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the many-core platform will be one of the main computing platforms to execute MapReduce programs.
Therefore, it is essential to optimize MapReduce programs on many-core platforms. Optimizations of
parallel programs for a many-core platform are viewed as a multifaceted problem, where both system and
architectural factors should be taken into account. In this paper, we look into the problem by constructing
a master-worker model for MapReduce paradigm on the TILE64 many-core platform. We investigate
master share and worker share schemes for implementation of a MapReduce library on the TILE64. The
theoretical analysis shows that the worker share scheme is inherently better for implementation of
MapReduce library on the TILE64 many-core platform.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the industry undergoes a transition from single
core processors to the integration of multiple cores to produce
multi-core and many-core processors due to power envelope
restrictions [1]. While the trend of processor manufacturing is to
increase the number of cores rather than clock frequency [2,3],
software developers can no longer rely on the so called “free
lunch” [4] that automatically makes existing programs run faster
on processors clocked at higher frequencies.

In order to make performance of a program scaling well with
the number of available cores on a multi-core or many-core plat-
form, existing software need to be modified or re-written from
ground up [5,6]. Efforts involving parallelization of an application
are twofold, known as design and implementation. The former is
about finding concurrency in a given application and to derive algo-
rithms and program structures to make it run faster, while the lat-
ter is about utilization of available programming resources on the
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designated parallel platform to realize the designed algorithm and
structure. The available programming resources include program-
ming language, programming paradigm, and API (application
programming interface), among others. Due to the flexibility of
available options, there may be possible several implementations
for a single design on a platform. Performance and scalability
characteristics of completed applications may vary with different
implementations. Thus, it is important to set guidelines for devel-
opers to follow in order to produce better programs on a given plat-
form.

TILE64 is a family of general purpose many-core processors de-
signed and manufactured by Tilera [7]. Fig. 1 shows the architec-
ture overview of a TILE64 processor. A TILE64 processor contains
a two-dimensional array of 64 identical processor cores intercon-
nected via multiple on-chip mesh networks named iMesh. The
iMesh is designed to be scalable to large number of cores while
maintaining low-latency communication between tiles. Tilera pro-
vides a set of proprietary APIs called iLib for programmers to write
application programs. The iLib provides both shared memory and
message passing primitives for implementation of inter-process
communication. The availability of different and varied implemen-
tation options adds both flexibility and complexity in building par-
allel programs on this platform.
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Fig. 1. TILE64 processor architecture overview.
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Fig. 2. A master-worker model.

The master-worker model has been successfully used in many
research areas. It is often adopted when there is a need to dy-
namically balance workloads among available processors [8,9],
especially in large distributed computing environments such as
clusters [10], grids [11], clouds [12] and even on petascale re-
sources [13]. In addition to applications in distributed computing
environments, with the recent availability of multi-core and many-
core processors, the master-worker model can also be adopted in
smaller-scaled systems [14]. Fig. 2 shows a generic master-worker
model, which consists of two main parts, task distribution and re-
sult collection. In the task distribution part, the master generates a
set of tasks and distributes them to the workers. The master can
be seen as a producer and the workers can be seen as consumers.
Notwithstanding, in the result collection part, the master collects
computation results generated by the workers. Thus, the workers
can be seen as producers and the master can be seen as a consumer.

The MapReduce [15] paradigm has been successfully practiced
on cluster systems for large scale distributed problems and the pro-
cess of big data. It utilizes the master-worker model to schedule
and dispatch computational tasks over a large set of distributed
computers. In addition to the proprietary in-house implementa-
tion by Google Inc., there are also open source MapReduce im-
plementations such as Hadoop [16], which is written in Java, and
Phoenix [17,18], which is written in C. The Hadoop implemen-
tation is primarily deployed in distributed and loosely coupled
environments. The Phoenix implementation is developed mainly

for shared-memory architectures such as multi-core and SMP sys-
tems. The MapReduce paradigm can be adopted in many different
application domains such as scientific computing, artificial intelli-
gence, enterprise computing and image processing.

Although there are large amount of papers that discuss the ap-
plications of the master-worker model on a number of systems
or platforms, only a few papers are related to the applications of
master-worker model on many-core platforms. In addition to that,
although there are MapReduce implementations that target multi-
core shared-memory systems, it is not yet fully investigated the
scalability of the implementations on a many-core platform with
on-chip interconnection networks such as TILE64. With the ubiqg-
uity of many-core architectures in recent years and foreseeable fu-
ture, the many-core platform will be one of the main computing
platforms to execute MapReduce programs. It is important to ex-
plore the problem of mapping traditional models onto many-core
platforms.

In this paper, we study how to develop a scalable and high
performance MapReduce library similar to that of Phoenix on the
TILE64 many-core platform. The management of the communi-
cations between master and worker processes is the key to the
success of such development. We propose two shared memory
schemes, master share and worker share, to implement the shared
memory communication between master and worker processes.
We model and compare these two schemes and conclude that the
worker share scheme is superior to the master share scheme on the
TILE64 many-core platform.

The rest of this paper is organized as follows. Section 2 provides
background knowledge of TILE64 and the approach of carrying
out shared memory communication between two processes on
the TILE64. In Section 3, a master-worker MapReduce system
is described and the master share and worker share schemes
are introduced. Theoretical analysis is carried out in Section 4.
Concluding remarks and future work are given in Section 5.

2. Preliminaries
2.1. TILE64 processor

The TILE64 processor is a many-core processor featured as an
array of 64 identical processor cores (each referred to as a tile)
interconnected via the on-chip two-dimensional mesh network.
The TILE64 is fully programmable using standard ANSI C under
Linux environment, including a set of proprietary APIs called
iLib. The iLib library supports two communication mechanisms,
shared memory and distributed memory, for processes running on
different cores to communicate with each other.

The TILE64 platform has an on-chip network named iMesh to
interconnect all 64 processor cores. All inter-process communica-
tions in a multi-process program will be translated into under-
lying network traffic, which is fully transparent to programmers.
As a process is executing load/store instructions, it does not
necessarily having the knowledge of the overheads on the under-
lying network traffic. Thus, when multiple processes are concur-
rently accessing memory devices, the generated network traffic
can sometimes overwhelm the network, causing traffic conges-
tions and routing delays, which will directly affect program perfor-
mance. The inter-process communication should generate as little
network traffic as possible such that the overall network perfor-
mance on this many-core platform would not be pushed down.

A previous study [19] suggests that programmers can imple-
ment applications in a way where producer processes always
write data directly into memory addresses shared by consumer
processes to avoid unnecessary cache coherent traffics on the
memory network. In the literature, there are some discussions of
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Fig. 3. Sharing of an integer on TILE64 between two processes.

scalability issue on many-core processors featuring on-chip net-
works or multiple memory controllers [20,21]. In our previous
work [22], we have shown that it is necessary to consider the mem-
ory hierarchy and on-chip networks in order to develop high per-
formance applications on the TILE64 platform.

2.2. Shared memory communication on TILE64

In TILE64, shared memory communication allows each process
in a parallel application to load/store values from/to a globally
visible region of memory. Concurrent accesses to shared objects
must be synchronized with mutex (mutual exclusion) locks to
prevent inconsistent states.

Both the Linux and iLib programming environments provide
tools for allocating and synchronizing accesses to the shared mem-
ory. Linux allows programs to allocate and synchronize using the
standard Unix shared memory and pthreads APIs, while iLib sup-
ports a special function for shared memory allocation, malloc_
shared(), as well as an implementation of a pthreads-style mutex
lock. To use iLib to implement shared memory mechanisms in a
program, the process which shares information can call the mal-
loc_shared() function to get an address pointing to a block of shared
memory. Then the process notifies other processes the location
of shared memory by sending them messages containing this ad-
dress.

Fig. 3 shows an example on the use of iLib to create an integer
object shared between 2 processes. The initialization steps are as
follows:

- There are two cores, each executes one process;

- Process 0 allocates a region of memory to hold one integer using
malloc_shared();

- The malloc_shared() function returns a value x, which is the
address of the shared integer. The value of x is stored in an
integer pointer p in process 0;

- Process 0 sends content of p to process 1;

- Process 1 stores this address with integer pointer q.

After above initialization sequence, both processes 0 and 1 will
be able to load from and store to this shared integer in the same
way as normal variables. Any update to *q made by process 1 can
be seen by process 0 using *p, and vice-versa.

3. Master-worker model for MapReduce paradigm

Given an input dataset to be processed by a MapReduce pro-
gram, we assume that the input dataset can be divided into n
tasks that can be independently processed and outputted. The in-
put dataset can be represented as a set of input data fi; to fi,, and
the output dataset is represented as fo, to fo,. Assume that the ap-
plication is run on a processor, each task i takes time t; to be pro-
cessed from input format to output format. The time to process all
segments is:

n
>
i=1

(1)
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Fig. 5. Execution overview of master-worker MapReduce library.

The ideal case of processing such dataset using p processors
would be similar to the one shown in Fig. 4. In such ideal case,

t; = t; = --- = t, and n is an exact multiple of p. So the time
needed to process all segments becomes:
n
2.t
= (2)
p

This leads to a perfect speedup of p. In reality, it may take variable
amount of time to process different data segments, and n is
commonly not an exact multiple of p.

A master-worker system consists of a master process managing
a set of worker processes. The master process distributes tasks to
a set of subordinate worker processes and later collects computed
results. There are two task pools in a master-worker system, the
pool of pending tasks and the pool of completed tasks. Once a worker
finishes a task, the worker process fills the result to the pool of
completed tasks. The master process then fetches results from the
pool of completed tasks and outputs the results.

Fig. 5 illustrates the execution overview of master-worker
MapReduce library. At the beginning, a user program sets up es-
sential information and invoke mapreduce(). In the map phase, all
workers take split parts of the input data to compute according to
user defined map() function to generate key-value pairs stored as
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intermediate data. Then in the reduce phase, all workers compute
final results by running user defined reduce() function over the in-
termediate data.

During the progress of task distribution, a master process is
considered a producer process and worker processes are consid-
ered consumer processes. Meanwhile, one-to-many communica-
tion is raised. On the other hand, in the progress of result collection,
worker processes are considered producer processes and a master
process is considered a consumer process. Meanwhile, many-to-
one communication is raised.

The total time to process all tasks can be derived as:

tiotal = tread + thill + Ldrain + Lwrite + tcomp + tsync + Cidle- (3)

Since time spent by workers are essentially overlapped with
time spent by the master, so the total time only counts time spent
by the master. Following is a list of detailed description of compo-
nents in (3):

- tread: time master spent reading input data from input to
memory;

- tgy: time master spent storing all pending tasks into pool of
pending tasks;

- tdrain: time master spent loading all pending tasks from pool of
completed tasks;

- twrite: time master spent writing output data from memory to
output;

- tecomp: time master spent on computation such as decomposing
input data and composing output data;

- toync: time master spent waiting for mutex locks to gain access
to shared objects;

- tigle: time master spent idling.

Of all the above 7 components, tread, twrite and teomp €an be seen
as constants for a given input dataset, that is, these three timing
values are not affected by system configuration variables such
as number of workers, size of task pools and how inter-process
communications are carried out.

To look into more detail of the performance characteristics we
further derive:
thn = N (4)
@master— pending
where Sippyc iS the total size of input data, and wmaster—» pending 1S
the average throughput for master to store data into the pool of
pending tasks, and

Soutput
tdrain = (5)
@master «completed

where Souiput iS the total size of output data and wmaster«completed
is the average throughput for master to load data from the pool
of completed tasks. From (4) and (5) we know that by increasing
@master— pending and Wmaster < completed, Lfill and tgpin can be shortened.

As for the synchronization time tyyy, it can be seen as a function
of two variables:

tsync =F (p7 Q) (6)

where p is the number of shared objects in the system and q is
the number of participating processes wishing to access the shared
objects. Usually the tsy, will grow rapidly with the increment of p
and q.

The master idle time tjge will come into place when both of
the following conditions are true: (a) pool of pending tasks is
full, and (b) pool of completed tasks is empty. The occurrence
rate of condition (a) is decided by pool size, @master—pending and
@ (worker < pending)aggregated, Where the latter represents aggregated
throughput for all workers to load data from the pool of pending
tasks. Similarly, the occurrence rate of condition (b) is decided

Memory of Master
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o[,
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private

shared s q

Fig. 6. Illustration of master share.

by pool size, Wmaster completed AN W(worker— completed)aggregated, Where
the latter represents aggregated throughput for all workers to
store data to the pool of completed tasks. Ideally, the tjge can
be eliminated altogether with properly configured pool size and
maintaining:

@ (worker <pending)aggregated = (Pmaster— pending
and (7)

@ (worker— completed)aggregated = ®master<completed -

The throughput w values in (7) will be affected by number of
processes in the system and how the data communications are
carried out between processes.

3.1. Shared memory schemes

Two shared memory schemes: master share and worker share
are introduced as follows. Communication between two processes
using shared memory mechanisms can be achieved by allowing a
process to allocate a block of shared memory and then exchange
the address of shared memory between processes, that means
all participating processes in the data communication are able to
directly load value from or store value to the specified shared
memory addresses.

3.1.1. Master share

In the master share scheme, master process and worker process
exchange data by using shared memory space allocated by the
master process. Fig. 6 depicts the initialization of master share,
where master process allocates a region of shared memory to
accommodate shared objects. Master process then notifies worker
process the location of shared memory, such that both master and
worker can access the shared memory region processes.

By utilizing the master share scheme, because the task pool and
result pool are memory buffers created and shared by the mas-
ter process, the memory buffer will be homed to the tile running
the master process. It means the overheads for memory load and
store will be minimal to the master process. Thus the memory
bandwidth Wmaster— pending and Wmaster <completed in (7) will be rel-
atively higher. However, from the perspective of worker process,
because the shared memory is not homed to the tile running the
worker process, the memory overheads become higher. Also the
@ (worker <pending)aggregated and W (worker— completed)aggregated in (7) will be
confined by the memory network bandwidth to the master tile,
which causes performance bottleneck here when the number of
worker processes increases.

3.1.2. Worker share

In the worker share scheme, the worker process allocates a
region of shared memory buffer for data sharing with master
process as depicted in Fig. 7. In Fig. 7, the worker process allocates
a region of shared memory to accommodate shared objects.
Similarly to above discussion, the worker process then notifies
master process the location of shared memory, so both the worker
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and master process will have read and write access to this shared
memory region.

By utilizing the worker share scheme, the aggregated band-
width @worker —pending)aggregated aNd O (worker— completed)aggregated Will
be increased since accesses to memory address locations will be
distributed across all worker tiles, generating a more distributed
memory network traffic to improve overall MapReduce perfor-
mance.

4. Theoretical analysis

We derive performance characteristics of the master share and
worker share in this section.

4.1. Shared memory access on TILEG4

A TILE64 processor contains 64 cores, each referred as a tile.
Tiles are identified by their coordinate in the 8 by 8 mesh. To denote
tiles, we use the notation tile(m, n), where0 <m < 8and0 <n <
8. Fig. 8 shows a TILE64 processor, it has four memory controllers
located at four corners of the chip. The 64 tiles in a TILE64 processor
are divided into four groups. Each group contains 16 tiles and every
tile in a group shares the same memory controller. Private memory
and shared memory within a process will be allocated first to the
group memory controllers. For example, if a process running on
tile(2, 2) allocates a block of shared memory, this block of shared
memory will be homed to tile(2, 2) and allocated to MCj.

Assuming memory is not cached, so every load and store oper-
ation will go directly to the associated memory controllers. For ex-
ample, assuming the case that tile(0, 0) allocates a block of shared

Fig. 9. Routing path for load and store operations from tile(3, 3) to memory shared
by tile(0, 0).

memory and shares this memory block with tile(3, 3). Load and
store accesses to memory addresses will be translated into net-
work traffics in the on chip mesh network. On mesh-based net-
works, dimension-order routing such as XY routing is commonly
used. In XY routing, messages sent from a source tile(m, n) to desti-
nation tile(p, q) will first be routed along the X dimension to tile(m,
q), then routed along the Y dimension to tile(p, q). This routing al-
gorithm guarantees that not only shortest paths from any source
to destination are selected but also deadlock-free.

Fig. 9 shows routing path for load and store operations origi-
nated from tile(3, 3) to shared memory block created by tile(0, 0).
For load operations, because the actual data resides in MCy, net-
work messages of the data will be routed from MCj to tile(3, 3)
through a shortest path, which is

MC, — tile(0, 3) — tile(1, 3) — tile(2, 3) — tile(3, 3).

Network messages in this load operation travels through 5
switches and 4 intermediate wires. For store operations, because
the shared memory is allocated and managed by tile(0, 0) and store
operations involves updating values, network messages generated
by store operations performed by tile(3, 3) will be routed through
shortest path from tile(3, 3) towards tile(0, 0) to MCy, which is

tile(3, 3) — tile(3, 2) — tile(3, 1) — tile(3, 0)
—tile(2, 0) — tile(1, 0) — tile(0, 0) — MC,.

4.2. Sequential MapReduce performance

The time required for a single tile to perform MapReduce
operation over a given input dataset can be calculated as:

tmapreduce = tmap + treduce (8)

where tyap and trequce are time for completing all map and reduce
tasks, respectively. Furthermore, the time for map tasks is

tmap = tread_input + tComp_map + twrite_itrm (9)

where tread_input F€presents memory access time required to load
all data from input, tcomp_map is the computation time spent on the
map function, tyite_itrm iS the time spent on storing intermediate
data into the intermediate buffer. The time for reduce tasks is

Lreduce = tread_itrm + tcomp_reduce + twrite_output (10)

where tieaq_itrm 1S memory access time required to load all interme-
diate data from intermediate buffer, t.omp_map is the computation
time spent on the reduce function, tyite ijtrm iS the time spent on
storing final results into the output buffer.

The throughput for map tasks can be defined as:

Sinput _ Sinput

®Pmap = (11)

- 9
tmap tread,input + tcomp,map ~+ twrite_itrm
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Fig. 10. Message routing for memory accesses from different tiles.

and the throughput for reduce tasks can be defined as:

Si Si
Preduce = LR o . ( ]2)

Lreduce tread_itrm + tcomp_reduce + twrite_output

If there is only a single tile running MapReduce with all the
other tiles on a TILE64 idling, the memory access times, tread_input»
Cwrite_itrm» fread_itrm and twrite,output in (9) and (10) will not be
practically affected by the tile which the MapReduce is executed
on. This is because the tile-to-tile network latency is designed to
be very low. But when there are a lot of tiles using the network,
contentions might occur when the on-chip network becomes very
busy, resulting in increased latency for memory access.

4.3. Parallel MapReduce performance

With the increased number of worker processes participating in
parallel MapReduce operation, the memory access times, tread_input»
Lwrite_itrms  Cread_itrm and twrite,output in (9) and (]0) for worker
processes varies with the physical locations of tiles. A worker
process running on a tile further from a memory controller will
have higher memory access latency under high networker traffic
due to network contention.

Fig. 10 shows an example of message routing on the TILE64
for two tiles, tile(1, 1) and tile(3, 3), which share memory buffer
allocated by tile(0, 0). As discussed in Section 4.1, store operations
issued by tile(1, 1) will be routed through the path MC, —
tile(0, 3) — tile(1, 3) — tile(2, 3) — tile(3, 3), which overlaps
with the path for store operations issued by tile(3, 3) on the
network link between tile(0, 0) and tile(1, 0).

Assume that the switch in a tile routes messages from each port
with equal priority, when the link of an output port is fully utilized,
messages received from all other input ports will share the output
bandwidth equally. For example, Fig. 11 shows the scenario where
4 tiles, tile(m, n), tile(m, n—1), tile(m, n+1) and tile(m+1, n), are
all sending messages to tile(m —1, n) through the on-chip switch
of tile(m, n). Under such situation, if the maximum bandwidth for
the link from switch to tile(m—1, n) is A, then the average message
rate from each source would be A /4.

4.3.1. Master share
If master process is running on tile(0, 0), memory bandwidth
for store operations of worker process on tile(m, n) will be

_r 13
3Im+1 2”’ ( )
and the memory bandwidth for load operation is
ifm<2
2m+1 - (14)
ifm> 3,

3m+1 x 2n=3

tile(m-1, n)

A

tile(m, n)
processor
switch
pvzs
tile(m, n-1) _> -—— tile(m, n+1)

A !
4 r

A

4

tile(m+1, n)

Fig. 11. Network contention and bandwidth sharing within a tile.

and the aggregated map throughput for w workers is

> Gmap (). (15)
i=0

The variable w and i in the second part of (15) represent the
number of worker processes and worker process id, respectively.
Thus we have

(pmap(i) = @Pmap X T
Sinput _
tmap(i) tmap

Emap

tmap(i) = T (16)

Sinput

_ tmap
tmap (1)
tread,input + tcomp,map + twrite,itrm

p X tread,input + tcomp,map +q X twrite,itrm

where

J+ ifi%8 < 2
[ 0093 g > 3, (17)

00|~

ol
p=
3

I

q=3 éJH x 278,

00|~

Similarly, aggregated reduce throughput for w worker is:

Z @reduce () (18)
i=0
and
@reduce () = @Preduce X T, (19)
Lreduce
T = ———
treduce (1)

tread_itrm + tcomp_map + twrite_output

= (20)

fread_itrm + Ewrite_output
Lread itrm t +
P comp_map q

where p and q are derived from (17).

4.3.2. Worker share

Although worker share is harder than master share to imple-
ment, if worker share is properly implemented, every worker al-
locates blocks of shared memory buffers for storage of input data,
intermediate data and output data. In such way, a worker will use
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memory spaces allocated by itself, so memory bandwidth for both
store and load operations of worker process on tile(m, n) will be

A

o if0o<m<3
2 (21)
S if4<m<7.

Thus to calculate g, (i) in (16) and @reduce () in (19), the p and
q values will be

JLil o < L;J <3
2» 15 ifa < LIJ <7.
8

p=q=

4.4. Theoretical performance

To derive theoretical performance of the master share and
worker share implementations we first cross-compile the
Phoenix [17] MapReduce implementation onto TILE64 platform.
Then we profile benchmarks that are included with Phoenix us-
ing single tile to obtain timing and data size information for Eqgs.
(11) and (12). Thus we will be able to calculate >";” ) gmap(i) and
Y o Preduce (i) by going through Egs. (13)-(22).

4.4.1. Benchmark applications

There are 8 benchmarks included with the Phoenix MapReduce
library. These benchmarks represent key computations from var-
ious application domains. Word Count, Reverse Index and String
Match are for enterprise computing. Matrix Multiply is for scien-
tific computing. KMeans, PCA and Linear Regression are for artifi-
cial intelligence. Histogram is for image processing. Following are
brief introductions to each benchmark application.

Word Count: The input of Word Count is a text file. It determines
frequency of words in the input file. In the Map stage, workers
process different sections of the input files and return intermediate
data that consist of a word (key) and a value of 1 if the word is
found. In the Reduce stage, workers add up the values for each
word (key) to obtain occurrence frequency for each word in the
input file. A 10 MB text file is used as input of smaller problem size
and a 100 MB text file is used as input of larger problem size.

Histogram: The input of Histogram is a bitmap image file. It
analyzes the input image to compute the frequency of occurrence
of a value in the 0-255 range for the RGB components of all pixels.
Similar to that of Word Count, in the Map stage, workers process
different portions of the image to parse the image and insert the
frequency of components occurrences into the intermediate data
buffer array. In the Reduce stage, workers sum up these occurrence
numbers across all portions. A 100 MB bitmap image file is used as

input of smaller size and a 400 MB bitmap image file is used as
input of larger problem size.

Reverse Index: The input is a set of HTML files. This application
extracts all hyperlinks in the files and generates an index from
each unique hyperlinks to its associated file names. In the Map
stage, workers parse disjoint subsets of the input HTML files to
find hyperlinks. If a hyperlink is found, the worker outputs an
intermediate pair with the link as the key and the file name as
the value. In the Reduce stage, all files referencing the same link
are combined into a single linked-list. The smaller problem set
contains a HTML file set of around 250 KB, the larger problem set
contains a HTML file set of around 1 GB.

String Match: It processes two files: “encrypt” and “keys”. The
“encrypt” file contains a set of encrypted words and the “keys”
file contains a list of plain text words. This application encrypts all
words in the “keys” file in order to find which plain text words are
used to generate the “keys” file. In the Map stage, workers process
different portions of the “keys” file and return the plain text word
as key and a flag indicating whether the plain text word is a match
as value. There is no actual computation task in the Reduce stage
so the Reduce task is just an identity function. The size of smaller
and larger input “keys” files are 50 and 500 MB, respectively.

PCA: This application performs a portion of the Principal Com-
ponent Analysis algorithm in order to find the mean vector and the
covariance matrix of a set of data points. The data is presented in
a matrix as a collection of column vectors. The algorithm uses two
MapReduce iterations, first computes the mean for a set of rows
and second computes a few elements in the required covariance
matrix. The Reduce task is the identity in both iterations. The input
matrix size is 100 x 100 for smaller problem set and 1000 x 1000
for larger problem set.

KMeans: This application utilizes KMeans iterative clustering
algorithm to group a set of input data points into clusters. The
MapReduce function is executed iteratively until the algorithm
converges. Workers in the Map stage process subsets of the data
points to find the distance between each point and each mean to
assign the point to the closest cluster. In the Reduce stage, workers
gather all points with the same cluster-id and calculate their mean
vector. The input size is 100K and 500K data points for smaller and
larger problem sets.

Linear Regression: This application computes the line that best-
fits a given set of coordinates in an input file. In the Map stage,
workers process different portions of the input file to compute
summary statistics. In the Reduce stage, the statistics are computed
across the entire dataset to finally determine the best-fit line. The
smaller problem set is a 50 MB file and larger problem set is a 500
MB file containing coordinates.

Matrix Multiply: In the Map stage, workers compute subsets
of rows of the output matrix and returns the (x,y) location of
each element as the key and the result of the computation as the
value. The Reduce task is just the identity function. The smaller
problem set is two 300 x 300 matrices and larger problem set is
two 600 x 600 matrices.
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Fig. 13. Theoretical performance of Word Count for larger problem size.
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Fig. 14. Theoretical performance of Histogram for smaller problem size.
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Fig. 15. Theoretical performance of Histogram for larger problem size.
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Fig. 16. Theoretical performance of Reverse Index for smaller problem size.

4.4.2. Analysis results

Following are the theoretical Master—-worker MapReduce on
TILE64 for different benchmarks with different problem size.

The theoretical performance for the 8 MapReduce benchmarks,
Word Count, Histogram, Reverse Index, String Match, PCA, KMeans,

Linear Regression, and Matrix Multiply from Phoenix are shown in
Figs. 12-27. From the theoretical results, we can see that for all
cases, the worker share scheme is superior to the master share
scheme in terms of both scalability and performance. Different
benchmarks have different characteristics as shown in the figures.
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Fig. 20. Theoretical performance of PCA for smaller problem size.

Most benchmarks spend the majority of total execution time in In Fig. 28, a theoretical maximum speedup for 64 workers is shown.
the Map stage. It can also be observed that change of problem From Fig. 28, we can see that for Word Count, Reverse Index, PCA
size might change time proportion of Map to Reduce. With the and Matrix Multiply, the worker share scheme improves speedup
increasing number of worker processes, both Map and Reduce time for a large amount. This is due to higher aggregated memory
can be shortened, this also varies by benchmark and problem size. bandwidth are demanded by these applications. On the other
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Fig. 21. Theoretical performance of PCA for larger problem size.
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Fig. 22. Theoretical performance of KMeans for smaller problem size.
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Fig. 24. Theoretical performance of Linear Regression for smaller problem size.

hand, the performance improvement of worker share over master 5. Conclusion and future work

share for Histogram, Kmeans and Linear Regression is relatively

small. This is because these applications spend more time on New generations of multi-core and many-core processors bring
computation than I/0, thus memory contention problem are less higher performance within same or lower power envelope. This
likely to happen in these applications. advantage comes tied with the price of complication of application
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Fig. 25. Theoretical performance of Linear Regression for larger problem size.
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design and programming. Therefore, this study explores the shared
memory programming schemes for master-worker MapReduce
processing on TILE64 many-core platform. We model and compare
two shared memory implementation schemes, master share and

worker share. Analysis shows that the worker share scheme is
superior to the master share scheme.

As further plans to the development of this research, we plan
to implement a MapReduce library on the TILE64 platform by
incorporating both master share and worker share schemes and
run MapReduce benchmarks to verify that the experimental result
does match theoretical analysis. Also we would like to further
explore this topic by applying master share and worker share
onto more complex paradigms such as hierarchical master-worker
structures.
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