
Cluster Comput (2014) 17:629–641
DOI 10.1007/s10586-014-0348-1

SmartJoin: a network-aware multiway join for MapReduce

Kenn Slagter · Ching-Hsien Hsu · Yeh-Ching Chung ·
Gangman Yi

Received: 30 July 2013 / Revised: 9 January 2014 / Accepted: 20 January 2014 / Published online: 19 February 2014
© Springer Science+Business Media New York 2014

Abstract MapReduce is an effective tool for processing
large amounts of data in parallel using a cluster of proces-
sors or computers. One common data processing task is
the join operation, which combines two or more datasets
based on values common to each. In this paper, we present a
network aware multi-way join for MapReduce (SmartJoin)
that improves performance and considers network traffic
when redistributing workload amongst reducers. SmartJoin
achieves this by dynamically redistributing tuples directly
between reducers with an intelligent network aware algo-
rithm. We show that our presented technique has signifi-
cant potential to minimize the time required to join multi-
ple datasets. In our evaluation, we show that SmartJoin has
up to 39 % improvement compared to the non-redistribution
method, a 26.8 % improvement over random redistribution
and 27.6 % improvement over worst join redistribution.

Keywords MapReduce · Hadoop · Multiway join ·
Workload redistribution

K. Slagter · Y.-C. Chung
Department of Computer Science, National Tsing Hua University,
Hsinchu, Taiwan, ROC
e-mail: KennSlagter@hotmail.com; kennslagter@sslab.cs.nthu.edu.tw

Y.-C. Chung
e-mail: ychung@cs.nthu.edu.tw

C.-H. Hsu (B)
Department of Computer Science, Chung Hua University,
Hsinchu, Taiwan, ROC
e-mail: chh@chu.edu.tw

G. Yi
Department of Computer Science, Gangneung-Wonju National
University, Gangwon, Gangneung, South Korea
e-mail: gangman@cs.gwnu.ac.kr

1 Introduction

MapReduce [1] is a flexible programming model proposed
by Google for processing and creating data sets over a
cluster of computers. The MapReduce model hides extra-
neous details inherent in distributed programming such as
parallelization, fault tolerance, data distribution and load
balancing within a library. This simplifies the process
of writing distributed programs, which is an advantage
MapReduce has over other distributed programming mod-
els such as MPI that requires the programmer to explicitly
handle the data flow [2].

Programmers who use the MapReduce library need to
write two functions, a map function and a reduce function.
The purpose of the map function is to take the input key/value
pairs from an input source, process it, and then produce a set
of intermediate key/value pairs. The intermediate key/value
pairs it generates is then sent to a reduce function as input.
The reduce function processes this input and then generates
its own set of key/value pairs as output.

Parallelism is achieved by running multiple map and
reduce functions on multiple processors or machines. The
intermediate key/value pairs produced by each of the map
functions are partitioned so that intermediate key/value pairs
that share the same key are all sent to the same reduce func-
tion. The reduce function then processes each key alongside
a list of associated values.

Since its conception by Google, MapReduce has had many
adopters in industry and academia. One of the more well-
known adopters is Yahoo, who developed an open source
implementation known as Hadoop [3]. Hadoop is a Java-
based implementation, which by default uses its own distrib-
uted file system (HDFS). Because Hadoop is open source,
well documented and easy to use, the tool has gained promi-
nence in the distributed programming community. For this

123

630 Cluster Comput (2014) 17:629–641

Fig. 1 Network model used in
this paper a a tree network
consisting of racks and nodes. b
A node running a set of reduce
tasks

(a) (b)

Task

Reducer 1

Rack 1

Switch

Node 1

Disks

Node 2

Disks

Rack 2

Node 3

Disks

Node 4

Disks

Node

Disks

Task

Reducer 2

Task

Reducer 3

reason, we use Hadoop as our reference platform for MapRe-
duce in this paper.

The MapReduce model is effective at processing large
amounts of data or datasets. A dataset is essentially a set
of tuples stored in a file. Most computing devices can gen-
erate datasets, and the data can be about almost anything.
Examples of data sources include log files [4], sensors [5]
and social media [6]. In this paper, we look at one of the
more common data processing operations called a join. A
join combines two or more datasets together based on some
common value. There are many possible ways to implement
a join. The efficiency of a join implementation depends on
how many data sets there are and how large the data sets are.
A MapReduce join can be implemented as a map-side join
or a reduce-side join and multiple datasets may be handled
using either a cascade join or a multiway join [7].

Cascade Joins handle multiple joins using successive two-
way joins. In other words, a cascade join is performed by
joining datasets two at a time. Essentially, a cascade join is
an iterative version of a two-way join. The main advantages
of a cascade join is that it can handle any number of datasets
of any size so long as they can all be stored on the HDFS. With
n tables, T1,T2,T3,...,Tn, table T1 and table T2 are joined in
one job. The table created by this join is then joined with T3.
This continues until all the tables are joined. Using relational
algebra this can be expressed as:

(. . . (((T1 �� T2) �� T3) . . . �� Tn−1) �� Tn (1)

Multiway joins handle multiple joins simultaneously. Using
relational algebra a multiway join can be expressed as:

T1 �� T2 �� T3 �� . . . �� Tn−1 �� Tn (2)

Multiway joins have certain advantages and disadvantages
over cascade joins. First, it avoids considerable overhead
since it does not need to setup multiple jobs. Second, it can
save space on the network since it does not need to store
intermediate results. However, there are some drawbacks to

multiway joins. When a multiway join is performed, it needs
to buffer tuples. This can lead to memory problems, espe-
cially if the data is skewed. Therefore, the number of datasets
and the size of datasets are limited by the memory resources
available.

The main idea of SmartJoin is to improve processing time
of a multiway join by dynamically redistributing the work-
load between reducers. Furthermore, it does this by consid-
ering network topology during workload redistribution.

The main contributions of our work are as follows. First,
we present a model to redistribute tuples amongst reducers on
the MapReduce framework for a multiway join. Second, we
show how the SmartJoin redistribution algorithm can reduce
job response times for a multiway join by considering net-
work distance and reducer workload. Third, we compare our
method to alternative methods that do not take into account
these factors.

The rest of this paper is organized as follows. Section
2 explains our network model. Section 3 presents the pro-
posed techniques on multiway joins and tuple redistribution.
In Sect. 4, the simulation results and performance analysis
are given to weigh the pros and cons of the proposed method.
In Sect. 5, we discuss related work. Finally, the conclusion
and future work are presented in Sect. 6.

2 Background

2.1 Network model

The research model for this study is presented in Fig. 1, which
shows a network environment consisting of switches, racks
and nodes.

The two-level tree topology shown in Fig. 1a is a com-
mon network layout used by Hadoop. Each rack contains a
set of servers (nodes) all interlinked by a switch. The racks
themselves then uplink to a core switch or router. The nodes

123

Cluster Comput (2014) 17:629–641 631

Table 1 Network distance
Notation Distance Node Rack

Distance (N(1,1),N(1,1)) 0 Same node Same rack

Distance (N(1,1),N(2,1)) 2 Different node Same rack

Distance (N(1,1),N(3,2)) 4 Different node Different rack

run map or reduce tasks as shown in Fig. 1b. In this paper,
map tasks and reduce tasks are also referred to as mappers
and reducers respectively.

The purpose of the MapReduce model is to process large
amounts of data over a cluster of computers. This requires
sending data between nodes. The rate one can send data over
the network is restricted by the bandwidth.

In Hadoop, the distance between two nodes is calculated
as the sum of the distances to the lowest common ances-
tor in the network tree. Although the structure of the tree
is not predetermined, it is common to assign the levels of
the tree based on the data center, rack and node on which a
process resides. The purpose of this model is to reflect the
way bandwidth decreases between processes running on the
same node, nodes on the same rack, nodes on different racks
and potentially nodes in different clusters.

Three different network scenarios may occur in a data
center. These scenarios can be expressed using the notation
N(i, j) which represents nodeion rack j . Table 1 describes the
scenarios that may arise on a network with a two-level tree
topology, as shown in Fig. 1, and the subsequent network
distances.

Based on the network distance one can determine the rela-
tive distance between two processes residing on a network. If
a process resides on the same node and same rack as another
process its network distance is 0, since both processes reside
on the same node. If a process resides on a different node
and on the same rack, its distance is 2. If a process resides
on a different node and on a different rack its distance is 4.
Essentially, the distance metric counts the number of hops
that data needs to travel to get from one node to another.

When data is sent by one process to another on the net-
work, the distance the data needs to travel increases. Essen-
tially, network distance is based on the number of switches or
devices that data has to traverse to reach its destination (not
including the point of origin). If both processes reside on
the same node, communication and resources can be shared
locally. If both processes reside on the same rack, data has
to traverse the switch on that rack, before it can arrive at its
destination node. If both processes reside on different racks,
data has to traverse multiple switches. Thus, if a network has
a two-level tree topology, and if data is being sent between
nodes on different racks, there would be three switches for
the data to traverse.

The speed of switches on a network can differ in practice.
The costs of a fiber optic network used by high speed net-

works is often prohibitive for many consumers, and often a
traditional switch is all that is required on any given rack.
If the speed of a switch on one rack is slower than another
rack, the effective network bandwidth between those racks
is reduced to that of the slowest switch.

2.2 Join algorithms

Join algorithms have been studied extensively over the years,
with many different variants existing for each type of algo-
rithm. Many join algorithms in academia predate the inven-
tion of MapReduce, due to their ubiquitous use throughout
the database community. The multiway join algorithm pre-
sented in this paper is a hybrid join and is a combination of
a reduce-side join and a hash-join.

2.2.1 Reduce-side join

Reduce-side joins are based on the MapReduce programming
model, which is composed of a map phase and a reduce phase.
In the map phase, the datasets are read by a map function,
which is executed by a map task, one tuple at a time. The
purpose of the map function is to pre-process the tuples and
sort them by the join key. Before tuples are partitioned based
on their join key, they are tagged so that the reduce function
can know which table the tuple originated from. In Hadoop,
a tag can be performed with a custom TextPair class. As its
name suggests, a TextPair class contains two Text values. The
purpose of the TextPair class is to bind a tag to the key and
value so that the reducer can discern which table they came
from.

After the key and value are tagged, the mapper partitions
the key-value pairs. In Hadoop, a partitioner class determines
how the partitions are divided, and the number of reducers
determines the number of partitions. The partitioner class
partitions the data based on the join key so that all the tuples
that share the same key are sent to the same reducer. A custom
partitioner class is then used to override the default partitioner
so that partitioning is only performed with the key and not
the tag.

Although this ensures all tuples go to the correct reducer,
the reducer groups all values based on the key and processes
them together in the reduce function. Since the key is a
TextPair class containing two values the default grouping
function handles this incorrectly as a single entity. There-
fore a custom comparator class is also required so that

123

632 Cluster Comput (2014) 17:629–641

MAP OUTPUTINPUT REDUCESHUFFLE & SORT

k e
y

va
lu

e

ta
g

1
2
4

Amy
Rory
Sarah

5
3

Jack
Clara

4 Zoe

Table 0

0 Amy1
1 London1 Amy1 London

Clara3 Paris

Jack5 Taipei

5
4
2

Taipei
Rome

London
3
2

Paris
London

1 Beijing

Table 1

Mappers

Rory2 Seoul
Rory2 Beijing

Sarah4 Rome
Zoe4 Rome

Reducers3 Paris1
0 Clara3

0 Zoe4
4 Rome1

0 Sarah4

0 Jack5
5 Taipei1

0 Rory2
2 Seoul1
2 Beijing1

5
4
2

Taipei
Rome

Beijing
3
2

Paris
Seoul

1 London

1
1
1
1
1
1

0
0
0

Amy
Rory
Sarah

0
0

Jack
Clara

0 Zoe

1
2
4
5
3
4

Fig. 2 Reduce-side join (2-way)

only the key is considered when the reducer processes
these groups. These groups are sorted by the compos-
ite key so that tuples are secondary sorted by their tag.
In the 2-way join shown in Fig. 2, it means tuples from
the first table would arrive before tuples from the second
table,

The reducer then calls its reduce function for each group
of keys. In Hadoop, tuples are read from the HDFS stream.
There is no random data access, so the reduce function buffers
the tuples from the first dataset. These are then joined to
tuples from the second dataset, which is read directly from
the HDFS stream. Only a single key is presented for each
group, therefore the tag on the values is used to identify which
dataset a tuple came from.

2.2.2 Hash join

A hash join is a traditional algorithm used by databases for
joining two datasets together. A hash join consists of two
distinct phases a ‘build’ phase and a ‘probe’ phase. In the
build phase, the smallest dataset is inserted into an in-memory
hash table. In the probe phase, the largest dataset is scanned
and joined with the appropriate tuples stored in the hash table.

Consider two datasets P and Q. The algorithm for a simple
hash join is as follows

for all p P do
Load p into in memory hash table H
end for
for all q Q do
if H contains p matching with q then

add (p,q) to the result
end if
end for

2.2.3 Map-side join

MapReduce joins can be performed on either the map-side
or the reduce-side. Map-side joins can occur between large
inputs by joining the data prior to the execution of the map
function. However, the inputs to each mapper have to be
partitioned and sorted in a particular way. Firstly, all inputs
must be sorted by the same join-key. Secondly, all records of
a specific key must be stored on the same partition. Finally,
each input must be divided into the same number of partitions
[3]. These requirements can be met if the inputs have been
preprocessed and outputted via a MapReduce job.

Consequently, for the Map-side join to work, the data has
to have been pre-processed by another job. This is in contrast
to the Reduce-side Join, which does not require the input
dataset to be structured in any particular way. In this paper,
the two largest tables are joined first via a reduce-side join.
A reduce-side join is used in order to avoid the various limi-
tations imposed by a map-side join and because a map-side
join would require an additional MapReduce job.

Finally, the SmartJoin presented in this paper, joins
smaller tables on the reducer-side in order to exploit the fact
that the partitioned tables are sorted by their join attribute
prior to the reduce phase [8]. Since smaller tables tend to
be joined first, this join tends to be more effective when the
initial join is highly selective.

3 SmartJoin

In this section, we present our proposed multiway join.
The purpose of a multiway join is to join multiple datasets
together. Our proposed join improves performance of the
multiway join by redistributing the workload amongst reduc-
ers. Unlike other schemes that redistribute the workload using
a distributed queue [8], our methodology redistributes the

123

Cluster Comput (2014) 17:629–641 633

Fig. 3 Multiway join tuple redistribution with SmartJoin.

workload directly between reducers with help of a mediator
service, as shown in Fig. 3.

Reduce-side joins and hash joins are both two-way joins.
Two-way joins are joins that involve only two tables. Mul-
tiway joins are joins involving more than two tables. The
multiway join presented in this paper uses a reduce-side join
to join the two largest datasets and a hash join on the reducer
side to join that result with several smaller datasets. The two
largest datasets are partitioned and sent to the various reduc-
ers using the typical reduce-side join mechanism.

Unlike the typical multiway join mechanism [9], the
smaller datasets are sent to all the reducers. This can be done
by duplicating tuples in the mapper phase so that a copy is
sent to each reducer, or by using Hadoop’s distributed cache
mechanism. Therefore, this method is appropriate in situa-
tions where the aggregate size of the smaller datasets can fit
in the memory of each node used to execute a reduce task.

For the sake of clarity in this paper, we define three types
of reducers, unregistered, senders and receivers. The term
unregistered refers to reducers that are working on the pri-
mary join and have yet to register with the mediator. The

term sender refers to reducers that have the potential to send
data and refers to those reducers that are working on the hash
join and still have tuples to join. The term receivers refer to
reducers that have already processed their workload.

Once the mappers have sent the reducers all the tuples,
the reducers are able to process the tuples. The two largest
datasets are then joined with a traditional reduce-side join.
After completing the initial primary join, the reducer regis-
ters with the mediator. The reducer then provides the medi-
ator details about how many tuples it has, and details on
which node it resides. The mediator then stores this informa-
tion in its registry. From then on reducers update the medi-
ator periodically their status and the amount of tuples they
have left to process. Reducers then continue to process their
data using a hash join. At this stage, the reducers are poten-
tial senders that may send tuples to receivers if requested.
Before a sender sends its tuples to a receiver, both reducers
(sender and receiver) are marked as busy in the registry. After
they complete the transaction of the tuples, they update the
mediator registry to signal that they are no longer busy. Once
the hash join has completed all its allocated tuples, reducers
become receivers. These receivers then request the mediator
to have tuples sent to them. If there are no senders available,
the receiver is stored in a list (Table 2).

Once one or more senders are available the mediator deter-
mines which senders should send which receivers tuples.
Since the time a MapReduce job takes to complete depends
on the last reducer to complete its workload, priority is given
to senders based on which ones have the most tuples. The
pairwise algorithm is describes as follows:

Algorithm 1 Pairwise Algorithm
Input:

SENDER: the reducer to send tuples from.
LIST_OF_RECEIVERS: list of reducers that have finished their tuples.

Output:
RECEIVER: the reducer one sends tuples to.

RECEIVER = findReceiverWithLeastDistance(SENDER, LIST_OF_RECEIVERS)
if(RECEIVER.distance == 0)
{

select first available RECEIVER in this category.
}
else if (RECEIVER.distance == 2)
{

select first available RECEIVER in this category.
}
else if (RECEIVER.distance == 4)
{

//select a receiver based on the switch speed of the rack it is on.
//get racks sorted fastest to slowest, that are slower than the rack the receiver is on
LIST_OF_SLOWER_RACKS = getSlowerRacks(RECEIVER)

//get racks sorted slowest to fastest, that are faster than the rack the receiver is on
LIST_OF_EQUAL_OR_FASTER_RACKS = getFasterRacks(RECEIVER)
if(LIST_OF_EQUAL_OR_FASTER_RACKS.size()>0)
{

RECEIVER = select slowest rack in this list
}
else if(LIST_OF_SLOWER_RACKS > 0)
{

RECEIVER = select fastest rack in this list
}

}
return RECEIVER

123

634 Cluster Comput (2014) 17:629–641

Table 2 Mediator registry :
reducer metadata Reducer ID Node ID Unprocessed

tuples
Request tuples
(boolean)

Is busy
(boolean)

Is sender
(boolean)

Is receiver
(boolean)

Is registered
(boolean)

1 n/a n/a n/a n/a n/a n/a false

2 1 1000 false false true false true

3 2 800 false true true false true

4 2 0 true false false true true

Once a sender has been identified, the mediator finds the
receiver nearest to that sender in terms of network distance.
When redistributing data in MapReduce one must contend
with the network topology. For reasons of both performance
and reducing network traffic, the target node should be as
close as possible to the source node. Whether two nodes are
close together is determined by their network distance. The
second factor one needs to contend with when sending data
over the network is the speed of the switches on the network.
When sending data between racks on the network, the time it
takes to send data between racks is dependent on the speed of
the slowest switch. Therefore, when sending nodes between
racks, the best rack to send data to, is a rack using the same
switch speed or faster.

The speed of the switch on each rack is stored in a config-
uration file. The mediator uses the configuration file to sort
racks by their switch speed. In the pairwise algorithm, if there
are no receivers available on the same rack, then a receiver
is chosen from a different rack. When data is sent between
racks, the speed of transmission is determined by the speed of
the slowest switch. Therefore, the pairwise algorithm will try
to find a receiver that is on a rack with the switch speed equal
to or greater to the switch speed of the sender. If the sender
can only send tuples to racks that have a slower switch, the
pairwise algorithm will give preference to the rack with the
fastest (least slowest) switch.

Once the mediator makes a pairing it informs the sender
that a receiver is requesting tuples. The sender then sends a
batch of tuples directly to the receiver. During the transfer of
tuples from the sender to the receiver, the mediator flags both
reducers as busy. The mediator then ignores the busy reducers
until the transfer of tuples is complete. The redistribution of
tuples continues until all tuples have been processed.

The number of tuples transferred in a batch is based on
the number of tuples stored on reducers registered with the
mediator. The following algorithm calculates the number of
tuples a sender sends to a receiver.

Algorithm 2 BatchSize
Input:

SENDER: the reducer from which to send tuples from.
Output:

RECEIVER: the reducer one sends tuples to.
if(localTuples > averageTuples)

{
n = min(localTuples – averageTuples, localTuples*0.5, averageTuples)
SEND(n)

}

The batchsize algorithm is based on the following rules:

1. localTuples = number of tuples stored on the local reducer
2. averageTuples = average number of tuples stored on each

reducer
3. Sender should not send tuples if (localTuples <= aver-

ageTuples)
4. Sender should not send more than half the tuples stored

locally.
5. Sender should not send more tuples than averageTuples

These rules ensure that when sending tuples to a receiver,
the receiver’s tuples do not exceed the number of tuples each
reducer would need, if it were to have a balanced workload.
Furthermore, it ensures that the number of tuples sent is less
than the amount that remains on the local sender. This is
because it is better to spend the time processing tuples locally,
then it is to send a proportionally larger workload to another
reducer. Finally, the sender should not send tuples at all if the
sender itself has less tuples than or equal the target workload
needed for that sender to be balanced. It is better at this point
for that sender simply to process all its own tuples, after
which it can start to acquire tuples as a receiver instead.

4 Evaluation

4.1 Experiment configuration

To evaluate the performance of the proposed technique, we
implemented the SmartJoin method and tested its perfor-
mance on a simulated MapReduce environment. The sim-
ulated environment was built in-house and was based on the
Hadoop MapReduce platform [3]. We then evaluated the per-
formance of SmartJoin against tuple redistribution methods
that do not take into account the network configuration (Fig.
4).

In order to test our proposed algorithm the MapReduce
environment was setup to emulate a cluster of computers. For
this purpose, we model a network with three racks. One rack
has a 750 Mbps switch for intra rack communication, one
rack has a 500 Mbps switch and another rack has a 250 Mbps
switch. Connecting these three racks is a 1Gbps switch for
inter rack communication, with 10 nodes per rack. Each node
on the network contains four reducers, which are executing

123

Cluster Comput (2014) 17:629–641 635

Fig. 4 Experiment network configuration.

on separate cores with identical characteristics. To emulate
this environment, switches in the simulator processed tuples
at 750, 500 and 250 tuples per second (tps).

4.2 Experiment results

To evaluate the performance of the proposed technique, we
implemented the SmartJoin and tested these methodologies
using a set of randomly generated input data on a simulated
MapReduce environment. We then evaluated the SmartJoin
using different CPU speeds, by changing the number of nodes
and reducers executing on the network, and by changing the
type of loads executing on the network.

The performance of the SmartJoin was compared against
systems with no data redistribution, with random reducer
selection, and with worst-case reducer selection. Random
reducer selection distributes data from the sender with the
largest workload to any available receiver picked at ran-
dom. Random methods were run multiple times and an
average result was taken. In worst-case reducer selection
(WorstJoin), SmartJoins were modified so that they would
pairwise senders and receivers based on the greatest network
distance (instead of the least network distance).

Each reducer on the network was loaded with a number of
tuples to process. The number of tuples on each reducer ini-
tially ranged from a thousand tuples to a million tuples. The
initial processing capability of the CPU used in the simulation
was then set to 100 tps. The performance of the SmartJoin was
then tested and the results recorded. To investigate the effi-
cacy of the SmartJoin at redistributing tuples with different
workloads, the minimum load of the reducers was increased
and the test was rerun. The loading of the reducers on the
network for these tests is shown in Fig. 5.

As shown in Fig. 6, the efficacy of SmartJoin declines
as the difference between the minimum load and maxi-

mum load decreases regardless of CPU speed. In Fig. 6a
there is a case when a SmartJoin takes longer to process
the data than a WorstJoin. This is due to their being no free
receivers being available when the last unregistered reducer
finished its primary workload and became a sender. Later,
when a receiver became available, it was on a different
rack from the sender. The WorstJoin algorithm managed to
reverse this situation by offloading the workload onto differ-
ent racks first. This meant the only receiver available to the
last sender was one that happened to be on the same rack.
In most cases, the SmartJoin outperforms the other meth-
ods.

The performance of the SmartJoin was then compared
against networks with different number of nodes. The sim-
ulation used workloads that ranged from a thousand tuples
to a million tuples. The average number of tuples on each
reducer is initially 380,000 tuples for a network environment
containing 10 nodes per rack. The number of nodes on each
rack where then changed from 10 nodes to 20 nodes and
then finally to 30 nodes. During these tests, the workload is
redistributed amongst the nodes so that the total number of
tuples used in the test remains unchanged (approximately 46
million tuples).

As shown in Fig. 7, the efficacy of SmartJoin seems to
increase as the number of nodes increases. As shown in the
following table SmartJoin’s best performance occurs when
there are 30 nodes per rack and the CPU is executing at 200 tps
(Table 3).

The performance of the SmartJoin was then compared
against networks with different number of reducers per node.
The simulation used workloads that ranged from a thousand
tuples to a million tuples. The average number of tuples on
each reducer is initially 380,000 tuples for a network environ-
ment containing 10 nodes per rack. The number of reducers
on each node where then changed from 4 reducers to 8 reduc-
ers and then finally to 12 reducer. Each reducer is assumed
to run on a separate processing core. During these tests, the
workload is redistributed amongst the reducers so that the
total number of tuples used in the test remains unchanged
(approximately 46 million tuples).

As shown in Fig. 8, the efficacy of SmartJoin seems to
increase as the number of reducers increases. As shown in the
following table SmartJoin’s best performance occurs when
there are 12 reducers per node and the CPU is executing at
200 tps (Table 4).

Overall, the performance of SmartJoin is better than
other tuple redistribution methods. By having more nodes,
SmartJoin has more opportunities to match a receiver and
sender on the same rack. By having more reducers on each
node, SmartJoin has more opportunities to match a receiver
and sender on the same node. Consequently, the performance
of SmartJoin markedly improves as one adds more nodes and
more reducers.

123

636 Cluster Comput (2014) 17:629–641

Fig. 5 Workload distribution
on reducers. a 1K-1M tuples b
100K-1M tuples c 500K-1M
tuples d 800K-1M tuples

(a)

(b)

0

200000

400000

600000

800000

1000000

1 11 21 31 41 51 61 71 81 91 101 111

T
up

le
s

Reducer

0

200000

400000

600000

800000

1000000

1 11 21 31 41 51 61 71 81 91 101 111

T
up

le
s

Reducer

(c)

(d)

0

200000

400000

600000

800000

1000000

1 11 21 31 41 51 61 71 81 91 101 111

T
up

le
s

Reducer

0

200000

400000

600000

800000

1000000

1 11 21 31 41 51 61 71 81 91 101 111

T
up

le
s

Reducer

123

Cluster Comput (2014) 17:629–641 637

(a)
19776

19270 19875 19991

14248 14013

17256

19006

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1K-1M 100K-1M 500K-1M 800K-1M

T
im

e
(s

ec
on

ds
)

Data Distribution

CPU 100

No Redistribution

Random

WorstJoin

SmartJoin

(b)

13184 12846 13250 13327

10187 10565
12005

12845

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1K-1M 100K-1M 500K-1M 800K-1M

T
im

e
(s

ec
on

ds
)

Data Distribution

CPU 150

No Redistribution

Random

WorstJoin

SmartJoin

(c)

9888 9635 9888 9995
8726 8513 8387

9798

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1K-1M 100K-1M 500K-1M 800K-1M

T
im

e
(s

ec
on

ds
)

Data Distribution

CPU 200

No Redistribution

Random

WorstJoin

SmartJoin

Fig. 6 The affect of workload on SmartJoin performance. a CPU 100
tps b CPU 150 tps c CPU 200 tps

5 Related work

Joins have been studied in detail by many sources and inves-
tigations and descriptions of various joins have been collated
in other works [9,10]. A recent investigation into hash joins
by [11] has shown that the hash join algorithm is an efficient
algorithm for performing joins in modern multicore proces-
sors in main memory environments. The results of the hash
join algorithm study showed that a simple hash join technique
without partitioning any of its input relations often outper-
forms other more complex partitioning-based join alterna-
tives. In addition, the relative performance of this simple
hash join technique rapidly improves with increasing skew,
and it outperforms every other algorithm in the presence of
even small amounts of skew. Overall both [9] and [11] indi-

(a)

(b)

19776

13557

11265

14248

9005
7362

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

10 Nodes 20 Nodes 30 Nodes

T
im

e
(s

ec
on

ds
)

Nodes Per Rack

CPU 100

No Distribution

Random

WorstJoin

SmartJoin

13184

9038
7510

10187

6864
5171

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

10 Nodes 20 Nodes 30 Nodes
T

im
e

(s
ec

on
ds

)
Nodes Per Rack

CPU 150

No Distribution

Random

WorstJoin

SmartJoin

(c)

9888

6778
5632

8726

5255
4042

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

10 Nodes 20 Nodes 30 Nodes

T
im

e
(s

ec
on

ds
)

Nodes Per Rack

CPU 200

No Distribution

Random

WorstJoin

SmartJoin

Fig. 7 SmartJoin performance after increasing the number of nodes
per rack. a CPU 100 tps b CPU 150 tps c CPU 200 tps

Table 3 SmartJoin performance: different number of nodes per rack

SmartJoin time reduction (%)

CPU (tps) Nodes No distribution Random WorstJoin

100 10 28.0 1.6 −1.5

20 33.6 8.7 8.9

30 34.6 12.3 12.6

150 10 22.7 4.0 2.8

20 24.1 7.6 7.9

30 31.1 17.6 17.9

200 10 11.8 0.8 3.5

20 22.5 15.1 14.8

30 28.2 22.0 22.2

cate hash join as being an efficient method for handling joins
on a processor, however it is limited by the memory available
to store the hash table.

123

638 Cluster Comput (2014) 17:629–641

(a)

(b)

19776

13557
11265

14248

8481
6825

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

4 reducers 8 reducers 12 reducers

T
im

e
(s

ec
on

ds
)

Reducers Per Node

CPU 100

No Distribution

Random

WorstJoin

SmartJoin

13184

9038
7510

10187

5989
4875

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

4 reducers 8 reducers 12 reducers

T
im

e
(s

ec
on

ds
)

Reducers Per Node

CPU 150

No Distribution

Random

WorstJoin

SmartJoin

(c)

9888

6778
5632

8726

4832 3758

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

4 reducers 8 reducers 12 reducers

T
im

e
(s

ec
on

ds
)

Reducers Per Node

CPU 200

No Distribution

Random

WorstJoin

SmartJoin

Fig. 8 SmartJoin performance after increasing the reducers per node.
a CPU 100 tps b CPU 150 tps c CPU 200 tps

Table 4 SmartJoin performance: different number of reducers per node

SmartJoin time reduction (%)

CPU (tps) Nodes No distribution Random WorstJoin

100 10 28.0 1.6 −1.5

20 37.4 13.6 14.2

30 39.4 18.2 19.0

150 10 22.7 4.0 2.8

20 33.7 18.9 19.6

30 35.1 21.7 22.6

200 10 11.8 0.8 3.5

20 28.7 21.4 22.0

30 33.3 26.8 27.6

Data skew has a big impact on overall performance in
MapReduce. It is for this reason SmartJoin redistributes its
tuples amongst reducers. An alternative technique to tuple
redistribution is to preempt the overloading of any particular
reducer in the first place. For this purpose, a Skew hANDling

join called a SAND join is proposed in [12]. The SAND join is
a two-way join that replaces the hash partitioning approach
used by reduce-side joins in favor of its own range parti-
tioning approach and samples data before partitioning. This
method helps reduce skew amongst the reducers. SmartJoin’s
approach to workload balancing via tuple redistribution could
work in conjunction with this approach.

The use of a bloom filter [13] can reduce the amount of
work processed by a join. A bloom filter is used to filter
out redundant intermediate records. By filtering out tuples
that are not matched in the join, the bloom filter reduces
the workload. Consequently, this improves the efficiency of
the join. This approach is an orthogonal approach toward
MapReduce joins and can be used alongside the approach
used by SmartJoin.

Another work that discusses handling joins using a media-
tor over a network is presented by [14]. This system employs
a balanced network utilization metric to optimize the use of
all network paths in a global-scale database federation. It
uses a metric that allows algorithms to exploit excess capac-
ity in the network, while avoiding narrow, long-haul paths.
Another work similar to our paper that handles tuple redis-
tribution in multiway joins is presented by [8] but it uses a
distributed queue [15] rather than using peerwise network
connections and does not take into account network distance
when redistributing tuples.

Awareness of where data is located, is an issue that needs
to be considered in MapReduce. This is because the phys-
ical location of nodes, processes and data on the network
affects MapReduce performance. SmartJoin takes advan-
tage of physical location of nodes when it distributes tuples
between reducers. To take advantage of data locality between
mappers and reducers Purlieus resource allocation system
[16] uses locality awareness in both the map and reduce
stages thereby reducing job execution time and reducing
network contention within the data center. Data locality
is also considered by the Mesos [17] platform, which is
a resource allocation system which shares resources in a
fine-grained manner amongst different frameworks such as
Hadoop and MPI. Mesos allows each framework to achieve
data locality by taking turns reading data stored on each
machine. As an extension to the Mesos system, an alterna-
tive resource allocation system is presented in [18], which
attempts to distribute resources fairly in a system con-
taining different resource types and where different appli-
cations have different resource requirements. An alterna-
tive topology aware resource allocation (TARA) [19] sys-
tem also takes into account physical location of resources
on the physical network in order to optimize allocation of
resources for Infrastructure-as-a-Service (IaaS)-based cloud
systems. The purpose of TARA is to overcome deficien-
cies in current IaaS systems, which do not consider the
resource requirements of its hosted application and allocated

123

Cluster Comput (2014) 17:629–641 639

resources independent of its needs. TARA’s approach is to
incorporate a prediction engine into the resource allocation
system. This prevents IaaS providers relying on clients to
provide possibly flawed resource requirements. TARA’s pre-
diction engine is based on a lightweight simulator that esti-
mates the performance of a specific resource allocation and
a genetic algorithm that it uses to search for an optimal solu-
tion.

Research in recent years on joins and the MapReduce pro-
gramming model has resulted in the creation of new pro-
gramming models to improve join performance in various
scenarios. Research by Wang et al [20] investigates how to
perform an equi-join on large datasets on a ring architecture
distributed system rather than the master-slave architecture
distributed system used by MapReduce programming mod-
els like Hadoop. Meanwhile, research by Jiang et al [21]
extends the MapReduce model to a MapJoinReduce model,
which performs filtering-join-aggregation tasks in two suc-
cessive MapReduce jobs. This approach allows multiple data
sets to be joined in one go and avoids frequent checkpoint-
ing and shuffling of intermediate results. These methods are
unlike the proposed SmartJoin, which builds on top of the
pre-existing framework rather than changing the program-
ming model or working environment.

In order to improve joins for multiple datasets a new frame
called Llama [22] was created that has a distributed file sys-
tem that stores data in both row-wise and column-wise for-
mat. The developers of Llama noted that the MapReduce
model needs to process multiple joins using multiple jobs.
Since this requires storing intermediate results of consecu-
tive jobs to a file system like HDFS (Hadoop Distributed
File System) it incurs a very high I/O cost. Llama’s new DFS
allows it to handle joins more efficiently using join algorithms
designed to take advantage of its unique DFS.

Researchers have studied MapReduce joins for use in spe-
cific applications. Research into matrix multiplication [23]
identified how multiway joins can be beneficial when multi-
plying large matrices on MapReduce as it reduced the number
of binary multiplications. Matrix multiplications were per-
formed in this paper by translating a multiplication into a join
operation on a database system. Research such as this could
be positively impacted by SmartJoin. Other research into
MapReduce joins include similarity joins, such as a distance-
based similarity self-join [24,25] which can process large
vector data sets and the V-SMART-Join [26] that improves
performance for all-pair similarity joins for multisets and
vectors.

As shown in the literature [21–26], there has been much
research into MapReduce joins. Since the join operation is a
common data processing task, it is an attractive target for opti-
mization. The need for such optimization will likely continue
as researchers try to marry traditional database technologies
like SQL with MapReduce [27–32].

6 Conclusion and future work

In this paper, a network aware multiway MapReduce join
called SmartJoin is presented that redistributes the work-
load in a MapReduce job. The simulation results show
that SmartJoin can significantly improve tuple redistribution
for multiway joins in MapReduce applications. SmartJoin
has shown up to 39 % improvement compared to the non-
redistribution method, with up to 26.8 % improvement over
the random redistribution method and up to 27.6 % improve-
ment over the WorstJoin redistribution method.

SmartJoin is designed for users who intend to perform
multiway joins between two large datasets and several
smaller datasets with MapReduce. In future work it would
be desirable to explore how this system could be extended
to handle more than two large datasets and how to improve
its performance on different network topologies or hardware
configurations. We leave these tasks for future work.

References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing
on large clusters. Commun. ACM 51(1), 107–113 (2008)

2. Hoefler, T., Lumsdaine, A., Dongarra, J.: Towards efficient MapRe-
duce using MPI. Lecture Notes Comput. Sci. 5759, 240–249 (2009)

3. White, T.: Hadoop the Definitive Guide, 2nd edn. O’Reilly,
Sebastopol (2010)

4. Xhafa, F.: Processing and analysing large log data files of a virtual
campus. J. Converg. 3(3), 1–8 (2012)

5. Augusto, J., Callaghan, V., Cook, D., Kameas, A., Satoh, I., Saba,
T., Chorianopoulos, K., Howard, N., Cambria, E., Gupta, V.: Intel-
ligent environments: a manifesto. Human-centric Comput. Inf. Sci.
3(12), 1–18 (2013)

6. Ihm, H.: Mining consumer attitude and behavior, an exploratory
study on movie audience attitude extracted from twitter. J. Converg.
4(2), 29–35 (2013)

7. Afrati, F.N., Ullman, J.D.: Optimizing multiway joins in a map-
reduce environment. IEEE Knowl. Data Eng. 23(9), 1282–1298
(2011)

8. Lynden, S., Tanimura, Y., Kojima, I., Matono, A.: Dynamic data
redistribution for MapReduce joins. In: IEEE Third International
Conference on Cloud Computing Technology and Science (Cloud-
Com), pp. 717–723 (2011).

9. Chandar, J.: Join Algorithms using Map/Reduce. Master of science.
Thesis. School of informatics, University of Edinburgh (2010).

10. Palla, K.: A comparative analysis of join algorithms using the
hadoop map/reduce framework. Master of science. Thesis. School
of informatics, University of Edinburgh (2009).

11. Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main mem-
ory hash join algorithms for multi-core cpus. In: Proceedings of
the ACM SIGMOD (2011).

12. Atta, F., Viglas, S.D., Niazi, S.: SAND Join–A skew handling
join algorithm for Google’s MapReduce framework. In: Multitopic
Conference (INMIC), 2011 IEEE 14th, International, pp. 170–175.
(2011).

13. Lee, T., Kim, K., Kim, H.J.: Join processing using Bloom filter
in MapReduce. In: Proceedings of the 2012 ACM Research in
Applied Computation Symposium 2012, pp. 100–105. (2012).

123

640 Cluster Comput (2014) 17:629–641

14. Wang, X., Burns, R., Terzis, A., Deshpande, A.: Network-aware
join processing in global-scale database federations. In: IEEE 24th
International Conference on Data Engineering, 2008. ICDE 2008,
pp. 586–595. (2008).

15. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: ZooKeeper: Wait-
free coordination for Internet-scale systems. In: USENIX ATC
(2010).

16. Palanisamy, B., Singh, A., Liu, L., Jain, B.: Purlieus: locality-aware
resource allocation for MapReduce in a cloud. In: Proceedings of
2011 International Conference for High Performance Computing,
Networking, Storage and Analysis 2011, pp. 58. (2011).

17. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph,
A.D., Katz, R., Shenker, S., Stoica, I.: Mesos: A platform for
fine-grained resource sharing in the data center. In: Proceedings of
the 8th USENIX Conference on Networked Systems Design and
Implementation 2011, pp. 22–22. USENIX Association (2011).

18. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S.,
Stoica, I.: Dominant resource fairness: fair allocation of multiple
resource types. In: USENIX NSDI (2011).

19. Lee, G., Tolia, N., Ranganathan, P., Katz, R.H.: Topology-aware
resource allocation for data-intensive workloads. In: Proceedings
of the First ACM Asia-Pacific Workshop on Workshop on Systems
2010, pp. 1–6. ACM (2010).

20. Wang, X., Shen, D., Nie, T., Kou, Y., Yu, G.: The equi-join process-
ing and optimization on ring architecture key/value database. In:
Web Technologies and Applications, pp. 243–254 (2012).

21. Jiang, D., Tung, A.K.H., Chen, G.: Map-join-reduce: Toward scal-
able and efficient data analysis on large clusters. Knowl. Data Eng.
IEEE Trans. 23(9), 1299–1311 (2011)

22. Lin, Y., Agrawal, D., Chen, C., Ooi, B.C., Wu, S.: Llama: leveraging
columnar storage for scalable join processing in the mapreduce
framework. In: Proceedings of the 2011 International Conference
on Management of Data, pp. 961–972. ACM (2011).

23. Myung, J., Lee, S.: Matrix chain multiplication via multi-way join
algorithms in MapReduce. In: Proceedings of the 6th International
Conference on Ubiquitous Information Management and Commu-
nication 2012, pp. 53. ACM (2012).

24. Seidl, T., Fries, S., Boden, B.: MR-DSJ: distance-based self-join for
large-scale vector data analysis with MapReduce. In: 15th BTW
Conference on Database Systems for Business, Technology, and
Web, Magdeburg, pp. 37–56 (2013).

25. Afrati, F.N., Sarma, A.D., Menestrina, D., Parameswaran, A., Ull-
man, J.D.: Fuzzy joins using MapReduce. In: 2012 IEEE 28th Inter-
national Conference on Data Engineering (ICDE), pp. 498–509.
IEEE (2012).

26. Metwally, A., Faloutsos, C.: V-smart-join: a scalable mapreduce
framework for all-pair similarity joins of multisets and vectors.
Proc. VLDB Endow. 5(8), 704–715 (2012)

27. Gowraj, N., Ravi, P.V., Mouniga, V., Sumalatha, M.: S2MART:
smart sql to Map-Reduce translators. In: Web Technologies and
Applications, pp. 571–582. Springer (2013).

28. Lee, R., Luo, T., Huai, Y., Wang, F., He, Y., Zhang, X.: Ysmart:
Yet another sql-to-mapreduce translator. In: 31st International Con-
ference on Distributed Computing Systems (ICDCS), pp. 25–36.
IEEE (2011).

29. Xu, Y., Hu, S.: QMapper: a tool for SQL optimization on hive
using query rewriting. In: Proceedings of the 22nd International
Conference on World Wide Web Companion, pp. 211–212. (2013).

30. Lu, J., Guting, R.H.: Parallel secondo: boosting database engines
with hadoop. In: IEEE 18th International Conference on Parallel
and Distributed Systems (ICPADS), pp. 738–743. IEEE (2012).

31. Chung, W.-C., Lin, H.-P., Chen, S.-C., Jiang, M.-F., Chung, Y.-
C.: JackHare: a framework for SQL to NoSQL translation using
MapReduce. Autom. Softw. Eng. 1–20 (2013).

32. Stonebraker, M., Abadi, D., DeWitt, D.J., Madden, S., Paulson, E.,
Pavlo, A., Rasin, A.: MapReduce and parallel DBMSs: friends or
foes? Commun. ACM 53(1), 64–71 (2010)

Kenn Slagter received an
NZCE in electronics and com-
puter technology from the East-
ern Institute of Technology in
1996, a B.S. degree in Computer
Science from the University of
Waikato in 2000 and a Master of
Computer Studies from the Uni-
versity of New England in 2007.
In 2008 he joined the Department
of Computer Science at National
Tsing Hua University as a PhD
candidate. He has also over 8
years work experience in the pri-
vate sector as a software engi-

neer. His research interests include high performance computing, cloud
computing and parallel & distributed systems. He is a student member
of the IEEE computer society.

Ching-Hsien Hsu received B.S.
and Ph.D. degrees in Computer
Science from Tung Hai Uni-
versity and Feng Chia Univer-
sity, Taiwan, in 1995 and 1999,
respectively. From 2001 to 2002,
Dr. Hsu had been an assis-
tant professor in the depart-
ment of Electrical Engineering
at Nan Kai College. He joined
the department of Computer Sci-
ence and Information Engineer-
ing, Chung Hua University in
2002, and has become an asso-
ciate professor since August

2005. Doctor Hsu has published more than 100 academic papers in jour-
nals, books and conference proceedings. His research interests include
parallel and distributed processing, concurrent programming, paralleliz-
ing compilers, grid and pervasive computing. He is a senior member of
the IEEE computer society.

123

Cluster Comput (2014) 17:629–641 641

Yeh-Ching Chung received a
B.S degree in Information Engi-
neering from Chung Yuan Chris-
tian University in 1983, and
the M.S. and Ph.D. degrees in
Computer and Information Sci-
ence from Syracuse University in
1988 and 1992, respectively. He
joined the Department of Infor-
mation Engineering at Feng Chia
University as an associate pro-
fessor in 1992 and became a full
professor in 1999. From 1998 to
2001, he was the chairman of the
department. In 2002, he joined

the Department of Computer Science at National Tsing Hua Univer-
sity as a full professor. His research interests include parallel and dis-
tributed processing, cloud computing, and embedded systems. He is a
senior member of the IEEE computer society.

Gangman Yi received his mas-
ter’s degree in Computer Science
at Texas A&M University, USA
in 2007, and received his doc-
torate in Computer Science from
Texas A&M University, USA in
2011. In May 2011, he joined
System S/W group in Sam-
sung Electronics, Suwon, Korea.
Finally, Dr. Yi joined the Depart-
ment of Computer Science &
Engineering, Gangneung-Wonju
National University, Korea in
March 2012. Dr. Yi’s research
interests cover an interdiscipli-

nary field. However, his research focuses especially on the develop-
ment of computational methods to improve understanding of biological
systems and associated big data. Dr. Yi actively serves as a managing
editor and reviewer for international journals, and chair for international
conferences and workshops.

123

	SmartJoin: a network-aware multiway join for MapReduce
	Abstract
	1 Introduction
	2 Background
	2.1 Network model
	2.2 Join algorithms
	2.2.1 Reduce-side join
	2.2.2 Hash join
	2.2.3 Map-side join

	3 SmartJoin
	4 Evaluation
	4.1 Experiment configuration
	4.2 Experiment results

	5 Related work
	6 Conclusion and future work
	References

