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ARTICLE INFO ABSTRACT

Article history: Task consolidation is a way to maximize utilization of cloud computing resources. Maxi-

Available online 1 December 2012 mizing resource utilization provides various benefits such as the rationalization of mainte-
nance, IT service customization, and QoS and reliable services. However, maximizing

Keywords: resource utilization does not mean efficient energy use. Much of the literature shows that

Energy consumption energy consumption and resource utilization in clouds are highly coupled. Consequently,

Cloud computing

uti some of the literature aims to decrease resource utilization in order to save energy, while
Task consolidation

others try to reach a balance between resource utilization and energy consumption. In this
paper, we present an energy-aware task consolidation (ETC) technique that minimizes
energy consumption. ETC achieves this by restricting CPU use below a specified peak
threshold. ETC does this by consolidating tasks amongst virtual clusters. In addition, the
energy cost model considers network latency when a task migrates to another virtual clus-
ter. To evaluate the performance of ETC we compare it against MaxUtil. MaxUtil is a recently
developed greedy algorithm that aims to maximize cloud computing resources. The simu-
lation results show that ETC can significantly reduce power consumption in a cloud system,
with 17% improvement over MaxUtil.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Cloud computing has recently become popular due to the maturity of related technologies such as network devices, soft-
ware applications and hardware capacities. Resources in these systems can be widely distributed and the scale of resources
involved can range from several servers to an entire data center. To integrate and make good use of resources at various
scales, cloud computing needs efficient methods to manage them [4]. Consequently, the focus of much research in recent
years has been on how to utilize resources and how to reduce power consumption.

One of the key technologies in cloud computing is virtualization. The ability to create virtual machines (VMs) [14] dynam-
ically on demand is a popular solution for managing resources on physical machines. Therefore, many methods [17,18] have
been developed that enhance resource utilization such as memory compression, request discrimination, defining threshold
for resource usage and task allocation among VMs. Improvements in power consumption, and the relationship between re-
source usage and energy consumption has also been widely studied [6,10-12,14-18]. Some research aims to improve re-
source utilization while others aim to reduce energy consumption. The goals of both are to reduce costs for data centers.
Due to the large size of many data centers, the financial savings are substantial.

Energy consumption varies according to CPU utilization [11]. Higher CPU utilization usually implies greater energy con-
sumption. However, higher CPU utilization does not equate to energy efficiency. This phenomenon motivates the idea of not
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exhausting CPUs with high levels of utilization (for example, 80-100%) in order to save energy. To this end, we propose an
energy-aware task consolidation (ETC) method that minimizes energy consumption.

The main idea of ETC is to ration CPU utilization and manage task consolidation amongst virtual clusters. In addition, our
energy cost model considers network latency when a task migrates to another virtual cluster. The main contributions of our
work are as follows. First, we present a method to ration CPU utilization and manage task consolidation amongst virtual clus-
ters. Secondly, we show how ETC can reduce power consumption significantly by managing task consolidation in a cloud
system. Third we compare our results to a recent greedy method called MaxUtil [10] that attempts to reduce energy con-
sumption by assigning as many tasks as it can to a VM.

The rest of this paper is organized as follows. Section 2 explains our research model. Section 3 presents the proposed tech-
niques on task consolidation and energy saving. In Section 4, the simulation results and performance analysis are given to
weigh the pros and cons of the proposed method. In Section 5, we discuss related work. Finally, the conclusion and future
work are presented in Section 6.

2. Research model

The research model for this study is presented in Fig. 1, which shows a cloud system that consists of several virtual clus-
ters (VC). Each virtual cluster provides a limited number of VMs. Without losing generality, VMs are used as a basic unit to
execute a task. The percentage of CPU utilization is used to judge whether a VM has enough resources available for a service.
Fig. 1b gives an example of network bandwidth between virtual clusters, which are geographically distributed. This shows
that communication overhead can differ between virtual clusters. The network bandwidth between clusters is assumed to
range between 100 Mb/s and 1 Gb/s at different links, which is representative of conditions in practice. The number of nodes
at each cluster depends on the resources available for release. It is assumed that tasks are submitted through a queue in the
cloud. The submitted tasks give information that is required for CPU utilization and are allocated to the appropriate VMs
according to the CPU utilization of both tasks and VMs. Because the resources available at each cluster can vary at different
times, a cluster has its own strategy to consolidate tasks in order to minimize energy consumption. Namely, a cluster can
request resource support from other clusters and then consolidate tasks to an appropriate VM with available resources. Each
cluster has a job queue that contains information of all the tasks, such as task ID (t;), arrival time of task t; (T,;), CPU process-
ing time of task ¢; (T,;), data size of task t; (DS;) and CPU utilization. Based on this information, task consolidation is able to
satisfy the service level agreement (SLA). The purpose of the SLA is to meet the needs of customers and requires the service
provider to have a system that can sustain an agreed upon level of energy efficiency, economy and performance.

Various research results in the literature show that CPU utilization significantly affects energy consumption. One of the
general concepts in the literature shows how energy consumption can be separated in two states [8,12,17], an idle state and
a running state. A well-established energy consumption model [12] shows the relationship between CPU utilization and en-
ergy consumption is not a linear one, as is shown in Fig. 2a. The curves in Fig. 2a represent power consumption on different
machines. We observe that the slopes on these curves are smallest when CPU utilization is between 0% and 20%. Essentially,
this interval can be regarded as the idle state for the VMs. Between 20% and 50% CPU utilization, power consumption in-
creases slightly. Between 50% and 70% CPU utilization, power consumption noticeably rises. Finally, between 70% and
100% CPU utilization the rate of power consumption increases greatly. It is worth mentioning that the slopes of the curves
in Fig. 2a represent energy efficiency, which is defined as the amount of CPU resources obtained per energy unit.

Based on this study, a simplified energy model can be constructed. This simplified energy model is outlined in Fig. 2b. In
Fig. 2b the energy consumption of a VM is divided into six different levels. These levels consist of an idle state and six
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Fig. 2. The relationship between energy consumption and CPU utilization: (a) experimental results in [12] and (b) the suggested model in this paper.

different levels of CPU utilization. All of these levels are based on line segment approximations of the curve in Fig. 2a. In sum-
mary, because CPU use has the most impact on energy use, and because the relationship of energy consumed and CPU uti-
lization is not linear, one can consume less energy if one shares the workload amongst multiple CPU’s. This gives us the
motivation to keep CPU utilization below a certain level. In this paper, this is done by redistributing tasks evenly amongst
VM'’s.

Because resources on each cluster are limited, task migration between virtual clusters can occur if there are not enough
resources (VMs) on a local cluster. In these circumstances, it is possible to consolidate tasks with resources that reside on
different clusters. Since task migration incurs extra overhead, there is a tradeoff between the energy efficiency task consol-
idation provides and the cost of migrating the tasks. Based on the study in [2,3], the network infrastructure of a cloud system
can be regarded as a passive optical network, FTTN or point-to-point optical system. As a result, the power consumption for
network access and communications is about 28 W/s with access rates ranging from 100 Mb/s to 1 Gb/s.

In this paper, we assume that network transmissions occur on virtual clusters. Although they might be on different racks,
we assume all virtual clusters and virtual machines reside within the same data center. Therefore, we assume network trans-
missions between virtual clusters are constant. A corresponding energy cost model and a detailed strategy for task schedul-
ing is addressed in the next section.

3. Energy efficient task consolidation

In this section, we present an energy-aware task consolidation (ETC) method to optimize energy usage in cloud systems. In
the energy model presented in Fig. 2b, a VM is assumed to consume o W/s in its idle state. An additional g W/s is required for
executing tasks when CPU utilization is between 0% and 20%. If CPU utilization is between 20% and 50%, the additional en-
ergy consumed increases to 38 W/s. Energy is consumed at a greater rate as CPU utilization increases. For instance, when a

virtual machine has 50% CPU utilization, it consumes o + 58 W/s. Using Fig. 2a as a guide the energy consumption of a virtual
machine V; is defined as follows:

o W/s, if idle

B+aW/s, if 0% < CPU utilization < 20%

3+ o W/s, if 20% < CPU utilization < 50%

E(Vi)=1< 58+a W/s, if 50% < CPU utilization < 70% (1)
8f+a W/s, if 70% < CPU utilization < 80%

11+ o W/s, if 80% < CPU utilization < 90%

12+ o W/s, if 90% < CPU utilization < 100%
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If « = B, then each B energy consumed contributes to 25% CPU utilization. This occurs when CPU utilization is below 50%.
When a virtual machine has 70% CPU utilization, it consumes 38 W/s, which means that each p energy consumed contributes
to 23.3% CPU utilization. For the cases of 80%, 90% and 100% utilization, the energy efficiency is at 20% per f W/s, 18% per
W/s and 16.6% per g W/s, respectively. Based on the definition above, the total energy consumption of V; during the time
period ty ~ t;, can be given the following formula,

m

Eom(Vi) = > E(V) @
=0
Given a virtual cluster, VG, which consists of n VMs, the energy consumption of VC during the time period to ~ t, is as
follows,

Eom(VCY) = Eom(Vy) 3)
i=0

The main idea of ETC is to consolidate tasks and to keep the CPU utilization of virtual machines under the specified CPU
Utilization Threshold (CUT). Given a cloud system composed of multiple virtual clusters (VC), for example, three VCs A, B and
C (denoted by VC,4, VCp and VC), the task consolidation strategy within a virtual cluster (for example, VC,) can be described as
follows:

1. The scheduler of VC, dispatches task ¢; to a VM. If more than one VM is available, an appropriate VM is selected based
on the best-fit strategy.

2. If there is no VM available, and V; is below the specified CPU utilization threshold, VCy4 asks for resource support from
other VCs, e.g., VCg or VCe.

3. If both VCg and VCc can provide VMs that run below the specified CPU utilization threshold, then Eq. (4) is used to
select the VM from the VC that consumes the least amount of energy when transmitting and executing the task.

4. If none of the VCs can provide a VM below the specified CPU utilization threshold, then ¢ is assigned to the V; that con-
sumes the least amount of energy locally (i.e., VCa).

The task consolidation strategy uses the best-fit strategy to optimize resource utilization. The best-fit strategy achieves
this by migrating tasks to whichever VM will most closely approach the target CPU utilization threshold. The CPU utilization
threshold depends on hardware architecture and may differ on different cloud systems. Based on the hardware commonly
found in data centers and our research model, a 70% CPU utilization threshold is considered an appropriate cutoff point. For
the sake of simplicity, we shall use 70% CPU utilization as the default threshold for the rest of the paper.

Let us use an example to clarify the ideas above. Fig. 3 outlines the basic information of a set of tasks. To simplify the
presentation, we assume there are three virtual machines in VC,. The first scenario assumes that a task is assigned to virtual
machines locally in VC,. As shown in Fig. 4, after having five tasks (to to t4) assigned amongst the virtual machines, the sixth
task ts can be assigned to either Vg or V;. Applying the best-fit strategy, task ts is assigned to V; because the total CPU uti-
lization of V; and ts is closer to 70% CPU utilization.

Problems occur when attempting to dispatch and execute task ts. This is because ts needs to utilize 50% of the CPU.
Assigning tg to any VM in VC, will surpass the 70% CPU utilization threshold. In order to keep CPU utilization under 70%, clus-
ter A asks for resource support from other clusters, for example, VCz and VCc. As shown in Fig. 5, both VCg and VC¢ have re-
sources available below the desired 70% threshold, thus VC4 needs to identify which of these clusters can save the most
amount of energy. To estimate the amount of energy consumed when consolidating a task with resources located on a dif-
ferent cluster, both CPU computation and network transmission is considered. Given a task ¢; that is to migrate from VCp and
consolidate with virtual machine V; that resides in VC,, the expected energy consumption is formulated as follows,

30% 150Mb

Task t; Arival Processing CPU Data
Time (T,;) | Time(T,) | Utilization | Size
to 0s 50s

t, 10s 20s 30%  75Mb
t, 125 355 40%  20Mb
t; 15s 155 30%  150Mb
t, 20s 30s 60%  250Mb
ts 30s 25s 30%  110Mb
i 355 10s 50%  210Mb

Fig. 3. A list of tasks.
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(4)

where BWpq and DS; represent the bandwidth from VCp to VCj and the size of task t;’s data set, respectively.

According to (4), migrating task tg to VCz and VCc will consume (38 + o) * 10+210/250 « 28 and (28 + o) 10+ 210/
500 * 2, respectively. It is easy to see that VCc will consume less energy, therefore task ts is consolidated onto a virtual ma-
chine in VCc. Fig. 5 shows the above scenario.

The last example shows what happens if VCg and VCc do not have enough resources if VC,4 asks support for tg. In Fig. 6, CPU
utilization of the VMs in VCg and VC¢ are higher than or equal to 70%. Thus, VC4 will not seek outside resources due to the
extra overheads it would incur. Consequently, it assigns tg to local resources even though the VM could not conform to
70% CPU utilization. In this example, V; is chosen.

A high-level description of the ETC algorithm is described as follows.
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Algorithm 1. ETC

1.

2. Confirm_CUT (VC,, t;)// CPU Utilization Threshold

3. //Check the CPU Utilization Threshold for all tasks in the job queue of a virtual cluster VC4

4. If none of the resources in VC, can execute task t; without surpassing the CPU Utilization Threshold
5. {

6. Confirm_CUT (VGsg, t;)

7. Confirm_CUT (VC, t;)

8. If more than one resource can execute task t; without surpassing the CPU Utilization Threshold
9. dispatch task ¢; to the VC that will consume the least amount of energy.

10. Otherwise

11. consolidate task t; to the VM in VC, that consumes the least amount of energy.

12. )

13. }

4. Evaluation of performance
4.1. Experiment configuration

To evaluate the performance of the proposed technique, we implemented the ETC method and the MaxUtil [10] method.
The MaxUtil method consolidates tasks and assigns as many tasks as it can to a VM. Overall, MaxUtil is the same as ETC except
it has a 100% CPU utilization threshold. The cloud computing model in this section is the same as we described in Fig. 1 but
for the purpose of analysis, the numbers of nodes in the virtual clusters are different. In our test, we change the number of
nodes in VC,4 and use 5, 10 or 15 nodes. This represents a low number of resources (LR), a medium number of resources (MR)
and high number of resources (HR), respectively. Both VCp and VCc have a medium number of resources (MR) in these tests.
The virtual clusters are then assigned a different number of tasks. These represent different workloads, with 1000, 2000 and
3000 tasks representing low loading (LL), medium loading (ML) and high loading (HL), respectively. For the sake of clarity, the
experimental parameters used in this study are presented in Table 1.

The arrival time of a task occurs between 0 and 9 s. Thus, different workloads represent different task densities. The aver-
age processing time, CPU utilization and data size of tasks used are 50 s, 50% and 100 Mb, respectively. In total, 27 cases were
used to test the performance of ETC. These cases are presented in Table 2. As seen in Table 1, each case is represented by
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Table 1
Experimental parameters.
Parameter Definition
LL Low loading 1000 tasks
ML Medium loading 2000 tasks
HL High loading 3000 tasks
LR Low resources 5 nodes
MR Medium resources 10 nodes
HR High resources 15 nodes
81 Workload of local cluster VCy
L: low loading
M: medium loading
H: high loading
# Number of nodes used by local cluster VC,
Eg: 5, 10 or 15 nodes.
62 Workload of VCp and VC¢
L: low loading
M: medium loading
H: high loading
(61,#,62) A tuple that defines an experiment’s parameters
Table 2
Cases with different loading and resource.
VCa VCg and VCc
LL ML HL
MR
LL
LR(5) (L5,L) (L5,M) (L,5H)
MR(10) (L110,L) (L,10,M) (L10,H)
HR(15) (L15,L) (L15,M) (L,15,H)
ML
LR(5) (M5,L) (M,5M) (M5H)
MR(10) (M,10,L) (M,10,M) (M,10,H)
HR(15) (M,15,L) (M,15,M) (M,15,H)
HL
LR(5) (H,5,L) (H,5,M) (H,5,H)
MR(10) (H,10,L) (H,10,M) (H,10,H)
HR(15) (H,15,L) (H,15,M) (H,15,H)
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Fig. 7. The results while VCp and VCc have low loading.
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Fig. 9. The results while VCg and VC¢ have high loading.

(61,4#,02), where 61 is the workload of the local cluster (i.e., VC,), # is the number of nodes available on local cluster (VC,4) and
62 is the workload of VCg and VCc. For example, (L,5,L) represents low loading for VCy, five nodes in VC, and low loading for
VCg and VC¢. The following three figures represent the results of different workloads on VCy and VC. with various workloads
and resource levels on VC4. Because the energy consumed by tasks when transmitting for resource support is slight, it is
omitted without affecting the simulation results. The simulation results show the energy consumption that occurred when
executing tasks, and provides us data with which to weigh the pros and cons of ETC.

As mentioned in the last section, a VM V; may consume o W/s energy in the idle state, and may consume between  and
58 W/s depending on which of the five levels of CPU utilization is active when executing tasks. Referring to previous research
[12], o is set to 7 in our evaluation.

4.2. Experiment results

Fig. 7 shows the results obtained when the workload of neighbor resources (VCg and VC¢) have a low loading. This sce-
nario encourages VC4 to migrate tasks to neighboring clusters. For example, in the case of (L,5,L), VC4 has very limited re-
sources (i.e., only 5), which results in VC, asking for resource support from VCz and VCc in order to reduce energy
consumption. For the cases of (L,10,L) and (L, 15,L), VC4 has enough resources. Therefore, the performance of ETC and MaxUtil
is similar because VC,4 does not ask for any resources. In most cases, ETC performs better because the workload on VC, is rel-
atively high compared to its neighboring clusters (VC, has a medium and high workload, while VCgz and VC¢ have a low work-

load), which can incur a large amount of task consolidation by neighboring clusters. This shows the benefits of the ETC
strategy.



460 C.-H. Hsu et al./Information Sciences 258 (2014) 452-462

Table 3
Cases of VC4 with extremely high loading.
VCy VCg and VCc
LL ML HL
MR
EHL
LR(5) (E,5,L) (E,5,M) (E,5,H)
MR(10) (E,10,L) (E,10,M) (E,10,H)
HR(15) (E,15,L) (E,15,M) (E,5,H)
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Fig. 10. The results while VC4 has extremely high loading.

Fig. 8 shows the results when neighboring resources (VCg and VCc¢) have a medium workload. In this scenario, VC, has its
tasks migrate to neighboring clusters only if its workload is higher than its neighbor’s workload. Consequently, ETC and Max-
Util exhibit similar levels of performance, except for the three cases, (M,5,M), (H,5,M) and (H,10,M). For (H,5,M) and
(H,10,M), the workload of VC, is higher than VCg and VC. In both these cases, task consolidation can occur often. However,
when VC, has a higher workload than its neighboring clusters (H, 15, M), ETC does not report significant improvement. This is
because VC, already has enough resources (e.g., 15) to handle tasks in its job queue. In the case (M,5,M), VC, needs to per-
form task consolidation due to it having very limited resources.

Fig. 9 shows the results when both neighboring resources (VCg and VCc) have a high workload. In this scenario, VC, is un-
likely to migrate tasks to neighboring clusters because VC4 will not ask for resource support unless VC4 resources are lower
than its neighbors, for example, (M,5,H) and (H,5,H).

Figs. 7-9 show that ETC benefits VCs when it is used to manage power consumption. Furthermore, it can produce signif-
icant optimizations when the corresponding VC either has a relatively high workload or has relatively low resources when
compared to external resources. To validate this observation, we used test cases with an extremely high work loading, con-
sisting of 4000 additional tasks. Such cases are denoted as having extremely high loading (EHL) as is shown in Table 3. Fig. 10
shows the results of these cases. Extremely high loading forces VC,4 to ask resource support form VCg and VCc. Obviously, ETC
outperforms MaxUtil in most cases. Overall, ETC is able to achieve up to 17% improvement over MaxUtil.

5. Related work

Energy consumption is an important issue in many fields of research. Both consumers and industries want their products
to use less power in order to reduce energy costs. As systems get larger and more complex they typically consume more en-
ergy. This problem extends to networks and consequently extends to cloud computing. Since data centers contain large clus-
ters of computers, any reduction in energy expenditure can result in large economical savings. For this reason and others,
there has been much research done on how to reduce energy consumption and on how to reduce energy consumption within
a network.

Gunaratne et al. [7] proposed a power management method to reduce wasted energy. In their work, they look at how to
recover wasted energy on PCs and network links that are fully powered up even when they are idle. In their research, they
noted a lack of power management on PCs, switches and internet protocols. The lack of energy awareness by these devices
was wasting energy needlessly and was costing the United States billions of dollars per year. In their paper, they suggest
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disabling unused paths when routing, and to add power management features to PCs. Furthermore, they suggest ways to
improve power management so that network administrators were not inclined to turn off power saving features due to
the inconvenience they caused. These factors support the need for energy aware techniques such as ETC.

Chanclou et al. [5] compared and evaluated point-to-point and point-to-multipoint optical access solutions. They pre-
sented a view on the evolution of broadband optical access networks and pointed out some aspects on simulating network
development of network environments in the future. A network-based model [3] was presented to estimate the power con-
sumption of core, metro and access networks which are the three main parts of a standard Internet Service Provider’s net-
work. Baliga et al. [2] presented how power consumption in networks can be used to analyze optical and wireless access
networks, e.g., passive optical network (PON), fiber to the node (FTTN), point-to-point (PtP) optical systems and worldwide
interoperability for microwave access (WiMAX). In the results, PON and PtP were the best solutions in terms of energy con-
sumption. Tucker et al. [19] proposed a model to estimate the energy consumption for IP networks. The hybrid fiber-to-the-
node was not recommended due to its high energy consumption. Lange and Gladisch [9] compared the energy consumption
of FTTH network based on passive optical networks (PON), active optical networks (AON) and point-to-point (PtP) networks.
The results showed that FTTH networks based on PON had better performance in terms of energy consumption. These papers
present details on energy consumption of network systems and provide a basis on which to model hardware by ETC.

Vasic¢ and Kosti¢ [20] tried to reduce energy consumption on the Internet by moving a greater percentage of links to a
sleep state. They proposed Energy-Aware Traffic engineering (EATe) to improve upon traditional works that overlooked energy
consumption. EATe was able to successfully move links to a sleep state and handle changes in traffic load without affecting
traffic rates. The authors note that the popularity of bandwidth-intensive services, such as streaming and video on-demand
energy have increased energy consumption on the internet and the rising popularity of cloud computing services increases
this further. EATe and ETC are both energy aware techniques designed to reduce network energy use. However, EATe is de-
signed to work with network traffic and hardware holistically, while ETC is designed specifically for the cloud computing
environment.

Aliza et al. [1] listed the components of hardware and software that affect energy consumption. In the list, the CPU was
the most important component as it had a major impact on energy consumption within a computer system. Lien et al. [12]
collected power consumption and CPU utilization data, and used them to produce a model that reflected their relationship.
They designed a virtual instrumentation software module to measure the power consumption of a streaming media server in
real time. Using their design, users can estimate energy consumption accurately and easily without additional hardware. The
authors explain the relationship between CPU utilization and energy consumption does not increase linearly. These obser-
vations are exploited by the ETC method.

A Scalable Multiple Server (SMS) architecture [11] design for resource management in a server center was presented for
better performance and power consumption. Linear and exponential power models were proposed for estimating power
consumption of different states. The SMS architecture improved energy consumption by 16.9% in the experiment results.
In practice, achieving maximum power capacity for a warehouse-size computing system is difficult since power consump-
tion varies mainly with computing activity. Fan et al. [6] studied power usage of thousands of servers (cluster level) and
found a noticeable power gap even in well-tuned applications. They argued that both peak performance and activity range
should be taken into account when considering power efficiency. Rivoire et al. [15] compared five high-level full-system
power models from a laptop to a server and concluded that models based on OS utilization and CPU performance were accu-
rate. Meisner et al. [13] proposed a two-state energy-conservation approach, PowerNap, to simplify the complex power-per-
formance states of systems. Furthermore, they demonstrate a Redundant Array for Inexpensive Load Sharing (RAILS) that in
conjunction with PowerNap improves average power consumption by 74%. Beri et al. [4] studied energy-saving research
for the management of integrated systems. They identified several factors that might occur which could have an impact
on energy-saving strategies for cloud computing environments. Power consumption on a physical machine can be measured
in modern server hardware. However, power consumption of a VM cannot be measured directly by hardware. Kansal et al. [8]
proposed Joulemeter to solve this problem. There were several coefficients in their formula that changed from time to time.
Thus these coefficients had to be adjusted according to the threshold they defined.

Nathuji et al. [14] proposed the VirtualPower approach for power management as a way to support virtual machines (VMs)
and their virtualized resources. The experimental evaluations showed 34% improvement on power consumption. Torres et al.
[18] proposed a consolidation strategy for a data center by combining memory compression and request discrimination
techniques. They evaluated the proposed strategy with a representative workload scenario and a real workload. Srikantaiah
et al. [17] studied the inter-relationships between performance degradation, energy consumption, CPU utilization and Disk
utilization. They transformed the consolidation problem into a bin-packing problem and found which server had better per-
formance and lower power consumption for each request. Song et al. [16] proposed a utility analytic model for Internet-ori-
ented servers, which can provide the upper bound of physical server required for QoS and estimate the power and utility. The
experiments showed improvements on power and CPU resource utilization without performance degradation. Lee and Zo-
maya [10] proposed two energy-conscious task consolidation heuristics, ECTC and MaxUtil, to reduce energy consumption
without performance degradation for a cloud environment with homogeneous resources in terms of computing capability
and capacity. Both MaxUtil and ETC consolidate tasks in order to reduce energy consumption. MaxUtil tries to minimize
power consumption by maximizing utilization and does so by assigning as many tasks as it can to a VM. ETC differs from
MaxUtil by taking into account the increased rate of energy consumption that occurs as CPU utilization increases.
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6. Conclusion and future work

Clouds typically consist of multiple resources. These resources can be distributed, heterogeneous and virtualized. A high
priority for a cloud computing system is the maximization of profits. The amount of energy consumed by these systems has a
big influence on how profitable they are. Much of the literature shows energy consumption and resource utilization in clouds
are highly coupled. They show that task consolidation is an effective technique to increase resource utilization and that in-
creased resource utilization can help reduce energy consumption. In this paper, an energy-aware task consolidation (ETC)
technique is presented to minimize energy consumption. Considering the architecture of most cloud systems, a default
CPU utilization threshold of 70% is used to demonstrate task consolidation management amongst virtual clusters. Although
the idle state of virtual machines and network transmission are assumed to be a constant ratio (7 and 2) of basic energy con-
sumption unit in this study, these values can be adjusted on different cloud systems in order to get better performance from
the ETC method. The simulation results show that ETC can significantly reduce power consumption when managing task con-
solidation for cloud systems. ETC has up to 17% improvement over a recent work [10] that reduces energy consumption by
maximizing resource utilization.

ETC is designed to work in a data center for VC and VMs that reside on the same rack or on racks where network band-
width is relatively constant. In future work it would be desirable for system to work between data centers and take into ac-
count fluctuations in network bandwidth. Furthermore, the current implementation uses a manual approach to designate
the CPU utilization threshold. Instead of having an administrator set the threshold, it would be better if ETC could adapt
automatically to its environment. We leave these tasks for future work.
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