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Abstract

The differential volume rendering method is a ray casting based method for time-varying

volume data. In the differential volume rendering method, the changed voxels between

consecutive time steps are extracted to form differential files in advance. When the dataset is to

be rendered, changed voxels are projected onto the image plane to determine the positions of

changed pixels. Only the changed pixels, instead of all pixels on the image, are updated by

casting new rays in each time step. The main overhead of the differential volume rendering

method is the determination of changed pixels. In this paper, we propose a two-level

differential volume rendering method, in which the determination of changed pixels is

accelerated by the aid of the second-order difference. Since changed voxels in two consecutive

differential files may partially overlap in the space, the projection computation spent on the

overlapped area is redundant. We use this property to extract the difference of changed voxels

between consecutive differential files to form the second-order difference. Based on the

second-order difference, the changed pixels can be determined more efficiently. The

experimental results show that the proposed method outperforms the comparative methods

for all test datasets in most cases. In addition, the rendering time can be predicted once the

data files are loaded in each time step.
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1. Introduction

Volume rendering, which projects a 3D volume data into a 2D image to reveal the
internal structure of the object, is a computation-demanding task [1–4]. A time-
varying volume data (TVVD, also referred as 4D volume data [5]) is a sequence of
subsequent volume datasets during a period of time steps. In comparison with a
single 3D volume dataset that contains the static internal structure, TVVD contains
the dynamic evolution of the structure. For example, CFD simulations can be
rendered into a flow animation. However, the computation demand of rendering
TVVD is much more than that of rendering a single 3D volume data. In order to
reduce the computation amount, many techniques have been proposed to exploit the
spatial coherency and temporal coherency in TVVD. The basic idea of these
techniques is to reuse the steady portion to avoid redundant storage or computation.
Shen et al. [6] proposed the differential volume rendering method to render

TVVD. We refer this method as DVRM in this paper. In this method, the changed
voxels between consecutive time steps are extracted to form differential files. These
files are used to determine the positions of changed pixels on the image plane. Only
the changed pixels, instead of all pixels in the image, are updated by casting new rays
at the positions in each time step. Ma et al. [7] encoded each single volume data into
an octree for the sake of spatial coherency. For coherency, consecutive octrees are
merged. Pointers are used to replace identical subtrees in the consecutive octrees. In
[8], a time-space partitioning (TSP) tree was proposed. A TSP tree is a time-
supplemented octree that utilizes both the spatial and temporal coherency effectively
and allows flexible tradeoff between image quality and rendering speed. Based on the
shear warp factorization, Anagnostou et al. [5] proposed a 4D volume rendering
technique that detects and renders the changed areas in every volume to exploit the
temporal coherency. Besides the above coherency-based techniques, some other
techniques are developed based on parallel processing [9], hardware-assistance [10],
or transformation [11,12].
Without sacrificing image quality for rendering speed, the image generated

by DVRM is the same as that generated by rendering all pixels in the image. When
the amount of changed voxels in the differential file is small, DVRM is quite
efficient. However, DVRM is not efficient when the amount of changed voxels is
large. If the number of changed voxels is large, determining the changed pixels may
make the rendering time longer than the time to do ray casting for all the pixels. We
are motivated to alleviate the overhead to render TVVD more efficiently. Therefore,
we propose a two-level differential volume rendering method in this paper. When
TVVD evolves gradually, it is possible that some of the changed voxel positions
appear in consecutive differential files. These changed voxels are projected to the
same point on the image plane in consecutive time steps. Therefore, the projection
computation for these changed voxels can be performed in the first of the consecutive
time steps and can be omitted in the following time steps. Based on this property, the
proposed method filters out the overlapped voxels and extracts the difference of
changed voxel positions between consecutive differential files. The extracted
difference information is referred as the second-order difference (SOD). The
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differential files store difference information between volume data. We refer
this information stored in differential files as the first-order difference (FOD).
The proposed method uses FOD to update volume data. Based on SOD, the
proposed method can determine the changed pixel positions more efficiently. Since
we used FOD and SOD in the proposed method, the name ‘‘two-level differential’’ is
used. To evaluate the proposed method, DVRM and a regular ray casting method
are used as comparative methods. Three CFD datasets are used as test datasets. The
experimental results show that the proposed method outperforms the comparative
methods for all test datasets in most cases. In addition, the rendering time of the
methods can be predicted once the data files are loaded in each time step.
This paper is organized as follows. In Section 2, the regular ray casting method

and the differential volume rendering method are described. In Section 3, the
proposed method is described in detail. In Section 4, we present the theoretical
analysis and the experimental results. In Section 5, we describe a method of
predicting the rendering time and present the prediction results.

2. The ray casting and the differential volume rendering methods

The ray casting method is a common backward-projection algorithm that can
generate good quality images [13,14]. The method fires a ray from each pixel position
into the volume data. At constant sampling interval, sampling points along the ray
are given their interpolated gradients and sample values from the neighboring voxels.
Given a transfer function, the gradients and sample values at sampling points are
mapped to color and opacity values. Finally, the color and opacity of sampling
points along the ray are accumulated to the pixel color [15]. Rendering TVVD by
applying the ray casting method on the volume data in each time step without taking
advantages of the TVVD coherency is referred as the regular ray casting method
(RRCM) in this paper.
Since rays are processed independently from one another in the ray casting

method, part of the rays can be updated while the rest of the rays are left unchanged.
With this property, DVRM was proposed to render TVVD [6]. The method consists
of two phases: the static phase and the dynamic phase. In the static phase, the
changed voxels between consecutive time steps are extracted. The positions and
values of changed voxels are stored as differential files. In the dynamic phase, the
data are rendered. During the dynamic phase, the rendering parameters such as view
direction and transfer functions are fixed. The first image is rendered in a regular
method. For each following time step, the differential file is loaded to update the
volume data. The positions of changed pixels are then determined. At the end of the
time step, changed pixels are updated by firing new rays. The determination of
changed pixels is based on the changed voxels and given parameters, for example,
view direction and sampling method. When discrete rays and zero-order interpola-
tion are used, a changed voxel is projected onto the image plane and the four pixels
surrounding the projected point must be updated (shown in Fig. 1). When
continuous rays and trilinear interpolation are used, the interpolation space that
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encompasses a changed voxel is projected onto the image plane. The pixels located
inside the projected region must be updated. If the number of changed pixels is
smaller than the number of all pixels, the ray casting time are reduced. For each
TVVD, the static phase is performed once. However, in order to explore the TVVD,
the dynamic phase may be repeated many times, with different parameters in each
time. Therefore, the total saved time become remarkable if the dynamic phase is
repeated many times. Up to 90% of saving of the rendering time in the dynamic
phase is reported by using DVRM on some datasets. For the above datasets, the
amount of the changed voxels ranges from 0.005% to 4.77% of the total voxels
between consecutive time steps. When the amount of changed voxels exceeds a
threshold, the expensive projection computation makes the rendering time of
DVRM longer than that of RRCM.

3. The two-level differential volume rendering method

In this section, the proposed two-level differential volume rendering method
(TLDVRM) is described in detail. Similar to DVRM, TLDVRM also consists of two
phases: the static and the dynamic phases. In the static phase, the proposed method
extracts FOD and SOD. In the dynamic phase, the proposed method updates
volume data by using FOD; determines the positions of changed pixels by using
either FOD or SOD; and updates those changed pixels by casting new rays for them.
We now define SOD and explain how to determine the changed pixels. The following
are the notations used in this section.

* Vt: The volume data in time step t,
* ðx; y; zÞ: A voxel,
* ðx; y; z; dtÞ: A changed voxel ðx; y; zÞ and its voxel value dt in time step t;
* DFt: The differential file consisting of ðx; y; z; dtÞ; changed voxels and their voxel
values, in time step t;

* PðDFtÞ: The set of changed voxels in DFt;
* ðr; sÞ: A pixel.

(a)                                                      (b)

Fig. 1. (a) A changed voxel is projected onto the image plane. (b) The pixels surrounding the projected

point must be updated.
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3.1. The second-order difference

Given DFt�1 and DFt; changed voxels in DFt�1 and DFt can be classified according
to their positions into three categories:

Category 1. Changed voxels are in DFt�1 but are not in DFt:
Category 2. Changed voxels are not in DFt�1 but are in DFt:
Category 3. Changed voxels are in DFt�1 and DFt:

Changed voxels belonging to Categories 1 and 2 are the difference information
between DFt�1 and DFt: Changed voxels belonging to Category 3 are
overlapped changed voxels of DFt�1 and DFt: Hereby we have the following
definitions.

Definition 1. Given DFt�1 and DFt; let OVPt ¼ PðDFt�1Þ-PðDFtÞ denote the
overlapped changed voxels that appear in both PðDFt�1Þ and PðDFtÞ:

Definition 2. Given DFt�1 and DFt; let MSODt ¼ PðDFt�1Þ � PðDFtÞ; PSODt ¼
PðDFtÞ � PðDFt�1Þ; and TSODt ¼ MSODt,PSODt; where MSODt; PSODt; and
TSODt denote the minus SOD, the plus SOD, and the total SOD in time step t;
respectively.

In Definition 2, MSODt is the set of changed voxels that appear in PðDFt�1Þ but
not in PðDFtÞ: PSODt is the set of changed voxels that appear in PðDFtÞ but not in
PðDFt�1Þ: TSODt is the extracted SOD in time step t:According to Definitions 1 and
2, we have the following intuitive lemmas.

Lemma 1. MSODt-OVPt ¼ + and PðDFt�1Þ ¼ MSODt,OVPt:

Lemma 2. PSODt-OVPt ¼ + and PðDFtÞ ¼ PSODt,OVPt:

An example is given in Fig. 2 to explain the meanings of Definitions 1 and 2.
In Fig. 3, we show how to extract SOD from differential files. For convenience, the

three-dimensional volume data, differential files, and SOD are represented with two-
dimensional matrices. For volume data and differential files, data stored in the
matrices represent voxel values. For SOD, the signs ‘‘�‘‘ and ‘‘+’’ stored in matrices
indicate that the indicated voxels are in the minus SOD and in the plus SOD,
respectively. The voxels whose values are changed in time steps 1 and 2 are extracted
to form DF1 and DF2; respectively. In time step 2, TSOD2 is extracted by comparing
DF1 and DF2: In TSOD2; the voxel position with ‘‘�’’ is obtained because the
corresponding changed voxel appears in DF1 but not in DF2:On the other hand, the
voxel position with ‘‘+’’ value is obtained because the corresponding changed voxel
appears in DF2 but not in DF1: Note that the values of the four inner voxels are
changed in both time steps 1 and 2. These inner voxels are overlapped in DF1 and
DF2; i.e., they form OVP2:
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3.2. Determine the positions of changed pixels

We now describe how to determine the positions of changed pixel from FOD and
SOD. A changed voxel may cause several changed pixels. On the other hand, a
changed pixel may be due to several changed voxels. To clarify their relationships,
we give the following definitions.

Definition 3. A voxel ðx; y; zÞ is said to influence a pixel ðr; sÞ if the pixel value at ðr; sÞ
needs to be updated due to the changed voxel value at ðx; y; zÞ: We use Jðx; y; zÞ to
denote the set of pixels influenced by voxel ðx; y; zÞ:

Definition 4. The number of changed voxels that influence pixel ðr; sÞ in time step t is
defined as Itðr; sÞ ¼ jW j; where W ¼ fðx; y; zÞ9ðr; sÞAJðx; y; zÞ and ðx; y; zÞAPðDFtÞg:
We called Itðr; sÞ the influenced number of pixel ðr; sÞ in time step t:

MSODt

TSODt

P (DFt-1) P (DF t )

OVPt
PSODt

Fig. 2. An example of Definitions 1 and 2.
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Fig. 3. An example of extracting the differential files and SOD. Grey parts represent changed voxels.
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Itðr; sÞ indicates how many changed voxels influence pixel ðr; sÞ in time step t: For
example, assume that there are ten elements, v1; v2;y and v10 in PðDFtÞ: Among
them, only v1 and v6 influence ðr; sÞ: Then Itððr; sÞÞ equals 2. From Definition 4, the
following corollary is intuitive.

Corollary 1. Pixel ðr; sÞ is a changed pixel in time step t if and only if Itðr; sÞ > 0:

Since our purpose is to determine the positions of changed pixels, we can calculate
Itðr; sÞ for each pixel ðr; sÞand use Corollary 1 to judge whether pixel ðr; sÞ is a changed
pixel. Itðr; sÞ can be calculated from either FOD or SOD.
To calculate Itðr; sÞ from FOD, we can check all changed voxels in DFt and count

how many changed voxels influence ðr; sÞ: The algorithm is given as follows.

Algorithm calculate Itðr; sÞ from FOD

/* Given DFt*/
1. For each ðr; sÞ; Itðr; sÞ ¼ 0
2. For each ðx; y; z; dtÞ in DFt{
3. Compute J(x,y,z);
4. For each ðr; sÞAJðx; y; zÞ; Itðr; sÞ++;}

End of calculate Itðr; sÞ from FOD

Another way to calculate Itðr; sÞ is based on SOD. According to Definitions 1 and
2, voxels in MSODt are in PðDFt�1Þ but not in PðDFtÞ while those in PSODt are in
PðDFtÞ but not in PðDFt�1Þ: Voxel positions in OVPt are in both PðDFt�1Þ and
PðDFtÞ: Given It�1ðr; sÞ; if ðr; sÞ is influenced by a voxel ðx; y; zÞ in MSODt;Itðr; sÞ ¼
It�1ðr; sÞ � 1 because ðr; sÞ is no longer influenced by ðx; y; zÞ in time step t: If ðr; sÞ is
influenced by a voxel ðx; y; zÞ in PSODt; Itðr; sÞ ¼ It�1ðr; sÞ þ 1 because ðr; sÞ becomes
influenced by ðx; y; zÞ in time step t: If ðr; sÞ is influenced by a voxel in OVPt;
Itðr; sÞ ¼ It�1ðr; sÞ: Therefore, OVPt can be omitted in calculating Itðr; sÞ: Hereby we
have the following algorithm.

Algorithm calculate Itðr; sÞ from SOD

/*Given It�1ðr; sÞ and TSODt*/
1. For each ðr; sÞ; Itðr; sÞ ¼ It�1ðr; sÞ;
2. For each ðx; y; zÞ in MSODt {
3. Compute Jðx; y; zÞ;
4. For each ðr; sÞAJðx; y; zÞ; Itðr; sÞ��;}
5. For each ðx; y; zÞ in PSODt {
6. Compute Jðx; y; zÞ
7. For each ðr; sÞAJðx; y; zÞ; Itðr; sÞ++;}

End of calculate Itðr; sÞ from SOD

Fig. 4 illustrates the process of calculating influenced numbers using the example
shown in Fig. 3. In Fig. 4, the two-dimensional pixels are represented by one-
dimensional arrays. The values stored in the arrays represent the influenced numbers
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of the pixels. A dotted line indicates that a pixel is influenced by a voxel. Each voxel
influences two pixels and the voxels in the same column influence the same set
of pixels in this example. In time step 1, the influenced numbers of the pixels are
calculated based on FOD, from the voxels in DF1 directly. In time step 2, the
influenced numbers are calculated based on SOD. Pixels p0 and p1 are influenced by
the voxels in MSOD2: Therefore, the influenced numbers of p0 and p1 are subtracted
by 1. Pixels p3 and p4 are influenced by the voxels in PSOD2:Therefore, the influenced

numbers of p3 and p4 are added by 1. We can also obtain the same influenced numbers

from DF2 directly, but the computation based on TSOD2 is less than that based on
DF2 by three voxels.
The changed pixels can be determined from either FOD or SOD. In the following,

we discuss under what circumstance using SOD is more efficient than using FOD and
vice versa. In time step t; the time complexity of algorithm calculate Itðr; sÞ from FOD

is Oð PðDFtÞj jÞ and the time complexity of algorithm calculate Itðr; sÞ from SOD is
Oð TSODtj jÞ: Now we may present the following remarks.

Remark 1. If PðDFtÞj jo TSODtj j; using FOD is more efficient than using SOD.

Remark 2. If PðDFtÞj jo TSODtj j; using SOD is more efficient than using FOD.

3.3. Algorithm of the two-level differential volume rendering method

The two-level differential volume rendering method is given as follows. In the
static phase, FOD and SOD are obtained. In the dynamic phase, for time step 0, the
volume data is read, the gradient on each voxel is computed, and the ray casting
is performed for each pixel. The ray casting for each pixel includes the following
operations on sampling points: interpolations of gradients and voxel values from the
neighboring voxels, mappings of the gradients and voxel values to color and opacity
values, and composition of the color and opacity values to the final pixel color. For
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Fig. 4. Calculating influenced numbers of pixels. Grey pixels denote changed pixels.
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time step 1, the differential file is read to update the volume data and the gradient on
each voxel is computed. Then the influenced numbers are calculated from FOD. The
pixels with influenced numbers that are greater than zero are updated. For the time
step t > 1; the differential file is read to update the volume data, the SOD file is read,
and the gradient on each voxel is computed. The influenced numbers are calculated
from FOD or SOD according to Remarks 1 and 2. The pixels with influenced

numbers that are greater than zero are updated. The algorithm is given as follows.

Algorithm TLDVRM

/*Static phase*/
1. Obtain FOD;
2. Obtain SOD;
/*Dynamic phase*/
3. For time step 0 {
4. Read volume data and perform ray casting for each pixel position;}
5. For time step 1 {
6. Read DF1;
7. Update volume data;
8. Compute gradients;
9. calculate Itðr; sÞ from FOD;
10. Perform ray casting for each pixel position with I1ðr; sÞ > 0;}
11. For time step t > 1{
12. Read DFt;
13. Read TSODt;
14. Update volume data;
15. Compute gradients;
16. If TSODtj jo PðDFtÞj j; then
17. calculate Itðr; sÞ from SOD;
18. else calculate Itðr; sÞ from FOD;
19. Perform ray casting for each pixel position with Itðr; sÞ > 0;}

End of TLDVRM

4. Analysis and experimental results

In this section, we first analyze the theoretical rendering time of RRCM, DVRM,
and TLDVRM. Then, we compare their experimental performance on three CFD
datasets.

4.1. Theoretical analysis

Each rendering process for the following time step is a pipeline composed of
several stages: any time step of RRCM, the time step t > 0 in the dynamic phase of
DVRM, and the time step t > 1 in the dynamic phase of TLDVRM. We divide the
pipeline into the following stages: F ; the stage to load files and update volume data;
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G; the stage to compute the gradients; P; the stage to determine the changed pixels if
necessary; C; the stage to do ray casting. The rendering time of a method in a time
step is therefore the sum of the processing time of all stages and is expressed as the
following equation:

TtðMÞ ¼ TtðM;F Þ þ TtðM ;GÞ þ TtðM ;PÞ þ TtðM ;CÞ ð1Þ

where t is a time step, M is a method and MAfRRCM ;DVRM;TLDVRMg; TtðMÞ
denotes the rendering time of method M in time step t; TtðM;F Þ; TtðM;GÞ; TtðM ;PÞ;
and TtðM;CÞ denote the processing time of the stages F ; G; P; and C in TtðMÞ;
respectively.
Stage F is an I/O process and TtðM ;F Þ depends on the size of the loaded data in

each time step. Let Vtj j be the number of voxels in the volume data Vtj j: For a given
dataset, Vtj j is the same in all time steps. In RRCM, the loaded data is a volume data
file and the loaded data size is Vtj j because each voxel value is one byte. In DVRM,
the loaded data is a differential file and the loaded data size is 4 PðDFtÞj j because each
changed voxel ðx; y; z; dtÞ is four bytes. In TLDVRM, the loaded data includes a
differential file and a SOD file. The loaded data size is 4 PðDFtÞj j þ 3 TSODtj j because
each voxel ðx; y; zÞ in the SOD file is three bytes. Since the disk I/O is done sector by
sector, TtðM ;F Þ is proportional to the number of read sectors. TtðRRCM;F Þ;
TtðDVRM ;F Þ and TtðTLDVRM ;F Þ are expressed as the follows.

TtðRRCM ;F Þ ¼ Vtj j=B
� �

	 Cf ð2aÞ

TtðDVRM;F Þ ¼ 4 PðDFtÞj j=B
� �

	 Cf ð2bÞ

TtðTLDVRM;F Þ ¼ 4 PðDFtÞj j=B
� �

	 Cf ;þ 3 TSODtj j=B
� �

	 Cf ð2cÞ

where B is the size of a sector and Cf is the time to read a sector.
Stage G computes the gradient on each voxel. The computation is essentially the same

for each voxel. Therefore, TtðM ;GÞ is proportional to Vtj j: TtðM ;GÞ is expressed as

TtðM ;GÞ ¼ Vtj j 	 Cg ð3Þ

where Cg is the time to compute the gradient of a voxel.
Stage P determines the positions of changed pixels. In RRCM, there is

no determination of the changed pixels. Therefore, TtðRRCM ;PÞ ¼ 0: In DVRM
and TLDVRM, the computation in stage P is mainly the projections of changed
voxels onto the image plane and the calculation of influenced numbers based
on the projected point. Therefore, TtðDVRM ;PÞ is proportional to PðDFtÞj j and
TtðTLDVRM ;PÞ is proportional to the smaller of PðDFtÞj j and TSODtj j:
TtðRRCM;PÞ; TtðDVRM;PÞ and TtðTLDVRM ;PÞ are expressed as the following
equations.

TtðRRCM ;PÞ ¼ 0 ð4aÞ

TtðDVRM;PÞ ¼ PðDFtÞj j 	 Cp ð4bÞ

TtðTLDVRM;PÞ ¼Minð PðDFtÞj j; TSODtj jÞ 	 Cp ð4cÞ

where Cp is the time spent for a changed voxel position in stage P:
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Before discussing stage C and TtðM ;CÞ; we have to discuss the numbers of
sampling points along rays. A given data size, view direction and sampling interval
determine the numbers of sampling points of rays. Usually the sampling interval is
set to 1.0. Sometimes the sampling interval is shorter for the sake of higher resolution
and better image quality. The shorter the sampling interval is, the more the sampling
points are in a fixed length of ray. The volume data size and view direction
determines the lengths of intersections of the cast rays and the volume data. The
length of an intersection may be different from that of another intersection. Only
insides the intersections, sampling points are taken. As a result, the number of
sampling points of a ray may be different from that of another ray as shown in
Fig. 5. In RRCM, all of the rays are cast in each time step. Let TSt denotes the total
number of sampling points in time step t: TSt is the sum of the numbers of sampling
points of all rays in time step t: Different view directions make TSt different.
However, if the view direction is given, TSt is the same in all of the time steps. In
DVRM and TLDVRM, only rays corresponding to changed pixels are cast. Let CSt

denote the number of cast sampling points in time step t: CSt is the sum of the
numbers of sampling points of the rays corresponding to changed pixels in time step
t: Even if the view direction is fixed in each time step, CSt may be different in each
time step. However, in a given time step, CSt are the same in DVRM and TLDVRM.
The computation in stage C is mainly the interpolations, mappings and compositions
of sampling points. For each sampling point, the computation is essentially the
same. Therefore, TtðRRCM;CÞ is proportional to TSt; while TtðDVRM ;CÞ and
TtðTLDVRM ;CÞ are proportional to CSt: TtðRRCM;CÞ; TtðDVRM ;CÞ and
TtðTLDVRM ;CÞ are given below.

TtðRRCM ;CÞ ¼ TSt 	 Cc ð5aÞ

TtðDVRM;CÞ ¼ CSt 	 CC ð5bÞ

TtðTLDVRM;CÞ ¼ CSt 	 CC ð5CÞ

where CC is the interpolation, mapping, and composition time of a sampling
point.

Fig. 5. The numbers of sampling points along different rays may be different.
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Based on the above analysis, the rendering time of the three methods are given by
Eqs. (6)–(8), respectively.

TtðRRCMÞ ¼ Vtj j=B
� �

	 Cf þ Vtj j 	 Cg þ TSt 	 CC ð6Þ

TtðDVRMÞ ¼ 4 PðDFtÞj j=B
� �

	 Cf þ Vtj j 	 Cg þ PðDFtÞj j 	 Cp þ CSt 	 CC ð7Þ

TtðTLDVRMÞ ¼ 4 PðDFtÞj j=B
� �

	 Cf þ 3 TSODtj j=B
� �

	 Cf þ Vtj j 	 Cg

þMinð PðDFtÞj j; TSODtj jÞ 	 Cp þ CSt 	 CC ð8Þ

Based on Eqs. (6)–(8), the relative performance comparisons of pairs between
RRCM and DVRM, RRCM and TLDVRM, and DVRM and TLDVRM are given
as follows.

Remark 3. When Inequality (9) is true, DVRM is superior to RRCM.

Vtj j=B
� �

	 Cf þ TSt 	 CC > 4 PðDFtÞj j=B
� �

	 Cf þ PðDFtÞj j 	 Cp þ CSt 	 CC

ð9Þ

Remark 4. When PðDFtÞj jo TSODtj j and Inequality (10) is true, TLDVRM is
superior to RRCM.

Vtj j=B
� �

	 Cf þ TSt 	 CC > 4 PðDFtÞj j=B
� �

	 Cf

þ 3 TSODtj j=B
� �

	 Cf þ PðDFtÞj j 	 Cp þ CSt 	 CC ð10Þ

Remark 5. When PðDFtÞj jo TSODtj j and Inequality (11) is true, TLDVRM is
superior to RRCM.

Vtj j=B
� �

	 Cf þ TSt 	 CC > 4 PðDFtÞj j=B
� �

	 Cf

þ TSODtj j 	 Cp þ CSt 	 CC ð11Þ

Remark 6. When PðDFtÞj jo TSODtj j; DVRM is superior to TLDVRM by
3 TSODtj j=B
� �

	 Cf :

Remark 7. When PðDFtÞj j > TSODtj j and Inequality (12) is true, TLDVRM is
superior to DVRM.

PðDFtÞj j 	 Cp > 3 TSODtj j=B
� �

	 Cf þ TSODtj j 	 Cp ð12Þ

4.2. Experimental results

Three CFD datasets are used as test TVVD. The datasets are numerical
simulations of various arrangements of jets issuing vertically into a horizontal
crossflow [16]. In the first dataset, only a jet issues into a crossflow. The dataset is of
the size of 81*49*65 voxels and has 100 time steps. In the second dataset, two jets
located along the crossflow direction issue normally into a crossflow. The dataset is
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of the size of 101*49*81 voxels and has 100 time steps. In the third dataset, three jets
located perpendicular to the crossflow direction issue normally into a crossflow. The
dataset is of the size of 81*65*65 voxels and has 100 time steps. In all dataset, each
voxel value is 1 byte. The snapshots of the first dataset in time steps 20, 50, and 80
are shown in Figs 6(a-1, a-2, a-3), respectively. The snapshots of the second dataset
in time steps 20, 50, and 80 are shown in Figs 6(b-1, b-2, b-3), respectively. The
snapshots of the third dataset in time steps 20, 50, and 80 are shown in Figs 6(c-1,
c-2, c-3), respectively. The experiments are performed on a Pentium III 800MHz
platform with 256MB RAM.
Fig. 7(a) shows Vtj j; PðDFtÞj j; TSODtj j; TSt and CSt of the first dataset. Fig. 7(b)

shows TtðM;F Þ; TtðM ;GÞ; TtðM ;PÞ; and TtðM;CÞ of RRCM, DVRM, and
TLDVRM for the first dataset. In Fig. 7(a), Vtj j and TSt are fixed in all time steps.
PðDFtÞj j; TSODtj jand CSt are varied in each time step. There is an apparent gap
between the curves of PðDFtÞj j and TSODtj j:For all time steps, the sum of TSODtj j is
about 42% of the sum of PðDFtÞj j: This gap makes TLDVRM save 58% of the time
to determine changed pixel positions than DVRM. There is also an apparent gap
between PðDFtÞj j and CSt: By comparing ð PðDFtÞj j= Vtj jÞ with ðCSt=TStÞ; we can see
that the former is usually far less than the latter. This means that a small ratio of
changed voxels may lead to a larger ratio of sampling points to be processed. The
above phenomenon is due to that a changed pixel is updated by processing all the
sampling points, no matter how many of them are changed, along the ray.

  
(a-1)                                    (a-2)                                     (a-3)

  
(b-1)                                          (b-2)                                          (b-3)

  
(c-1)                                          (c-2)                                          (c-3)

Fig. 6. Snapshots of the three test datasets.
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In Fig. 7(b), TtðM;F Þ; TtðM ;GÞ; TtðM ;PÞ; and TtðM ;CÞ are accumulated, and the
accumulated area becomes TtðMÞ: In Fig. 7(b), TtðM ;F Þ is too small and can be
neglected. TtðM;GÞ conforms to Eq. (3) and is about 18milliseconds. TtðDVRM;PÞ
and TtðTLDVRM;PÞ conform to Eqs. (4b) and (4c), and Cp is about 1/
500milliseconds per voxel. Note that the shapes of curves of TtðDVRM;PÞ and of
PðDFtÞj j are similar. The shapes of curves of TtðTLDDVRM ;PÞ and of TSODtj j are
also similar. TtðM;CÞ conforms to Eqs. (5a)–(5c), and CC is about 1/1200milli-
seconds per sampling point.
In most time steps except those between 18 and 30, DVRM is superior to RRCM

because either PðDFtÞj j or CSt is small enough to make Inequality (9) true in Remark
3. In time steps 18–30, both PðDFtÞj j and CSt are large, and they jointly make
Inequality (9) false. For TLDVRM and RRCM, TLDVRM is superior to RRCM in
all time steps. The superiority is due to Inequality (11) in Remark 5 for most of the
time steps. For TLDVRM and DVRM, in most of the time steps except the last few
ones, TLDVRM is superior to DVRM because PðDFtÞj j > TSODtj j and Inequality
(12) in Remark 7 is true. The superiority of TLDVRM to DVRM is remarkable in
time steps 10–40, where PðDFtÞj j is much greater than TSODtj j: In the last few time
steps, PðDFtÞj j is very close to TSODtj j: The performance of DVRM is almost the
same as that of TLDVRM. Fig. 8(a) shows Vtj j; PðDFtÞj j; TSODtj j; TSt; and CSt of
the second dataset. Fig. 8(b) shows TtðM ;F Þ; TtðM;GÞ; TtðM;PÞ; and TtðM;CÞ of
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Fig. 7. (a) The characteristics of the first dataset. (b) Rendering time of the three methods for the first

dataset.
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RRCM, DVRM, and TLDVRM for the second dataset. In Fig 8(a), Vtj j and TSt are
fixed in all time steps. PðDFtÞj j; TSODtj j; and CSt increase gradually and then become
steady. There is also an apparent gap between the curves of PðDFtÞj j and TSODtj j:
For all time steps, the sum of TSODtj j is about 26% of the sum of PðDFtÞj j: This gap
makes TLDVRM save 74% of the time to determine changed pixels. In this case, we
use a shorter sampling interval 0.8333. This makes TSt > Vtj j: There is also an
apparent gap between PðDFtÞj j and CSt:By comparing ð PðDFtÞj j= Vtj jwith ðCSt=TStÞ;
we can also see that the former is usually far less than the latter. Again, this means
that a small ratio of changed voxels may lead to a larger ratio of sampling points to
be processed because of the same reason in the first dataset.
In Fig. 8(b), TtðM;F Þ; TtðM ;GÞ; TtðM ;PÞ; and TtðM ;CÞ are accumulated, and the

accumulated area becomes TtðMÞ: In Fig. 8(b), TtðM ;F Þ is too small and can be
neglected. TtðM;GÞ conforms to Eq. (3) and is about 28milliseconds. TtðDVRM;PÞ
and TtðTLDVRM ;PÞ also conform to Eqs. (4b)–(4c) and Cp is about 1/
500milliseconds per voxel position. The shapes of curves of TtðDVRM;PÞ and of
PðDFtÞj j are similar. The shapes of curves of TtðTLDVRM ;PÞ and of TSODtj j
are also similar. TtðM ;CÞ conforms to Eqs. (5a)–(5c) and CC is about
1/1200milliseconds per sampling point. Before time step 58, DVRM is superior to
RRCM because either PðDFtÞj j or CSt is small enough to make Inequality (9) in
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Remark 3 true. PðDFtÞj j and CSt become larger and larger, and they make Inequality
(9) false after step 58. For TLDVRM and RRCM, TLDVRM is superior to RRCM
in all time steps. The superiority is due to Inequality (11) in Remark 5. For
TLDVRM and DVRM, TLDVRM is also superior to DVRM in all time steps. The
superiority is due to Inequality (12) in Remark 7. No time step fits Remarks 4 and 6
because PðDFtÞj j > TSODtj j in all time steps.
Fig. 9(a) shows Vtj j; PðDFtÞj j; TSODtj j; TSt and CSt of the third dataset. Fig. 9(b)

shows, TtðM ;F Þ;TtðM ;GÞ;TtðM ;PÞ; and TtðM;CÞ of methods RRCM, DVRM, and
TLDVRM for the third dataset. From Fig. 9, we have similar observations as those
of Fig. 8.
It is interesting that the I/O time is neglected in the experimental results. The

phenomenon seems conflicting to some previous works [9,10,17]. When a TVVD is
rendered in parallel, the I/O time is relatively significant because the rendering time is
short. When the TVVD size is very large and the physical memory does not fit the
dataset, the I/O also becomes a bottleneck. However, our dataset is not very large
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and the platform is a single processor desktop computer. Hence the I/O time is not so
significant in the rendering time.

5. Rendering time predictions

In the above experiments, the rendering time is measured after rendering. It is
useful if the rendering time can be predicted in advance. For example, we can switch
to the best method in each time step. In practice, the prediction of TtðRRCMÞ is
rather simple. TtðRRCMÞ is almost constant in all time steps. If TtðRRCMÞ is
measured in the first few time steps, for the rest of time steps, TtðRRCMÞ can be set
as the previously measured TtðRRCMÞ:
For DVRM (or TLDVRM), TtðDVRMÞ (or TtðDVRMÞ ) can be calculated

if all the terms in Eqs. (7) or (8) are known. Vtj j is fixed for a given dataset and TSt

is fixed for given parameters. Vtj j 	 Cg; Cp and CC are constant in each time
step theoretically. In practice, Vtj j 	 Cg; Cp and CC are run time dependent and are
known by measurement. Therefore, it takes several time steps to measure reliable
values of Vtj j 	 Cg;Cp and CC in the first few time steps. In each time step, when stage
F is performed, PðDFtÞj j; 4 PðDFtÞj j=B

�
rceil 	 Cf (for DVRM), 4 PðDFtÞj j=B

� �
	

Cf þ 3 TSODtj j=B
� �

	 Cf (for TLDVRM), TSODtj j (for TLDVRM) can be
obtained. As a result, immediately after stage F ; the only unknown term is CSt: If
CSt can be estimated, TtðDVRMÞ (or TtðDVRMÞ) can be predicted after stage F is
performed.
The accurate value of CSt cannot be known until stage P is finished. However, it is

possible to estimate an approximate CSt immediately after stage F : If PðDFtÞj j is large
enough, a changed pixel is usually influenced by several changed voxels. Picking up
any one of the changed voxels is enough to get the changed pixel. It is possible that a
good sampling from PðDFtÞ may pick up enough changed voxels to get most of the
changed pixels. If so, CSt can be estimated approximately. Therefore, we use the
following estimation technique to estimate an approximate CSt: First, the technique
randomly picks up a small ratio, say 5%, of changed voxels from PðDFtÞ as samples.
Then the technique uses the picked samples to determine a set of changed pixels.
Finally, the technique uses the set of changed pixels to calculate the estimated CSt:
The time for the estimation is very short, say, 5% of PðDFtÞj j 	 Cp:
Experimental estimations for CSt with 10% and 5% of PðDFtÞ are tested. The

estimated CSt and the accurate CSt in each time step for the first, the second, and the
third datasets are shown in Figs. 10(a–c), respectively. The estimation results are
satisfying in most cases. In most cases, with 10% of PðDFtÞ as samples, the estimated
CSt is about 91% of the accurate CSt in average. In most cases, with 5% of PðDFtÞ as
samples, the estimated CSt is about 87% of the accurate CSt in average. Only when
PðDFtÞj j is too small and CSt is too large, for example, in the latter time steps of the
first dataset, the estimation results are not satisfying.
Based on the above experience values, we use 5% of PðDFtÞ as samples and

compensate the estimated CStwith a factor 1.1 in the rendering time predictions. The
rendering time prediction algorithms are given as follows.
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Algorithm Predict T(DVRM)

1. For time stepto5{
2. Measure Vtj j 	 Cg;Cp;CC ;}
3. For time step t >¼ 5{
4. In stage F {
5. Measure 4 PðDFtÞj j=B

� �
	 Cf }

6. After stage F {
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Fig. 10. Taking 10% and 5% of PðDFtÞ to predict CSt for (a) the first, (b) the second, and (c) the third

datasets.
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7. Estimate CSt with 5% of PðDFtÞ
8. Calculate TtðDVRMÞ ¼ 4 PðDFtÞj j=B

� �
	 Cf þ Vtj j 	 Cg þ PðDFtÞj j 	 Cp þ

1:1	 CSt 	 CC

End of Predict TðDVRMÞ

Algorithm Predict TðTLDVRMÞ
1. For time step to5{
2. Measure Vtj j 	 Cg;Cp;CC ;}
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Fig. 11. The predicted TtðDVRMÞ and the measured TtðDVRMÞ for (a) the first, (b) the second, and
(c) the third datasets.
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3. For time step t>=5{
4. In stage F{
5. Measure 4 PðDFtÞj j=B

� �
	 Cf þ 3 TSODtj j=B

� �
	 Cf

6. After stage F{
7. Estimate CSt with 5% of PðDFtÞ
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Fig. 12. The predicted TtðTLDVRMÞ and the measured TtðTLDVRMÞ for (a) the first, (b) the second, and
(c) the third datasets.
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8. Calculate TtðTLDVRMÞ ¼ 4 PðDFtj j=B
� �

	 Cf þ 3 TSODtj j=B
� �

	 Cf þ Vtj j 	
Cg þMinð PðDFtÞj j; TSODtj jÞ 	 Cp þ 1:1	 CSt 	 CC

End of Predict TðTLDVRMÞ

Figs. 11(a–c) show the actually measured TtðDVRMÞ and predicted TtðDVRMÞ in
each time step for the first, the second, and the third datasets, respectively.
Figs. 12(a–c) show the actually measured TtðTLDVRMÞ and predicted
TtðTLDVRMÞ in each time step for the first, the second, and the third datasets,
respectively. The prediction results are excellent in most cases.

6. Conclusions and future work

In this paper, we have proposed TLDVRM to render TVVD. The core concept of
the proposed method is to determine the positions of changed pixels by using SOD.
From the theoretical analysis and the experimental results, we have the following
conclusions. TLDVRM is superior to RRCM and DVRM in most cases. The
performance of DVRM and TLDVRM is closely related to the characteristics such
as PðDFtÞj j; TSODtj j; and CSt of the datasets. When PðDFtÞj j is much larger than
TSODtj j; the superiority of TLDVRM to DVRM is remarkable. In addition, we can
make excellent predictions of the rendering time.
A potential future work is based on the phenomenon that a small ratio of changed

voxels may lead to a large ratio of sampling points to be processed. When a changed
pixel is updated, all the sampling points along the ray must be processed even if very
few sampling points change along the ray. As a result, a lot of effort is spent on the
unchanged sampling points. It is possible to accelerate the rendering by reducing this
kind of effort. Another potential future work is based on the rendering time
prediction. The rendering time prediction is possible to be applied to the time-critical
TVVD rendering. For example, some kind of weightings may be given to each
changed pixel. According to their weightings, some changed pixels may be chosen to
sacrifice to meet the requested time constraint.
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