
Peer-to-Peer Netw. Appl. (2014) 7:497–510
DOI 10.1007/s12083-013-0229-z

A scalable P2P overlay based on arrangement graph
with minimized overhead

Ssu-Hsuan Lu · Kuan-Ching Li · Kuan-Chou Lai ·
Yeh-Ching Chung

Received: 30 December 2011 / Accepted: 27 August 2013 / Published online: 18 September 2013
© Springer Science+Business Media New York 2013

Abstract With innovations in the Internet, it is becoming
increasingly relied upon. In the last decade, research on
peer-to-peer (P2P) technology has become even more pop-
ular. As more people use P2P systems, the scalability and
flexibility of the systems must be considered. In this study,
an arrangement graph is used to form a P2P overlay, the
Arrangement-Graph Overlay (AGO), to reduce system over-
head and bind routing hops. The proposed AGO utilizes
the properties of the arrangement graph, i.e., that each node
has a unique ID and IDs between adjacent nodes differ by
only one digit, to form the overlay network and develop a
routing algorithm. The routing hops of the proposed AGO
system can be bound within a certain number because of
the diameter of the arrangement graph. Experimental results
show that the proposed AGO system can greatly reduce sys-
tem overhead and perform routing in a constant number of

S.-H. Lu (�) · Y.-C. Chung
Department of Computer Science,
National Tsing Hua University,
Hsinchu, Taiwan
e-mail: shlu@sslab.cs.nthu.edu.tw

Y.-C. Chung
e-mail: ychung@cs.nthu.edu.tw

K.-C. Li
Department of Computer Science and Information
Engineering, Providence University,
Taichung, Taiwan
e-mail: kuancli@pu.edu.tw

K.-C. Lai
Department of Computer Science, National Taichung University,
Taichung, Taiwan
e-mail: kclai@ntcu.edu.tw

hops, even in a large-scale network environment. The exper-
imental results also show that the AGO system consumes
less bandwidth, which is an important consideration in P2P
systems.

Keywords Peer-to-peer · Overlay network · Arrangement
graph · Large scale

1 Introduction

The importance of the Internet has increased dramatically
in the last 10 years because of its convenience in access-
ing both professional services and entertainment. People do
many important activities that depend on the Internet and
enjoy the convenience of the Internet. In such an environ-
ment, peer-to-peer (P2P) systems, in which any two nodes
can directly share information without intermediate servers,
are widely used and discussed. In P2P systems, each node
can connect with other nodes by joining the system, without
involving other physical connections. Each node in a P2P
system acts as both server and client, so the bottleneck of
a client-server architecture is eliminated. P2P systems have
greatly increased the flexibility of networks, and resources
can be easily, quickly, and conveniently accessed and shared
through P2P systems.

P2P systems implement abstract overlay networks estab-
lished on the application layer and on top of physical
network topology. The overlay network is a type of virtual
network that ignores the physical architecture of the net-
work, treats each node on the network as a single node, and
assumes that each node can connect with some other nodes
in a specific way. In such a virtual environment, overlay
networks do not consider the physical connection between
nodes, but when nodes join or leave the system, it affects the

mailto:shlu@sslab.cs.nthu.edu.tw
mailto:ychung@cs.nthu.edu.tw
mailto:kuancli@pu.edu.tw
mailto:kclai@ntcu.edu.tw


498 Peer-to-Peer Netw. Appl. (2014) 7:497–510

stability of such a system. Thus, P2P systems must be more
flexible in response to dynamic environments.

In P2P systems, the structure of overlay networks can be
classified as centralized or decentralized [15]. In the cen-
tralized overlay network, there is a centralized server that
manages files, such as Napster [15]. The other type is the
decentralized overlay network that does not use a server
to manage files. The decentralized overlay network can be
structured or unstructured [15, 20] according to the topol-
ogy of the overlay network. The structured overlay network
tightly controls the locations of contents/files, locating con-
tents/files at specific positions. It typically provides the
mapping between contents/files and positions in the form
of a distributed hashing table (DHT). Using the DHT, it is
easy to locate contents/files because the DHT is designed to
enable the system to quickly insert, query, and delete. Each
node is assigned a key value for distributing contents/files.
Chord [15, 21, 22] and Pastry [19] are some well-known
examples of structured overlay networks.

The other type of decentralized overlay network is the
unstructured overlay network [10–12]. In the unstructured
overlay network, there is no relationship between con-
tents/files and positions, so it cannot guarantee search
results. Each node maintains a number of links with neigh-
boring nodes to form the overlay network. Because each
node only knows its neighboring nodes, the unstructured
overlay network often applies the flooding approach for
exhaustive searches.

Recently, several structured overlay networks have
become available for P2P systems [8, 10–12, 15, 20–22].
However, these overlays continue to have some problems.
Some of the networks are not suitable for large-scale envi-
ronments, and others use large number of messages for
maintaining neighbors and routing. This study proposes a
new overlay network that resolves these problems, mini-
mizes overhead, and maintains routing efficiency.

The structured overlay network proposed in this study
involves an arrangement graph [3, 5–7, 9] and thus called
the Arrangement Graph-based Overlay (AGO). The AGO
inherits and employs characteristics of the arrangement
graph into the P2P environment to achieve efficient routing
and minimize system overhead. The arrangement graph is
a generalized form of the star graph. It is denoted by An,k ,
where k denotes the number of digits of the node ID, n
denotes the range of each digit of the ID, and 1 ≤ k ≤ n−1.
The number of nodes in the (n, k)-arrangement graph, An,k ,

is n!
(n−k)! , the degree is k(n–k), and the diameter is

⌊
3k
2

⌋
.

The AGO uses the characteristics of the arrangement
graph over the IDs of the nodes. Each node in the AGO sys-
tem has an ID for identification, and such ID of any node
in the AGO system differs by only one digit from any adja-
cent node. Based on the rule of the arrangement graph, the

maximum number of neighbors for each node is limited, i.e.,
it is equal to the degree of the graph, which is k(n–k).

In the proposed AGO system, a fixed number of node
IDs are kept in the bootstrap node to provide to the nodes
that want to join the AGO system. As a new node joins the
AGO system, it asks for an ID of an existing node from
the bootstrap node. Then, the new node sends a request to
that existing node asking for an ID. The new node asks
for an ID from the existing node received from the boot-
strap to become its neighbor. When nodes want to leave the
AGO system, they need to send messages to their neighbors
to ask their neighbors to remove them from their neighbor
tables.

In addition, a routing mechanism is also developed for
searching, utilizing the properties of the arrangement graph.
As a node tries to search for a specific file, the node needs
to hash the filename and obtain the destination ID of the
node containing that file. After that, the node that wants to
search for a file sends requests to its neighbors with more
than

⌊
k
2

⌋
digits that are the same as the destination ID.

Thus, the node can find the file by comparing node IDs.
Experimental results show that the AGO can achieve perfor-
mance improvements, particularly by reducing the number
of generated messages.

This study proposes a new P2P overlay based on the
arrangement graph and utilizes properties of the arrange-
ment graph to route more efficiently. The AGO system also
requires a lower system overhead than other P2P systems
do, particularly in the large-scale environment. The pro-
posed AGO system can be applied to cloud computing or
home health care [16] because of its scalability and flexi-
bility. Each node in the cloud system can be assigned an ID
through the AGO system, and the routing algorithm of the
AGO system can be used to obtain resources on other nodes
in the cloud system. In everyday life, the proposed AGO
system can be deployed in the home health care system.
The AGO system can connect medical institutions, allow-
ing medical resources to be shared and searched through
the AGO system even though the resources are distributed
in each medical institution. In addition, doctors can obtain
medical records of patients through the AGO system to treat
patients more efficiently.

The remainder of this paper is organized as follows.
Section 2 presents some related work. Section 3 describes
the proposed Arrangement Graph-based Overlay, and
Section 4 shows some experimental results. Finally, conclu-
sions and future work are presented in Section 5.

2 Related work

This section describes related research, such as the classifi-
cation of P2P systems and the arrangement graph.



Peer-to-Peer Netw. Appl. (2014) 7:497–510 499

The structure of overlay networks can be classified into
centralized and decentralized types according to their oper-
ations management. In the centralized overlay network, the
most important property is that it offers a server to manage
files in the overlay, such as Napster [15]. Napster uses a cen-
tralized overlay network for sharing mp3 files. As one user
performs a search for mp3 files, a request is forwarded to the
server and the user receives a list of nodes with needed files.
Then, the user sends a request to those nodes for accessing
the desired mp3 files.

There is no server to manage files in a decentralized
overlay network. The decentralized overlay network can be
classified as structured or unstructured depending on the
connecting topology [15]. In the structured overlay network,
each resource has a key value based on the DHT and is
assigned to a certain corresponding node using the hashing
function. In DHTs, nodes are the hash buckets. Files can
be assigned to certain responsible nodes by using the hash
function. Each node is expected to be responsible for a num-
ber of files to achieve load balance. Nodes can join and leave
the system, but the links must be reconstructed. In this man-
ner, the system is more scalable than the centralized overlay
network.

The other type is the unstructured P2P system, in which
each node maintains a number of links with neighboring
nodes to form the overlay network. Because each node only
knows its neighboring nodes, the unstructured overlay net-
work often applies the flooding approach for exhaustive
searches. In this manner, queries must be flooded through
the entire overlay network, producing many redundant mes-
sages and resulting in heavy network traffic and load.

Chord [15, 21, 22] uses a consistent hashing function to
assign each node a key value. It adopts the hashing func-
tion to hash the IP address of each node to obtain a node ID.
Chord also adopts the hashing function to obtain key values
of files. Using a consistent hashing function, node IDs and
keys are assigned m-bit identifiers. The identifier is a circle
that can have at most 2m nodes. Each node has a predeces-
sor that is the previous node on the identifier circle and a
successor that is the next node on the identifier circle. This
configuration can balance the load on the system because
there is roughly the same number of keys on each node. To
speed up the file searching process, each node maintains a
fingertable with the information of its related successors.
When a node searches files, it routes requests by comparing
the key values of files with successors in the fingertable.

Pastry [19] is a P2P overlay that is similar to Chord and
uses two different hashing functions to convert IP addresses
and file names into 128-bit node IDs and object IDs. It
dynamically adds/removes nodes through a bootstrap node
and establishes a routing table. Because the properties are
redundant and distributed, each node can leave immediately
without notifying other nodes, rarely losing data. The key

space in Pastry’s DHT is circular, based on 2b, similar to
the key space of Chord, which is an unsigned 128-bit ID.
The IDs of the nodes are chosen randomly so that adjacent
physical nodes are likely to be located at different positions
in the Pastry. Each node needs to maintain IP addresses for
nodes in its leaf set (L), which contains L/2 of the numer-
ically closest larger node IDs and L/2 of the numerically
closest smaller node IDs.

Kademlia [17] is a key-based routing (KBR) protocol
developed for decentralized P2P networks that also uses the
DHT. Kademlia has three parameters: alpha, B, and k. Alpha
is a small number representing the degree of parallelism in
network calls, B is the size in bits of the keys used to iden-
tify nodes and store and retrieve data, and k is the maximum
number of contacts stored in a bucket. Nodes in Kadem-
lia communicate using UDP protocol and use node IDs for
identification. It has a simple structure and the XOR metric
and is deployed with some well-known applications, such
as eMule and several BitTorrent clients, using its features as
a DHT.

R/Kademlia [8] uses recursive overlay routing instead
of the iterative key lookup used in Kademlia. It can
thus achieve low latency and consume low bandwidth.
R/Kademlia is more efficient than Kademlia because it
utilizes Proximity Routing (PR) and Proximity Neighbor
Selection (PNS).

The arrangement graph [3, 5–7, 9] is denoted by An,k ,
where k is the number of digits in the node IDs, n is the
range of each digit, and 1 ≤ k ≤ n − 1. According to the
definition of the arrangement graph, the sets 〈n〉 and 〈k〉 are
〈n〉 = {1, 2, . . . , n} and 〈k〉 = {1, 2, . . . , k}, respectively.
Let Pn

k be the set of permutations of k elements taken from
〈n〉.

Definition 1 The (n, k)-arrangement graph, An,k , is an
undirected graph (V, E), where V = {p1p2 . . . pk |pi ∈ 〈n〉
and pi �= pj for i �= j} = Pn

k , and E = {(p, q)|p, q ∈ V ,
and for some i in 〈k〉pi �= qi and pj = qj for j �= i}.

Basic properties The (n, k)-arrangement graph is repre-
sented as An,k, where the number of nodes is n!

(n−k)! , the

degree is k(n–k), and the diameter is
⌊

3k
2

⌋
.

G = (V, E) is the set of nodes, such as participating
nodes, and edges, such as overlay links. Each node of An,k

is an arrangement with k digits out of n elements of 〈n〉, and
the edges connect nodes with only one different digit. A (4,
2)-arrangement graph is shown in Fig. 1. The degree of each
node is four, so each node has four neighbors. The node 34
is connected to the nodes 31, 32, 14, and 24. For node 34,
there is only one digit different from the four nodes 31, 32,
14, and 24. In other words, all nodes that have one different
digit are connected.



500 Peer-to-Peer Netw. Appl. (2014) 7:497–510

Fig. 1 (4, 2)-arrangement graph

Some studies [4, 13, 14, 23] have adopted the arrange-
ment graph to improve the efficiency of multimedia stream-
ing, such as the topology-aware hierarchical arrangement
graph (THAG) [23]. THAG improves the application-layer
multicast (ALM) service. The arrangement graph is used to
construct node-disjoint multicast trees for each description.

3 System structure

In this study, the arrangement graph is applied to form a
structured overlay system, the AGO. The proposed AGO is a
P2P overlay network with minimized overhead and efficient
routing. The architecture and some algorithms illustrating
the mechanics of the AGO are described in this section.

3.1 System architecture

The proposed AGO system is an abstract overlay network
based on the physical network. Because the AGO system
is formed according to the rules of the arrangement graph,
the AGO system inherits characteristics from the arrange-
ment graph, such as, the IDs of any adjacent nodes differ by
only one digit and the degree of each node is k(n–k). The
AGO system consists of three main processes, i.e., joining
the system, departing the system, and routing algorithm.

When a new node wants to join the AGO system, it
needs to process the joining step to join the AGO system.
However, all nodes in the AGO system must process the
departing step to inform all neighbors before leaving the
AGO system. The routing algorithm allows nodes to route
for resources on other nodes in the AGO system. Proper-
ties of the arrangement graph are exploited to improve the
efficiency of the routing algorithm.

Because of the development of the Internet, resources
distributed on different nodes can exist in large-scale net-
work environments around the world. In such an environ-
ment, it is necessary to develop an efficient algorithm to

locate resources. The ID single-digit difference property in
the arrangement graph is used to achieve efficient routing.
Furthermore, because the diameter of the arrangement graph

is
⌊

3k
2

⌋
, the number of routing hops can be limited.

3.2 AGO algorithms

In the proposed AGO system, a bootstrap node is used as
the portal node, similar to other P2P systems. Several avail-
able IDs are stored in the bootstrap node. There are three
main processes in the AGO system: joining the system,
departing the system, and the routing algorithm. Joining and
departing are used to build and maintain the proposed AGO
system. Routing is the algorithm used for communication
on the AGO system and is used to verify the efficiency
of the AGO system during the routing process. Follow-
ing are descriptions of the AGO system based on the three
processes.

3.2.1 Joining the system

The proposed AGO system utilizes a bootstrap node as a
portal, and there is a waiting join pool in the bootstrap.
This pool keeps several node IDs that already exist in the
AGO system. Each node enters the AGO system through the
bootstrap and keeps some information, such as its ID and a
neighbor table with its neighbors’ IDs.

Joining refers to the actions that a new node performs
when it enters the AGO system. When a new node enters
the AGO system, it obtains an ID of an existing node from
the bootstrap node and acquires an ID from that existing
node. The new node also can discover information about its
neighbors through this existing node.

After the new node obtains the ID of the existing node
from the bootstrap node, the new node sends a request to that
existing node and asks for an ID. The existing node receiv-
ing the request checks whether its neighbor table is full and
responds in one of two different ways. If its neighbor table
is not full, it chooses an unused ID and assigns the ID to the
new node. However, if the neighbor table is already full, the
existing node chooses one of its neighbors’ IDs and sends
it back to the new node, which then sends an ID request to
that neighbor.

After the new node receives the response, it also has
two different response behaviors depending on the return-
ing message. One response is to obtain the ID and become a
neighbor of the responding node. The other option is to send
a request to the node received from the responding node and
ask for an ID again. After the new node obtains its ID, it
generates its neighbor table with its neighbors’ IDs accord-
ing to its ID, which is received from the responding node.
The new node then explores whether its neighbors already



Peer-to-Peer Netw. Appl. (2014) 7:497–510 501

exist by sending a request to the responding node. After the
responding node receives the request, it checks its neighbor
table and helps the new node to generate its neighbor table.
If the responding node knows any of the neighbors, it sends
their information to the new node. In addition, the respond-
ing node sends the request to its neighbors to help explore
the neighbors.

Figure 2 shows the pseudo-code of joining the system,
and Fig. 3 describes the processes of joining the system. The
following explains the processes when a new peer attempts
to join the AGO system with A4,3. According to the prop-
erty of the arrangement graph, each node has at most three
neighbors, which is calculated as k(n−k) = 3∗(4−3) = 3.

1. A new node joins the system and sends a request to the
bootstrap node to ask for an existing node ID.

2. The bootstrap node randomly chooses node 123 of the
existing node from the waiting join pool and sends it to
the new node.

3. The new node sends a request to the existing node 123
to be its neighbor.

4. The existing node 123 finds that its neighbor table is
full and sends neighbor node 124 to the new node.

5. The new node sends a request to node 124 to be its
neighbor.

6. Node 124 finds its neighbor table is not full and assigns
the unused node ID 134 from its neighbor table to the
new node. The new node becomes one of this node’s
neighbors.

7. The new node generates its neighbor table according to
its node ID, 134, and records information of the existing
node 124, who assigned it the node ID.

After the new node obtains its node ID and generates its
neighbor table, it begins to establish whether its other neigh-
bors already exist. The new node 134 sends a request to node
124 about finding the new node’s neighbors. When node
124 receives the request, it follows the rules of the routing

Fig. 2 Pseudo-code for joining the system

Fig. 3 Processes of the joining step

algorithm to help the new node 134 discover neighbors. The
routing algorithm will be described in Section 3.2.3.

3.2.2 Departing the system

Departing refers to when a node leaves the AGO system.
Each node needs to inform all of its existing neighbors in
its neighbor table that it is leaving before it departs the
AGO system. In this manner, the leaving node’s neighbors
can remove the leaving node from their neighbor tables
after receiving the leaving information and assign this newly
available ID to another node if necessary. As shown in
Fig. 3, when node 321 departs the AGO system, it notifies
its neighbor node 324. If any of the leaving node’s neigh-
bors finds that all of its neighbors have departed, it will join
again by requesting a new node ID.

Sometimes, nodes leave the AGO system in abnormal
ways and are unable to inform their neighbors about their
leaving before they go. Nodes in the AGO system can repair
their neighbor tables automatically. Nodes send messages to
their neighbors periodically to check whether their neigh-
bors still exist. If nodes do not receive their neighbors’
responses, they remove the neighbor from their neighbor
tables. Therefore, nodes can make their neighbor tables cor-
rect, and the AGO system can work more smoothly. This
regular maintenance keeps the cost of maintaining neighbor
tables low.

3.2.3 Routing algorithm

In addition to the above two major pieces used to build the
AGO system, the AGO system also supplies a function, i.e.,
the routing algorithm. The AGO system employs one of
the important properties of the arrangement graph, i.e., the
single-digit difference in the node IDs, to construct the rout-
ing algorithm. All files in the AGO system are distributed



502 Peer-to-Peer Netw. Appl. (2014) 7:497–510

to corresponding nodes using a hashing function. Then, if a
node wants to access data, it also can use the hashing func-
tion to obtain the ID of the destination node that has the
data. Then, the requesting node uses the routing algorithm
to reach the destination node.

The routing algorithm can be divided into two compo-
nents: comparing and transmitting. The comparing action is
performed when a receiving node receives a routing request
with a destination ID and the receiving node compares its ID
with the destination ID. If its ID is equal to the destination
ID, it returns its information to the requesting node. How-
ever, if its ID is not equal to the destination ID, it performs
the transmitting action. In the transmitting action, there are
three possible cases. First, the receiving node compares its
neighbors’ IDs with the destination ID. If one of its neigh-
bor’s IDs is equal to the destination ID, it transmits this
routing request to that neighbor and is finished addressing
the routing request.

If neither the receiving node’s ID nor any of its exist-
ing neighbors’ IDs matches the destination ID, the receiving
node will loosen the transmitting rule. The receiving node
compares its neighbors’ IDs again and transmits the routing
request to any neighboring node with an ID that is only one
digit different from the destination ID.

In the worst case, the receiving node needs to transmit
the routing request to its neighbors whose IDs have at least⌊
k
2

⌋
digits in common with the destination ID. In this man-

ner, the AGO system avoids sending unnecessary messages
and increasing system overhead. The routing algorithm is
presented in Fig. 4.

In Fig. 5, there are some nodes in the proposed AGO
system with (n, k) = (4, 3). This figure is used as an exam-
ple to illustrate the routing algorithm. If node 324 needs to
access data that is on node 412, node 324 sends a routing
request to node 314. Although node 324 has two existing
neighboring nodes, i.e., node 321 and node 314, node 324
only sends the routing request to node 314 because node
ID 314 has one digit that is the same as the destination
node ID 412. Node ID 321 does not have any number in

Fig. 4 The routing algorithm

Fig. 5 An example of the routing algorithm

common with node ID 412, so node 324 does not send the
routing request to node 321. After node 314 receives the
routing request, it compares its ID and its neighbors’ IDs
with the destination ID. Then, node 314 only sends the rout-
ing request to node 312 because node ID 312 has only one
digit different from the destination ID. Following this rout-
ing rule, node 412 will receive the routing request next and
reply with its information to node 324. In addition, each
node filters routing requests to avoid handling the same
routing request multiple times.

3.3 Theorem analysis

According to the theorem of the arrangement graph, the
maximum number of nodes that the AGO system can
accommodate is

Nmax = n!
(n− k)! ,

and the diameter is
⌊

3k
2

⌋
. The diameter is the longest

distance between any two nodes.
In general, the distance between any two nodes is related

to the number of different digits between these two nodes,
and the distance can be calculated by considering the fol-
lowing two cases.

Case 1 If there are x different digits between node A and
node B, then node A needs x hops to reach node B, where
x ≤ k.

For example, if node A’s ID is 123456, and node B’s ID
is 127856, there are two different digits between node A and
node B. Node A can reach node B via

123456 → 127456 → 127856.

Therefore, node A needs two hops to reach node B, which is
equal to the number of digits between nodes A and B.



Peer-to-Peer Netw. Appl. (2014) 7:497–510 503

Case 2 Consider all numbers of all digits of node IDs. If all
numbers of all digits in nodes A and B are the same but there
are x digits in different positions, node A may need more
than x hops to reach node B.

For example, if node A’s ID is 123456 and node B’s ID is
124356, then node A can reach node B via

123456 → 123756 → 124756 → 124356.

There are two digits different between nodes A and B, but
node A needs three hops to reach node B. Therefore, from
Cases 1 and 2, the following is deduced:

x ≤ Hopsearch, (1)

where Hopsearch is the number of hops that node A needs
to take to reach node B. This result indicates that nodes may
need to take more hops to reach other nodes.

According to the theorem of the arrangement graph, the
following is also true:

Hopsearch ≤
⌊

3k

2

⌋
. (2)

From Eqs. 1 and 2, the relationship is derived as follows:

x ≤ Hopsearch ≤
⌊

3k

2

⌋
. (3)

Then, consider the expected average number of hops
nodes take to reach other nodes. The number of nodes that
have t digits different from node A is expressed as follows:

diff (t) =
(
k

t

)
×

⎡
⎣

n−k+t∏
n−k+1

+
t−1∑
i=1

⎛
⎝(−1)i×

(
t

i

)
×
n−k+t−i∏
n−k+1

⎞
⎠+(−1)t

⎤
⎦ .

(4)

Then, the expected average number of hops in Case 1 is as
follows:

E(x) =
∑k

t=1 (diff (t)× t)

Nmax

. (5)

However, to account for Case 2, the relationship must be
included as follows:

E(x) ≤ E(Hopsearch) ≤
⌊

3k

2

⌋
. (6)

In functioning P2P systems, nodes often join/depart the
system. Therefore, the AGO system will often have some
IDs that are not assigned to any node. When a node tries to
find another node, it may need to make a detour to avoid
vacant nodes. In this case, more hops would be required to

reach other nodes, even higher than
⌊

3k
2

⌋
.

Thus, the following may occur:

Hopsearch >

⌊
3k

2

⌋
.

Although this situation may occur, it does not occur
often. It occurs when the number of nodes in the AGO
system is low and the arrangement graph is incomplete.
As the number of nodes in the AGO system increases, the
AGO system becomes more complete and Hopsearch can be

limited to within
⌊

3k
2

⌋
.

4 Experimental results

In this section, some experimental results of the proposed
AGO system are presented to illustrate the system per-
formance. OverSim [1, 2, 18, 24] is used to evaluate the
performance of the proposed AGO system. The AGO is
compared with some well-known P2P overlay networks,
such as Chord, Pastry, and Kademlia. These overlay net-
works are used and discussed in many research papers.

4.1 Experimental environment

4.1.1 OverSim

This study uses OverSim as the simulation environment.
OverSim is an open-source simulation framework for build-
ing overlay and P2P networks on top of OMNeT++ simu-
lation environment [26]. It is a powerful and widely used
simulator, and it provides several modules for investigations
of P2P overlay networks. OverSim is flexible and allows
for both structured and unstructured overlay networks. The
AGO system is developed in the OverSim modules because
of these many advantages of OverSim. OverSim is also
scalable, which allows for the simulation of large-scale envi-
ronments for real-world applications. Furthermore, several
structured and unstructured P2P systems and overlay pro-
tocols are contained in OverSim, such as Chord, Kademlia,
Pastry, and GIA.

4.1.2 Experimental setup

To evaluate the performance of the proposed AGO sys-
tem, simulations of the AGO were executed under (n, k) =
(8, 6). The overlay framework OverSim was deployed to
simulate overlay networks with 1,000–10,000 nodes, which
are approximately 5–50 % of the maximum size of A8,6.
The percentage is calculated as follows:

P = N

n!
(n−k)!

,

where P is the percentage of the maximum nodes, N is the
number of current nodes, and n!

(n−k)! is the maximum num-
ber of nodes that An,k can accommodate. According to the
characteristics of the arrangement graph, the diameter is



504 Peer-to-Peer Netw. Appl. (2014) 7:497–510

Table 1 Parameters settings

Overlay Parameters

AGO n = 8, k = 6

Chord m = 14

Pastry b = 4, l = 16

Kademlia Alpha = 3, B = 160, k = 20

R/Kademlia Alpha = 3, B = 160, k = 20

equal to
⌊

3k
2

⌋
= 9, and the degree of each node is equal to

k(n− k) = 12.
A series of simulations were performed to collect data

and establish the system performance. In the P2P envi-
ronment, nodes join/leave frequently, and therefore, the
different churn rates help the experiments model the real
world more closely. Nodes are assigned different lifetimes
using the Weibull distribution [25] to simulate the different
churn rates. The mean lifetime was varied between 1,000
and 10,000 s for simulations with different churn scenarios.

Bandwidth consumption is another important issue in the
P2P environment. The bandwidth consumption is expressed
as the average sent and received message bytes per second
of a node. This issue is often argued and discussed because
the dynamic environment in P2P systems often creates a
large number of messages. In experiments, the test appli-
cation sent a 100-byte message every 60 s to several live
current nodes with a normal distribution. Each protocol and
parameter was simulated 10 times, and the average data
were calculated. The experimental results are more accurate
under this protocol. Table 1 shows some related settings of
parameters; definitions of the parameters are presented in
Section 2.

4.2 Joining the system

In P2P systems, each node is an independent individual
node. Therefore, to join the system, each node must take
a series of steps to inform other nodes who are already in
the system. Each node also needs to obtain a correct posi-
tion, explore its neighbors, and maintain its neighbor table.
All of these actions produce many messages and may cause
additional system overhead. This study aims to help nodes
join the system quickly and to reduce the number of created
messages.

Figure 6 presents the number of messages created in
building the AGO system compared with Chord, Pastry,
Kademlia, and R/Kademlia. It shows the log of the number
of created messages because the number of messages Pas-
try created is much larger than the number created by the
other overlay systems. Therefore, to visualize the relation-
ship between all of the different overlay systems, the results
must be viewed on a log scale. Table 2 displays the com-
plete data of the number of created messages. As shown in
Table 2, the proposed AGO system creates the least number
of messages despite the number of nodes.

From Table 2, the AGO only created 20–40 % of the
messages that Chord created. The AGO only created 1 %,
15–33 %, and 20–45 % of the messages created by Pas-
try, Kademlia, and R/Kademlia, respectively. These findings
indicate that the proposed AGO system can reduce the
number of created messages in building the system. Fur-
thermore, the AGO system can reduce system overhead in
building and maintaining the system.

4.3 Average routing hops

In distributed systems, such as P2P systems, searching for
resources efficiently is an important issue, particularly since

Fig. 6 Number of created
messages



Peer-to-Peer Netw. Appl. (2014) 7:497–510 505

Table 2 Number of created messages

Nodes AGO Chord Pastry Kademlia R/Kademlia

1000 232,797 1,359,830 19,863,140 1567,417 1,148,930

2000 697,350 3,031,425 72,058,328 3,820,027 2,793,551

3000 982,692 5,045,875 138,043,748 6,365,253 4,634,724

4000 2,018,987 7,332,288 213,784,198 8,981,605 6,525,248

5000 3,292,855 9,908,696 298,445,765 11,904,636 8,619,766

6000 4,890,596 12,737,604 389,899,887 14,854,760 11,033,261

7000 5,837,528 15,866,716 488,145,456 22600149 20,875,733

8000 7,616,313 1,9193,316 591,390,248 28,758,395 27,146,847

9000 9,165,380 22,878,497 699,317,417 36,224,712 34,403,991

10000 11,347,705 26,818,547 810,098,957 45,037,570 42,046,195

the development of the Internet, as more and more people
search for resources on the Internet. Therefore, a method of
increasing the efficiency of the routing without increasing
system overhead is the goal of the AGO routing system.

Figure 7 illustrates the average routing search hops in
each P2P system with different numbers of nodes. As shown
in Fig. 7, the line of “AGO (Expected)” is the expected aver-
age number of routing hops calculated using the previously
mentioned equations with (n, k) = (8, 6). According to
Eqs. 4 and 5, the expected average number of routing hops
is equal to 5.25. From Fig. 7, we can observe that the aver-
age routing search hops in the AGO system is slightly higher
than the theoretical expected value of average search hops
from Case 2, as mentioned in the Section 3.3.

Files are evenly distributed to all nodes to evaluate aver-
age routing hops. The average routing search hops in the
AGO system is nearly constant despite the number of nodes.
Therefore, regardless of the number of nodes, average rout-
ing search hops is nearly constant. The average routing
search hops in the AGO system are better than in Chord,

a

b

Fig. 8 Cumulative percentage of nodes

but a few hops worse than in other P2P systems. However,
average routing search hops in those P2P systems slightly
increase when the number of nodes increases, and they also
generate a large number of messages and consume large
bandwidth, which will be shown in the next subsection.

Figure 8 shows the cumulative percentage of nodes using
different routing hops. Two cases, in terms of number of
nodes, are analyzed (N = 2, 000 and N = 8, 000) to
illustrate results. As shown in Fig. 8, even though average
routing search hops in the AGO system are worse than for
the other three P2P systems, most of the nodes in the AGO
system can find resources within six or seven hops, and

Fig. 7 Average routing search
hops



506 Peer-to-Peer Netw. Appl. (2014) 7:497–510

the other three P2P systems need five or six hops. When
there are 8,000 nodes, most nodes can find resources within
six hops regardless of the system being employed. There-
fore, when there are more nodes, the routing performance
of the AGO system is more efficient, implying that the
AGO system is more suitable for a large-scale environment.

Furthermore, experimental results show that routing hops of
over 90 % of the nodes can be bound within diameter hops
because the join mechanism assigns IDs from existing nodes
and groups around existing nodes. Therefore, nodes will not
be sparsely distributed in the system, and routing is more
efficient.

Table 3 Message quantity and message size of each node in each P2P system

LifeTime N message AGO Chord Pastry Kademlia R/Kademlia

1000 N = 2000 Bytes 120.33 208.19 3323.30 370.85 284.50

Amounts 0.65 2.57 38.92 3.06 1.58

N = 8000 Bytes 165.76 233.82 4771.25 575.91 509.75

Amounts 0.96 2.85 66.4 5.45 4

2000 N = 2000 Bytes 105.65 229.64 1751.11 297.70 203.63

Amounts 0.53 2.78 19.57 2.87 1.1

N = 8000 Bytes 153.98 275.02 2546.73 474.01 419.57

Amounts 0.90 3.25 32.17 5.42 3.78

3000 N = 2000 Bytes 88.68 236.03 1205.94 263.57 173.86

Amounts 0.51 2.84 13.4 2.75 0.9

N = 8000 Bytes 138.77 287.59 1649.73 443.47 384.20

Amounts 0.83 3.37 20.68 5.4 3.73

4000 N = 2000 Bytes 78.36 240.00 930.77 231.85 134.77

Amounts 0.48 2.88 10.15 2.72 0.72

N = 8000 Bytes 120.33 293.01 1236.52 427.44 372.52

Amounts 0.76 3.43 15.5 5.36 3.69

5000 N = 2000 Bytes 65.12 241.14 649.88 207.26 110.96

Amounts 0.45 2.88 7.43 2.69 0.62

N = 8000 Bytes 116.89 296.58 963.98 407.93 353.38

Amounts 0.71 3.46 12.37 5.33 3.66

6000 N = 2000 Bytes 53.76 241.28 634.89 211.48 103.25

Amounts 0.45 2.89 7.01 2.67 0.60

N = 8000 Bytes 112.96 299.64 831.49 397.82 344.53

Amounts 0.67 3.49 10.59 5.31 3.63

7000 N = 2000 Bytes 49.99 242.38 499.81 201.67 99.53

Amounts 0.44 2.9 5.74 2.65 0.54

N = 8000 Bytes 110.32 301.00 686.07 393.54 337.11

Amounts 0.62 3.5 8.92 5.28 3.61

8000 N = 2000 Bytes 45.78 243.33 398.98 190.54 84.76

Amounts 0.43 2.91 4.6 2.64 0.50

N = 8000 Bytes 108.33 301.45 594.98 385.32 326.17

Amounts 0.60 3.51 7.85 5.27 3.57

9000 N = 2000 Bytes 40.52 243.78 386.79 184.87 82.50

Amounts 0.39 2.91 3.68 2.63 0.48

N = 8000 Bytes 105.65 303.30 536.66 383.06 326.05

Amounts 0.56 3.52 7.1 5.25 3.55

10000 N = 2000 Bytes 35.98 244.43 284.51 182.00 76.64

Amounts 0.33 2.92 3.32 2.62 0.45

N = 8000 Bytes 103.56 303.33 473.58 379.50 323.35

Amounts 0.49 3.55 6.25 5.19 3.51



Peer-to-Peer Netw. Appl. (2014) 7:497–510 507

4.4 Bandwidth consumption

In a network environment, bandwidth often affects the per-
formance of message transmission. Therefore, bandwidth
consumption is an important issue in P2P systems. In this
study, reducing bandwidth consumption is one of the goals
of the AGO system. The bandwidth consumption is the aver-
age sent and received message rate (bytes per second) of
a node. Evaluating the message size and quantity of each
node, the bandwidth consumption of the AGO system and
other P2P systems can be identified and compared. The size
and number of messages produced by routing or maintain-
ing neighbor tables can greatly affect performance in terms
of bandwidth.

Table 3, Figs. 9 and 10 show the average message size
and number under different churn rates to evaluate the
bandwidth consumption. The message size and number are
compared on a log scale because the number of messages
created by Pastry is significantly higher than those created
by the other overlay systems. In Fig. 10, because the origi-
nal values of the AGO system are less than one, the values
after taking the log are less than zero. Table 3 shows the
complete data for Figs. 9 and 10.

From the above results, the average message size (in
bytes) and quantity (amount) decrease as the lifetime
increases because the P2P systems become more stable.
When the mean lifetime is short, nodes receive and send
more messages in P2P systems, increasing the overhead of
the system.

a

b

Fig. 9 Average message size of each node (bytes)

a

b

Fig. 10 Average number of messages for each node

Table 3 shows that the AGO system consumes the least
bandwidth. When there are 2,000 nodes, the AGO system
only consumes 15–58 % of the bandwidth compared with
Chord and consumes approximately 4–13 %, 20–35 %, and
42–60 % of the bandwidth compared with Pastry, Kadem-
lia, and R/Kademlia, respectively. Overall, the AGO system
showed great performance compared with other P2P sys-
tems. In addition, the AGO system creates the fewest mes-
sages for system routing and maintenance. When there are
2,000 nodes, the AGO system creates 11–25 % of the mes-
sages created by Chord and creates 2–10 %, 13–21 %, and
41–86 % of the messages produced by Pastry, Kademlia,
and R/Kademlia, respectively. From these results, the AGO
system consumes the least bandwidth and reduces system
overhead compared to the other P2P systems.

4.5 Message latency

Message latency can also affect system performance. To
determine whether the AGO system spends too much time
sending packets, the time spent sending packets between
two nodes was measured. If the time spent sending mes-
sages between two nodes is too long, nodes must wait a
long time for the response. In particular, when transmitting
requests to other nodes, the original requesting node must
wait a long time for the return response. Thus, the time of
one-way latency was used to compare the AGO system with
the other P2P systems.



508 Peer-to-Peer Netw. Appl. (2014) 7:497–510

Table 4 One-way latency for each P2P system

Nodes AGO Chord Pastry Kademlia R/Kademlia

1000 0.23 0.41 0.11 0.46 0.21

2000 0.26 0.45 0.11 0.51 0.22

3000 0.26 0.47 0.11 0.54 0.23

4000 0.26 0.5 0.11 0.56 0.24

5000 0.27 0.51 0.11 0.58 0.25

6000 0.27 0.51 0.11 0.6 0.25

7000 0.28 0.52 0.11 0.6 0.26

8000 0.28 0.53 0.11 0.6 0.26

9000 0.28 0.54 0.11 0.61 0.26

10000 0.28 0.55 0.11 0.62 0.27

Table 4 and Fig. 11 show the one-way latency of the AGO
system and other P2P systems. As shown in Table 4 and
Fig. 11, the latency of the AGO system is better than those
of Chord and Kademlia and slightly worse than those of
R/Kademlia and Pastry. Although the latencies of the AGO
system increase slightly as the number of nodes increases,
the degree of increase is not as great as those of Chord and
Kademlia.

From the experimental results discussed above, the AGO
system performs very well. The proposed AGO system can
build the system without producing large system overhead
and has an efficient routing algorithm that is limiting within
the diameter value. Although some overlay networks have
fewer average routing hops than the AGO system, those
overlay networks also produce a larger number of messages
than the AGO system. The AGO system may need one to
three more routing hops than the other overlay networks,
but the AGO system also produces 20 % fewer messages,
as shown in Fig. 3. The AGO does not construct as many
connections with other peers and does not produce as large
a number of messages for routing. In terms of bandwidth
consumption, the AGO system has a significantly lower
consumption than the other P2P systems. These experimen-
tal results show that the AGO system is also suitable for

Fig. 11 One-way latency

Fig. 12 Number of created messages using different (n, k) values

large-scale environments because its performance does not
deteriorate as the number of nodes increases.

4.6 Comparisons under different parameters

The maximum number of nodes that the AGO system can
accommodate is affected by parameters (n, k). It is hoped
that AGO can construct the system with lower system
overhead for different values of (n, k).

Some preliminary experimental results are presented in
this study to determine the effects on the system overhead.
As shown in Fig. 12, the parameter k is constant at six, and
only the parameter n is varied. In this manner, the maxi-
mum number of nodes can be increased without changing
the diameter. In Fig. 12, parameters (n, k) are (7, 6), (8, 6),
and (9, 6). The experimental results show that the smaller
parameter n creates fewer messages when the parameter k is
also small. In the future, the AGO system can be constructed
with smaller parameters (n, k) and be dynamically adjusted
according to the number of nodes in the system.

5 Conclusions and future work

In this study, the arrangement graph is adopted to form a
P2P overlay network, and the property of the single-digit
difference of node IDs is utilized to provide an efficient
routing algorithm and reduce system overhead. Experimen-
tal results have shown the efficiency of building the system
and routing algorithm. The AGO system is also suitable
for large-scale environments without resulting in excessive
system overhead.

In future studies, the routing algorithm in the AGO sys-
tem will be improved by adding a replica mechanism, which
can reduce the average routing hops and improve the rout-
ing efficiency. The (n, k) parameters of the AGO system will
also be dynamically adjusted according to the number of
nodes. This dynamic adjustment can make the arrangement
graph more complete, thus limiting the routing hops within
the diameter number.



Peer-to-Peer Netw. Appl. (2014) 7:497–510 509

From the preliminary experimental results, with the same
number of nodes under different parameters (n, k), the
AGO system produces different overheads. When param-
eters (n, k) are small, the AGO system produces less
system overhead. Therefore, it is hoped that the AGO sys-
tem can be constructed under smaller parameters (n, k)
and that the parameters (n, k) can be dynamically adjusted
according to the number of nodes in the system. The
AGO system can also be used on other distributed sys-
tems, such as grid or cloud systems, or on remote home
care systems by assigning each node a unique ID to share
resources.

References

1. Baumgart I, Heep B, Krause S (2007) OverSim: a flexible
overlay network simulation framework. In: The proceedings
of 10th IEEE global internet symposium (GI ’07) in con-
junction with IEEE INFOCOM 2007. Anchorage, pp 79–84,
doi:10.1109/GI.2007.4301435

2. Baumgart I, Heep B, Krause S (2009) OverSim: a scalable
and flexible overlay framework for simulation and real network
applications. In: The proceedings of IEEE ninth international
conference on peer-to-peer computing (P2P’09). Seattle, pp 87–88

3. Chiang W-K, Chen R-J (1998) On the arrangement graph. J Inf
Process Lett 66(4):215–219

4. Chen Y-S, Juang T-Y, Shen Y-Y (2000) Multi-node broadcasting
in an arrangement graph using multiple spanning trees. In: The
proceedings of the seventh international conference on parallel
and distributed systems, pp 213–220

5. Day K, Tripathi A (1992) Arrangement graphs: a class of general-
ized star graphs. Inf Process Lett 42:235–241

6. Day K, Tripathi A (1993) Embedding of cycles in arrangement
graphs. J IEEE Trans Comput 42(8):1002–1006

7. Day K, Tripathi A (1993) Embedding grids, hypercubes, and
trees in arrangement graphs. In: The proceedings of international
conference on parallel proceeding (ICPP 1993), vol 3. USA, pp
65–72

8. Heep B (2010) R/Kademlia: Recursive and topology-aware over-
lay routing. In: The proceedings of australasian telecommunica-
tion networks and applications conference, pp 102–107

9. Hsieh S-y, Chen G-H, Ho C-W (1997) Fault-tolerant ring embed-
ding in faulty arrangement graphs. In: The proceedings of inter-
national conference on parallel and distributed systems. Seoul, pp
744–749

10. Haribabu K, Reddy D, Hota C, Yla-Jaaski A, Tarkoma S (2008)
Adaptive lookup for unstructured peer-to-peer overlays. In: The
proceedings of 3rd international conference on communication
systems software and middleware and workshops 2008 (COM-
SWARE 2008). Bangalore, pp 776–782

11. Jiang S, Guo L, Zhang X (2003) LightFlood: an efficient flooding
scheme for file search in unstructured peer-to-peer systems. In:

The proceedings of the 2003 international conference on parallel
processing (ICPP 2003). Kaohsiung, pp 627–635

12. Jiang S, Guo L, Zhang X (2008) LightFlood: minimizing redun-
dant messages and maximizing scope of peer-to-peer search. J
IEEE Trans Parallel Distrib Syst (TPDS) 19(5):601–614

13. Kobayasi M, Nakayama H, Ansari N, Kato N (2007) NHAG:
network-aware hierarchical arrangement graph for application
layer multicast in heterogeneous networks. In: The proceedings of
2007 global telecommunications conference (GLOBECOM ’07),
pp 1993–1997

14. Kobayashi M, Nakayama H, Ansari N, Kato N (2009) Robust
and efficient stream delivery for application layer multicasting in
heterogeneous networks. J IEEE Trans Multimedia 1(1):166–176

15. Lua EK, Crowcroft J, Pias M, Sharma R, Lim S (2005) A survey
and comparison of peer-to-peer overlay network schemes. J IEEE
Commun Surv Tutor 7(2):72–93

16. Lu S-H, Lai K-C, Yang D-L, Li K-C, Chung Y-C (2010) Per-
vasive health service system: insights on the development of a
Grid-based personal health service system. In: Proceedings of the
12th international conference on e-health networking, application
and services (Healthcom2010). Lyon, pp 61–67

17. Maymounkov P, Mazieres D (2002) Kademlia: a peer-to-peer
information system based on the XOR metric. In: The proceedings
of the first international workshop on peer-to-peer systems. USA,
pp 53–65

18. Munoz-Gea JP, Malgosa-Sanahuja J, Manzanares-Lopez P,
Sanchez-Aarnoutse JC, Martinez-Rojo AM (2009) Simulation of
a P2P application using OverSim. In: The proceedings of the
first international conference on advances in future internet (AFIN
2009). Athens, pp 53–60

19. Rowstron A, Druschel P (2001) Pastry: scalable, distributed object
location and routing for large-scale peer-to-peer systems. In: The
proceedings of the IFIP/ACM international conference on dis-
tributed systems platforms Heidelberg (Middleware 2001), lecture
notes in computer science, vol 2218/2001, pp 329–350

20. Ratnasamy S, Francis P, Handley M, Karp R, Shenker S (2001)
A scalable content addressable network. In: The proceedings of
conference on applications, technologies, architectures, and proto-
cols for computer communications (ACM SIGCOMM 2001), pp
161–172

21. Stoica I, Morris R, Karger D, Frans Kaashoek M, Balakrishnan H
(2001) Chord: A scalable peerto-peer lookup service for internet
applications. In the proceedings of the 2001 conference on appli-
cations, technologies, architectures, and protocols for computer
communications, pp 149–160. San Diego

22. Stoica I, Morris R, Liben-Nowell D, Karger D, Frans Kaashoek
M, Dabek F, Balakrishnan H (2003) Chord: a scalable peer-to-peer
lookup service for internet applications. J IEEE/ACM Trans Netw
11(1):17–32

23. Tian R, Zhang Q, Xiang Z, Xiong Y, Li X, Zhu W (2005) Robust
and efficient path diversity in application-layer multicast for video
streaming. J IEEE Trans Circ Syst Video Technol 15(8):961–972

24. The OverSim P2P Simulator - http://www.oversim.org/
25. Weibull distribution - http://en.wikipedia.org/wiki/Weibull

distribution
26. OMNeT++ Network Simulation Framework - http://www.

omnetpp.org

http://dx.doi.org/10.1109/GI.2007.4301435
http://www.oversim.org/
http://en.wikipedia.org/wiki/Weibull_distribution
http://en.wikipedia.org/wiki/Weibull_distribution
http://www.omnetpp.org
http://www.omnetpp.org


510 Peer-to-Peer Netw. Appl. (2014) 7:497–510

Ssu-Hsuan Lu received a B.S.
and M.S. degree in Informa-
tion Management from Provi-
dence University in 2002 and
2005, respectively. She is cur-
rently working toward the
Ph.D. degree in the Depart-
ment of Computer Science at
the National Tsing Hua Uni-
versity, Taiwan. Her research
interests include parallel and
distributed processing, clus-
ter systems, peer-to-peer com-
puting, grid computing, dis-

tributed shared memory, cloud computing, healthcare, and IoT.

Kuan-Ching Li is currently
a Professor in the Depart-
ment of Computer Science
and Information Engineering
at the Providence University,
Taiwan. He has served in a
number of journal editorial
boards and guest editorship, as
also served many international
conference chairmanship posi-
tions as steering committee,
advisory committee, general
and program committee chairs
and member of program com-

mittees. In addition, he has also named as Guest Professor at Lanzhou,
Xiamen and Shanghai Universities in China. His research interests
include networked computing (Clusters, Grids, P2Ps, Clouds), parallel
software design, and performance evaluation and benchmarking. He is
a senior member of the IEEE and a Fellow of the IET.

Kuan-Chou Lai received his
M.S. degree in Computer Sci-
ence and Information Engi-
neering from the National
Cheng Kung University in
1991, and the Ph.D. degree in
Computer Science and Infor-
mation Engineering from the
National Chiao Tung Univer-
sity in 1996. Currently, he
is an associate professor in
the Department of Computer
and Information Science at the
National Taichung University,

Taiwan. His research interests include parallel processing, parallel
compiler, system architecture, P2P computing, grid computing, and
cloud computing. He is a member of the IEEE and the IEEE Computer
Society.

Yeh-Ching Chung received
a B.S. degree in Information
Engineering from Chung
Yuan Christian University
in 1983, and the M.S. and
Ph.D. degrees in Computer
and Information Science from
Syracuse University in 1988
and 1992, respectively. He
joined the Department of
Information Engineering at
Feng Chia University as an
associate professor in 1992
and became a full professor

in 1999. From 1998 to 2001, he was the chairman of the department.
In 2002, he joined the Department of Computer Science at National
Tsing Hua University as a full professor. His research interests include
parallel and distributed processing, cluster systems, grid computing,
multi-core tool chain design, and multi-core embedded systems. He is
a member of the IEEE computer society and ACM.


	A scalable P2P overlay based on arrangement graph with minimized overhead
	Abstract
	Introduction
	Related work
	Basic properties

	System structure
	System architecture
	AGO algorithms
	Joining the system
	Departing the system
	Routing algorithm

	Theorem analysis

	Experimental results
	Experimental environment
	OverSim
	Experimental setup

	Joining the system
	Average routing hops
	Bandwidth consumption
	Message latency
	Comparisons under different parameters

	Conclusions and future work
	References


