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Abstract—Array operations are used in a large number of important scientific codes, such as molecular dynamics, finite element
methods, climate modeling, etc. To implement these array operations efficiently, many methods have been proposed in the literature.
However, the majority of these methods are focused on the two-dimensional arrays. When extended to higher dimensional arrays,
these methods usually do not perform well. Hence, designing efficient algorithms for multidimensional array operations becomes an
important issue. In this paper, we propose a new scheme, extended Karnaugh map representation (EKMR), for the multidimensional
array representation. The main idea of the EKMR scheme is to represent a multidimensional array by a set of two-dimensional arrays.
Hence, efficient algorithm design for multidimensional array operations becomes less complicated. To evaluate the proposed scheme,
we design efficient algorithms for multidimensional array operations, matrix-matrix addition/subtraction and matrix-matrix multiplications,
based on the EKMR and the traditional matrix representation (TMR) schemes. Both theoretical analysis and experimental test for these
array operations were conducted. Since Fortran 90 provides a rich set of intrinsic functions for multidimensional array operations, in the
experimental test, we also compare the performance of intrinsic functions provided by the Fortran 90 compiler and those based
on the EKMR scheme. The experimental results show that the algorithms based on the EKMR scheme outperform those based on the
TMR scheme and those provided by the Fortran 90 compiler.

Index Terms—Array operations, multidimensional arrays, data structure, extended Karnaugh map representation, traditional matrix
representation.
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ARRAY operations are used in a large number of
important scientific codes, such as molecular dynamics
[10], finite-element methods [16], climate modeling [33], etc.
To implement these array operations efficiently, many
methods have been proposed in the literature. For
example, for two-dimensional arrays, by applying the
loop repermutation [4], [28] to reorder the memory
accesses for array elements of certain operations, we can
obtain better performance. However, the majority of these
methods are focused on the two-dimensional arrays.
When extended to higher dimensional arrays, these
methods usually do not perform well. The reason is that
one usually uses the traditional matrix representation (TMR)
that is also known as canonical data layouts [8] to represent
higher dimensional arrays. In the TMR scheme, a three-
dimensional array of size 5 x 4 x 3 canbe viewed as five4 x 3
two-dimensional arrays. This scheme has two drawbacks for
higher dimensional array operations. First, the costs of
index computations of array elements for array operations
increase as the dimension increases. Second, the cache
miss rate for array operations increases as the dimension
increases due to more cache lines accessed. Hence,
multidimensional arrays represented by the TMR scheme
become less manageable and difficult for programmers to
design efficient algorithms.
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In this paper, we propose a new scheme called extended
Karnaugh map representation (EKMR) for the multidimensional
array representation. The main idea of the EKMR scheme is to
represent a multidimensional array by a set of two-
dimensional arrays. This scheme is suitable for the
multidimensional dense or sparse array. Hence, efficient
algorithm design for multidimensional arrays based on
the EKMR scheme becomes less complicated. To evaluate
the proposed scheme, we design efficient algorithms for
multidimensional array operations, matrix-matrix addi-
tion/subtraction and matrix-matrix multiplications, based
on the EKMR and the TMR schemes. Both theoretical
analysis and experimental testing for these array operations
were conducted. From the theoretical analysis and
experimental results, we can see that array operations
based on the EKMR scheme outperform those based on
the TMR scheme. The reasons are two-fold. First, the
EKMR scheme can decrease the costs of index computa-
tions of array elements for array operations because it
uses a set of two-dimensional arrays to represent a higher
dimensional array. Second, the cache miss rate for array
operations based on the EKMR scheme is less than that
based on the TMR scheme because the number of cache lines
accessed by array operations based on the EKMR scheme is
less than that based on the TMR scheme. Since Fortran 90
provides a rich set of intrinsic functions for multidimensional
array operations in the experimental test, we also compare the
performance of intrinsic functions provided by the Fortran 90
compiler and those based on the EKMR scheme. The
experimental results show that algorithms based on the
EKMR scheme outperform those provided by the Fortran 90
compiler. We also present a transformation scheme called
matrix transformation method (MTM) for conversion between
the TMR and the EKMR schemes.
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This paper is organized as follows: In Section 2, a brief
survey of related work will be presented. Section 3 will
describe the EKMR scheme and the MTM for multi-
dimensional arrays. Section 4 will present efficient
algorithms for multidimensional array operations based
on the EKMR scheme. We also analyze the costs for these
algorithms based on the TMR and the EKMR schemes in
this section. The experimental results will be given in
Section 5.

2 RELATED WORK

Many methods for improving array computation have been
proposed in the literature. Carr et al. [4], [28] presented a
comprehensive approach to improving data locality by
using loop transformations, such as loop permutation, loop
reversal, etc. They demonstrated that these transformations
are useful for optimizing many array programs. They also
proposed an algorithm called LoopCost to analyze and
construct the cost models for variable loop orders of array
operations. The cost model computes both temporal and
spatial reuse of cache lines in order to select the best loop
orders of array operations for data locality.

Kandemir et al. [17], [18] proposed a compiler technique
to perform loop and data layout transformations to solve
the global optimization problem on sequential and multi-
processor machines. The scope of their work focuses on
dense array programs. They use loop transformations to
find the best loop order of an array operation. They also use
a data layout transformation scheme to change the data
layout of an array, such as from the row-major data layout
to the column-major data layout, and improve the perfor-
mance of array operations. However, it is difficult to change
the data layout of an array in programming languages, such
as C and Fortran. Therefore, their work focused on finding
the best loop order of an array operation to solve the global
optimization problems. O’Boyle and Knijnenburg [29]
presented a new algebraic framework to combine loop
and data layout transformations. By integrating loop and
data layout transformations, any poor spatial locality and
expensive array subscripts can be eliminated. Sularycke and
Ghose [31] proposed a simple sequential loop interchange
algorithm that can produce a better performance than
existing algorithms for array multiplication.

Chatterjee et al. [7] examined two nonlinear data layout
functions (4D and Morton) for two-dimensional arrays with
the tiling scheme that promises improved performance at
low cost. They focus on dense matrix codes for which loop
tiling is an appropriate means of high-level control flow
restructuring to improve locality. In [6], they further
examined the combination of five recursive data layout
functions (various forms of Morton and Hilbert) with the
tiling scheme for three parallel matrix multiplication
algorithms. They indicate that these data layout functions
with the tiling scheme for two-dimensional dense arrays
can be extended to those for multidimensional dense arrays.
They also indicate that the performance of array operations
for multidimensional dense arrays based on these data
layout functions with the tiling scheme is efficient.

Coleman and McKinley [9] presented a new algorithm
TSS for choosing problem-size dependent tile size based on
the cache size and cache line size for a direct-mapped cache.
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The TSS algorithm can eliminate both capacity and self-
interference misses and reduces cross-interference misses.
By integrating the TSS algorithm into array programs, we
can improve the cache utilization and the performance of
array operations. Wolf and Lam [34] proposed an algorithm
that improves the locality of a loop nest by transforming the
code via interchange, reversal, skewing, and tiling. In [24],
they also presented a comprehensive analysis of the
performance of blocked code on machines with caches.
They have developed a model for understanding the cache
behavior of blocked code. Through the model, they
demonstrate that this cache behavior is highly dependent
on the way in which a matrix interferes with itself in the
cache, which in turn depends heavily on the stride of the
accesses. Frens and Wise [15] presented a simple recursive
algorithm with the quad-tree decomposition of matrices
that has outperformed hand-optimized BLAS3 matrix
multiplication. The use of quad-trees or oct-trees is known
in parallel computing [2] for improving both load balance
and locality. Carter et al. [5] focused on using hierarchical
tiling to exploit superscalar-pipelined processor. The hier-
archical tiling is a framework for applying known tiling
methods to ease the burden on several compiler phases that
are traditionally treated separately, such as scalar replace-
ment, register allocation, generation of message passing
calls, and storage mapping.

Callahan et al. [3] presented a source-to-source transfor-
mation scheme called scalar replacement. This scheme finds
opportunities for reuse of subscripted variables and
replaces the references involved by references to temporary
scalar variables. In addition, they use transformations to
improve the overall effectiveness of scalar replacement and
apply these transformations in a variety of loop nest types.

Kotlyar et al. [20], [21], [22] presented a relational
algebra-based framework for compiling efficient sparse
array code from dense DO-Any loops and a specified sparse
array. Fraguela et al. [11], [12], [13], [14] analyzed the cache
effects for the array operations. They established the cache
probabilistic model and modeled the cache behavior for
sparse array operations. Kebler and Smith [19] described a
system, SPARAMAT, for concept comprehension that is
particularly suitable for sparse array codes. Their automatic
program comprehension techniques for sparse array codes
can be used in a sequential or a parallel environment.
Ziantz et al. [35] proposed a runtime optimization
technique that can be applied to a compressed row
storage array for array distribution and off-processor data
fetching in order to reduce both the communication and
computation time.

3 THE EKMR AND MTM SCHEMES

In the following, we use TMR(n) for the TMR scheme of an
n-dimensional array, EKMR(n) for the EKMR scheme of an
n-dimensional array, and MTM(S, D, n) for the matrix
transformation method of TMR(n) and EKMR(n), where
S and D are the source and the destination representa-
tion schemes, respectively. We describe the EKMR and
TMR schemes based on the row-major data layout (the
Ly layout function used in [8]). However, with some
indexing changes, the EKMR and TMR schemes are also
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Fig. 1. Examples of the Karnaugh map. (a) 1-input for f= X. (b) 2-input for f=X+Y. (c) 3-input for f=XZ"+ X'Z. (d) 4-input for

F=YW +Y'W.

suitable for the column-major data layout (the L¢y, layout
function used in [8]).

3.1 The EKMR and MTM Schemes for Three- and
Four-Dimensional Arrays

In the EKMR scheme, a multidimensional array is
represented by a set of two-dimensional arrays. The idea
of the EKMR scheme is based on the Karnaugh map. The
Karnaugh map technique is a method for minimizing a
Boolean expression, usually aided by a rectangular map of the
value of the expression for all possible input values. Input
values are arranged in a Gray code. Fig. 1 shows examples of
n-input Karnaugh maps, for n =1,...,4. It is clear that an
n-input Karnaugh map uses n variables to reserve memory
storage and represent all the 2" possible combinations.

For 1l-input Karnaugh map in Fig. la, we can use a
variable X as a vector to store two (2') combinations. For the
2-input Karnaugh map in Fig. 1b, we can use two variables
X and Y as a two-dimensional array (X: row, Y: column)
to store four (22) combinations. For the 3-input Karnaugh
map in Fig. 1c, we can use three variables X, Y, and Z as
a two-dimensional array (X: row, {Y, Z}: column) to store
eight (2%) combinations. For the 4-input Karnaugh map in
Fig. 1d, we can use four variables X, Y, Z, and W as a
two-dimensional array ({X, Y}: row, {Z, W}: column) to
store 16 (2') combinations. When 7 is less than or equal
to 4, an n-input Karnaugh map can be drawn on a plane
easily, that is, it can be represented by a two-dimensional
array. Consequently, we use the concept of the Karnaugh
map to represent the EKMR scheme. When n =1, the
EKMR(1) (1-input Karnaugh map) is simply a one-
dimensional array. Similarly, when n =2, the EKMR(2)
(2-input Karnaugh map) is the traditional two-dimen-
sional array. Therefore, the EKMR(n) has the same
representation as the TMR(n) for n =1 and 2. We now
consider the EKMR(3) and the EKMR(4) schemes.

3.1.1 The EKMR(3) and MTM(S, D, 3)

Let A[k][¢][j] denote a three-dimensional array based on the
TMR(3). Fig. 2a shows a three-dimensional array based on
the TMR(3) with a size of 3 x 4 x 5. In practice, a multi-
dimensional array is stored in a linear memory address
space for programming languages that support multi-
dimensional arrays. Programming languages map the array
index space into the linear memory address. Therefore,

array Alk|[{][j] can be presented by the row-major data
layout function

Lpn(k,i,5:3,4,5) =k x4 x5+ix5+j
or the column-major data layout function
Loy (ky4,5;3,4,5) =k x4 x5+ x4+14.

The LRM(]C, 1,7; 3,4, 5) (Lo (K, 1, 5; 3,4, 5)) is the memory
location of the array element in the third dimension k, row i,
and column j relative to the starting memory location of the
array with a size of 3 x 4 x 5.

According to the 3-input Karnaugh map, a three-
dimensional array based on the TMR(3) can be presented
by a two-dimensional array based on the EKMR(3). The
corresponding EKMR(3) of array A[3][4][5], is shown in

k=0
i=0
1
L]
3
j=0 12 3 4
7]
(@)
jV
i=0 1 2 3 4
i=0 ! Lo
. 1l
Pyl
3
k=0 1 2 01 2 012 01201 2

(b)

Fig. 2. (a) A 3 x4 x 5 array based on the TMR(3). (b) A 4 x (3 x5)
array based on the EKMR(3).
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Fig. 3. (a) A three-dimensional array based on the TMR(3) in a 2D view. (b) The corresponding two-dimensional array based on the EKMR(3).

Fig. 2b. The EKMR(3) is represented by a two-dimen-
sional array with the size of 4 x (3 x 5). The EKMR(3) can
also be represented by the row-major data layout function
Ly, 534,15) =1 x 15+ 7 (or the column-major data
layout function L, (¢,7;5,12) =j x 5+1). The basic
difference between the TMR(3) and the EKMR(3) is the
placement of elements along the direction indexed by k. In
the EKMR(3), we use the index variable ' to indicate the
row direction and the index variable j to indicate the
column direction. Notice that the index variable i’ is the
same as the index variable i, whereas the index variable j is
a combination of the index variables j and k (the index
variable ¢’ is a combination of the index variables i and k
and the index variable j is the same as index variable j in
the column-major data layout).

The analogy between the EKMR(3) and the 3-input
Karnaugh map is that the index variables i, j, and k are
corresponding to the variables X, Y, and Z, respectively (see
Fig. 2 and Fig. 1c). A more concrete example based on the
row-major data layout is given in Fig. 3. In Fig. 3a, a three-
dimensional array based on the TMR(3) with a size of 3 x
4 x5 1in a 2D view (three 4 x 5 two-dimensional arrays) is
shown. Its corresponding EKMR(3) with a size of 4 x 15 is
given in Fig. 3b.

Let A[K][i][j] denote a three-dimensional array based on
the TMR(3) with a size of r x p x ¢, where p, g, and r are
index variables along the row, column, and the third
dimension. Let A'[{'][f] denote the array based on the
EKMR(3) corresponding to array A. From previous
discussion, we have that A’ is a two-dimensional array
of size p x (r x q). Assume that arrays A and A’ are
stored in the row-major data layout. For arrays A and A/,
they can be presented by Lgy(k,i,5;7,p,9) =k % (p x q) +
ix (q)+jand Ly, (7, j;p, 7 x q) =4 x (r x q) + j, respec-
tively. The MTM(S,D, 3) is defined as the mapping function
for Lpn(k,3,7;7,p,q) and Ly, (7, /s p,7 x q) and is given as
follows (the MTM(S,D, 3) in the column-major data layout
can be obtained in a similar way):

LR]\[(ka i7 .77 D, q) - L/Rj\,j(i/v jl;pa 7’(]),

=1

L (1)
where< 7' =jxr+k;

A[R[i][) — A'[e)lg > v+ KJ;

LIR;"\J(il’jl;pﬂ“ X q) - LRJ\'f(k%imj; D, Q)a

1 =1

k= j%r; (2)
where ¢ = 7

j=7/r

AT — Al %] [V /7);

We can apply the MTM(S,D, 3) to translate a three-
dimensional array based on the TMR(3) to a two-
dimensional array based on the EKMR(3) and vice versa.
For example, for an array element A[1][0][0] with value 20
in Fig. 3a, it can be presented by the row-major data
layout function Lgp(1,0,0;3,4,5) =1 X (4 x5)4+0x (5) +
0 =20 (to map the array index space A[1][0][0] into the
linear memory address space A[20]). According to (1), the
corresponding array element of A[1][0][0] in the TMR(3) is
A'[0][1] in the EKMR(3). On the other hand, for an array
element A'[2][6] with value 12 in the EKMR(3) as shown in
Fig. 3b, it can be presented by the row-major data layout
function L’;,,(2, 6;4,15) = 2 x 15 + 6 = 36 (to map the array
index space A'[0][1] into the linear memory address space
A'[36]). According to (2), the corresponding array element
of A'[2][6] in EKMR(3) is A[0][2][2] in the TMR(3).

3.1.2 The EKMR(4) and MTM(S, D, 4)

Let A[l][k][¢][j] denote a four-dimensional array with a size
of 2x3x4x5 based on the TMR(4). Array A can be
presented by the row-major data layout function

Lpy(lkyi,5;2,3,4,5) =1x3x4x5+kx4x5+ix5+]
or the column-major data layout function

Lov (L, k,i,5;2,3,4,5) =1 x3x4x5+kx4x5b
+jx4+1.
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Fig. 4. A (2 x 4) x (3 x 5) array based on the EKMR(4).

The way to obtain the EKMR(4) based on the 4-input
Karnaugh map is similar to that of the EKMR(3). Fig. 4
illustrates a corresponding EKMR(4) of array A[2][3][4][5]
with a size of (2 x 4) x (3 x 5).

The EKMR (4) can also be represented by the row-major
data layout function

Ly (7

(or the column-major data layout function

,738,15) =i x 15+ 7

Ly (7,7510,12) = §/ x 10 + ).

The basic difference between the TMR(4) and the EKMR(4)
is the placement of elements along the direction indexed by
I and k. In the EKMR(4), we also use the index variable ¢’ to
indicate the row direction and the index variable j to
indicate the column direction. Notice that the index variable
i’ is a combination of the index variables [ and I and the
index variable j is a combination of the index variables j
and k (the index variable i’ is a combination of the index
variables i and k and the index variable j' is a combination
of the index variables j and [ in the column-major data
layout).

Let A[[K][][j] be a four-dimensional array based on the
TMR(4) with a size of s X7 X pxgq where the index
variable | indicates the fourth dimension with a size of s.
Let A'[¢][j] be the corresponding array based on the
EKMR(4), which is of the size of (s x p) x
that arrays A and A’ are stored in the row-major data
layout. For arrays A and A’, they can be presented by
Lpy(L ki, jis,rp,q) =IXrXpXq+hkXpxqg+ixqgty
and L7, (i,7;s xp,rxq) =14 xrxq+j, respectively.
The MTM(S, D, 4) is defined as the mapping function of
Lpm(l ki, 5;8,m,p,q) and Ly, (¢,7;s xp,r x ¢) and is
given as follows (the MTM(S,D,4) in column-major data

(r x q). Assume

layout can be obtained in a similar way):

Len (L k, i, jis,7,p,q) = Lipy (¢, 5’58 X p,r X q),

P =ixs+l;

J=ixr+k

ANKI[E[) — A'Ti x s + 1[5 % s + kl;
3)

where

Ly (@758 X p,r x q) = LRM (1, ki, j; s, 7, p, q),

1 =14%;

k= 7%r;
where ¢ i =1'/s;

J=17/r

A7) — Al %]l %orli' /][5 /7];
(4)

3.2 The EKMR(n) and MTM(S,D,n)

Based on the EKMR(4), we can generalize our result to the
n-dimensional array. In general, we can use 2"* 4-input
Karnaugh maps to represent an n-input (n >4) one.
Similarly, we can use a set of the EKMR(4) to construct
the EKMR(n). Assume that there is an n-dimensional array
with a size of m along each dimension, i.e., an m" array
based on the TMR(n). Since the EKMR(n) can be represented
by m"~* EKMR(4), we need a structure to link all arrays
based on the EKMR(4). Here, we use a one-dimensional
array X with a size of m"™* to link these EKMR(4). By
applying a data layout function, such as the row-major data
layout function or the column-major data layout function,
we can determine the one-to-one mapping between X and
m"* EKMR(4). Assume that there is a six-dimensional
array A[n][m][I][k][7][j] with a size of 3 x2x2x3 x4 x5
based on the TMR(6). Fig. 5 shows the corresponding
EKMR(6), represented by six (3 x 2) arrays based on the
EKMR(4) each with a size of (2x4)x (3 x5), of array
A[n][m][I[k][7][]. In Fig. 5, a one-dimensional array X with a
size of six is used to link these EKMR(4). If the row-major
data layout function is used for the array, X|[0], X[1], X[2],
X[3], X[4], and X[5] are linked to EKMR(4)

)

, and

respectively.
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Fig. 5. An example of the EKMR(6).
a7 ; : Ly 1, (@558 X pr X q)
Let A[m,_4][mn,—3]...[ma][{][k][{][j] be an n-dimensional RM (Mg, Mg, MY 0 T 5 '

array in the TMR(n) with a size of
tpa XTpg X ...t X s X1 XPpXq,

where the index variable m,,_, indicates the nth dimension
Let A >[7I/] [/] be the

(Mip—a,mp—g,...,m

corresponding EKXMR(n) of Almy_4][mn—s] ... [mu]{l][k][{]]s
and A’ [/'][j'] be an EKMR(4) of A]

(Mot se

with a size of ¢, 4.

@17 T witha
size of (s x p) x (r x q), where A/ ['][f'] is linked by array
element X[z] in array X. For array A, it can be presented by

the row-major data layout function

LRI\I(mn747m71,73>--~>l7k7i>j:, tn747tn737---75>rap7 q)
=My g Xty 3X . ..XSXTXpPXg+...+IlX1rXpXq
+EkEXxpxXqg+ixqg+j.

For array A, . ., [f][/], it can be presented by the

row-major data layout function

’ o,
L' raeaty s My, pi) (@5 558 X 07 X q)

=zx((sxp)x(rxq)+i x(rxq +7,

where

T=Mpgy Xtp3X...XSXTXDpXqg+...+
my X s§XrXpXq.
The MTM(S, D,n) is defined as the mapping function of
) 57 T? p7 q)

LR[\[(mn74, m!L737 ey l7 k: iu ]; tn747 t”*37 ..

and
L (055 x Py )
RM(M,—y M, _s,...M)\¥ 5] 58 X P, T X g

and is given as follows (the MT'M(S, D,n) in the column-
major data layout can be obtained in a similar way):

LR[\j(mn,4, Mp—3y---, l7 ka i7 .]7 tn,47 tnfi’h ey ST D, q)

_’LZLW(MH,M",;;,..,,Ml (', 758 x p,7 % q),
i =ixs+1;
L , (5)
. J=7xr+k
where A(mn74am7173>'"7m17lakai7j)
— Azm”iwwgwm])[i x s+ 1[j x r+ kJ;

g LRM'(mnféh Mmp—3,..., lv ka Zaj: tn,47 tn,,g, ey ST D, Q)7

I =1 %s;
i=1/s;
k= 7%nr;
where¢ = )
i=7/r
A,(m,,,*m,,,g,m) [Z,] [.7,]
— Almyg—a][mp_3] ... [ma][i’%s][f %or][i' /s][F /7];

(6)

4 CoMPARISONS OF THE TMR AND EKMR
SCHEMES

The TMR and the EKMR are both representation schemes
for multidimensional arrays. Different data layout functions
can be applied to them to get different data layouts. To
compare the TMR and the EKMR schemes, we design
algorithms of multidimensional array operations, matrix-
matrix addition/subtraction, and matrix-matrix multiplica-
tion, according to the row-major data layout function for
both schemes. Algorithms based on the column-major data
layout function can be obtained by changing the order of
array indices. Based on these algorithms, we analyze their
theoretical performance. We do not consider algorithms
based on the recursive data layout functions [6], [7]. The
reason is that, how to select a recursive data layout function,
such that a multidimensional array operation algorithm
based on the TMR scheme has the best performance, is an
open question [6], [7]. In the following, we will first present
algorithms for three-dimensional arrays. Then, extend them
to higher dimensional arrays.

4.1 Matrix-Matrix Addition/Subtraction Algorithms

Let A and B be two n x n x n three-dimensional arrays
based on the TM R(3). The algorithm for C'= A £+ B based
on the TMR(3) can be illustrated as follows:

Algorithm matrix-matrix_addition/subtraction_TMR(3)

1. for (k=0;k <n;k++)

2. for (i=0;i <nji++)

3. for (j=0;j<n;j++)

4. ClKI[i]l) = A[KI[E][) + BlK][:][5);
end of matrix-matrix addition/subtraction T M R(3)

Let A’ and B’ be the corresponding arrays of A and B

based on the EKMR(3). The algorithm for ' = A'+ B'
based on the EKMR(3) is given as follows, where a
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dummy variable r is used for summation over the j
direction:

Algorithm matrix-matrix_addition/subtraction_ EK M R(3)
1. r=nxmn;
2. for (i =0;4 <myi' +4)
3. for (=05 <rij++)
4. C'y) = Al + B
end of matrix-matrix addition/subtraction EKM R(3)
Let

Alm—a)[ma—s3] ... [m1][][¥][¢][5] and
Blmy—a][mn-3] ... [ma][[K][d] [j
be two m" n-dimensional arrays. Let Af, ~~ [i'][]]

and B’(m”%m”igwﬂm)[i’][j’] be two corresponding EKMR(n)
whose EKMR(4) has a size of (m x m) x (m x m). The
algorithms for the matrix-matrix addition/subtraction
based on the EKMR(n) and the TMR(n) is given as
follows:

Algorithm matrix-matrix_addition/subtraction_T M R(n)
1. for (mpy—y = 0;mp_g < M;Myp_g + +)
2. for (mp_3 = 0;my_g < m;my_3 ++)
3. ... /*From loop m,_4 to loop m*/

n—3.  for (I=0;l<m;l++)
n—2. . for (k=0;k<m;k++)
n—1. . for (i =053 <m;i++)
n. . for (=055 <m;j++)
nL Ol i) [ RIS
| I N 11 )
+BlimniJfmas] - i) AL

end_of_matrix-matrix_addition/subtraction_T M R(n)

Algorithm matrix-matrix_addition/subtraction_EK M R(n)
1. r=mxm;
2. for (x =02 <m" 42+ +)
3. for (7 =0;¢ <ri' ++)
4. for (' =0;j' <7 j ++)
5 CLIIT) = ALl + BT
end_of_matrix-matrix_addition/subtraction_EK M R(n)

4.2 Matrix-Matrix Multiplication Algorithms

Let A and B be two n x n x n three-dimensional arrays. An
algorithm of the matrix-matrix multiplication C = A x B
based on the TMR(3) in KIJM order is depicted as
follows:

Algorithm matrix-matrix_multiplication_KIJM_order_TMR(3)

1. for (k=0;k <n;k++)
2. for (i=05i<mi++)

3. for (=055 <n;j++)
4. for (m=0;m <n;m++)
5. ClK|[i][j] = CIK][i][5] + A[K][i][m] x BlK][m][j];

end_of_matrix-matrix_multiplication_KIJM _order_TMR(3)

By using the MTM(S,D,3), we can translate the
algorithm for C = A x B based on the TM R(3) to the naive
algorithm for ¢" = A’ x B’ based on the EKXMR(3). The
naive algorithm for ' = A’ x B’ based on the EKXMR(3) is
given as follows:

Algorithm naive_matrix-matrix_multiplication_ EK M R(3)

1. r=nxmn;

2 for (7" =0;i < n;i' ++)

3 for (7 =0;7 <r;f ++)

4, for (m = 0;m < nym + +)

5. v=m X n;

6. C'lNT = O+ Al v + 5'%n] x B'lm][j];
end_of_nave_matrix-matrix_multiplication_EK M R(3)

However, the performance of the naive algorithm for
C' = A" x B’ based on the EKMR(3) is worse than that
based on the TMR(3). There are two reasons. First, the
access patterns of array elements for matrix-matrix multi-
plication based on the EKMR(3) and the TM R(3) are the
same. Therefore, the performance of algorithms for matrix-
matrix multiplication based on the TMR(3) and the
EKMR(3) is the same. Second, the naive algorithm for C' =
A’ x B based on the EKMR(3) has poorer spatial locality
and more expensive array subscripts than that based on the
TMR(3). Since we do not exploit advantages for the
structure of the EKMR(3) in the naive algorithm of
C' = A’ x B, based on O'Boyle and Knijnenburg [29], a
redesigned efficient algorithm of C' = A’ x B’ based on the
EKMR(3) is given as follows:

Algorithm matrix-matrix_multiplication_row-major
order_EKMR(3)
for (i =04 <n;i++)
for (j =055 <n;j++)
v=7jXmn;
for (m=0;m < n;m—++)
r=mxmn;
for (k=0;k <n;jk++)

C'lillk + ] = C'[i][k + 7] + A'[i][k 4+ v] x B'[j][k +7];
end_of_matrix-matrix_multiplication_row-major
order_EKMR(3)

There are two advantages for the row-major order
algorithm of matrix-matrix multiplication based on the
EKMR(3). First, the row-major order algorithm can
decrease the access numbers of different elements in array
B'. Second, the structure of EKMR(3) can aggregate array
elements that have the same values of index variables j and
i. These array elements in array A’ will be operated with the
same array element in array B'. Therefore, the cache miss
rate for array operations based on the EKMR(3) may be
less than that based on the TM R(3). The algorithms for the
matrix-matrix multiplication based on the T'M R(n) and the
EKMR(n) is given as follows:

Nl LNy

Algorithm matrix-matrix_multiplication_T M R(n)
1. for (mp—4 = 0;my_y < M;My_y + +)
2. for (my—3 = 0;my_3 < m;my_s + +)
3. /*From loop m,,_4 to loop m;*/

n—3. for (1=0;1<m;l++)
n—2. for (k=0;k <m;k++)
n—1. . for (i =05 <m;i++)

n. ~ for (j=0;5 <m;j++)

n+ 1. for (mo = 0;mp < mo;m + +)
n+2. Clmn—a][mn-s] ... [ma][1] K] [#] [J]
= Clmp_y][mn-s]. .. [ma][l] k][] [j]
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+ A[mp_a][m—3] ... [ma][[] [K] [Z][m]
X Blmy—a][mn-3] ... [ma][l][K][m][5];
end_of_matrix-matrix_multiplication_T M R(n

Algorithm matrix-matrix_multiplication_row-major
order_EKMR(n)
1. for (x =052 < my_g;z ++)

2. for i =0;i <myi++)

3. t=1xm;

4. for (j=0;5<m;j++)

5. v=7Xm;

6. for (1=0;1 <m;l++)

7. w=t+1]

8. u=1+v

9. for (mg = 0;mp < m;mg + +)
10. r=mgy X m;

11. for (k=0;k <m;k++)
12. Cllwlk+r] = C.lw|[k+r]

AL [k + o] x B, fullk+ rl;
end_of_matrix-matrix_multiplication_row-major
order_EKMR(n)

4.3 Theoretical Analysis

In the following, we analyze the theoretical performance for
algorithms presented in this section in two aspects, the cost
of addition/subtraction/multiplication operators and the
cache effect. For the cost of addition/subtraction/multi-
plication operators, we analyze the numbers of the
addition/subtraction/multiplication operators for the index
computations of array elements and array operations in
these algorithms. In this aspect, we use the full indexing
cost for each array element to analyze the performance of
algorithms based on the TMR and EKMR schemes. It is no
doubt that the compiler optimization techniques do achieve
incremental addressing. However, we do not consider any
compiler optimization technique in the theoretical analysis.
The reason is that it is difficult to analyze the effects of
compiler optimization techniques since the effects of the
optimization may depend on the addressing mode of a
machine, the way to write the programs, the efficiency of
the optimization techniques, etc. To see the optimization
effects, in the experimental tests, we will show both results
for all C programs with and without compiler optimization
techniques.

To analyze the cache effect, an algorithm called LoopCost
that was proposed by Carr et al. [4], [28] is used to compute
the costs of various loop orders of an array operation. In the
algorithm, LoopCost(l) is the number of cache line accessed
by the innermost loop I. The value of LoopCost(l) reflects the
cache miss rate. The smaller the LoopCost(l), the smaller the
cache miss rate. According to LoopCost(l), the best loop
orders with a specific innermost loop Ican be determined. In
the analysis, we assume that the cache line size used in
algorithm LoopCost is r.

4.3.1 Costs of Matrix-Matrix Addition/Subtraction
Algorithms

A. The Costs of Addition/Subtraction/Multiplication
Operators. Algorithms for matrix-matrix addition/subtrac-
tion based on the TMR(3) in KIJ order and the EKMR(3)
were described in Section 4.1. Assume that A and B are

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.3, MARCH 2002
two m x m x m three-dimensional arrays based on the
TMR(3) and that A’ and B’ are the corresponding arrays
of A and B based on the FKMR(3) with the size of
m x m?. For arrays A and A4’, they can be presented by

LR]\J(k7iaj;mamvm) =kx (m Xm)+Z X (m)+]

and
! A 2\ _ 2 o/
LR]\,{(Zvjvmvm)_Z xXm +.]7

respectively. Assume that the cost for an addition/subtrac-
tion operator and a multiplication operator is 3 and ¢,
respectively. For the TM R(3) and the EK M R(3), the cost of
index computation of an array element is (3a +28) and
(a4 B), respectively. Similarly, for the TMR(4) and the
EKMR(4), the cost of index computation of an array
element is (6 + 35) and (a + [3), respectively. Assume that

Al a][mns] . .. [ma][l][K][i] [j] and
Blmy_gmns] . ... [ma][I] [K][4][J]
are two m" n-dimensional arrays and A(,, . [i'][f]
and B/(m,,,%m,,,g,“.,ml )[i’ 1[j'] are two corresponding EKMR(n)

whose EK M R(4) has a size of m*. For arrays A and A’, they
can be presented by

LRAJ(mnf4;mn737"'7l7k7i7j;m7m7'"7m7m7m7m)
=Mpga XMX...XmXmXmXm-+...

+Ilxmxmxm+kxmxm+ixm+j

and
! ), 2 2\ _ 4 -/ 2 -/
LRM(M,,,4,M,,,;;,,..,Ml)(7' JJimemt) = xmt 49 xm®+ 7,

respectively. For the TMR(n) and the EKXMR(n), where
n > 5, the cost of index computation of an array element
is @a +(n—1)8 and (2a+ 203), respectively. There-
fore, we can see that the cost of index computations of
array elements based on the EKMR scheme is less than that
based on the TMR scheme. The reason is that the EKXMR(n)

is presented by a set of two-dimensional arrays.

For the matrix-matrix addition/subtraction algorithm
based on the T'MR(3), there are three arrays A, B, and C
involved in an addition/subtraction operation. The costs of
index computations of array elements and the array
operation are (9« + 63)m® and Bm3, respectively. In the
matrix-matrix addition/subtraction algorithm based on the
EKMR(3), there are three arrays A’, B/, and C’ involved in
an addition/subtraction operation. Besides, there is an extra
cost for the cost of array operations to compute the value of
r in the algorithm. The costs of index computations of array
elements and array operations are (3a+38)m® and
Bm? + a, respectively. Table 1 shows the costs of index
computations of array elements and array operations for
algorithms of matrix-matrix addition/subtraction based on
the TMR(n) and the EKMR(n). In Table 1, the improved rate
is defined as follows:

Total(TMR) — Total(EKMR)
Total(TMR)

Improved Rate(%) = x 100.

(7)
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TABLE 1
The Costs of Index Computations of Array Elements and Array Operations for Algorithms
of Matrix-Matrix Addition/Subtraction Based on the TMR(n) and the EKMR(n)

3-D
Schemes Costs Index computations Array operations Total
TMR (9a+6f)m’ o’ (9a+7P)m’
EKMR Qat3f)m’ Pnr+a (a+4p)ym’+a
2 1
Improved Rate (%) (- <100
9m
4-D
Cosis Index computations Array operations Total
Schemes e putanons ATray operations
TMR (18a+9f)m” i’ (18a+10/)m”
EKMR Ga+t3fm’ fim'+al Ba+tapm’+a
5 1
Improved Rate (%o) (g - 4 )% 100
18m
n-D(n=35)
Costs
Scheme Index computations Array operations Total
TAMR (3’7(};_1)0( +@Bn-3y)m" pm" (3n(’;_1)a +GBn=2)m"
EKMR (6a+6)m" Pm+a (6a+T7Bm"+a
Improved Rate (°0) (I- 3 )% 100
n —n

Since the cost of « is much larger than that of § for the

improved rate in Table 1, we only consider the effect of a.
From Table 1, we can see that the costs of index
computations of array elements and array operations for
algorithms of matrix-matrix addition/subtraction based on
the EKMR(n) are less than those based on the TMR(n). In
Table 1, for n = 3 and 4, the improved rate increases as the
size m increases. For n > 5, the improved rate is (1 — —-) x
100 that is independent of the size m. The improved rate
increases as the array dimension n increases.
B. The Cost of Cache Effect Table 2 shows the LoopCost(l)
for algorithms of matrix-matrix addition/subtraction based
on the EKMR(3) and the TM R(3) with various innermost
loop indices K, I, and J. From Table 2, we can see that the
algorithm for matrix-matrix addition/subtraction based on
the EKMR(3) has the smallest LoopCost(l). In Table 2, for
the TMR(3), we can see that the algorithm whose inner-
most loop index is | has smallest LoopCost(l).

Algorithms for matrix-matrix addition/subtraction
based on the TMR(n) in M,_4M,_53... M;LKIJ order and
the EK M R(n) were described in Section 4.1. Table 3 shows
the LoopCost(l) for algorithms of matrix-matrix addition/
subtraction based on the EKMR(n) and the T'MR(n) with
various innermost loop indices M,,_4, M,,_3,...,M1,L, K, I,
and |. From Table 3, we can see that the algorithm for
matrix-matrix addition/subtraction based on the
EKMR(n) has the smallest LoopCost(l). In Table 3, for
the TMR(n), we can see that the algorithm whose inner-
most loop index is | has smallest LoopCost(l). The improved

rate of the EKXMR(n) with respect to the TMR(n) whose
innermost loop is j is

(=[] = (2] %) ) x 100,

for n > 3. The improved rate is independent of the array
dimension n. When m is divisible by r, the improved rate is
0, that is, the number of cache line accessed for the
EKMR(n) is the same as that of the TMR(n). When m is
not divisible by r, the improved rate is

(1= 2]+ (2] ) ) =200

TABLE 2
The LoopCost(l) for Algorithms of Matrix-Matrix Addition/
Subtraction Based on the TM R(3) and the EKMR(3)

LoopCost(l)
RefGroup | CIRIA[] | AL | B[ Total
K - M msm 3m m
I - M msm 3m m
TMR@) m 2 m 2 m 2 m 2
J ’V——‘ X ’V——‘ X m ’V——‘ X m 3’7——‘>< m
r r r r
RefGroup Cl AT Bl Total
{mﬂ {mﬂ Pﬂ Pﬂ
EKMR(3) — |Xm — |Xm — |Xm 3| — |xm
r r r r
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TABLE 3
The LoopCost(l) for Algorithms of Matrix-Matrix Addition/Subtraction Based on the TM R(n) and the EKMR(n)
LoopCost(l)
RefGroup Clmaa]. LU | Almaal - T | Bliea]. . 111 Total
Others msm’" msm'’” mpi’” 3!
TMR(n) 7 [ﬁ—‘an—l [ﬁ—‘xmn—l {ﬂw‘xmn—l {ﬂ“xmn—l
r r r r
RefGroup C (1] AN B.[1l/] Total
2 2 2 2
EKMR(n) ’Vm—men_z ’Vm—lxmn_z {L“an_z 3{L“an_2
r r r r

where 6 is the quotient of m <+ r. If m is much lager than r,
the improved rate

7m6+7"+1~

L I

C. Discussions. The overall performance of these algo-
rithms should consider the costs of addition/subtraction/
multiplication operators and the cache effect. Assume that
the ratios of the cost of addition/subtraction/multiplication
operators and the cost of the cache effect to the overall cost
of an algorithm are p: 1 and (1 —p) : 1, respectively. From
the above analysis, for the TM R(n), the time complexities of
the addition/subtraction/multiplication operators and the
cache effect for the matrix-matrix addition/subtraction
algorithm are O(m") and O(]™|m"!), respectively. The
time complexity of the addition/subtraction/multiplication
operators is larger than that of the cache effect. For a fixed
array dimension #, the ratio of the cost of addition/
subtraction/multiplication operators increases as the array
size m increases. For a fixed array size m, the ratio of the
cost of addition/subtraction/multiplication operators is
independent of the array dimension n. The overall
improved rate for algorithms of matrix-matrix addition/
subtraction based on the EK M R(n) with respect to those of

the TMR(n) is given in Table 4.
From Table 4, for three- and four-dimensional arrays, we

have two remarks.

Remark 1. If m is divisible by r, the overall improved rates
for three- and four-dimensional arrays are determined
by (3 —gm) xpx 100 and (§— g
tively. The overall improved rate increases as the array

) x p x 100, respec-

size m increases (the ratio p increases as the array size m
increases).

Remark 2. If m is not divisible by r, the overall improved
rates for three- and four-dimensional arrays depend on
the array size m and the ratio p. When the array size
increases from m; to ms, the overall improved rate for
three-dimensional arrays increase if the ratio of the
cost of addition/subtraction/multiplication operators
increases from p; to p; and

Ap=p; —m
meby +7+1 myb +7r+ 1) )
> - 1-
(< Gt ey )
N <m262—|—r+171)
’ mg(ég —I—l) 3

is satisfied. The overall improved rate for three-dimen-
sional arrays are constant if

Ap=ps—p
mebs+7r+1 mib+r+1
= - (I—p1)
m2(52 + 1) m1(51 -+ 1)
N <m262+7‘+1_1>
m2(52 +1) 3

is satisfied. For other cases, the overall improved rates
for three-dimensional arrays will decrease. For example,
for three-dimensional arrays, when the values of m, 7,
and p are 10, 4, and py, respectively, the overall improved
rate is $p; 4 . When the values of m, r, and p are 30, 4,
and p;, respectively, the overall improved rate is
T ps+ 45 If p1 = 0.1 and p, = 0.30,

2 5 1Ly 2T
I 1T ) Tag S

The overall improved rate increases. If p; = 0.1 and
P2 = 0.20,

27 5 AT

w8 Tag) 2" Ts) T

TABLE 4
The Overall Improved Rate for Algorithms of
Matrix-Matrix Addition/Subtraction Based on the EK M R(n)
with respect to those of the TM R(n)

Matrix-matrix addition/subtraction operation
Dimension Improved Rate (%o)
)‘ .
3D md :H+1_l_ )><p+1—m{$+r+1)><100
m@d +1) 3 9,3 m@ +1)
md +r+1 1 1 mo +r+1
ap |« e xp 1 - T 100
m@+l) 6 g, m@ +1)
md +r+1 4 md +r+1
B >3 _ X p+1-———)x100
n-D((nz3) (« o +1) n2—n) p e + 1) )
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The Costs of Index Computations of Array Elements and Array Operations
for Algorithms of Matrix-Matrix Multiplication Based on the TM R(n) and the EKXMR(n)

TABLE 5

3-D
Costs . . o
Schemes Index computations | Array operations Total
TAIR (9a+6R)m’ am’+fm’ (10a+7/)m"
ERKMR (3(2L+3ﬁ)m4 4ﬂm4+am4+am3+am2 (4a+7/3)r;74+am’+am'
3 1
Improved Rate (o) (=-——)x100
5 10m
4-D
Schemes Costs Index computations | Array operations Total
TMR (18a+98)r" am’ +fim’ (19a+108)nr
s apm>+am’+am*+ (a7 +am™+
ERMR Gar3fym 20m’ +am*+am 20w’ +am*+am
15 1
Improved Rate (% ————)x100
proved Rare (%) o 10w
n-D(nz5s)
Costs
Schemes Index computations | Array operations Total
3(n=1) ntl, R 3n2—3n+2amn+1+
TAIR ' am" +fm )
+
(3n-3p m" (3n=-2Y% m’t1
el 4ﬂm"+l+am"ﬂ+am"+ (7a+10/f)m””+am”+
EKMR (6a+6ﬁ)”7 zﬁmn-1+amn-2+amn-3 zﬂmn-l+a”]n-2+a”]n-5
4 3
14m™ +2
Improved Rate (%o) (1- y) " ) " )x 100
m-(3n =3n+2)
TABLE 6
The LoopCost(l) for Algorithms of Matrix-Matrix Multiplication Based on the TM R(3) and the EK M R(3)
LoopCost(l)
RefGroup CEAL] AR | Bk Total
K NI [N msm 3m’
/ mnr e 1 m 2m'+m’
TMR(3) M Lan? ’72—‘><n)3 mo o’ m+ {ﬁ—‘xm?’ +m’
AL r r
J [ﬁ-‘xm3 1o’ {ﬂw‘xnﬁ 2{ﬂw‘xm3 a7
r r r
RefGroup | Clillk+r] | AUNlk+v] | Blk+r] Total
2 2 2
EKMR(3) ’Vm—Wsz [ﬁ—‘ x m? {L“sz 2{L“Xm2 + {ﬂw‘x m?
r r r r r
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The overall improved rate is constant. If p, is less than

0.20,
2 5 AR
IR oP1 % '

The overall improved rate decreases. For four-dimen-
sional arrays, we have similar observations as those of

three-dimensional arrays.
From Table 4, for n-dimensional arrays where n > 5,
we have two remarks.

Remark 3. If m is divisible by r, the overall improved rate

is determined by (1 — %) x p x 100. For a fixed array

dimension 7, the overall improved rate increases as the
array size m increases (the ratio p increases as the array
size m increases). For a fixed array size m, the overall
improved rate increases as the array dimension n
increases (the ratio p is independent of the array
dimension n).

Remark 4. If m is not divisible by r, for a fixed array

dimension 7, the overall improved rate depends on the
array size m and the ratio p. We have similar observa-
tions as those of Remark 2. For a fixed array size m, the
overall improved rate increases as the array dimension n
increases (the ratio p is independent of the array
dimension ).
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TABLE 7
The LoopCost(l) for Algorithms of Matrix-Matrix Multiplication Based on the TM R(n) and the EKMR(n)
LoopCost(l)
RefGroup Clmual.. 1A | Almnal. . Jillmol | Blmal. . [molli] Total
Others msm" msm" mml” Imom”
I msm" msm" IR 2™ "
m n el | M n ., n
TAR(n)| Mo 1-m" ’77—‘ Xm mnl’ w+ ’77—‘ Xm' +m
J ’Vﬂ“ xm' 1" [ﬁ—‘ xm' Z[ﬁ“X m’ A"
r r r
RefGroup C[w][k+7] A w][k+v] B u][k+r] Total
2 2 2
EKMR() ’VL“XWW—I [ﬂ}(mn—l {m_lxmn—l (z{m_}[ﬂw)xmn—l
r r r r r
TABLE 8

The Overall Improved Rate for Algorithms of Matrix-Matrix Multiplication Based
on the EKMR(n) with Respect to Those of the TM R(n)

Matrix-matrix multiplication operation
Dimension Improved Rate (%o)
§ +4 .
D ((2m§ t6+2r+2 2 1 )><p+1—2’m +(‘+2}+2)><100
m(26 +3) 5 10m m(25 +3)
S 3 - .
4D 2mé +(‘+27+2_i_ 1 )Xp+l_2ma +J +2r+2)><100
m(20 +3) 19 19m m(20 +3)
s +0 +2r+2  lam® +2m° 2md +8 +2r +2
n-D(nz5) [ - - )X p+l—-—————)x100
(20 +3) 1;74(3772 -3n+2) m2 +3)

innermost loop indices M,_4, My_3,...,M;,L,K,I,J and

4.3.2 Costs for Matrix-Matrix Multiplication Algorithms

A. The Costs of Addition/Subtraction/Multiplication
Operators. Algorithms for matrix-matrix multiplication
based on the TMR(3) in KIJM order and the EKMR(3) were
described in Section 4.2. Table 5 shows the costs of index
computations of array elements and array operations for
algorithms of matrix-matrix multiplication based on the
TMR(n) and the EKMR(n). In Table 5, for the improve rate,
we only consider the effect of the a.

From Table 5, we can see that the costs of index
computations of array elements and array operations for
algorithms of matrix-matrix multiplication based on the
EKMR(n) are less than those based on the TMR(n). In
Table 5, for n = 3 and 4, the improved rate increases as the
array size m increases. For n > 5, the improved rate is

14m* + 2m? < 100
m*(3n? — 3n + 2) '

The improved rate increases as the array dimension 7 or the
array size m increases.

B. The Cost of Cache Effect. Table 6 shows the LoopCost(l)
for algorithms of matrix-matrix multiplication based on the
EKMR(3) and the TMR(3) with various innermost loop
indices K, I, J, and M. From Table 6, we have similar
observations as those of Table 2.

Algorithms for matrix-matrix multiplication based on
the TMR(n) in M, 4M,_5...MiLKIJM, order and the
EKMR(n) were described in Section 4.2. Table 7 shows the
LoopCost(l) for algorithms of matrix-matrix multiplication
based on the FEKMR(n) and the TMR(n) with various

M. The improved rate of the EK M R(n) with respect to the
TMR(n) whose innermost loop is j is

(1= (2] + 1) = (2] +1) xm) ) x 100

for n > 3. The improved rate is independent of the array
dimension n. When m is divisible by r, the improved rate is
not 0, which is different from the algorithms of matrix-
matrix addition/subtraction operation. Let ¢ be the quotient
of m +r. We have

(1 (2] + T21) = (2] +1) < m) ) =200

2 2 2
_ (1 _M) 100

m(26 + 3)
If m is much lager than r, the improved rate

72m6+6+2r+2wo
m(26+3)

C. Discussions. From the above analysis, for the TMR(n),
the time complexities for the addition/subtraction/multi-
plication operators and the cache effect are O(m"*!') and
O(]™]m"), respectively. The time complexity of the addi-
tion/subtraction/multiplication operators is larger than
that of the cache effect. For a fixed array dimension 7, the
ratio of the cost of addition/subtraction/multiplication
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TABLE 9
The Execution Time of Algorithms for the Matrix-Matrix Addition Based
on the TMR(3) and the EK M R(3) with/without the Compiler Optimization

Methods TMR(3)
Array Sices KIJ [ KJI [ IKJ | UK | JKT IS ERMR3)
Sun Sparc 20
10~1010 * 0.466 0.472 0.461 0.462 0.461 0.461 0.368
E 0.215 0.205 0.119 0.112 0.118 0.117 0.098
50: 50 <30 * 69.204 71.615 70.569 92.227 79.027 102.288 53.837
rE 22.508 23319 27.609 53.324 42.451 67.800 19.731
100 100~100 * 545.187 599.843 578.356 1121.259 971.615 1450.361 424.348
ok 181.324 206.936 203.647 1052.891 884.855 1322.829 158.529
150150150 * 4036.25 4090.10 4412.34 9468.14 6647.67 11510.03 2990.13
ok 603.23 659.88 649.45 6002.90 3497.50 8138.36 534.59
200.200~200 * 10683.69 11784.38 12234.63 26428.42 16092.11 25828.06 7541.69
ok 1534.27 3829.70 1491.12 18701.37 8971.80 18772.69 1386.43
Intel Pentium 111 800 PC
101010 * 0.054 0.053 0.052 0.053 0.052 0.052 0.042
ok 0.010 0.009 0.009 0.009 0.009 0.008 0.003
505050 * 11.451 11.508 11.354 13.908 13.435 15.691 8.839
ok 4.421 4.369 4.349 5.309 6.627 7.548 4.069
100~100100 * 76.533 76.637 76.296 92.875 307.694 326.276 58.598
E 31.192 30.087 33.986 51.126 175.111 226.006 27.216
150~150.150 * 329.26 542.72 331.92 724.68 1701.94 2052.30 244.00
ok 110.50 130.81 138.61 166.83 648.36 822.62 108.90
200200200 * 845.13 1313.68 869.05 1474.11 4034.10 4422.22 625.42
E 284.58 277.19 271.70 406.38 1588.26 1927.11 260.81
IBAM RS/6000
10~1010 * 0.171 0.171 0.169 0.169 0.169 0.169 0.133
ok 0.026 0.029 0.024 0.025 0.025 0.025 0.023
505050 * 21.865 23.016 22.562 22.131 65.511 66.258 17.479
E 3.961 3.546 2.957 2.986 11.461 8.292 2.740
100~100100 * 176.375 179.129 179.125 178.068 629.211 667.122 144.563
E 24.524 28.625 28.593 44.106 292.602 318.651 21.850
150150150 * 593.05 606.71 611.17 1053.14 2269.52 2738.98 484.31
rE 75.97 114.35 135.58 224.96 1173.06 1808.66 65.77
200200200 * 1411.77 4390.57 1465.41 8361.49 5169.73 8659.84 1141.11
ok 515.39 902.24 622.84 1011.63 3179.72 4510.17 423.40

*: Without the compiler optimization
**: With the compiler optimization

operators increases as the array size m increases. For a fixed
array size m, the ratio of the cost of addition/subtraction/
multiplication operators is independent of the array
dimension n. The overall improved rate for algorithms of
matrix-matrix multiplication based on the EKXMR(n) with
respect to those of the TMR(n) is given in Table 8. From
Table 8, for three- and four-dimensional arrays, we have the
following remark:
Remark 5. The overall improved rates for three- and four-
dimensional arrays depend on the array size m and the
ratio p. We have similar observations as those of Remark 2.

From Table 8, for n-dimensional arrays where n > 5, we
have two remarks.
Remark 6. For a fixed array dimension n, the overall
improved rate depends on the array size m and the ratio
p. We have similar observations asthose of Remark 2.
Remark 7. For a fixed array size m, the overall improved
rate increases as the array dimension 7 increases (the
ratio p is independent of the array dimension n).

Time: ms

5 EXPERIMENTAL RESULTS

To evaluate the performance of algorithms for matrix-
matrix addition/subtraction and matrix-matrix multiplica-
tion array operations, we have implemented those algo-
rithms on three platforms, an IBM RS/6000 with 256MB
main memory, a Sun Sparc 20 with 180MB main memory,
and an Intel Pentium III 800 PC with 512MB main
memory. The algorithms were implemented in C. For the
Sun Sparc 20 and Intel Pentium III 800 PC platforms, all
C programs were compiled by gcc compilers with/
without the -O3 option. For the IBM RS/6000 platform,
we used the cc compiler to compile all C programs with/
without the -O4 option. The array size is set from 10 x 10 x
10 to 200 x 200 x 200 for the three-dimensional array and
from 10 x 10 x 10 x 10 to 50 x 50 x 50 x 50 for the four-
dimensional array. Since Fortran 90 provides a rich set of
intrinsic functions for multidimensional array operations, in
the experimental test, we also compare the performance of
intrinsic functions provided by the Fortran 90 compiler and
those based on the EKMR scheme on an IBM RS/6000.
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TABLE 10
The Execution Time of Algorithms for the Matrix-Matrix Multiplication Based
on the TMR(3) and the EK M R(3) with/without the Compiler Optimization
Methods TMR(3)
Array Sizes KM | KiMJ ] kM 1 kMg ] IMKJ ] MK ] MIKJ ERMRG)
Sun Sparc 20
10%10%10 * 0.0087 0.0089 0.0090 0.0087 0.0090 0.0090 0.0090 0.0080
** 0.0054 0.0052 0.0059 0.0052 0.0051 0.0052 0.0052 0.0050
* 6.115 6.130 6.215 6.215 6.248 6.194 6.270 5.232
50x50%50
** 3.31 333 3.22 3.35 3.93 3.69 4.20 3.07
* 98.50 102.09 99.15 100.05 100.44 99.34 100.18 81.68
100x100x100
ol 57.88 53.85 61.24 53.90 60.89 58.95 64.98 51.20
* 1111.0 1108.0 1116.5 1107.6 1138.0 1116.1 1139.3 922.1
150%150%150 |—
x 286.1 275.3 277.6 274.8 314.7 277.5 314.9 257.1
20052005200 — 3385.8 3381.5 3393.5 3380.5 3443.0 3392.1 3443.6 2703.8
x 1154.5 1081.4 1105.4 1089.4 1209.7 1102.8 1219.4 958.6
Intel Pentium 111 800 PC
10x10x10 * 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0006
** 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
50%50%50 * 0.658 0.649 0.658 0.678 0.684 0.717 0.722 0.526
** 0.072 0.057 0.057 0.152 0.155 0.203 0.148 0.045
* 10.33 10.35 10.30 11.19 11.26 11.44 11.46 8.29
100100100 =3 1.091 0.849 0.841 2.358 2.435 3.116 3.058 0.752
* 53.96 54.18 53.65 62.45 63.79 63.71 65.07 43.22
150%150%150 |—
o 4.610 4.148 4.137 11.993 13.320 16.347 16.141 3516
* 158.9 159.6 158.5 185.5 204.3 190.9 204.0 126.4
200200200 = 16.989 14.735 12.899 37.170 58.092 49.992 60.319 11.654
IBM RS/6000
10x10x10 * 0.0021 0.0021 0.0025 0.0023 0.0021 0.0021 0.0021 0.0019
** 0.0008 0.0003 0.0003 0.0003 0.0004 0.0003 0.0003 0.0003
* 1.569 1.567 1.560 1.542 1.518 1.533 1.501 1.316
50x50%50
** 0.507 0316 0.315 0.332 0.333 0.350 0.353 0.296
100%100%100 * 23.467 23.495 23.607 23.902 24.895 23.887 24.935 20.880
o 7.744 3.555 3.876 3.953 5.388 3.956 5.316 2.744
* 120.51 119.53 119.60 121.02 125.68 121.13 125.65 105.11
150x150x150
o 35.300 17.765 18.859 19.183 27.011 20.581 26.615 15.813
200%200%200 * 383.64 380.61 381.30 382.62 393.75 383.10 393.81 335.79
** 143.25 70.46 73.73 75.75 105.04 80.31 102.41 62.25
*: Without the compiler optimization Time: s
**: With the compiler optimization
5.1 Performance Comparisons of Array Operations operators and the cost of the cache effect to the overall cost

Based on the EKMR(3) and the TMR(3)

Table 9 shows the execution time of algorithms for the
matrix-matrix addition based on the EKMR(3) and the
TMR(3). From Table 9, we can see that the execution time
of the algorithm based on the EKXMR(3) is less than that
based on theT' M R(3) for all test samples with/without the
compiler optimization. In the following discussion, we only
consider the cases without the compiler optimization.

For the TMR(3), we can see that the execution time of
algorithms whose innermost loop index is | (K1J and IKJ
orders) is less than that of algorithms whose innermost loop
index is K or I. These results match the theoretical analysis
described in Section 4.3.1. In general, the cache line size is a
multiple of 4, such as 4,8, ...,4n. From Table 9, we can see
that the overall improved rate of the array size 200 x 200 x
200 is larger than that of the array size 100 x 100 x 100 and
this result matches Remark 1. When the array size increases,
the overall improved rate for the Sun Sparc 20 increases, the
overall improved rate for the Intel PentiumlIIl 800PC is
constant, and the overall improved rate for the IBM RS/
6000 decreases. Although it is very difficult to obtain the
ratios of the cost of addition/subtraction/multiplication

of an algorithm, for this phenomenon, the possible reason
was described in Remark 2.

For the matrix-matrix multiplication, based on the
TMR(3), there are 24 loop orders. From the theoretical
analysis, we have shown that algorithms whose innermost
loop index is | have the best performance. Therefore, in
Table 10, for the TMR(3), we show the execution time of
algorithms whose innermost loop index is J. For other
innermost loop indices, we only show the one that has the
smallest execution time (without the compiler optimiza-
tion). From Table 10, we can see that the execution time of
algorithm based on the EK M R(3) is less than that based on
the TMR(3) for all test samples with/without the compiler
optimization. In the following discussion, we only consider
the cases without the compiler optimization.

For the TMR(3), in general, the execution time of
algorithms whose innermost loop index is J is less than that
of algorithms whose innermost loop index is not J. These
results match the theoretical analysis described in Section
4.3.2. For the overall improved rates, we have similar
observations as those of Table 9. These observations match
Remark 5. However, for the T'MR(3), there are some
exceptions. For example, for Sun Sparc 20, the execution
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TABLE 11
The Execution Time of Algorithms for the Matrix-Matrix Addition Based
on the TMR(4) and the EK M R(4) with/without the Compiler Optimization

Methods NN - MR(-
Array sices TR (ERED R
Sun Sparc 20

# 45
10-10<10-10 = 3332 \Z'ggé
* 105.239 65.668
202042020 = 29.490 26.744
x 533.083 292,330
303043030 = 146.927 129.612
— * 3422274 1862.289
40404040 = 507,067 444,144
. e 9803.730 5197671
50505050 = 1137829 990.796

Intel Pentium 111 800 PC
*
10-10-10010 o 0143 0126
*
20-20/20~20 = 153'369695 gggg
) B 78.563 43,678
301303030 — 21778 21.852
— B 260.543 151468
40404040 — 21,600 81.882
— * 815.700 484.779
50505050 e 224.051 200.487
IBA RS/6000

_ -
1010+10-10 = éiﬂj ézfi
) B 35444 23.681
201202020 = 72 569 19.717
) B 172.904 117.966
30~30+30-30 o 18.112 16.766
— x 552.005 365.832
4040 4040 s 61.926 52.609
. x 1338.657 897.834
50505050 = 136,365 147.727

*: Without the compiler optimization
**: With the compiler optimization

time of algorithms whose innermost loop index is ] is larger
than that of the algorithm in KIJM order for the case
where the array size is 10 x 10 x 10 or 100 x 100 x 100. The
reason is that algorithm LoopCost assumes that there will be
no cache conflict problem in algorithms [4], [28]. In practice,
the cache conflict may be encountered in algorithms and
will influence the overall performance of algorithms.

5.2 Performance Comparisons of Array Operations
Based on the EKXMR(4) and the TMR(4)

For the matrix-matrix addition/subtraction, based on the
TMR(4), there are 24 loop orders. In Table 11, we only
show the one that has the smallest execution time for the
TMR(4). From Table 11, we can see that the execution time
of algorithm based on the EKMR(4) is less than that based
on the TMR(4) for all test samples with/without the
compiler optimization. In the following discussion, we only
consider the cases without the compiler optimization.

For the TMR(4), we can see that the algorithm whose
innermost loop index is | has the smallest execution time.
These results match the theoretical analysis described in
Section 4.3.1. In addition, we can see that the overall
improved rate of the array size 20 x 20 x 20 is larger than

Time: s

that of the array size 40 x 40 x 40. This result matches
Remark 3. For the overall improved rates, we have similar
observations as those of Table 9. These results match
Remark 4. From Table 9 and Table 11, we can see that the
overall improved rates for four-dimensional arrays are
better than those for three-dimensional arrays. These results
match Remarks 3 and 4.

For the matrix-matrix multiplication, based on the
TMR(4), there are 120 loop orders. From the theoretical
analysis, we have shown that algorithms whose innermost
loop index is | have the best performance. Therefore, in
Table 12, for the TMR(4), we show the execution time of
some algorithms whose innermost loop index is J. For other
innermost loop indices, we only show the one that has the
smallest execution time (without the compiler optimiza-
tion). From Table 12, we can see that the execution time of
algorithm based on the EK M R(4) is less than that based on
the TMR(4) for all test samples with/without the compiler
optimization. In the following discussion, we only consider
the cases without the compiler optimization.

For the TMR(4), we can see that the algorithm whose
innermost loop index is | has the smallest execution time.
These results match the theoretical analysis described in
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LE 12

The Execution Time of Algorithms for the Matrix-Matrix Multiplication Based
on the TMR(4) and the EK M R(4) with/without the Compiler Optimization

Methods TMR(4)
EKMR(4
Array Sizes LKDM | MK | IMED ] kMU | LKIMJ “
Sun Spare 20
— -
10101010 * 0.1263 0.1529 0.1458 0.1107 0.1139 0.0852
o 0.0632 0.0663 0.0612 0.0627 0.0753 0.0514
1 * 3.515 3.621 3.654 3.511 3.599 2359
20202020 ok 1.976 2.072 2.053 1.922 1.920 1.784
* 28.578 29.008 29.478 28.528 29.508 18.994
307303030 o 14.556 15.728 15.610 13.327 13.093 11.296
o * 243.65 247.52 247.36 242.85 242.627 159.193
407404040 o 63.246 65.444 65.505 62.703 61.275 58.156
o < * 868.64 850.77 850.44 838.91 836.93 562.00
50505050 -
o 233.65 206.54 206.30 175.73 174.62 164.63
Intel Pentium 111 800 PC
o - _
10101010 0.0116 0.0115 0.011; 0.0114 0.0114 0.0075
o 0.0012 0.0015 0.0014 0.0015 0.0014 0.0011
* 0.378 0.466 0.381 0.381 0377 0.240
0,20~
207202020 o 0.044 0117 0.045 0.044 0.045 0.043
* A
10303030 * 3.340 3.686 3.342 3311 3334 2.072
o 0.261 0.912 0.350 0.341 0.325 0.244
e * 11.584 14.274 14.227 11.495 11.585 7.301
407404040 o 1.263 3.406 3.256 1.231 1.238 1.058
50505050 * 50.066 59.050 58.592 50.513 49.988 30.112
o 3.594 11.083 11.086 3.687 3.740 3.296
IBAL RS/6000
] * 0.0275 0.0288 0.0282 0.0277 0.0277 0.0232
10~10~10-10 — .
o 0.0046 0.0036 0.0035 0.0035 0.0034 0.0030
] * 0.914 0.986 0.900 0.901 0.901 0.723
201202020 o 0.139 0.139 0.116 0.117 0.115 0.109
* A '~ r
10303030 * 6.948 7.105 7.001 6.934 7.041 5.538
o 1.959 1.256 1.396 1.199 1.236 1.060
* 28.674 29.138 31.005 28.762 28.739 22.489
0404404
407404040 o 8.034 5189 5.549 4714 5712 4297
o < * 87.427 88.787 88.878 88.376 88.115 69.092
50505050 : :
o 24.675 18.606 17.980 16.217 16.769 14.629
*: Without the compiler optimization Time: s

**: With the compiler optimization

Section 4.3.2. For the overall improved rates, we have
similar observations as those of Table 9. These results match
Remark 6. From Table 10 and Table 12, we can see that the
overall improved rates for four-dimensional arrays are
better than those for three-dimensional arrays. These results
match Remark 7.

5.3 Performance Comparisons of Fortran 90 Array
Intrinsic Functions

Fortran 90 [1] provides a rich set of array intrinsic functions,
which operate on elements of multidimensional array
objects. These array intrinsic functions are useful in a large
number of scientific codes. In general, they can be divided
into two categories. In the first category, the array intrinsic
functions, such as ALL, MAXVAL, PACK, SUM, etc., focus
on the operations in an array. They are usually used to find
the maximum or minimum value, do logic operations, and
collect some array elements in an array.

In the second category, the array intrinsic functions, such
as +, -, MERGE, etc., focus on element-to-element operations
between two arrays. They are usually used to perform
matrix-matrix addition/subtraction, matrix-matrix multi-
plication, etc. Fortran 90 adopts the column-major data
layout to store array elements based on the TMR scheme. To
implement these array intrinsic functions based on the

EKMR scheme, the EKRM scheme presented in Section 3
needs a slightly modifications. For the EM K R(3), the index
variable ¢’ is a combination of the index variables i and k
and the index variable j is the same as index variable j.

For the EM K R(4), the index variable ¢’ is a combination
of the index variables i and k and the index variable j' is a
combination of the index variables I and j. Based on the
modified EKMR scheme, we design algorithms for
Fortran 90 array intrinsic functions, including ALL,
MAXVAL, MERGE, PACK, SUM, and +.

To evaluate the performance of these algorithms based
on the EKMR scheme, we implemented these algorithms in
Fortran 90, executed them on an IBM RS/6000 machine, and
compared the execution time of these algorithms with those
provided by the Fortran 90 compiler. Table 13 shows the
execution time of the array intrinsic functions provided by
the Fortran 90 compiler and based on the EKXMR(3) with
different array size. From Table 13, we can see that the
execution time of algorithms based on the EK M R(3) is less
than that provided by the Fortran 90 compiler for all test
intrinsic functions. Table 14 shows the execution time of the
array intrinsic functions provided by the Fortran 90
compiler and based on the EKXMR(4) with different array
size. From Table 14, we have similar observation as that of
Table 13.
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The Execution Time of the Array Intrinsic Functions Provided by the Fortran 90 Compiler and Based

on the EKMR(3) with Different Array Size on IBM RS/6000 Machine

Array Intrinsic Functions Array Sizes 505050 100100100 200200200
(Methods
n TMRG) 24 509 5075
(C=A+B) EEMR(3) 18 397 4615
ALL TMRG) 20 156 3893
(ALL(A>0)) EEMR(3) 16 147 3521
MAXVAL TMRG) 2 171 3957
(b=MAXTAL(A)) EKMR(3) 16 154 3621
MERGE TMR(3) 21 350 3052
(c=MERGE(4.B.4>B)) EKMR(3) 16 150 2790
PACK TMR(3) 2 149 2428
(c=PACK(4.4>3)) EKMR(3) 14 105 2256
SUM TMR(3) 2 169 2523
(b=SUM(A)) EKMR(3) 17 148 2367
Time: ms
TABLE 14

The Execution Time of the Array Intrinsic Functions Provided by the Fortran 90 Compiler and Based

on the EK M R(4) with Different Array Size on IBM RS/6000 Machine
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6 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new scheme, EKMR, for
the multidimensional array representation. The main idea
of the EKMR scheme is to represent a multidimensional
array by a set of two-dimensional arrays. To evaluate the
proposed scheme, we designed efficient algorithms for
multidimensional array operations, matrix-matrix addi-
tion/subtraction, and matrix-matrix multiplications, based
on the EKMR and TMR schemes. Both theoretical analysis
and experimental test for these array operations were
conducted. From the theoretical analysis and experimental
results, we can see that array operations based on the
EKMR scheme outperform those based on the TMR scheme.
The reasons are two-fold. First, the EKMR scheme can
decrease the costs of index computations of array elements
for array operations because it uses a set of two-
dimensional arrays to represent a higher dimensional
array. Second, the cache miss rate for array operations
based on the EKMR scheme is less than that based on the
TMR scheme because the number of cache lines accessed by
array operations based on the EKMR scheme is less than
that based on the TMR scheme. Since Fortran 90 provides a
rich set of intrinsic functions for multidimensional array

Array Intrinsic Functions ArrapSizesl 16101010 30303030 50505050
(Methods
T TMR(3) q 192 1458
(C=A+B) ERMRQ) 2 130 1014
ALL TMR(3) 1 171 1215
(ALL(A>0)) ERMRQ) 2 115 868
MAXVAL TMR3) 1 159 1137
(b=ALAXTAL(A)) EKMR(3) 1 114 317
MERGE TMR(3) 5 169 1536
(c=MERGE(4.B.A>B)) EKMR(3) 2 114 1262
PACK TMR(3) 1 156 2451
(c=PACK(A.4>3)) EKMR(3) 1 90 1389
SUM TMR(3) 1 148 2307
(b=SUA(A)) EKMR(3) 1 107 1603
Time: ms

operations, in the experimental test, we also compared the
performance of intrinsic functions provided by the Fortran
90 compiler and those based on the EKMR scheme. The
experimental results showed that algorithms based on the
EKMR scheme outperform those based on the TMR scheme
and those provided by the Fortran 90 compiler.

In the future, we plan to work on the following
directions:

1. Develop efficient parallel algorithms of array opera-
tions based on the EKMR scheme. Some preliminary
results can be found in [27].

2. Develop compression schemes for sparse arrays in
the form of the EKMR scheme on sequential and
multiprocessor machines.

3. Apply recursive data layout functions to the
EKMR scheme to obtain other efficient data layouts
for array operations.

4. Develop efficient algorithms of array operations
based on the EKMR scheme by using the tiling
technique.

We believe that these directions are of importance in array
operations.
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