
The Journal of Supercomputing, 22, 277–302, 2002
© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Parallel Shear-Warp Factorization Volume
Rendering Using Efficient 1-D and
2-D Partitioning Schemes for Distributed
Memory Multicomputers∗

CHING-FENG LIN, DON-LIN YANG,† AND {cflin, dlyang, ychung}@fcu.edu.tw
YEH-CHING CHUNG

Department of Information Engineering, Feng Chia University, Taichung 407, Taiwan

Abstract. 3-D data visualization is very useful for medical imaging and computational fluid dynamics.
Volume rendering can be used to exhibit the shape and volumetric properties of 3-D objects. However,
volume rendering requires a considerable amount of time to process the large volume of data. To deliver
the necessary rendering rates, parallel hardware architectures such as distributed memory multicomput-
ers offer viable solutions. The challenge is to design efficient parallel algorithms that utilize the hardware
parallelism effectively. In this paper, we present two efficient parallel volume rendering algorithms, the
1D-partition and 2D-partition methods, based on the shear-warp factorization for distributed memory
multicomputers. The 1D-partition method has a performance bound on the size of the volume data. If
the number of processors is less than a threshold, the 1D-partition method can deliver a good rendering
rate. If the number of processors is over a threshold, the 2D-partition method can be used. To evaluate
the performance of these two algorithms, we implemented the proposed methods along with the slice
data partitioning, volume data partitioning, and sheared volume data partitioning methods on an IBM
SP2 parallel machine. Six volume data sets were used as the test samples. The experimental results show
that the proposed methods outperform other compatible algorithms for all test samples. When the num-
ber of processors is over a threshold, the experimental results also demonstrate that the 2D-partition
method is better than the 1D-partition method.

Keywords: volume rendering, data partitioning, image compositing, shear-warp factorization,
distributed memory multicomputer

1. Introduction

Volume rendering [7] can be used to analyze the shape and volumetric property of
three-dimensional objects for medical imaging and computational fluid dynamics.
Volume rendering can display semi-opaque objects and provide better visualization
of the surface of an object. Three-dimensional scanner devices such as CT and MRI
can acquire the three-dimensional image data in machine-readable form. Volume
rendering is a popular technique for medical imaging used to understand objects
by analyzing the large amount of empirical data obtained from measurements or
simulations [24].

∗ This work was partially supported by the NSC of ROC under contract NSC89-2213-E-035-032.
† Corresponding author.

278 LIN ET AL.

However, most volume rendering methods that produce effective visualizations
are computation intensive [19]. It is very difficult for them to achieve interactive
rendering rates for the large amount of volume data. Even with the latest volume
rendering acceleration technique advance �8� 9�, a few minutes or possibly hours
is required to render the images on a single processor machine. In addition, the
volume data is too large to be held in the memory of a single processor element.
One way to solve the above problems is to parallelize the serial volume rendering
techniques onto distributed memory multicomputers [23].

The shear-warp factorization volume rendering method, proposed by Lacroute
et al. [11], is the fastest volume rendering algorithm. Paralleling the shear-warp fac-
torization volume rendering algorithm onto a distributed memory multicomputer
consists of three stages: the data partitioning stage, the shear-warp rendering stage
and the image compositing stage. In the data partitioning stage, an efficient data
partitioning method is used to distribute the volume data to processors. In the
shear-warp rendering stage, each processor uses the shear-warp factorization vol-
ume rendering method to generate a partial final image. In the image compositing
stage, the partial final images are composited to form a final image. In this paper,
we focus on the data partitioning stage.

Many parallel shear-warp factorization volume rendering methods were proposed
in the literature �1� 18�. Sano et al. [18] proposed a slice data partitioning method
for distributing volume data to processors in the data partitioning stage. The binary-
swap method was used [15] to produce the final image in the image compositing
stage. The drawbacks of the slice volume partitioning method are the number of
processors is restricted to a power of two and considerable time is required to
composite the partitioned sub-volume images during the binary-swap process.

Amin et al. [1] presented a volume data partitioning method for distributing
volume data to processors in the data partitioning stage. The partial intermediate
images produced by this method have overlapped areas. In the image compositing
stage, this method requires extra communication and computation overhead to use
the over operation for compositing the partial final images. To improve the perfor-
mance of the volume data partitioning method, they presented a sheared volume
data partitioning method for distributing the volume data to the processors in the
data partitioning stage. This method produces partial intermediate images with-
out overlapped areas. In the image compositing stage, a simple merge operation
is used to produce a final image. The overhead is small. However, in the sheared
volume data partitioning method, the volume data is not evenly distributed to the
processors. The processor load imbalance may increase the computation time in the
shear-warp rendering stage.

To solve the problems stated above, we present efficient parallel one-dimensional
and two-dimensional partition shear-warp factorization volume rendering methods
for distributed memory multicomputers. For the parallel one-dimensional partition
shear-warp factorization volume rendering method (the 1D-partition method for
short), in the data partitioning stage, we developed an 1-D partitioning scheme to
partition the volume data based on the mathematical formula derived from the
number of processors and the viewing angle. The 1-D partitioning method not only
reduces the computation time and the communication overhead, but also achieves

PARALLEL SHEAR-WARP FACTORIZATION VOLUME RENDERING 279

load balancing. In the shear-warp rendering stage, we used the shear-warp method
proposed in [8] to render the sub-volume and generate the partial final images
independently. In the image compositing [17] stage, because the partial final images
do not have overlapped areas, a simple merge operation is used for assembling the
partial final images into a final image.

According to the performance analysis of the 1D-partition method, we found
that the speedup of the 1D-partition method does not increase when the number
of processors is over a threshold. Therefore, we present a parallel two-dimensional
partition shear-warp factorization volume rendering method (2D-partition method
for short) for the case where the number of processors is over a threshold. For the
2D-partition method, in the data partitioning stage, we first decided the number of
horizontal and vertical processors. We then developed a 2-D partitioning scheme
to partition the volume data based on the mathematical formula derived from the
number of horizontal and vertical processors and the viewing angle. In the shear-
warp rendering stage, the shear-warp volume rendering method is used to render the
sub-volume and generate the partial warped intermediate images independently. In
the image compositing stage, the over operation is applied first for compositing the
partial warped intermediate images from the vertical processors to form the partial
final images. A simple merge operation, similar to the image compositing stage of
the 1D-partition method, is then used for assembling the partial final images into a
final image.

To evaluate the performance of the proposed methods, we implemented them
along with the slice data partitioning [18], volume data partitioning [1], and sheared
volume data partitioning [1] methods on an IBM SP2 parallel machine. The exper-
imental results show that the 1D-partition and 2D-partition methods outperform
the methods proposed in [1] and [18]. The experimental results also show that the
2D-partition method has better performance than the 1D-partition method when
the number of processor is over a threshold.

The remainder of this paper is organized as follows. In Section 2, we describe
the shear-warp factorization volume rendering method and a number of proposed
parallel share-warp factorization volume rendering methods. We then present and
analyze the 1D-partition and 2D-partition methods in Sections 3 and 4, respectively.
In Section 5, the performance results from the proposed methods are compared
with the other parallel shear-warp factorization volume rendering methods on an
IBM SP2 parallel machine.

2. Related work

The proposed volume rendering methods can be classified into the following types,
ray tracing, splatting, cell projection, multi-pass resampling, and shear-warp factor-
ization methods. The ray tracing method �5� 13� 14� is called the backward projection
or the image order method. It traces a ray through the volume data for each image
pixel, computes the color and opacity of the volume data along the path, and pro-
duces a final image. The splatting method [12] is called the forward projection or
the object order method. It computes the contribution of a voxel to the image by

280 LIN ET AL.

convolving the voxel with a filter that distributes the voxel’s value to the neighboring
pixels. The cell projection method [21] is similar to the splatting method except that
it uses a polygon scan conversion to perform the projection. The multi-pass resam-
pling method [20] operates by resampling the entire volume to the image coordinate
system. Catmull and Smith introduced the multi-pass resampling method for warp-
ing two-dimensional images. This technique was first applied to render the volume
data in Pixar [3].

The shear-warp factorization method proposed by Lacroute and Levey [11] is an
object-order volume rendering method. This method has three major stages. In the
first stage, a three-dimensional volume data is sheared based on a factorization of
the viewing transformation matrix. In the second stage, a projection method is used
to generate an intermediate image. In the final stage, a two-dimensional image is
warped to form a final image. Figure 1 illustrates the three stages of the shear-warp
factorization volume rendering method [10].

Sano et al. [18] proposed a parallel shear-warp factorization volume rendering
method on distributed memory multicomputers. In this method, they employ the
slice data partitioning method to distribute volume data to each processor. This
method first groups volume slices into a set of sub-volumes. Each processor is then
assigned several continuous sub-volumes. Each processor uses the shear-warp fac-
torization method to perform run-length encoding and resampling of all allocated
sub-volumes. The partial intermediate image from the sub-volumes is then gener-
ated in parallel. Finally, these partial intermediate images are composited to form
a complete intermediate image and a warping method is used to produce the final
image. An example is given in Figure 2. In Figure 2, there are eight volume slices
in the volume data. We used horizontal lines to represent the volume data slices.
Assume that there are four processors P0� P1� P2, and P3 available in the system.
When the slice volume partitioning method is performed, each processor is assigned
two slices denoted by a dotted rectangle. Each processor uses the serial shear-
warp factorization to generate a partial intermediate image from the sub-volumes
assigned to it. We used thin horizontal lines to denote the partial intermediate

shearviewing rays volume
slices

final image
final image

project

warp

Intermediate
image

Figure 1. The shear-warp factorization volume rendering method.

PARALLEL SHEAR-WARP FACTORIZATION VOLUME RENDERING 281

sheared
volume
slices

binary-swap
compositing

final image

warp

partial
intermediate

images

P0

P1

P2

P3

I0

I1

I2

I3

intermedate
image

 volume slices

P0

P1

P2

P3

shear

Figure 2. The slice data partitioning method.

images I0� I1� I2, and I3 on the right. These four partial images are composited to
form a complete intermediate image using the binary-swap compositing method.
The warp operation is employed in the final step to produce the final image.

The main advantage of the slice volume partitioning method is that it is easily
implemented in parallel. The drawbacks of this method are that the number of
processors is restricted to a power of two and a lot of time is necessary to composite
the partial intermediate images during the binary-swap compositing.

The volume data partitioning method, proposed by Amin et al. [1], is another
simple partitioning method that performs better than the slice volume partitioning
method. The major improvement of this method is that it avoids the requirement
for a large intermediate image in each processor using vertical slicing. In Figure 3,
there are four processor elements P0� P1� P2, and P3. Assume that there are eight
volume slices in the volume data, which is sliced into four modules denoted by dash

shear

 volume slices

P0 P1 P2 P3
P0 P1 P2 P3

overlap
overlap

overlap

intermediate image

sheared volume
slices

I0
I1 I2

I3

Figure 3. The volume data partitioning method.

282 LIN ET AL.

line parallelograms. Each slice is divided into four pieces and each module contains
one piece from each slice. Each processor has eight pieces that are contained in
one parallelogram. After data partitioning, processor Pi uses the shear-warp factor-
ization to generate the partial intermediate image, Ii, from the eight pieces, where
i = 0� � � � � 3. An image compositing method is then used to form the complete
intermediate image that will be warped to generate the final image.

When shearing the volume data, the partial intermediate images will have over-
lapped areas and the parts generated from the processors that intersect will be
assembled. While the overlapped areas of the partial intermediate images have com-
munication overheads, the compositing intersection parts will have extra computa-
tion overhead. Therefore, the disadvantage of the volume data partitioning method
is that the communication and computation time will increase when it is sheared at
a large angle. As a result, more scan lines are produced and an over operation is
required to compute the color and opacity for each image pixel.

The sheared volume data partitioning method proposed by Amin et al. [1] is
a novel data partitioning method that can avoid the communication overhead of
overlapped areas. The volume data is sheared first and then partitioned by slicing
orthogonally to the volume data slices according to the viewing angle. Figure 4
shows an example of the sheared volume data partitioning method with eight slices
of volume data. The first stage involves shearing in the viewing direction angle, and
then deriving rays orthogonally to the slices. Four partitioned modules are therefore
generated from the designated volume segments. For example, P0 contains a triangle
formed by the designated slices on the left. P1 contains a rectangle formed by the
middle slices. P2 and P3 are similar to P1 and P0, respectively. We can see that the
partial intermediate images in the processors do not have any overlapped areas.
Each processor produces a disjointed partial intermediate image and that partial
intermediate image can be warped independently. In this way, no compositing is
required across processor boundaries. However, the processor load is not balanced.
The processor load imbalance will increase the computation time for the shear-warp
process.

shear

sheared volume
slices

P0 P1 P2 P3

I0 I1 I2 I3

intermediate
image

Figure 4. The sheared volume data partitioning method.

PARALLEL SHEAR-WARP FACTORIZATION VOLUME RENDERING 283

3. The 1D-partition method

In this section, we will describe and analyze the 1D-partition method in detail. The
1D-partition method is divided into the following three stages:

Stage 1: The data partitioning stage. In this stage, the 1-D partitioning scheme
is developed for partitioning volume data into sub-volumes according to the
mathematical formulae derived from the viewing angle and the number of
processors.

Stage 2: The shear-warp rendering stage. In this stage, each processor uses the
shear-warp factorization volume rendering method to generate the corresponding
partial final image.

Stage 3: The image compositing stage. In this stage, a simple merge operation is
used for compositing the partial final images to form a final image.

Figure 5 shows the behavior of the 1D-partition method. In the following sub-
sections, we will discuss the data partitioning stage, the shear-warp rendering stage
and the image compositing stage of the 1D-partition method.

3.1. The data partitioning stage

The goals of the data partitioning stage are to distribute volume data to the proces-
sors evenly and minimize the communication overhead and the image compositing

shear

sheared volume
slices

M0 M1 M2 M3

warp

intermediate
images

final image

merge

I1I0 I2 I3

partial final
images

1-D partitioning

M0 M1 M2 M3 project

volume slices

θ

Figure 5. The behavior of the 1D-partition method.

284 LIN ET AL.

time. The slice volume partitioning method [18] distributes the volume data slices
to the processors evenly. However, this method results in high communication over-
head and extra compositing time in the image compositing stage. The volume data
partitioning method [1] distributes volume data to the processors evenly and mini-
mizes the communication overhead in the image compositing stage. However, extra
image compositing time is required in the image compositing stage. The sheared
volume data partitioning method [1] minimizes the communication overhead and
no extra image compositing time is required in the image compositing stage. The
volume data is, however, not evenly distributed to the processors.

The 1-D partitioning scheme concept involves partitioning volume data evenly by
partitioning the sheared volume slices orthogonally according to the mathematical
formulae derived from the viewing angle and the number of processors. However,
in the implementation, the volume slices are not sheared when they are partitioned
into modules. According to the mathematical formula derived below, the 1-D parti-
tioning scheme can determine which voxel belongs to which module and distributes
the voxels to their corresponding processors. The shear operation is then performed
in the shear-warp rendering stage. Figure 5 shows an example of the 1-D partition-
ing scheme. In Figure 5, we can see that the volume data is partitioned into four
equal volume data modules, M0�M1�M2, and M3, using the derived mathematical
formulae that will be described later. The modules are assigned to four proces-
sors. Because the partial intermediate images of the four processors, denoted by
I0� I1� I2, and I3, do not have any overlapped area, they can be warped indepen-
dently and used to form partial final images. In the image compositing stage, the
merge operation is used to composite the partial final images to form a final image.
The communication overheads can be minimized and no extra image compositing
time is required because the partial final images have no overlapped area in the
image compositing stage.

In the following, we derive the mathematical formulae used to partition the vol-
ume data. To simplify our notations, we assumed that the size of volume data is
n× n× n and P processors are used, where n is the size of each dimension. P pro-
cessors form a processor array and are denoted as P0� P1� P2� � � � � and PP−1. Given
a viewing angle �, when partitioning the sheared volume slices orthogonally into P
modules such that each module has the same number of voxels, we obtained three
cases as shown in Figure 6. Assume that the height of the triangle part (i) shown
in Figure 6 is x. The base of the triangle part is x tan �. Because the area of the
triangle is equal to n2

P
, we have

1
2
x2 tan � = n2

P
⇒ x = n

√
2

P tan �
�

When x tan � is smaller than n tan �, we have the case shown in Figure 6(a),
that is,

x tan � < n tan � ⇒ n

√
2

P tan �
× tan � < n tan � ⇒ tan � >

2
P

�

PARALLEL SHEAR-WARP FACTORIZATION VOLUME RENDERING 285

shear shearshear

(i) (i) (i)(i)(i)(i)(ii) (ii) (ii)(ii)(iii) (iii)(iv)

x

y

M1

Mk

θ

x

θ

x

θ

(a) tanθ >
2

P
. (b) tanθ =

2

P
. (c) tanθ <

2

P
.

Figure 6. Three cases for the 1-D data partitioning scheme formulae.

When x tan � is equal to n tan �, we have the case shown in Figure 6(b), that is,

x tan � = n tan � ⇒ n

√
2

P tan �
× tan � = n tan � ⇒ tan � = 2

P
�

When x tan � is larger than n tan �, we have the case shown in Figure 6(c), that is,

x tan � > n tan � ⇒ n

√
2

P tan �
× tan � > n tan � ⇒ tan � <

2
P

�

The tan � value can therefore be used to determine the sizes of the partial inter-
mediate images. In the following, we will give the mathematical formulae for deter-
mining the sizes of the partial intermediate images for the partitioned modules
for the three cases shown in Figure 6. We use Ii to denote the size of the partial
intermediate image of partitioned module Mi, where i = 0� � � � � P − 1. To avoid a
lengthy description, the detailed proofs are omitted.

Case 1: tan � > 2
P
. The formulae for determining the sizes of the partial inter-

mediate images of the partitioned modules for the four different shapes shown in
Figure 6(a) are given below.

• The triangle portions (denoted as (i) in Figure 6(a)): The individual size of the
partial intermediate images of the triangle portions, M0 and MP−1, can be deter-
mined using Eq. (1),

Ii = n

√
2 tan �

P
� for i = 0 and P − 1� (1)

• The trapezoid portions (denoted as (ii) in Figure 6(a)): According to the values of
P� n, and �, there are 2 × ��P tan �/2� − 1� trapezoid portions, M1� � � � �Mk and
MP−k−1� � � � �MP−2, where k = �P tan �/2� − 1. The individual sizes of the partial

286 LIN ET AL.

intermediate images of M1� � � � �Mk and MP−k−1� � � � �MP−2 can be determined
using Eq. (2),

Ii=




n

√
2tan�

P
�
√

�i+1�−√
i�� for i=1�����k

n

√
2tan�

P
�
√

P−i−√
P−1−i�� for i=P−k−1�����P−2

� (2)

• The pentagon portions (denoted as (iii) in Figure 6(a)): The individual size of
the partial intermediate images of the pentagon portions, Mk+1 and MP−k−2, can
be determined using Eq. (3),

Ii = n

(
k + 1

P
+ 1

2
tan � + 1 −

√
2�k + 1� tan �

P

)
�

for i = k + 1 and P − k − 2� (3)

• The middle rectangle portions (denoted as (iv) in Figure 6(a)): The individ-
ual size of the partial intermediate images of the middle rectangle portions,
Mk+2� � � � �MP−k−3, can be determined using Eq. (4),

Ii=
n

P−k

(
3
2
tan�− k+1

P
tan�−2

)
� for i=k+2�����P−k−3� (4)

Case 2: tan � = 2
P
. The formulae for determining the sizes of the partial inter-

mediate images of the partitioned modules for the two different shapes shown in
Figure 6(b) are given below.

• The triangle portions (denoted as (i) in Figure 6(b)): The individual size of the
intermediate images of the triangle portions, M0 and MP−1, can be determined
using Eq. (5),

Ii = n tan �� for i = 0 and P − 1� (5)

• The middle rectangle portions (denoted as (ii) in Figure 6(b)): The individ-
ual size of the partial intermediate images of the middle rectangle portions,
M1� � � � �Mp−2, can be determined using Eq. (6),

Ii =
n

P − 2
�1 − tan ��� for i = 1� � � � � P − 2� (6)

Case 3: tan � < 2
P
. The formulae for determining the sizes of the intermediate

images of the partitioned modules for the two different shapes shown in Figure 6(c)
are given below.

• The trapezoid portions (denoted as (i) in Figure 6(c)): The individual size of
the partial intermediate images of the trapezoid portions, M0 and MP−1, can be
determined using Eq. (7),

Ii = n

(
1
P

+ 1
2

tan �

)
� for i = 0 and P − 1� (7)

PARALLEL SHEAR-WARP FACTORIZATION VOLUME RENDERING 287

• The middle rectangle portions (denoted as (ii) in Figure 6(c)): The individ-
ual size of the partial intermediate images of the middle rectangle portions,
M1� � � � �MP−2, can be determined using Eq. (8),

Ii =
n

P − 2

(
1 − 2

P

)
� for i = 1� � � � � P − 2� (8)

3.2. The shear-warp rendering stage and the image compositing stage

After the volume data is partitioned into P modules with an equal number of
voxels, each processor is assigned one module. Each processor uses the shear-warp
factorization volume rendering method for rendering the assigned voxels and then
generates the corresponding partial final image independently.

After the shear-warp rendering stage, each processor contains a partial final
image. In the image compositing stage, the partial final images generated from each
processor are composited to form a final image. Because the partial final image in
each processor is generated independently and does not overlap or intersect with
any other partial final image, a simple merge operation is used for compositing
the partial final images into the final image. By using the gather directives of a
message-passing library, such as MPICH, on distributed memory multicomputers,
the image compositing time is minimized. Therefore, the advantages of our simple
merge operation are twofold:

(1) There is no restriction regarding the number of processors, i.e., the 1D-partition
method can be used in cases where the number of processors is not a power of
two.

(2) The image compositing time is short and fixed.

The algorithm for the 1D-partition method is given as follows.

Algorithm 1D-partition_Method�V � �� P� �
/* V is a volume data. */
/* � is the shearing angle */
/* P is the number of processors. */
/* I is the final image. */

1. Calculate the value of tan �;
2. Compute M = 2

P
and compare M with tan �;

3. if tan � > M then use formulae (1)(2)(3)(4) to partition V
4. else if tan � = M then use formulae (5)(6) to partition V
5. else use formulae (7)(8) to partition V ;
6. for each processor Pi do parallel�
7. Use shear-warp factorization volume rendering method to generate

a partial final image Ai;
�

8. I �= merge�Ai�;
9. return I ; �

end_of_1D-partition_Method

288 LIN ET AL.

3.3. Performance analysis of the 1D-partition method

The time complexity of the shear-warp rendering and image compositing stages of
the 1D-partition method are analyzed in this subsection. The time complexity of the
data partitioning stage was not evaluated because this stage is a preprocessing step
for distributing the voxels to each processor. A summary of the notations used in
the performance analysis is given below.

• Ts is the startup time of a communication channel.
• Tp is the data transmission time per byte.
• Tv-shear is the time for shearing one voxel of a sub-volume.
• Tv-project is the time for projecting one voxel of a sub-volume.
• Tp-warp is the time for warping one pixel in a partial intermediate image.
• P is the number of processors.
• n is the size of each dimension of a volume data.
• Ai is the partial final image size of Pi.
• � is the viewing angle.

3.3.1. The shear-warp rendering stage. After applying the 1-D partitioning scheme
to the volume data in the data partitioning stage, each processor gets an equal num-
ber of voxels. Each processor generates a partial intermediate image by shearing
and projecting voxels assigned to it; and warping the partial intermediate image
independently to form the partial final image. Therefore, the time of the shear-
warp rendering stage, denoted by Tshear-warp, is the sum of Tshear� Tproject, and Twarp,
where Tshear� Tproject and Twarp are the time for a processor to perform shear, project
and warp operations for a given sub-volume, respectively. We have

Tshear-warp = Tshear + Tproject + Twarp =
n3

P
Tv-shear +

n2

P
Tv-project +

n2

P
Tp-warp

= n2

P
�n · Tv-shear + n · Tv-project + Tp-warp� (9)

3.3.2. The image compositing stage. In the image compositing stage, since there
is no overlapping area among the partial final images in the processors, we used
a simple merge operation for compositing the partial final images to form a final
image. Therefore, the time for the image compositing stage is

Tcomposite =
P−1∑
i=0

�Tp · Ai + Ts� = �n2 − ��Tp + �P − 1�Ts� (10)

where � is the partial final image size of the root processor that gathers partial final
images from other processors.

PARALLEL SHEAR-WARP FACTORIZATION VOLUME RENDERING 289

3.3.3. Performance upper bound of the 1D-partition method. The total rendering
time T1D-partition of the 1D-partition method is the sum of Eqs. (9) and (10) as follows:

T1D-partition = Tshear-warp + Tcomposite

= n2

P
�n · Tv-shear + n · Tv-project + Tp-warp� + �n2 − ��Tp

+ �P − 1�Ts� (11)

To find the performance bound, we compare the total rendering time for P and
P+1 processors are used. We have

TP = n2

P
�n · Tv-shear + n · Tv-project + Tp-warp� + �n2 − �p�Tp + �P − 1�Ts

and

TP+1 =
n2

P + 1
�n · Tv-shear + n · Tv-project + Tp-warp� + �n2 − �P+1�Tp

+ �P + 1 − 1�Ts�

The difference of TP and TP+1 is

�T = TP − TP+1 = n2�n · Tv-shear + n · Tv-project + Tp-warp�
1

P�P + 1�

− ��P − �P+1�Tp − Ts (12)

From Eq. (7), we have

�� = �P − �P+1 = n

(
1
P

+ 1
2

tan �

)
− n

(
1

P + 1
+ 1

2
tan �

)
= n

P�P + 1�
�

Therefore, Eq. (12) can be replaced by

�T = TP − TP+1

= n2�n · Tv-shear + n · Tv-project + Tp-warp�
1

P�P + 1�
− n

P�P + 1�
Tp − Ts�

By setting �T = 0, we have

n2�n · Tv-shear + n · Tv-project + Tp-warp�
1

P�P + 1�
= n

P�P + 1�
Tp + Ts�

Since Tp is much smaller than Ts , if n/P�P + 1� < 1� �n/P�P + 1��Tp + Ts will be
very close to Ts . Since Ts is a constant, if �T → 0� n/P�P + 1� < 1. Therefore, we
can derive

P >
−1 +√

1 + 4n
2

≈ √
n� (13)

Given an n × n × n volume data set, Eq. (13) indicates that the total rendering
time for the 1D-partition method will not be improved when P is greater than

√
n.

290 LIN ET AL.

4. The 2D-partition method

As we know, a good parallel volume rendering algorithm tries to obtain a linear rela-
tionship between the performance speedup and the increase in available processors.
From Eq. (13), we know that the number of processors used for the 1D-partition
method is bounded by

√
n. To improve the speedup when more than

√
n proces-

sors are used, we developed another method called the 2D-partition method. The
2D-partition method is divided into the following three stages.

Stage 1: The data partitioning stage. In this stage, a 2-D partitioning scheme is
developed for partitioning volume data into sub-volumes according to the mathe-
matical formula derived from the viewing angle and the number of processors.

Stage 2: The shear-warp rendering stage. In this stage, each processor uses the
shear-warp factorization volume rendering method to generate a partial final image.

Stage 3: The image compositing stage. In this stage, the pixel compositing
method is used for compositing the partial final images in the vertical slices to form
partial composited final images. The merge operation is then used for assembling
the partial composited final images into a final image.

Figure 7 shows the behavior of the 2D-partition method. In the following sub-
sections, we will discuss the data partitioning stage, the shear-warp rendering stage,
and the image compositing stage of the 2D-partition method.

shear

sheared
volume
slices

M0,0 M0,1 M0,2 M0,3

warp

M1,0 M1,1 M1,2 M1,3

I1,0 I1,1 I1,2

I0,2I0,1

I0,0

I0,3

I1,3

partial
intermediate imaget i

final image

merge

partial
final image

partial warped
intermediate

image

M0,0 M0,1 M0,2 M0,3

M1,0 M1,1 M1,2 M1,3

2-D partitioning

compositing

θ

Figure 7. The behavior of the 2D-partition method.

PARALLEL SHEAR-WARP FACTORIZATION VOLUME RENDERING 291

4.1. The data partitioning stage

The 2-D partitioning scheme combines the 1-D partitioning scheme with the slice
data partitioning method to partition volume data into modules with approximately
the same number of voxels. Given an n × n × n volume data set and P = Pv × Ph

processors, the 2-D partitioning scheme first partitions the sheared volume slices
into Ph parts using the 1-D partitioning scheme. Each part is then partitioned into
Pv modules with approximately the same number of voxels by using the slice data
partitioning method. We use Pi� j�Mi� j� to denote the processor (module) in the ith
row and the jth column of a processor grid (a partitioned sheared volume slice),
where i = 0� � � � � Pv − 1 and j = 0� � � � � Ph − 1. Mi� j is assigned to processor Pi� j .
Again, in the implementation, the volume slices are not sheared when they are
partitioned into modules. According to the mathematical formula derived below,
the 2-D partitioning scheme can determine which voxel belongs to which module
and distributes the voxels to their corresponding processors.

According to the values of Ph� Pv� n, and � values, we can derive a mathe-
matical formula to determine the size of the partial intermediate image of mod-
ule Mi� j . In the following, we will give the mathematical formulae for the cases
shown in Figure 8. To avoid a lengthy description, the detailed proofs were omit-
ted. We use M∗� j to denote the modules in the jth column, that is, M∗� j =
�M0� j �M1� j � � � � �MPv−1� j�.

Case 1: tan � > 2
Ph
. The formulae for determining the sizes of the partial inter-

mediate images of the partitioned modules for the four different shapes shown in
Figure 8(a) are given below.

• The left- and right-side portions (denoted as (i) in Figure 8(a)): The individual
sizes of the partial intermediate images of the left- and right-side portions, M∗� 0
and M∗� Ph−1, can be determined using Eq. (14),

shear

Mk,*

M2,*

θ

shear

θ

shear

θ

(i) (i) (i)(i)(i)(i)(ii) (ii) (ii)(ii)(iii) (iii)(iv)

(a) tanθ >
2
Ph PhPh

. (b) tanθ =
2

. (c) tanθ <
2

.

Figure 8. Three cases for the 2-D partitioning scheme.

292 LIN ET AL.

Ii�j =




n

√
2tan�

Ph

(
i+1√

Pv

)
� for i=0�����Pv−1 and j=0

n

√
2tan�

Ph

(
Pv−i√

Pv

)
� for i=0�����Pv−1 and j=Ph−1

� (14)

• The trapezoid portions (denoted as (ii) in Figure 8(a)): According to the Ph� n,
and � values, there are 2 × ��Ph tan �/2� − 1� trapezoid portions, M∗� 1� � � � �M∗� k

and M∗� Ph−k−1� � � � �M∗�Ph−2, where k = �Ph tan �/2� − 1. The individual sizes of
the partial intermediate images of M∗� 1� � � � �M∗� k and M∗� Ph−k−1� � � � �M∗� Ph−2 can
be determined using Eq. (15),

Ii�j =




n

√
2tan�

Ph

�
√

�j+1�−√j��

for i=0�����Pv−1 and j=1�����k

n

√
2tan�

Ph

�
√

Ph−j−√Ph−1−j��

for i=0�����Pv−1 and j=Ph−k−1�����Ph−2

� (15)

• The pentagon portions (denoted as (iii) in Figure 8(a)): The individual size of
the partial intermediate images of the pentagon portions, M∗� k+1 and M∗� Ph−k−2,
can be determined using Eq. (16),

Ii� j = n

(
k + 1
Ph

+ 1
2

tan � + 1 −
√

2�k + 1� tan �

Ph

)
�

for i = 0� � � � � Pv − 1! j = k + 1 and Ph − k − 2� (16)

• The middle rectangle portions (denoted as (iv) in Figure 8(a)): The individ-
ual size of the partial intermediate images of the middle rectangle portions,
M∗� k+2� � � � �M∗� Ph−k−3, can be determined using Eq. (17),

Ii� j =
n

Ph − k

(
3
2

tan � − k + 1
Ph

tan � − 2
)
�

for i = 0� � � � � Pv − 1 and j = k + 2� � � � � Ph − k − 3� (17)

PARALLEL SHEAR-WARP FACTORIZATION VOLUME RENDERING 293

Case 2: tan � = 2
Ph
. The formulae for determining the sizes of the partial inter-

mediate images of the partitioned modules for the two different shapes shown in
Figure 8(b) are given below.

• The triangle portions (denoted as (i) in Figure 8(b)): The individual sizes of the
partial intermediate images of the triangle portions, M∗� 0 and M∗� Ph−1, can be
determined using Eq. (18),

Ii� j =




n tan �

(
i + 1√

Pv

)
� for i = 0� � � � � Pv − 1 and j = 0

n tan �

(
Pv − i√

Pv

)
� for i = 0� � � � � Pv − 1 and j = Ph − 1

� (18)

• The middle rectangle portions (denoted as (ii) in Figure 8(b)): The individ-
ual size of the partial intermediate images of the middle rectangle portions,
M∗� 1� � � � �M∗� Ph−2, can be determined using Eq. (19),

Ii�j =
n

Ph−2
�1−tan��� for i=0�����Pv−1 and j=1�����Ph−2� (19)

Case 3: tan � < 2
Ph
. The formulae for determining the sizes of the partial inter-

mediate images of the partitioned modules for the two different shapes shown in
Figure 8(c) are given below.

• The trapezoid portions (denoted as (i) in Figure 8(c)): The individual sizes of the
partial intermediate images of the trapezoid portions, M∗� 0 and M∗� Ph−1, can be
determined using Eq. (20),

Ii�j =




n

(
1
Ph

+ 1
2
tan�

)(
i+1√

Pv

)
� for i=0�����Pv−1 and j=0

n

(
1
Ph

+ 1
2
tan�

)(
pv−i√

Pv

)
� for i=0�����Pv−1 and j=Ph−1

� (20)

• The middle rectangle portions (denoted as (ii) in Figure 8(c)): The individ-
ual size of the partial intermediate images of the middle rectangle portions,
M∗� 1� � � � �M∗� ph−2, can be determined using Eq. (21),

Ii�j =
n

Ph−2

(
1− 2

Ph

)
� for i=0�����Pv−1 and j=1�����Ph−2� (21)

294 LIN ET AL.

4.2. The shear-warp rendering stage and the image compositing stage

After the volume data is partitioned into Pv × Ph modules with approximately the
same number of voxels, each processor is assigned one module. Each processor
then uses the shear-warp factorization method for rendering the assigned voxels
and generates the corresponding partial warped intermediate image independently.

After the share-warp rendering stage, each processor contains a partial warped
intermediate image. In the image compositing stage, the partial warped intermedi-
ate images in the same column, I∗� j , are assembled first, where j = 0� � � � � Ph − 1.
Because the partial warped intermediate images in I∗� j have overlapped areas, pro-
cessor Pi� j sends its Ii� j to processor PPv−1� j and PPv−1� j uses the over operation to
assemble these partial warped intermediate images into a partial final image, where
j = 0� � � � � Ph − 1. The merge operation presented in the 1D-partition method is
then used for compositing the partial final images IPv−1� ∗ to form a final image.

The algorithm for the 2D-partition method is given as follows.

Algorithm 2D-partition_Method�V � �� P� �
/* V is a volume data. */
/* P is the number of processors. */
/* � is the shearing angle */
/* I is the final image */

1. Calculate the value of tan �;
2. Factorize P to form P = Ph × Pv� Ph is the largest value smaller than

or equal to
√

n;
3. Compute M = 2

ph
and compare M with tan �;

4. if tan � > M then use formulae (14)(15)(16)(17) to partition V
5. else if tan � = M then use formulae (18)(19) to partition V
6. else use formulae (20)(21) to partition V ;
7. for each processor Pi� j do parallel�
8. Use the shear-warp factorization volume rendering method to generate

a partial warped intermediate image Ai� j ;
9. �
10. APv−1� j := pixel_compositing(A∗� j)
11. I �= merge�APv−1� ∗�;
12. return I ; �

end_of_2D-partition_Method

4.3. Performance analysis of the 2D-partition method

The time complexity of the shear-warp rendering and image compositing stages of
the 2D-partition method are analyzed in this sub-section. As in Section 3.3, we did
not evaluate the time complexity of the data partitioning stage since this stage is a
preprocessing step for distributing the volume data to each processor. A summary
of the notations used in the following analysis is given below.

• Ts is the startup time of a communication channel.

PARALLEL SHEAR-WARP FACTORIZATION VOLUME RENDERING 295

• Tp is the data transmission time per byte.
• Tv-shear is the time for shearing one voxel of a sub-volume.
• Tv-project is the time for projecting one voxel of a sub-volume.
• Tp-warp is the time for warping one pixel in a partial intermediate image.
• P is the number of processors.
• n is the size of each dimension of a volume data.
• Ai� j is the partial final image size of Pi� j .
• � is the viewing angle.

4.3.1. The shear-warp rendering stage. After using the 2-D partitioning scheme to
distribute the volume data, each processor renders its own sub-volume by shearing,
projecting, and warping operations. The time of the shear-warp stage, denoted by
Tshear-warp, is:

Tshear-warp=Tshear+Tproject+Twarp

= n3

P
Tv-shear+

n3

P
r�p�·Tv-project+n2

(
1
Ph

+ 1
2
tan�

)
·Tp-warp

= n2

P

(
n·Tv-shear+n·r�p�·Tv-project+

(
pv+

P

2
tan�

)
·Tp-warp

)
� (22)

where r�p� is the data coherence ratio of a partial warped intermediate image
�2� 4� 22�.

4.3.2. The image compositing stage. In the image compositing stage, the partial
warped intermediate images A∗� j are first sent to the corresponding processors
PPv−1� j , where j = 0� � � � � Ph − 1. The corresponding processors PPv−1� j then use
the over operation to composite A∗� j for generating the corresponding partial final
images APv−1� j . The time for this step is denoted by Tv-composite. Since there is no
overhead among the partial final images APv−1� j of PPv−1� j , a simple merge operation
is used to assemble the partial final images PPv−1� j to form a final image. The
time for this step is denoted by Th-merge. The time for the image compositing stage,
denoted by Tcomposite, is:

Tcomposite = Tv-composite + Th-merge

=
Pv−1∑
i=1

{(
Tp + Tv-project

) · Ai� j + Ts

}+ Ph−1∑
j=1

(
Tp · APv−1� j + Ts

)

= n2(Tp + Tv-project

) ·√Pv�Pv + 1� ·
(

1
2Ph

+ tan �

4

)

+ �Pv − 1�Ts + �n2 − ��Tp + �Ph − 1�Ts� (23)

where � is the partial final image size of the root processor that gathers other partial
final images from the other horizontal partitioning processors.

296 LIN ET AL.

4.3.3. The time complexity of the 2D-partition method. The total rendering time for
the 2D-partition method, denoted by T2D-partition, is the sum of Eqs. (22) and (23):

T2D_rendering = Tshear-warp + Tcomposite = Tshear + Tproject + Twarp + Tv-composite + Th-merge

= n2

P

(
n · Tv-shear + n · r�p� · Tv-project +

(
Pv +

P

2
tan �

)
· Tp-warp

)

+ n2�Ttrans + Tv-project� ·
√

Pv�Pv + 1� ·
(

1
2Ph

+ tan �

4

)

+ �n2 − ��Tp + �Pv + Ph − 2�Ts� (24)

In Eq. (24), given that P is a constant, n2

P
· n · Tv-shear and �n2 − ��Tp are constants.

The value of n2

P
· n · r�p� · Tv-project depends on data coherence. It decreases when

Pv is close to Ph. When Pv increases, the values of n2� 1
Ph

+ P
2 tan �� · Tp-warp and

n2�Tp + Tv-project� ·
√

Pv�Pv + 1� · � 1
2Ph

+ tan �
4 � increase but the value of �Pv +Ph − 2�Ts

decreases. For a given set of parameters discussed above, the time complexity of
the 2D-partition method can be evaluated.

5. Experimental results and performance analysis

To evaluate the performance of the 1D-partition and 2D-partition methods, we
implemented them along with the slice data partitioning [12], volume data partition-
ing [1], and sheared volume data partitioning methods [1] on an IBM SP2 parallel
machine [6]. The IBM SP2 parallel machine is located at the National Center of
High performance Computing (NCHC) in Taiwan. This super-scalar architecture
uses an IBM RISC System/6000 POWER2 CPU with a clock rate of 66.7 MHz.
There are 40 IBM POWER2 nodes in the system and each node has a 128KB
1st-level data cache, a 32KB 1st-level instruction cache, and 128MB of memory
space. Each node is connected to a low-latency, high-bandwidth interconnection
network called the High Performance Switch (HPS).

We used C language and the MPICH message-passing library to implement the
proposed parallel volume rendering algorithms. The MPICH library is one of the
MPI [16] message-passing libraries. MPI is a standard for using message-passing to
send and receive data in parallel systems. Our volume rendering algorithm imple-
mentations are therefore portable and can be installed in other distributed memory
multicomputers.

Six different volume data test samples were used to evaluate the performance
of our algorithms. These volume data were selected from the Chapel Hill Volume
Rendering Test Dataset [10]. Table 1 lists the dimensions and descriptions of these
volume data. The first two test samples are “brain” volume data generated from
a MR scan of a human head with two different resolutions (marked as small and
large voxel sizes). The next three test samples are CT “head” volume data that have
different resolutions (small, medium, and large). The last test sample is an “engine”
volume data set, a CT scan of an engine block. Each image is grayscale and contains
256 × 256 pixels. Figure 9(a–c) shows the three test sample images.

PARALLEL SHEAR-WARP FACTORIZATION VOLUME RENDERING 297

Table 1. Dimensions and descriptions of the six test samples

Test samples Dimensions Descriptions

Brain (small) 128 × 128 × 84 Applying a Gaussian filter; no further scaling is necessary
Brain (large) 256 × 256 × 109 Scaling 1.54× in the Z dimension
Head (small) 128 × 128 × 113 Applying a box filter; no further scaling is necessary
Head (medium) 256 × 256 × 113 Scaling 2× in the Z dimension
Head (large) 256 × 256 × 225 Applying a cubic bspline filter; no further scaling is necessary
Engine 256 × 256 × 110 No scaling

5.1. Comparison of the shear-warp rendering and image compositing time

Figure 10 shows the experimental results for the shear-warp and image compositing
time for the large “head” test sample on 1, 2, 4, 8, 16, and 32 processors. We plot-
ted the results from four different volume rendering methods in these figures for
comparison. m1�m2�m3 represent the volume rendering methods using the slice
data partitioning, volume data partitioning, and sheared volume data partitioning
methods, respectively. m4 represents the 1D-partition method.

Figure 10(a) shows the shear-warp time results using different numbers of pro-
cessors. From Figure 10(a), we can see that the shear-warp time for m4 is less than
that for the other methods. The reason is that the 1D-partition method uses the cor-
responding formulae to compute the partition size for each processor. This method
can achieve better partition load balancing than the other methods. Figure 10(b)
shows the image compositing time for these four different algorithms. The image
compositing time for m3 and m4 is much less than that for m1 and m2. The reason
is that m3 and m4 use only a merge method to assemble the partial final images
while m1 and m2 must use the over operation to calculate the color and opacity in
the overlapped parts of the partial final images. The shear-warp time and image
compositing time results for the other five test samples are similar to this case.

Figure 11(a–f) shows the total rendering time for these four methods for the six
test samples listed in Table 1, respectively. The total rendering time contains the
shear-warp and image compositing time. In each figure the horizontal axis denotes

Figure 9. Test samples of parallel volume rendering methods. (a) CT scan “head” test sample (256 ×
256 × 225); (b) MR scan “brain” test sample (256 × 256 × 109); (c) CT scan “engine” test sample
(256 × 256 × 110).

298 LIN ET AL.

0

500

1000

1500

2000

2500

3000

1 5 9 13 17 21 25 29 33P =

T (msec)
m1
m2
m3
m4

0

10

20

30

1 5 9 13 17 21 25 29 33P =

T (msec)

m1
m2
m3
m4

(a) (b)

Figure 10. The shear-warp (a) and image compositing (b) time for the “head” test sample.

the number of processors and the vertical axis denotes the total rendering time for
these four methods in mini-seconds. In all cases, m4 has better performance than
any of the other methods.

5.2. The performance bound of the 1D-partition method

According to Eq. (13), the performance of the 1D-partition method is bounded
by

√
n. The experimental results were used to verify the following:

Tables 2 and 3 show the total rendering time for the 1D-partition method using
different numbers of processors in the six test samples. According to Eq. (13),
when the amount of volume data is small, such as the small “brain” test sample
containing 128× 128× 84 voxels and the small “head” test sample containing 128×
128 × 113 voxels, the upper bound appears when P is near

√
n = √

128 ≈ 12.
From Table 2, we can see that the total rendering time improvement for a small
amount of volume data is very small when the number of processors is greater
than 12. For a larger amount of volume data, such as the large “brain” test sample
containing 256× 256× 109 voxels and the large “head” test sample containing 256×
256× 225 voxels, the upper bound appears when P is near

√
n = √

256 = 16. From
Table 3, the observations are similar to that for the small volume data.

5.3. The 1D-partition and 2D-partition methods performance comparison

Table 4 shows the total rendering time for the 1D-partition and 2D-partition meth-
ods for the brain (small) and head (large) test samples on 32 processors. The total
rendering time for the 1D-partition method is indicated in the last column labeled
P = 32. For the brain (small) test sample, from Table 4, we observe that 4 × 8 has
the shortest time of all. In this case,

√
n = √

128 = 11�2 ≈ 12 is close to P = 8. We
can see that the 2D-partition method performs better than 1D-partition method
when Ph is close to

√
n. For the head (large) test sample, we observe that 2 × 16

has the shortest time of all. In this case,
√

n = √
256 = 16 < Ph = 32 and we can

also see that the 2D-partition method performs better when Ph is close to
√

n.

PARALLEL SHEAR-WARP FACTORIZATION VOLUME RENDERING 299

0

100

200

300

1 5 9 13 17 21 25 29 33P =

T (msec)
m1
m2
m3
m4

0

600

1200

1800

1 5 9 13 17 21 25 29 33P =

T (msec)
m1
m2
m3
m4

(a) The brain (small) test sample.

(e) The head (large) test sample.

(c) The head (small) test sample.

(b) The brain (large) test sample.

(f) The engine test sample.

(d) The head (medium) test sample.

0

200

400

600

1 5 9 13 17 21 25 29 33P =

T (msec)
m1
m2
m3
m4

0

500

1000

1500

2000

1 5 9 13 17 21 25 29 33P =

T (msec)
m1
m2
m3
m4

0

500

1000

1500

2000

2500

1 5 9 13 17 21 25 29 33P =

T (msec)
m1
m2
m3
m4

0

200

400

600

1 5 9 13 17 21 25 29 33P =

T (msec)
m1
m2
m3
m4

Figure 11. The total rendering time for all test samples.

Table 5 shows the total rendering time for the 1D-partition and 2D-partition
methods for the brain (small) and head (large) test samples on 16 processors. The
total rendering time for the 1D-partition method is indicated in the last column
labeled P = 16. For the brain (small) test sample, from Table 5, we observe that
2 × 8 has the shortest time of all. In this case,

√
n = √

128 = 11�2 ≈ 12 is close to
P = 8. We can see that the 2D-partition method performs better than 1D-partition
method when Ph is close to

√
n. For the head (large) test sample, we observe that

1 × 16 has the shortest time. In this case,
√

n = √
256 = 16 = P and we can see

that the 1D-partition method performs better than the 2D-partition method.

300 LIN ET AL.

Table 2. The total rendering time (ms) for various processors for two small volume data

Test sample P 10 11 12 13 14 15

Brain (small) Tshear-warp 21�640 20�133 18�944 18�450 17�950 17�778
128 × 128 × 84 Tcomposite 2�190 2�266 2�329 2�394 2�434 2�451

Ttotal 23�830 22�399 21�273 20�844 20�384 20�229

Head (small) Tshear-warp 56�314 48�649 37�167 36�825 36�328 36�124
128 × 128 × 113 Tcomposite 2�038 2�148 2�279 2�288 2�329 2�378

Ttotal 58�352 50�797 39�446 39�113 38�657 38�502

Table 3. The total rendering time (ms) for various processors for four large volume data

Test sample P 14 15 16 17 18 19

Brain (large) Tshear-warp 83�162 78�860 73�434 73�263 73�151 72�942
256 × 256 × 109 Tcomposite 3�457 3�482 3�513 3�527 3�553 3�581

Ttotal 86�619 82�342 76�947 76�790 76�704 76�523

Head (medium) Tshear-warp 118�557 113�240 119�111 98�745 97�802 97�179
256 × 256 × 113 Tcomposite 3�486 3�599 3�641 3�717 3�791 3�806

Ttotal 122�043 116�839 102�752 102�462 101�593 100�985

Head (large) Tshear-warp 156�311 143�406 131�033 129�819 128�597 118�332
256 × 256 × 225 Tcomposite 3�816 3�985 4�014 4�198 4�487 4�635

Ttotal 160�127 147�391 135�047 134�017 133�084 132�967

Engine Tshear-warp 48�219 44�670 40�924 39�972 38�663 38�194
256 × 256 × 110 Tcomposite 3�557 3�652 3�695 3�784 3�812 3�859

Ttotal 51�776 48�322 44�619 43�756 42�475 42�053

Table 4. The rendering time (ms) for the 1D- and 2D-partition methods on 32 processors

Partition method

2D-partition 1D-partion

Test samples Pv × Ph 1 × 32 2 × 16 4 × 8 8 × 4 16 × 2 32 × 1 P = 32

Brain (small) Tshear 0�25 0�25 0�25 0�25 0�25 0�25
128 × 128 × 84 Tproject 15�14 9�55 5�19 7�28 12�65 20�55

Twarp 2�12 3�89 6�13 11�52 21�42 38�32
Tv-composite 0�00 3�43 5�43 10�32 13�42 18�32
Th-merge 2�57 2�37 2�18 1�92 1�54 0�00
Ttotal 20�09 19�49 19�18 31�29 49�28 77�44 19�97

Head (large) Tshear 2�73 2�73 2�73 2�73 2�73 2�73
256 × 256 × 225 Tproject 118�08 92�67 87�46 89�26 102�70 127�90

Twarp 9�27 13�93 26�79 51�75 84�15 107�43
Tv-composite 0�00 4�34 8�76 16�43 31�53 60�32
Th-merge 4�73 4�34 4�12 3�78 3�43 0�00
Ttotal 129�81 118�01 129�85 163�94 224�53 298�37 129�17

From Tables 4 and 5, we have the following remarks.

Remark 1 When the number of processors is greater than
√

n and a Pv × Ph pro-
cessor grid is used in the 2D-partition method, better performance can be expected
if the value of Ph is close to

√
n.

PARALLEL SHEAR-WARP FACTORIZATION VOLUME RENDERING 301

Table 5. The rendering time (ms) for the 1D- and 2D-partition methods on 16 processors

Partition method

2D-partition 1D-partion

Test samples Pv × Ph 1 × 16 2 × 8 4 × 4 8 × 2 16 × 1 P = 16

Brain (small) Tshear 0�52 0�52 0�52 0�52 0�52
128 × 128 × 84 Tproject 15�64 8�14 7�39 11�86 19�42

Twarp 2�46 5�43 8�94 14�43 19�54
Tv-composite 0�00 3�65 5�84 10�83 19�66
Th-merge 2�29 2�15 1�98 1�47 0�00
Ttotal 20�91 19�88 24�67 39�10 59�14 20�21

Head (large) Tshear 5�48 5�48 5�48 5�48 5�48
256 × 256 × 225 Tproject 114�33 108�32 94�84 110�15 133�06

Twarp 12�32 17�54 33�85 53�43 87�32
Tv-composite 0�00 4�43 9�74 16�78 31�43
Th-merge 4�31 4�22 3�95 3�34 0�00
Ttotal 136�44 139�99 147�86 189�18 257�29 135�05

Remark 2 If the number of processors is greater than
√

n, the 2D-parition method
outperforms the 1D-partition method when Ph is close to

√
n.

Remark 3 If the number of processors is less than
√

n, the 1D-parition method
outperforms the 2D-partition method.

6. Conclusions

In this paper, we presented the 1D-partition and 2D-partition methods based
on shear-warp factorization and demonstrated the performance improvement over
three other parallel volume rendering algorithms: the slice data partitioning, volume
data partitioning, and sheared volume data partitioning methods. All tests were per-
formed on an IBM SP2 parallel machine. According to the number of processors,
we used the either 1-D or 2-D partitioning schemes to partition a given volume
data set. This flexible approach can efficiently partition the volume data for each
processor with a balanced load distribution. After the data partitioning stage is com-
pleted, each processor employs shear-warp factorization to render the sub-volume
and generate a partial final image. A simple merge operation is used to composite
the final image with very short image compositing time. The experimental results
demonstrate that the proposed approaches outperform other compatible algorithms
and are viable methods for achieving high-speed volume rendering.

References

1. M. B. Amin, A. Grama, and V. Singh. Fast volume rendering using an efficient scalable parallel
formulation of the shear-warp algorithm. In Proceedings of the 1995 Parallel Rendering Symposium,
pp. 7–14. Atlanta, October 1995.

302 LIN ET AL.

2. B. Corrie and P. Mackerras. Parallel volume rendering and data coherence. In Proceedings of the
1993 Parallel Rendering Symposium, pp. 23–26. San Jose, October 1993.

3. R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. In Proceedings of SIGGRAPH’88,
vol. 22, pp. 65–74. Atlanta, 1988.

4. E. Groeller and W. Purgathofer. Coherence in computer graphics. Technical reports TR-186-2-95-04.
Institute of Computer Graphics 186-2 Technical University of Vienna, March 1995.

5. W. M. Hsu. Segmented ray casting for data parallel volume rendering. In Proceedings of the 1993
Parallel Rendering Symposium, pp. 7–14. San Jose, October 1993.

6. IBM. IBM AIX parallel environment. Parallel Programming Subroutine Reference.
7. A. Kaufman (eds.). Volume visualization. IEEE Computer Society Press, 1991.
8. P. Lacroute. Fast volume rendering using a shear-warp factorization of the viewing transformation.

PhD dissertation, Stanford University, 1995.
9. P. Lacroute. Real-time volume rendering on shared memory multiprocessors using the shear-warp

factorization. In Proceedings of the 1995 Parallel Rendering Symposium, pp. 15–22. Atlanta, October
1995.

10. P. Lacroute. Analysis of a parallel volume rendering system based on the shear-warp factorization.
IEEE Transactions on Visualization and Computer Graphics, 2:218–231, 1996.

11. P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factorization of the viewing
transformation. In Proceedings of SIGGRAPH ’94, pp. 451–458. Orlando, July 1994.

12. D. Laur and P. Hanrahan. Hierarchical splatting: A progressive refinement algorithm for volume
rendering. In Proceedings of SIGGRAPH ’91, vol. 25, pp. 285–288. Las Vegas, July 1991.

13. M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9:245–261, 1990.
14. K. L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. A data distributed, parallel algorithm for

ray-traced volume rendering. In Proceedings of the 1993 Parallel Rendering Symposium, pp. 15–22.
San Jose, October 1993.

15. K. L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. Parallel volume rendering using binary-swap
compositing. IEEE Computer Graphics and Applications, 14:59–68, 1994.

16. MPI Forum. MPI: A message-passing interface standard. May 1994.
17. T. Porter and T. Duff. Compositing digital images. In Proceedings of SIGGRAPH’84, vol. 18, pp. 253–

259, July 1984.
18. K. Sano, H. Kitajima, H. Kobayasi, and T. Nakamura. Parallel processing of the shear-warp factor-

ization with the binary-swap method on a distributed-memory multiprocessor system. In Proceedings
of the 1997 Parallel Rendering Symposium, October 20–21, 1997.

19. J. P. Singh, A. Gupta, and M. Levoy. Parallel visualization algorithms: Performance and architectural
implications. Computer, 27:45–55, 1994.

20. C. Upson and M. Keeler. V-BUFFER: Visible volume rendering. In Proceedings of SIGGRAPH’88,
vol. 22, pp. 59–64. Atlanta, 1988.

21. L. Westover. Footprint evaluation for volume rendering. In Proceedings of SIGGRAPH’90, vol. 24,
pp. 367–376. Dallas, 1990.

22. J. Wilhelms and A. Van Gelder. A coherent projection approach for direct volume rendering. In
Proceedings of SIGGRAPH’91, vol. 25, pp. 275–283, July 1991.

23. C. M. Wittenbrink and A. K. Somani. Permutation warping for data parallel volume rendering. In
Proceedings of the 1993 Parallel Rendering Symposium, pp. 57–60. San Jose, October 1993.

24. T. S. Yoo, U. Neumann, H. Fuchs, S. M. Pizer, T. Cullip, J. Rhoades, and R. Whitaker. Direct
visualization of volume data. IEEE Computer Graphics & Applications, 12:63–71, 1992.

