with other methods [12, 13]. Moreover, UT has been successfully applied to other
problems, including orthologous-domain classification [14] and multiple sequence alignment (ex.
CLUSTAL [15], MUSCLE [16], and M-Coffee [17]). For instance, multiple sequence alignment
algorithms generally consist of three phases. Phase 1 calculates a distance matrix that consists of the
distance values between each pair of input sequences (by using pairwise alignment). Phase 2
generates a guide tree for progressive alignments, which is typically obtained by a simple distance-
based method, such as NJ or UPGMA. Phase 3 performs progressive alignments based on a
generated guide tree. However, with the increasing number of input sequences, especially for large-
scale gene/protein analysis among species, the second stage can dominate the overall execution
time. Therefore, some approaches have been devised to accelerate the computational time of phase 2
[16,18]. UPGMA has a naively O(n3) time complexity, where n denotes the number of operational
taxonomic units (OTUs), which can be reduced to an optimal O(n2) time complexity [16]. NJ
provides another phylogenetic tree construction method, which does not impose a molecular clock
with an unrooted tree. NJ has a naively O(n4) time complexity, and it was modified by Studier and
Keppler [18], which runs in O(n3) time complexity.

Many studies have attempted to solve the problem of high-computational complexity by
parallelization in recent years. ClustalW-MPI [19] is a distributed and parallel implementation of
ClustalW [20]. All three phases including the guide tree generation have been parallelized to reduce the
computational time. In the 2006, Du and Feng [21] developed a parallel algorithm, pNJTree, to
implement the NJ method by using MPI. Their experimental results indicated that on a large taxa set of
10,000 sequences, pNJTree only require 2888 s on 32 processors, which is faster than ClustalW-MPI;
the ClustalW-MPI takes 25,418 s to construct the NJ tree on 32 processors. Yu et al. proposed a
parallel branch-and-bound algorithm, PBBU, to solving the minimum UT construction problem, which
is an NP-hard problem by using MPI in the 2009 [22]. The experimental results show that the PBBU
found an optimal solution for 36 sequences on 16 processors within 1 day.

Current high-end graphics processing units (GPUs), which contain up to hundreds of cores per-chip,
are widely used in the high-performance computing community. As a massively multithreaded
processor, GPU expects the thousands of concurrent threads to fully utilize its computational power.
The ease of access GPUs by using general-purpose computing on GPUs such as Open Computing
Language [23] and compute unified device architecture (CUDA) [24], as opposed to graphic APIs,
has made supercomputing available widely. In our work, we choose CUDA to use a new computing
architecture referred to as single instruction multiple threads, which differs from the Flynn’s
classification [25]. Importantly, the computational power and memory bandwidth for modern GPUs
have made porting applications possible. In computational biology, several algorithms or approaches
have been ported on GPUs with CUDA, including MSA-CUDA [26], CUDA-MEME [27], CUDA-
BLASTP [28, 29], phylogenetic algorithm [30, 31], and Smith–Waterman algorithm [32–39]. For
constructing a phylogenetic tree, Liu et al. [30] implemented the GPU version of NJ algorithm.
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Their experimental results indicate that their implementation can achieve a speedup ratio of 26× for
datasets with more than 10,000 sequences. Liu et al. proposed the Bioinformatics Cell, BiCell,
which is a programmable and scalable architectural platform, to accelerate the maximum likelihood
method in the phylogenetic tree construction problem [31]. To our knowledge, no GPU version of
parallel UPGMA algorithm has been developed. One algorithm proposed by Sreesa and Davis has
improved the computational time of UPGMA, which is implemented on an FPGA-based platform [40].

Therefore, this work designs and implements a GPU-based UPGMA approach for the phylogenetic tree
construction problem with CUDA, referred to herein as GPU-UPGMA v1.0. According to the
computational time of each step in sequential UPGMA (SUPGMA) (an implementation of sequential
UPGMA algorithm; Table I in Section 5), the find minimum value is the most time-consuming step
(i.e., > 98% overall computational time of SUPGMA). The find minimum value step identifies the
shortest distance in a distance matrix. Because the computations of find minimum value step are
independent; this step is feasible for parallel computing. Hence, a GPU implementation of the
parallel tree reduction (PTR) method for finding the minimum value (GPTR-M) is designed in
GPU-UPGMA v1.0 approach at first. GPTR-M in GPU-UPGMA v1.0 achieves a speedup ratio of
97× for finding the minimum values over the SUPGMA algorithm. Then, a simple implementation
of update distance matrix step on GPU also is presented in GPU-UPGMA v1.0 approach to speed
the computational time of step 2 and overlap the computation time of build phylogenetic tree step
by CPU. Finally, the GPU-UPGMA v1.0 achieves a speedup ratio of 95× for the overall
computational time over the SUPGMA algorithm.

The rest of this paper is organized as follows. Section 2 briefly describes the preliminary concepts
for CUDA programming model and UPGMA algorithm. Section 3 then introduces the method of
solving tree reduction problem on GPU and implements the GPU-UPGMA v1.0 approach. Next,
Section 4 summarizes the experimental results. Conclusions are finally drawn in Section 5, along
with recommendations for future research.

2. PRELIMINARY CONCEPTS

2.1. CUDA programming model (CUDA 3.2)

The CUDA is an extension of C/C++, in which users can write scalable multithreaded programs for
GPU computing field [24]. The CUDA program is implemented in two parts: host and device. The
host is executed by CPU, and the device is executed by GPU. The function executed on the device
called a kernel (called KF for short). The KF can be invoked as a set of concurrently executing
threads, and it is executed by threads (called Td for short). These Tds are in a hierarchical
organization that can be combined into thread blocks (called Tb for short) and grids (called Gd for
short). A Gd is a set of independent Tbs, and a Tb contains many Tds. The size of Gd is the number
of Tbs per-grid, and the size of Tb is the number of Tds per-block. Tds in a Tb can communicate
and synchronize with each other. Tds within a Tb can communicate through a per-block shared

Table I. Computational time for each stage of SUPGMA algorithm based on the naively UPGMA method,
where the number of OTUs isN, which ranges from 1000 to 10,000. The unit is expressed in microsecond (ms).

Stage 1: Find minimum Stage 2: Update Stage 3: Build tree Total

N = 1000 4592.29 54.52 0.06 4646.87
N = 2000 36,419.66 279.62 0.12 36,699.40
N = 3000 122,655.30 706.63 0.16 123,362.09
N = 4000 288,351.31 1338.24 0.22 289,689.77
N = 5000 565,168.87 2133.56 0.27 567,302.70
N = 6000 975,664.62 3238.02 0.33 978,902.97
N = 7000 1,549,718.62 4741.40 0.38 1,554,460.40
N = 8000 2,314,399.25 6756.07 0.44 2,321,155.76
N = 9000 3,305,549.50 9056.85 0.50 3,314,606.85
N = 10,000 4,532,068.00 11,962.72 0.55 4,544,031.27
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memory (called SM for short), whereas Tds in different Tbs fail to communicate or synchronize
directly. Besides SM, four memory types are per-thread private local memory (called LM for short),
global memory (called GM for short) for data shared by all Tds, texture memory (called TM for
short), and constant memory (called CM for short). Of these memory types, CM and TM can be
regarded as fast read-only caches; the fastest memories are the registers (called RG for short) and
SM. The GM, LM, TM, and CM are located on the GPU’s memory. Besides SM accessed by single
Tb and RG only accessed by a single Td, the other memory can be used by all of the Tds. The
caches of TM and CM are limited to 8KB per-streaming multiprocessor (called STM for short). The
optimum access strategy for CM is all Tds reading the same memory address. The cache of TM is
designed for Tds to read between the proximity of the address in order to achieve an improved
reading efficiency. The basic processing unit in NVIDIA’s GPU architecture is called the streaming
processor (called STP for short). Many STPs perform the computation on GPU. Several STPs can
be integrated into a STM. While the program runs the KF, the GPU device schedules Tbs for
execution on the STM. The single instruction multiple thread scheme refers to Tds running on the
STM in a small group of 32, called a warp (called WP for short). The WP scheduler simultaneously
schedules and dispatches instructions. For instance, NVIDIA GeForce GTX 260, each STM with
16,384 32-bit RGs has 16KB of SM. The RGs and SM used in a Tb affect the number of Tbs
assigned to the STM. STM can be assigned up to eight Tbs. In a relatively new GPUs with higher
compute capability versions, there would be more hardware resource support, such as more STPs,
more memory space, more WP schedulers, and have real configurable L1 and unified L2 caches.

2.2. Naively UPGMA algorithm

As a heuristic algorithm for constructing a phylogenetic tree by a distance matrix, UPGMA is a
progressive clustering method [41]. UPGMA first identifies the shortest distance between two
OTUs, these two OTUs are then combined into a new composite OTU, and finally, the closet
distances between the composite OTU with the other OTUs are calculated. This process is repeated
until a single (composite) OTU remains. By tracing the content of composite OUT, the phylogenetic
tree can be constructed. UPGMA must assume that the variability generation and evolution time are
a positive correlation, that is, the molecular clock exists. According to the calculation principles of
UPGMA, the internal node in the UT has the same distance to each leave in its subtree. In this
work, the distances between the OTUs Ci, Cj from the individual distances dpq are maintained as

dij ¼ 1

Cij j Cj

�� ��
X

p2Ci

X
q2Cj

dpq (1)

where |Ci| and |Cj| denote the number of sequences in the two OTUs Ci and Cj, respectively. The
pseudo code involved in implementing the naively UPGMA algorithm is written as follows:

//initialization:
//Assign each sequence its own OTU Cx.
//Each sequence is placed at the UT of height zero, where defines one leaf.

While (the_number_of_remain_ OTUs == 2)
{

step 1. Find two clusters Ci, Cj, in which dij is minimal. If several of the same values are
chosen, select one randomly.

step 2. Define a new OTU Ck = Ci U Cj , and, then, calculate the distance dkl between

OTU Ck and other OTUs Cl by dkl ¼ dil Cij jþdjl Cjj j
Cij jþ Cjj j

step 3. Place an internal node k with leaves i and j, and, then, assign dij /2 to the height of
internal node k.

step 4. Add Ck to the current OTU and remove OTUs Ci and Cj.
}
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3. SUPGMA METHOD

3.1. Implementation of sequential UPGMA

The SUPGMA algorithm is implemented based on the naively UPGMA method (Section 2.2) and
largely complies with the UPGMA algorithm processes. The SUPGMA algorithm is divided into
three stages (with an example shown in Figure 1):

Stage 1: Find minimum value. Find the minimum value from the distance matrix and, then, assign a
corresponding index represented by (row i, column j) from the input distance matrix, where
i and j range from integer zero to n-1, respectively, and n refers to the number of OTUs. Each
array element value of input distance matrix is generated by using a pairwise sequence
alignment for a pair of sequences i and j.

Stage 2: Update distance matrix. Update the input distance matrix by re-calculating the values of array
elements in original row i and column j, after the minimum value dij with the index (i, j) found
by Stage 1. These values of array elements in original row i and column j are recalculated to
the new distance values by the naively UPGMA algorithm, and then, the values of array
elements in column i are replaced by those in column j. Finally, the values of array elements
in original row j and column i are set to zero to perform the matrix reduction (these array
elements are omitted in the following repeats). According to the previous method, a part of
these computations earlier may be unnecessary under the symmetry of distance matrix.
Despite the many methods available to perform this stage in order to reduce the computation,
this work selects this method to simplify the data structure implementation and avoid the
complex conversion of data structure. In this work, the SUPGMA algorithm is not an optimal
UPGMA algorithm, and the goal of this work is not to compare the GPU-UPGMA v1.0
with the optimal UPGMA algorithm. The contribution of this work is to present an efficient
GPU implementation of UPGMA and prove the benefit of GPU-UPGMA v1.0 on GPUs
with CUDA.

Stage 3: Build phylogenetic tree. Create a branch in a phylogenetic tree by combining node i and node
j. These two nodes are the leaves of the branch, and their root is a newly created node
(new OTU) k. Indices i and j are pushed to a stack A, and index k is pushed to another
stack B. To repeat the previous three stages about n-1 times until the phylogenetic tree is
completed, the phylogenetic tree is represented by tracing the stack A and stack B.

3.2. Time complexity of the SUPGMA method

Assume that a distance matrix with n sequences implies that the size of the distance matrix is n× n. In
Stage 1, the fact that the distance matrix is a symmetric matrix implies that the minimum value
can be obtained from the lower-triangular or upper-triangular matrix. Therefore, a time complexity
O((n2� n)/2) = O(n2) is required to find the minimum value from the distance matrix in the first
iteration, where n refers to the number of OTUs. Stage 2 runs in a time complexity O(4n) in the first
iteration, because two rows and two columns must be recalculated and replaced. Given that the total
iteration times are n-1, for SUPGMA algorithm, the total time complexity of Stage 1 is O(n3), Stage 2

Figure 1. Three stages of SUPGMA: (1) find minimum value, (2) update distance matrix, and (3) build
phylogenetic tree.
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is O(n2), and Stage 3 is O(n). The time complexity of each stage reveals that the bottleneck of SUPGMA
algorithm for large-scale data occurs on Stage 1, which attempts to find the minimum value from the
distance matrix repeatedly.

4. GPU-UPGMA V1.0

According to Section 3.2, Stage 1 is the most time-consuming stage in SUPGMA algorithm to find the
minimum value from the input distance matrix. Many methods are available to obtain the minimum
value from an array sequentially or in parallel. The tree reduction method (or matrix reduction method)
by using GPU has received considerable attention in recent years. For instance, Roger et al. [42]
developed a reduction primitive method on GPU by using OpenGL shading language. Harris [43] also
developed a GPU version of sum-reduction primitive under CUDA architecture. Meanwhile, Wang
et al. [44] designed and implemented a reduction primitive of GPU-based Prim’s algorithm, in which a
min-reduction method was proposed as well. This work extends upon the min-reduction method to
improve Stage 1 in SUPGMA algorithm.

This work attempts to operate an array by using a parallel approach, called the PTR method. The
PTR process aims to halve the number of working threads from the previous reduction iteration,
which operates two values of a distance matrix to be one per-thread. This process is repeated
recursively until the operating results of distance matrix are derived. Notably, N array elements in
the distance matrix take logN steps and require N/2 threads. In this work, a GPU implementation of
the PTR method for finding the minimum value (GPTR-M) has been designed in GPU-UPGMA
v1.0 approach.

4.1. Stage 1-GPTR-M in GPU-UPGMA v1.0

In this work, two KFs are launched (shown in Figure 2) because no efficient method can perform the
synchronization among the Tbs in the same Gd. This is despite the fact that output data from a KF can
be stored in the GM to perform the synchronization among multiple Tbs in different Gds. Here, a
variable NTG denotes the number of Tds per-grid; in addition, the values of lower-triangular or
upper-triangular distance matrix from OTUs data are placed in an array A stored in GM. The array
with a feasible minimum result, called FMINR, and its corresponding index array (called FMINRi)

Figure 2. The GPTR-M module, in which two KFs are launched; Kernel 1 executes the shifting process and
parallel tree reduction 1 (PTR 1) method and, then, produces the temporary reduction results (TRRs) as the

input for Kernel 2, which executes the PTR 2 method.
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are both stored in the GM. The length of array A is ln, and the lengths of FMINR and FMINRi are NTG.
In the GPTR-M, finding the minimum value of distance matrix consists of three steps.

Step 1. If ln>NTG, then perform the shifting processes in an array A, which takes the values of
address from NTG * p to NTG(1 + p) in FMINR and FMINRi arrays, where p denotes a zero
or positive integer. Each Td per-grid loads the recent value and its index from an array A at
first, then loads the previously stored value and its index from arrays FMINR and FMINRi,
and finally, compares the recent value with previously stored value and stores the smaller
value and its index into arrays FMINR and FMINRi. All Tds accessing data are coalesced in
the GM of GPU. If the loading range of an array A exceeds ln, then the remaining Tds do not pick
up any value and index from an arrayA. Figure 3 shows the shifting processes with total ln

NTG

� �
-1

times, and each shifting process is used to compare with the values of a segment of an array A
repeatedly until all values of an array A over scan. Because each shifting process for comparing
the values by each Td per-grid in parallel, the final FMINR and FMINRi take only ln

NTG

� �
-1 times

by the effort of parallel comparison. The shifting processes reduce the input data, which are the
size of an array A and index array to that of arrays FMINR and FMINRi. Moreover, the length is
reduced from ln to NTG in Kernel 1, as shown in Figure 2.

Step 2. Each Td per-block loads the value and index of arrays FMINR and FMINRi from the GM to SM.
Following the synchronization of all data loaded from the GM to SM by each Td, all Tds of each
Tb perform the PTR1 process and obtain the results, which are a local minimum value and its in-
dex in SM. Because the life time of SM is in a Tb and the life time ofGM is in the whole program,
these values and their indices in the SM for all Tbs must be stored in the GM. The GM stores the
values and indices into corresponding addresses according to the Tb ID, to avoid losing values
after completing the KF, Kernel 1. The proposed GPU-UPGMA v1.0 approach uses the
cudaThreadSynchronize(), an API function of CUDA runtime library (see the NVIDIA program-
ming guide), after the statement of Kernel 1 function call, to ensure that Kernel 1 completes its
copy from the SM toGM, which produces the temporary reduction results (TRRs) among all Tbs.

Step 3. If the number of Tbs is larger than one, Kernel 2 must be used to find the global minimum
value. Here, the TRRs generated from Kernel 1 are used as the input of Kernel 2, and the
PTR 2 process is implemented. In the experimental tests, the number of Tbs per-grid (NBG)
and the number of Tds per-block (NTB) are the same. In the TRRs, which include FMINR
and FMINRi, their sizes are the same as the NTB. Therefore, in Kernel 2, all Tds of one Tb load
values and indices of arrays FMINR and FMINRi from the GM can be placed in the SM. Next,
the PTR 2 process is performed to find the (global) minimum value and its corresponding
index value in the SM. Finally, the minimum value and its index from the SM are placed in
the GM, followed by transferring them to the host memory.

Figure 3. Shifting process to obtain the feasible minimum results and its corresponding index.
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4.2. Stages 2 and 3-update distance matrix and build phylogenetic tree in GPU-UPGMA v1.0

After the minimum value and its corresponding index are derived by GPTR-M, the distance matrix is
updated in Stage 2 and the updated row i and column j are set based on the corresponding index of
minimum value. In GPU-UPGMA v1.0, Stage 2 attempts to recalculate and replace the values of
array elements in rows (i and j) and columns (i and j) by using 4n Tds to update them in a KF,
where n refers to the number of OTUs. This KF requires proper quantity Tbs to reduce the useless
synchronization until out of the kernel launch. Therefore, this work designs an adjustable method for
setting the variable NBG. When n≤ 1024, where the number 1024 denotes the maximum NTB set in
the experimental GPU device, only four Tbs can supply 4n Tds to update distance matrix. Additionally,

if n> 1024, then the used NTG is larger than 4 * 1024, and the NBG is set up to NTG
1024

� �
. Similarly,

after the minimum value and its corresponding index are derived by GPTR-M, in GPU-UPGMA v1.0,
Stage 3 is used to build the phylogenetic tree on CPU by tracing the corresponding index of minimum
value transferred from the GM on GPU to the host memory. Stage 3 in GPU-UPGMA v1.0 is
similar to Stage 3 of SUPGMA algorithm. However, the computational times of Stage 2 and
Stage 3 in GPU-UPGMA v1.0 can be overlapped with each other.

5. EXPERIMENTAL RESULTS

In this work, GPU-UPGMA v1.0 is implemented on a single NVIDIA Tesla C2050, with 448 STP
cores and 3GB GDDR3 RAM; the setting ranges from 64 to 512 Tbs (NBG), each with 64–512 Tds
(NTB). The host (CPU) is Intel Xeon E5506 2.13GHz with 8GB RAM running the Linux operation
system (Ubuntu 9.04 64-bit). The input distance matrices are randomly generated according to the
number of OTUs. Testing datasets range from 1000 to 10,000 sequences, and the values of testing
datasets range from 1 to 999.9. In the following experiment results, for SUPGMA algorithm and
GPU-UPGMA v1.0, the computational times of find minimum value stage, update distance matrix
stage, and build phylogenetic tree stage are estimated by sum of each iterative loop.

5.1. The computational time of SUPGMA algorithm

The computational time for each stage of SUPGMA algorithm is observed in Table I. From Table I, the
computational time of find minimum value stage (Stage 1) is the most time-consuming step, especially
for the large number of OTUs. It occupied about 98.86–99.7% of overall computational time of
SUPGMA algorithm. Hence, this work is mainly focused on accelerating the computational time of
find minimum value stage in GPU-UPGMA v1.0. Besides, the computational time of update distance
matrix stage (Stage 2) increases greatly when the number of OTUs increases. Therefore, it still is worth
to implement the update distance matrix stage on GPU in GPU-UPGMA v1.0. The build phylogenetic
tree stage in GPU-UPGMA v1.0 is implemented on CPU according to the results (Stage 3) of Table I.

5.2. SUPGMA algorithm vs. GPU-UPGMA v1.0

In the find minimum value stage, Figure 4 shows the speedup ratios by comparing the computational time
in GPU-UPGMA v1.0 with that in the SUPGMA algorithm for different NTG cases. From Figure 4, the
speedup ratios are influenced by the variable NTG, and the speedup ratio increases when the size of NTG
increases. The best result is occurred when the size of NTG is set to 512 * 512, and GPTR-M in
GPU-UPGMA v1.0 achieves a speedup ratio of 97× over the SUPGMA algorithm. These results in
Figure 4 show that the GPTR-M is an efficient method to find the minimum value in GPU-UPGMA v1.0.

Figure 5 shows the speedup ratios by comparing the computational time of update distance matrix
stage in GPU-UPGMA v1.0 with that in the SUPGMA algorithm for different number of sequences.
From Figure 5, NBG and NTG are 64, the speedup ratio increases when the number of sequences
increases, and this is close to linear growth in the experimental test. The update distance matrix
stage in GPU-UPGMA v1.0 achieves a speedup ratio of 23× over the SUPGMA algorithm with
10,000 input sequences. These results are helpful to improve the overall computational time of
GPU-UPGMA v1.0 when the number of sequences is large.
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Figure 6 shows the speedup ratios by comparing the overall computational time in GPU-UPGMA v1.0
with that in the SUPGMA algorithm for different NTG cases. As observed in Figure 4, the speedup ratios
are influenced by the variable NTG, and the speedup ratio increases when the size of NTG increases. The
best result is occurred when the size of NTG is set to 512 * 512, and GPU-UPGMA v1.0 achieves a
speedup ratio of 95× for the overall computational time over the SUPGMA algorithm. These results
demonstrate that GPU-UPGMA v1.0 is an efficient GPU implementation of UPGMA.

Table II summarizes the overall computational time in GPU-UPGMA v1.0. Table II reveals that
GPU-UPGMA v1.0 performs much better than SUPGMA algorithm shown in Table I. In the case
with 10,000 sequences, only 47 s is necessary to construct the UT tree by using the size of NTG,
512 * 512. These results show the benefit by using GPU with CUDA to construct a phylogenetic
tree with large taxa sets.

Figure 4. Speedup ratios of finding the minimum value by SUPGMA algorithm and GPU-UPGMA v1.0.
The different NTG cases are represented by NBG *NTB. Four NTG cases are 64 * 64, 128 * 128,

256 * 256, and 512 * 512.

Figure 5. Speedup ratios of update distance matrix stage by SUPGMA algorithm and GPU-UPGMA v1.0.
NBG *NTB is 64 * 64.

Figure 6. Overall speedup ratios by SUPGMA algorithm and GPU-UPGMA v1.0. The different NTG cases
are represented by NBG *NTB. Four NTG cases are 64 * 64, 128 * 128, 256 * 256, and 512 * 512.
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5.3. User interface design for GPU-UPGMA v1.0

In order to provide the biologists to construct a phylogenetic tree for real applications by using
GPU-UPGMA v1.0 on GPU, a friendly UI is also designed using QT [45] to access GPU-UPGMA

Table II. Overall computational time (unit in ms) for GPU-UPGMA v1.0 with different NTG cases, which
are represented by NBG *NTB. Four NTG cases are 64 * 64, 128 * 128, 256 * 256, and 512 * 512.

64 * 64 threads 128 * 128 threads 256 * 256 threads 512 * 512 threads

N= 1000 210.87 156.87 149.84 193.58
N= 2000 1203.02 737.92 612.87 656.05
N= 3000 3746.52 2174.94 1698.38 1652.67
N= 4000 8592.71 4855.26 3707.59 3467.88
N= 5000 16,537.06 9206.01 6983.07 6371.44
N= 6000 28,318.65 15,646.28 11,843.37 10,647.22
N= 7000 44,763.32 24,667.72 18,631.87 16,580.02
N= 8000 66,560.14 36,552.32 27,670.86 24,382.57
N= 9000 94,465.78 51,856.49 39,354.41 34,523.23
N= 10,000 129,290.98 70,841.28 54,056.93 47,107.70

Figure 7. A user interface of GPU-UPGMA v1.0.

Figure 8. An example of outputs for GPU-UPGMA v1.0.
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v1.0. As a cross-platform application framework, QT is used to design the same UI for different operating
systems. Figure 7 shows the UI of GPU-UPGMA v1.0. In Figure 7, the input data are a distance matrix
stored in a text file. The biologists can choose the executing program, either CPU-UPGMA (SUPGMA
algorithm) or GPU-UPGMA v1.0, to construct the phylogenetic tree. The biologists also can choose
the output formats including an image and/or a string in a Newick format as shown in Figure 8. The
output string can be saved in a text file. The Newick format can be used as an input for other free or
commercial software, such as TREEVIEW or MEGA5 [46], applied in the phylogenetic tree analysis.

6. CONCLUSIONS

This work designs and implements a GPU-UPGMA v1.0 for constructing phylogenetic tree problem
with CUDA. In GPU-UPGMA v1.0, particular focus is the parallel reduction of finding the
minimum value on GPU. To reduce the time of finding the minimum value, in GPU-UPGMA v1.0,
the PTR algorithm is used to derive the minimum value and its corresponding index of the distance
matrix. Experimental results indicate that the GPTR-M of GPU-UPGMA v1.0 achieves a speedup
ratio of 97× over the SUPGMA algorithm, with 512 Tbs and 512 Tds per-block used. Moreover, the
GPTR-M reduces the time of finding the minimum value in the SUPGMA algorithm. Therefore, the
overall computational performance achieves a speedup ratio of 95×. Efforts are underway in our
laboratory to further improve the results of our collection procedure and construct a multi-GPU
system of GPU-UPGMA in order to support biology research.
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