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Abstract

In this paper, we present a novel method to meet the time-critical requirement in rendering time-varying volume data.

In time-critical rendering, the rendering is demanded to be completed in a given time budget. Our approach is modified

from the differential volume rendering, which updates only the changed pixels instead of all pixels on the image plane.

The level of modification (LOM) is used to measure the degree of modification of the changed data between consecutive

time steps. To meet the time-critical requirement, the presented method chooses the most important changed pixels to

be updated. The experimental results show that our method is very good in both controlling the rendering time to meet

the time constraint and preserving the important features of a data set within a limited time budget.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Volume rendering includes a variety of widely used

techniques to explore volume data in a variety of

applications [1–3]. With this technique, a 3D volume

data set is projected onto a 2D image plane to reveal the

internal structure of the data set. Due to the large size of

data, rendering volume data is usually a time-consuming

task. In spite of the heavy burden, the rendering time for

an image frame is sometimes constrained within a time

budget, for example, in interactive or real-time render-

ing. The time-critical rendering usually has to trade

image quality for rendering speed.

A time-varying volume data (TVVD) consists of a

sequence of volume data sets in consecutive time steps.

Rendering TVVD yields an animation presenting the

evolution of the data set under investigation. When

TVVD is rendered in batch, generating an image of good

quality is the most concerned issue. However, when
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TVVD is rendered interactively, a constant frame rate,

or a constrained rendering time for each time step, is

more important.

Although a lot of works on time-critical rendering and

TVVD have been presented previously, the research on

time-critical TVVD rendering is scarce. In this paper, we

focus on the time-critical rendering for TVVD. The goal

is to maximize the image quality under the constraint of

a given time budget. Based on the existing differential

volume rendering method (DVRM) for TVVD, we

develop a time-critical DVRM (TCDVRM).

Several TVVD rendering methods use the data

coherency of TVVD to improve the rendering perfor-

mance. For such approaches, coherent data inside

TVVD are retained and re-used. On the other hand,

only the dynamic data, or the changed fraction of data,

are processed. Shen et al [4] proposed the DVRM, which

determines the changed pixels due to changed voxels and

updates only the changed pixels in consecutive time

steps. Anagnostou et al. [5] applied the similar concept

with the shear warp factorization in rendering 4D

volume data. In Ref. [6], an enhanced DVRM, the

two-level DVRM (TLDVRM), was presented to accel-

erate the determination of changed pixels with the aid of

the second-order difference. Hierarchical data structure

such as octree is also widely used to manipulate the
d.
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coherency in TVVD [7,8]. In Ref. [9], a type of

hierarchical data structure, the time-space partitioning

(TSP) tree, was used to utilize both the spatial and the

temporal coherency effectively. This method allows

flexible degrading of image quality for faster rendering

speed. However, the reduction in rendering time is not

predictable. Therefore, the method cannot control

the rendering time to meet the constraint of time

budget. Other approaches for TVVD rendering include

parallel processing [10], hardware assistance [1], and

transformation [11].

The level-of-detail (LOD) selection is a popular

approach to render polygon meshes [12,13]. The LOD

selection is also applied to render volume data [14,15].

Trading image quality to gain rendering speed is

possible with a variety of LOD selection algorithms. In

such approaches, the original data set is transformed

into a set of data sets of different resolutions, where a

coarser resolution loses more details and has the lower

LOD. When the rendering is going on, an appropriate

resolution, or an LOD, is selected according to some

specific criteria. In spite of their varieties, these works

share a common concept in degrading rendering quality

to accelerate rendering speed. Other approaches on

time-critical volume rendering include inter-frame feed-

back [16] and simplification on both image and object

spaces [17].

Although the information of LOD is useful for static

volume data, it is not suitable for coherence-based

methods. The reason is that the LOD is applied to the

volume data itself rather than the changed fraction,

which should be handled by a coherence-based method.

Therefore, we use the level of modification (LOM) to

represent the degree of modification of changed data

instead of using the LOD to indicate the resolution of

volume data. Changed data with the higher LOM are

more important than those with the lower LOM.

The developed time-critical rendering method for

TVVD is modified from DVRM by adopting a control

scheme that uses the LOM of changed data. Experi-

mental results show that our method can effectively

control the rendering time to meet the time-critical

requirement and produce good animations that reveal

the important dynamic features of data.

The rest of this paper is organized as follows. In

Section 2, the background of DVRM is reviewed.

In Section 3, the presented method is described in detail.

In Section 4, the experimental results of the presented

method are given. Finally, conclusions are presented in

Section 5.
2. Background

Ray casting is widely used in volume rendering to

generate an image of good quality. In the method, a ray
is fired for each pixel to penetrate the volume data. At

constant sampling interval, sampling points along the

ray are given their interpolated gradients and sample

values from the neighboring voxels. Given transfer

functions, the sample values and gradients at sampling

points are mapped to color and opacity values. Finally,

the color and opacity of sampling points along the ray

are accumulated to the pixel color [18]. DVRM renders

TVVD based on the ray casting method. DVRM selects

the changed pixels whose values are changed in

consecutive time steps. Since each ray is processed

independently from one another, only the changed pixels

are updated while the rest are left unchanged. DVRM

consists of two phases: the static phase and the dynamic

phase. In the static phase, the changed voxels between

consecutive time steps are extracted. The positions and

values of changed voxels are stored in differential files.

In the dynamic phase, the data are rendered. During the

dynamic phase, the rendering parameters, such as view

direction and transfer functions, are fixed. The first

image is rendered in a regular method. For each of the

following time steps, the differential files are loaded to

update the volume data. The positions of changed pixels

are then determined. At the end of the time step,

changed pixels are updated by firing new rays. If only

parts of pixels are changed, the time of ray casting is

reduced. However, the reduction of ray casting may be

compensated with the overhead of the determination of

changed pixels. When the number of changed voxels is

large, DVRM may not be efficient.

In a previous work [6], we presented the TLDVRM to

accelerate the determination of changed pixels. Some of

the concepts used in developing TLDVRM are useful

for the time-critical TVVD rendering. TLDVRM filters

out the overlapped changed voxels and extracts the

difference of changed voxel positions between consecu-

tive differential files. The extracted difference informa-

tion is referred to the second-order difference (SOD).

Using SOD, the redundant computation of determining

changed pixels due to overlapped changed voxels can be

omitted. As a result, TLDVRM can determine the

changed pixel positions more efficiently. For the

convenience of presenting our approach, Definitions 1

and 2 are given below. The notations used in this section

are listed as follows.
Vt
 the volume data in time step t
(x, y, z)
 a voxel
(x, y, z, dt)
 a changed voxel (x, y, z) and its voxel
value dt in time step t
DFt
 the differential file consisting of
(x, y, z, dt), changed voxels and their voxel
values, in time step t
P(DFt)
 the set of changed voxels in DFt
(r, s)
 a pixel
B
 the size of a disk I/O sector
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the time to read a sector
Cg
 the time to compute the gradient of a

voxel
Cp
 the time spent for a changed voxel in the
determination of changed pixels
Cc
 the time to process a sampling point
CSt
 the sum of the numbers of sampling

points
of all of the changed pixels in time step t
Definition 1. A voxel (x, y, z) is said to influence a pixel

(r, s) if the pixel value at (r, s) needs to be updated due to

the changed voxel value at (x, y, z). We denote J(x, y, z)

as the set of pixels influenced by the voxel (x, y, z).

J(x, y, z) depends on parameters such as the view

direction and sampling method. For example, when

discrete rays and zero-order interpolation are used, a

changed voxel is projected onto the image plane and J(x,

y, z) includes the four pixels surrounding the projected

point. When continuous rays and trilinear interpolation

are used, the interpolation space that encompasses a

changed voxel is projected onto the image plane and J(x,

y, z) includes the pixels located inside the projected

region.

Definition 2. The number of changed voxels that

influence pixel (r, s) in time step t is defined as

It(r,s)=|W|, where W = {(x, y, z)| (r, s) A J(x, y, z)

and (x, y, z) A P(DFt)}. We called It(r, s) the influence

number of pixel (r, s) in time step t.

If the influence number of each pixel is known, a pixel

whose influence number is greater than zero is classified

as a changed pixel. Influence numbers either can be

calculated directly by checking all the changed voxels or

can be determined by checking SOD. Fig. 1(a) illustrates

that how a changed pixel’s influence number is

determined and Fig. 1(b) explains the process of
oxels
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determining changed pixels with influence numbers.

Influence numbers imply that how seriously pixels are

changed. Actually, a lot of changed pixels have very

small influence numbers. That is, most of the voxels

along the ray paths of these changed pixels are not

changed, and only a few of them are changed.

Brief discussion of DVRM is given below because the

presented time-critical rendering method for TVVD is

based primarily on DVRM. Each rendering process for

a time step in DVRM is a pipeline, which composes of

several stages: the stages to load files to update volume

data, to compute the gradients, to determine the

changed pixels, and to do ray casting. The rendering

time of DVRM in time step t is therefore the sum of the

processing time of all stages and is expressed by the

following equation:

TtðDVRMÞ ¼J4jPðDFtÞj=Bn� Cf þ jVtj � Cg

þ jPðDFtÞ � Cp þ CSt � Cc; ð1Þ

where DFt is the differential file in time step t; |P(DFt)| is

the number of changed voxels in DFt; B is the size of a

disk I/O sector; Cf is the time to read a sector; |Vt| is the

number of voxels in time step t; Cg is the time to

compute the gradient of a voxel; Cp is the time spent for

a changed voxel in the determination of changed pixels;

CSt is the sum of the numbers of sampling points of all

of the changed pixels; and Cc is the time to process a

sampling point.

Eq. (1) predicts the rendering time of DVRM if all the

parameters in the equation are known. Unfortunately,

Cf, Cg, Cp, and Cc are machine and run time dependent

and they are very difficult to be modeled before

rendering. Fortunately, we are dealing with TVVD that

spans perhaps hundred of time steps. We can measure

actual Cf, Cg, Cp, and Cc in the first few time steps. For

the rest of time steps, we can use these known Cf, Cg, Cp,

and Cc. As a result, the rendering time of DVRM can be

successfully predicted based on Eq. (1).
3. Time-critical DVRM

The presented method, TCDVRM, is modified from

DVRM to fulfill the time-critical requirement. The

overview of the proposed method is given below. The

method consists of two phases:
(a)
 The static phase: This phase is the same as that

of DVRM. Differential files are obtained in this

phase.
(b)
 The dynamic phase: Rendering takes place in this

phase. In each time step of this phase, the following

jobs are performed sequentially:
(1)
 Initialization: The necessary files are read;

volume data are updated; and gradients are

calculated.
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(2)
 Determination of a set of changed pixels: The set

includes as many ‘‘important’’ changed pixels

as possible so that the estimated time to render

these changed pixels will not exceed the time

budget.
(3)
 Ray casting for the changed pixels: For each

changed pixel in the set, a ray is cast.
The major distinction between our method and

DVRM is that our method does not determine all

changed pixels. The presented method gives up some of

changed pixels to meet the restriction of time budget.

The limited time should be spent for the most important

changed pixels. In addition, the overhead of the

determination of changed pixels should be reduced to

the extreme. Several things are helpful in developing the

method. First, the rendering time of DVRM can be

estimated. This helps to determine the amount of

rendering in advance. Second, the influence numbers

of changed pixels are not uniform. This helps to give

high priorities to select important changed pixels with

large influence numbers. These concepts are integrated

in the determination of changed pixels with large

influence numbers. In the following, we will describe

the algorithm of determining changed pixels with

large influence numbers. Additional notations used in

this section are listed below.
SV
 the number of sampled changed voxels
PSt(r, s)
 the probability that (r, s) will be selected
during the random sampling
D(r, s)
 the number of sampled voxels that influence
pixel (r, s) during the sampling process
S(r, s)
 the number of sampling points along the ray

of
(r, s)
TS
 the total number of sampling points to be

cast
TB
 the time budget for a time step
3.1. Level of modification

We use the LOM of changed data instead of the LOD

of all volume data to control the rendering time. The

LOD is a suitable index to control the rendering time of

a single static volume data set. However, the most

distinguishing characteristic of TVVD in contrast with a

single static volume data set is the dynamic property.

The difference between volume data in consecutive time

steps is very important because it reveals the evolution

of the data set. Therefore, we use the LOM to represent

the degree of the change of a dataset or an image.

The LOM may be in a variety of forms to express the

dynamic property. For example, the amount of incre-

ment (or decrement) of a voxel value in a time step can
be a kind of LOM. A changed voxel with a large amount

of increment (or decrement) is changed more seriously

than a changed voxel with a small amount of increment

(or decrement). In other word, the former changed voxel

is more important than the latter one.

In this paper, we use the influence number of a

changed pixel as a metric of LOM to control the

rendering time. It is noted that pixels with great

variations between consecutive time steps are usually

corresponding to pixels with larger influence numbers.

That is, a changed pixel with a larger influence number is

more important than a changed pixel with a smaller

influence number. If the time budget does not allow all

changed pixels to be updated, a changed pixel with the

larger influence number will be selected in a higher

priority. In a simplified example denoted as Example 1,

assume that each changed voxel influences only one

changed pixel. There are totally 161 changed voxels; 100

of them influence changed pixel (r1, s1); 50 of them

influence changed pixel (r2, s2); 10 of them influence

changed pixel (r3, s3); and one of them influences (r4,

s4). The influence numbers It(r1, s1), It(r2, s2), It(r3, s3),

and It(r4, s4) are 100, 50, 10, and 1, respectively. If the

time budget allows only one changed pixel to be

updated, (r1, s1) is the best candidate. If the time

budget allows two changed pixels to be updated, (r2, s2)

is the second candidate beside (r1, s1). When the

time budget allows all changed pixels to be updated,

(r3, s3) and (r4, s4) are the third and last candidates,

respectively.

3.2. Determination of changed pixels

We use a novel approach to determine a set of the

most important changed pixels with larger influence

numbers without calculating their influence numbers in

advance. This method samples changed voxels ran-

domly. The changed pixels that are influenced by the

sampled voxels are recorded and the time of ray casting

for these changed pixels is estimated. The method stops

sampling and begins ray casting when the estimated time

of ray casting reaches the time budget. Although

influence numbers are not calculated at all, the random

sampling process will inherently select a changed pixel

with the larger influence number in a higher probability.

Assume that the number of sampled changed voxels

is SV. For a changed pixel (r, s) with influence number

It(r, s) in time step t, the probability that (r, s) will be

selected using random sampling is denoted as PSt(r, s).

PSt(r, s) can be determined as follows.

(1) When SV+It(r, s) is not greater than |P(DFt)|: The

number of combinations to select SV changed voxels

from |P(DFt)| changed voxels is C(|P(DFt)|,SV).

C(|P(DFt)|�It(r,s),SV) is the number of combinations

to select SV changed voxels from |P(DFt)| changed

voxels excluding the ones that influence pixel (r, s). The
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probability PSt(r, s) is expressed as follows:

PStðr; sÞ ¼ 1�
CðjPðDFtÞj � Itðr; sÞ;SV Þ

CðjPðDFtÞj;SV Þ
;

SV þ Itðr; sÞjPðDFtÞj; ð2Þ

where C(|P(DFt)|�It(r,s),SV)/C(|P(DFt)|,SV) is the

probability that (r, s) is not selected. From Eq. (2), we

can conclude that a larger It(r, s) will result in the larger

PSt(r, s).

(2) When SV+It(r, s) is greater than |P(DFt)|: In this

condition, it is impossible to avoid selecting at least one

of the It(r, s) changed voxels that influence (r, s).

Therefore, PSt(r, s) equals 1.

In the simplified example discussed in the previous

section, |P(DFt)| is 161. The probabilities that (r1, s1),

(r2, s2), (r3, s3), and (r4, s4) will be selected in the first 10

sampling processes are listed in Table 1. From Table 1,

we can find that the most important changed pixels will

be selected with very high probability using very few

sampled changed voxels. By bypassing the calculation of

influence numbers and the consequent operations such

as sorting and filtering, the method is quite efficient in

determining the most important changed pixels with

large influence numbers. As more and more changed

voxels are sampled, the less important changed pixels

will also be selected. Although not presented in Table 1,

all changed pixels will be selected definitely when SV is

finally large enough.

3.3. Rendering time estimation

We now describe the condition to stop sampling

changed voxels so that the time-critical requirement can

be satisfied. As more and more changed voxels are

sampled, more and more changed pixels will be selected.

In order to estimate the time required to update an
Table 1

The probabilities that changed pixels will be selected in

Example 1

It(r,s) (r1, s1) (r2, s2) (r3, s3) (r4, s4)

PSt(r,s) 100 50 10 1

SV

1 0.6211 0.3106 0.0621 0.0062

2 0.8579 0.5260 0.1207 0.0124

3 0.9473 0.6751 0.1760 0.0186

4 0.9806 0.7779 0.2282 0.0248

5 0.9930 0.8486 0.2773 0.0311

6 0.9975 0.8971 0.3237 0.0373

7 0.9991 0.9303 0.3673 0.0435

8 0.9997 0.9529 0.4084 0.0497

9 0.9999 0.9683 0.4471 0.0559

10 0.9999 0.9787 0.4834 0.0621
image by ray casting, the number of sampling points

being cast for these changed pixels must be known. Let

SV be the number of sampled changed voxels, D(r, s) be

the number of sampled voxels that influence pixel (r, s)

during the sampling process, S(r, s) be the number of

sampling points along the ray of (r, s), and TS be the

total number of sampling points to be cast. As

illustrated in Fig. 2, S(r, s) is not uniform. TS is

calculated during the sampling process by accumulating

the S(r, s) of (r, s) whose D(r, s) equals 1 (when (r, s) is

determined at the first time). At each moment when a

changed voxel is sampled, SV and TS will increase. If

the sampling is stopped and the ray casting is started, the

rendering time of this time step, Tt(TCDVRM), may be

calculated using the following equations, which are

modified from Eq. (1).

Telp ¼ J4jPðDFtÞj=Bn� Cf þ jVtj � Cg þ SV � Cp; ð3Þ

TtðTCDVRMÞ ¼ Telp þ TS � Cc: ð4Þ

In Eq. (3), Telp is the time that has elapsed at the

moment when the rendering time is to be estimated. In

Eq. (4), TS � Cc is the time that will be taken to do ray

casting. As more and more changed voxels are sampled,

both Telp and TS � Cc increase and hence the estimated

Tt(TCDVRM) increases. Once the estimated

Tt(TCDVRM) is very close to the time budget, the

sampling of changed voxel is stopped and the ray casting

is started.

In most cases, SV is much smaller than |P(DFt)| and

D(r, s) is much smaller than It(r, s). From Fig. 3, we can

see that only a small fraction of randomly distributed

changed voxels is enough to determine a great part of

changed pixels. A small SV�Cp implies that the time to

determine changed pixels is just a small ratio of a fixed

time budget. Therefore, a great part of the time is spent

in ray casting, which is desired in producing an image.
Fig. 2. The numbers of sampling points for pixels depend on

the data set and view direction.
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Only in the rare case of |P(DFt)| being very small or the

time budget being long enough, all of the changed voxels

are sampled before estimated Tt(TCDVRM) is greater

than the time budget. In such a case, SV and D(r, s)

equal |P(DFt)| and It(r, s), respectively.

3.4. Algorithm of TCDVRM

The algorithm of TCDVRM is given as follows. The

term Cc is determined in the first time step and is

calibrated (line 19) continuously in the rest of time steps.

Calibrating Cc may be avoided if the environment is very

steady. It is noted here that Telp, instead of Cf, Cg, and

Cp, is measured in the estimation of rendering time for

TCDVRM.

Algorithm. TCDVRM

/� Static phase �/
1. Obtain DFt for all t;

/� Dynamic phase �/
2. Given time budget TB;

3. For time step t=0{

4. Render and Determine Cc; }

5. For each time step t>=1{

6. Initialize elapsed time Telp;

7. Read differential file, update volume data, and

compute gradient;

8. Let TS = 0; Let D(r, s)=0 for all (r, s);

9. Do

10. Sample (x, y, z) from DFt;

11. Compute J(x, y, z);

12. For each (r, s) A J(x, y, z){

13. D(r, s)++;

14. If (D(r, s)==1) TS = TS + S(r, s);}

15. Measure Telp;

16. Tt(TCDVRM)=Telp + TS � Cc;

17. Until (TtðTCDVRMÞATB) or (all (x, y, z) in

DFt are sampled)
18. Perform ray casting for each (r, s) with D(r, s)

> 0;

19. Calibrate Cc;}

End of TCDVRM

4. Experimental results

Three CFD data sets are used as test TVVD. The data

sets are numerical simulations of various arrangements

of jets of waste gas issuing vertically into a horizontal

crossflow [19]. In the first data set, only a jet of waste gas

issues into the crossflow. The data set is of the size of

81�49�65 voxels and has 100 time steps. In the second

data set, two jets of waste gas located along the

crossflow direction issue normally into a crossflow.

The data set is of the size of 101�49�81 voxels and has

100 time steps. In the third data set, three jets of waste

gas located perpendicular to the crossflow direction issue

normally into a crossflow. The data set is of the size of

81�65�65 voxels and has 100 time steps. In all data sets,

each voxel value is represented by 1 byte, which is used

to represent the density of waste gas. The experiments

are performed on a Pentium III 800MHz platform with

256MB RAM.

Fig. 4 shows the rendering time in each time step of

the first data set when the time budgets are set to be

unlimited, 200, and 100ms, respectively. In the first few

time steps, when the changes between consecutive time

steps are very small, the rendering time may be smaller

than the time budgets. After that, the rendering time

almost conforms to the time budget. Fig. 4 shows that

the proposed method is very effective in controlling the

rendering time to meet the time budget.

Fig. 5 shows the effectiveness of TCDVRM in

determining important changed pixels by sampling

changed voxels. Time step 50 of the first data set is

chosen as an example. In the figure, the number of all

changed pixels is presented with the influence number as

the horizontal axis. This histogram shows that there are

totally 23 changed pixels with influence number 1, 239
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changed pixels with influence number 2, y, and only

one changed pixel with influence number 120. The

histograms of changed pixels that are determined with

time budgets of 200 and 100ms, respectively, are also

given. In the case that the time budget is 200ms, one

changed pixel with influence number 1, 115 changed

pixels with influence number 2, y, and one changed

pixel with influence number 120 are determined. For the

time budget of 100ms, no changed pixel with influence

number 1, 20 changed pixels with influence number 2,

y, and one changed pixel with influence number 120

are found. These three histograms are almost the same

in the area of changed pixels with large influence

numbers. In the area of changed pixels with small

influence numbers, the difference between the total

number of changed pixels and the number of changed

pixels found with the time budget of 200ms is pretty

small. However, the difference for the time budget of

100ms is significant. That is, when the time budget is

tight, most of important changed pixels with large

influence numbers are still chosen but most of unim-

portant changed pixels with small influence numbers are

given up. With time budgets of 200 and 100ms, the

amounts of sampled changed voxels are only 15.9% and

3.4% of the total number of changed voxels, respec-

tively. That is, our method is very effective of using few

changed voxels to determine the changed pixels with

large influence numbers.

Figs. 6(a)–(c) show the images of the first data set

rendered with the unlimited time budget, and time

budgets of 200 and 100ms, respectively, in time step 50.

In these figures, the red, green, and blue colors represent

the high, medium, and low densities of waste gas. With

the unlimited time budget, Fig. 6(a) is generated as an

original lossless image. When the time budget is 200ms,

the image shown in Fig. 6(b) is of excellent quality.

When the time budget is 100ms, few distortions appear

in some small areas of Fig. 6(c). However, the overall
image quality is till very good. Although a lot of

changed pixels with smaller influence numbers are given

up as shown in Fig. 5, the artifacts due to these pixels are

still acceptable.

Fig. 7 shows the rendering time in each time step of

the second data set when the time budgets are set to be

unlimited, 400 and 200ms, respectively. Again, this

figure shows that the proposed method is very effective

in controlling the rendering time to meet the time

budget. Fig. 8 shows the histograms of changed pixels in

time step 50 of the second data set. Again, the number of

all changed pixels is plotted with the influence number as

the horizontal axis. The histograms of changed pixels

that are determined with time budgets of 400 and

200ms, respectively, are also presented. In the area of

changed pixels with large influence numbers, the number

of found changed pixels with time budgets of 400 and

200ms are almost the same. It means that most of the

important changed pixels with large influence numbers

are determined. In the left side area, apparent gaps exist

between histograms. When the time budget becomes

tighter, more unimportant changed pixels are given up

but most of important changed pixels are still chosen. In

the cases with time budgets of 400 and 200ms, the

amounts of the sampled changed voxels are only 15.6%

and 1.8% of the total changed voxels, respectively.

Figs. 9(a)–(c) show the images of the second data set

rendered with the unlimited time budget, and time

budgets of 400 and 200ms, respectively, in time step 50.

When the time budget is 400 ms, the generated image is

of excellent quality as show in Fig. 9(b) and we almost
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Fig. 7. The rendering time of the second data set with different

time budgets.
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changed voxels in time step 50 of the second data set.

Fig. 9. Images generated for the second data set with different

time budgets in time step 50: (a) unlimited, (b) 400ms, and (c)

200ms.
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Fig. 10. The rendering time of the third data set with different

time budgets.
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sampling changed voxels in time step 50 of the third data set.
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cannot distinguish Fig. 9(a) from Fig. 9(b). When the

time budget is 200ms, some details are distorted, mostly

in the green–blue area of Fig. 9(c). However, the overall

shape is still preserved.

Fig. 10 shows the rendering time in each time step of

the third data set when the time budgets are set to be

unlimited, 400 and 200ms, respectively. Again, this

figure shows that the proposed method is very effective

in controlling the rendering time to meet the time

budget. Fig. 11 shows the histograms of changed pixels

in time step 50 of the third data set. When the time

budgets are 400 and 200ms, the amounts of the sampled

changed voxels are 8.3% and 1.1% of the total changed

voxels, respectively. Figs. 10 and 11 show that our

method can control the rendering time and select

important changed pixels effectively.

Figs. 12(a)–(d) show the original lossless images of the

third data set in time steps 25, 50, 75, and 100,

respectively. Figs. 12(e)–(h) give the images of the third

data set with the time budget of 200ms in time steps 25,

50, 75, and 100, respectively. Comparing these figures

and considering the constraint of 200ms for each image

frame, we can conclude that our method is good in

capturing the important features of the data set within a

limited time budget.
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Fig. 12. Images generated for the third data set with different

time budgets in time steps 25, 50, 75 and 100: (a)–(d) unlimited,

(e)–(h) 200ms.
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5. Conclusions

In this paper, we present a novel approach to meet the

time-critical requirement in rendering time-varying

volume data. In order to control the rendering time

and to get the best image quality within the time budget,

we use the information of LOM, which indicates the

degree of modification of changed data, as the metric to

select the most important data. A novel method that

integrates the sampling strategy and the estimation of

rendering time is used to determine changed pixels with

large influence numbers. The method for the estimation

of rendering time is modified from our previous work

[6]. From the experimental results on three data sets, we

have the following conclusions. First, the proposed

method is very effective in controlling the rendering

time. Second, the LOM is good in measuring the degree
of importance of changed data. When the time budget is

tight, the generated images still reveal important features

of the data set. Finally, the method of determining

changed pixels with large influence numbers is very

efficient. Only a few changed voxels are sampled to

determine these changed pixels.
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