Journal of Systems Architecture Xxx (2013) XXX-XXX

Contents lists available at SciVerse ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

An efficient and comprehensive scheduler on Asymmetric Multicore
Architecture systems

Jiun-Hung Ding?, Ya-Ting Chang?, Zhou-dong Guo?, Kuan-Ching Li®, Yeh-Ching Chung **

2 Dept. of Computer Science, National Tsing Hua University, Taiwan
b Dept. of Computer Science and Information Engineering, Providence University, Taiwan

ARTICLE INFO ABSTRACT

Article history:
Available online xxxx

Several studies have shown that Asymmetric Multicore Processors (AMPs) systems, which are composed
of processors with different hardware characteristics, present better performance and power when com-
pared to homogeneous systems. With Moore’s law behavior still lasting, core-count growth creates typ-
ical non-uniform memory accesses (NUMA). Existing schedulers assume that the underlying architecture
is homogeneous, and as consequence, they may not be well suited for AMP and NUMA systems, since
they, respectively, do not properly explore hardware elements asymmetry, while improving memory uti-
lization by avoid multi-processes data starvation. In this paper we propose a new scheduler, namely
NUMA-aware Scheduler, to accommodate the next generation of AMP architectures in terms of architec-
ture asymmetry and processes starvation. Experimental results show that the average speedup is 1.36
times faster than default Linux scheduler through evaluation using PARSEC benchmarks, demonstrating

Keywords:

Asymmetric architecture

NUMA architecture

Single-ISA heterogeneous multicore
processors

Scheduling

that the proposed technique is promising when compared to other prior studies.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

With advances in microprocessor technologies and accelerated
with development of multicore, manycore- and embedded sys-
tems-related technologies last years, processors evolve to include
more processing units — hundreds to thousands of cores - into
one single die and widely exploited in High Performance Comput-
ing, by harnessing processor architectures in parallel with other
technologies and techniques to achieve such high performance.

Asymmetric Multicore Processors (AMPs) system is recently
introduced, as composed of processors with different characteris-
tics, e.g., clock speed, cache capacities, power consumption, occu-
pied area and the complexity of execution pipeline, containing or
not the same Instruction Set Architecture (ISA), also known as sin-
gle-ISA heterogeneous multicore [1,3]. Instances of AMP system
may contain a few powerful and effective cores and a larger num-
ber of cores with slower speed and less power consumptions [1,3].
Many strategies are employed to explore few powerful out-of-or-
der with higher clock speeds and large cache capacities, suitable
for executing the throughput oriented applications and single-
threaded sequential applications, while for slower but less
power-consuming cores, for parallel execution. Such an idea has

* Corresponding author. Address: Dept. of Computer Science, National Tsing Hua
University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan. Tel.: +886 3
5742971.

E-mail address: ychung@cs.nthu.edu.tw (Y.-C. Chung).

1383-7621/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.05.006

been considered by major manufacturers as IBM, AMD and Intel,
to combine 32- or 64-bit x86 or Power cores with capable graphics
processing units (GPUs) or Synergistic Processor Elements (SPEs)
on a single silicon die, e.g., IBM’s cell processor [21], AMD’s APU
[20] and Intel’s Larrabee [19]. Prior studies show that the typical
AMP system has significant energy benefits and occupies minor
die area, yet maximize the power efficiency [1,2,8]. As result, given
the core-count growth, access time to memory is variable and de-
pends on the relative location of a processor, which characterizes it
as Non-Uniform Memory Access architecture (NUMA) [17]. With
rapid growth on the number of cores in computing systems, the
amount of memory requests issued by processor cores increases
memory starvation.

This limitation on the number of memory accesses decreases
the performance of modern multicore systems, and can starve sev-
eral processors at the same time. In NUMA systems, this problem is
settled by providing separate memory for each processor, which is
likely to lift the performance when several processors attempt to
access same memory. Unfortunately, current OS schedulers as-
sume that the underneath hardware is homogeneous, that is,
AMP systems and NUMA architecture are not considered as well
as decoupled. Taking as example Linux 2.6 Completely Fair Sched-
uler (CFS), this scheduler uses a red-black tree implementation to
manage the executable processes instead of running queue per
processor. The main idea of CFS is to provide processor time to each
task fairly. For instance, in a system with n executable processes,
each of them should be given 1/n process time of a tiny period.

chitect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.006

Please cite this article in press as: J.-H. Ding et al., An efficient and comprehensive scheduler on Asymmetric Multicore Architecture systems, J. Syst. Ar-

http://dx.doi.org/10.1016/j.sysarc.2013.05.006
mailto:ychung@cs.nthu.edu.tw
http://dx.doi.org/10.1016/j.sysarc.2013.05.006
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc
http://dx.doi.org/10.1016/j.sysarc.2013.05.006

2 J.-H. Ding et al./Journal of Systems Architecture xxx (2013) XxX—Xxx

Since the abilities of processors in AMP systems are different, 1/n
process time in faster and slower processor cores are completely
different. Hence, the scheduler should take the AMP architecture
into account. In another direction, NUMA architecture can be used
to avoid contention of memory accesses between processes, by
dividing the memory into multiple nodes, exploring the high-
speed interconnections among them, e.g., Intel’s Quick Path Inter-
connect (QPI) and AMD’s Hyper Transport (HT). However, given the
higher core-count growths and consequent large NUMA architec-
tures formed, combined to the different AMP hardware adaptive
design, can provide smaller memory resource contention and avoid
data starvation. Again, the scheduler must consider the NUMA
architecture in order to get additional benefits from this computer
memory design. Based on this tendency, we believe that the AMP
and NUMA are essential as the next generation of hand-held de-
vices’ architecture. In order to make OS working well with AMP
and NUMA, we propose a new scheduler policy, NUMA-aware
Scheduler for Asymmetric Multicore Processors, to support AMP
and NUMA architectures. Interesting components as target in our
proposed scheduler policy are twofold. The former one is Asym-
metric-aware schedule policy, where dynamically trigger AMP
scheduler to place the suitable processes on the specific type of
cores, while the latter one is NUMA-aware schedule policy, in
which precisely calculates the current system performance degra-
dation due to resource contention, minimizing the degradation by
thread migration and memory management.

The proposed NUMA-aware Scheduler for AMP (Asymmetric
Multicore Processors) is implemented in Linux CentOS release 6.0
and evaluated on a 8-core, 32 GB Dell PowerEdge R910 system.
Using performance counters, we independently modulated the
CPU frequency as a performance asymmetry factor and explored
the NUMA memory space to avoid resource contention. Comparing
to Linux CFS scheduler and execution of PARSEC benchmarks, the
proposed scheduler improves performance by a factor of 1.36x.

The remaining of this paper is organized as follows. In
Section 2, some related works are presented, while the overview
of NUMA-aware Scheduler for Asymmetric Multicore Processors
is given in Section 3. The design of the NUMA-aware Scheduler
for Asymmetric Multicore Processors is discussed in Section 4,
and evaluation is shown in Section 5. Finally, Section 6 summa-
rizes our findings, as also brings some remarks and topics for
future research.

2. Related work

There are several references in literature showing energy ben-
efits of Asymmetric Multicore Architectures [1,2,8]. The research
study in [1] showed that this architecture could achieve a large
amount of energy reduction with small performance penalty. In
order to accommodate the heterogeneity of Asymmetric Multi-
core Processors, there are several researches [1-9] that discussed
scheduling algorithms. Some of them considered the load balanc-
ing policy and then implemented an Asymmetric-aware load-
balancing [3]. Therefore, the processes’ characteristics were not
taken into account. Some of them made use of static-time profil-
ing data [4,5], in which could not detect the phase change of a
process during runtime. Krumar et al. [1,2] proposed a dynamic
core selection based on actual execution performance between
different types of cores, and therefore, threads migrate between
different cores. Unfortunately, the thread migration overhead is
redundant and the cost is high, especially on NUMA architectures.
Some of them proposed a dynamic way [6] to implement the
scheduler during runtime and profiling data simultaneously,
though the periodic profiling and computing are time consuming.
Furthermore, the NUMA architecture is not fully considered in
such study.

The proposed scheduler based on dynamic computed metric is
surprisingly accurate and processes did not have to execute on dif-
ferent type of cores. We made use of hardware counter to gather
periodically system’s information with tiny overhead and com-
puted the corresponding metric when necessary. Therefore, we
minimized the overhead as best as possible and scheduled the pro-
cesses properly. Hence, modern multicore systems increasingly use
the NUMA architecture, and it had been discussed for several years
[10-15]. NUMA architectures have benefits, but the system could
not learn to profit with proper utilization. Yang et al. [10] analyzed
the on-chip interconnect and intra-core bandwidth contention,
and then showed the importance of load-balancing between
threads. Blagodurov et al. [11] presented a NUMA-aware conten-
tion management to reduce the performance degradation; Majo
et al. [14] solve the problem by taking both interconnect overhead
and cache contention into consideration. In addition, Pusukuri
et al. [15] dynamically reduced the performance variation due to
NUMA architectures.

3. Proposed scheduler

The purpose of a process scheduling is to optimally sort inde-
pendent processes according to a given parameter and then exe-
cute them. In proposed NUMA-aware Scheduler for AMP, the
schedule policy is based on ranking processes according to two
metrics, Online AMP Speedup Factor and Resource Contention Deg-
radation Factor, to determine how appropriate they are to be run
on certain type of core, the faster core or the slower core, or do-
main. In the aim of deriving these two metrics for a process, we
need a runtime profiler to get ready this information. The AMP
Speedup Factor and Contention Degradation Factor are recalcu-
lated once the schedule function is invoked.

In order to avoid redundant calculation yet minimize the over-
head, the schedule function has to be invoked properly. We imple-
mented two ways to invoke such the schedule function. The former
one occurs when the process voluntarily releases the faster core,
we have to invoke the scheduler directly for averting from losing
greater ability of faster core, while the latter one is a lazy way to
trigger the schedule function, invoked when we predict that there
will be suitable candidate to run on faster core.

3.1. Framework components

The proposed NUMA-aware AMP scheduler is composed of
two components, a runtime profiler and a scheduler. We use
OProfile [22] as our system-wide profiler, leveraging the hard-
ware performance counters to profile and analyze the statistic
information at low overhead. After a time interval, we dump
the profiling data to the data dealer. Once the data dealer receives
the profiling data, it will update the records. In case the current
situation cause the schedule function invoked, it computes two
dynamic metrics: Online AMP Speedup Factor and Contention
Degradation Factor. In addition, two important linked lists are
maintained, AMP-list and NUMA-list, according to the dynamic
values of metrics. In this way, the design method makes the data
dealer

Algorithm 1. PROFILER: online profiling mechanism

1 Create a new thread for receiving and dealing with the
online profiling data

2 Repeat profiling until NUMA-aware P-AMP scheduler
stop

3 Sleep for an OPROFILE_PERIOD amount of time

4 Dump the profiling report

5 End Repeat loop

chitect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.006

Please cite this article in press as: J.-H. Ding et al., An efficient and comprehensive scheduler on Asymmetric Multicore Architecture systems, J. Syst. Ar-

http://dx.doi.org/10.1016/j.sysarc.2013.05.006

J.-H. Ding et al./Journal of Systems Architecture xxx (2013) XxX—Xxx 3

execute the heavy computation when needed, so the overhead is
minimized. It is shown in Algorithm 1 the procedure of profiler.

Algorithm 2. DATA DEALER: receiving and dealing with the
online profiling data

Input: online profiling data
1 Repeat until online profiling mechanism stop

2 Receiving data and filtering them from online profiling
dump

3 Update the LLC miss rate and LLC Eviction Rate

4 If loading of system is unbalanced or behavior of the

processes changed or powerful core is idle

5 Computing the Online P-AMP Speedup Factor

6 Sorting the process P-AMP-list by Online P-AMP
Speedup Factor

7 Computing the Contention Degradation Factor

8 Sorting the process NUMA-list by Contention
Degradation Factor

9 Sending signal to trigger schedule

10 End If

11 End Repeat loop

Once the data dealer receives the profiling data, it will update the
records. In case the current situation cause the scheduler be called,
it would compute the two metrics: Online P-AMP Speedup Factor
and Contention Degradation Factor. We would maintain and sort
the two important list, P-AMP list and NUMA list, based on those
two metrics. This design method makes the data dealer execute
the heavy computation when needed, so the overhead could be
minimized. The procedure of data dealer is shown in Algorithm 2.

Algorithm 3. SCHEDULE: NUMA-aware P-AMP schedule

Input: P-AMP-list and NUMA-list
1 Computing the number of powerful core candidate based
on fairly load balanced policy
2 Retrieving suitable processes to be scheduled on powerful
cores from P-AMP-list
If Retrieved processes # current processes on powerful
cores
Migrate the processes
End If
If current Resource Contention Degradation is too big
Scatter the processes with heavy Contention
Degradation Factor in order to minimize Resource
Contention Degradation
Migrate the processes and the its sticky pages
8 EndIf

w

[«2 IS I >N VN

~

Moreover, we must have a schedule procedure to complete our
framework. This schedule dynamically decides the number of can-
didates to run on the fast core based on fairly load balanced policy
and schedules the processes on account of AMP list. In order to
minimize the Resource Contention Degradation, the schedule also
takes the NUMA-list into account to divert the resource degrada-
tion, as depicted in Algorithm 3.

3.2. Execution flow
It is illustrated in Fig. 1 the execution flow of NUMA-aware

Scheduler for Asymmetric Multicore Processors. Once this sched-
uler starts, it will begin to profile the data and making them

processed as useful information. Moreover, the schedule would
be triggered when certain event occurs, then processes migrate
as also memory pages for considerations of better performance.

3.3. Design

The proposed NUMA-aware Scheduler for AMP has two impor-
tant parts: Asymmetric-aware schedule policy and NUMA-Aware
schedule policy. The former one assists with better utilization on
the different abilities of cores, making the processes of different
characteristics to be executed on distinct cores. The latter policy
is used to compensate for the lack of NUMA management and min-
imize the resource contention as best as possible. We will explain
how these two parts work in following subsections.

3.3.1. Asymmetric-aware schedule policy

A typical AMP system contains two types of processors. One is
processor with a couple of powerful and effective cores, whilst
the other type of processor contains a larger number of cores with
slower speed. We named the core in the first type of processor as
“faster core” and the other core as “slower core”.

The faster core differs from slower core in several points, such
as execution performance, complexity of execution, cache capaci-
ties, among other characteristics. The scheduler for homogeneous
system executes the runnable process on the least loaded core,
working on the premise that the abilities of the cores are the same.
To better making use of these different cores, we need to be ac-
quainted with them and understand most suitable type of threads
should be run on given cores. Hence, a metric called Online AMP
Speedup Factor is introduced, to understand the process’ speedup
gain on the faster core compared to slower core.

Online AMP Speedup Factor is used to specify what kind of
thread could gain more profit form fast core for the purpose of
improving the efficiency of AMP system. We classify the conditions
systematically into two categories, that is, the ability variation of
the heterogeneous cores and the thread-level parallelism.

Ability variation of the heterogeneous cores is one of the fea-
tures in AMP system. As mentioned before, they differ in many
points. We only focus on the two important and obvious diversi-
ties: the clock speed and pipeline complexity. For the fast core, it
has high clock speed and complex instruction pipeline. Therefore,
the thread run on fast core must sufficiently use processor’s com-
putation ability and has highly instruction-level parallelization in
order to get the benefit from fast core. Unfortunately, not all of
the thread utilizes the CPU in such an efficient way, and that, some
threads have to stall for data fetched from main memory. Such
threads have poor data locality and must frequently access the
memory. Based on Fig. 1, we find out that each of the processes’
asymmetric speedup from running on a fast core versus a slower
core is highly varied because of the diversity of the process
behavior.

To illustrate how the scheduler works in terms of core selection,
we exemplify with Canneal (from Parsec suite), which is a mem-
ory-intensive program. Comparatively to the slower-clock CPU,
for the higher-clock CPU, Canneal stalls additional clock cycles to
get data ready. That is justified since the higher frequency CPU
generates more clock cycles per second though to access the
memory.

Fig. 3 shows the cycle spending ratio of higher CPU frequency to
lower CPU frequency. Fig. 4 illustrates the behavior of memory-
bound programs, since they present higher L3 cache miss ratios.

Such behavior is observed by analyzing Figs. 3 and 4, where is
shown that the memory-intensive applications are not easy to
get the benefit from faster cores, which can be used to accommo-
date CPU-intensive ones Therefore, we take this issue into consid-
eration for our Online AMP Speedup Factor. Still from these two

chitect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.006

Please cite this article in press as: J.-H. Ding et al., An efficient and comprehensive scheduler on Asymmetric Multicore Architecture systems, J. Syst. Ar-

http://dx.doi.org/10.1016/j.sysarc.2013.05.006

4 J.-H. Ding et al./Journal of Systems Architecture xxx (2013) XxX—Xxx

Scheduler |

|
I
|
|
I
|
. |
/ ~ Hardware 1)
performance | Task list
\ counters |
e I
|

: Runtime Profiler

Fig. 1. Execution flow of NUMA-aware Scheduler for Asymmetric Multicore Processors.

figures, the Online AMP Speedup Factor shows its accuracy based
on experimental results of the real asymmetric speedup, as de-
picted in Fig. 2.

Just as a reference, the default Linux scheduler has a function
that implements the scheduler. Its purpose is to identify appropri-
ate process and assign next to the CPU. It could be invoked directly
or in a lazy way. In a direct way, the schedule function is called
since the current process must be blocked immediately. Otherwise,
it would set the certain flag to 1 and then check the flag to invoke
the schedule function at some future close time in a lazy way. In
our scheduler, we implement a lazy way schedule and construct
some events that will trigger the scheduler to be invoked. In this
way, the proposed scheduler would be more efficient with low
overhead.

We have also implemented a direct way to invoke schedule. As
for performance consideration, we have to make the fast core as
busy as possible and not idle it if there is still a runnable process
available. For this purpose, we propose an algorithm, schedule fast
core first, that ensures the thread would run on fast core if it is un-
der-utilized. If we find out the fast core is under-utilized and there
is a runnable process run on slower core, we will invoke the sche-
dule function directly to completely use the fast core’s greater exe-
cution ability. This is our direct way to call schedule function.

We introduce a metric called Online AMP Speedup Factor
(AMP_SF), to estimate the relatively real asymmetric speedup gain
from running on a faster core versus a slower core based on the fol-
lowing considerations.

o Thread-level parallelism is an important issue that needs to be
taken into consideration. If the number of threads in a process is
higher than the number of faster cores, redundant threads
would be executed on the slower cores’ domain. This will

2.5

! O Real Asymmetric Speedup =
05 TIME_s / TIME_f
0
s

& & CRCI S ST
& & & & > &
o8 TS S8 & S

& o e & &
< S &

Fig. 2. The Real Asymmetric Speedup factors from running on a fast core (2 GHz)
versus a slower core (1 GHz) are varied between different benchmarks from PARSEC
benchmark suit.

induce to two situations: synchronization and communication
overhead. Synchronization overhead happens for the reason
that threads on slower cores would take more execution time
to complete the execution, while those threads on faster cores
must wait on their completion, in which may extend the execu-
tion time of that process. The other situation is the communica-
tion overhead. Since a process’ threads would be placed in
different domains, the communication between threads would
cross domains. It is better to avoid this situation happen owing
to the time consuming of inter-domain communication is larger
than the intra-domain communication.

Observing the situations above presented, we could find out
that a process would not get any speedup gain from faster cores
if its threads are on different domains. Experiments with three
different numbers of threads were performed in PARSEC bench-
marks, where half of threads were included in powerful domain
and another half on slower one. As depicted in Fig. 5, we
detected that the execution time of a process was almost the
same as it executed all of its threads on slower domains or even
worse one. Therefore, we believe that is better not to proceed
with the execution of a process’ threads on different type of
domains.

It is well known that the speedup of a program using multiple
computing nodes concurrently is limited by the sequential frac-
tion of that program, as stated in Amdahl’s law. Additionally,
there is limited number of faster cores in such a proposed
AMP system [16]. In this way, we would run parallel processes
on slower cores as best as we can. If we run processes on faster
cores during the sequential phase, the performance would be
better than execution on slower core, due to the great ability
of the faster core without overhead as presented earlier.

We then incorporate in the proposed scheduler the following
metrics.

CPU-memory intensiveness: if the number of threads in a pro-
cess (THN_process) is less than or equal to the number of faster
cores (N_fc), its characteristics will affect the speedup. Thus, we
only need to consider whether it is a CPU- or memory-intensive
process through the CPU-bound Factor (CF) computed by the
last level cache miss rate (llcm) in the system. If the number
of threads of a process is greater than the number of faster
cores, we need to take the thread-level parallelism into account.
Communication overhead: as for the communication overhead,
due to the inter-domain communication is getting faster and
faster nowadays, so CPU-intensive process does not signifi-
cantly suffer.

chitect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.006

Please cite this article in press as: J.-H. Ding et al., An efficient and comprehensive scheduler on Asymmetric Multicore Architecture systems, J. Syst. Ar-

http://dx.doi.org/10.1016/j.sysarc.2013.05.006

J.-H. Ding et al./Journal of Systems Architecture xxx (2013) XxX—Xxx 5

1.600
1.500
1.400
1.300
==3GHz/2.3GHz
1.200 ~#—2.8GHz/1.8GHz
~#—1.8GHz/0.8GHz
1.100 -
== 2.3GH2/0.8GH2
1.000 - ~fe=3GHz/0.8GHz
0.900
> < o
& & s & & & o"" o < & K2
& S 4 S & & ® N & {
NCy & @ S © > & R
'y & N «© « &
o 4 &

benchmarks in PARSEC benchmark suit

Fig. 3. The clock cycle spending ratio of higher CPU frequency to lower CPU frequency.

CPU frequency: 800MHz CPU frequency: 3GHz
90.000
80.000
ma 1K
60.000
50.000 A
20.000 Jal & == REQ_L2/INS
30000 i\ —/\
| = 13_M/INS
10.000 - == REQ_L3/INS
0.000 -

G L

Fig. 4. The process with higher cache access frequency and L3 cache miss rate indicate that it is a memory-intensive process.

1.2

Hthread # of aprocess=2
Wthread # of aprocess=4

Bthread # of aprocess=8

Fig. 5. Real asymmetric speedup of the process with half number of threads run on powerful domain and half run on slower domain.

e Synchronization overhead: in terms of synchronization over-
head, it will sacrifice its total execution time and hold the lock.
Consequently, its total execution time would be as slow as it did
not run on faster core or even worse. The best to avoid these
processes allocated to run on faster cores, and thus, for this class
of situations we added a constant value 1, to make their AMP_SF
be larger. In this way, they would be hard to be selected to fit in
faster cores. The formula to deal with the synchronization over-
heads is presented in (1):

AMP_SF = CF + (THN_process < N_fc?1 : 0) (1)

The Event-triggered Scheduler invokes the schedule function
in time with little overhead. As this function is invoked, it would
balance the system loading and adjust the processes executed on
faster cores. That is, the scheduler will do its work when the sys-
tem loading is unbalanced and the suitable processes executed on
fast cores have changed. Therefore, we would lazily trigger the
scheduler when these classes of events happen. Unbalanced sys-
tem loading would happen when the number of threads or the
number of processes in the system changes. As we detect this
event taking place, the scheduler flag will be set to invoke the
schedule function.

chitect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.006

Please cite this article in press as:].-H. Ding et al., An efficient and comprehensive scheduler on Asymmetric Multicore Architecture systems, J. Syst. Ar-

http://dx.doi.org/10.1016/j.sysarc.2013.05.006

6 J.-H. Ding et al./Journal of Systems Architecture xxx (2013) XxX—Xxx

Suitable processes executed on faster cores signify that top can-
didates from AMP list - constructed by Online AMP Speedup Factor
- have changed. In other words, this event would happen when
some process become the new member or is eliminated from top
candidates of AMP list. By definition of Online AMP Speedup Factor,
we found out that, as the last level cache miss rate (llcm) changed
in a special way or number of threads of a process has changed, we
need to reschedule. We make use of heuristic method to construct
the Cache Miss Variation Ratio (CVR), to express what the special
changing of last level cache miss rate is. The formula is presented
in (2):

CVR — Allcm

(2)

where p is the minimum between old last level cache miss rate
(llcm) and current last level cache miss rate (llcm). Based on previ-
ous discussion, a model is proposed to decide whether to trigger the
scheduler or not, as depicted in Fig. 6. It is illustrated in Fig. 7 an
example on Cache Miss Variation Ratio (CVR).

3.3.2. NUMA-aware schedule policy

The NUMA architecture is increasingly being used by multicore
systems, due to increase on the request for memory access and
data starvation of processors. The processors starve for data easily
due to its high execution performance as also increase on the
amount of requests for memory access owing to the increasing
number of processing units. Since the memories operate consider-
ably slower than CPUs, the NUMA architecture solves the problem
by providing more memory domains in multicore systems. Hence,
running processes will not easily contend accesses to memory,
which is exactly NUMA architecture’s advantage. Though, if the
operating system does not take NUMA into account, it might be un-
able to take advantage of the NUMA benefit, which is one of the
NUMA architecture’s drawbacks.

System
loading is
unbalanced?

Thread
number of
the process
changed?

yes

Cache miss
variation
ratio exceed
threshold?

Set scheduler flag=1

Fig. 6. The flow chart of event-trigger scheduler.

Trigger

Scheduler

(a) The left side’s cache miss variation ratio

exceeds the threshold

The other problem is the remote memory access. Although the
transfer rate of inter-communication is getting faster and faster,
frequent remote access of the memory-intensive process would
still drop its performance.

Alternatives identified to solve these two problems are dis-
cussed in following sections.

o NUMA-Aware Memory Migration

In terms of remote memory access, we move its sticky pages to
local memory, in order to reduce the frequency of remote accesses.
The sticky page is the memory page that the process frequently
accesses, and it is determined as a sticky page by profiling its infor-
mation. Further, threads do not migrate between domains. There-
fore, the thread migration between domains will happen only
when the performance degradation due to resource contention is
high.

e Reduction of Degradation due to Resource Contention

In order to take advantages of NUMA, we need to prevent pro-
cessors from addressing to same memory. Therefore, the perfor-
mance of the processes’ execution will not degrade due to
resource contention. It is introduced a new metric to compute
the performance degradation of each process, and found that heavy
resource-needed processes in. Therefore, in case we put the heavy
resource needed processes in a same domain, there would have big
chances to compete for the memory resource, and their perfor-
mance would decrease dramatically. Such a situation is exempli-
fied in Fig. 8.

In order to solve this problem, the executions of heavy re-
source-needed processes are kept in the same memory domain.
As a result, they will not contend each other, and therefore, the
performance will not drop off. The metric, performance degrada-
tion of a process, is the sum of the degradation caused by all other
processes in the same domain. For instance, there are five pro-
cesses in a domain, A, B, C, D and E. We define the degradation
of process A as Dg_A, the sum of degradation of A caused by each
other process B, C, D and E, as shown in formula (3).

Dg A =Dg AB + Dg_AC + Dg_AD + Dg_AE (3)

LLC miss rate used to compute the Dg_AB and DgAC is not accu-
rate enough since last level cache (LLC) miss rate is a heavy re-
source-needed process, and he process would access the memory
resource when the LLC miss happened. Additionally, it may also oc-
cupy the hardware prefetcher, caches as also other memory re-
sources with higher frequency, affecting LLC usage. As shown in
Fig. 10 shows that process with the highest LLC miss rate does
not necessary mean it is the most resource-needed one. Based on
this result, additional information should be taken into account.

80%

5% >

(b) The right side’s cache miss variation
ratio is not big enough

Fig. 7. A simple example to explain when the cache miss variation ratio would exceed the threshold.

chitect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.006

Please cite this article in press as: J.-H. Ding et al., An efficient and comprehensive scheduler on Asymmetric Multicore Architecture systems, J. Syst. Ar-

http://dx.doi.org/10.1016/j.sysarc.2013.05.006

J.-H. Ding et al./Journal of Systems Architecture xxx (2013) XxX—Xxx 7

12 12
115 115
11 11
105 105
1 1
0-95 _H‘ 035]
09 - 09
o o 2 >
& & & F @ & F L
& g & & & S
Cal S
o) b
N & S
A (a) S (b)

12 12
1.15 1.15
11 11
105 - 105 -+
1+ 1
095 - 095 -
09 - 09 -
5 . 08 3 > o
& & & @ & & & e
&£ & A I
L & ‘é" “\'b @V
& & 5 &
¥ () @)

. IPS_one_benchmark_in_a domain/ IPS_four_benchmarks_in_a domain

Fig. 8. Performance Degradation due to resource contention. Comparison of degradation in (d) with others, it is relatively large since other four benchmarks are memory-

intensive.
12 50
115 - 40
B e — 30 - SE—
1.05 - 20
1] | -
095 - Vw111
09 - 0 T T T |
> & 0 o & 0
¥ & L & & & 0@‘
h & g + X > AN
AP R
3 & &~ eé‘ & &
= o &

B 1ps_performance Degradation due to Contention
LLC cache miss rate

Fig. 9. The streamcluster benchmark program shows the highest LLC misses,
though the performance has not most degraded.

For heavy resource-needed processes with higher precision, we
take the Eviction Rate (ER) into consideration. To understand that,
we suppose that there are three levels of cache in a system, this
means that L3 is the last level cache. The process’ ER is high if
the data in the L3 cache are being expelled often, not accessing
data often again, so the temporal locality of the process in L3 cache
is poor. As a result, the degradation of process A caused by process
B should consider the last level cache miss rate (llcm) as also the
Eviction Rate as well. Additionally, the process with high ER would
have smaller degradation because that the L3 cache is un-useful for
it if others are compete with it for the L3 cache. That is, if the pro-
cess A has high Eviction Rate, then its degradation has to be mini-
mized. The formula of Dg AB and ER is shown in (4) and (5),
respectively:

Dg AB = llcm A * llcm_B/ER_A 4)
N_e

where N_e is the number of L3 cache line eviction and N_fe is the
number of L3 cache line fills caused by L2 evictions. To simplify

120 120
100 100
80 80
60 60
40 40
20 20
0 . o
;¥ @ ,,'3‘
50" g &é’ gés
o
A\
(a)

the computation complexity, we make of use the metric called Con-
tention Degradation Factor (CDF) to define if the process is heavy
resource-needed process or not. It is presented in (6):

llcm

CDF = o (6)

4. Evaluation

To evaluate the accuracy of two metrics proposed as also the
performance of NUMA-aware AMP Scheduler, the PARSEC bench-
mark suite is considered. The performance of asymmetric architec-
tures was implemented on a server Dell PowerEdge R910 with
CentOS Linux release 6.0 (Linux 2.6.32). The frequency of three
CPUs was reduced by half, with settings conform to typical AMP
system with 4 faster cores and 12 slower cores, emulating future
generation of asymmetric architectures.

4.1. Accuracy of Online AMP Speedup Factor

The real asymmetric speedup is a ratio between the number of
instructions per second executed on faster cores and the number of
instructions per second executed on slower cores. That is, the high-
er the real asymmetric speedup of a process is, the more processes
gain from the faster cores. Hence, we would rather to allocate such
a kind of process on faster cores. We use the metric called Online
AMP Speedup Factor to predict the real asymmetric speedup and
the values are relative among each other. By observing the ability
as also the number of threads in each process considered as pre-
sented before, the results showed are correspondingly accurate,
as illustrated in Fig. 10.

4.2. Accuracy of Contention Degradation Factor

The metric, Contention Degradation Factor, is computed during
runtime mining the profiling data, last level cache miss rates and

100

80

60

40

20

v}

& d‘ﬁ« éo‘;’é 0\-?

&é“
&

(d)

B Online P-AMP Speedup Factor
-~ Real Asymmetric Speedup

Fig. 10. Comparing the Online P-AMP Speedup Factor with Real Asymmetric Speedup. It is presented in charts (a-d) different combinations of benchmarks executed in the
proposed system, and the Online AMP Speedup Factor was calculated using runtime profiling data.

chitect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.006

Please cite this article in press as: J.-H. Ding et al., An efficient and comprehensive scheduler on Asymmetric Multicore Architecture systems, J. Syst. Ar-

http://dx.doi.org/10.1016/j.sysarc.2013.05.006

8 J.-H. Ding et al./Journal of Systems Architecture xxx (2013) XxX—Xxx

12 2
115
11 15
105 - 14— —
1 -
095 - 05 1 P
09 0 : , ,
3] . o) LY
‘\o\e. & oé"& 1'-"@ ‘\o\w o Q‘g, _‘,}@‘
& o & & & &
& s i N & S
A &8 A a;-“'
(a)
12 2
115
11 15
105 1 — —
1 -
SR E E BN
09 0 . . ,
S F e B S ¥ e B
® e & S &
& 5 & & & &€ & s
Q\s\6 é‘§

(c)
B \ps_Performance Degradation due to Contention

12 2

115

11 - 15

105 4 1 —
1 -

095 - oSt
09 -~ 0 T T]
i . & <
& o &8 & & & @

o 6‘& & &

& &

£ B
(b)
12 2
115
11 15
105 1+——7r— —
1 .
09 + 1] T T T 1
& & <& & & & {é‘,_-l‘ &
S & S &S
»o\’b" ‘;;l ‘;\'é‘ ‘3“ Ay

(d)

Contention Degradation Factor

Fig. 11. The accuracy of the Contention Degradation Factor.

100%

80%

60%

40%

20% -

0% -

-20%

ENUMA+AMP-AWARE

Hw/o NUMA-aware

-40%

B STATICBEST

-60%

-80%

Fig. 12. The speedup of our NUMA + AMP AWARE, w/o NUMA-AWARE and the STATIC BEST on the 4 fast cores + 12 slower cores platform.

Eviction Rate. The processes’ Contention Degradation Factors are
relative among each other like the Online AMP Speedup Factor.
Such a metric assist with precise identification of the heavy re-
source-needed processes, when the performance degrades dramat-
ically. Experimental results show such a metric correspondingly
accurate as well, as illustrated in Figs. 9 and 11.

4.3. Aggregate result

PARSEC [18] is a benchmark suite of programs focused on the
emerging workloads and considered as the next-generation
shared-memory programs for CMPs, composed of thirteen differ-
ent multithreaded programs. We tested different combinations of
programs from the PARSEC, in order to understand different aver-
age speedup gain from different combinations of workloads. From
experiments, if the combination of workloads consisting of more

CPU-intensive processes, higher the speedup. Therefore, we se-
lected half CPU-intensive and half memory-intensive processes as
the combination of our workload testing.

Experimental results show that, the appropriate assignment of
processes to execute on faster cores may achieve higher speedup
when compared to others, and just slightly degrading other pro-
cesses’ performance. Moreover, with the NUMA-aware contention
reduction, the performance shown is better than original one.

The experimental result of Static Best was generated as follows.
Before the process is submitted for executed, we statically decide
whether it should run on faster cores or not by evaluating
static-time profiling data, the Real Asymmetric Speedup. As a
process exits and released the faster cores, we select a current suit-
able process by the static-time profiling data to migrate to faster
cores. Given that phase change of a process cannot be detected
through the static-time profiling data, therefore the results show

chitect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.006

Please cite this article in press as: J.-H. Ding et al., An efficient and comprehensive scheduler on Asymmetric Multicore Architecture systems, J. Syst. Ar-

http://dx.doi.org/10.1016/j.sysarc.2013.05.006

J.-H. Ding et al./Journal of Systems Architecture xxx (2013) XxX—Xxx 9

worser performance than those results obtained from proposed
method. As a process in the phase that is suitable to be executed
on faster cores, the Static Best will not be able to detect and hence,
it cannot obtain better speedup gain. Moreover, some benchmarks’
performance were heavily decreased.

The average speedup of total execution time of PARSEC bench-
marks is 1.36x times faster. As in Fig. 12, the experimental results
showed that our scheduler could dynamically choose the proper
processes and assign them to appropriate domains in times to
get better utilization of AMP and NUMA architectures.

5. Summary and conclusions

An AMP system is a newly introduced computing system. In or-
der to permit the operating system understand the underneath
heterogeneous architecture, we proposed an AMP aware schedule
policy. We introduced a new metric called Online AMP Speedup
Factor to define which runnable processes should utilize the high
efficiency of fast cores. The Online AMP Speedup Factor took the
characteristic of a process and the thread-level parallelism into ac-
count, and the experimental results showed the metric was consid-
erably accurate. Moreover, the process would degrade its
performance if it could not get the wanted resource in time. In
NUMA system, if we do not scatter the heavy resource-needed pro-
cess, the performance would degrade dramatically and we could
not get the same result in different runs. Hence, we proposed a
new metric called Contention Degradation Factor to define that
which is the heavy resource-needed process. We considered more
factors than others compared to the prior studies. That's the reason
why could predict the behavior precisely.

The average speedup of total execution time of PARSEC bench-
marks is 1.36x times faster, and the result is quite good compared
to the prior studies.

References

[1] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan,
Dean M. Tullsen, Single-ISA Heterogeneous multi-core architectures: the
potential for processor power reduction, in: Proceedings of the 36th
International Symposium on Microarchitecture, San Diego, USA, December
03-05, 2003.

Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan,

Dean M. Tullsen, Single-ISA heterogeneous multi-core architectures for

multithreaded workload performance, in: Proceedings of the 31st Annual

International Symposium on Computer Architecture (ISCA’04), Miinchen,

Germany, June 19-23, 2004.

Tong Li, Dan Baumberger, David A. Koufaty, Scott Hahn, Efficient operating
system scheduling for performance-asymmetric multi-core architectures, in:

Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07),

Reno, USA, 2007.

Alexandra Fedorova, Juan Carlos Saez, Daniel Shelepov, Manuel Prieto,

Maximizing power efficiency with asymmetric multicore systems,

Communications of the ACM 52 (12) (2009).

Daniel Shelepov, Juan Carlos Saez, Stacey Jeffery, Alexandra Fedorova, Nestor

Perez, Zhi Feng Huang, Sergey Blagodurov, Viren Kumar, HASS: a scheduler for

heterogeneous multicore systems, Operating Systems Review 43 (2) (2009)

66-75.

[6] Juan Carlos Saez, Manuel Prieto, Alexandra Fedorova, Sergey Blagodurov, A
comprehensive scheduler for asymmetric multicore processors, in:
Proceedings of the 5th ACM European Conference on Computer Systems
(EuroSys 2010), Paris, France, April 13-16, 2010.

[7] Felipe L. Madruga, Henrique C. Freitas, Philippe O.A. Navaux, Parallel shared-
memory workloads performance on asymmetric multi-core architectures, in:
18th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), 2010.

[8] Vishal Gupta, Ripal Nathuji, Analyzing performance asymmetric multicore
processors for latency sensitive datacenter applications, in: Proceedings of the
2010 International Conference on Power Aware Computing and Systems
(HotPower’10), Vancouver, BC, Canada, 2010.

[9] Lina Sawalha, Sonya Wolff, Monte P. Tull, Ronald D. Barnes, Phase-guided
scheduling on single-ISA heterogeneous multicore processors, in: Proceedings
of the 14th Euromicro Conference on Digital System Design (DSD'11), 2011.

[10] R.Yang,]. Antony, A.P. Rendell, A simple performance model for multithreaded
applications executing on non-uniform memory access computers, in:

[2

E]

[4

[5

Proceedings of the 2009 11th IEEE International Conference on High
Performance Computing and Communications (HPCC'09), Seoul, Korea, June
25-27, 20009.

[11] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, Ali Kamali, A case
for NUMA-aware contention management on multicore systems, in:
Proceedings of the 19th International Conference on Parallel Architectures
and Compilation Techniques (PACT '10), Austria, September 11-15, 2010.

[12] Jeffery A. Brown, Leo Porter, Dean M. Tullsen, Fast thread migration via cache
working set prediction, IEEE 17th International Symposium in High
Performance Computer Architecture (HPCA), Texas, USA, February 12-16,
2011.

[13] Kishore Kumar Pusukuri, David Vengerov, Alexandra Fedorova Simon, Vana
Kalogeraki, FACT: a framework for adaptive contention-aware thread
migrations, in: Proceedings of the 8th ACM. International Conference on
Computing Frontiers (CF'11), Ischia, Italy, May 3-5, 2011.

[14] Zoltan Majo, Thomas R. Gross, Memory management in NUMA multicore
systems: trapped between cache contention and interconnect overhead, in:
Proceedings of the International Symposium on Memory Management
(ISMM'11), San Jose, USA, June 4-5, 2011.

[15] Kishore Kumar Pusukuri, Rajiv Gupta, Laxmi N. Bhuyan, Thread tranquilizer:
dynamically reducing performance variation, Journal of ACM Transactions on
Architecture and Code Optimization (TACO) 8 (4) (2012).

[16] Amdahl's Law. Available from: <http://en.wikipedia.org/wiki/Amdahl’s_law>
(accessed 19.11.12).

[17] Non-Uniform Memory Access. Available from: <http://en.wikipedia.org/wiki/
Non-Uniform_Memory_Access>.

[18] PARSEC benchmarks. Available from: <http://parsec.cs.princeton.edu/>
(accessed 5.12.12).

[19] Available from: <http://software.intel.com/en-us/articles/larrabee> (accessed
9.12.12).

[20] Available from: <http://www.amd.com/us/products/technologies/apu/Pages/
apu.aspx> (accessed 9.12.12).

[21] Available from:
view_project.php?id=2649>.

[22] OProfile. Available from: <http://oprofile.sourceforge.net/> (accessed 5.12.12).

<http://researcher.watson.ibm.com/researcher/

Jiun-Hung Ding received a BS in Industrial Engineering
and Management from National Chiao Tung University
in 2004, and the MS in Computer Science from National
Tsing Hua University in 2006. His research interest
includes Embedded System, Hardware-Software Code-
sign, Multi-core Optimization, and Parallel Computing.

Ya-Ting Chang received a BS in Mathematics from
National Cheng Kung University in 2010, and the MS in
Computer Science from National Tsing Hua University
in 2012. Her research interest includes parallel pro-
cessing and multi-core embedded systems.

Zhou-dong Guo received a BA in Computer Science and
Technology from Zhejiang University in 2011, and now
studying for the MS int National Tsing Hua University.
As a student of Professor Chung, he is doing research in
the area of system software and embeded system.

chitect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.006

Please cite this article in press as: J.-H. Ding et al., An efficient and comprehensive scheduler on Asymmetric Multicore Architecture systems, J. Syst. Ar-

http://refhub.elsevier.com/S1383-7621(13)00073-8/h0045
http://refhub.elsevier.com/S1383-7621(13)00073-8/h0045
http://refhub.elsevier.com/S1383-7621(13)00073-8/h0045
http://refhub.elsevier.com/S1383-7621(13)00073-8/h0020
http://refhub.elsevier.com/S1383-7621(13)00073-8/h0020
http://refhub.elsevier.com/S1383-7621(13)00073-8/h0020
http://refhub.elsevier.com/S1383-7621(13)00073-8/h0020
http://refhub.elsevier.com/S1383-7621(13)00073-8/h0050
http://refhub.elsevier.com/S1383-7621(13)00073-8/h0050
http://refhub.elsevier.com/S1383-7621(13)00073-8/h0050
http://en.wikipedia.org/wiki/Amdahl's_law
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://parsec.cs.princeton.edu/
http://software.intel.com/en-us/articles/larrabee
http://www.amd.com/us/products/technologies/apu/Pages/apu.aspx
http://www.amd.com/us/products/technologies/apu/Pages/apu.aspx
http://researcher.watson.ibm.com/researcher/view_project.php?id=2649
http://researcher.watson.ibm.com/researcher/view_project.php?id=2649
http://oprofile.sourceforge.net/
http://dx.doi.org/10.1016/j.sysarc.2013.05.006

10 J.-H. Ding et al./Journal of Systems Architecture xxx (2013) XxX—Xxx

Kuan-Ching Li is currently a Professor in the Depart-
ment of Computer Science and Information Engineering
at the Providence University, Taiwan. He received the
PhD and MS in Electrical Engineering and Licenciatura
in Mathematics from University of Sao Paulo, Brazil. He
'k b] was a chair in 2009 and the Special Associate to the
University President since 2010. He has served in a

:: . number of journal editorial boards and guest editorship,

. as also served many international conference chair-

< e manship positions as steering committee, advisory
' , committee, general and program committee chairs and
VRWA member of program committees. His research interests

include networked computing, parallel software design, and performance evalua-
tion and benchmarking. He is a senior member of the IEEE and a Fellow of the IET.

Yeh-Ching Chung received a BS in Information Engi-
neering from Chung Yuan Christian University in 1983,
and the MS and PhD in Computer and Information Sci-
ence from Syracuse University in 1988 and 1992,
respectively. He joined the Department of Information
Engineering at Feng Chia University as an Associate
Professor in 1992 and became a Full Professor in 1999.
From 1998 to 2001, he was the Chairman of the
Department. In 2002, he joined the Department of
Computer Science at National Tsing Hua University as a
Full Professor. His research interests include parallel
and distributed processing, cluster systems, grid com-

puting, multi-core tool chain design, and multi-core embedded systems. He is a
Member of the IEEE computer society and ACM.

chitect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.006

Please cite this article in press as: J.-H. Ding et al., An efficient and comprehensive scheduler on Asymmetric Multicore Architecture systems, J. Syst. Ar-

http://dx.doi.org/10.1016/j.sysarc.2013.05.006

	An efficient and comprehensive scheduler on Asymmetric Multicore Architecture systems
	1 Introduction
	2 Related work
	3 Proposed scheduler
	3.1 Framework components
	3.2 Execution flow
	3.3 Design
	3.3.1 Asymmetric-aware schedule policy
	3.3.2 NUMA-aware schedule policy

	4 Evaluation
	4.1 Accuracy of Online AMP Speedup Factor
	4.2 Accuracy of Contention Degradation Factor
	4.3 Aggregate result

	5 Summary and conclusions
	References

