
Efficient Data Parallel Algorithms for
Multidimensional Array Operations Based

on the EKMR Scheme for
Distributed Memory Multicomputers

Chun-Yuan Lin, Student Member, IEEE Computer Society,

Yeh-Ching Chung, Member, IEEE Computer Society, and Jen-Shiuh Liu

Abstract—Array operations are useful in a large number of important scientific codes, such as molecular dynamics, finite element

methods, climate modeling, atmosphere and ocean sciences, etc. In our previous work, we have proposed a scheme extended

Karnaugh map representation (EKMR) for multidimensional array representation. We have shown that sequential multidimensional

array operation algorithms based on the EKMR scheme have better performance than those based on the traditional matrix

representation (TMR) scheme. Since parallel multidimensional array operations have been an extensively investigated problem, in this

paper, we present efficient data parallel algorithms for multidimensional array operations based on the EKMR scheme for distributed

memory multicomputers. In data parallel programming paradigm, in general, we distribute array elements to processors based on

various distribution schemes, do local computation in each processor, and collect computation results from each processor. Based on

the row, the column, and the 2D mesh distribution schemes, we design data parallel algorithms for matrix-matrix addition and matrix-

matrix multiplication array operations in both TMR and EKMR schemes for multidimensional arrays. We also design data parallel

algorithms for six Fortran 90 array intrinsic functions, All, Maxval, Merge, Pack, Sum, and Cshift. We compare the time of the data

distribution, the local computation, and the result collection phases of these array operations based on the TMR and the EKMR

schemes. The experimental results show that algorithms based on the EKMR scheme outperform those based on the TMR scheme for

all test cases.

Index Terms—Data parallel algorithm, array operation, multidimensional array, data distribution, Karnaugh map.

æ

1 INTRODUCTION

ARRAY operations are useful in a large number of
important scientific codes, such as molecular dynamics

[14], finite-element methods [22], climate modeling [41],
atmosphere and ocean sciences [16], etc. In the literature,
many methods have been proposed to implement these
array operations efficiently. However, the majority of these
methods for two-dimensional arrays usually do not per-
form well when extended to higher dimensional arrays. The
reason is that one usually uses the traditional matrix
representation (TMR) [35] to represent higher dimensional
arrays. This scheme has two drawbacks [35] for higher
dimensional array operations. First, the costs of index
computation of array elements for array operations increase
as the dimension increases. Second, the cache miss rate for
array operations increases as the dimension increases due to
more cache lines accessed.

In our previous work [35], we have proposed a new

scheme called extended Karnaugh map representation (EKMR)
for multidimensional array representation. Since parallel

multidimensional array operations [7], [10], [11], [16] have

been an extensively investigated problem, in this paper, we
present efficient data parallel algorithms for multidimen-

sional array operations based on the EKMR scheme for

distributed memory multicomputers. In data parallel

programming paradigm, in general, we distribute array
elements to processors based on various distribution

schemes (the data distribution phase), do local computation

in each processor (the local computation phase), and collect
computation results from each processor (the result collec-

tion phase).
For one-dimensional array, the distributed scheme can

be block, cyclic, or block-cyclic [23]. For higher dimensional

array, these distribution schemes can be applied to each
dimension. Therefore, there are many combinations of array

distribution schemes for higher dimensional arrays. In this

paper, we focus on the design based on the row, the
column, and the 2D mesh distribution schemes [7], [10],

[11], [16], [29], [30], [31], [44]. For two-dimensional arrays,

the row, the column, and the 2D mesh distribution schemes
are similar to (Block, *), (*, Block), and (Block, Block) used in

Fortran 90 [1], respectively. For three or higher dimensional

arrays, the row, the column, and the 2D mesh distribution

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003 625

. C.-Y. Lin and J.-S. Liu are with the Department of Information
Engineering, Feng Chia University, Taichung, Taiwan 407, ROC.
E-mail: {cylin, liuj}@iecs.fcu.edu.tw.

. Y.-C. Chung is with the Department of Computer Science, National Tsing-
Hua University, Hsinchu, Taiwan 300, ROC.
E-mail: ychung@cs.nthu.edu.tw.

Manuscript received 4 Dec. 2000; revised 26 June 2002; accepted 20 Oct.
2002.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 113234.

1045-9219/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

schemes are similar to (*, ..., Block, *), (*,..., *, Block), and
(*, ..., Block, Block), respectively.

Based on the distribution schemes described above, we
design data parallel algorithms for matrix-matrix addition
and matrix-matrix multiplication array operations based on
the TMR and the EKMR schemes for multidimensional
arrays. We also design data parallel algorithms for six
Fortran 90 array intrinsic functions, All, Maxval, Merge, Pack,
Sum, and Cshift. To evaluate the performance of the
designed data parallel algorithms, we compare the time of
the data distribution, the local computation, and the result
collection phases of these array operations based on the
TMR and the EKMR schemes. The experimental results
show that the execution time of array operations based on
the EKMR scheme is less than that of those based on the
TMR scheme in the data distribution, the local computation,
and the result collection phases. For the data distribution
and the result collection phases, the reason is that the cost of
packing/unpacking array elements for the EKMR scheme is
less than that for the TMR scheme since the number of
noncontinuous data blocks in the EKMR scheme is less than
that in the TMR scheme. For the local computation phase,
the reasons are two-fold. First, the EKMR scheme can
reduce the costs of index computation of array elements for
array operations because it uses a set of two-dimensional
arrays to represent a higher dimensional array. Second, the
cache miss rate for array operations based on the EKMR
scheme is less than that based on the TMR scheme because
the number of cache lines accessed by array operations
based on the EKMR scheme is less than that based on the
TMR scheme.

This paper is organized as follows: In Section 2, a brief
survey of related work will be presented. We will briefly
describe the EKMR scheme for multidimensional array
representation in Section 3. In Section 4, we will discuss the
implementations of data parallel algorithms of multi-
dimensional array operations based on the TMR and
EKMR schemes with various distribution schemes. The
performance comparisons and experimental results of
these data parallel algorithms will be given in Section 5.

2 RELATED WORK

Many methods for improving array computation have been
proposed in the literature. Carr et al. [5] and McKinley et al.
[36] presented a comprehensive approach to improving
data locality by using loop transformations such as loop
permutation, loop reversal, etc. They demonstrated that
these transformations are useful for optimizing many array
programs. They also proposed an algorithm called LoopCost
to analyze and construct the cost models for variable loop
orders of array operations. Kandemir et al. [24], [25]
proposed a compiler technique to perform loop and data
layout transformations to solve the global optimization
problem on sequential and multiprocessor machines. They
use loop transformations to find the best loop order of an
array operation to solve the global optimization problems.
O’Boyle and Knijnenburg [37] presented a new algebraic
framework to combine loop and data layout transforma-
tions. By integrating loop and data layout transformations,
any poor spatial locality and expensive array subscripts can

be eliminated. Sularycke and Ghose [39] proposed a simple
sequential loop interchange algorithm that can produce a
better performance than existing algorithms for array
multiplication.

Chatterjee et al. [9] examined two nonlinear data layout
functions (4D and Morton) for two-dimensional arrays with
the tiling scheme that promises improved performance at
low cost. In [8], they further examined the combination of
five recursive data layout functions (various forms of
Morton and Hilbert) with the tiling scheme for three parallel
matrix multiplication algorithms. Coleman and McKinley
[13] presented a new algorithm TSS for choosing problem-
size dependent tile size based on the cache size and cache
line size for a direct-mapped cache. Wolf and Lam [42]
proposed an algorithm that improves the locality of a loop
nest by transforming the code via interchange, reversal,
skewing, and tiling. In [33], they also presented a
comprehensive analysis of the performance of blocked code
on machines with caches. Frens et al. [21] presented a
simple recursive algorithm with the quad-tree decomposi-
tion of matrices that has outperformed hand-optimized
BLAS3 matrix multiplication. The use of quad-trees or oct-
trees is known in parallel computing [3] for improving both
load balance and locality. Carter et al. [6] focused on using
hierarchical tiling to exploit superscalar-pipelined proces-
sor. The hierarchical tiling is a framework for applying
known tiling methods to ease the burden on several
compiler phases that are traditionally treated separately.

Kotlyar et al. [29], [30], [31] presented a relational algebra
based framework for compiling efficient sparse array code
from dense DO-Any loops and a specified sparse array.
Fraguela et al. [17], [18], [19], [20] analyzed the cache effects
for the array operations. They established the cache
probabilistic model and modeled the cache behavior for
sparse array operations. Kebler and Smith [26] described a
system, SPARAMAT, for concept comprehension that is
particularly suitable for sparse array codes. Ziantz et al. [44]
proposed a runtime optimization technique that can be
applied to a compressed row storage array for array
distribution and off-processor data fetching in order to
reduce both the communication and computation time.
Chang et al. [7] and Chung et al. [10], [11] presented an
efficient libraryfor parallel sparse computations with For-
tran 90 array intrinsic operations. They provide a new data
distribution scheme for multidimensional sparse arrays.
Their scheme is similar to (*, ..., Block, Block) data
distribution scheme used in Fortran 90.

3 THE EKMR SCHEME

In [35], we have proposed the EKMR scheme for multi-
dimensional array representation. Before presenting effi-
cient data parallel algorithms based on the EKMR scheme,
we briefly describe the EKMR scheme for multidimen-
sional arrays. Details of the EKMR scheme can be found in
[35]. We describe the EKMR and TMR schemes based on
the row-major data layout [12]. The idea of the EKMR
scheme is based on the Karnaugh map. Fig. 1 shows
examples of n-input Karnaugh maps for n ¼ 1; . . . ; 4. When
n is less than or equal to 4, an n-input Karnaugh map can
be drawn on a plane easily, that is, it can be represented

626 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

by a two-dimensional array. Consequently, when n ¼ 1
and 2, the EKMR(1) and the EKMR(2) is simply a one-
dimensional array and the traditional two-dimensional
array, respectively.

Let A[k][i][j] denote a three-dimensional array based on
the TMR(3) with a size of 3� 4� 5. The corresponding
EKMR(3) of array A[3][4][5] with the size of 4� 15, is shown
in Fig. 2. In the EKMR(3), the index variable i0 is the same as
the index variable i andthe index variablej0 is a combination
of the index variables j and k. A more concrete example
based on the row-major data layout is given in Fig. 3.

Let A[l][k][i][j] denote a four-dimensional array based on
the TMR(4) with a size of 2� 3� 4� 5. Fig. 4 illustrates a
corresponding EKMR(4) of array A[2][3][4][5] with a size of
8� 15. In the EKMR(4), the index variable i0 is a combina-
tion of the index variables l and i and the index variable j0 is
a combination of the index variables j and k.

Based on the EKMR(4), we can generalize our results to
the n-dimensional array. Assume that there is an
n-dimensional array based on the TMR(n) with a size of m
along each dimension. Since the EKMR(n) can be repre-
sented by mnÿ4 EKMR(4), we use a one-dimensional array X
with a size of mnÿ4 to link these EKMR(4). Fig. 5 shows the
corresponding EKMR(6), represented by six arrays based on
the EKMR(4) each with a size of 8� 15, of array
A[n][m][l][k][i][j]. In Fig. 5, a one-dimensional array X with
a size of six is used to link these EKMR(4).

4 THE DESIGN OF DATA PARALLEL ALGORITHMS

OF MULTIDIMENSIONAL ARRAY OPERATIONS

BASED ON THE TMR AND THE EKMR SCHEMES

The design of a data parallel program, in general, can be
divided into three phases: data distribution, local computa-
tion, and result collection. In the following, we examine the
design issues of these three phases for data parallel

algorithms of multidimensional array operations based on
the TMR and the EKMR schemes. The TMR and the EKMR
both are representation schemes for multidimensional
arrays. Different data layout functions can be applied to
them to get different data layouts. In the following, we
design data parallel algorithms of multidimensional array
operations according to the row-major data layout. We do
not consider algorithms based on the recursive data layout
[8], [9], [21]. The reason is that how to select a recursive data
layout such that a multidimensional array operation
algorithm based on the TMR scheme having the best
performance is an open question [8], [9]. Since there are
many array operations, we use the matrix-matrix multi-
plication array operation as the design example. Other array
operations can be implemented in a similar manner. Since
the distribution of two or more arrays for an array operation
will result in a complex data parallel algorithm design, we
only consider the case for the distribution of a single array.

4.1 The Data Distribution Phase for the TMR and the
EKMR Schemes

In this paper, we focus on the implementations based on the
row, the column, and the 2D mesh distribution schemes.
Below, we describe the implementations of the data
distribution phase for the TMR and EKMR schemes based
on these three distribution schemes. To distribute an array
to processors, it consists of three steps. In the first step, an
array needs to be partitioned into chucks based on a
distribution scheme. In the second step, array elements in a
chuck may need to be packed before distributing to the

LIN ET AL.: EFFICIENT DATA PARALLEL ALGORITHMS FOR MULTIDIMENSIONAL ARRAY OPERATIONS BASED ON THE EKMR SCHEME... 627

Fig. 1. Examples of the Karnaugh map. (a) 1-input for f ¼ X. (b) 2-input

for f ¼ X þ Y . (c) 3-input for f ¼ XZ0 þX0Z. (d) 4-input for

f ¼ YW 0 þ Y 0W .

Fig. 2. The EKMR(3) scheme.

Fig. 3. (a) A three-dimensional array in the TMR(3). (b) The

corresponding EKMR(3).

Fig. 4. The EKMR(4) scheme.

corresponding processor. In the third step, a packed array is
distributed to the corresponding processor. Since the first
and third steps require the same cost for the row, the
column, and the 2D mesh distribution schemes, to evaluate
the performance of these distribution schemes, we will focus
on the packing cost of the second step. We assume that an
n� n� n array, A[k][i][j], and P processors are given.

4.1.1 The Row Distribution Scheme

For TMR(3), A[k][i][j] is distributed to processors by
partitioning the array into P three-dimensional arrays along
the i direction. More precisely, let row_size denote the
number of rows assigned to each processor. The value of
row_size is equal to dn=pe for the first r processors and bn=pc
for the remaining P ÿ r processors, where r is the
remainder of n divided by P. Since array elements of the
partial arrays assigned to each processor are not stored in
consecutive memory locations, they need to be packed
before distributing to processors. An example of the row
distribution scheme for TMR(3) is shown in Fig. 6a. Assume
that the buffer D is used to pack array elements. The
algorithm of the row distribution scheme for TMR(3) is
shown in Fig. 7.

We have mentioned that array elements of the partial
arraysneedto be packed before distributing to processors
since they are not stored in consecutive memory locations.
We use the number of noncontinuous data blocks to
evaluate the cost of packing array elements. The number
of noncontinuous data blocks indicates how many jumps
are needed during the packing, which affects cache usage or
disk seeking time. From Fig. 6a and the algorithm of the row
distribution scheme based on TMR(3), the number of
noncontinuous data blocks on a processor is n. For
P processors, in TMR(3), the number of noncontinuous data
blocks is P � n. For the TMR(n), where n > 3, the distribu-
tion is similar to that of TMR(3). The number of noncontin-
uous data blocks in the TMR(n) on P processors is P � nnÿ2.

Let A0½i0�½j0� be the corresponding EKMR(3) of A[k][i][j].
From the definition of EKMR(3), array A0 consists of n rows
and each row contains n2 array elements. In the row
distribution scheme, A0½i0�½j0� is distributed to processors by
partitioning the array into P two-dimensional arrays along
the i0 direction. The value of row_size is the same as that in
the case of TMR(3). Since array elements in the same row
are stored in consecutive memory locations in EKMR(3),
they do not need to be packed before distributing to
processors. An example of the row distribution scheme for
EKMR(3) is shown in Fig. 6b. The algorithm of the row
distribution scheme for EKMR(3) is shown in Fig. 8.

From Fig. 6b and the algorithm of the row distribution
scheme based on EKMR(3), the numbers of noncontinuous
data blocks on a processor and P processors are both 0. For
EKMR(4), the numbers of noncontinuous data blocks on a
processor and P processors are both 0. For EKMR(n), where
n > 4, array elements of the partial arrays assigned to each
processor are not stored in consecutive memory locations.
They need to be packed before distributing to processors.
An example is shown in Fig. 9.

Let A½mnÿ4�½mnÿ3� . . . ½m1�½l�½k�½i�½j� be an nn n-dimen-
sional array for the TMR(n), where n > 4. Let array A0 be the
corresponding EKMR(n) of array A. Let A0ðmnÿ4;mnÿ3;...m1Þ be a

corresponding EKMR(4) with the size of n2 � n2. The

algorithm of the row distribution scheme for EKMR(n) is

shown in Fig. 10.
From Fig. 9 and the algorithm of the row distribution

scheme based on EKMR(n), the number of noncontinuous
data blocks on P processors is P � nnÿ4. Therefore, in the
row distribution scheme, the number of noncontinuous
data blocks in the EKMR scheme is less than that in the
TMR scheme.

4.1.2 The Column Distribution Scheme

For TMR(3), A[k][i][j] is distributed to processors by
partitioning array A into P three-dimensional arrays along
the j direction. More precisely, let column_size denote the
number of columns assigned to each processor. The value of
column_size is equal to dn=pe for the first r processors and

628 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

Fig. 5. An example of the EKMR(6).

Fig. 6. The row distribution scheme for arrays A and A0 to four

processors. (a) The array A based on TMR(3). (b) The array A0 based

on EKMR(3).

Fig. 7. Algorithm of the row distribution scheme for TMR(3).

Fig. 8. Algorithm of the row distribution scheme for EKMR(3).

bn=pc for the remaining P ÿ r processors, where r is the
remainder of n divided by P. Since array elements of the
partial arrays assigned to each processor are not stored in
consecutive memory locations, they need to be packed
before distributing to processors. An example of the column
distribution scheme for TMR(3) is shown in Fig. 11a. The
algorithm of the column distribution scheme for TMR(3) is
shown in Fig. 12.

For TMR(n), where n > 3, the distribution is similar to
that of TMR(3). From Fig. 11a and the algorithm of the
column distribution scheme based on TMR(3), the number
of noncontinuous data blocks on a processor and
P processors is n2 and P � n2, respectively. For TMR(n),
where n > 3, the distribution is similar to that of TMR(3).
The number of noncontinuous data blocks in TMR(n) on
P processors is P � nnÿ1.

For EKMR(3), in the column distribution scheme, A0½i0�½j0�
is distributed to processors by partitioning the array into P
two-dimensional arrays along the j0 direction. The value of
column_size for EKMR(3) is equal to n2=p

� �
for the first r

processors and n2=p
� �

for the remaining P ÿ r processors. If
n can not be divided by P, there are only n2=p

� �
n or n2=p

� �
n

array elements in each processor for EKMR(3). However,
there are n=pd en2 or n=pb cn2 array elements in each
processor for TMR(3). The load-balancing of data parallel

algorithms based on EKMR(3) is better than those based on
TMR(3). Since array elements of the partial arrays assigned
to each processor are not stored in consecutive memory

locations, they need to be packed before distributing to
processors. An example of the column distribution scheme

for EKMR(3) is shown in Fig. 11b. The algorithms of the
column distribution scheme for EKMR(3) is described in

Fig. 13.
From Fig. 11b and the algorithm of the column

distribution scheme based on EKMR(3), the number of
noncontinuous data blocks on a processor and P processors

is n and P � n, respectively. For EKMR(n), where n > 3, the
distribution is similar to that of EKMR(3). The algorithm of

the column distribution scheme for EKMR(n) is Fig. 14.
An example of the column distribution scheme for

EKMR(6) is shown in Fig. 15. From Fig. 15 and the

algorithm of the column distribution scheme based on
EKMR(n), the number of noncontinuous data blocks on
P processors is P � nnÿ2. Therefore, in the column distribu-

tion scheme, the number of noncontinuous data blocks in
the EKMR scheme is less than that in the TMR scheme.

4.1.3 The 2D Mesh Distribution Scheme

For TMR(3) and EKMR(3), the 2D mesh distribution scheme
inherits the characteristics of the row and the column

LIN ET AL.: EFFICIENT DATA PARALLEL ALGORITHMS FOR MULTIDIMENSIONAL ARRAY OPERATIONS BASED ON THE EKMR SCHEME... 629

Fig. 9. The row distribution scheme for array A0 to four processors based

on EKMR(6).

Fig. 10. Algorithm of the row distribution scheme for EKMR(n).

Fig. 11. The column distribution scheme for arrays A and A0 to four

processors. (a) The array A based on TMR(3). (b) The array A0 based

on EKMR(3).

Fig. 12. Algorithm of the column distribution scheme for TMR(3).

Fig. 13. Algorithm of the column distribution scheme for EKMR(3).

Fig. 14. Algorithm of the column distribution scheme for EKMR(n).

distribution schemes. Since array elementsof the partial
arrays assigned to each processor are not stored in
consecutive memory locations, they need to be packed
before distributing to processors. Examples of the 2D mesh
distribution scheme for TMR(3) and EKMR(3) are shown in
Fig. 16a and Fig. 16b, respectively.

Assume that an n� n� n array, A[k][i][j], and P �Q
processors are given. The algorithms of the 2D mesh
distribution scheme for TMR(3) and EKMR(3) are shown
in Fig. 17.

From Fig. 16a and the algorithm of the 2D distribution

scheme based on TMR(3), the number of noncontinuous

data blocks on a processor and P �Q processors is n2=P

and Q� n2, respectively. From Fig. 16b and the algorithm of

the 2D distribution scheme based on EKMR(3), the number

of noncontinuous data blocks on a processor and P �Q
processors is n=P and Q� n, respectively. For TMR(n) and

EKMR(n), the distributions are similar to those of TMR(3)

and EKMR(3), respectively. The algorithm of the 2D mesh

distribution scheme for EKMR(n) is shown in Fig. 18.

An example of the 2D mesh distribution scheme for

EKMR(6) is shown in Fig. 19. The number of noncontinuous

data blocks in TMR(n) and EKMR(n) in P �Q processors is

Q� nnÿ1 and Q� nnÿ2, respectively. Therefore, in the

2D mesh distribution scheme, the number of noncontinuous

data blocks in the EKMR scheme is less than that in the

TMR scheme.

4.2 The Local Computation Phase for the TMR and
EKMR Schemes

After distributing single array to processors, the next step is
to perform the computation based on the distributed arrays.
In general, the work in the local computation phase is the
same as the sequential algorithm with some changes in the
scope of operated data, i.e., changes the scope of loop
indices for array operations. For the row or the column
distribution schemes, we change the scope of the row or the

column loop index, respectively. For the 2D mesh distribu-
tion scheme, we change the scope of the row and the
column loop indices.

Given P processors, let A½mnÿ4�½mnÿ3� . . . ½m1�½l�½k�½i�½j�
and B½mnÿ4�½mnÿ3� . . . ½m1�½l�½k�½i�½j� be two n-dimensional

arrays with size of nn for the TMR(n); arrays A0 and B0 be

the corresponding EKMR(n) of arrays A and B, respectively;

A0ðmnÿ4;mnÿ3;...;m1Þ and B0ðmnÿ4;mnÿ3;...;m1Þ be two corresponding

EKMR(4); C and C0 be local arrays for TMR(n) and EKMR(n)

in each processor, respectively. The algorithms of the local

computation phase for a matrix-matrix multiplication array

operation based on TMR(n) and EKMR(n) with the row

distribution scheme is shown in Fig. 20. In order to exploit

advantages for the structure of the EKMR scheme, we also

use the concepts provided by O’Boyle et al. [37] to design

algorithms of the local computation phase for matrix-matrix

multiplication array operation based on the EKMR scheme.

For the column and the 2D mesh distribution schemes,

algorithms of the local computation phase for the matrix-

matrix multiplication array operation based on TMR(n) and

EKMR(n) are similar to that based on the row distribution

scheme. Since the page limitation, they are omitted in this

paper.
To evaluate the algorithms of the local computation

phase for array operations based on TMR(n) and EKMR(n),
we analyze the theoretical performance in two aspects, the
cost of addition/subtraction/multiplication operators and
the cache effect. For the cost of addition/subtraction/
multiplication operators, we analyze the numbers of
addition/subtraction/multiplication operators for the index
computation of array elements and array operations in
these algorithms. In this aspect, we use the full indexing
cost for each array element to analyze the performance of
algorithms based on the TMR and EKMR schemes. It is no
doubt that the compiler optimization techniques do achieve
incremental addressing. However, we do not consider any
compiler optimization technique in the theoretical analysis.
The reason is that it is difficult to analyze the effects of
compiler optimization techniques since the effects of the
optimization may depend on the addressing mode of a
machine, the way to write the programs, the efficiency of
the optimization techniques, etc. To analyze the cache effect,
an algorithm called LoopCost that was proposed by Carr et al.
[5], [36] is used to compute the costs of various loop orders
of an array operation. In the algorithm, LoopCost(l) is the
number of cache line accessed by the innermost loop l. The
value of LoopCost(l) reflects the cache miss rate. The smaller
the LoopCost(l), the smaller the cache miss rate. The detail
theoretical analysis can be found in [35]. In the following,

630 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

Fig. 15. The column distribution scheme for array A0 to four processors based on EKMR(6).

Fig. 16. The 2D mesh distribution scheme for arrays A and A0 to four

processors. (a) The array A based on TMR(3). (b) The array A0 based

on EKMR(3).

we summarize the costs of the index computation and the

cache effect shown in [35].

Assume that thecache line size used in algorithm

LoopCost is r and the cost for an addition/subtraction

operator and a multiplication operator is � and �,

respectively. Let A and B be two m�m�m three-

dimensional local arrays based on the TMR(3) and A0 and

B0 are the corresponding local arrays of A and B based on

EKMR(3) with the size of m�m2 in each processor. The

costs of index computation of array elements and array

operations for algorithms of the matrix-matrix multiplication

array operation based on TMR(3) and EKMR(3) is ð10�þ
7�Þm4 and ð4�þ 7�Þm4 þ �m3 þ �m2, respectively. The

LoopCost(l) for algorithms of the matrix-matrix multiplication

array operation based on EKMR(3) and TMR(3) with the

innermost loop index J is

2
m2

r

� �
þ m

r

l m� �
�m2

and 2dm=re þ 1ð Þ �m3, respectively. The LoopCost(l) for
algorithms of the matrix-matrix multiplication array opera-
tion based on TMR(3) with the innermost loop index J is less
than that with other innermost loop order.

Let A½mnÿ4�½mnÿ3� . . . ½m1�½l�½k�½i�½j� and

B½mnÿ4�½mnÿ3� . . . ½m1�½l�½k�½i�½j�

be two mn n-dimensional local arrays and

A0ðmnÿ4;mnÿ3;...;m1Þ½i
0�½j0� and B0ðmnÿ4;mnÿ3;...;m1Þ½i

0�½j0�

are two corresponding EKMR(n) whose EKMR(4) has a size
of m4 in each processor. For TMR(n) and EKMR(n), the costs
of index computation of array elements and array opera-
tions for algorithms of the matrix-matrix multiplication is

3n2 ÿ 3nþ 2

2

� �
�mnþ1 þ ð3nÿ 2Þ�mnþ1

and ð7�þ 10�Þmnþ1 þ �mn þ 2�mnÿ1 þ �mnÿ2�mnÿ3, re-
spectively. The LoopCost(l) for algorithms of the matrix-

matrix multiplication array operation based on EKMR(n) and
TMR(n) with the innermost loop index J is

2
m2

r

� �
þ m

r

l m� �
�mnÿ1

and 2dm=re þ 1ð Þ �mn, respectively. The LoopCost(l) for
algorithms of matrix-matrix multiplication array operation
based on TMR(n) with the innermost loop index J is less
than that with other innermost loop order.

From the above results, first, we can see that the cost of
index computation of array elements based on the EKMR

scheme is less than that based on the TMR scheme. Second,
we can see that the number of cache lines accessed by array
operations based on the EKMR scheme is less than that
based on the TMR scheme.

LIN ET AL.: EFFICIENT DATA PARALLEL ALGORITHMS FOR MULTIDIMENSIONAL ARRAY OPERATIONS BASED ON THE EKMR SCHEME... 631

Fig. 18. Algorithm of the 2D mesh distribution scheme for EKMR(n).

Fig. 17. Algorithms of the 2D mesh distribution scheme for TMR(3) and EKMR(3).

4.3 The Result Collection Phase for the TMR and
EKMR Schemes

Results computed and scattered among processors must be
collected to form a final result. In general, the processor
(host processor) that distributes data is responsible for the
results collection. To collect partial results to form a final
result, the host processor uses different ways to process the
partial results for different array operations. For example,
for the logical array operation, such as All, the host
processor collects the True or False information from each
processor and decides the result is True or False. In this case,
only logical operations are applied to the collected partial
results. For some array operations, such as matrix-matrix
multiplication, after collecting partial results from each
processor, the host processor needs to unpack partial
results into appropriate locations to obtain the final result.
The phase to unpack partial results into appropriate array
positions to obtain the final result is similar to the data
distribution phase. Different array operations may have
different implementations for the result collection phase.
The algorithms of the result collection phase for the matrix-
matrix multiplication array operation based on TMR(n) and
EKMR(n) with the row distribution scheme is shown in
Fig. 21. For the column and the 2D mesh distribution
schemes, algorithms of the result collection phase for the
matrix-matrix multiplication array operation based on
TMR(n) and EKMR(n) are similar to those for the row
distribution scheme. Since the page limitation, they are
omitted in this paper.

5 EXPERIMENTAL RESULTS

To evaluate the performance of data parallel algorithms of
multidimensional array operations based on the EKMR
scheme, we implement the matrix-matrix addition and
matrix-matrix multiplication array operations based on
TMR(3) and EKMR(3) with the row, the column, and the
2D mesh distribution schemes on an IBM SP2 parallel
machine. The IBM SP2 parallel machineis located at
National Center of High Performance Computing (NCHC)
in Taiwan. This super-scalar architecture uses an IBM RISC
System/6000 POWER2 CPU with a clock rate of 66.7 MHz.
There are 40 IBM POWER2 nodes in this system and each
node has a 128KB first-level data cache, a 32KB first-level
instruction cache, and 128MB of memory space. We
compare the time of the data distribution phase, the local
computation phase, and the result collection phase of these
data parallel algorithms. We also implemented data parallel
algorithms for six Fortran 90 array intrinsic functions, All,
Maxval, Merge, Pack, Sum, and Cshift in both TMR(3) and
EKMR(3). These array operations based on TMR(4) and
EKMR(4) with the row distribution scheme were imple-
mented as well. All data parallel algorithms were imple-
mented in C + Message Passing Interface (MPI).

5.1 Performance Comparisons for the Time of the
Data Distribution Phase

Since the data distribution phase is independent to array
operations, the comparisons presented in this subsection are

632 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

Fig. 20. Algorithms of the local computation phase for a matrix-matrix multiplication array operation based on TMR(n) and EKMR(n) with the row
distribution scheme.

Fig. 19. The 2D mesh distribution scheme for array A0 to four processors based on EKMR(6).

applicable to all array operations. Fig. 22 shows the time of
the data distribution phase of the row, the column, and the
2D mesh distribution schemes for TMR(3) and EKMR(3) on
16 processors. From Fig. 22, we can see that the time of the
data distribution phase with different distribution schemes
for EKMR(3) is less than that for TMR(3). The reason is that
the numbers of noncontinuous data blocks with different
distribution schemes for EKMR(3) are all less than those for
TMR(3). Therefore, the packing time for EKMR(3) is less
than that for TMR(3).

Fig. 23 shows the time of the data distribution phase with
various distribution schemes for TMR(3) and EKMR(3) with
200� 200� 200 array size. From Fig. 23, we have similar

observations as those of Fig. 22. Fig. 24 shows the time of
the data distribution phase of the row distribution scheme
for TMR(4) and EKMR(4) on 16 processors. Fig. 25 shows
the time of the data distribution phase of the row
distribution scheme for TMR(4) and EKMR(4) with 50�
50� 50� 50 array size. From Figs. 24 and 25, we can see
that the time of the data distribution phase of the row
distribution scheme for EKMR(4) is less than that for
TMR(4).

5.2 Performance Comparisons for the Time of the
Local Computation Phase

For the local computation phase of algorithms, the loop
repermutation can be applied to reorder the memory
accesses for array elements of array operations to obtain

LIN ET AL.: EFFICIENT DATA PARALLEL ALGORITHMS FOR MULTIDIMENSIONAL ARRAY OPERATIONS BASED ON THE EKMR SCHEME... 633

Fig. 23. The time of the data distribution phase with various distribution

schemes.

Fig. 22. The time of the data distribution phase with various distribution

schemes.

Fig. 21. Algorithms of the result collection phase for the matrix-matrix multiplication array operation based on TMR(n) and EKMR(n) with the row

distribution scheme.

better performance. Therefore, for the matrix-matrix addition

and matrix-matrix multiplication array operations based on

TMR(3), there are six and 24 loop orders can be used to

design different algorithms, respectively. For the matrix-

matrix addition and matrix-matrix multiplication array opera-

tions based on TMR(4), there are 24 and 120 loop orders can

be used to design different algorithms. In [38], we have

shown that sequential algorithms of matrix-matrix addition

and matrix-matrix multiplication array operations based on

TMR(3) and TMR(4) whose innermost loop index is J

outperform those whose innermost loop index is not J.

Therefore, in this paper, we implemented the algorithms of

the local computation phase for the matrix-matrix addition

and matrix-matrix multiplication array operations based on

634 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

Fig. 26. The time of the local computation phase for TMR(3) and EKMR(3). (a) Without the compiler optimization. (b) With the compiler optimization.

Fig. 25. The time of the data distribution phase for TMR(4) and

EKMR(4).

Fig. 24. The time of the data distribution phase for TMR(4) and

EKMR(4).

TMR(3) with KIJ and KIMJ loop orders and TMR(4) with
LKIJ and LKIMJ loop orders, respectively.

Fig. 26 shows the time of the local computation phase for
the matrix-matrix addition and matrix-matrix multiplication
array operations with/without the -O3 compiler optimiza-
tion option based on the TMR(3) and the EKMR(3) with
200� 200� 200 array size on 16 processors. From Fig. 26,
with the same distribution scheme, we can see that the time
of the local computation phase for data parallel algorithms
based on EKMR(3) is less than that of based on TMR(3). The
reason is that the cost of index computation of array
elements and the number of cache lines accessed for array
operations in the EKMR scheme are less than those in the
TMR scheme.

Fig. 27 shows the time of the local computation phase
for the matrix-matrix addition and matrix-matrix multiplica-
tion array operations with/without the -O3 compiler
optimization option based on TMR(4) and EKMR(4) with
the row distribution scheme and 50� 50� 50� 50 array
size on 16 processors. From Fig. 27, we obtain similar
observations as those of Fig. 26.

5.3 Performance Comparisons for the Time of the
Result Collection Phase

Fig. 28 shows the time for the result collection phase of the
matrix-matrix addition and matrix-matrix multiplication array

operations based onTMR(3) andEKMR(3) with 200� 200�
200 array size on 16 processors. From Fig. 28, with the same
distribution scheme, we can see that the time of the result
collection phase for data parallel algorithms based on
EKMR(3) is less than that of based on TMR(3). The reason is
that the unpacking time for EKMR(3) is less than that for
TMR(3).

Fig. 29 shows the time for the result collection phase of
the matrix-matrix addition and matrix-matrix multiplication
array operations based on TMR(4) and EKMR(4) with the
row distribution scheme and 50� 50� 50� 50 array size on
16 processors. From Fig. 29, we have similar observations as
those of Fig. 28.

We also compare the speedups of data parallel algo-
rithms of the matrix-matrix multiplication array operation
based on the TMR and the EKMR schemes. Fig. 30 shows
the speedups of data parallel algorithms of the matrix-matrix
multiplication array operation based on TMR(3) and
EKMR(3) with 200� 200� 200 array size. From Fig. 30,
we can see that the speedups of data parallel algorithms
based on EKMR(3) are better than those based on TMR(3).

Fig. 31 shows the speedups of data parallel algorithms of
matrix-matrix multiplication array operation based on
TMR(4) and EKMR(4) with the row distribution scheme
and 50� 50� 50� 50 array size. From Fig. 31, we have
similar observations as those of Fig. 30.

LIN ET AL.: EFFICIENT DATA PARALLEL ALGORITHMS FOR MULTIDIMENSIONAL ARRAY OPERATIONS BASED ON THE EKMR SCHEME... 635

Fig. 28. The time of the result collection phase for TMR(3) and EKMR(3).

Fig. 27. The time of the local computation phase for TMR(4) and EKMR(4). (a) Without the compiler optimization. (b) With the compiler optimization.

5.4 Performance Comparison for the Total
Execution Time of Data Parallel Algorithms of
Fortran 90 Array Intrinsic Functions

In this section, we compare the total execution time of data

parallel algorithms for six Fortran 90 array intrinsic

functions, All, Maxval, Merge, Pack, Sum, and Cshift in both

TMR and EKMR schemes. Since there are several para-

meters in those array intrinsic functions, in this paper, we

implemented the general case of each array intrinsic
function. For the All array intrinsic function, we implemen-
ted the case All(A > d). This operation is used to identify
whether the values of array elements in A are all larger than
a constant d or not. For the Maxval array intrinsic function,
we implemented the case e = Maxval(A). This operation is
used to find the maximal value of array elements in A. For
the Merge array intrinsic function, we implemented the case
C = Merge(A, B, A > B). This operation is used to identify
those array elements in A whose values are larger than the
corresponding array elements in B. For the Pack array
intrinsic function, we implemented the case C = Pack(A, A >
d). This operation is used to identify array elements in A
whose values are larger than a constant d. For the Sum array
intrinsic function, we implemented the case e = Sum(A).
This operation is used to sum up the values of array
elements in A. For the Cshift array intrinsic function, we
implemented the case B = Cshift(A, 2). This operation is
used to left-shift array A two times along the column
direction and stores the results to array B.

Fig. 32 shows the total execution time for data parallel
algorithms of six Fortran 90 array intrinsic functions based
on TMR(3) and EKMR(3) with 200� 200� 200 array size on
16 processors. From Fig. 32, we can see that the execution
time for data parallel algorithms of six Fortran 90 array
intrinsic functions based on EKMR(3) is less than that based
on TMR(3) for all test cases.

636 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

Fig. 30. The speedups of the matrix-matrix multiplication array operation based on TMR(3) and EKMR(3). (a) The row distribution scheme. (b) The

column distribution scheme. (c) The 2D mesh distribution scheme.

Fig. 29. The time of the result collection phase for TMR(4) and EKMR(4).

Fig. 33 shows the execution time for data parallel
algorithms of Fortran 90 array intrinsic functions based on
TMR(4) and EKMR(4) with the row distribution scheme and
50� 50� 50� 50 array size on 16 processors. From Fig. 33,
we have similar observations as those of Fig. 32.

6 CONCLUSIONS AND FUTURE WORK

In this paper, based on the row, the column, and the
2D mesh distribution schemes, we have designed data
parallel algorithms for the matrix-matrix addition and

matrix-matrix multiplication array operations based on the
EKMR scheme for multidimensional arrays on distributed
memory multicomputers. We also presented data parallel
algorithms for six Fortran 90 array intrinsic functions, All,
Maxval, Merge, Pack, Sum, and Cshift, based on the EKMR
scheme. To evaluate these algorithms, we compared the
time of the data distribution, the local computation, and
the result collection phases of these array operations
based on the EKMR scheme with those based on the TMR
scheme. The experimental results show that the execution
time of array operations based on the EKMR scheme is
less than that based on the TMR scheme in the data
distribution, the local computation, and the result collec-
tion phases for all test cases. The results encourage us to
use the EKMR scheme for multidimensional array
representation on distributed memory multicomputers.

In this paper, we used the loop repermutation and the
concepts proposed by O’Boyle et al. [37] to design algorithms
for multidimensional array operations. All programs of array
operations based on the TMR and EKMR schemes are
derived by hand. However, Kennedy et al. [4], [15], [27],
Ancourt et al. [2], [43], and Kodukula et al. [28] have
proposed some automated methods to generate efficient
parallel codes for two-dimensional array operations based on
the TMR scheme. It is interesting to see if their methods can
be applied to multidimensional array operations. In the
future, we will try to extend their work to multidimensional
array operations based on the TMR and EKMR schemes.

LIN ET AL.: EFFICIENT DATA PARALLEL ALGORITHMS FOR MULTIDIMENSIONAL ARRAY OPERATIONS BASED ON THE EKMR SCHEME... 637

Fig. 32. The execution time for six Fortran 90 array intrinsic functions based on the TMR(3) and the EKMR(3). (a) Row distribution scheme.

(b) Column distribution scheme. (c) Two-dimension mesh distribution scheme.

Fig. 31. The speedups of the matrix-matrix multiplication array operation

based on TMR(4) and EKMR(4).

ACKNOWLEDGMENTS

The work of this paper was partially supported by the
National Science Council under contract NSC89-2213-E-
035-007.

REFERENCES

[1] J.C. Adams, W.S. Brainerd, J.T. Martin, B.T. Smith, and J.L.
Wagener, FORTRAN 90 Handbooks. Intertext Publications/
McGraw-Hill, 1992.

[2] C. Ancourt and F. Irigoin, “Scanning Polyhedra with DO Loops,”
Proc. ACM SIGPLAN Symp. Principles and Practice of Parallel
Programming, pp. 39-50, 1991.

[3] I. Banicescu and S.F. Hummel, “Balancing Processor Loads and
Exploiting Data Locality in N-Body Simulations,” Proc. ACM/IEEE
Supercomputing Conf., 1995.

[4] D. Callahan, S. Carr, and K. Kennedy, “Improving Register
Allocation for Subscripted Variables,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 53-65, 1990.

[5] S. Carr, K.S. McKinley, and C.-W. Tseng, “Compiler Optimiza-
tions for Improving Data Locality,” Proc. Int’l Conf. Architectural
Support for Programming Languages and Operating Systems, pp. 252-
262, 1994.

[6] L. Carter, J. Ferrante, and S.F. Hummel, “Hierarchical Tiling for
Improved Superscalar Performance,” Proc. Int’l Symp. Parallel
Processing, pp. 239-245, 1995.

[7] R.-G. Chang, T.-R. Chung, and J.K. Lee, “Parallel Sparse Supports
for Array Intrinsic Functions of Fortran 90,” J. Supercomputing,
vol. 18, no. 3, pp. 305-339, Mar. 2001.

[8] S. Chatterjee, A.R. Lebeck, P.K. Patnala, and M. Thottethodi,
“Recursive Array Layouts and Fast Parallel Matrix Multiplica-
tion,” Proc. ACM Symp. Parallel Algorithms and Architectures,
pp. 222-231, 1999.

[9] S. Chatterjee, V.V. Jain, A.R. Lebeck, S. Mundhra, and M.
Thottethodi, “Nonlinear Array Layouts for Hierarchical Memory
Systems,” Proc. ACM Int’l Conf. Supercomputing, pp. 444-453, 1999.

[10] T.-R. Chung, R.-G. Chang, and J.K. Lee, “Sampling and Analytical
Techniques for Data Distribution of Parallel Sparse Computation,”
Proc. SIAM Conf. Parallel Processing for Scientific Computing, 1997.

[11] T.-R. Chung, R.-G. Chang, and J.K. Lee, “Efficient Support of
Parallel Sparse Computation for Array Intrinsic Functions of
Fortran 90,” Proc. ACM Int’l Conf. Supercomputing, pp. 45-52, 1998.

[12] M. Cierniak and W. Li, “Unifying Data and Control Transforma-
tions for Distributed Shared Memory Machines,” Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation,
pp. 205-217, 1995.

[13] S. Coleman and K.S. McKinley, “Tile Size Selection Using Cache
Organization and Data Layout,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 279-290, 1995.

[14] J.K. Cullum and R.A. Willoughby, Lanczos Algorithms for Large
Symmetric Eignenvalue Computations. Boston: Birkhauser, 1985.

[15] C. Ding and K. Kennedy, “Improving Cache Performance in
Dynamic Applications through Data and Computation Reorgani-
zation at Run Time,” Proc. ACM SIGPLAN Conf. Programming
Language Design and Implementation, pp. 229-241, 1999.

[16] C.H.Q. Ding, “An Optimal Index Reshuffle Algorithm for Multi-
dimensional Arrays and Its Applications for Parallel Architec-
tures,” IEEE Trans. Parallel and Distributed Systems, vol. 12, no. 3,
pp. 306-315, Mar. 2001.

[17] B.B. Fraguela, R. Doallo, and E.L. Zapata, “Cache Misses
Prediction for High Performance Sparse Algorithms,” Proc. Int’l
Euro-Par Conf., pp. 224-233, 1998.

[18] B.B. Fraguela, R. Doallo, and E.L. Zapata, “Cache Probabilistic
Modeling for Basic Sparse Algebra Kernels Involving Matrices
with a Non-Uniform Distribution,” Proc. IEEE Euro-Micro Conf.,
pp. 345-348, 1998.

[19] B.B. Fraguela, R. Doallo, and E.L. Zapata, “Modeling Set
Associative Caches Behaviour for Irregular Computations,” Proc.
ACM Int’l Conf. Measurement and Modeling of Computer Systems,
pp. 192-201, 1998.

[20] B.B. Fraguela, R. Doallo, and E.L. Zapata, “Automatic Analytical
Modeling for the Estimation of Cache Misses,” Proc. Int’l Conf.
Parallel Architectures and Compilation Techniques, pp. 221-231, 1999.

[21] J.D. Frens and D.S. Wise, “Auto-Blocking Matrix-Multiplication or
Tracking BLAS3 Performance from Source Code,” Proc. ACM
SIGPLAN Symp. Principles and Practice of Parallel Programming,
pp. 206-216, 1997.

[22] G.H. Golub and C.F. Van Loan, Matrix Computations, second ed.
Baltimore, Md.: John Hopkins Univ. Press, 1989.

[23] High Performance Fortran Forum, High Performance Fortran
Language Specification, second ed. Rice Univ., 1997.

[24] M. Kandemir, J. Ramanujam, and A. Choudhary, “Improving
Cache Locality by a Combination of Loop and Data Transforma-
tions,” IEEE Trans. Computers, vol. 48, no. 2, pp. 159-167, Feb. 1999.

[25] M. Kandemir, J. Ramanujam, and A. Choudhary, “A Compiler
Algorithm for Optimizing Locality in Loop Nests,” Proc. ACM Int’l
Conf. Supercomputing, pp. 269-276, 1997.

[26] C.W. Kebler and C.H. Smith, “The SPARAMAT Approach to
Automatic Comprehension of Sparse Matrix Computations,” Proc.
Int’l Workshop Program Comprehension, pp. 200-207, 1999.

[27] K. Kennedy and K.S. McKinley, “Optimizing for Parallelism and
Data Locality,” Proc. ACM Int’l Conf. Supercomputing, pp. 323-334,
1992.

[28] I. Kodukula, N. Ahmed, and K. Pingali, “Data-Centric Multilevel
Blocking,” Proc. ACM SIGPLAN Conf. Programming Language
Design and Implementation, pp. 346-357, 1997.

[29] V. Kotlyar, K. Pingali, and P. Stodghill, “Compiling Parallel
Sparse Code for User-Defined Data Structures,” Proc. SIAM Conf.
Parallel Processing for Scientific Computing, 1997.

[30] V. Kotlyar, K. Pingali, and P. Stodghill, “A Relation Approach to
the Compilation of Sparse Matrix Programs,” Proc. European Conf.
Parallel Processing, pp. 318-327, 1997.

[31] V. Kotlyar, K. Pingali, and P. Stodghill, “Compiling Parallel Code
for Sparse Matrix Applications,” Proc. Supercomputing Conf., pp. 20-
38, Aug. 1997.

[32] B. Kumar, C.-H. Huang, R.W. Johnson, and P. Sadayappan, “A
Tensor Product Formulation of Strassen’s Matrix Multiplication
Algorithm with Memory Reduction,” Proc. Int’l Parallel Processing
Symp., pp. 582-588, 1993.

[33] M.S. Lam, E.E. Rothberg, and M.E. Wolf, “The Cache Performance
and Optimizations of Blocked Algorithms,” Proc. Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 63-74, 1991.

[34] W. Li and K. Pingali, “A Singular Loop Transformation Frame-
work Based on Non-Singular Matrices,” Proc. Workshop Languages
and Compilers for Parallel Computing, pp. 391-405, 1992.

[35] C.-Y. Lin, J.-S. Liu, and Y.-C. Chung, “Efficient Representation
Scheme for Multi-Dimensional Array Operations,” IEEE Trans.
Computers, vol. 51, no. 3, pp. 327-345, Mar. 2002.

[36] K.S. McKinley, S. Carr, and C.-W. Tseng, “Improving Data
Locality with Loop Transformations,” ACM Trans. Programming
Languages and Systems, vol. 18, no. 4, pp. 424-453, July 1996.

[37] M.F.P. O’Boyle and P.M.W. Knijnenburg, “Integrating Loop and
Data Transformations for Global Optimization,” Proc. Int’l Conf.
Parallel Architectures and Compilation Techniques, pp. 12-19, 1998.

[38] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in Fortran 90: The Art of Parallel Scientific
Computing. Cambridge Univ. Press, 1996.

[39] P.D. Sulatycke and K. Ghose, “Caching Efficient Multithreaded
Fast Multiplication of Sparse Matrices,” Proc. Merged Int’l Parallel
Processing Symp. and Symp. Parallel and Distributed Processing,
pp. 117-124, 1998.

638 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 7, JULY 2003

Fig. 33. The execution time for six Fortran 90 array intrinsic functions

based on TMR(4) and EKMR(4).

[40] M. Thottethodi, S. Chatterjee, and A.R. Lebeck, “Tuning Strassen’s
Matrix Multiplication for Memory Efficiency,” Proc. SC: of High
Performance Networking and Computing, 1998.

[41] M. Ujaldon, E.L. Zapata, S.D. Sharma, and J. Saltz, “Parallelization
Techniques for Sparse Matrix Applications,” J. Parallel and
Distribution Computing, vol. 38, no. 2, pp. 256-266, 1996.

[42] M. Wolf and M. Lam, “A Data Locality Optimizing Algorithm,”
Proc. ACM SIGPLAN Conf. Programming Language Design and
Implementation, pp. 30-44, 1991.

[43] Y.Q. Yang, C. Ancourt, and F. Irigoin, “Minimal Data Dependence
Abstractions for Loop Transformations,” Proc. Workshop Languages
and Compilers for Parallel Computing, pp. 201-216, 1994.

[44] L.H. Ziantz, C.C. Ozturan, and B.K. Szymanski, “Run-Time
Optimization of Sparse Matrix-Vector Multiplication on SIMD
Machines,” Proc. Int’l Conf. Parallel Architectures and Languages,
pp. 313-322, 1994.

Chun-Yuan Lin received the BS and MS
degrees in computer science from Feng Chia
University in 1999 and 2000, respectively. He is
currently a PhD student in the Department of
Information Engineering at Feng Chia Univer-
sity. His research interests are in the areas of
parallel and distributed computing, parallel algo-
rithms, array operations, and bioinformatics. He
is a student member of the IEEE Computer
Society and ACM.

Yeh-Ching Chung received the BS degree in
information engineering from Chung Yuan Chris-
tian University in 1983, and the MS and PhD
degrees in computer and information science
from Syracuse University in 1988 and 1992,
respectively. He joined the Department of
Information Engineering at Feng Chia University
as an associate professor in 1992 and became a
full professor in 1999. From 1998 to 2001, he
was the chairman of the department. In 2002, he

joined the Department of Computer Science at National Tsing Hua
University as a full professor. His research interests include parallel and
distributed processing, pervasive computing, embedded software, and
system software for SOC design. He is a member of the IEEE Computer
Society and ACM.

Jen-Shiuh Liu received the BS and MS degrees
in nuclear engineering from National Tsing Hua
University and the MS and PhD degrees in
computer science from Michigan State Univer-
sity in 1979, 1981, 1987, and 1992, respectively.
Since 1992, he has been an associate professor
in the Department of Information Engineering
and Computer Science at Feng Chia University,
Taiwan. His research interests include parallel
and distributed processing, computer networks,
and computer system security.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

LIN ET AL.: EFFICIENT DATA PARALLEL ALGORITHMS FOR MULTIDIMENSIONAL ARRAY OPERATIONS BASED ON THE EKMR SCHEME... 639

