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Abstract A data distribution scheme of sparse arrays on a distributed memory mul-
ticomputer, in general, is composed of three phases, data partition, data distribution,
and data compression. To implement the data distribution scheme, many methods
proposed in the literature first perform the data partition phase, then the data distri-
bution phase, followed by the data compression phase. We called a data distribution
scheme with this order as Send Followed Compress (SFC) scheme. In this paper, we
propose two other data distribution schemes, Compress Followed Send (CFS) and
Encoding-Decoding (ED), for sparse array distribution. In the CFS scheme, the data
compression phase is performed before the data distribution phase. In the ED scheme,
the data compression phase can be divided into two steps, encoding and decoding.
The encoding step and the decoding step are performed before and after the data dis-
tribution phase, respectively. To evaluate the CFS and the ED schemes, we compare
them with the SFC scheme. In the data partition phase, the row partition, the col-
umn partition, and the 2D mesh partition with/without load-balancing methods are
used for these three schemes. In the compression phase, the CRS/CCS methods are
used to compress sparse local arrays for the SFC and the CFS schemes while the
encoding/decoding step is used for the ED scheme. Both theoretical analysis and ex-
perimental tests were conducted. In the theoretical analysis, we analyze the SFC, the
CFS, and the ED schemes in terms of the data distribution time and the data com-
pression time. In experimental tests, we implemented these three schemes on an IBM
SP2 parallel machine. From the experimental results, for most of test cases, the CFS
and the ED schemes outperform the SFC scheme. For the CFS and the ED schemes,
the ED scheme outperforms the CFS scheme for all test cases.
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1 Introduction

Array operations are useful in a large number of important scientific codes, such as
molecular dynamics [10], finite-element methods [13], climate modeling [25], etc.
To implement the data distribution scheme, many methods have been proposed in the
literature [2, 7–9, 24–27, 30]. A data distribution scheme of sparse arrays on a distrib-
uted memory multicomputer, in general, is composed of three phases, data partition,
data distribution, and data compression. For these methods in the literature, three
phases of the data distribution scheme are performed in the following order, the data
partition phase, then the data distribution phase, followed by the data compression
phase. In the data partition phase, a global sparse array is partitioned into some local
sparse arrays. In the data distribution phase, these local sparse arrays are distributed
to processors. In the data compression phase, a local sparse array is compressed by
data compression methods in order to obtain better performance for sparse array op-
erations [7, 15, 16, 18, 21, 23, 26, 30]. A data distribution scheme with this order is
called the Send Followed Compress (SFC) scheme.

In this paper, we propose two other data distribution schemes, Compress Followed
Send (CFS) and Encoding-Decoding (ED), for sparse array distribution. In the CFS
scheme, the data compression phase is performed before the data distribution phase.
Three phases in the CFS scheme are performed in the following order, the data par-
tition phase, then data compression phase, followed by the data distribution phase.
The ED is a novel concept in which the data compression phase can be divided into
two steps, encoding and decoding. The encoding and the decoding steps are per-
formed before and after the data distribution phase, respectively. In encoding step,
we encode information of non-zero array elements into a special buffer for each local
sparse array. In decoding step, a special buffer is decoded into a compressed local
sparse array. For the ED scheme, the data partition phase is performed first, then the
encoding step, followed by the data distribution phase and the decoding step.

To evaluate the CFS and the ED schemes, we compare them with the SFC scheme.
In the data partition phase, many partition methods can be used for these three
schemes. Different partition methods may lead to different performance of a data
distribution scheme. In this paper, we use the row partition, the column partition, and
the 2D mesh partition with/without load-balancing methods for these three schemes.
The row partition, the column partition, and 2D mesh partition methods [20] whose
are similar to (Block, *), (*, Block), and (Block, Block) data distribution schemes
used in Fortran 90 [1, 14, 22]. The details of the load-balancing method for 2D mesh
partition can be found in [2, 26]. For the row partition, the column partition, and the
2D mesh partition without load-balancing methods, each processor has the same size
of local sparse array. However, each processor has different number of non-zero ar-
ray elements. For the 2D mesh partition with load-balancing method, each processor
has the same number of non-zero array elements. However, each processor has dif-
ferent size of local sparse array. In the data distribution phase, local sparse arrays,
whether compressed or not, are sent to processors sequentially. In the compression
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phase, many data compression methods, such as the Compressed Row Storage (CRS)
[5, 28], Compressed Column Storage (CCS) [5, 28], Jagged Diagonal format (JAD)
[5], etc., can be used for these three schemes. Different data compression methods
are used in different sparse array applications. In this paper, the CRS and the CCS
methods are used to compress sparse local arrays for the SFC and the CFS schemes
while the encoding/decoding steps are used for the ED scheme.

Bases on the methods used in the three phases above, both theoretical analysis and
experimental tests were conducted. In the theoretical analysis, we analyze the SFC,
the CFS, and the ED schemes in terms of the data distribution time and the data com-
pression time. Here, we do not consider the data partition time since the comparisons
of the data distribution time and the data compression time of these three schemes are
based on the same partition methods. In experimental tests, we implemented the SFC,
the CFS, and the ED schemes on an IBM SP2 parallel machine. From the experimen-
tal results, for most of test cases, the CFS and the ED schemes outperform the SFC
scheme. The reason is that we do not send entire local sparse arrays to processors
in these two schemes. The data distribution time can be reduced. For the CFS and
the ED schemes, the ED scheme outperforms the CFS scheme for all test cases. The
reason is that, for the ED scheme, the data distribution time is less than that of the
CFS scheme.

This paper is organized as follows. In Sect. 2, a brief survey of related work will
be presented. Section 3 will describe the SFC, the CFS, and the ED schemes in de-
tail. Section 4 will analyze the theoretical performance for the SFC, the CFS, and the
ED schemes based on the row partition, the column partition, and the 2D mesh par-
tition with/without load-balancing methods. The experimental results of these three
schemes will be given in Sect. 5.

2 Related work

Many methods have been proposed in the literature to implement the data distribution
scheme [2, 7–9, 24–27, 30]. Zapata et al. [2, 26] have proposed two data distribution
schemes, Block Row Scatter (BRS) and Multiple Recursive Decomposition (MRD),
for sparse arrays. Based on the BRS and the MRD schemes, they solve other impor-
tant problems based on sparse arrays [2–4, 24–26, 29]. The BRS scheme is based
on the division of any computation domain into several blocks, all of the same spa-
tial shape and size. The MRD scheme can be considered as a generalization of the
Binary Recursive Decomposition [6], a well-known data distribution scheme. In the
data partition phase, the BRS scheme uses block partition methods while the MRD
scheme uses a 2D mesh partition with load-balancing method. In the data distribu-
tion phase, local sparse arrays are sent to processors. In the data compression phase,
both schemes use the CRS/CCS methods to compress the local sparse array in each
processor. For the BRS scheme, the data compression time is determined by a proces-
sor, which has largest number of non-zero array elements. For the MRD scheme, the
data compression time is determined by a processor, which has largest size of local
sparse array. The data compression time for the BRS and the MRD schemes will be
large when non-zero array elements were concentrated in a portion of a global sparse
array. The reason is that, for the BRS scheme, there exists at least one processor whose



66 C.-Y. Lin, Y.-C. Chung

local array is a dense array. For the MRD scheme, there exists at least one processor
whose local sparse array has the size similar to that of the global sparse array.

Ziantz et al. [30] proposed a run-time optimization technique that was applied to
sparse arrays compressed by the CRS/CCS methods for array distribution and off-
processor data fetching to reduce both the communication and computation time.
They used the block data distribution scheme with a bin-packing algorithm. Lee et al.
[7–9] presented an efficient library for parallel sparse computations with Fortran 90
array intrinsic operations. Based on the MRD scheme, they provided a data distri-
bution scheme for multi-dimensional sparse arrays [17]. Their scheme is similar to
(*, . . ., Block, Block) data distribution scheme used in Fortran 90.

3 The SFC, CFS and ED schemes

In the following, we describe the SFC, the CFS, and the ED schemes in detail. In
the data partition phase, the row partition, the column partition, and the 2D mesh
partition with/without load-balancing methods are used for these three schemes. In
the data compression phase, the CRS/CCS methods are used to compress sparse local
arrays for the SFC and the CFS schemes while the encoding/decoding steps are used
for the ED scheme.

We assume that an 8 × 10 two-dimensional sparse array A with 16 non-zero ar-
ray elements shown in Fig. 1 and four processors are given. For the 2D mesh parti-
tion with/without load-balancing methods, the four processors are treated as a 2 × 2
processor array.

3.1 The SFC scheme

The SFC is an intuitive data distribution scheme. In the SFC scheme, the data par-
tition phase is performed first, then the data distribution phase, followed by the data
compression phase. In the data partition phase, the partition results of the row par-
tition, the column partition, and the 2D mesh partition with/without load-balancing
methods used on array A are shown in Fig. 2, respectively. In Fig. 2, we can see that
array A is partitioned into four local sparse arrays by these four partition methods,
respectively. In the data distribution phase, local sparse arrays are sent to proces-
sors sequentially. Figure 3 shows the local sparse arrays received by each processor.
In the data compression phase, the local sparse array received by each processor

Fig. 1 An 8 × 10 sparse array
A with 16 non-zero array
elements

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 0 0 0 0 2 0
3 0 0 0 0 0 0 4
0 0 0 0 0 5 0 0
0 0 0 6 0 0 0 0
0 0 0 0 7 0 0 0
0 0 0 0 0 0 8 0
0 0 0 0 9 0 0 10
0 11 12 0 13 0 0 0
14 0 0 15 0 0 16 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Sparse array A
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 0 0 0 0 2 0
3 0 0 0 0 0 0 4

0 0 0 0 0 5 0 0
0 0 0 6 0 0 0 0
0 0 0 0 7 0 0 0

0 0 0 0 0 0 8 0
0 0 0 0 9 0 0 10

0 11 12 0 13 0 0 0
14 0 0 15 0 0 16 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 0 0 0 0 2 0
3 0 0 0 0 0 0 4
0 0 0 0 0 5 0 0
0 0 0 6 0 0 0 0
0 0 0 0 7 0 0 0
0 0 0 0 0 0 8 0
0 0 0 0 9 0 0 10
0 11 12 0 13 0 0 0
14 0 0 15 0 0 16 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(a) The row partition method (b) The column partition method

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 0 0 0 0 2 0
3 0 0 0 0 0 0 4
0 0 0 0 0 5 0 0
0 0 0 6 0 0 0 0

0 0 0 0 7 0 0 0
0 0 0 0 0 0 8 0
0 0 0 0 9 0 0 10
0 11 12 0 13 0 0 0
14 0 0 15 0 0 16 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 0 0 0 0 2 0
3 0 0 0 0 0 0 4
0 0 0 0 0 5 0 0
0 0 0 6 0 0 0 0
0 0 0 0 7 0 0 0
0 0 0 0 0 0 8 0

0 0 0 0 9 0 0 10
0 11 12 0 13 0 0 0
14 0 0 15 0 0 16 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(c) The 2D mesh partition without (d) The 2D mesh partition with
load-balancing method load-balancing method

Fig. 2 The partition results for array A by using these four partition methods

is compressed by the CRS/CCS methods. The CRS (CCS) method uses three one-
dimensional arrays, RO, CO, and VL, to compress all of non-zero array elements
along the rows (columns for CCS) of the sparse array.

Figure 4 shows the compressed results by using the CRS method. In Fig. 4, array
RO stores information of non-zero array elements of each row. The number of non-
zero array elements in the ith row can be obtained by subtracting the value of RO[i]
from RO[i + 1]. Array CO stores the column indices of non-zero array elements of
each row. Array VL stores the values of non-zero array elements of the sparse array.
The base of these three arrays is 0.

3.2 The CFS scheme

The CFS scheme is similar to the SFC scheme except that the data compression
phase is performed before the data distribution phase. In the data partition phase
and the data compression phase, the process is the same as that of the SFC scheme,
respectively. However, the values stored in array CO are global array indices since
the partitioned local sparse arrays are compressed before sent to processors. In the
data distribution phase, arrays RO, CO, and VL for each local sparse array are packed
and then sent to its corresponding processor. After received the corresponding packed
buffer, each processor unpacks the buffer to the corresponding arrays RO, CO, and
VL. Since the values stored in array CO are global array indices in the compression
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P2
P0( 0 1 0 0 0 0 0 0

0 0 0 0 0 0 2 0
3 0 0 0 0 0 0 4

) (
0 0 0 0 0 0 8 0
0 0 0 0 9 0 0 10

)

P3
P1( 0 0 0 0 0 5 0 0

0 0 0 6 0 0 0 0
3 0 0 0 7 0 0 0

) (
0 11 12 0 13 0 0 0

14 0 0 15 0 0 16 0

)

(a) The row partition method

P0 P1 P2 P3⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 0
3 0
0 0
0 0
0 0
0 0
0 0
0 11
14 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0
0 6
0 0
0 0
0 0
0 0
12 15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 5
0 0
7 0
0 0
9 0

13 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
2 0
0 4
0 0
0 0
0 0
8 0
0 10
0 0
16 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(b) The column partition method

P0,0 P0,1⎛
⎜⎝

0 1 0 0
0 0 0 0
3 0 0 0
0 0 0 0
0 0 0 6

⎞
⎟⎠

⎛
⎜⎝

0 0 0 0
0 0 2 0
0 0 0 4
0 5 0 0
0 0 0 0

⎞
⎟⎠

P1,0 P1,1⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 11 12 0

14 0 0 15

⎞
⎟⎠

⎛
⎜⎜⎝

7 0 0 0
0 0 8 0
9 0 0 10

13 0 0 0
0 0 16 0

⎞
⎟⎟⎠

(c) The 2D mesh partition without
load-balancing method

P0,0 P0,1⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 0 0 0
3 0 0 0 0
0 0 0 0 0
0 0 0 6 0
0 0 0 0 7
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0 0 0
0 2 0
0 0 4
5 0 0
0 0 0
0 0 0
0 8 0

⎞
⎟⎟⎟⎟⎠

P1,0 P1,1( 0 0 0 0
0 11 12 0
14 0 0 15

) (
9 0 0 10

13 0 0 0
0 0 16 0

)

(d) The 2D mesh partition with
load-balancing method

Fig. 3 The corresponding local sparse arrays received by each processor
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Fig. 4 The compressed results
by using the CRS method for the
received local sparse arrays

(a) The row partition method

(b) The column partition method

phase, when unpacking the received buffer, the values stored in array CO may need
to be converted to local array indices. We have the following cases.

Case 3.2.1: When the row (column) partition and the CRS (CCS for column) meth-
ods are used in the data partition phase and the data compression phase, respectively,
the values stored in array CO of the received buffer are desired local array indices.
No conversion is needed.

Case 3.2.2: When the row (column) partition and the CCS (CRS for column) meth-
ods are used in the data partition phase and the data compression phase, respectively,
each processor Pi converts the values stored in array CO of the received buffer to the
corresponding local array indices by subtracting N from each value stored in array
CO of the received buffer, where N is the total number of rows (columns for column)
in processors P0,P1, . . . ,Pi−1.

Case 3.2.3: When the 2D mesh partition with/without load-balancing and the CRS
(CCS) methods are used in the data partition phase and the data compression phase,
respectively, each processor Pi,j converts the values stored in array CO of the re-
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(c) The 2D mesh partition without load-balancing method

(d) The 2D mesh partition with load-balancing method

Fig. 4 (Continued)

ceived buffer to the corresponding local array indices by subtracting M from each
value stored in array CO of the received buffer, where M is the total number of
columns (rows for CCS) in processors Pi,0,Pi,1, . . . ,Pi,j−1(P0,j ,P1,j , . . . ,Pi−1,j

for CCS).
An example of the CFS scheme by applying the row partition method and the CCS

method to array A is given in Fig. 5.
Figure 5a shows the partition result of the row partition method used on array A.

Figure 5b shows the compressed results of the CCS method. Figure 5c only shows the
data distribution phase for processor P1. In Fig. 5c, arrays RO, CO, and VL for the first
local sparse array are packed into a buffer and then sent to processor P1. After receiv-
ing the buffer, processor P1 unpacks the received buffer to the corresponding arrays
RO, CO, and VL. According to Case 3.2.2 described above, processor P1 converts
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Fig. 5 An example of the CFS
scheme

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 0 0 0 0 2 0
3 0 0 0 0 0 0 4

0 0 0 0 0 5 0 0
0 0 0 6 0 0 0 0
0 0 0 0 7 0 0 0

0 0 0 0 0 0 8 0
0 0 0 0 9 0 0 10

0 11 12 0 13 0 0 0
14 0 0 15 0 0 16 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(a) The data partition phase

(b) The data compression phase

(c) The data distribution phase
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the values stored in array CO of the received buffer to the corresponding local array
indices by subtracting 3 from each value stored in array CO of the received buffer.
For processors P0,P2, and P3, the packing, send/receive, and unpacking procedures
are similar to that of processor P1.

3.3 The ED scheme

The ED is a novel concept in which the data compression phase can be divided into
two steps, encoding and decoding. In the ED scheme, the data partition phase is
performed first, then the encoding step, followed by the data distribution phase and
the decoding step. In the data partition phase, the process is the same as that of the
SFC scheme. In the encoding step, each local sparse array is encoded into a special
buffer B . Figure 6 shows the formats of the special buffer B in the CRS/CCS formats.
In Fig. 6, for the CRS (CCS) format, the Ri is used to store the number of non-zero
array elements in a row (column for CCS) i. The Ci,j and Vi,j are used to store the
column (row for CCS) index and the value of the j th non-zero array element in a row
(column for CCS) i, respectively. The Ci,j and Vi,j are alternately stored in the buffer
B and each Ci,j is a global index of the global sparse array. In the data distribution
phase, these special buffers are sent to processors sequentially.

In the decoding step, the special buffer B is decoded to get arrays RO, CO,
and VL in each processor. To get array RO, in each processor, RO[0] is first
initialized to 1. Then other values of array RO are computed according to the
formula RO[i + 1] = RO[i] + Ri , where i = 0,1, . . . , n and n is the number
of rows in a local sparse array. To get array CO, in each processor, we move
C0,0,C0,1, . . . ,C0,j ,C1,0,C1,1, . . . ,C1,j , . . . ,Ci,0,Ci,1, . . . ,Ci,j stored in the spe-
cial buffer to array CO, where i = 0,1, . . . , n, j = 0,1, . . . ,m,n is the number of
rows of the local sparse array of a processor, and m is the number of non-zero array
elements in row i. To get array VL, we move all Vi,j to array VL in a similar manner
as that of getting array CO. Since each Ci,j is a global array index in the encoding
step, to decode the received special buffer in the decoding step, each Ci,j may need
to be converted to a local array index. We have the following cases.

R0 C0,0 V0,0 . . . C0,j V0,j . . . Ri Ci,0 Vi,0 . . . Ci,j Vi,j

i: the row index j : the jth non-zero array element in row i

Ri : the number of non-zero array elements in row i

Ci,j : the column index of jth non-zero array elements in row i

Vi,j : the value of jth non-zero array elements in row i

(a) for CRS format

R0 C0,0 V0,0 . . . C0,j V0,j . . . Ri Ci,0 Vi,0 . . . Ci,j Vi,j

i: the column index j : the jth non-zero array element in column i

Ri : the number of non-zero array elements in column i

Ci,j : the row index of jth non-zero array elements in column i

Vi,j : the value of jth non-zero array elements in column i

(b) for CCS format

Fig. 6 The formats of the special buffer B
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Case 3.3.1: When the row (column) partition method and the CRS (CCS for col-
umn) format are used in the data partition phase and the encoding step, respectively,
each Ci,j of the received buffer is desired local array index. No conversion is needed.

Case 3.3.2: When the row (column) partition method and the CCS (CRS for col-
umn) format are used in the data partition phase and the encoding step, respectively,
each processor Pi converts each Ci,j of the received special buffer to the corre-
sponding local array index by subtracting N from each Ci,j of the received special
buffer, where N is the total number of rows (columns for column) in processors
P0,P1, . . . ,Pi−1.

Case 3.3.3: When the 2D mesh partition with/without load-balancing methods and
the CRS (CCS) format are used in the data partition phase and the encoding step,
respectively, each processor Pi,j converts each Ci,j of the received special buffer to
the corresponding local array index by subtracting M from each Ci,j of the received
special buffer, where M is the total number of columns (rows for CCS) in processors
Pi,0,Pi,1, . . . ,Pi,j−1(P0,j ,P1,j , . . . ,Pi−1,j for CCS).

An example of the ED scheme by applying the row partition method and the CCS
format to array A is given in Fig. 7. Figure 7a shows the partition result of the row
partition method used on array A. Figure 7b shows the special buffers for local sparse
arrays. Figure 7c shows the special buffers received by each processor.

Figure 7d only shows the decoding step for processor P1. After receiving the
special buffer, to get arrays RO, RO[0] is first set to 1. Then other values of ar-
ray RO are computed according to the formula RO[i + 1] = RO[i] + Ri , where
i = 0,1,2,3,4,5,6, and 7. To get array CO, we move C3,0,C4,0, and C5,0 stored in
the special buffer to array CO. According to Case 3.3.2 described above, processor P1
subtracts 3 from C3,0,C4,0, and C5,0 of the received special buffer to convert them to
the desired local array indices. To get array VL, we move V3,0,V4,0, and V5,0 stored
in the special buffer to array VL. For processors P0,P2, and P3, the decoding step is
similar to that of processor P1.

4 Theoretical analysis

In this section, we analyze the SFC, the CFS, and the ED schemes for two-
dimensional sparse arrays in terms of the data distribution time and the data com-
pression time. In the following, we list the notations used in the theoretical analysis.

• TStartup is the startup time for a communication channel.
• TData is the transmission time for sending an array element through a communica-

tion channel.
• TOperation is the average operation time for an array element. In order to simplify the

analysis, we use TOperation to present average operation cost for an array element,
such as memory access, addition or subtraction operations, etc.

• TDistribution is the data distribution time for the data distribution phase. The data
distribution time include the packing/unpacking time and send/receive time.

• TCompression is the data compression time for the data compression phase. For the
ED scheme, the data compression time is the sum of the encoding time and the
decoding time in the encoding and the decoding steps, respectively.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 0 0 0 0 2 0
3 0 0 0 0 0 0 4

0 0 0 0 0 5 0 0
0 0 0 6 0 0 0 0
0 0 0 0 7 0 0 0

0 0 0 0 0 0 8 0
0 0 0 0 9 0 0 10

0 11 12 0 13 0 0 0
14 0 0 15 0 0 16 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(a) The data partition phase

(b) The encoding step

(c) The data distribution phase

(d) The decoding step

Fig. 7 An example of the ED scheme
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• A is an n × n global sparse array.
• p is the number of processors. For the 2D mesh partition with/without load-

balancing methods, p processors are treated as an r × q processor array.
• s is the sparse ratio of array A.
• S = {si |i = 0,1, . . . , p − 1} is the set of sparse ratios of local sparse arrays. The

largest sparse ratio in S is denoted as s′.
• α = {αi |i = 0,1, . . . , p − 1} is set of space ratios of local sparse arrays. The space

ratio for a local sparse array is the size of a local sparse array divided by the size
of the global sparse array A. The largest space ratio in α is denoted as α′.

4.1 The row partition method

4.1.1 The CRS method

A The SFC scheme Assume that array A and p processors are given. The number
of non-zero array elements in array A is sn2. For the SFC scheme, the row partition
method partitions array A into p local sparse arrays and the size of each local sparse
array is�n/p� × n. The largest number of non-zero array elements among these local
sparse arrays is �n/p� × n × s′. In the data distribution phase, local sparse arrays are
sent to processors sequentially. For a two-dimensional spare array in the row partition
method, array elements in a local sparse array are continuous. Therefore, local sparse
arrays are sent to processors without packing into buffers. TDistribution is (p×TStartup +
n2 × TData) that is determined by the size of array A. In the data compression phase,
local sparse arrays are compressed by the CRS method simultaneously. Therefore,
TCompression is (�n/p� × n × (1 + 3s′)) × TOperation that is determined by a processor
with the largest number of non-zero array elements. When non-zero array elements
are concentrated in a portion of array A, the data compression time is large since s′
is close to 1.

B The CFS scheme For the CFS scheme, the row partition method partitions ar-
ray A into p local sparse arrays. In the data compression phase, local sparse ar-
rays are compressed by the CRS method sequentially. This phase is similar to com-
press a global sparse array by the CRS method. Therefore, TCompression is (n2 ×
(1 + 3s)) × TOperation that is determined by the size of array A. In the data distri-
bution phase, the compressed results are first packed into buffers and then sent to
the corresponding processors. After receiving the corresponding buffer, each proces-
sor unpacks the buffer to get the desired arrays RO, CO, and VL. The values stored
in array CO do not need to be converted to local sparse indices in each proces-
sor according to Case 3.2.1. The packing time is (2n2s + n + p) × TOperation, the
send/receive time is p × TStartup + (2n2s + n + p) × TData, and the unpacking time is
(�n/p� × n × (2s′ + (1/n)) + 1) × TOperation. Therefore, TDistribution is p × TStartup +
(2n2s+n+p)×TData +(2n2s+(�n/p�×n×(2s′+(1/n)))+n+p+1)×TOperation.
The number of non-zero array elements in array A determines the packing time and
the send/receive time. The unpacking time is determined by a processor that has the
largest number of non-zero array elements. When non-zero array elements are con-
centrated in a portion of array A, the unpacking time is large. However, for the data
distribution time, the above effect is slight since the sum of the packing time and the
send/receive time is much larger than the unpacking time.
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Table 1 The data distribution time and the data compression time of the SFC, the CFS, and the ED
schemes by using the row partition and the CRS methods

Method Complexity Cost

SFC TDistribution p × TStartup + n2 × TData

TCompression (�n/p� × n × (1 + 3s′)) × TOperation

CFS TDistribution p × TStartup + (2n2s + n + p) × TData +
2n2s + (�n/p� × n × (2s′ + (1/n)) + n + p + 1) × TOperation

TCompression (n2 × (1 + 3s)) × TOperation

ED TDistribution p × TStartup + (2n2s + n) × TData

TCompression (n2 × (1 + 3s) + �n/p� × n × (2s′ + (1/n)) + 1) × TOperation

C The ED scheme For the ED scheme, the row partition method partitions array
A into p local sparse arrays. In the encoding step, local sparse arrays are encoded
into special buffers sequentially. The encoding time is (n2 × (1 + 3s)) × TOperation
that is determined by the size of array A. In the data distribution phase, these special
buffers are sent to processors sequentially. TDistribution is (p × TStartup + (2n2s + n) ×
TData) that is determined by the number of non-zero array elements of array A. In the
decoding step, the special buffer B in each processor is decoded simultaneously. The
Ci,j stored in the special buffer do not need to be converted to local sparse indices
in each processor according Case 3.3.1. The decoding time is (�n/p� × n × (2s′ +
(1/n)) + 1) × TOperation that is determined by a processor with the largest number
of non-zero array elements. The data compression time TCompression is (n2 × (1 +
3s)+�n/p�×n× (2s′ + (1/n))+ 1)×TOperation. When non-zero array elements are
concentrated in a portion of array A, the decoding time is large. However, for the data
compression time, the above effect is slight since the encoding time is much larger
than the decoding time.

Table 1 lists the data distribution time and the data compression time of the SFC,
the CFS, and the ED schemes by using the row partition and the CRS methods.

D Discussions From Table 1, we can see that the data distribution time of the ED
scheme is less than that of the CFS scheme. The data distribution time of the ED
scheme is less than that of the SFC scheme if the sparse ratio of a global sparse array
is less than 0.5. It is very important that, in [18], we have shown that the sparse ratio s

of a k-dimensional sparse array must be less than 1/k if we want to use CRS and CCS
to compress it. According to the Harewell-Boeing Sparse Matrix Collection [11, 12],
it shows that over 80% sparse array applications in which the sparse ratio of a sparse
array is less than 0.1. Therefore, the data distribution time of the ED scheme is less
than that of the SFC scheme. We have the following remark.

Remark 1 TDistribution(ED) < TDistribution(SFC) and TDistribution(CFS).

For the data distribution time of the CFS scheme, it is less than that of the SFC
scheme if the condition TData > (2s/1 − 2s)TOperation is satisfied. In general, TData is
less than or equal to TOperation in a distributed memory multicomputer. If we assume
that TData is equal to TOperation, TData > (2s/1 − 2s)TOperation when s is less than 0.25.
We have the following remark.
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Remark 2 TDistribution(CFS) < TDistribution(SFC) for most of sparse array applica-
tions.

For the data compression time of these three schemes, we have the following re-
mark.

Remark 3 TCompression(SFC) < TCompression(CFS) < TCompression(ED).

From Table 1, for the overall performance of these three schemes, we have two
remarks.

Remark 4 The ED scheme outperforms the CFS scheme.

Remark 5 The ED and the CFS schemes outperform the SFC scheme if the con-
ditions TData > (1 + 3s/1 − 2s)TOperation and TData > (1 + 5s/1 − 2s)TOperation are
satisfied, respectively.

4.1.2 The CCS method

Table 2 lists the data distribution time and the data compression time of the SFC, the
CFS, and the ED schemes by using the row partition and the CCS methods. The main
difference between Table 1 and Table 2 is that, for the CFS and the ED schemes, the
values stored in array CO and each Ci,j stored in the special buffer need to be con-
verted to local array indices in each processor according to Case 3.2.2 and Case 3.3.2,
respectively. From Table 2, for the data distribution time, the data compression time,
and the overall performance, we have similar observations as those of Remarks 1, 2,
3, 4, and 5.

4.2 The column partition method

4.2.1 The CRS method

Table 3 lists the data distribution time and the data compression time of the SFC, the
CFS, and the ED schemes by using the column partition and the CRS methods. There

Table 2 The data distribution time and the data compression time of the SFC, the CFS, and the ED
schemes by using the row partition and the CCS methods

Method Complexity Cost

SFC TDistribution p × TStartup + n2 × TData

TCompression (�n/p� × n × (1 + 3s′)) × TOperation

CFS TDistribution p × TStartup + (2n2s + n + p) × TData +
(2n2s + �n/p� × n × (3s′) + pn + p + n + 1) × TOperation

TCompression (n2 × (1 + 3s)) × TOperation

ED TDistribution p × TStartup + (2n2s + pn) × TData

TCompression (n2 × (1 + 3s) + �n/p� × n × (3s′) + n + 1) × TOperation
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Table 3 The data distribution time and the data compression time of the SFC, the CFS, and the ED
schemes by using the column partition and the CRS methods

Method Complexity Cost

SFC TDistribution p × TStartup + n2 × TData + n2 × TOperation

TCompression (�n/p� × n × (1 + 3s′)) × TOperation

CFS TDistribution p × TStartup + (2n2s + pn + p) × TData +
(2n2s + �n/p� × n × (3s′) + pn + p + n + 1) × TOperation

TCompression (n2 × (1 + 3s)) × TOperation

ED TDistribution p × TStartup + (2n2s + pn) × TData

TCompression (n2 × (1 + 3s) + �n/p� × n × (3s′) + n + 1) × TOperation

Table 4 The data distribution time and the data compression time of the SFC, the CFS, and the ED schemes
by using the column partition and the CCS methods

Method Complexity Cost

SFC TDistribution p × TStartup + n2 × TData + n2 × TOperation

TCompression (�n/p� × n × (1 + 3s′)) × TOperation

CFS TDistribution p × TStartup + (2n2s + n + p) × TData +
(2n2s + �n/p� × n × (2s′ + (1/n)) + n + p + 1) × TOperation

TCompression (n2 × (1 + 3s)) × TOperation

ED TDistribution p × TStartup + (2n2s + n) × TData

TCompression (n2 × (1 + 3s) + �n/p� × n × (2s′ + (1/n)) + 1) × TOperation

are two differences between the Table 1 and the Table 3. First, for two-dimensional
sparse arrays by using the column partition method, array elements in a local sparse
array are not continuous. For the SFC scheme, these local sparse arrays are sent to
processors after packing into buffers. Second, for the CFS and the ED schemes, the
values stored in array CO and each Ci,j stored in the special buffer need to be con-
verted to local sparse indices in each processor according Case 3.2.2 and Case 3.3.2,
respectively.

From Table 3, for the data distribution time and the data compression time of these
three schemes, we have similar observations as those of Remarks 1, 2, and 3. For the
overall performance of the CFS and the ED schemes, we have similar observation
as that of Remark 4. For the overall performance of these three schemes, we have
following remark.

Remark 6 The ED and the CFS schemes outperform the SFC scheme if the con-
ditions TData > (3s/1 − 2s)TOperation and TData > (5s/1 − 2s)TOperation are satisfied,
respectively.
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Table 5 The data distribution time and the data compression time of the SFC, the CFS, and the ED schemes
by using the 2D mesh partition without load-balancing and the CRS methods

Method Complexity Cost

SFC TDistribution r × q × TStartup + n2 × TData + n2 × TOperation

TCompression (� n
r � × � n

q � × (1 + 3s′)) × TOperation

CFS TDistribution r × q × TStartup + (2n2s + qn + rq) × TData +
(2n2s + � n

r � × � n
q � × (3s′) + � n

r � + qn + rq + 1) × TOperation

TCompression (n2 × (1 + 3s)) × TOperation

ED TDistribution r × q × TStartup + (2n2s + qn) × TData

TCompression (n2 × (1 + 3s) + � n
r � × � n

q � × (3s′) + � n
r � + 1) × TOperation

Table 6 The data distribution time and the data compression time of the SFC, the CFS, and the ED
schemes by using the 2D mesh partition without load-balancing and the CCS methods

Method Complexity Cost

SFC TDistribution r × q × TStartup + n2 × TData + n2 × TOperation

TCompression (� n
r � × � n

q � × (1 + 3s′)) × TOperation

CFS TDistribution r × q × TStartup + (2n2s + rn + rq) × TData +
(2n2s + � n

r � × � n
q � × (3s′) + � n

q � + rn + rq + 1) × TOperation

TCompression (n2 × (1 + 3s)) × TOperation

ED TDistribution r × q × TStartup + (2n2s + rn) × TData

TCompression (n2 × (1 + 3s) + � n
r � × � n

q � × (3s′) + � n
q � + 1) × TOperation

4.2.2 The CCS method

Table 4 lists the data distribution time and the data compression time of the SFC, the
CFS, and the ED schemes by using the column partition and the CCS methods. The
main difference between Tables 3 and 4 is that, for the CFS and the ED schemes,
the values stored in array CO and each Ci,j stored in the special buffer do not need
to be converted to local sparse indices in each processor according Case 3.2.1 and
Case 3.3.1, respectively. From Table 4, for the data distribution time, the data com-
pression time, and the overall performance, we have similar observations as those of
Remarks 1, 2, 3, 4, and 6.

4.3 The 2D mesh partition without load-balancing method

Tables 5 and 6 list the data distribution time and the data compression time of the SFC,
the CFS, and the ED schemes by using the 2D mesh partition without load-balancing
and the CRS/CCS methods, respectively. For the CFS and the ED schemes, the values
stored in array CO and each Ci,j stored in the special buffer need to be converted to
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local sparse indices in each processor according Case 3.2.3 and Case 3.3.3, respec-
tively. From Tables 5 and 6, for the data distribution time, the data compression time,
and the overall performance, we have similar observations as those of Remarks 1, 2,
3, 4, and 6.

4.4 The 2D mesh partition with load-balancing method

Assume that the dimension of the largest local sparse array is r ′ × q ′ = α′n2. Ta-
bles 7 and 8 list the data distribution time and the data compression time of the SFC,
the CFS, and the ED schemes by using the 2D mesh partition with load-balancing
and the CRS/CCS methods, respectively. From Tables 7 and 8, we can see that, for
the SFC scheme, the data distribution time is determined by the size of a global
sparse array. The data compression time is determined by the processor that has the
largest size of local sparse array. For the CFS scheme, the number of non-zero array
elements of a global sparse array determines the data distribution time. The data com-
pression time is determined by the size of a global sparse array. For the ED scheme,
the number of non-zero array elements of a global sparse array determines the data
distribution time. The data compression time in encoding step is determined by the
size of a global sparse array. The number of non-zero array element of a local spare
array determines the data compression time in decoding step. When non-zero array
elements are concentrated in a portion of a global sparse array, the data compression

Table 7 The data distribution time and the data compression time of the SFC, the CFS, and the ED schemes
by using the 2D mesh partition with load-balancing and the CRS methods

Method Complexity Cost

SFC TDistribution r × q × TStartup + n2 × TData + n2 × TOperation

TCompression (n2 × (α′ + (3/r × q)s)) × TOperation

CFS TDistribution r × q × TStartup + (2n2s + qn + rq) × TData +
(2n2s + n2 × (3/r × q)s + r ′ + qn + rq + 1) × TOperation

TCompression (n2 × (1 + 3s)) × TOperation

ED TDistribution r × q × TStartup + (2n2s + qn) × TData

TCompression (n2 × (1 + 3s) + n2 × (3/r × q)s + r ′ + 1) × TOperation

Table 8 The data distribution time and the data compression time of the SFC, the CFS, and the ED
schemes by using the 2D mesh partition with load-balancing and the CCS methods

Method Complexity Cost

SFC TDistribution r × q × TStartup + n2 × TData + n2 × TOperation

TCompression (n2 × (α′ + (3/r × q)s)) × TOperation

CFS TDistribution r × q × TStartup + (2n2s + rn + rq) × TData +
(2n2s + n2 × (3/r × q)s + q ′ + rn + rq + 1) × TOperation

TCompression (n2 × (1 + 3s)) × TOperation

ED TDistribution r × q × TStartup + (2n2s + rn) × TData

TCompression (n2 × (1 + 3s) + n2 × (3/r × q)s + q ′ + 1) × TOperation
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time for the SFC scheme is large. From Tables 7 and 8, for the data distribution time,
the data compression time, and the overall performance, we have similar observations
as those of Remarks 1, 2, 3, 4, and 6.

5 Experimental results

In experimental tests, we implement the SFC, the CFS, and the ED schemes on an
IBM SP2 parallel machine. In the partition phase, the row partition, the column par-
tition, and the 2D mesh partition with/without load-balancing methods all are imple-
mented in these three schemes. In the data compression phase, the CRS method is
implemented in these three schemes. All methods are written in C + MPI (Message
Passing Interface) codes. In order to observe the general cases for the SFC, the CFS,
and the ED schemes, in this paper, we perform all the experimental results using the
random data for two-dimensional sparse arrays. The sparse ratio is set to 0.1 for all
two-dimensional sparse arrays used as test samples.

5.1 The row partition method

Table 9 shows the data distribution and the data compression time for the SFC, the
CFS, and the ED schemes by using the row partition method. From Table 9, for the
data distribution time, we have the following observation.

1. TDistribution(ED) < TDistribution(CFS) < TDistribution(SFC).

From experimental tests, we can estimate that TData ≈ 1.2 × TOperation. Therefore,
for the CFS scheme, the condition TData > (1/4)TOperation shown in Table 1 is sat-
isfied. These results match Remarks 1 and 2. For the data compression time, from
Table 9, we have the following observation.

1. TCompression(SFC) < TCompression(CFS) < TCompression(ED).

This result matches Remark 3. For the overall performance, from Table 9, we have
the following observations.

1. The ED scheme outperforms the CFS scheme.
2. The SFC outperforms the CFS and the ED schemes since the conditions TData >

(15/8)TOperation and TData > (13/8)TOperation shown in Table 1 are not satisfied,
respectively.

These results match Remarks 4 and 5. From Table 9, we can see that the experi-
mental results match the theoretical analysis in Table 1.

5.2 The column partition method

Table 10 shows the data distribution and the data compression time of the SFC, the
CFS, and the ED schemes by using the column partition method. From Table 10,
for the data distribution time and the data compression time, the experimental results
match Remarks 1, 2, 3, and 4. For the overall performance of these schemes, we have
the following observations.
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Table 9 The data distribution and the data compression time of the SFC, the CFS, and the ED schemes
by using the row partition method on an IBM SP2 parallel machine

No. of Methods- Array sizes

processors costs
200 × 200 400 × 400 800 × 800 1000 × 1000 2000 × 2000

2 SFC TDistribution 5.341 18.078 66.600 93.371 380.030

TCompression 2.262 8.223 33.521 59.370 232.054

CFS TDistribution 3.173 9.666 34.107 40.532 131.744

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 1.609 4.601 16.520 25.447 99.755

TCompression 6.051 21.830 84.572 129.711 520.936

4 SFC TDistribution 5.648 19.009 68.798 94.542 383.718

TCompression 2.527 7.604 26.959 38.778 160.579

CFS TDistribution 4.119 10.591 31.377 39.265 134.291

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 1.716 6.132 18.781 27.618 103.443

TCompression 6.878 21.001 83.453 127.398 520.574

8 SFC TDistribution 6.353 20.551 69.502 95.583 385.987

TCompression 1.316 4.036 14.524 20.342 91.654

CFS TDistribution 3.654 12.313 35.742 41.197 149.302

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 2.421 6.774 19.485 28.659 104.725

TCompression 5.285 20.353 81.886 123.018 513.534

16 SFC TDistribution 7.234 22.154 71.642 97.234 388.184

TCompression 0.887 2.380 8.406 12.647 40.814

CFS TDistribution 4.120 14.204 48.825 61.640 187.761

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 3.302 8.343 21.625 30.309 106.922

TCompression 4.886 19.575 92.187 146.024 530.092

32 SFC TDistribution 8.676 25.083 74.066 100.102 392.763

TCompression 0.689 2.069 4.882 8.179 31.427

CFS TDistribution 6.542 14.908 54.463 71.368 197.496

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 4.704 11.272 24.049 33.177 111.235

TCompression 4.832 17.964 95.188 147.834 530.887

Time:

ms.

1. The ED scheme outperforms the CFS scheme.
2. The CFS and the ED schemes outperform the SFC scheme since the conditions

TData > (5/8)TOperation and TData > (3/8)TOperation shown in Table 3 are satisfied,
respectively.

These results match Remarks 4 and 6. From Table 10, we can see that the experi-
mental results match the theoretical analysis in Table 3.
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Table 10 The data distribution and the data compression time of the SFC, the CFS, and the ED schemes
by using the column partition method

No. of Methods- Array sizes

processors costs
200 × 200 400 × 400 800 × 800 1000 × 1000 2000 × 2000

2 SFC TDistribution 11.824 44.206 176.368 289.902 905.458

TCompression 3.029 12.647 46.951 79.926 294.525

CFS TDistribution 4.525 13.911 53.488 76.046 267.728

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 1.633 4.650 16.614 25.571 100.002

TCompression 6.683 23.69 93.745 146.884 579.769

4 SFC TDistribution 12.208 45.155 179.714 292.231 909.207

TCompression 1.914 6.536 24.003 38.606 147.746

CFS TDistribution 4.734 14.787 61.085 84.134 289.102

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 1.741 6.182 18.880 27.742 103.691

TCompression 6.763 24.848 97.887 152.643 597.112

8 SFC TDistribution 13.265 46.216 183.403 296.529 917.343

TCompression 1.032 3.164 12.928 19.496 75.094

CFS TDistribution 5.937 15.512 72.387 97.710 311.543

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 2.546 6.924 19.884 29.783 106.973

TCompression 7.603 25.502 101.076 161.341 619.507

16 SFC TDistribution 14.727 47.457 188.987 301.999 925.376

TCompression 0.704 1.76 7.260 9.691 38.179

CFS TDistribution 6.983 17.173 77.401 109.220 334.324

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 3.427 8.593 22.724 32.433 110.170

TCompression 7.711 26.319 108.886 166.119 630.521

32 SFC TDistribution 16.057 48.399 196.915 310.999 935.492

TCompression 0.561 1.305 5.188 6.212 22.273

CFS TDistribution 8.373 18.970 83.835 126.788 346.495

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 4.729 10.022 25.148 35.301 116.483

TCompression 8.099 27.005 115.503 176.134 644.641

Time:

ms.

5.3 The 2D mesh partition without/with load-balancing method

Tables 11 and 12 show the data distribution and the data compression time of the
SFC, the CFS, and the ED schemes by using the 2D mesh partition without/with
load-balancing method. For the data distribution time, the data compression time,
and the overall performance, the experimental results match Remarks 1, 2, 3, 4, and
6, respectively. From Tables 11 and 12, we can see that the experimental results match
the theoretical analysis in Tables 5 and 6, respectively.
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Table 11 The data distribution and the data compression time of the SFC, the CFS, and the ED schemes
by using the 2D mesh partition without load-balancing method

No. of Methods- Array sizes

processors costs
120 × 120 240 × 240 480 × 480 960 × 960 1920 × 1920

2 × 2 SFC TDistribution 11.191 46.565 162.632 250.151 902.477

TCompression 0.633 2.789 8.898 32.556 136.174

CFS TDistribution 3.498 8.192 32.737 54.128 200.717

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 1.659 4.701 16.718 25.695 100.251

TCompression 4.926 19.861 75.475 123.114 517.207

3 × 3 SFC TDistribution 12.219 48.372 165.604 253.992 907.066

TCompression 0.430 1.392 4.208 15.480 61.559

CFS TDistribution 3.695 9.776 37.823 58.692 210.389

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 2.621 7.174 20.277 29.651 106.709

TCompression 5.157 20.102 76.651 129.383 527.959

4 × 4 SFC TDistribution 14.522 50.696 170.702 265.641 914.282

TCompression 0.339 0.998 2.750 9.792 36.127

CFS TDistribution 4.303 12.298 44.391 67.015 220.96

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 3.702 9.143 23.209 32.293 110.89

TCompression 5.096 20.367 74.619 133.49 532.396

5 × 5 SFC TDistribution 16.656 55.321 175.266 279.886 925.445

TCompression 0.267 0.737 1.738 7.577 24.984

CFS TDistribution 5.279 13.298 49.088 76.932 231.227

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 3.927 9.593 24.121 33.409 113.122

TCompression 5.667 23.859 80.426 141.447 561.653

6 × 6 SFC TDistribution 17.785 60.028 183.293 285.791 938.527

TCompression 0.184 0.588 1.228 5.376 18.973

CFS TDistribution 6.155 15.295 53.006 86.23 245.821

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 4.177 10.093 25.09 34.649 115.602

TCompression 6.249 25.414 82.027 150.997 570.591

Time:

ms.

6 Conclusions and future work

From the theoretical analysis and experimental results, for the SFC, the CFS, and the
ED schemes, we have the following conclusions.

Conclusion 1: For the data distribution phase, the data distribution time of the ED
scheme is less than that of the SFC and the CFS schemes. For most of sparse array
applications, the data distribution time of the CFS scheme is less than that of the SFC
scheme.
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Table 12 The data distribution and the data compression time of the SFC, the CFS, and the ED schemes
using the 2D mesh partition with load-balancing method

No. of Methods- Array sizes

processors costs
120 × 120 240 × 240 480 × 480 960 × 960 1920 × 1920

2 × 2 SFC TDistribution 11.905 48.543 167.326 259.691 905.85

TCompression 0.665 2.565 9.515 34.905 136.747

CFS TDistribution 3.538 9.82 35.644 55.252 204.104

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 1.659 4.701 16.718 25.695 100.251

TCompression 4.893 19.967 75.023 124.171 515.103

3 × 3 SFC TDistribution 13.219 50.372 169.201 263.424 913.466

TCompression 0.421 1.492 4.224 18.452 71.559

CFS TDistribution 4.195 10.245 37.422 58.724 210.189

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 2.621 7.174 20.277 29.854 106.109

TCompression 5.245 20.542 76.542 127.254 521.524

4 × 4 SFC TDistribution 14.522 52.696 173.702 266.785 918.182

TCompression 0.339 0.998 3.355 10.742 38.227

CFS TDistribution 5.803 12.298 42.391 63.154 220.962

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 3.702 9.143 23.209 32.293 110.895

TCompression 6.296 21.367 78.619 131.496 528.426

5 × 5 SFC TDistribution 16.656 55.321 177.226 273.247 925.524

TCompression 0.267 0.737 1.938 6.724 24.254

CFS TDistribution 6.279 14.098 47.088 70.722 229.254

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 3.927 9.593 24.100 33.733 113.724

TCompression 6.667 22.459 80.426 140.741 540.141

6 × 6 SFC TDistribution 18.285 60.028 183.293 285.124 938.247

TCompression 0.184 0.588 1.228 4.425 19.827

CFS TDistribution 7.155 15.895 52.006 79.752 240.841

TCompression 4.573 18.295 73.183 119.348 507.399

ED TDistribution 4.177 10.093 25.090 34.649 115.602

TCompression 7.425 23.852 85.722 148.424 551.541

Time:

ms.

Conclusion 2: For the data compression phase, the data compression time of the
SFC is less than that of the CFS scheme that is less than that of the ED scheme.

Conclusion 3: For the overall performance, the ED scheme outperforms the CFS
scheme. For most of cases, the CFS and the ED schemes outperform the SFC scheme.
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