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a b s t r a c t

In a heterogeneousmulti-cluster (HMC) system, processor allocation is responsible for choosing available
processors among clusters for job execution. Traditionally, processor allocation in HMC considers only
resource fragmentation or processor heterogeneity, which leads to heuristics such as Best-Fit (BF) and
Fastest-First (FF). However, those heuristics only favor certain types of workloads and cannot be changed
adaptively. In this paper, a temporal look-ahead (TLA) method is proposed, which uses an allocation
simulation process to guide the decision of processor allocation. Thus, the allocation decision is made
dynamically according to the current workload and system configurations. We evaluate the performance
of TLAby simulations,with differentworkloads and systemconfigurations, in termsof average turnaround
time. Simulation results indicate that, with precise runtime information, TLA outperforms traditional
processor allocation methods and has up to an 87% performance improvement.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

This paper focuses on the issue of processor allocation for par-
allel jobs in heterogeneous multi-cluster (HMC) systems. An HMC
system consists of multiple clusters, whose computational power,
memory size, and communication capability can be varied for dif-
ferent clusters. Such systems are becomingmore andmore popular
in grid computing and cloud computing [20,24,23].

In an HMC system, a central job scheduler (also known as
a meta-scheduler) is commonly used to dispatch all submitted
jobs [20,23]. A central queue, called the waiting queue, is used to
accommodate those submitted jobs. The central job scheduler usu-
ally involves two operations: job scheduling and processor alloca-
tion. Job scheduling decides the execution order of the jobs, while
processor allocation decides which cluster(s) to allocate the job
to [20,23].
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The issues of processor allocation in a HMC system are more
complicated than those in other parallel systems. In a homoge-
neous cluster system or a supercomputer, all processors have
equal computation capability. Therefore, it makes no significant
difference to allocate a job on different processors. For a homoge-
neous multi-cluster system, processor allocation methods can be
divided into two categories, single-site allocation and multi-site
co-allocation, depending on whether the system supports a job to
be executed across different clusters [12]. The single-site alloca-
tion algorithms need to take care of the resource fragmentation
problem,whichmeans the entire systemhas a sufficient amount of
available processors for a job but no single cluster alone has enough
free processors to accommodate it. For an HMC system, the hetero-
geneity of resources adds another dimension of complexity to the
allocation problem [23].

In this paper, we focus on the case of single-site allocation on
HMC, since multi-site co-allocation is rarely seen in production
systems [21]. In addition, we assume the heterogeneity is only
for computing speed (it is called speed heterogeneity hereafter in
this paper). Because of speed heterogeneity, allocating a job onto
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different clusters could lead to a different job execution time.
Moreover, different allocation decisions for a job may also affect
the waiting time of the jobs behind it in the waiting queue because
of the resource fragmentation. Therefore, processor allocation
becomes a crucial issue in a HMC system because it affects both
the waiting time and execution time of the job.

Traditional processor allocation heuristics on a HMC system
aim to resolve the resource fragmentation problem or to leverage
the speed heterogeneity property to improve system performance,
which leads to heuristics such as Best-Fit (BF) [10] and Fastest-First
(FF) [12]. As reported in [23], their performance largely depends on
the input workload and system configurations since both methods
consider only a single performance factor.

This paper proposes a novel single-site allocationmethod called
temporal look-ahead (TLA), which uses an allocation simulation
process to guide the decision of processor allocation. Instead of
focusing on resource fragmentation and speed heterogeneity di-
rectly, TLA tries to optimize the performance of entire system
based on the specified performance metric. The idea behind TLA
is that by considering the performance metric directly it will natu-
rally take into account all relevant performance factors to thatmet-
ric. This design gives TLA potential to optimize other performance
metric, which may have completely different performance factors.

TLA works as follows. For each job j to be allocated, TLA eval-
uates all possible allocations and picks the one that could result
in best system performance. Each possible allocation, say allocate
to cluster c , is evaluated through a simulation, which simulates
the job scheduling, allocation, and execution of all subsequent jobs
in the waiting queue, under the assumption that job j is allocated
to cluster c , and evaluates the consequent system performance of
such an allocation.

The realization of TLA needs to know which job scheduling al-
gorithm is used since it decides the execution order of jobs in
the waiting queue. TLA is a general processor allocation algorithm
which can work with different job scheduling algorithms. To sim-
plify the presentation, this paper only demonstrate the capabil-
ity of TLAwith the well-known First-Come–First-Served (FCFS) job
scheduling algorithm [20,23,15].

To show the effectiveness of TLA, we compared TLA with exist-
ing processor allocation heuristics with the metric of average job
turnaround time. Simulation experimentswere conducted for vari-
ous inputworkloads and system configurations. Simulation results
show that the peak performance improvements made by TLA can
be up to 87%, when the runtime estimation is accurate.

The rest of this paper is organized as follows. Section 2 presents
the system model and reviews the related work. Section 3 illus-
trates the idea of TLA. Section 4 presents the results of experiments
which are based on precise job runtime estimation. Section 5
presents and discusses the performance issue of TLA. Conclusions
and future work are given in Section 6.

2. Background and related works

2.1. System model

The system in discussion is a heterogeneous multi-cluster
(HMC) architecture, which consists of a collection of intercon-
nected clusters. Each cluster is a computer system with homoge-
neous processors, while the number and the speed of processors
can be varied for different clusters. Here we assume the speed dif-
ference among the clusters can be perfectly reflected by job run-
time. For example, if the speed of processor in cluster A is twice
as fast as that in cluster B, running a job on cluster A would take
half of the time by running the job on cluster B. This assumption is
optimistic, but widely used in literature [28,29,25].

In HMC, we assume there is a global waiting queue to accom-
modate all the submitted jobs, which are then scheduled by a cen-
tral job scheduler. Theoretically, a central job scheduler could be a
critical limitation concerning scalability and reliability. However,
practical distributed implementations are possible, in which site-
autonomy is still maintained but the resulting schedule would be
the same as created by a central job manager [6].

Each submitted job can only be allocated within a single cluster
and we assume no dependency among the jobs. The HMC system
in discussion runs jobs in an exclusive fashion, i.e. time-sharing of
jobs is not allowed on each processor. Once a job starts execution, it
runs to finishwithout interruption. Neithermigration nor preemp-
tion is allowed. Job submissions are in an on-line manner, i.e. no
knowledge of further job submission can be obtained. Each submit-
ted job needs to specify the required number of processors and the
estimated running time. All jobs are assumed to be rigid [16], i.e.
the required number of processors of each job cannot be changed
after job submission. Themodel described above is commonly used
in literature [20,23,21].

2.2. Scheduling model

We use the same online scheduling model as presented in
[23,12]. In the model, the scheduling session is activated by the
scheduling event. A scheduling event is triggered when a new job
is submitted or when a running job finishes. The entire scheduling
flow in a scheduling session is depicted in Fig. 1. For each schedul-
ing session, it will go through the following phases:
• Job scheduling: picks one target job from thewaiting queue and

pass it to Processor Allocation phase.
• Processor Allocation: chooses a cluster with enough free pro-

cessors to execute the target job. If such cluster exists, allocate
the target job to the selected cluster immediately for execution,
then go back to Job Scheduling phase to select the next target
job. Otherwise, end this scheduling session.

Based on the flow, each scheduling sessionwill try to allocate as
many jobs as possible for immediate execution, until there are no
jobs left in the waiting queue or there are no clusters with enough
free processors for the target job.

2.3. Job allocation algorithms

The problem of parallel job allocation had been widely
investigated for various computational architectures. On the early
hypercube-based parallel computers, processor allocation [18,22]
is critical for performance, because allocating a job to different
sub-cubes, might lead to diverse system performance owing to
resource fragmentation. Later, for switch-based parallel computers
and cluster-based computing systems, job scheduling [9,17,8,27]
becomes a more important problem, which stemmed from the
fact that on such systems an allocation can be made with any
portion of the systemwithout causing any performance difference.
However, things have changed again for the emergence of grid
and cloud systems [6,1], in which usually multiple clusters are
interconnected. The resource fragmentation problem appears once
more, and receives increasing research attention.

The multi-cluster system can be further classified into two
categories:
• Single-site allocation system [20,3]: Since an inter-cluster com-

munication network is usually much slower than an intra-
cluster high-speed network, a parallel job is restricted to run
within a single cluster for better performance than running
across different clusters. However, such an allocation policy
could result in resource fragmentation.

• Multi-site co-allocation system [24,28,3]: A parallel job is al-
lowed to be allocated across different clusters. This allocation
policy does not suffer the resource fragmentation problem.
However, the execution performances of co-allocated jobs are
usually worse than executing them in single cluster due to the
much slower inter-cluster network.
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Fig. 1. The scheduling flow in a scheduling session.

This paper focuses on single site allocation, as multi-site co-
allocation is rarely seen in production systems [21]. In single site
allocation, Huang and Chang [13] studied many classical meth-
ods, such as First-Fit, Best-Fit, Worse-Fit, Median-Fit, and Random
Fit. Simulation results showed that the Best-Fit (BF) heuristic,
which allocates a job to the cluster resulting in the least left-
over processors, outperforms all the other methods in the homo-
geneous multi-cluster environments. Similar results can also be
found in [11]. In the heterogeneous multi-cluster environment,
the Fastest-First (FF) method, which tries to minimize the job ex-
ecution time through allocating each job onto the fastest avail-
able cluster, is shown to surpass BF when speed heterogeneity is
high [12]. However, these two methods have the drawback that
they consider one job at a time when making allocation decision.
Such allocation scheme though flexible but hard to consider the
effect of resource fragmentation, which largely depends on the
size (required number of processors) of the subsequent jobs to
be allocated. For this, Shih et al. [23] consider all waiting jobs to-
gether when making each allocation decision. Several intelligent
allocation approaches are proposedwhich dynamically change the
allocation policy between BF and FF. Among all the proposed algo-
rithms, the adaptive intelligent 2 (AI2) [23] method will be used
for performance comparison since it shows the best performance.

Recently, J. Ramírez-Alcaraz et al. [20] proposed several alloca-
tion strategies on a multi-cluster Grid. The goal is to balance the
load amongdifferent clusters. However, the used schedulingmodel
differs from ours in that for each new submitted job it will firstly
be allocated to one of the cluster by the allocation strategy. Local
scheduling is then applied on all jobs submitted to that cluster.

The approach proposed in this paper further improves Shih’s
AI2 method [23] in three aspects. First, TLA considers all possible
allocation decision, rather than the one produced by BF or FF.
Second, TLA candirectly optimize theperformance of entire system
based on the specified performance metric. Third, TLA further
utilizes the execution time information of the waiting jobs to
consider more precise effects of each allocation.

The following briefly describes howAI2works. In each schedul-
ing session it conducts a simulation process on two allocation
branches. Branch A allocates the first target job using BF while
branch B allocates the first target job using FF. The rest of the tar-
get jobs (if any) in the same scheduling session are allocated us-
ing FF. The final allocation decision (for the first target job only) is
made based on which branch consumesmore computing power in
the simulation. The consumed computing power is defined as the
used number of processors multiplied by the speed of that cluster.
For example, in the simulation, branch A totally allocates 3 target
jobs in the same scheduling session and yields 12 units of comput-
ing power to be consumed. Branch B allocates totally 2 target jobs
and yields 13 units of computing power to be consumed. The final
decisionwould be allocating the first target job using FF (branch B).

2.4. Performance metric

There are two commonly used metrics to evaluate the per-
formance of an on-line job scheduling algorithm: the Average
Turnaround Time (ATT) [17,8] and the Bounded Slowdown [7].
Both metrics are considered in evaluating the performance of TLA.
However, in the simulation results, no significant performance dif-
ferences are found between these two metrics, and therefore only
the case of average turnaround time is presented.
Fig. 2. Scoring function of TLA.

The turnaround time (TT) of a job i is defined as

TTi = endTimei − submitTimei (1)

and the ATT of a group of jobs is defined as

ATT =


∀ job i

TTi


N (2)

where N is the total number of jobs.

3. TLA method

For the job in the waiting queue to be allocated, say job j, TLA is
asking the following question:

If jobs in the current waiting queue are what the system will
have ultimately, which allocation of job j will achieve the best
overall system performance?

To answer that, TLA evaluates all possible allocations for job j,
in terms of a desired performance metric, such as ATT introduced
in Section 2.4. For a possible allocation, say cluster c , TLA utilizes a
simulation procedure for all the subsequent waiting jobs in queue
to see the outcome of allocating job j to cluster c . The simulation of
the allocation and execution of the waiting jobs is based on the in-
formation provided by the waiting jobs, namely the number of re-
quested processors and the runtime estimation. Fig. 2 outlines the
procedure of allocation evaluation, denoting the Scoring Function.

The obstacle of TLA is Step II, which simulates the allocation
of the subsequent waiting jobs. The most brute-force but precise
way is to invoke TLA again inside the simulation. However, this re-
cursive invocation will make the entire calculation time exponen-
tial, which is inefficient and unnecessary, because the waiting jobs
could be changed when their real allocation and execution hap-
pen. What we want is an estimation to the effect of allocating job j
to cluster c , based on some reasonable calculations. We will show
how this can be done later.

It should be noted that when there is no job in the waiting
queue, the allocation decisionmade by TLAwill be the same as that
produced by simple heuristics, such as BF and FF. Therefore,wewill
not address the algorithms for the case of empty waiting queue in
the following discussion. In all the simulation experiments, we use
FF as our default policy when facing this situation.

Before moving on, we define the used notations:

• J: a list of jobs in the waiting queue with required information,
such as the number of required processors, the estimated
runtime, etc.

• C: a list of clusters with its profile, such as the speed of proces-
sors, total number of processors, and the number of currently
available processors, etc.

3.1. TLA algorithm

The detailed scoring function of TLA is shown in Fig. 3, in which
only Step II is highlighted because other steps are the same as in
Fig. 2. In Step II, the term ‘‘sim-allocate’’ represents ‘‘simulated
allocation’’, which means all the actions are taking place just by
simulations inside the scoring function. In Step II-(c), instead of



1664 P.-C. Shih et al. / J. Parallel Distrib. Comput. 73 (2013) 1661–1672
Fig. 3. The detailed scoring function of TLA.

Table 1
Score calculated by TLA in allocation simulation (the lower the better).

Job
ID

Number of
required
processors

Submit
timea

Estimated
runtime

Score for
allocating job 1
to cluster A

Score for
allocating job
1 to cluster B

1 3 −5 10 10 15
2 6 −4 2 10 5
3 2 −2 8 11 6
4 7 −2 2 9 6

Ave. 10 8
a The submit time is shown in negative value to represent the time prior to

current time 0.

recursively invoking TLA, a simple heuristic FF is used to decide
the allocation of subsequentwaiting jobs. This trick greatly reduces
the time complexity from exponential to polynomial. The use of
FF is because it usually results in a better turnaround time for
individual tasks. We will discuss the case of using other heuristics
in allocation simulation in Section 5.3.

Fig. 4 provides an example to illustrate how TLAworks. Fig. 4(a)
shows the snapshot of current waiting jobs and the status of clus-
ters before TLA begins. There are four waiting jobs represented by
rectangles, in which the height is the required number of proces-
sors (RNP), thewidth is the estimated runtime (ERT), and the num-
ber in the rectangle is the job ID, as well as the execution order.
There are two clusters. Each cluster has nine processors, and the
ones in cluster A are two times faster than those in cluster B. Job r1
and r2 are two current running jobs.

To find an allocation for job 1, TLA has to calculate f (1, A) and
f (1, B). The calculation of f (1, A) first runs a simulation to allo-
cate all subsequent waiting jobs, as shown in Fig. 4(b). After that,
the score is calculated by averaging the turnaround time of all four
waiting jobs, as shown in Table 1, whose value is 10. The same pro-
cedure is applied to compute f (1, B), whose simulation result is
shown in Fig. 4(c), and the computed score is 8. In this example,
TLA will allocate job 1 to cluster B, since it has a smaller ATT.

3.2. Time complexity

This section analyzes the worst-case time complexity of TLA.
Assume a HMC system hasm clusters, and there are qwaiting jobs
and r running jobs before performing TLA.

In TLA, the complexity of the scoring function is dominated by
step II (see Fig. 3), which checks if there are enough free processors
to accommodate the subsequent waiting jobs at the end time of
each running job. If a job can be allocated immediately, it requires
logm1 steps to decide its allocation using FF policy and r steps to
put its end time to the right place in the end of the event queue,
which is a link-list data structure sorted by the ascending order

1 R.P. Brent in his work ‘‘Efficient implementation of the first-fit strategy for dy-
namic storage allocation’’ has proposed an O(logm) mechanism to implementation
the first-fit method. The proposed mechanism can also be applied to fastest-first
since it is a special case of first-fitwhere the clusters are sorted from faster to slower.
Table 2
Time complexity of Best-Fit, Fastest-First, adaptive intelligent 2, and TLA.

Processor allocation algorithms Time complexity

Best-Fit (BF) and Fastest-First (FF) O(m)
Adaptive Intelligent 2 (AI2) O(qm)
TLA O(qm logm+rm)

Used notations:
m: total number of clusters in HMC.
q: number of current waiting jobs.
r: number of current running jobs.

of job end time so that one can find the nearest job end time in
constant step. If a job cannot be allocated immediately, it traverses
the end event queue and accumulates the processors released by
each running job until sufficient processors has been reclaimed to
allocate the job. The traverse of the entire waiting jobs takes at
most r+q steps. In theworst case it requires atmost q logm+r+q
operations to go through step II. Since the allocatable cluster of a
job is at mostm, the total operation required is qm logm+rm+qm
and the time complexity of TLA is O(qm logm + rm).

In grid or cloud environments, the number of clusters may be
large, which may influence the scalability of the algorithms. How-
ever, we should point out those algorithms can be embarrassingly
parallelized and are strongly scalable with the number of clusters
m.

Table 2 summarizes the time complexity of TLA and its competi-
tors: Best-Fit, Fastest-First, andAdaptive Intelligent 2. Additionally,
we collect the time required for TLA to compute the score in the
simulation procedure on a general core2 dual PC with 2 GB mem-
ory, as displayed in Fig. 5. The number of clusters is five, the same
as most of our experimental setting presented in Section 4. From
the figure one can find that the overhead of TLA is in general negli-
gible (less than 1 s) compared to the time required to execute a job
(thousands of seconds on average), even with an extremely large
number of waiting jobs.

4. Experiments

In this section we present the simulation results based on pre-
cise job runtime estimation. The experimental settings, includ-
ing the used input workloads and the methods to model different
system configurations, are presented in Section 4.1. Section 4.2
present the simulation results as well as the discussion.

4.1. Experimental settings

It has been reported that workload characteristic and system
configuration can have significant impactwhen evaluating the per-
formance of a scheduling algorithm [9,2,5]. In order to consider
those effects, the simulation configuration includes various work-
load source, system configuration, degree of speed heterogeneity
and degree of system loading.

For workload source, we use several public downloadable
workload logs and models from parallel workload archive [19] to
avoid bias caused by specific workload characteristic. The work-
load logs used include SDSC’s SP2, DAS2 5-cluster grid, and ANL
Intrepid. The SDSC’s SP2 log contains 73,496 records collected on
a 128-node IBM SP2 machine at San Diego Supercomputer Center
(SDSC) from May 1998 to April 2000. The DAS2 5-cluster grid log
contains in total 432,987 records collected on five Pentium/Linux
clusters (one cluster with 144 CPUs and the rest with 64) from Jan
2003 to Dec 2003. The ANL Intrepid log contains several months’
records (in total 68,936 jobs from Jan to Sep 2009) collected on a
large Blue Gene/P system called Intrepid, which is a 557 Teraflops,
40-rack Blue Gene/P system deployed at Argonne Leadership Com-
puting Facility (ALCF) at Argonne National Laboratory. Excluding
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(a) Before allocation.

(b) Simulated allocation results if job 1 is allocated to cluster A.

(c) Simulated allocation results if job 1 is allocated to cluster B.

Fig. 4. Illustration of how TLA works.
problematic records such as non-positive job runtime and proces-
sor requirement, the actual number of jobs used in simulation for
each workload is shown in Table 3. The used synthetic workload
models include Lublin99 [16], Feitelson96 [4], and Jann97 [14].
These three models are chosen because their job type (rigid) fits
our assumption. For each model, 50,000 jobs were generated for
simulation.

To have various system configurations, the HMC system used
in the simulations is modeled according to the used workload and
for each workload we prepare two sets of system configuration,
which differ either in the number of clusters or in the number of
processors in each cluster. For example, when using SDSC’s SP2
log the number of clusters is set to five to match the number of
job submission queues in the SDSC’s SP2 system and the number
of processors for each cluster is set either equal to the maximum
number of required processors in all queues,which are 128 for each
cluster, or equal to the maximum number of required processors
of the jobs in the corresponding queue, which are 8, 128, 128, 128,
and 50 for each cluster. The detailed system configuration is also
shown in Table 3. One thing that needs to be mentioned is the
workload C2 (refer Table 3 for theworkload ID). To have a casewith
a large number of clusters, the total 163,840 processors are divided
into 20 clusterswith 8192 processors each. For jobs requiringmore
than 8192 processors, they are divided into several small jobs with
8192 processors and the last one job takes the leftover processors.
For example, a job requiring 20,000 processors will be divided into
two jobs with 8192 processors plus one job with 3616 processors.
Note that job splitting may not be a good modeling approach as
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Table 3
Summary of the characteristic of the used workloads and corresponding system configurations.

Type Name Workload ID Jobs Clusters System configuration Ori. SL

Log SDSC’s SP2 A1 54,041 5 128 ∗ 5 = 640 0.17
A2 54,041 5 128 ∗ 3 + 50 + 8 = 442 0.24

Log DAS2 B1 416,836 5 144 ∗ 5 = 720 0.08
B2 416,836 5 144 + 64 ∗ 4 = 400 0.14

Log ANL Intrepid C1 68,936 5 163, 840 ∗ 5 = 819, 200 0.11
C2 88,205 20 8192 ∗ 20 = 163, 840 0.59

Model Lublin 99 D1 50,000 5 128 ∗ 5 = 640 0.34
D2 50,000 10 128 ∗ 10 = 1280 0.17

Model Feitelson 96 E1 50,000 5 128 ∗ 5 = 640 0.09
E2 50,000 3 128 ∗ 3 = 384 0.15

Model Jann 97 F1 50,000 5 322 ∗ 5 = 1610 0.13
F2 50,000 8 322 ∗ 8 = 2576 0.08
it changes the characteristic of original workload. It just serves as
a special case to see if a different modeling method affects the
performance of TLA.

Speed heterogeneity (SH) controls the variance of the comput-
ing speed among different clusters. To simulate the differences in
computing speed we define a speed vector, (cs1, cs2, . . . , csm), to
describe the relative computing speeds of all the clusters [23,12].
The value 1 represents the computing speed resulting in the job
runtime in the original workload log. For other values, the runtime
of jobs allocated to cluster i is divided by csi. With which, speed
heterogeneity is defined as

SH =

m
i=1

(csi − 1)2

m
, (3)

in which m is the total number of clusters. Three levels of speed
heterogeneity, 0, 0.1, and 0.2 are considered in the simulation
configurations. In addition, for fairness, we require the generated
csi satisfying

m
i=1

csi × NPi = System Service Rate, (4)

in which NPi is the total number of processors in cluster i and the
SystemServiceRate is a constant to represent the total computing
capability of the system. In this paper it is set to the total num-
ber of processors in the clusters. For example, in the workload B1
the SystemServiceRate is set to 720 while in B2 it is set to 400.
To fulfill both Eqs. (3) and (4) simultaneously, cs1, cs2, . . . , csm−2
are generated first by normal distribution with mean equal to 1
and variance equal to SH, while csm−1 and csm are derived from
Eqs. (3) and (4). To avoid bias in a particular speed setting, ten
speed vectors for each SH value were randomly generated. All pre-
sented results with non zero speed heterogeneity are the average
value of ten experiments with those ten speed vectors.

System loading (SL) represents the heaviness of the input
workload and is modeled by

SL =
AverageWorkloadInputRate

SystemServiceRate
, (5)

in which the AverageWorkloadInputRate is defined as

AverageWorkloadInputRate =


∀ job j

RTj × RNPj

WorkloadDuration
. (6)

The RT j and RNP j are the runtime and the required number of
processors of job j, respectively. The workload duration is the time
period between the submission of the first job to the submission of
the last job in theworkload. Three levels of system loading, namely
Fig. 5. The time required for TLA to calculate the score in the scoring function under
a different number of running jobs (r) and waiting jobs (q).

low (SL = 0.5), medium (SL = 0.75), and high (SL = 1), are
considered in the simulations. The last column of Table 3 shows
the original SL value calculated by Eq. (5) with respect to each set
of workload and system configuration. To generate the desired SL
for each workload set, the runtime of each job in the workload will
be multiplied by a constant value according to its original SL, ex. to
generate medium system loading for workload B2 the runtime of
each job is multiplied by 5.35.

All experiments presented in the following subsections arewith
various simulation configurations, including the combinations of
the following parameters:

• Speed heterogeneity: 0, 0.1, 0.2.
• System loading: low, medium, high.
• Workload source and system configuration: twelve pairs as

shown in Table 3.

4.2. Experimental results

Experiments in this subsection compare the performance of
TLA with BF, FF, and AI2. Table 4 summarizes the performance
improvement of TLA with respect to the best result of BF, FF,
and AI2, under all 108 cases of simulation configurations. From
the table one can find that TLA outperforms BF, FF, and AI2 for
almost all the simulation configurations (106/108), especially for
the case with medium system loading, which shows up to an 87%
performance improvement compared to the best of BF, FF, and AI2
in terms of average turnaround time.

The two cases where TLA shows negative improvement reveal
the weakness of TLA, that is, when facing zero speed heterogeneity
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Table 4
Performance improvement of TLA with respect to the best result of BF, FF and AI2 under various simulation configurations.

Workload ID SL = low SL = medium SL = high
SH = 0 SH = 0.1 SH = 0.2 SH = 0 SH = 0.1 SH = 0.2 SH = 0 SH = 0.1 SH = 0.2

A1 1% 1% 2% 45% 49% 45% 41% 35% 34%
A2 −2% 4% 4% 75% 79% 74% 33% 32% 27%
B1 48% 37% 45% 54% 71% 70% 32% 47% 43%
B2 60% 66% 59% 48% 54% 43% 24% 36% 28%
C1 5% 11% 6% 47% 50% 48% 28% 26% 24%
C2 1% 2% 2% 13% 13% 12% 13% 13% 12%
D1 19% 28% 28% 74% 71% 68% 34% 33% 31%
D2 6% 14% 20% 81% 82% 78% 42% 41% 35%
E1 4% 14% 21% 87% 85% 79% 30% 31% 27%
E2 22% 18% 19% 55% 52% 48% 24% 22% 19%
F1 1% 5% 5% 81% 79% 77% 48% 40% 38%
F2 −3% 2% 2% 80% 80% 77% 43% 45% 42%
Table 5
Average utilization observed for workload A2 with zero speed heterogeneity.

System loading AI2 BF FF TLA

Low (SL = 0.5) 0.50 0.50 0.50 0.50
Medium (SL = 0.75) 0.74 0.74 0.73 0.75
High (SL = 1) 0.79 0.79 0.78 0.83

in conjunctionwith low system loading. Fig. 6 provides the detailed
performance result of workload A2, one of these two cases. Zero
speed heterogeneity makes the resource fragmentation the only
performance factor. Low system loading further makes the effect
of resource fragmentation much less significant, which results in
little performance difference as shown in Fig. 6(a).

Additionally, low system loading results in fewer jobs waiting
in the queue, providing less information for TLA to make a better
allocation decision. This can be shown by the average queue length
(AQL), the average number of jobs waiting in the queue. In these
two cases the AQL is observed less than ten, which is quite small
compared to the hundreds observed in medium system loading.
This also explains the extraordinary result shown in workload B1
and B2 with low system loading. The AQL observed in these two
cases are around 500 in B1 and 9000 in B2, respectively, which
is caused by the original workload characteristic and the way we
model the HMC system.

Fig. 6(d) illustrates the performance improvementmade by TLA
for different system loading and speed heterogeneity with work-
load A2. This sub-figure clearly shows that the higher the system
loading the better the performance improvement of TLA. A similar
phenomenon can also be found in otherworkloads. The reasonwhy
medium system loading shows a better improvement ratio is that,
with high system loading, the turnaround timeof each job is largely
increased, which makes the improvement ratio less notable.

Another interesting observation is that a different speed vector
does have a significant effect on the overall performance. Fig. 7
shows the box chart of the two workloads with the highest
coefficient of variation (CV) of the ten speed vectors. The highest CV
observed is 100.8%, as shown in Fig. 7(a)with BFheuristics. Another
observation is that inmost of the simulation configurations the TLA
method generates a smaller CV compared to all the othermethods,
such as the example shown in Fig. 7(b).

The reason that TLA is superior to BF, FF, or AI2 is that the al-
location made by TLA optimizes the system performance based on
workload and resource information provided at runtime, not just
a fixed policy. Additionally, with job runtime information, TLA can
have more precise estimation on the effect of an allocation on the
performance of the subsequent waiting jobs. Table 5 further com-
pares the average resource utilization of different allocationmeth-
ods. The result shows that TLA can achieve higher utilization than
the other threemethods, especiallywith high system loading. Such
a result also appears in otherworkload sources and simulation con-
figurations.
5. Discussion on the performance issue of TLA

In this section we further discuss some performance issues of
TLA. The first thing to be verified is how TLA performs with inac-
curate runtime estimation, since in the real world it is hard to pre-
cisely estimate the runtime of each parallel job. This issue will be
discussed in Section 5.1. By default, TLA simulates the allocation
of all waiting jobs in the score calculation. Actually, TLA can use
an arbitrary number of jobs for allocation simulation. This number
is called the simulation depth. Section 5.2 will discuss the perfor-
mance effect with different simulation depth. Next, as described in
Section 3.1, we use the FF policy to decide the allocation of subse-
quent waiting jobs in the simulation procedure. It is also possible
to use other policies, such as best-fit or random. This effect will be
discussed in Section 5.3. Last, by default, each simulation result of
TLA is only used to make one allocation decision. TLA can also be
configured to make multiple allocation decisions within a single
allocation simulation. The number of allocation decisions is called
the allocation depth. The effect of the allocation depth will be ad-
dressed in Section 5.4. Note that there is no relation between sim-
ulation depth and allocation depth. Simulation depth controls how
many jobs in thewaiting queue to be simulated to get a score. Once
the score is calculated, it can be used to make multiple allocation
decisions of the waiting jobs, in which the number is determined
by allocation depth.

5.1. Effect of inaccurate runtime estimation

Before presenting the result we first show how the estimation
inaccuracy is modeled. As far as we know there is no inaccuracy
model proposed for the heterogeneous multi-cluster system as
the user usually does not have enough information on the speed
difference among all clusters to provide accurate job runtime
estimation [20]. Therefore we turn to use the well-known f -model
proposed in the single cluster system [17,26].

In the f -model, a variable named inaccuracy factor is used to
model different levels of estimation error. There are two types of
estimation error, over-estimation and under-estimation. We as-
sume that each appears with probability 1/2. For the case of over-
estimation the estimated runtime (ERT) of each job i is generated
by Eq. (7), while under-estimation is generated by Eq. (8).

ERTi = ORTi ∗ Random(1, inaccuracy factor) (7)

ERTi = ORTi ∗ Random


1
inaccuracy factor

, 1


. (8)

The ORTi is the original runtime of job i provided by the
workload sources. The Random function generates a random value
between the left number and the right number uniformly. Fourteen
sets of inaccuracy factor are considered in the simulation, which
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Fig. 6. Performance result of workload A2with (a) low system loading, (b) medium system loading, (c) high system loading, and (d) performance improvement with respect
to different system loading and speed heterogeneity (SH).
Fig. 7. Effect of speed vectors. (a) Low system loading with workload B2 and (b) Medium system loading with workload A2.
are 1 (100% accurate), 1.25, 1.5, 1.75, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024.

The most representative result among all the workloads is
shown in Fig. 8. From the figure one can find that the results of
BF, FF, and AI2 remain constant across different inaccuracy values.
This is because they do not rely on job runtime to make allocation
decisions. For TLA, the performance deteriorates as the inaccuracy
factor increases. It is reasonable because the allocation decision
made by TLA is based on the simulated allocation results, which
provide a hint to the outcome of future allocations. Estimation
error could make the simulated allocation results deviate from the
actual allocations taking place in the future and hence deteriorate
the overall performance.

We use the same example in Fig. 4 to illustrate this situation.
Assuming that job r2 actually ends at t = 1 instead of at t = 5
due to over-estimation. In this case the practical allocation results
are shown in Fig. 9, which deviate from the simulated allocation
results shown in Fig. 4. The practical ATT if job 1 is allocated to
cluster A and B are 7.75 and 8.25 respectively, which indicates that
allocating job 1 to cluster A is a better choice. However, due to esti-
mation error, the score calculatedwith simulated allocation results
indicate the TLA to allocate job 1 to cluster B.

As a short summary, the performance of TLA could be seri-
ously affected by runtime estimation inaccuracy. However, the in-
accuracy model used in this paper is just one of the many models
Fig. 8. Effect of inaccuracy in job runtime estimation.

presented in [26] and none of which is designed for a heteroge-
neous multi-cluster system. It would be an interesting research
topic to investigate the relations of other runtime estimationmod-
els and the performance of TLA.

5.2. Effect of simulation depth

Fig. 10 depicts the effect of different simulation depth using
workload A1, which is the most representative case that results of
workload A2, C2, D1, D2, E1, and E2 are all similar to A1. Since the
effect of simulation depth depends on the number of jobs waiting
in the queue, only the result with high system loading is presented.
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(a) Practical allocation results if job r2 ends at t = 1 and job 1 is allocated to cluster A.

(b) Practical allocation results if job r2 ends at t = 1 and job 1 is allocated to cluster B.

Fig. 9. Illustration of the effect of runtime estimation inaccuracy on the performance of TLA.
The result shows that the higher the simulation depth the better
the performance of TLA.

To uncover the reason why simulation depth helps, we pro-
file the detailed behavior of TLA by collecting the number of times
TLA changes the allocation decision, i.e. the cluster with the best
score changes to another cluster as simulation depth increases.
Under 54041 jobs there are 23952 times where TLA is activated,
and among the activation times, only 1101 times has the allocation
decision changed. That is to say in all the other 22851 times, simu-
lating one job in TLA results in the same allocation decision as sim-
ulating all thewaiting jobs. An implication to this result is that only
a few jobs’ allocation decisions affect the overall performance. Fur-
thermore, we plot the probability mass function and cumulative
distribution function when allocation decision changes, as shown
in Fig. 11. The result shows that 80% of allocation change hap-
pens below simulation depth 160 (see Fig. 11(b)). By calculating the
Pearson product-moment correlation coefficient (PCC) on number
of allocation changes and the performance of TLA, we found a very
high negative correlation between them (PCC = −0.97). This find-
ing indicates that it is not always necessary to use the entire wait-
ing job in allocation simulations. In this case, setting the simulation
depth to 160 can yield an 80% performance improvement and
reduce the execution time of TLA to one-sixth. The finding also
shows a hint that one might use the characteristic of allocation
change to find the optimal simulation depth that balances the per-
formance and time complexity of TLA.

5.3. Effect of the used allocation policy in allocation simulation

In addition to FF, the other three allocation policies considered
in the allocation simulation are Best-Fit (BF), Worst-Fit (WF), and
Random-Fit (RF). Worst-Fit chooses the cluster with the most left-
over processors. Random-Fit randomly chooses the cluster among
available ones. The simulation result with different allocation sim-
ulation policy is shown in Fig. 12 using workload D1. The result us-
ing other workloads leads to similar observations, and is therefore
omitted.
Fig. 10. Effect of different simulation depth.

The simulation depth is contained in the simulation in order to
show more detailed effects. From the figures one can find that RF
shows the worst performance while the other three policies show
similar performance. Although RF is the worst choose, however,
it still achieves a notable performance improvement with the in-
crease of the simulation depth. This result deviates our expectation
that BF andWFwill getmuchworse performance. One thingwe can
be certain of is that the effect of simulation depth is more signifi-
cant than the choice of the allocation simulation policy. The result
also indicates that simple allocation policy, even random, serves
well in estimating the effect of an allocation decision.

5.4. Effect of allocation depth

The result with different allocation depth is shown in Fig. 13
using workload A2. The result with low system loading almost re-
mains constant, and is therefore omitted. Speed heterogeneity is
also hidden since it does not change anything that can be observed.
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(a) Histogram.

(b) Cumulative distribution function (CDF).

Fig. 11. Distribution when allocation changes with simulation depth.
(a) SL = low. (b) SL = medium.

(c) SL = high.

Fig. 12. Result with different allocation simulation policy and simulation depth using workload D1.
(a) SL = medium. (b) SL = high.

Fig. 13. Result with different allocation depth using workload A2.
The result shows a negative correlation, such that the larger the al-
location depth the worse the performance. Despite the drawback,
we should note that the increase in the allocation depth can help
reduce the overall time complexity. In Fig. 13 one can find that
setting the allocation depth to 4 could be a sweet spot where the
performance degradation is acceptable while the execution time
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of TLA can be reduced to one-fourth. However, this sweet spot
changes with workload and other factors. How to find the sweet
spot is a complicated issuewhich is beyond the scope of this paper.

6. Conclusion and future work

This paper investigates the issues of single-site processor allo-
cation in heterogeneous multi-cluster (HMC) systems. Traditional
processor allocation policies, such as Best-Fit (BF) and Fastest-First
(FF), consider only speed heterogeneity or resource fragmentation.
Their performance is not consistent for different input workload
and system configurations. In this paper, we propose the temporal
look-ahead (TLA) processor allocation method, which tries to find
an allocation that can benefit the average turnaround time of all
the jobs. Three characteristics of TLA’s scoring function make TLA
distinct from other processor allocation methods. First, it directly
takes into account the specific performance metric to make an al-
location decision. Since all performance factors regarding the given
metricwill naturally be considered through the simulationprocess,
this allows TLA to consider other performance factors, given a suit-
able performance metric. Second, the scoring function is based on
the simulation of current workload, which makes TLA adjustable
to various situations. Third, it further utilizes the execution time
information of the waiting jobs to consider more precise effects of
each allocation.

Experiments on various workload and system configurations
have been conducted. Simulation results show a different level
of performance improvement with respect to the workload used
and the system loading. In general, medium system loading re-
sults in the best performance improvement compared with low or
high system loading.With accurate runtime estimation, TLA shows
up to an 87% performance improvement over traditional methods.
Simulation results also indicate that the performance of TLA can
be seriously affected by the inaccuracy of runtime estimation. It
would be an interesting research topic to investigate the relations
of different runtime estimation methods and the performance of
TLA.

As for future works, first, the root cause of the performance
of TLA is not very clear. Some theoretical bases must be estab-
lished to uncover the root cause, which is our major topic. Second,
TLA can work with different job scheduling methods. This paper
only considers the First-Come–First-Served method. The perfor-
mance of TLA, while working with other job scheduling methods
such as Shortest-Job-First and Narrowest-Job-First [12] requires
further studies. Third, TLA could be generalized to optimize other
performance metrics. In this paper we only consider the average
turnaround time, but other performance metrics, such as fairness,
can also be integrated in the design of the scoring function. The ef-
fectiveness of TLA under other performance metrics requires fur-
ther studies.

Last but not least, the TLAmethod and the concept of allocation
simulation provide a brand-new viewpoint to the processor alloca-
tion algorithms.We anticipate a further improvement can bemade
by utilizing those concepts in the design of new processor alloca-
tion algorithms.
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