
Toward HW/SW Integration: a Networked Embedded System Course in
Taiwan

Chi-Sheng Shih Shiao-Li Tsao Yeh-Ching Chung Shyh-In Hwang
Graduate Institute of Networking and

Multimedia Department of Computer Science Department of Computer Science Department of Computer Science and
Engineering

National Taiwan University National Chiao Tung University National Tsing Hua University Yuan Ze University

cshih@csie.ntu.edu.tw sltsao@csie.nctu.edu.tw ychung@cs.nthu.edu.tw shyhin@saturn.yzu.edu.tw

Abstract — Traditional Computer Science curricula focus on the training for logic reasoning and programming skills.

System integration is often not covered in computer science curricula. As the embedded platforms migrate from 8-bit

microprocessors to 32-bit microprocessors, the engineers require different skills to design modern embedded systems. The

Computer Science faculties at several universities in Taiwan have collaborated to design a new course to meet such needs. In

this course, we focus on the capability of integrating hardware and software in networked embedded systems. In particular,

the students learn the skills for embedded real-time programming, multi-thread programming, low-power network protocols,

security, and wireless networks protocol. In this article, we report the design rationale and current status of this course.

I. INTRODUCTION

The embedded industries in Taiwan and many other countries have been a booming industry

session in the last few years. Nevertheless, the needs of embedded system engineers greatly

increase. The industry have complained that neither computer science curricula nor electrical

engineering curricula provide sufficient skills for junior engineers to design networked embedded

systems.

Current computer science curricula focus on the training for logic reasoning and programming

skills. Example courses are algorithm design, programming languages, computer architecture,

micro-electronics, logic design, and object-oriented design. Such curricula train the students to

design the software systems to be more efficient and effective. In addition, the students have

learned how the software and hardware components in a computer interact with each other. For

instance, the students learn how the file system stores and retrieves data from the storage device on

36

behalf of the user programs and operating system kernel, and how the memory management unit in

operating system allocates new memory regions for the user programs and collects the unused

memory regions. However, it has been ignored to teach the Computer Science major students how a

computer-based system or an embedded system interacts with the real world. Specifically, how the

software program and hardware collaborate to interact with the users and environment.

Starting in 2004, we, the Computer Science faculties with several universities in Taiwan,

collaborate to design a new course to provide the skills for designing networked embedded systems.

The missing ingredient in current curricula is the connection between low level hardware design

and high level software development. Our students have the knowledge for VLSI design and high

performance computation. But, they are lack of the knowledge to put them together to accomplish

the mission. The purpose of this course is to teach the students how to design a system in which the

hardware and software collaborate to complete the mission. Furthermore, traditional embedded

programming skills focus on Assembly (or low-level) programming and device driver development

on single task systems. The trend of embedded platforms has been migrated from 8-bit

micro-processors (or micro-controllers) to computationally powerful micro-processors (or

micro-controllers), or special designed processors. Examples are Intel Xscale and TI OMAP

processors. Hence, multi-thread programming and multi-task programming are now suitable for

embedded systems. Such skills are required for the junior embedded engineers.

The course has been offered at more than four universities in Taiwan and received the requests

for the course materials from other countries and regions in Asia. In this paper, we report our

curriculum design and reflections from students and faculty. The target students for this class are

Computer Science major seniors and first-year graduate students. The students shall have taken the

fundamental courses for operating systems, computer architecture, C/C++ programming, and x86

37

Assembly programming. The course materials including lecture slides, notes, lab slides, and lab

handouts are available for reference at our course web site [1].

The remainder of the paper is organized as following. Section II presents the efforts at

different universities to promote embedded system education. Section III presents the curriculum

design including in-class lectures and hands-on laboratories. Section IV presents the reflections

from faculty and students, and the lessons we learned. Section V summarizes the paper.

II. BACKGROUND

Recent years have seen much discussion about the appropriate curricula for embedded systems

design. Many universities have offered courses related to embedded systems design [2]. The

courses can be categorized into three categories: hardware oriented, software oriented, and HW/SW

integration design.

Many of the embedded system design courses are hardware oriented and offered in Electrical

Engineering department. Most of them cover topics in circuit design for System on Chip (SoC),

FPGA, and VLSI aspects of embedded hardware design. The courses do not cover the software

development for embedded systems and are not suitable for Computer Science major students.

The embedded system courses offered in Computer Science department are often

software-oriented. Examples are the courses offered by Dr. Muppala[3], and Dr. Evan [4]. Dr.

Muppala’s course [3] focuses on programming on resource limited platform such as Windows CE

38

and µC/OS II. The students learn the characteristics for embedded real-time operating systems,

embedded software development process, and software development on such platforms. Dr.

Evans’s course [4] focuses on formal modeling methods, simulating systems, and system-level

design tools. Such courses train the students to migrate or redesign the applications designed for

desktop computers to embedded platforms such as the VOIP on smart phones. However, most of

them do not cover the materials for the integration of hardware and software components in the

systems. The integration needs to take into account the different characteristics of hardware and

software components so as to avoid the jitters and drifts, which are critical for embedded real-time

systems.

The third class of the embedded system courses focus on HW/SW integration design. Dr.

Caccamo’s course [5] focuses on sensor sampling, serial communication, and hands-on laboratory.

The courses provide the fundamental concepts for embedded software development, real-time

systems, and real-time scheduling. In this class, the students learn how to design embedded

real-time systems from software perspective and how the software and hardware components

collaborate. However, networking communication and power consumption, which are critical for

modern embedded systems, are not covered in the courses.

While designing the course materials, we identify the three major topics for this course: robust

real-time programming, wireless communication, and power-aware embedded system design. None

of courses in other universities cover the similar topics to train the students to design reliable

networked embedded systems.

III. CURRICULUM DESIGN

The course is designed with helping the students to design networked embedded systems in

mind. Hence, we design the class to have equal weights on in-class lectures and hands-on

39

laboratories. There are two alternatives to teach the materials: lab-based class and project-based

class. In lab-based classes, the students will have one two hours in-class lecture and one two hours

hands-on laboratory every week. In the lectures, the students learn the general concepts and

theoretic background for the networked embedded systems; in the hands-on labs, the students apply

the theories learned in the classroom to the pre-designed lab modules. In project-based classes, the

students can have three hour lectures in the classroom and choose from the pre-selected topics to

conduct the class project. Each student or each group of students may finish different projects in the

class.

The course materials including lectures and laboratories consist of four modules: embedded

real-time systems, networking, power management, and embedded real-time programming. The

four modules are closely related and one sample application is used to illustrate the lecture

materials. The sample application we used is a water see-saw, which is a simple real-time monitor

and control system [5]. Figure 1 illustrates the water see-saw. In a water see-saw, containers are

mounted at the two ends of a level beam: one is a water tank and the other keeps marble balls. The

micro-controller commands the pumps to pump in and drain out water from the water tank. In the

middle of the beam, a digital angle encoder, which is connected to a micro-controller, is installed to

read the level angle of the beam. By periodically sampling the angle, a real-time monitor and

control program executed on the micro-controller computes the amount of water to be pumped in or

drained out, and controls the pumps.

In the lab modules, the students are guided to complete another real-time embedded

application. The application we used is an Automatic Vehicle Navigation (AVN) System for

vehicles in Intelligent Transportation Systems (ITSs). In ITSs, we assume that there are no traffic

lights on the street. All the vehicles have to negotiate with each other or the traffic controller for the

40

right of way. On busy intersections, traffic controller pole will be installed to avoid frequently

pair-wise communication. The traffic controller is responsible for monitoring the traffic, arbitrating

the right of way, and clear the way for emergency vehicle.

The AVN system on each vehicle is responsible for driving the vehicle to the destination with

the following constraints:

1) Safety: Safety always has the highest priority for the vehicle. The navigation system must guide

the vehicle to avoid collision with other vehicles and keep the vehicle on the right lane.

2) Efficiency: the second priority of the AVN system is to guide the vehicle to the destination as

soon as possible. In this course, we are not concerned with route planning and, hence, all the

routes are pre-determined. However, the vehicle should pass the intersections as soon as possible

when it is safe to do so.

3) Low Power Consumption: The last constraint is the power management. The AVN system

adjusts its clock frequency (and processor voltage) when the first two constraints are met.

A. In-Class Lectures

At the beginning of the semester, we spend four hours to introduce real-time embedded

systems. Most students are familiar with the general purpose computer systems including

workstations, personal computers and high performance computation systems. Not all of them have

the correct or same definition of embedded systems and real-time systems although lots of students

use and own embedded systems. In this lecture, we focus on the difference between real-time

embedded systems and general purpose computer systems. Several example embedded systems are

used to formally define the characteristics and features for real-time embedded systems, e.g.,

anti-lock brake systems and avionic systems. At the end of the introduction, the students should be

41

able to tell if a system is an embedded system and whether a system is a non-real-time system, soft

real-time system, or a hard real-time system.

Embedded Real-Time Systems Module: The first module is embedded real-time systems. In this

module, we cover three topics: embedded real-time operating systems, introduction to real-time

scheduling algorithms, and embedded software development process.

The purpose of the first topic is not to detail the features of one or several embedded real-time

operating systems. The goals are to illustrate several popular system architectures for embedded

real-time operating systems and to focus on how to select the suitable operating systems for

different embedded real-time systems. In addition, the general concept of operating systems should

be covered on the introduction-level course for operating systems. Hence, we will not cover that

part in the course. We introduce three embedded real-time operating systems: eCos [6], [7], µC/OS

II [8], and RTLinux[9]/RTAI [10]. We select the three operating systems because they have

different architecture designs and different levels for real-time supports. Some of them such as

RTLinux and RTAI are designed to meet hard real-time constraints; some of them such as eCos and

µC/OS II are better suitable for limited resource embedded systems. We focus on the difference of

their performance metric, footprint, memory management supports, and real-time supports.

The second topic covers the two classes of real-time scheduling algorithms: dynamic priority

scheduling algorithms and static priority scheduling algorithms. The purpose of this topic is to

illustrate the concepts of priority-driven scheduling algorithms. Hence, we discuss the general

concepts of the two classes of algorithms and avoid teaching all different kind of real-time

scheduling algorithms at this point, which should be covered by another course. The third topic

covers the cross-development process of embedded software. The hands-on laboratory will guide

42

the student to write their ’Hello Embedded World’ program for the development board and upload

their program to the board in the lab.

Upon the completion of this module, we expect the students to learn the characteristics of

embedded real-time systems, general concepts of real-time scheduling algorithms, and how to

select a suitable operating system while designing an embedded real-time system. In addition, the

students now have the same mindsets for embedded real-time systems and are ready to dig into

other issues for designing networked embedded real-time systems.

Networking Module: The second module focuses on the various networking protocols including

serial communication and wireless networks for embedded systems. Specifically, it covers the serial

communication, personal area networks (PAN), wireless local area networks (WLAN), and wireless

wild area networks (WAN). For serial communication, we cover I2C, CAN bus architecture [11],

and universal asynchronous receiver and transmitter (UART). In particular, we focus on UART

because serial communication is still the most reliable and popular communication protocols for

embedded systems and the students will use RS-232 serial communication in the laboratory. For

wireless network protocols, the course materials cover Personal Area Network (PAN) and Wireless

Local Area Network (WLAN) such as IEEE 802.11, IEEE 802.16, HiperLAN, Zigbee, Bluetooth,

and HomeRF.

In this module, several networking protocols are covered. Note that the purpose of this module

is not to have a sound knowledge for the network protocols. We focus on the timing and

performance issues for the communication protocols. For instance, the students will learn the

coding policy for serial communication, which policies are clock friendly, how to write a low level

program to receive and send data over serial communication protocols. We spend several hours on

serial communication because, thus far, serial communication is the most reliable communication

43

protocol for embedded systems and has low cost. In addition, several modern communication

protocols such as USB are designed based on the serial communication protocol. While illustrating

the modern wireless communication protocols, we will focus on the power consumption and their

propagation delay. At the end of this module, we expect the students to know how to select a

suitable communication protocol when power consumption and timing issue play important roles in

the design specification.

Power Management: The third module focuses on the power consumption issues for networked

embedded systems. Specifically, the course materials cover low-power embedded processor design,

power-aware scheduling, and low power kernel design. The materials also cover dynamic voltage

scheduling for modern microprocessors and the ARM instructions to adjust the voltage level for

ARM-family processors.

Embedded Real-time Programming: The fourth module covers most of the programming

materials in the class. In this module, a water see-saw, which is a real-time monitor and control

application, is used to illustrate all the theories and programming practices in this module.

The module starts with correcting a simple but bogus monitor and control program. A sample

pseudo-code, listed in Algorithm 1, is shown to the students to illustrate how to monitor and control,

using a simple loop. To most of the CS-major students, the pseudo-code seems to work well to

control the water see-saw. However, several lines in the example may cause jitters and drifts during

the execution and lead to unpredictable performance. For instance, when the program is preempted

during its execution at Line 1 and 5, it may cause drift, and jitter may occur at Line 9. In this

module, the students learn how to correct the program so there is no jitter and drift for the program.

44

The first part of this module illustrates how to write a real-time program to control an external

device and periodically sample the sensor data. We start with the POSIX-RT ([12], [13], [14])

standard as the fundamental skills such as timer signals, signal handlers, and data acquisition, to

program periodic real-time tasks. In particular, we focus on the reentrant functions for signal

handlers. Although the students learn how to write signal handlers in other courses, most of them

are not aware that there could be multiple instances executing at the same time.

The second part of this module is related to real-time scheduling theories and resource sharing

in embedded real-time systems. This part addresses how to conduct the schedulability analysis

during the design time. The course materials cover General Rate Monotonic Scheduling (GRMS)

algorithm, schedulability analysis including utilization bound approach and exact analysis,

pre-period deadlines, high priority I/O, and interrupts in GRMS. The learning path starts from

assuming that all the tasks in the systems are periodic and independent and ends at the case that the

tasks may share resources such as I/O and memory. The water see-saw example is again used to

illustrate the materials.

The last topic is the multi-thread programming. The simple loop program shown in Algorithm

45

1 is revised to use timers in the first part, and is further revised to a multi-thread program. In the

last version, one thread is designed to conduct the computation and the other is designed to read the

sensor data and output the control command. The last version provides a jitter-free and drift-free

program for monitoring and control. In addition, the shared memory and message box mechanism

for inter-process communication are illustrated in this part. The covered topics of the in-class

lectures are listed in Table I.

B. Hands-on Laboratory

The hands-on laboratories are as important as the in-class lectures in this course. We plan an

eighteen weeks hands-on laboratory program to complete an AVN system. In every week, the

students complete a part of the AVN systems and demo their projects at the end of the semester.

Figure 2 shows the scenario for the lab project. On the streets, there are two kinds of intersection:

one without traffic controller and one with traffic controller. When there is not much traffic on the

intersection, no traffic controller is installed and the AVN systems negotiate with each other via ad

hoc wireless network. The traffic controller, which arbitrates the right of way for all the nearby

vehicles, is installed on busy intersections to reduce communication overhead.

46

Lab Setting: Each set of lab equipments consist of (1) Palm Pilot Robot Kit (PPRK) [15], (2) Intel

Xscale Development board, (3) power supply, (4) digital data acquisition card, and (5) an

Intel-based host computer. PPRK has a unique holonomic drive system and a roomy deck to mount

PDAs or single board computers. It has a BrainStem module for general purpose use whether

running code stand-alone, connected to a host computer, or enabling reflexive actions. The

BrainStem module has one 40 MHz RISC processor and RS-232 serial port. The PPRK can be

47

controlled by console application or through C, C++, and JAVA. We select PPRK as the target

system for several reasons. First of all, the programming interface is easy to deploy. The

development kit provides C APIs to control the motors and read the data from the sensors. The

three infrared sensors mounted on the robot can sense the distance between the robot and other

objects. It allows the robot to detect nearby robot or the street curb. Second, PPRK moves at low

speed, which reduces the chances of breaking the robots. Legos are used to construct the street

curb.

PPRK is designed to work with Palm-based and Windows-CE based PDA. The PDA acts as

the brain of the robot. In our lab setting, rather than PDAs, we use Intel Xscale development board

as the brain. The development board has an Intel PXA-255 400 MHz microprocessor, IEEE 802.11

adaptor, comprehensive I/O interfaces, VGA Controller (Tvia 5202G graphic chip), resolution up to

XGA (1024 x 768) is supported along with 24-bit graphics performance. Embedded Linux is

installed on the platform. The board connects to the PPRK via RS-232. The host computer is an

Intel-based PC on which Fedora Core Linux is installed.

Lab Modules: The lab modules are closely related to the in-class lectures. It consists of the

modules for embedded real-time programming, embedded network programming, and low power

48

network protocol. In each lab, the students are given an instruction sheet and should submit their

lab reports at the end of the lab. The students can practice the lab individually or in a group for up

to four students.

Table II lists the lab modules. The first six labs are designed for the students to program a

real-time monitor and control system. The students learn how to read the sensor data and convert

the data into meaningful information. They also learn how to control the motors to move the robot.

Thus far, the students can now program the robot to move along the designated route and,

according to certain rules, to avoid bumping into other objects. For instance, in Lab 6, the students

program their robots to go after but not to bump into TA’s robot, which is controlled by TA from the

console and may move toward any direction at different speed.

The second part is related to the power management on embedded processors. In Lab 7, the

students are guided to learn how to change the voltage level on the voltage scaling processors and

measure the change the voltage on the processor. The third part of the lab modules is related to

wireless communication, which allows the robot to communicate with each other on the

intersection and to negotiate with the traffic controller if exists. When the robot is close to an

49

intersection, it starts its communication program. The students practice the lab for 802.11

infrastructure mode and ad hoc mode.

In the last part, the students design the yield protocols and prepare for the final demo. In the

final demo, the students’ robot starts at the start line, follows a designated route, and stops at the

destination line. The scenario is shown in Figure 3(a). On the route, there are two intersections: one

of them has a traffic controller and the other one does not. When traffic controller is presented, the

robot has to obey traffic controller’s commands. When there is no traffic controller, higher priority

robot such as emergency vehicle has the right of way. The picture shown in Figure 3(b) was taken

during the final demo.

IV. REFLECTION

The course has been taught in four universities in Taiwan since 2005. Feedbacks are collected

to revise the materials. Among the four universities two of them use the lab-based approach and the

other two used the project-based approach. More than 80% of the registered students are CS-major

graduate and senior students. The others are EE-major or other engineering major graduate

students.

Prof. Shyh-In Hwang with Yuan Ze University and Prof. Chi-Sheng Shih with National Taiwan

University took the lab-based approach. In this case, parts of the advanced materials in wireless

network unit and security unit are not taught due to the short of teaching hours1. Fortunately, the

students can learn those advanced topics from other courses if they are interested in. Students’

feedbacks show that the pre-designed and integrated labs are very success. First of all, the students

work in a group, allowing them to discuss. Second, the TA can help the students to solve the

1 The school system in Taiwan is similar to the semester system in United States. There are twenty weeks including
mid-term and final weeks in each semester. Three lectures are required for each unit of graduate-level class. Hence,
there are 36 hours for lecture and 36 hours for lab for lab-based approach. On the other hand, there are 54 hours for

50

problem they had during the lab hours. Last, the final lab project allowed them a chance to create

and program the embedded systems for more advanced functions. However, 10% to 20% of the

students did complain the long lab hours due to debugging and unstable XScale development board.

Some of the students did spend more than three to four hours to complete a lab.

Although the students do no have much time to create their own projects in lab-based

approach, some of the students do take the lab equipments for their projects in the succeeding

semesters. The students in Yuan-Ze University completed a project and won the Gold prize for

Embedded Software Competition 2006 in Taiwan.

Prof. Yeh-Ching Chung with National Tsing Hua University and Prof. Shiao-Li Tsao with

National Chiao Tung University (NCTU) took the project-based approach. In this case, most of the

designed materials can be covered and the student load is heavier, comparing to the lab-based

approach. Prof. Tsao adopted the materials to teach networked embedded system design in the

department of computer science. Since there are already courses which cover wireless network

protocols, embedded operating system, and real-time system in NCTU, the revised course focuses

on the knowledge, technologies, and hands-on practices for system-level design and system

integration. The syllabus tailoring from the course materials developed by this project becomes.

• Introduction to Networked Embedded System (Lab 1)
• Basics of Real-Time Control (Lab 2)
• Embedded CPU and Embedded Hardware Design
• Bootloader and BSP Design (Lab 3)
• Introduction to Embedded Operating System
• Device Drivers, specifically on network interface driver and protocols stack design (Lab 4)
• Integration, Testing, Verification and Validation Technologies for a Networked Embedded System. (Term

Project)
Different from the lab-based approach, only four hands-on labs among the total 11 lab

modules developed by the project are adopted in order to reduce the loads for students. The four

labs are:

lecture for project-based approach.

51

• Understand and practices on the Intel PXA-255-based embedded system board
• Control of PPRK robot car
• A simple bootloader development
• Porting camera and WLAN interface drivers and protocol stacks

The final project integrates the above four hands-on labs together to develop a robot car

navigation system which can be controlled from a remote console over wireless networks. Students

(two persons per team) are requested to develop their own robot car navigation system together

with a remote controller which is running on the remote PC. Students’ robot car navigation systems

are placed in room with a maze and the students controlling the car are in the room next to the room

with the maze. Students have to use the information such as distances to walls which are sampled

by infrared sensors, and live camera images to control the car. These distance and image

information are transferred over the WLAN in real-time. The students are very interested in the

hands-on labs and final projects. It is believe that a step-by-step arrangement for the hands-on labs

and goal-driven final project greatly help the students to concentrate on their homework and

practices. This philosophy for designing hands-on labs is especially helpful for teaching an

embedded system course.

One important lesson we have learned was that the TAs played an extremely important role to

the success of this course. In this course, the hands-on lab and in-class lectures are equally

important. To guide the students to practice the lab, the TAs should be well-trained in embedded

systems design. An experienced TA can answer most of the questions and assist the students to

debug their designs in the lab. Otherwise, the students will be very frustrated and may drop the

class.

V. SUMMARY

Traditional computer science curricula are concerned with the knowledge and training for

software development; traditional electrical engineering curricula are concerned with the hardware

52

design. To design embedded systems, it requires the skills to integrate software and hardware

components in the system to accomplish the work. We design a new course to be offered in several

universities in Taiwan to provide such trainings. The course provides a complete training for

students to understand the design of a networked embedded system from a system point of view. Its

materials cover several topics such as real-time systems, embedded operating systems, device

driver and wireless protocols which might have some overlaps with other existing courses. The

course also provides a tailoring guideline for lecturers who want to use the course materials in their

universities. As the complexity of embedded system continues to increase, we will continue to

review the course materials. For instance, multi-thread real-time programming and multi-thread

debugging should be added in the near future to meet the evolving needs for embedded system

design.

ACKNOWLEDGEMENT

We would like to thank for the generous financial supports from the Ministry of Education at

Taiwan and Microsoft Research Asia. Parts of the course materials are inspired by and collected

from Prof. Lui Sha’s classes at the University of Illinois. We thank for his generous supports. We

are also extremely grateful to the graduate students for previewing the course materials, providing

valuable comments, and practicing the lab materials before the course was offered. In particular,

they are Yi-An Chen, Chen-Min Lien, and Chuan-Yue Yang at National Taiwan University. In

addition, Mr. E-Cheng Cheng, Jin Chang Chou, Pang-Hsiang Lo and Miss Ya-Lian Cheng at

National Chiao Tung University in Taiwan also contribute their valuable time to this project.

REFERENCES

[1] “Embedded software for networked soc systems,” at http://sslab. cs.nthu.edu.tw/course/ESW94NSOC/, July 2006.
[2] A. Sangiovanni-Vincentelli and Alessandro Pinto, “Embedded system education: a new paradigm for engineering schools?” SIGBED Rev., vol. 2,

no. 4, pp. 5–14, 2005.

53

http://sslab.cs.nthu.edu.tw/course/ESW94NSOC/
http://sslab.cs.nthu.edu.tw/course/ESW94NSOC/

[3] J. Muppala, “Experience with an embedded systems software course,” in Proceedings of the 2005 Workshop on Embedded Systems Education,
September 22 2005.

[4] B. L. Evans, “EE382C-9 embedded software systems,” at http://www.ece.utexas.edu/~bevans/courses/ee382c/, last accessed at August 2006.
[5] M. Caccamo, “CS431 embedded systems architecture and software,” at http://www.cs.uiuc.edu/graduate/courses.php?course=cs431, last

accessed at August 2006.
[6] “eCos 2.0 documentation,” at http://ecos.sourceware.org/docs-2. 0/, July 2006.
[7] Embedded Software Development with eCos, 1st ed., ser. Bruce Perens’ Open Source Series. Prentice Hall, November 2002.
[8] MicroC/OS-II: The Real Time Kernel, 2nd ed. CMP Books, June 2002.
[9] V.Yodaiken, “The RTLinux manifesto,” in Proc. of The 5th Linux Expo, Raleigh, NC, March 1999.
[10] P. Mantegazza, E. L. Dozio, and S. Papacharalambous, “RTAI: Real time application interface,” Linux J., vol. 2000, no. 72es, 2000.
[11] O. M. Group, “CAN specification version 2.0,” at http://www. omg.org/, July 2003.
[12] IEEE/ANSI Std 1003.1: Information Technology-(POSIX)-Part 1: System Application: Program Interface (API) [C Language], includes

(1003.1a, 1003.1b, and 1003.1c), 1996.
[13] 1003.1d Information Technology-(POSIX)-Part 1: System Application Program Interface (API)-Amendment: Additional Real-time Extensions,

1999.
[14] 1003.1j-2000: Information Technology-(POSIX)-Advanced Real-time Extensions, 1999.
[15] “Palm pilot robot project,” at http://www.cs.cmu.edu/∼ pprk, last accessed at July 2006.

54

http://www.ece.utexas.edu/%7Ebevans/courses/ee382c/
http://www.ece.utexas.edu/%7Ebevans/courses/ee382c/
http://www.cs.uiuc.edu/graduate/courses.php?course=cs431
http://www.cs.uiuc.edu/graduate/courses.php?course=cs431
http://www.cs.uiuc.edu/graduate/courses.php?course=cs431
http://ecos.sourceware.org/docs-2.0/
http://ecos.sourceware.org/docs-2.0/
http://www.omg.org/
http://www.omg.org/
http://www.cs.cmu.edu/%7Epprk

