J Supercomput (2012) 59:882-900
DOI 10.1007/s11227-010-0477-0

Tree-turn routing: an efficient deadlock-free routing
algorithm for irregular networks

Jiazheng Zhou - Yeh-Ching Chung

Published online: 9 September 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper, we propose a general turn model, called a Tree-turn model,
for tree-based routing algorithms on irregular topologies. In the Tree-furn model,
links are classified as either a tree link or a cross link and six directions are associ-
ated with the channels of links. Then we can prohibit some of the turns formed by
these six directions such that an efficient deadlock-free routing algorithm, Tree-turn
routing, can be derived. There are three phases to develop the Tree-turn routing. First,
a coordinated tree for a given topology is created. Second, a communication graph
is constructed based on the topology and the corresponding coordinated tree. Third,
the forwarding table is set up by using all-pairs shortest path algorithm according to
the prohibited turns in the Tree-turn model and the directions of the channels in the
communication graph. To evaluate the performance of the proposed Tree-turn rout-
ing, we develop a simulator and implement Tree-furn routing along with up*/down*
routing, L-furn routing, and up*/down* routing with DFS methodology. The simula-
tion results show that Tree-turn routing outperforms other routing algorithms for all
the test cases.

Keywords Tree-turn model - Tree-turn routing - Deadlock-free - Irregular networks

1 Introduction

Supercomputers can be made of mainframes or network-based distributed systems
like clusters. Nowadays, the trend is towards cost-effective network-based distributed

J. Zhou - Y.-C. Chung (X))
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan 300, ROC
e-mail: ychung @cs.nthu.edu.tw

J. Zhou
e-mail: jzzhou@cs.nthu.edu.tw

@ Springer

mailto:ychung@cs.nthu.edu.tw
mailto:jzzhou@cs.nthu.edu.tw

Tree-turn routing: an efficient deadlock-free routing algorithm 883

computing systems since they consist of commodity components, such as personal
computers and high speed networks [1, 14, 24].

Routing on regular topology can be elaborately designed and achieve good perfor-
mance such as XY routing for mesh and MLID routing [20] for a fat-tree topology.
However, a regular topology may become an irregular topology due to the failure of
components. To deliver routing algorithms on an irregular topology, connectivity and
deadlock-free properties must be guaranteed. Connectivity can be solved by using
tree-based routing algorithms, to build a spanning tree of the topology to connect all
the nodes. Deadlock occurs when nodes are involved in cyclic waiting of messages,
for example, in a wormhole switching network [23]. To avoid deadlock, one method
is to get rid of the possibility to form a cycle. Many methods to prevent deadlocks
have been proposed [7, 8, 11, 13, 19, 29]. Among them, the turn model proposed
in [11, 13] is a tool to deliver partially adaptive routing algorithms. It analyzes the
directions of messages and prohibits enough turns to break the turn cycles to avoid
deadlocks.

Several tree-based routing algorithms based on the turn model have been pro-
posed for irregular topologies. In a tree-based routing algorithm, a spanning tree is
first formed from a given irregular topology. Based on the spanning tree, each node
can be assigned a coordinate. From the coordinates of the nodes, each directed link
(channel) can be assigned a direction. Two directions can be used to form a turn. By
carefully determining which turns to prohibit in the turn space, one is then able to
break the turn cycle and therefore avoid deadlocks. Up*/down* routing [28] is the
first tree-based routing algorithm developed for an irregular topology. Based on 1D
turn model, up*/down* routing provides only two directions, up and down, associ-
ated with its channels. A legal route of up*/down* routing follows the rule: a packet
must traverse zero or more links in the up direction followed by zero or more links in
the down direction. From the turn model point of view, turn Tyoyn,up is prohibited in
up*/down* routing. Although the up*/down* routing is simple, its performance is not
good due to the unbalanced traffic. Since there are only two directions in up*/down*
routing, there is not much flexibility when selecting prohibited turns.

To overcome the drawbacks of up */down* routing, L-turn routing is proposed [17]
based on the 2D turn model [15—-17]. In L-furn routing, there are four directions, left-
up, left-down, right-up, and right-down, associated with each channel. By carefully
setting up the prohibited turns for each node, one can obtain a more even distrib-
ution of traffic load and shorter routing paths compared to the up*/down* routing.
Sancho et al. [27] tried to improve the up*/down* routing by using a DFS methodol-
ogy. They built a DFS spanning tree instead of a BFS spanning tree used originally
in up*/down* routing. Up*/down* routing with DFS methodology has less restric-
tions (prohibited turns) compared to the original up*/down* routing. There are also
some other routings for irregular networks such as smart routing [2], flexible (FX)
routing [26], segment-based routing (SR) [22], descending layers (DL) routing [18],
layered (LASH) routing [21], and LASH-TOR routing [32]. Among these routings
mentioned above, only up*/down* routing, L-turn routing, smart routing, flexible
routing, and segment-based routing can work without virtual channels. Virtual chan-
nels [4, 6] can be used to solve the cycle dependency issue to design a deadlock-free
routing or to be used to provide quality of service. However, not all of the intercon-
nection networks provide virtual channels; for example, Myrinet does not implement

@ Springer

884 J. Zhou, Y.-C. Chung

virtual channels. Therefore, we need to provide an efficient routing algorithm that
does not rely on virtual channels and can be applied to all kinds of interconnection
networks.

In this paper, we first propose a turn model, Tree-turn model, for tree-based rout-
ing algorithms on irregular topologies. We intend to explore the turn space and find a
better routing algorithm based on the turn model. In Tree-turn model, the directions
of channels can be classified into left-up, left, left-down, right-up, right, and right-
down directions. The Tree-turn model has two more directions, left and right, than
the 2D turn model. In addition, tree links and cross links are associated with different
channels of links (directions). Tree links can only have left-up and right-down direc-
tions and cross links have left, left-down, right-up, and right directions. By carefully
selecting prohibited turns, we can push the traffic downward in a spanning tree get
more balanced traffic.

To evaluate the performance of the four Tree-furn routing algorithms, we com-
pare them with up*/down* routing, L-turn routing, and up */down* routing with DFS
methodology. In experimental test, we implement a simulator for these routing algo-
rithms. The simulation results show that Tree-turn routing outperforms other routing
algorithms for irregular networks.

The rest of the paper is organized as follows. We introduce some routing algo-
rithms for switching networks in Sect. 2. The definitions and terms used in this paper
are given in Sect. 3. In Sect. 4, we describe the Tree-turn model in detail. The Tree-
turn routings derived from Tree-turn model are given in Sect. 5. In Sect. 6, we show
the experimental test of Tree-turn routings along with up*/down* routing, L-turn
routing, and up*/down* routing with DFS methodology. The conclusions and future
work are given in Sect. 7.

2 Related work

The turn model proposed by Glass and Ni [11, 12] is a model for designing deadlock-
free [5] algorithms. Based on the turn model, Glass and Ni propose three partially
adaptive routing algorithms, west-first routing, north-last routing, and negative-first
routing, for 2D meshes. They also extend the algorithms to n-dimensional networks
such as n-dimensional meshes and k-ary n-cubes.

Up*/down* routing was first introduced in Autonet [28]. It is the most popular
tree-based routing algorithm. The routing algorithm is simple and there are only two
directions to assign to the links. However, there are more restrictions in the network
and therefore the performance is not good. L-furn routing [15—17] introduces 2D turn
model to improve the performance. It explores the turn space and obtains an average
distance that is shorter than that of up*/down* routing. However, in L-turn routing,
the tree links (edges in a spanning tree) and the cross links (edges not in the spanning
tree) are considered to be the same type of link. When we explore the turn space,
we can consider these links as two different types. Since tree links are links in the
spanning tree, it is possible for one node in the network to communicate with any
other node by just using the tree links. The cross links, in contrast, are able to provide
more than one path between two nodes, which can be used as a way to relieve the
congested traffic in the spanning tree.

@ Springer

Tree-turn routing: an efficient deadlock-free routing algorithm 885

Up*/down* routing with DFS methodology [27] uses a DFS spanning tree on the
network graph instead of BFS spanning tree. By using this method, the number of
routing restrictions can be decreased to improve the performance. The authors also
propose several heuristic rules for computing the spanning trees. Segment-based rout-
ing [22] is a fault-tolerant routing for meshes and tori. It partitions a topology into
subnets, and subnets into segments. They have three types of segments, with each
segment having a specified routing restriction. The purpose of the routing restric-
tions is to ensure that there is deadlock-freedom and to preserve connectivity. The
segments must be made as short as possible and the routing restrictions must be care-
fully placed. Otherwise, the performance of segment-based routing may be worse
than that of up */down* routing.

In the paper by Koibuchi et al., descending layers routing is proposed [18]. In this
deadlock-free deterministic routing algorithm, the network is divided into several
layers of sub-networks with the same topology using virtual channels. Each sub-
network is able to use one of various deadlock-free routings. Moreover, no cyclic
dependency is formed across the sub-networks since between the packets the sub-
networks are passed in the descending order. Lysne et al. [21, 32] also take advantage
of virtual channels and propose layered routing. They group virtual channels into
network layers and have each layer assigned a limited number of source/destination
pairs. By separating the traffic, they are able to improve the performance.

The odd—even turn model [3] is proposed for adaptive routing in meshes. It is a
novel model since it restricts the locations where some types of turns can be taken
instead of just prohibiting turns to break the cycles. A fault-tolerant protocol based
on odd-even turn model is proposed in [33].

There are some other routing algorithms that improve the performance of
up*/down* routing. In [25, 31], the proposed adaptive routing algorithms are bet-
ter than up*/down* routing. In [9, 10, 30], the authors use the virtual channel concept
to reduce the latency of the up */down* routing.

3 Preliminaries
In this section, we will give definitions and terms used in this paper.

Definition 1 (Graph) A switch-based network can be represented as a graph G =
(V, E), where V is the set of the switches, E is the set of the bidirectional links
between switches, and G is the network topology. For link e = (v;, v;) in E, there
are two communication channels (v;, v;) and (v;, v;) such that node v; can send a
message to node v; through (v;,v;) and node v; can send a message to node v;
through (v;, v;). For a channel (v;, v; >, v; and v; are called start and sink nodes of
the channel, respectively. (v;, v;) is called the output channel of v; and input channel
of vj.

Definition 2 (Coordinated tree) Given G = (V, E), a coordinated tree (CT) is a
breadth-first search (BFS) or depth-first search (DFS) spanning tree of G, where
CT = (V,E’) and E' C E. For each node v in a coordinated tree, node v is asso-
ciated with a two-dimensional coordinate v(x, y). We use X (v) and Y (v) to denote

@ Springer

886 J. Zhou, Y.-C. Chung

the x and y coordinates of node v, respectively, thatis, X (v) =x and Y (v) = y. Y (v)
is defined as the level of node v in the coordinated tree, and X (v) is defined as the
order of preorder traversal of the coordinated tree starting from the root to node v.

Since two or more children nodes can be selected as the next preorder traversal
node, it is possible to build several different coordinated trees using the same network
topology. To obtain a unique coordinated tree for a given network topology, the node
with smaller network ID is selected before the node with a larger network ID when
performing the preorder traversal.

Definition 3 (Tree link and cross link) Given G = (V, E) and a coordinated tree
CT=(V,E") of G, E' and E — E’' are the sets of tree links and cross links of G with
respect to CT, respectively.

Definition 4 (Communication graph (CG)) Given G = (V, E) and a coordinated tree
CT=(V,E') of G, the communication graph CG = (V, E) is a directed graph with
respect to G and CT, where E is the set of all communication channels of E.

Definition 5 (Direction) Given a communication graph CG = (V, E), for each chan-
nel é = (v;, vj) € E, we define

(1) wvj is the left-up node of v; if X (v;) < X (v;) and Y (v;) < Y (v;).

(2) vj is the left node of v; if X(v;) < X (v;) and Y (v;) =Y (v;).

(3) wvj is the left-down node of v; if X(v;) < X (v;) and Y (v;) > Y (v;).
(4) vj is the right-up node of v; if X (v;) > X (v;) and Y (v;) < Y (v;).
(5) vj is the right node of v; if X (v;) > X (v;) and Y (v;) =Y (v;).

(6) vj is the right-down node of v; if X (v;) > X (v;) and Y (v;) > Y (v;).

For each channel € = (v;, v i), the direction of e, denoted as d(€), is defined as LU,
L,LD,RU, R, and RD if v; is the left-up node, the left node, the left-down node, the
right-up node, the right node, and the right-down node of v;, respectively.

Definition 6 (Turn) Given a communication graph CG = (V, E), the directions of
éq and eg form a rurn for v; if é, = (v;, vj) and e ep = (vj, vi). We use Ty,).d@y) to
denote the turn formed by the directions of €, and ég .

Definition 7 (Turn cycle) Given a communication graph CG = (V, E), a turn cycle
TC = (Ty@)),d@)» Ta@).d@)» -+ » Ta@),d@.n)) 18 @ sequence of turns in which the
sink node of the first channel is also the sink node of the last channel in the turn
sequence, that is, the start node of ¢; is the sink node of €.

Definition 8 (Direction graph (DG)) The direction graph DG = (D, f‘) with respect
to a communication graph CG = (V, E) is a complete directed graph, where D is the
set of directions defined in CG and T = {Td,.,d].| for all di,d; € D and d; # d;} is
the set of all possible turns that can be defined in CG. A DG is called the complete
direction graph (CDG) if D ={LU, L,LD,RU, R, RD}.

Definition 9 (Direction dependency graph (DDG)) Given a DG, any subset of DG is
defined as the direction dependency graph (DDG) of DG.

@ Springer

Tree-turn routing: an efficient deadlock-free routing algorithm 887

@ (0, 0) (x,y)
X: x coordinate

y: y coordinate

® e
F - —wm & ® W

@”@ v

(a) A network topology G (b) The spanning tree of G (c¢) A coordinated tree of G

(d) The CG of G (¢) The DG of CG
o] [RD]
(f) A DDG (2) An ADDG

Fig. 1 Examples of the various definitions

Definition 10 (Acyclic direction dependency graph (ADDG)) Given a CG, the DG
of CG, and a DDG of DG, for each node v in CG, if the edges of DDG are the only
available turns allowed at v and no turn cycle can be formed in CG, then the DDG is
called acyclic DDG.

Definition 11 (Maximal acyclic direction dependency graph (Maximal ADDG))
Given a CG, the DG of CG, an ADDG of DG is called the maximal ADDG if adding
any edge that in DG but not in ADDG to the ADDG will result in turn cycles in CG.

We now give an example to explain the above definitions. In Fig. 1(a), we
use a graph G = (V, E) to represent a switched-based network, where V =
{vi,v2,v3,v4,v5} and E = {(vi, v2), (v1, v3), (v1, v4), (v2, v3), (v3, v4), (V3, V5),
(v4, vs5)}. In Fig. 1(b), a BFS spanning tree of the network in Fig. 1(a) is shown.
The root in the BFS spanning tree is node vy. The coordinated tree of G is shown
in Fig. 1(c). In Fig. 1(c), according to Definition 2, we have Y (v;) =0, Y (v2) =1,
Y(v3) =1,Y(v4) =1, and Y (v5) = 2. When performing preorder traversal, we have
X (v1) = 0. Nodes vy, v3, v5, and vy are traversed in order if we choose the node

@ Springer

888 J. Zhou, Y.-C. Chung

with smaller ID as the next node. We have X (vp) =1, X (v3) =2, X(vs) = 3, and
X (vq4) = 4. Node v3 is the right-down, right, left, and left-up node of nodes v1, va, v4,
and vs, respectively.

Figure 1(d) shows the communication graph of Fig. 1(a) and Fig. 1(c). We use
thick links and thin links to represent tree links and cross links in Fig. 1(d), respec-
tively. In Fig. 1(d), the directions d({v1, v2)) = RD, d({va, v1)) = LU, d({v2, v3)) =
R,d((v3, 7)) = L,d({v4,vs5)) = LD, and d({vs,v4)) = RU. We can see that
the directions of tree links are either LU or RD, and the directions of cross
links are L, LD, RU, or R. Td(<U2»U1)),d((vl>v3)) = TLU,RD is a turn and TC =
(T, 00).d (w1 ,03))5
Ta (w1, v3)).d(w3.02))» Td (w3, m)).d (o)} ={TLu.rDs TrD, L, T LU} 1S @ turn cycle.

In Fig. 1(e), the direction graph DG of Fig. 1(d) is shown. It is a complete direc-
tion graph since it consists of six directions. Figure 1(f) shows a direction dependency
graph DDG of Fig. 1(e). There are two turns Tgp ry and Ty gp in the DDG. Turn
cycles {Trp.Lu, Tru.rp} and {Try.rp, Trp.Lu} are formed in the DDG. Figure 1(g)
shows an acyclic direction dependency graph ADDG of Fig. 1(e). It has two turns
Tr rp and Tgp 1. If we only allow these two turns in Fig. 1(d), the two turns form
a cycle but not a turn cycle. We can see that a cycle in an ADDG will not result in a
turn cycle in CG.

4 The Tree-turn model

Given an irregular topology G, based on Definitions 2, 3, 4, and 5, the directions of
channels can be classified into six directions, LU, L, LD, RU, R, and RD, in Tree-
turn model. The Tree-turn model has two more directions, L and R, than the 2D
turn model. In addition, since the coordinated tree of G is skewed and we define
tree links as the links of the coordinated tree, for each channel ¢ in tree links, the
direction of ¢ is either LU or RD, that is, d(¢) € {LU, RD}. For each channel ¢ in
cross links, the direction of € is L, LD, RU, or R, thatis, d(¢) € {L, LD, RU, R}. Tree
links and cross links are associated with different directions in the Tree-furn model.
By association with directions to tree links and cross links, we can use cross links to
push the traffic downward in a spanning tree and reduce the congested traffic of the
spanning tree.

In order to avoid deadlocks, in the Tree-turn model, a maximal ADDG is derived
from the CDG that contains six directions. Since no turn cycle can be formed in a
maximal ADDG and the DG of a topology G contains at most six directions, when
applying the prohibited turns derived from the maximal ADDG of the CDG to nodes
of G, a deadlock-free routing can be preserved. There are two issues to find the maxi-
mal ADDG from the CDG. The first issue is to decide what edges should be removed
(prohibited) from the CDG. The second issue is the routing algorithm derived from
the found maximal ADDG should it perform efficiently. For the first issue, we use an
incremental method to remove edges step by step from the CDG to obtain a maximal
ADDG. For the second issue, to get more balanced traffic, we will try to prevent the
traffic from flowing to the root of a CG and push the traffic flow downward to the
leaves of a CG; that is, we will remove edges that will make traffic flow upward and

@ Springer

Tree-turn routing: an efficient deadlock-free routing algorithm 889

RD LD
LU

RD LD
LU RU

(a) LUand RD (b) LD and RU

R R
W = =
(c)Land R

Fig. 2 The DGs of node pairs and their possible turn cycles

keep edges that will push the traffic flow downward as much as possible. The process
of finding the maximal ADDG from the CDG consists of the following three steps:

Step 1 Find the maximal ADDGs: ADDG1, ADDG», and ADDG3 from DGs of nodes
LU and RD, nodes LD and RU, and nodes L and R from the CDG, respec-
tively.

Step 2 Combine ADDG; with ADDG, by adding edges between nodes in ADDG
and ADDG); to form a new DDG and find a maximal ADDG, ADDG4, from
the new formed DDG.

Step 3 Combine ADDG3 with ADDG4 by adding edges between nodes in ADDG3
and ADDG4 to form a new DDG and find a maximal ADDG, ADDGs, from
the new formed DDG. The found ADDGs5 is a maximal ADDG of the CDG.

In the following, we will describe these three steps in detail.
4.1 Step 1

In this step, we will find the maximal ADDGs: ADDG1, ADDG,, and ADDG3 from
DGs of nodes LU and RD, nodes LD and RU, and nodes L and R from the CDG,
respectively. The reason we choose these node pairs is that the DG of each node pair
contains edges with opposite directions. These edges form a cycle that may lead to
a turn cycle. Figure 2 shows the DGs of these node pairs and their corresponding
possible turn cycles.

To prevent the cycles of DGs shown in Fig. 2, we must remove one edge from
each DG. In Fig. 2(a), we remove the edge Trp, v since this is the only choice. The
reason this is done is to maintain the connectivity of the topology. Since the LU and
RD directions are defined for tree links, should the topology be a tree and an edge
Tru,rp get removed, there is no way for all nodes to communicate with each other.
This is because the tree is now broken, and there will now be at least one leaf node
that is unable to communicate with the root for example. By removing edge Trp,rv
from Fig. 2(a), we can get ADDG1 shown in Fig. 3(a). In Fig. 2(b), we can break the
cycle by removing either edge of the DG. For each node v in the CG, the direction

@ Springer

890 J. Zhou, Y.-C. Chung

(10— [0 R

(a) ADDG, (b) ADDG, (¢) ADDG;

Fig.3 The maximal ADDGs of DGs shown in Fig. 2

LD means that the traffic flow is going downward from node v to other nodes whose
y coordinate is less than that of node v. Edge T;p gy means that the traffic flow is
going downward before going upward. In order to push traffic downward, we keep
edge Trp ry. By removing edge Try 1p from Fig. 2(b), we can get ADDG; shown
in Fig. 3(b). In Fig. 2(c), the cycle is formed by directions L and R. Since it does
not affect the traffic flow going downward or upward by removing either edge, we
remove edge Tr ; in this case. By removing edge Tg ; from Fig. 2(c), we can get
ADDG?3 shown in Fig. 3(c).

4.2 Step 2

In this step, we want to combine ADDG with ADDG, by adding edges between
nodes in ADDG; with ADDG, to form a new DDG and find ADDG,4 from the
new formed DDG. The DDG by combining ADDG; with ADDG> is shown in
Fig. 4(a). In Fig. 4(a), there are four cycles Ci, C», C3, and C4 that will result
in turn cycles TCy = {Trp,rvu> Tru,LU> TLu,rD}> TC2 = {Tp RU> TRU.LU> TLU,LD}
TC3 = {Tru,rD> TrD,1D,> Trp,RU}, and TCq = {Tgp,1p, Tip,ivu, Tru,rp} in a CG as
shown in (b), (¢), (d), and (e) of Fig. 4, respectively. To break these four turn cycles,
we need to remove some edges from the DDG shown in Fig. 4(a).

Both cycles Cy and C3, have a common edge Try Ly. This particular edge makes
the traffic flow upward. In order to push the traffic flow downward to the leaves of
a corresponding CT, we remove this common edge and break cycles Cy and C».
For cycles C3 and Cy, they have a common edge Tgp,rp. Since edge Trp, 1p makes
the traffic flow downward, we keep the edge. For other edges Tgy rp and Tip gy in
cycle C3, Try rp makes the traffic flow upward then downward and 7y p gy makes
the traffic flow downward then upward. In order to push the traffic flow downward to
leaves of a corresponding CT, we remove edge Try rp to break cycle C3. For other
edges Try.rp and Trp ry in cycle Cy, since LU and RD are directions of tree links,
we cannot remove 77y gp for the reason of connectivity as stated in Step 1. Therefore,
we remove the edge Trp v to break cycle C4. We then obtain the ADDG4 as shown
in Fig. 4(f).

4.3 Step 3
In this step, we want to combine ADDG3 with ADDG4 by adding edges between
nodes in ADDG3 and ADDG4 to form a new DDG and find ADDG5 from the newly

formed DDG. For nodes in Fig. 4(f), we have the following observations:

Observation 1 No combination of edges from nodes LD and RD will have an upward
direction in a CG.

@ Springer

Tree-turn routing: an efficient deadlock-free routing algorithm 891

1

(a) The DDG by combining ADDG; with ADDG, (b) Cycle C; and turn cycle TC,

(©) Cycle C, and turn cycle 7C» (d) Cycle Cs and turn cycle TC;

4 TC4
RD
LU?\ >RD
LD
LU\/
(ro] LD

(e) Cycle C4 and turn cycle TCy

Fig. 4 Combine ADDG; with ADDG, to form ADDG4

Observation 2 No combination of edges from nodes LU and RU will have a down-
ward direction in a CG.

Therefore, we divide ADDG, into Region 1 and Region 2 as shown in Fig. 5(a).
For the ADDG3 shown in Fig. 3(c), edge T g indicates that the traffic is flowing
between nodes in the same level of a corresponding CT. When we combine ADDG3
with Region 1 or Region 2 shown in Fig. 5(a), we have the following observations:

Observation 3 If we combine ADDG3 with Region 1 to form a DDG shown in
Fig. 5(b), no turn cycles can be formed by applying edges of the DDG to nodes
of a given CG.

Observation 4 If we combine ADDG3 with Region 2 to form a DDG shown in
Fig. 5(c), no turn cycles can be formed by applying edges of the DDG to nodes of a
given CG.

Observation 5 If we combine ADDG3 with ADDGy, there are two possible ways to

form turn cycles. One way is to traverse from node v in ADDG3 to nodes in Region
1, then to nodes in Region 2, and then to return to node v. The other way is to traverse

@ Springer

892 J. Zhou, Y.-C. Chung

- —— e ——— ————— —— —

Y Region 2 \ Region 2
I I

— = | Region 1 == | Region 1
(a) Two regions of ADDG4 (b) Combine ADDG3 with Region 1
=

\ Region 2
I

(e) Cycle Cs and turn cycle TCs (f) Cycle Cs and turn cycle TCs
cr TC7 L L Cs TCs
R__R
RD ; ; RU RU/
[&] ./_ LD
5] RD\/ RU RU%
(g) Cycle C; and turn cycle TC; (h) Cycle Cg and turn cycle TCs
Co TCo U C1o[LU] TC10 LD/\LU
NN
_’-U b i E Lu
RD\
o] R R R R
(i) Cycle Cy and turn cycle TCy (j) Cycle Cyp and turn cycle TC)y

(k) ADDG5 (1) The maximal ADDG of Tree-turn model

Fig.5 Combine ADDG3 with ADDG, to form ADDG5

@ Springer

Tree-turn routing: an efficient deadlock-free routing algorithm 893

from node v in ADDG3 to nodes in Region 2, then to nodes in Region 1, and then to
return to node v.

Based on Observations 3, 4, and 5, in Fig. 5(d), there are six cycles Cs, Cg, C7,
Cs, Co, and Cj that will result in turn cycles TCs = {1 rv, Tru.rp, TrD,L}, TCs =
{TL.p, Tep.Rus Tru,L}, TC7 = {TL gD, TRp,RU> TRU,L}, TCs = {Tr LD, TLD RU:
Tru,r}, TCy9 = {TR.Lu, TLu.rDs Trp,R}, and TCio = {Tr.Lv, Tru.Lp, TLp,R} as
shown in (e), (f), (g), (h), (i), and (j) of Fig. 5, respectively.

For cycle Cs, edges Tr v and Try rp make the traffic flow upward. Since LU
and RD are directions of tree links, we cannot remove Ty rp for the reason of con-
nectivity. In order to push the traffic flow downward to the leaves of a corresponding
CT, we remove the edge Ty to break the cycle Cs. For cycles Ce and C7, there is
a common edge Tgy, 1, that makes the traffic flow upward. In order to push the traffic
flow downward to the leaves of a corresponding CT, we remove the edge Try, 1 in
order to break cycles C¢, and C7. For cycle Cg, since the only edge Try, g makes the
traffic flow upward (7Tzp gy makes the traffic flow downward instead of upward), in
order to push the traffic flow downward to leaves of a corresponding CT, we remove
the edge Try, g to break cycle Cg. For cycles Cg and Cjg, there is a common edge
Tr.ru that makes the traffic flow upward. In order to push the traffic flow downward
to the leaves of a corresponding CT, we remove the edge Tg v to break cycles Co,
and C19. We now obtain ADDGs as shown in Fig. 5(k). Since turns that travel in the
same direction are permitted, the maximal ADDG of Tree-turn model is shown in
Fig. 5(1).

From Step 1 to Step 3, we have removed 10 edges from CDG. These removed
edges are prohibited turns, denoted as PT = {11 rv, Trp.Lv, Tru.Lu, Tr.LU> TrRD.LU,
TRU,L’ TR,L, TRU,LD» TRU,R? TRU,RD}, in Tree-turn model.

5 The Tree-turn routing

Based on the Tree-turn model, given an irregular topology G = (V, E), we are able
to derive the corresponding Tree-turn routing by the following three phases:

Phase 1 Construct the corresponding coordinated tree CT'= (V, E "Yof G.

Phase 2 Construct the communication graph CG = (V, E) from G and CT.

Phase 3 Set up the forwarding tables of nodes in CG by using the all-pairs shortest
path algorithm according to the 10 prohibited turns derived from Tree-turn
model and the directions of channels in CG.

In phase 1, we use upper-channel first [15] to choose the next-visit node when we
construct the coordinated tree. In phase 2, we use G and CT from the previous
phase to construct the communication graph CG = (V, E). In phase 3, for the all-
pairs shortest path algorithm, whenever we find a shorter routing path through node
k and the turn formed at node k is not a prohibited turn in the Tree-furn model, we
adjust the routing path and set up the forwarding tables of the nodes on the routing
path. Otherwise, we will keep the original routing path. The algorithm of setting up
forwarding tables is shown in Fig. 6.

@ Springer

894 J. Zhou, Y.-C. Chung

Algorithm set_up_forwarding_tables()

Let n be the number of nodes in the network.
Let routing_path[i][j] be the routing path from node i to node ;.
Let length[i][j] be the length from node i to node ;.
Let direction(i, j) be the direction of channel (i, j) formed by node i and node ;.
Let turn(d;, d;) be the turn form direction d; and direction d;.
/* Initialize the length[i][j] according to the adjacency matrix. */
fori =1tondo
for j =1tondo
/* Initialization */
lengthli][j] = oo; routing_path[i][j] = NULL;
if (there exists one link between node i and node j) then
lengthli][j]1=1;
Append node j to routing_pathli][j].
end_if
end_for
end_for
7. /* Compute the length[i][j] and adjust the routing paths. */
fork=1tondo
fori =1tondo
for j=1tondo
/* If we can find a shorter path through node k. * /
/* We also consider the paths with the same length. */
if (lengthlil[k] + length[k][j] < length[i][j]) then
Let node x be the (length[i][k] — 1)-th node of routing_path[i][k].
Let node y be the first node of routing_path[k][j].
inDirection = direction(x, k);
outDirection = direction(k, y);
if (turn(inDirection, outDirection) is not prohibited) then
lengthli][j] = length[il[k] + length[k][j];
routing_pathlil[j] = routing_path[i][k] + routing_path[k][j];
Set up the forwarding tables for the nodes on the routing paths.
end_if
end_if
end_for
end_for
end_for

SUnsE PN =

End_Algorithm

Fig. 6 The algorithm of setting up forwarding tables

@ Springer

Tree-turn routing: an efficient deadlock-free routing algorithm 895

Theorem 1 The Tree-turn routing is deadlock-free and there exists at least one path
from one node to another in a CG.

Proof Based on the Tree-turn model, there is at least one prohibited turn to break
each turn cycle in the CDG. Therefore, this routing algorithm is deadlock-free. Since
the turn Try rp is not prohibited for each node in a CG, each packet from any source
node to its destination node can first go upward to their least common ancestor and
then go downward to the destination node. Therefore, there exists at least one path
from one node to another. g

6 Experimental test

To evaluate the performance of the proposed routing algorithm, we implement four
Tree-turn routing algorithms along with the up*/down* routing, L-turn routing, and
up*/down* routing with DFS methodology on a simulator. In our network model,
there are 8 ports in each switch, and each port is associated with one input channel and
one output channel. We do not allow duplicated links between a pair of switches, that
is, there exists at most one link between a pair of switches. The switching technique
in switches is virtual cut-through. The packet length is 32 flits. We assume that the
flying time of a packet between devices (endnode-to-switch and switch-to-switch) is
4 clock cycles. The routing time of a packet from one input port to one output port
of the crossbar in a switch is 24 clock cycles, including forwarding table lookup,
arbitration, and message startup time. The traffic pattern is uniform.

We have four configurations of networks: irregular networks with 64 nodes and
160 links, irregular networks with 64 nodes and 192 links, irregular networks with
128 nodes and 360 links, and irregular networks with 128 nodes and 400 links. For
each kind of network configuration, we randomly generate 10 topologies and use the
average performance of these 10 topologies as the performance of the configuration.

The simulation results are shown in Figs. 7, 8, 9 and 10. The throughput (accepted
traffic) is defined as the received data per clock cycle per node (flits/cycle/node). The
message latency is measured in clock cycles. “Tree-turn”, “BFS up*/down*”, “L-
turn”, and “DFS up*/down*” denote Tree-turn routing, up*/down* routing, L-turn
routing, and up*/down* routing with DFS methodology in the figures, respectively.
Four network configurations, irregular networks with 64 nodes and 160 links, irregu-
lar networks with 64 nodes and 192 links, irregular networks with 128 nodes and 360
links, and irregular networks with 128 nodes and 400 links are shown in Figs. 7, §, 9,
and 10, respectively. We can see that Tree-furn routing outperforms other routing
algorithms in these four network configurations. Because of the carefully selected
prohibited turns in the proposed Tree-turn model, the derived Tree-turn routing is
able to push the traffic downward in a spanning tree and we thus are able to get better
performance.

Small networks (64 nodes) with different number of links (160 and 192) are shown
in Figs. 7 and 8, respectively. We can see that Tree-turn routing outperforms the
other algorithms. When comparing Fig. 7 and Fig. 8, the number of nodes in the
network is the same, and we find that with more links, we can get more throughput.

@ Springer

896 J. Zhou, Y.-C. Chung

2500
2000
) 74
- 1500 N N
% —O—Tree-turn
@ 1000 —E—BFSup*/down*
>
o L-turn
5 x B -
% 500 M —>—DFS up*/down
-l g Al
0 — . .
0 0.05 0.1 0.15

Accepted traffic (flits/cycles/host)

Fig. 7 Simulation result of the irregular networks with 64 nodes and 160 links

2500

2000
m
K
Q. 1500
o + —6—Tree-tumn
>
2 1000 —8~BFS up*/down*
[}]
§ o/) L-turn

500 =—DFS up*/down*

O T : T T 1
0 0.05 0.1 0.15 0.2

Accepted traffic (flits/cycles/host)

Fig. 8 Simulation result of the irregular networks with 64 nodes and 192 links

In Fig. 11, we compare the maximum throughput of each algorithm for the same
network configuration. For the networks with 64 nodes and 160 links, the speedup
of the throughput is 1.63 when comparing Tree-turn algorithm to up */down* routing
with DFS methodology. For the networks with 64 nodes and 192 links, the speedup
of the throughput is 1.40 when comparing Tree-turn algorithm to up*/down* routing
with DFS methodology.

Large networks (128 nodes) with different number of links (360 and 400) are
shown in Figs. 9 and 10, respectively. We can see that Tree-turn routing outperforms
the other algorithms. When comparing Fig. 9 and Fig. 10, the number of nodes in the

@ Springer

Tree-turn routing: an efficient deadlock-free routing algorithm 897

2000
1800
1600
1400
1200
1000

800

600

—6—Tree-turn

—8—-BFS up*/down*
L-turn

=>—=DFS up*/down*

Latency (cycles)

0 0.02 0.04 0.06 0.08
Accepted traffic (flits/cycles/host)

Fig. 9 Simulation result of the irregular networks with 128 nodes and 360 links

2000
1800
1600
1400
1200
1000

800

f
600 'I] L-turn
400 gi'y@!}— —%=DFS up*/down*
200 - BB

0 0.02 0.04 0.06 0.08 0.1 0.12

—O—Tree-turn
—8-BFS up*/down*

Latency (cycles)

Accepted traffic (flits/cycles/host)

Fig. 10 Simulation result of the irregular networks with 128 nodes and 400 links

network is the same, and we find that with more links, we get more throughput. This
observation is similar to that of small networks. In Fig. 12, we compare the maximum
throughput of each algorithm for the same network configuration. For the networks
with 128 nodes and 360 links, the speedup of the throughput is 1.33 when comparing
Tree-turn algorithm to up*/down* routing. For the networks with 128 nodes and 400
links, the speedup of the throughput is 1.62 when comparing Tree-turn algorithm to
up*/down* routing.

@ Springer

898 J. Zhou, Y.-C. Chung

Speedup of Throughput

1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

B 64 nodes and 160 links
B 64 nodes and 192 links

Tree-turn BFS L-turn DFS
up*/down* up*/down*

Fig. 11 Speedup of throughput for all algorithms compared to up*/down* algorithm with DFS method-
ology on the irregular networks with 64 nodes and 160 links and the irregular networks with 64 nodes and
192 links

Speedup of Throughput
1.80
1.60
1.40
1.20
1.00
0.80 m 128 nodesand 360 links
0.60 ® 128 nodes and 400 links
0.40
0.20
0.00
Tree-turn BFS L-turn DFS
up*/down* up*/down*

Fig. 12 Speedup of throughput for all algorithms compared to up*/down* algorithm on the irregular
networks with 128 nodes and 360 links and the irregular networks with 128 nodes and 400 links

7 Conclusions and future work
In this paper, we propose a Tree-turn model for irregular topologies. The Tree-turn

model is a tool used to develop a deadlock-free routing algorithm. Based on the
Tree-turn model, we derive an efficient deadlock-free routing algorithm, which we

@ Springer

Tree-turn routing: an efficient deadlock-free routing algorithm 899

call Tree-turn routing. To evaluate the performance of Tree-turn routing algorithm,
we develop a simulator and implement the proposed Tree-turn routing along with
up*/down* routing, L-turn routing, and up */down* routing with DFS methodology.
The simulation results show that the proposed Tree-turn routing outperforms other
routing algorithms for all the test cases. We find that in the small networks with 64
nodes and 160 links, the speedup of throughput is 1.63 when we compare the Tree-
turn routing to up*/down* routing with DFS methodology. In the large networks
with 128 nodes and 400 links, the speedup of throughput is 1.62 when we compare
the Tree-turn routing to up*/down* routing.

In the future, we will extend our work to regular topologies like 2-D mesh and
3-D torus networks. To provide efficient deadlock-free routing algorithms on these
regular networks, we will need to choose different set of prohibited turns in the Tree-
turn model with the consideration of characteristics of regular networks.

References

1. Boden NJ, Cohen D, Felderman RE, Kulawik AE, Seitz CL, Seizovic JN, Su W-K (1995) Myrinet: a
gigabyte-per-second local area network. In: IEEE Micro, February 1995, pp 29-36

2. Cherkasova L, Kotov V, Rokicki T (1996) Fibre channel fabrics: evaluation and design. In: Proceed-
ings of annual Hawaii international conference on system science, January 1996, pp 53-62

3. Chiu G-M (2000) The odd-even turn model for adaptive routing. IEEE Trans Parallel Distrib Syst
11(7):729-738

4. Dally WJ (1992) Virtual-channel flow control. IEEE Trans Parallel Distrib Syst 3(2):194-205

5. Dally W], Seitz CL (1987) Deadlock-free message routing in multiprocessor interconnection net-
works. IEEE Trans Comput 36(5):547-553

6. Dally WJ, Aoki H (1993) Deadlock-free adaptive routing in multicomputer networks using virtual
channels. IEEE Trans Parallel Distrib Syst 4(4):466-475

7. Duato J (1995) A necessary and sufficient condition for deadlock-free adaptive routing in wormhole
networks. IEEE Trans Parallel Distrib Syst 6(10):1055-1067

8. Duato J (1994) A necessary and sufficient condition for deadlock-free adaptive routing in wormhole
networks. In: Proceedings of 1994 IEEE international conference on parallel processing, August 1994,
pp 142-149

9. Duato J (1993) A new theory of deadlock-free adaptive routing in wormhole networks. IEEE Trans
Parallel Distrib Syst 4(12):1320-1331

10. Duato J (1991) On the design of deadlock-free adaptive routing algorithms for multicomputers: design
methodologies. In: Proceedings of parallel architectures and languages Europe 91, vol 1, June 1991,
pp 390405

11. Glass CJ, Ni LM (1992) Maximally fully adaptive routing in 2D meshes. In: Proceedings of IEEE
international conference on parallel processing, vol 1, August 1992, pp 101-104

12. Glass CJ, Ni LM (1994) The turn model for adaptive routing.] ACM 5:874-902

13. Glass CJ, Ni LM (1992) The turn model for adaptive routing. In: Proceedings of the 19th international
symposium on computer architecture, May 1992, pp 278-287

14. InfiniBand Trade Association (2004) InfiniBand architecture specification, vol 1, Release 1.2, October
2004. http://infinibandta.org/specs/

15. Jouraku A, Koibuchi M, Amano H, Funahashi A (2007) An effective design of deadlock-free rout-
ing algorithms based on 2D turn model for irregular networks. IEEE Trans Parallel Distrib Syst
18(3):320-333

16. Jouraku A, Koibuchi M, Amano H, Funahashi A (2002) Routing algorithms based on 2D turn model
for irregular networks. In: Proceedings of the IEEE international symposium on parallel architectures,
algorithms, and networks, May 2002, pp 254-259

17. Koibuchi M, Funahashi A, Jouraku A, Amano H (2001) L-turn routing: an adaptive routing in irregular
networks. In: Proceedings of IEEE international conference on parallel processing, September 2001,
pp 383-392

@ Springer

http://infinibandta.org/specs/

900 J. Zhou, Y.-C. Chung

18. Koibuchi M, Jouraku A, Watanabe K, Amano H (2003) Descending layers routing: a deadlock-free
deterministic routing using virtual channels in system area networks with irregular topologies. In:
Proceedings of international conference on parallel processing, October 2003, pp 527-536

19. Lin X, McKinley PK, Ni LM (1995) The message flow model for routing in wormhole-routed net-
works. IEEE Trans Parallel Distrib Syst 6(7):755-760

20. Lin XY, Chung YC, Huang TY (2004) A multiple LID routing scheme for fat-tree-based InfiniBand
networks. In: Proceedings of IEEE international parallel and distributed proceeding symposiums (CD-
ROM), April 2004

21. Lysne O, Skeie T, Reinemo S-A, Theiss I (2006) Layered routing in irregular networks. IEEE Trans
Parallel Distrib Syst 17(1):51-65

22. Mejia A, Flich J, Duato J, Reinemo S-A, Skeie T (2006) Segment-based routing: an efficient fault-
tolerant routing algorithm for meshes and tori. In: Proceedings of international parallel and distributed
processing symposium, April 2006

23. Ni LM, McKinley PK (1993) A survey of wormhole routing techniques in direct networks. IEEE
Comput 26(2):62-67

24. Petrini F, Feng W-C, Hoisie A, Coll S, Frachtenberg E (2001) The quadrics network (QsNet): high-
performance clustering technology. In: IEEE hot interconnects, August 2001, pp 125-130

25. Puente V, Gregorio JA, Beivide R, Vallejo F, Ibanez A (2001) A new routing mechanism for net-
works with irregular topology. In: Proceedings of the 2001 ACM/IEEE conference on supercomputing
(CDROM), pp 1-8

26. Sancho JC, Robles A, Duato J (2000) A flexible routing scheme for networks of workstations. In:
Proceedings of international conference on high performance computing, October 2000, pp 260-267

27. Sancho JC, Robles A, Duato J (2004) An effective methodology to improve the performance of the
up*/down* routing algorithms. IEEE Trans Parallel Distrib Syst 15(8):740-754

28. Schroeder MD, Birrell AD, Burrows M, Murray H, Needham RM, Rodeheffer TL, Satterthwaite EH,
Thacker CP (1990) Autonet: a high-speed, self-configuring local area network using point-to-point
links. Technical Report SRC Research Report 59, DEC, April 1990

29. Schwiebert L, Jayasimha DN (1995) A universal proof technique for deadlock-free routing in inter-
connection networks. In: Proceedings of symposium on parallel algorithms and architectures, July
1995, pp 175-184

30. Silla F, Duato J (2000) High-performance routing in networks of workstations with irregular topology.
IEEE Trans Parallel Distrib Syst 5(7):699-719

31. Silla F, Duato J (1997) Improving the efficiency of adaptive routing in networks with irregular topol-
ogy. In: Proceedings of the 1997 conference on high performance computing, December 1997

32. Skeie T, Lysne O, Flich J, Lopez P, Robles A, Duato J (2004) LASH-TOR: a generic transition-
oriented routing algorithm. In: Proceedings of international conference on parallel and distributed
systems, July 2004, pp 595-604

33. WuJ (2003) A fault-tolerant and deadlock-free routing protocol in 2D meshes based on odd-even turn
model. IEEE Trans Parallel Distrib Syst 52(9):1154-1169

@ Springer

	Tree-turn routing: an efficient deadlock-free routing algorithm for irregular networks
	Abstract
	Introduction
	Related work
	Preliminaries
	The Tree-turn model
	Step 1
	Step 2
	Step 3

	The Tree-turn routing
	Experimental test
	Conclusions and future work
	References

