
Review

Effectiveness of a replica mechanism to improve availability
with Arrangement Graph-Based Overlay

Ssu-Hsuan Lu a, Kuan-Ching Li b, Kuan-Chou Lai c, Yeh-Ching Chung a

a Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
b Department of Computer Science and Information Engineering, Providence University, Taichung, Taiwan
c Department of Computer Science, National Taichung University, Taichung, Taiwan

a r t i c l e i n f o

Article history:
Received 2 April 2013
Received in revised form
2 November 2013
Accepted 23 November 2013
Available online 1 December 2013

Keywords:
Overlay network
Arrangement graph
Peer-to-peer
Replica
AGO

a b s t r a c t

Peer-to-peer (P2P) overlay networks continue to evolve and grow to meet the challenges of a new age.
Because peers can join or depart overlay networks at any time, researchers are particularly interested in
how peers should be allowed to join overlay networks as well as how to minimize overhead in overlay
networks. An Arrangement Graph-based Overlay (AGO) system can efficiently reduce system overhead
by reducing the number of messages in a large-scale environment. However, AGO produces too many
polling messages for the joining process. To address this issue, an enhanced joining strategy greatly
improves the joining process of AGO to reduce the number of joining messages in this paper which is
called the Enhanced Arrangement Graph-based Overlay (EAGO). Besides, for the purpose of the
effectiveness of resource prefetching, a replica mechanism is employed to further improve routing
performance. Experimental results indicate that EAGO reduces the number of joining messages by at
least 20% compared with AGO, and it reduces the average number of routing hops due to the replica
mechanism.

& 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Although initially run on single servers, Internet services and
computing functions are now divided across multiple servers to
achieve the benefits of distributed architectures. For example, the
Google search engine runs over hundreds of thousands of inter-
connected servers. A distributed architecture comprises several
different technologies, including peer-to-peer (P2P) overlay net-
works. P2P systems and applications have attracted considerable
attention in computer science research.

Peers in P2P overlay networks are not only clients but also
servers; therefore, peers can distribute the overheads that occur in
client-server architecture. Each peer can access data from other
peers as well as share its own data. The convenience of P2P overlay
networks significantly affects common tasks such as file sharing,
VOIP, and streaming. The management of peer-to-peer connec-
tions is a fundamental issue that influences the efficiency of data
transmission between peers. One important goal of P2P networks
is to ensure that all clients provide resources (such as bandwidth,
storage space, and computing power) so that when they join the
system, the capacity of the entire system also increases.

The Arrangement Graph-based Overlay (AGO) (Lu et al., 2011) is
a P2P overlay network that inherits the properties of the arrange-
ment graph on which it is based (Chen et al., 2000; Chiang and
Chen, 1998; Day and Tripathi, 1992, 1993a, 1993b; Hsieh et al.,
1997). The arrangement graph is denoted by An;k, where k denotes
the number of digits of a peer ID, and n denotes the range of each
digit of the ID. Any two adjacent peers differ by only one digit, and
each peer manages a neighbor table generated according to its
peer ID. AGO consists of three main parts: joining, departing, and
routing. In AGO, bootstrap peer plays an important role in the
joining process which is composed of several peers. The bootstrap
peer manages a waiting peer pool in order to maintain some
number of existing peers in AGO.

Although AGO already greatly reduces the number of messages
created in the joining process and reduces bandwidth consump-
tion, new peers oftentimes still need to re-send several messages
in the joining process. Therefore, this study seeks to enhance the
AGO joining process and introduces a replica mechanism into
AGO; the new proposed algorithm overlay is called the Enhanced
Arrangement Graph-based Overlay (EAGO) (Lu et al., 2012).

EAGO retains the properties of AGO but significantly modifies
the main part of the joining process while improving upon AGO's
limitations. There are two major improvements of EAGO over
AGO: (1) an enhanced joining strategy that reduces the abundance
of polling messages associated with the joining process and (2) a
replica mechanism that improves routing performance. In the
enhanced joining strategy of EAGO, the waiting peer pool in the
bootstrap peer is adjustable. Peers in this pool are removed when
their neighbor tables are full, which makes it unnecessary for new
peers to repeatedly attempt to rejoin. In this way, the large
number of messages can be reduced by ensuring that neighbor
tables of peers in the pool are not full.

Another contribution of EAGO is that it adds a replication
mechanism to AGO. In general, replication facilitates increased
data availability by minimizing overhead (Rzadca et al., 2010).
EAGO utilizes the property of the vertex symmetry of the arrange-
ment graph to achieve this goal. In EAGO, each peer assigns a file
replica to the complement peer whose peer ID is (nþ1)'s comple-
ment number where n is the parameter n of the arrangement
graph. In the process of routing, the peer that attempts to discover
a destination peer can also attempt to discover the complement
peer of the destination peer. Besides, this study utilizes the
concept of virtual peers to deal with vacant peers to make the
arrangement graph can be kept full. According to the property of
the P2P environment, the number of peers in the system cannot be

always equal to n!=ðn�kÞ!. The goal of this method is to let other
existing peers act as agents of those vacant peers that do not exist
in the arrangement graph yet. Those vacant peers who are
managed by other physical peers are called virtual peers. After a
new peer joins the system, it tries to discover information of its
neighbors, and becomes agents of its vacant neighbors if it is
needed. Basically, peers only need to be agents of their neighbors,
so a physical peer may also acts as several virtual peers. By using
this method, the arrangement graph can be kept full, and the
routing hops of the arrangement graph can be kept within ⌊3k=2c.
In this way, routing performance and resource availability can be
increased.

Some experiments were performed to demonstrate the pro-
posed mechanism. The experimental results revealed that the
enhanced joining strategy not only reduces the number of joining
messages but also reduces bandwidth consumption under differ-
ent churn rates (Churn rate, 2013). Although a few numbers of
messages are created for maintaining virtual peers, the virtual
peer mechanism can help the performance of the replica mechan-
ism. The experimental results demonstrate that the replication
mechanism used by EAGO reduces the number of routing hops
and increases resource availability.

The remainder of this paper is organized as follows. Section 2
presents details on P2P overlay networks and AGO system. Section 3
describes the proposed EAGO, and some experimental results
are shown in Section 4. Finally, conclusions and future work are
discussed in Section 5.

2. Related work

P2P systems release the need for a central coordination point,
and this makes systems more scalable and flexible. This section
introduces P2P overlay networks in general and the AGO system in
particular.

2.1. Peer-to-peer overlay network

P2P overlay networks have become a popular research topic in
recent years. The P2P overlay network is an abstract virtual
network based on a physical network. In this virtual network,
any connection between two peers does not consider the actual
connection topologies of the physical network but instead is
initiated according to a specific algorithm. Additionally, P2P over-
lay networks must consider how to allow peers to join or depart
from the network. There are many well-known systems that use
P2P overlay networks (Lua et al., 2005); these systems can be
divided into structured and unstructured networks according to the
topology of the overlay networks.

In structured P2P overlay networks, overlay networks assign
keys to data items and configure peers to comply with certain
rules corresponding to these keys. The most common method
involves the Distributed Hash Table (DHT) (Lua et al., 2005) to
assign a unique pair set {key, value } to peer positions and data, as
demonstrated by Chord (Stoica et al., 2001, 2003), Pastry
(Rowstron and Druschel, 2001), and Kademlia (Heep, 2010;
Maymounkov and Mazieres, 2002). Unstructured P2P overlay
networks (Haribabu et al., 2008) often use flooding (Jiang et al.,
2003, 2008) and Time-To-Live (TTL) to make queries on overlay
networks, such as Gnutella (Lua et al., 2005). This is because there
is no any specific rule for distributing and querying resources.
Therefore, some research has discussed how to route effectively in
unstructured P2P overlay networks, such as Route Learning (Ciraci
et al., 2009) and traceable gain matrix (TGM) (Xua et al., 2010).
Furthermore, P2P overlay networks also can be applied to wireless
ad hoc environment. In (Dhurandhera et al., 2011), authors tried to

S.-H. Lu et al. / Journal of Network and Computer Applications 41 (2014) 441–450442



apply the bee algorithm to P2P file searching in mobile ad hoc
networks.

Chord, a P2P overlay network, uses consistent hashing to assign
keys to peers in order to establish a network. The consistent
hashing function uses SHA-1 as the base function to assign an
m-bit identifier to each peer and data key. The length of the
identifier m must be sufficiently large to ensure that each peer has
a unique key. As m is the number of the bits in the key/NodeID
space, each peer maintains a routing table with up to m entries
called the finger table. Identifiers are ordered on an identifier
circle known as the Chord ring, and each peer in the Chord ring
must maintain a finger table that records predecessors and
successors.

Koorde, which is based on Chord, includes de Bruijn graphs
(Kaashoek and Karger, 2003). Koorde also uses consistent hashing
to map keys to peers and forward lookup requests on the identifier
circle, which has an embedded de Bruijn graph. Each peer in the
de Bruijn graph is represented by binary numbers of b bits. A peer
and a key both have identifiers that are uniformly distributed in a
2b identifier space.

Pastry uses a Plaxton-like prefix routing method to establish its
overlay network. Each peer is assigned a 128-bit peer identifier
known as NodeID. NodeID is a circular space from 0 to 2128 �1.
When a peer joins the system, the peer is assigned a space within
this circular space. Each peer in Pastry maintains a neighborhood
set, a leaf set, and a routing table. The NodeIDs and IP addresses of
jMj peers that are closest in proximity to the local peer are
included in the neighborhood set M. Each peer also has a leaf set
L, which contains the L/2 numerically largest NodeIDs and the L/2
numerically smallest NodeIDs. A routing table records the NodeIDs
that have the same prefix as its NodeID.

Kademlia uses a 160-bit key space to assign each peer a NodeID,
and {key, value} pairs are stored on peers with IDs close to that of
the key. Kademlia uses a novel XOR metric to measure the distance
between points in the key space. There are three parameters of
Kademlia: Alpha, B, and k. Alpha is a small number representing
the degree of parallelism in network calls; B is the size in bits of
the keys used to identify nodes and store and retrieve data; and k
is the maximum number of contacts stored in a bucket.

2.2. Arrangement graph

An arrangement graph is a generalized class of star graphs that
preserves ideal qualities of the star graph topology. An arrange-
ment graph can be represented as An;k, which is given by two
parameters n and k, with 1rkrn�1. It is an undirected graph,
and its peers are arrangements of k elements chosen from n
elements. Furthermore, the edges of an arrangement graph
between two peers correspond to arrangements differing by
exactly one of their k elements. The following are some definitions
and basic properties of arrangement graphs.

Definition 1. An (n, k)-arrangement graph An;k is an undirected graph
(V, E), where V¼fp1p2…pkjpiA 〈n〉 and piapj for ia jg ¼ Pn

k , and
E¼ fðp; qÞjp; qAV ; and for some i in 〈k〉 piaqi and pj ¼ qj for ja ig.

Basic properties. An (n, k)-arrangement graph is represented as
An;k where the number of peers is n!=ðn�kÞ!, the degree is k(n-k),
and the diameter is ⌊3k=2c.

G¼(V, E) comprises sets of peers, such as participating peers,
and edges, such as overlay links. Each peer of An;k is an arrange-
ment with k digits out of n elements of 〈n〉. Note that edges
connect peers that differ by exactly one of their k digits. An edge of
An;k that connects two arrangements that differ only in position i is
called an i-edge, and An;k is vertex- and edge-symmetric.

A (4, 2)-arrangement graph is shown in Fig. 1. Peer 24 connects
to Peers 21, 23, 14, and 34. Only one digit of Peer 24's ID differs
from those of these four peers (i.e., 21, 23, 14, and 34). In other
words, all peers with one different digit are connected, and each
peer connects to four peers; this is calculated as k(n-k)¼4.

2.3. The AGO system

AGO (Lu et al., 2011) provides a P2P overlay network environ-
ment that is developed from the arrangement graph. Therefore,
AGO inherits some properties of the arrangement graph to deploy
an overlay network and develop a routing algorithm. In this
section, details on the construction of AGO and the routing
algorithm are provided.

2.3.1. Overview of AGO
AGO is developed using the properties of the arrangement

graph. AGO consists of three main parts: joining, departing, and
routing. To join AGO, each peer needs to process a series of joining
actions. Furthermore, the bootstrap peer serves as the AGO portal,
which plays an important role in AGO. Each peer joins AGO by
communicating with the bootstrap peer and the bootstrap peer
has a pool called a waiting peer pool. This waiting peer pool is
used to record a set of peers that already exist in AGO so that new
peers can ask for the IDs of these existing peers.

When a new peer wants to join AGO, it must contact the
bootstrap peer first and request the ID of an existing peer in the
waiting peer pool. When the bootstrap peer receives the request
from the new peer, it chooses a peer ID from the waiting peer pool
and sends the peer ID back to the new peer. After the new peer
receives the existing peer ID from the bootstrap peer, it sends a
request to this existing peer and requests to be a neighbor. When
the existing peer receives this request from the new peer, it checks
whether its neighbor table is full. If the neighbor table is not full, it
selects an unused peer ID and assigns this peer ID to the new peer.
However, if its neighbor table is full, it selects one of its neighbors,
relays this neighbor's information to the new peer, and instructs
the new peer to request to be that neighbor's neighbor.

Once the new peer receives a reply from the existing peer, it
will repeat the actions outlined above. If the new peer obtains a
peer ID, the new peer becomes the neighbor of the existing peer
and successfully joins AGO. However, if the new peer does not
obtain a peer ID and receives an ID of another existing peer, then
the new peer re-requests a peer ID from this peer to join AGO.

Whenever the new peer obtains a peer ID, the IDs of its neighbor
table are generated according to its peer ID, and information on its
neighbors becomes discovered by using a routing algorithm. Each

42
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2343 21
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Fig. 1. (4, 2)-Arrangement graph.
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peer also generates an ID list according to An;k using the same
specific algorithm, and each peer becomes aware of its related peers
in the ID list. This ID list is used to discover resources when those
peers do not exist.

Figure 2 illustrates the AGO joining process, which includes the
following steps:

1. A new peer attempts to join AGO by sending a joining request
to the bootstrap peer.

2. The bootstrap peer sends information of an existing peer in the
waiting peer pool to the new peer.

3. After the new peer receives the information, the new peer
sends a joining message to the existing peer.

4. The existing peer finds that its neighbor table is full, and it
randomly selects an existing peer from its neighbor table and
sends information on that existing peer to the new peer.

5. After the new peer receives information on this existing peer,
the new peer re-sends a joining message to the existing peer.

6. The existing peer determines that its neighbor table is not full,
selects an unused peer ID from its neighbor table, and sends
the ID back to the new peer.

7. After the new peer receives the ID, the new peer uses it to
generate its own neighbor table. The new peer places informa-
tion on the existing peer into its neighbor table and uses a
routing algorithm to discover information on other neighbors.

Conversely, when peers depart AGO, they must inform other
peers about their departure. When a peer wants to leave the
system, the departing peer informs the peer in the next position of
the ID list and transmits any files that it manages to the next peer.

The departing peer then sends requests to inform its neighbors
and the bootstrap peer about its departure. When its neighbors
receive the departure information, they remove the departing peer
from their neighbor tables. The bootstrap peer also removes the
departing peer from the waiting peer pool if necessary. To avoid
unpredictable departures, each peer periodically sends requests to
all of its neighbors. If the neighbors do not respond to the peer
after some time, the peer assumes the neighbor that has departed
and removes that peer from its neighbor table.

2.3.2. Routing algorithm in AGO
The routing algorithm is used by peers when joining overlay

networks to determine whether the neighbors in their neighbor
tables already exist. In addition, when a peer attempts to discover
a resource, it learns the destination peer ID, which manages the
resource by using DHT and tries to reach the destination peer by
using the routing algorithm. AGO's routing algorithm was devel-
oped by utilizing the property that the IDs of any two adjacent
peers differ by only one digit. Furthermore, the diameter of the
arrangement graph is ⌊3k=2c, so this property can be used to try to
bind routing hops.

AGO's routing algorithm can be divided into two parts: comparing
and forwarding. When a peer receives a request to discover the
destination peer, it compares its peer ID with the destination peer ID.
If they are the same, the peer relays its information to the peer who
sent the request. However, if its peer ID is not the same as the
destination peer ID, the peer begins to check the IDs of its neighbors.
If any neighbor's ID is the same as the destination peer ID, the peer
forwards the request to that neighbor.

If neither the ID of the peer nor the IDs of its neighbors are the
same as the destination ID, the peer should forward this request to
those neighbors that have a peer ID that is only one digit different
from the destination peer ID. However, if no neighbor conforms to
the above conditions, the peer may fail to meet the comparing
digit requirement, meaning that the peer forwards the request to
any neighbors with peer IDs that are two digits different from the
destination ID. If there is still no neighbor who conforms to this
stipulation, the peer forwards the request to any neighbors with
peer IDs that are three digits different from the destination ID; this
pattern continues until the criteria are satisfied. The worst-case
scenario is to forward the request to neighbors with peer IDs that
have at least ⌊k=2c digits the same as the destination ID. In this
way, AGO can avoid sending too many routing messages. Figure 3
shows the pseudo-code of the routing algorithm.

Figure 4 provides an example of the routing process with A5;4

for the discovery of destination Peer 4251 by Peer 1453. When
Peer 1453 tries to access data that Peer 4251 manages, Peer 1453
sends a lookup request to Peer 4251. Peer 1453 checks its
neighbors according to the routing algorithm and finds that only
Peer 1253 differs by two digits from Peer 4251. Therefore, Peer
1453 sends this request only to Peer 1253. Peer 1253 also follows
the routing algorithm and sends the lookup request to Peer 1254.
Finally, Peer 3251 finds that its neighbor Peer 4251 has the same
ID as the destination ID, and the lookup request is sent to Peer

Fig. 3. The routing algorithm pseudo-code. Fig. 4. An example of the AGO routing algorithm.

1

2

3

4

7

existing peer

new peer

bootstrap

neighbor

Fig. 2. Illustration of the joining processes in AGO.
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4251. According to the digit-filtering rule, Peer 4251 receives the
lookup request and relays its information to Peer 1453. Addition-
ally, each peer can also filter lookup requests to avoid dealing with
the same lookup request multiple times.

3. Enhanced AGO system with an adjustable waiting peer pool

This paper enhances the waiting peer pool with respect to
joining procedures and adds a replica mechanism to increase
resource availability. Peers in the waiting peer pool are updated
so that the joining process for new peers is more efficient and
accomplished without the need to re-query. Replica files are stored
by complement peers to improve searching performance. Further-
more, the virtual peer mechanism can avoid missing complement
peers to put replica files and guarantee to bind routing hops.
The following sections describe these two methods, which
together enhance the performance of AGO.

3.1. Enhanced joining strategy

In the version of AGO described, peers in the waiting peer pool
were fixed. Due to the size limitations of the neighbor tables of
peers in the waiting peer pool, the new peer will need to query
more frequently when the neighbor tables of peers in the waiting
peer pool are full. Especially when there are large numbers of
peers, individual peers must query several times and thus produce
large numbers of messages. To eliminate this situation, an
enhanced joining strategy is introduced. EAGO modifies the
process of asking for peer IDs to improve the performance of the
system as a whole.

EAGO makes the bootstrap peer's waiting peer pool adjustable
such that peers in the waiting peer pool are not fixed. Peers in the
waiting peer pool will be changed when their neighbor tables are
full. When an existing peer in the waiting peer pool receives a
joining request from a new peer, the existing peer checks whether
its neighbor table is full. If its neighbor table is not full, the existing
peer chooses an unused peer ID and assigns it to the new peer.
The existing peer then checks its neighbor table again. If its
neighbor table is full, the existing peer sends a message to the
bootstrap peer to be removed from the waiting peer pool so that a
new peer can be placed into the waiting peer pool.

The new peer sometimes sends a joining message to the
existing peer before the bootstrap peer removes the existing peer
from the waiting peer pool. In this case, the existing peer may find
that its neighbor table is full when it receives the joining message
from the new peer. To address this issue, the existing peer sends
messages to the new peer and the bootstrap peer. The existing
peer asks the new peer to send the joining request to the bootstrap
peer again and asks the bootstrap peer to remove the existing peer
from the waiting peer pool.

EAGO can therefore improve the AGO joining process by
retaining only the neighbor tables of peers in the waiting peer
pool that are not full. This method can greatly reduce the number
of repetitive messages sent by new peers. The adjustable waiting
peer pool enables the continuous changing of peers in the pool
and ensures a more uniform peer distribution. Figure 5 provides
an example of the EAGO joining process.

As shown in Fig. 5, the EAGO joining process consists of the
following steps:

1–3. These three steps are the same as the first three steps of AGO.
4. This step differs from AGO. If the existing peer finds that

its neighbor table is full while receiving a joining message
from the new peer, the existing peer sends two messages:
one to the new peer and one to the bootstrap peer.

(a) One message informs the new peer to send the
joining request to the bootstrap peer again.

(b) The other message informs the bootstrap peer to
remove this existing peer from the waiting peer pool.

5. The new peer sends the joining request to the bootstrap
peer again.

6. The bootstrap peer sends the information of another
existing peer to the new peer.

7. The new peer sends the joining message to another
existing peer.

8. The existing peer finds that its neighbor table is not full,
chooses an unused ID from its neighbor table, and assigns
it to the new peer.

9. The new peer can then obtain an ID and discover
information about its neighbors.

3.2. The replica mechanism

The replica mechanism is one of the methods for overcoming
the unpredictability of the behavior of peers. While each file is
distributed to a certain peer, a replica is assigned to another peer.
A good replica mechanism can provide the desired availability of
data with a minimum number of replicas and can decrease the
number of hops required to look up information. In EAGO, a replica
mechanism is used to promote the routing algorithm performance.
Because too many replicas will increase the difficulty of maintain-
ing data correction, there is only a replica of each file is put on the
complement peer. Each peer manages certain files and assigns
replicas of files to its complement peer. The complement peer is
the peer that has an ID that is the (nþ1)'s complement number to
its ID. For example, in the case of A8;6, the complement peer of Peer
543612 is Peer 456387, so Peer 543612 assigns a file replica to Peer
456387. Therefore, Peer 456387 not only manages its files but also
manages replica files of Peer 543612.

Peers in the arrangement graph are symmetric; therefore, if
one peer is far from Peer A, the peer is near the symmetric peer of
Peer A. This important property was used to design our replica
mechanism. When a peer tries to access a certain file, it can access
the file from the destination peer that manages the file as well as
the file from the complement peer of the destination peer, the
former of which manages the replica file. In this way, if the
destination peer that manages the file departs or crashes, other
peers can still access the replica file from the complement peer.
Additionally, peers may be closer to the complement peer than to
the destination peer that manages the file. Therefore, peers can
route to the complement peer with fewer hops. By assigning

1
2

3 7

4b

existing peer

new peer

bootstrap

neighbor

Fig. 5. The EAGO joining process.
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replica files to complement peers, peers may be able to discover
resources in a fewer number of hops.

Furthermore, each peer does not need to spend extra space to
record where its own replica file is because each peer can directly
calculate its complement peer ID according to its peer ID. When a
peer tries to access a certain file, it can obtain the ID of the peer
that owns that file and directly calculate the complement ID of the
peer that owns the replica file. Therefore, the peer can send
requests to both of the peers that own the original and replica
files by using the routing algorithm. In this way, there is a greater
chance of finding resources without increasing the overhead
associated with recording the location of the replica file.

In order to avoid the situation that there does not exist the peer
with ID being equal to (nþ1)'s complement peer, the concept of
virtual peers is used in our system. The vacant peers which are so
called virtual peers are managed by other physical peers, those
physical peers act as agents of those vacant peers. In a P2P
environment, peers join and leave frequently, and virtual peers
can make the arrangement graph of EAGO always full. Virtual peers
in this system mean those peers that do not really exist and are
managed by some other physical peers. Furthermore, the distance
between any two peers is shorter than the value of diameter.
Therefore, the longest distance between Peer A and Peer A's
complement peer is equal to the diameter. Now, there is a querying
peer between these two peers, so this querying peer either is closer
to Peer A or is closer to Peer A's complement peer. The worst case is
that the querying peer is in the middle of those two peers.

The following describe some actions for maintaining virtual
peers. After a new peer joins the system and records its neighbors'
information, it receives its information managed by a physical peer
and the information of agents of those neighbor peers who do not
exist. Besides, if the new peer finds that the agent of a neighbor
peer is not neighboring relation, the new peer tries to obtain the
right of managing that neighbor peer. The new peer also commu-
nicates with physical peers in its neighbor table, and distributes
the loads of managing virtual peers. On the other hand, before a
peer leaves the system, it chooses a physical neighbor peer to be
the agent for it. The leaving peer also needs to choose some other
physical peers to be agents for virtual peers it manages.

Figure 6 shows the same example as Fig. 4 but with the
inclusion of the replica mechanism. As seen in Fig. 6, Peer 1453
needs to take five hops to reach Peer 4251 using the routing
algorithm. Peer 2415 is the complement peer of Peer 4251, so a
replica file of Peer 4251 is stored by Peer 2415. However, Peer 1453
needs to take only three hops to reach Peer 2415 using the routing
algorithm. Therefore, this replica mechanism may allow peers to
find files more quickly and with greater success.

3.3. Theorem analysis

In the arrangement graph, the maximum number of peers that
AGO can accommodate is

Nmax ¼
n!

ðn�kÞ!: ð1Þ

Note that the diameter, which is defined as the longest distance
between any two peers, is ⌊3k=2c.

In general, the distance between any two peers is related to the
number of different digits between those two peers. Assume that
there are two peers and that Peer A tries to access data from Peer
B. Peer A's ID is IDA ¼ a1a2a3…ak, and Peer B's ID is IDB ¼ b1b2
b3…bk. If there are x different digits between Peer A and Peer B,
then Peer A needs to make x hops to reach Peer B, where xrk.
This distance can be calculated as A � B, and the aggregate of “1”
indicates the distance.

For example, Peer A's ID is IDA¼123456, and Peer B's ID is
IDB¼127856.

-A � B¼ 001100

There are two “1 s”, which indicates that there are two different
digits between Peer A and Peer B. Therefore, the hop count
between Peer A and Peer B is equal to the number of “1 s” in A � B.

Let us now consider the values of each digit of peer IDs. If there
are x “1 s” in A � B but some values of these x digits are the same,
then Peer A may need more than x hops to reach Peer B. For
example, assume that Peer A's ID is 123456 and that Peer B's ID is
124356.

-A � B¼ 001100

However, because of the rule of IDs associated with the arrange-
ment graph, Peer A cannot reach Peer Bwith only two hops; Peer A
needs three hops to reach Peer B:

123456-123756-124756-124356:

From the above discussion, it follows that

xrHoplookup; ð2Þ
where Hoplookup is the number of hops that Peer A needs to take to
reach Peer B. According to the theorem associated with the
arrangement graph, we know that

Hoplookupr
3k
2

� �
: ð3Þ

From (2) and (3), we obtain

xrHoplookupr
3k
2

� �
: ð4Þ

Next, let us consider the average number of hops that peers
require to reach other peers. Assume that when Peer P tries to
discover resources on Peer Q, there is a difference of t digits
between these two peers. The number of peers that have t digits
different from Peer P is

diff ðtÞ ¼ k

t

� �
� ∏

n�kþ t

n�kþ1
þ ∑

t�1

i ¼ 1
ð�1Þi � t

i

� �
� ∏

n�kþ t� i

n�kþ1

 !
þð�1Þt

" #
: ð5Þ

From (5), the expected value of the average number of hops is

EðxÞ ¼∑k
t ¼ 1ðdiff ðtÞ � tÞ

Nmax
: ð6Þ

We then have

EðxÞrEðHoplookupÞr
3k
2

� �
: ð7Þ

Furthermore, each peer assigns a replica to its complement
peer, which enables other peers to have a greater chance of finding
resources with fewer hops. However, a peer may be far from the
original peer that has the resource but close to the complement
peer, which has the replica. For instance, in A8;6, Peer E with
IDE¼371542 tries to find the resource on Peer F with IDF¼123456.
Peer G is the complement peer of Peer F with IDG¼876543. The
number of hops that Peer E needs to take to reach Peer G is less
than that required to reach Peer F. Therefore, Peer E can obtain theFig. 6. An example of the EAGO routing algorithm with the replica mechanism.
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resource from the complement Peer G instead of from Peer F, as
demonstrated in (8).

Hoplookup ¼MinðHoppeerF ;HoppeerF′scomplementpeerÞ: ð8Þ

4. Experimental results

This section presents some experimental results on AGO, EAGO,
and other P2P systems. OverSim (Baumgart et al., 2007, 2009;
Munoz-Gea et al., 2009; The OverSim P2P Simulator, 2013) was used
to evaluate the performance of these systems because it allows them
to be evaluated based on the same environment setup.

4.1. Experimental environment

Both AGO and EAGO were implemented using OverSim. OverSim
is an open-source simulation framework for building overlays and
P2P networks on top of the OMNeTþþ simulation environment
(OMNeT, 2013), and it has a flexible underlying network scheme.
Several structured and unstructured P2P systems and overlay
protocols are contained in OverSim, such as Chord, Kademlia, Pastry,
and Koorde. It is a powerful and widely used simulator for
investigating P2P environments. Default values are used for all
general settings provided by OverSim, such as network settings, to
make all simulations run under consistent environment.

The following paragraph describes some of the parameters
used in our experiments and provides descriptions of our simula-
tions. AGO and EAGO were executed with A8;6, and the parameters
used in the other P2P overlay networks are shown in Table 1.
These parameters are set to make the peer space of each overlay
network is close to 20,000 peers. The overlay framework OverSim
was employed to simulate all experiments with 1000–10,000
peers. Each test scenario was simulated 10 times, and average
values were calculated by removing the maximum and minimum
values. The fundamental nature of P2P overlay networks enables
peers to join and depart frequently, so simulations were also
executed with different churn rates. The churn rate is a measure of
peers join and leave over a specific period of time (Churn rate,
2013), and all peers were assigned different lifetimes that varied
between 1000 and 10,000 s according to the (Weibull distribution,
2013).

4.2. Number of messages created to build a system

When a peer joins a P2P overlay network, it needs to process a
series of steps that include requesting a peer ID and discovering
neighbors; these steps produce a large number of messages. Peers
in both EAGO and AGO join systems by sending messages to peers
in the waiting peer pool. In Chord, peers obtain peer IDs via
hashing table and sending messages to neighbors. The joining
processes of Koorde are similar to those in Chord but using
different algorithm. In Pastry, it randomly assigns peer IDs accord-
ing to the value of parameter b and generates related neighbor
table. In Kademlia, peers also randomly obtain peer IDs and
discover distances to other peers by computing as the exclusive

or of the two peer IDs. Given that an excessive number of
messages will affect the efficiency of these systems, the purpose
of this experiment was to illustrate howmany messages EAGO and
other P2P overlay networks produce for peers joining systems.

The EAGO performance in building the system can be evaluated
by comparing message amounts created by peers joining various
systems. EAGO uses an enhanced joining strategy to improve
the original processes of AGO; Fig. 7 illustrates the performance
results of these improvements. Some P2P overlay networks
created messages that were too large, such as Pastry records more
information of other peers and needs to maintain that informa-
tion. Therefore, Pastry produces a larger number of messages than
other P2P overlay networks. The results are shown on a logarith-
mic scale to illustrate the corresponding relationship between
these overlay networks. The details on the number of messages are
presented in Table 2 for understanding real differences between
these P2P overlay networks.

As seen in Fig. 7, the AGO system significantly reduces the
number of joining messages created compared with other P2P
overlay networks. Furthermore, EAGO yields significant reductions
in the number of joining messages relative to AGO. Table 2
provides details on the number of messages created for each
overlay network and shows that EAGO can reduce the number of
messages by at least 20% compared with AGO. EAGO created less
than 25% of the number of messages created in other overlay
networks, and this reduction became more apparent for large peer
groups. This result shows that EAGO can significantly reduce
message amounts when building a system.

In the real world, peers frequently join and depart P2P overlay
networks. Whenever a peer joins or departs a P2P overlay net-
work, the peer produces several messages. When the number of
peers becomes large, the number of these messages also becomes
very large. These messages will consume the bandwidth of both
peers and overlay networks, so some additional experiments were
conducted to demonstrate how these messages are affected at
different churn rates.

4.3. Churn rate

This subsection presents some experimental results to illustrate
the effect of bandwidth consumption at different churn rates.
The bandwidth consumption corresponds to the average number
of sent and received message bytes per second for a given peer.
These messages include joining messages, routing messages, and
messages associated with the maintenance of neighbor tables.
Because the fundamental nature of P2P overlay networks allows
peers to join and depart at any time, peers must send many
messages to maintain neighbor tables for joining or departing
systems. Figure 8 shows the bandwidth consumption of each

Fig. 7. Number of messages created by peers to join various systems.

Table 1
Parameters of each overlay network.

Overlay Parameters

AGO, EAGO n¼8, k¼6
Chord m¼14
Koorde b¼14
Pastry b¼4, l¼16
Kademlia Alpha¼3, B¼160, k¼20
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overlay network at different churn rates for 2000, 6000, and
10,000 peers.

As shown in Fig. 8, lifetime varies between 1000 and 10,000 s,
where a shorter lifetime means that peers join and depart systems
more frequently. This results in the creation of a greater number
of messages. The results from Fig. 8 are shown on a logarithmic
scale to illustrate the corresponding relationship on bandwidth
consumption between these overlay networks. As seen in Fig. 8,

EAGO and AGO consume the least bandwidth, and EAGO con-
sumes less bandwidth than AGO, especially when there are more
peers in the system. Figure 8 shows that EAGO can reduce
bandwidth consumption by approximately 10% relative to AGO
and that EAGO consumes less than 40% of the bandwidth of other
overlay networks. Therefore, EAGO can consume less bandwidth
even when there are large numbers of peers.

4.4. Average number of routing hops

An efficient routing algorithm is very important in P2P overlay
networks because peers often need to discover resources or look
up the information of other peers. Routing also produces some
messages, so our goal was to develop a routing algorithm without
increasing system overhead in this study.

Figure 9 shows the average number of routing hops required to
look up information for each P2P overlay network with different
number of peers. In Fig. 9, the “AGO (Expected Value)” line
corresponds to the expected average number of routing hops
calculated using Eqs. (5) and (6) with A8;6. The calculated expected
average number of routing hops is equal to 5.25. To perform this
simulation, the files are distributed to all peers to calculate the
average number of routing hops.

Figure 9 shows that the average number of routing hops for
AGO is approximately 5.5, which is slightly higher than the
theoretical expected value derived from some of the special cases
mentioned in the “Theorem analysis” section. However, the
average number of routing hops for EAGO is approximately 4,
which is less than the theoretical expected value. This result
occurred because EAGO utilizes the replica mechanism, which
allows peers to route with fewer hops. Although the average
number of routing hops for EAGO is slightly higher than the
average number of routing hops in Pastry, Pastry also creates many
more messages than EAGO. Pastry records more information of
peers, so this can benefit routing. The average number of routing
hops for EAGO is constant, regardless of the number of peers in the
system. This is because it is related to the value of parameter k
according to the property of the arrangement graph. However, the
average number of routing hops associated with other overlay
networks increases slightly as the number of peers increases.
Therefore, EAGO enables efficient routing without increasing
system overhead, regardless of the number of peers.

4.5. Request frequency

In the previous subsection, the results of the average number of
hops associated with different systems were presented. However,
small numbers of routing hops sometimes result from the creation
of a large number of messages, which produces large system
overhead. In this subsection, the bandwidth consumption for
different request frequencies is used to compare the performance
of various systems.

Fig. 8. Bandwidth consumption under different churn rates. (a) peer count=2000,
(b) peer count=6000 and (c) peer count=10000.

Table 2
Detailed information on the number of messages created.

Peers EAGO AGO Chord Koorde Pastry Kademlia

1000 185628 232797 1359830 3838868 19863140 1567417
2000 558635 697350 3031425 10882911 72058328 3820027
3000 758737 982692 5045875 21086653 138043748 6365253
4000 1415022 2018987 7332288 34495810 213784198 8981605
5000 2459740 3292855 9908696 50985456 298445765 11904636
6000 3150803 4890596 12737604 70654803 389899887 14854760
7000 3896397 5837528 15866716 93662019 488145456 22600149
8000 4518217 7616313 19193316 119301299 591390248 28758395
9000 5362931 9165380 22878497 148048890 699317417 36224712

10,000 5930388 11347705 26818547 179722853 810098957 45037570
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In P2P overlay networks, peers often send some requests to
discover resources. If there are many peers and they send requests
frequently, a large number of messages will be produced, thus
consuming a large amount of bandwidth. To better illustrate this
issue, the intervals between request messages were set to present
the bandwidth consumption. Specifically, when the message
interval time is short, peers send request messages more fre-
quently. Figure 10 shows the bandwidth consumption of each P2P
overlay network under different message intervals when the
number of peers is 2000, 6000, and 10,000. These experiments
were also performed with different churn rates. Because the
trends of the different results are the same, only results with
lifetimes of 5000 s are shown.

The results in Fig. 10 are shown on a logarithmic scale to
illustrate the corresponding relationship between these overlay
networks. As shown in Fig. 10, all of these overlay networks
consume more bandwidth when the message interval time is
short because more messages are created. EAGO and AGO con-
sume the least bandwidth, and EAGO consumes less bandwidth
than AGO. EAGO can greatly reduce the consumption of band-
width, especially when there are more peers. Therefore, EAGO is
more efficient in large-scale environments.

4.6. Discussion

The above simulations demonstrate that performance was
greatly improved by enhancing the joining strategy and using a
replica mechanism. The enhanced joining strategy can replace
peers in the waiting peer pool. Compared with the joining strategy
of AGO, this reduces the messages by at least 20% and consumes
approximately 10% less bandwidth. Furthermore, the replica
mechanism increases the availability of data and reduces the
amount of hops needed for peers to route to destination peers
by approximately 2 hops.

Besides, compared with other P2P overlay networks, EAGO
significantly reduces the number of messages produced and
reduces the number of average routing hops. From experimental
results, EAGO and Kademlia almost have the same performance in
routing hops, but the number of messages Kademlia produces is
about 6 times of EAGO. Similarly, although the average routing
hops of EAGO are a little more than those of Pastry, the number of
messages Pastry created is at least 105 times of EAGO. Additionally,
EAGO performs better than Chord and Koorde both in the number
of messages created and average routing hops. In summary, EAGO
can keep performance balance on the number of messages created
and average routing hops. Furthermore, the experiments demon-
strate that EAGO consumes less bandwidth under different churn
scenarios and with different request frequencies, especially in
large-scale environments. Therefore, EAGO promotes the perfor-
mance in many aspects.

5. Conclusions and future work

This study proposes EAGO, which utilizes an enhanced joining
strategy and integrates a replica mechanism to increase the
resource availability of AGO. Furthermore, the virtual peer
mechanism also is used to improve routing performance and
avoid the missing problem of complement peers. In AGO, the
joining process may force new peers re-send an excessive number
of joining messages to existing peers. Although the average
number of routing hops associated with AGO is close to the
theoretical expected value, it is still slightly higher than the
expected value. Therefore, an enhanced joining strategy and a
replica mechanism were introduced to improve the joining pro-
cess and increase resource availability.

The experimental results illustrate that the enhanced joining
strategy significantly reduced the number of messages associated
with attempts to re-join. This reduction can decrease system over-
head for queries as well as bandwidth consumption. The enhanced
joining strategy enables peers to join quickly without retrying several
times and reduces the number of messages created. Furthermore, the
strategy of adding replica to the complement peer using the property

Fig. 9. Average number of routing hops required to look up information.

Fig. 10. Bandwidth consumption for different message intervals. (a) peer count =
2000, (b) peer count =6000, (c) peer count = 10000.
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of the vertex symmetry of the arrangement graph reduces the
average number of routing hops.

In the future, EAGO can be further improved. Just like other
structured P2P overlay networks, the number of peers that overlay
networks can contain is limited by certain parameters. Currently,
the number of peers EAGO can contain is limited by (n, k). When
the number of peers is above the capacity of EAGO, new peers
must wait until some peers leave the system, which forces new
peers to retry to join. To avoid this situation, EAGO will dynami-
cally change values of (n, k) according to the number of peers in
the system. EAGO is initialized with small values of (n, k), and the
values are gradually increased. Based on this concept, this method
can improve the efficiency of the system and reduce the number of
routing hops. It is our hope that EAGO can be applied to other
fields.
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