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AbstractÐIn many scientific applications, array redistribution is usually required to enhance data locality and reduce remote memory

access in many parallel programs on distributed memory multicomputers. Since the redistribution is performed at runtime, there is a

performance trade-off between the efficiency of the new data decomposition for a subsequent phase of an algorithm and the cost of

redistributing data among processors. In this paper, we present a generalized processor mapping technique to minimize the amount of

data exchange for BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r) array redistribution and vice versa. The main idea of the generalized

processor mapping technique is first to develop mapping functions for computing a new rank of each destination processor. Based on

the mapping functions, a new logical sequence of destination processors can be derived. The new logical processor sequence is then

used to minimize the amount of data exchange in a redistribution. The generalized processor mapping technique can handle array

redistribution with arbitrary source and destination processor sets and can be applied to multidimensional array redistribution. We

present a theoretical model to analyze the performance improvement of the generalized processor mapping technique. To evaluate the

performance of the proposed technique, we have implemented the generalized processor mapping technique on an IBM SP2 parallel

machine. The experimental results show that the generalized processor mapping technique can provide performance improvement

over a wide range of redistribution problems.

Index TermsÐArray redistribution, generalized processor mapping, distributed memory multicomputers, runtime support.

æ

1 INTRODUCTION

THE data parallel programming model has become a
widely accepted paradigm for programming distrib-

uted memory multicomputers. To efficiently execute a
data parallel program on a distributed memory multi-
computer, appropriate data decomposition is critical. The
data decomposition involves data distribution and data
alignment. The data distribution deals with how data arrays
should be distributed. The data alignment deals with how
data arrays should be aligned with respect to one another.
The purpose of data decomposition is to balance the
computational load and minimize the communication
overheads.

Many data parallel programming languages, such as

High Performance Fortran (HPF) [9], Fortran D [6], Vienna

Fortran [33], and High Performance C (HPC) [28], provide

compiler directives for programmers to specify array

distribution. The array distribution provided by those

languages, in general, can be classified into two categories,

regular and irregular. The regular array distribution, in

general, has three types, BLOCK, CYCLIC, and BLOCK-

CYCLIC(c). The irregular array distribution uses user-

defined array distribution functions to specify array

distribution.
In some algorithms, such as multidimensional fast Fourier

transform [29], the Alternative Direction Implicit (ADI)

method for solving two-dimensional diffusion equations,
and linear algebra solvers [21], an array distribution that is
well suited for one phase may not be good for a subsequent
phase in terms of performance. Array redistribution is
required for those algorithms at runtime. Therefore, many
data parallel programming languages support runtime
primitives for changing a program's array decomposition
[1], [2], [9], [28], [33]. Since array redistribution is performed
at runtime, there is a performance trade-off between the
efficiency of a new data decomposition for a subsequent
phase of an algorithm and the cost of redistributing arrays
among processors. Thus, efficient methods for performing
array redistribution are of great importance for the
development of distributed memory compilers for those
languages.

In this paper, we present a generalized processor
mapping technique to minimize the amount of data
exchange of BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r)
redistribution and vice versa. The data transmission cost
of a redistribution can be reduced. Compared with the
technique proposed by Kalns et al. [12], the generalized
processor mapping technique is effective not only on BLOCK

to BLOCK-CYCLIC(r) (or vice versa) redistribution but
also on BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r) and
BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr) array redistri-
bution. Another contribution of the generalized processor
mapping technique is the ability to handle array
redistribution with arbitrary source and destination
processor sets. We also present a theoretical model to
compute the amount of data that is retained locally and to
analyze the performance improvement through a redis-
tribution. The generalized processor mapping technique
has the following characteristics:
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. The generalized processor mapping technique can
minimize the amount of data that needs to be
communicated in BLOCK-CYCLIC(kr) to BLOCK-

CYCLIC(r) and BLOCK-CYCLIC(r) to BLOCK-

CYCLIC(kr) array redistribution. The data trans-
mission cost of a redistribution can be reduced.

. The generalized processor mapping technique can
handle array redistribution with arbitrary source
and destination processor sets and also multidimen-
sional arrays.

. The proposed mapping functions determine a
unique logical processor sequence that achieves the
maximum amount of data retained locally in a
redistribution.

. If the source processor set and destination processor
set of a redistribution are two disjoint sets, then the
generalized processor mapping technique will be
stultified.

We have implemented the generalized processor
mapping technique on an IBM SP2 parallel machine.
The experimental results show that the generalized
processor mapping technique provides performance
improvement for most redistribution samples.

The rest of this paper is organized as follows: In
Section 2, a brief survey of related work will be
presented. In Section 3, we will introduce notations and
terminology used in this paper. Section 4 presents the
generalized processor mapping technique for BLOCK-

CYCLIC(kr) to BLOCK-CYCLIC(r) and BLOCK-CYCLIC(r)
to BLOCK-CYCLIC(kr) redistribution. In Section 5, we will
present the generalized processor mapping technique for
multidimensional array redistribution. The performance
analysis and experimental results will be given in Section 6.

2 RELATED WORK

Many methods for performing array redistribution have
been presented in the literature. These techniques can be
classified into multicomputer compiler techniques [27] and
runtime support techniques. We briefly describe the related
research in these two approaches.

Gupta et al. [7] derived closed form expressions to
efficiently determine the send/receive processor/data sets.
They also provided a virtual processor approach [8] for
addressing the problem of reference index-set identification
for array statements with BLOCK-CYCLIC(c) distribution
and formulated active processor sets as closed forms. A
recent work in [16] extended the virtual processor approach
to address the problem of memory allocation and index-set
identification. By using their method, closed form expres-
sions for index-sets of arrays that were mapped to
processors using one-level mapping can be translated to
closed form expressions for index-sets of arrays that were
mapped to processors using two-level mapping and vice
versa. A similar approach that addressed the problems of
the index set and the communication sets identification for
array statements with BLOCK-CYCLIC(c) distribution was
presented in [24]. In [24], the BLOCK-CYCLIC(k) distribu-
tion was viewed as a union of k CYCLIC distribution. Since
the communication sets for CYCLIC distribution is easy to

determine, communication sets for BLOCK-CYCLIC(k)
distribution can be generated in terms of unions and
intersections of some CYCLIC distributions.

In [3], Chatterjee et al. enumerated the local memory
access sequence of communication sets for array statements
with BLOCK-CYCLIC(c) distribution based on a finite-state
machine. In this approach, the local memory access
sequence can be characterized by an FSM at most c states.
In [17], Kennedy et al. also presented algorithms to compute
the local memory access sequence for array statements with
BLOCK-CYCLIC(c) distribution. Lee and Chen [18] derived
communication sets for statements of arrays which were
distributed in arbitrary BLOCK-CYCLIC(c) fashion. They
also presented closed form expressions of communication
sets for restricted block size. In [4], we proposed a basic-
cycle calculation to efficiently generate the communication
sets for array redistribution. The greatest advantage of this
method is the ability of fast indexing. In [11], we proposed
efficient algorithms for BLOCK-CYCLIC(kr) to BLOCK-

CYCLIC(r) and BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr)
redistribution. The most significant improvement of the
algorithms is that a processor does not need to construct the
send/receive data sets for a redistribution.

Thakur et al. [25], [26] presented algorithms for runtime
array redistribution in HPF programs. For BLOCK-

CYCLIC(kr) to BLOCK-CYCLIC(r) redistribution (or vice
versa), in most cases, a processor scanned its local array
elements once to determine the destination (source)
processor for each block of array elements of size r in
the local array. In [10], an approach for generating
communication sets by computing the intersections of
index sets corresponding to the LHS and RHS of array
statements was presented. The intersections are computed
by a scanning approach that exploits the repetitive pattern
of the intersection of two index sets. In [22], [23],
Ramaswamy and Banerjee used a mathematical representa-
tion, PITFALLS, for regular data redistribution. The basic
idea of PITFALLS is to find all intersections between source
and destination distributions. Based on the intersections,
the send/receive processor/data sets can be determined
and general redistribution algorithms can be devised.
Prylli and Touranchean [21] proposed a runtime scan
algorithm for BLOCK-CYCLIC array redistribution. Their
approach has the same time complexity as that proposed in
[23] but has a simple basic operation compared to that
proposed in [23]. The disadvantage of these approaches is
that, when the number of processors is large, iterations of
the outermost loop in intersection algorithms increases as
well. This leads to high indexing overheads and degrades
the performance of a redistribution algorithm.

The above researches focus on efficient generation of
communication sets. For the communication part, a spiral
mapping technique [32] was proposed. The main idea of
this approach was to map formal processors onto actual
processors such that the global communication can be
translated to the local communication in a certain processor
group. Since the communication is local to a processor
group, one can reduce communication conflicts when
performing a redistribution. Kalns and Ni [12], [13]
proposed a processor mapping technique to minimize the
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amount of data exchange for BLOCK to BLOCK-CYCLIC(r)
redistribution and vice versa. Using the data to logical
processor mapping, they show that the technique can
achieve the maximum ratio between data retained
locally and the total amount of data exchanged.
Walker and Otto [30] used the standardized Message
Passing Interface (MPI) to express the redistribution
operations. They implemented the BLOCK-CYCLIC array
redistribution algorithms in a synchronous and an asyn-
chronous scheme. Since the excessive synchronization
overheads occurred from the synchronous scheme, they
also presented the random and optimal scheduling algo-
rithms for BLOCK-CYCLIC array redistribution.

Kaushik et al. [14], [15] proposed a multiphase
redistribution approach for BLOCK-CYCLIC(s) to BLOCK-

CYCLIC(t) redistribution. The main idea of multiphase
redistribution is to perform a redistribution as a sequence of
redistributions such that the communication cost of data
movement among processors in the sequence is less than
that of direct redistribution. Instead of redistributing the
entry array at one time, a strip mining approach was
presented in [31]. In this approach, portions of array
elements were redistributed in sequence in order to overlap
the communication and computation. In [19], a generalized
circulant matrix formalism was proposed to reduce the
communication overheads for BLOCK-CYCLIC(r) to
BLOCK-CYCLIC(kr) redistribution. Using the generalized
circulant matrix formalism, the authors derived direct,
indirect, and hybrid communication schedules for the cyclic
redistribution with the block size changed by an integer
factor k. They also extended this technique to solve some
multidimensional redistribution problems [20]. However,
as the array size increased, the above methods will have a
large amount of extra transmission costs and degrades the
performance of a redistribution algorithm.

3 PRELIMINARIES

In general, a BLOCK-CYCLIC(s) over P processors to
BLOCK-CYCLIC(t) over Q processors redistribution can be
classified as one of three types:

1. s is divisible by t, i.e., BLOCK-CYCLIC�s � kr� to
BLOCK-CYCLIC�t � r� redistribution,

2. t is divisible by s, i.e., BLOCK-CYCLIC�s � r� to
BLOCK-CYCLIC�t � kr� redistribution, and

3. s is not divisible by t and t is not divisible by s.

To simplify the presentation, we use kr�P � ! r�Q�,
r�P � ! kr�Q�, and s�P � ! t�Q� to represent the first, the
second, and the third types of redistribution, respectively,
for the rest of the paper. In this section, we first present the
terminology used in this paper.

Definition 1. Given a BLOCK-CYCLIC(s) to BLOCK-

CYCLIC(t) redistribution, BLOCK-CYCLIC(s), BLOCK-

CYCLIC(t), s, and t are called the source distribution, the
destination distribution, the source distribution factor, and
the destination distribution factor of the redistribution,
respectively.

Definition 2. Given an s�P � ! t�Q�, the source local array of
processor Pi, denoted by SLAi�0 : N=P ÿ 1�, is defined as the
set of array elements that are distributed to processor Pi in the

source distribution, where 0 � i � P ÿ 1. The destination
local array of processor Qj, denoted by DLAj�0 : N=Qÿ 1�, is
defined as the set of array elements that are distributed to
processor Qj in the destination distribution, where
0 � j � Qÿ 1.

Definition 3. Given an s�P � ! t�Q� redistribution on A�1 : N�,
the source processor of an array element in A�1 : N � or
DLAj�0 : N=Qÿ 1� is defined as the processor that owns the
array element in the source distribution, where 0 � j � Qÿ 1.
The destination processor of an array element in A�1 : N� or
SLAi�0 : N=P ÿ 1� is defined as the processor that owns the
array element in the destination distribution, where
0 � i � P ÿ 1.

Definition 4. Given an s�P � ! t�Q� redistribution on A�1 : N�, a
global complete cycle (GCC) of A�1 : N� is defined as
GCC � lcm�s� P; t�Q�. We define A�1 : GCC� as the
first global complete cycle of A�1 : N �,

A�GCC � 1 : 2�GCC�
as the second global complete cycle of A�1 : N �, and so on.

Definition 5. Given an s�P � ! t�Q� redistribution on
A�1 : N �, a local complete cycle of a local array is defined
as LCCs � GCC=P in the source distribution and
LCCd � GCC=Q in the destination distribution. We
define

SLAi�0 : LCCsÿ 1��DLAj�0 : LCCd ÿ 1��
as the first local complete cycle of

SLAi�0 : N=P ÿ 1��DLAj�0 : N=Qÿ 1��
and

SLAi�LCCs : 2� LCCs ÿ 1��DLAj�LCCd : 2� LCCd ÿ 1��
as the second local complete cycle of

SLAi�0 : N=P ÿ 1� �DLAj�0 : N=Qÿ 1��
and so on.

We now give examples to clarify the above definitions.
Given a one-dimensional array A�1 : 100� and P � Q � 5
processors, Fig. 1 shows a BLOCK to BLOCK-CYCLIC(10)
redistribution on A over five processors. In this paper, we
assume that the local array index starts from 0 and the
global array index starts from 1. According to Definitions 4
and 5, the size of global complete cycle (GCC) is equal to
100 and the size of the local complete cycle is equal to 20 in
both source and destination distributions.

4 THE GENERALIZED PROCESSOR MAPPING

TECHNIQUE FOR kr�P � ! r�Q� AND r�P � ! kr�Q�
ARRAY REDISTRIBUTION

To perform the redistribution shown in Fig. 1, computation

as well as communication costs are required in array

redistribution. The computation cost consists of the

indexing time and the packing/unpacking time. The

communication cost includes message startup time and

data transmission time. In general, the communication cost
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is more expensive in terms of the execution time than the

computation cost. Therefore, techniques for reducing

communication costs are very important. In [12], a

processor mapping technique was proposed to minimize

the amount of data exchange in a redistribution. The

proposed techniques addressed the case of BLOCK to

BLOCK-CYCLIC(x) redistribution. Fig. 2a shows an example

of the processor mapping technique for the redistribution

shown in Fig. 1. In Fig. 2a, in the destination distribution,

the ªNSº represents the normal sequence of logical processor

ranks that start from 0 to M-1, where M is the number of

processors. The ªMSº represents the mapping sequence of

logical processor ranks that is generated by the mapping

function of the processor mapping technique. The shaded

portions represent the data that were retained on the same

logical processor through the redistribution. In the normal

sequence scheme, there are 20 array elements retained

locally. However, in the mapping sequence scheme, there

are 50 array elements retained locally. Since the global array

size is equal to 100, the processor mapping technique

provides 30 percent improvement in terms of data

transmission time for the redistribution shown in Fig. 1.
We consider another two examples. Fig. 2b and Fig. 2c

show the redistribution with different array sizes and
destination distribution factors, respectively. In Fig. 2b, a
BLOCK to BLOCK-CYCLIC(10) redistribution with larger
array size A�1 : 500� is shown. Both the normal sequence
scheme and the mapping sequence scheme have the same
amount of array elements retained locally. The processor
mapping technique does not provide a larger amount of
local data in this case. In Fig. 2c, a BLOCK to BLOCK-

CYCLIC(4) redistribution on a one-dimensional array
A�1 : 100� over five processors is shown. Similar to the
result of Fig. 2b, the normal sequence and the mapping
sequence schemes have the same amount of array elements
retained locally. We have the following two observations:

1. Given a BLOCK to BLOCK-CYCLIC(r) redistribution
with fixed destination distribution factor r, the
processor mapping technique is not effective when
the array size is larger than the threshold.

2. Given a BLOCK to BLOCK-CYCLIC(r) redistribution
with fixed array size N, the processor mapping
technique is not effective when the destination
distribution factor r is smaller than the threshold.

In fact, BLOCK to BLOCK-CYCLIC(r) redistribution (or
vice versa) is a special case of kr�P � ! r�Q� (or r�P � ! kr�Q�)
array redistribution, when k � N=Pr (or k � N=Qr) where
N is the array size. For general redistribution problems, we
derive a generalized processor mapping technique for
kr�P � ! r�Q� (or r�P � ! kr�Q�) array redistribution to mini-
mize the amount of data exchange.

According to the values of LCCs, LCCd, and kr,
kr�P � ! r�Q� and r�P � ! kr�Q� array redistributions can be
classified into two different types: optimal type and general
type, as shown in Table 1. In the optimal type, the
generalized processor mapping technique can derive a
mapping sequence such that the amount of data exchange is
minimal. In the general type, the generalized processor
mapping technique can derive a mapping sequence to
reduce the amount of data exchange. We will discuss the
generalized processor mapping technique for the optimal
type and the general type in Section 4.1 and Section 4.2,
respectively.

4.1 The Optimal Type

4.1.1 kr�P � ! r�Q� Array Redistribution

A. P � Q: Based on the characteristics of a redistribution,
we have the following lemma:

Lemma 1. Given an s! t redistribution on A�1 : N� over
M processors, for a source processor Pi, SLAi�m�,
SLAi�m� LCC�, SLAi�m� 2� LCC�; . . . ; and

SLAi�m�N=M � LCC�
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have the same destination processor, where 0 � i �M ÿ 1

and 0 � m � LCC ÿ 1.

Proof. In a s! r redistribution, GCC �M � lcm�s; t� and

LCC � lcm�s; t�. In the source distribution, for a source

processor Pi, if the global array index of SLAi�m� is �,

then the global array indices of SLAi�m� LCC�,
SLAi�m� 2� LCC�; . . . ; and SLAi�m�N=M ÿ LCC�
are ��GCC, �� 2�GCC; . . . ; and ��N=M ÿGCC,

respectively, where 0 � i �M ÿ 1 and

0 � m � LCC ÿ 1:

Since GCC �M � lcm�s; t� and LCC � lcm�s; t�, in the

destination distribution, if A��� is distributed to the

destination processor Pj, so are A���GCC�,
A��� 2�GCC�; . . . ;

and A���N=M ÿGCC�, where 0 � j �M ÿ 1 and

1 � � � GCC. tu

Lemma 2. Given an s! t redistribution on A�1 : N� over

M processors, for a destination processor Pj, DLAj�m�,
DLAj�m� LCC�, DLAj�m� 2� LCC�; . . . ; and

DLAj�m�N=M ÿ LCC�
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have the same source processor, where 0 � j �M ÿ 1 and

0 � m � LCC ÿ 1.

Proof. The proof of this lemma is similar to Lemma 1. tu

Given a one-dimensional array A�1 : 100� and
M � 5 processors, Fig. 3 shows a BLOCK-CYCLIC(10) to
BLOCK-CYCLIC(5) redistribution on A over M processors.
According to Lemmas 1 and 2, we know that each local
complete cycle (LCC) has the same communication patterns.
In Fig. 3, for source processor P2, array elements SLA2�0 : 9�
and SLA2�10 : 19� are in the first and the second LCC,
respectively. SLA2�0 : 9� and SLA2�10 : 19� have the same
communication patterns. Therefore, for kr! r redistribu-
tion, a processor only needs to construct the communication
sets for its first LCC. Then, it can perform the redistribution.
Similarly, to present the generalized processor mapping
technique, we only discuss how to derive a mapping
sequence in the first LCC.

Given a kr! r redistribution on a one-dimensional

array A�1 : N� over M processors, we use

< P0; P1; P2; . . . ; PMÿ1 >

and

< P��0�; P��1�; P��2�; . . . ; P��Mÿ1� >

to represent the normal sequence and the mapping
sequence, respectively, where ��j� represents the new

logical processor rank of Pj. The main idea of the
generalized processor mapping technique is to distribute
the global array elements onto destination processors
according to the mapping sequence instead of the normal
sequence in the destination distribution. For a destination
processor Pj, the new logical processor rank of Pj can be
determined by the following equation:

��j� � �j mod k� � M

k

� �
� j

k

� �
; �1�

where j � 0 to M ÿ 1.
Fig. 4 shows a BLOCK-CYCLIC(10) to BLOCK-CYCLIC(5)

redistribution on a one-dimensional array A�1 : 100� over
five processors. There are two kinds of logical processor
sequences illustrated in this example. Since the normal
sequence of destination processor ranks is P0, P1, P2, P3,
and P4. According to (1), the new ranks of destination
processors P0, P1, P2, P3, and P4 are equal to 0, 3, 1, 4, and 2,
respectively. Therefore, the mapping sequence of destina-
tion processors is P0, P3, P1, P4, and P2. From Fig. 4, we can
see that there are 20 array elements retained locally in a
normal sequence scheme while there are 50 array elements
retained locally in a mapping sequence scheme. The
generalized processor mapping technique provides a larger
amount of local data. The following lemma shows that the
mapping sequence generated by (1) can achieve the
maximum amount of data that was retained on the same
logical processor through a redistribution:

Lemma 3. Given a kr! r redistribution on a one-dimensional
array A�1 : N� over M processors, (1) determines a mapping
sequence of destination processors to achieve the maximum
ratio k

M

� �
: k, between local data and the global array size.

Proof. We prove the lemma in two parts: 1) The maximum
ratio is k

M

� �
: k. 2) The mapping sequence generated by

(1) can achieve the maximum ratio k
M

� �
: k.

1. Given a kr! r redistribution, for a source
processor Pi, where 0 � i �M ÿ 1: If k < M, then
at most r elements are retained on the local array
in each local complete cycle. Since there are
M local complete cycles in a GCC, the total
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amount of data that is retained on the local array
is Mr. In a kr! r redistribution, GCC �Mkr,
therefore, the ratio between local data and the
number of array elements in a GCC is

Mr : GCC �Mr : Mkr � 1 : k:

This is equal to k
M

� �
: k � 1 : k, when k < M.

If k �M, then at most k
M

� �
elements are

retained on local array in each local complete
cycle. Since there are M local complete cycles in
a GCC, the total amount of data retained on
local array is Mr� k

M

� �
. In a kr! r redistribu-

tion, GCC �Mkr, therefore, the ratio between
local data and the number of array elements in
a GCC is Mr : GCC �Mr� k

M

� �
: Mkr � k

M

� �
: k.

From the above description, the maximum
ratio is k

M

� �
: k.

2. In a kr! r redistribution, each GCC has the
same communication patterns, therefore, we
only need to prove that the mapping sequence
can achieve the maximum ratio k

M

� �
: k in the

first GCC. In a kr! r redistribution, there are
M local complete cycles in each GCC and are
denoted as LCC0, LCC1; . . . ; and LCCMÿ1,
respectively.

If k < M, in the source distribution, the source
processors of array elements in LCC0, LCC1; . . . ;
and LCCMÿ1 (i.e., A�1 : kr�, A�kr� 1 : 2kr�; . . . ;
and A��M ÿ 1� � kr� 1 : Mkr�� are P0, P1; ; and
PMÿ1, respectively. In the destination distribution,
the destination processors of the first r array
elements of local complete cycles LCC0,
LCC1; . . . ; and LCCMÿ1 (i.e., A�1 : r�,

A�kr� 1 : kr� r�; . . . ;

and

A��M ÿ 1� � kr� 1 : �M ÿ 1� � kr� kr��
are P0, Pk mod M , P2k mod M; . . . ; and P�Mÿ1�k mod M ,
respectively. According to (1), the new logical

processor ranks for P0, Pk mod M , P2k mod M; . . . ; and
P�Mÿ1�kmod M are equal to ��0� � 0

��k mod M� � 1;

��2k mod M� � 2; . . . ; and

���M ÿ 1� mod M� �M ÿ 1;

respectively. Therefore, there are Mr array
elements retained on the same logical processor
in the source and destination distribution in a
GCC. The ratio between local data and global
array size in a GCC is equal to

Mr : GCC �Mr : Mkr � 1 : k:

This is equal to k
M

� �
: k � 1 : k, when k < M That

means the mapping sequence can achieve the
ratio 1 : k.

For the case of k �M, the proof of this part is
similar to above. Therefore, from these two parts,
we know that (1) can determine a logical
sequence of destination processors to achieve
the maximum ratio k

M

� �
: k, between local data

and global array size. tu
B. P 6� Q: Given a kr�P � ! r�Q� redistribution on a one-

dimensional array A�1 : N�, we use < q0; q1; q2; ; qQÿ1 > and
< q��0�; q��1�; q��2�; . . . ; q��Qÿ1� > to represent the normal
sequence and the mapping sequence, respectively, where
��j� represents the new logical processor rank of qj. For a
destination processor qj, the new logical processor rank of qj
can be determined by the following equation:

��j� � �j mod k� � Q

k

� �
� j

k

� �
; �2�

where j � 0 to Qÿ 1.

An example of the generalized processor mapping

technique for kr�P � ! r�Q� redistribution with different

source and destination processor sets is shown in Fig. 5. In

Fig. 5, there are four source processors and eight destination

processors. According to (2), the mapping sequence of
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Fig. 4. kr! r redistribution with normal sequence < P0; P1; P2; P3; P4 > and mapping sequence < P0; P3; P1; P4; P2 > .



destination processors q0, q1, q2, q3, q4, q5, q6, and q7 are equal

to 0, 4, 1, 5, 2, 6, 3, and 7, respectively. In the mapping

sequence scheme, there are 20 array elements retained

locally in a global complete cycle. Since GCC � 40, the ratio

between local data and global array size is equal to

20 : 40 � 1 : 2. According to Lemma 3, the mapping sequence

of< q0; q1; q5; q2; q6; q3; q7 > achieves the maximum ratio k
Q

l m
:

k for the redistribution shown in Fig. 5. The following

Lemma shows that the generalized processor mapping

technique can achieve the maximum amount of data

retained locally for kr�P � ! r�Q� redistribution, if LCCs is

equal to kr.

Lemma 4. Given a kr�P � ! r�Q� redistribution on a one-

dimensional array A�1 : N�: If LCCs � kr, (2) determines a

mapping sequence of destination processors to achieve the

maximum ratio k
Q

l m
: k between local data and global array

size.

Proof. We prove the lemma in two parts: 1) The maximum

ratio is k
Q

l m
: k. 2) The mapping sequence generated by

(2) can achieve the maximum ratio.

1. Given a kr�P � ! r�Q� redistribution, for a source
processor Pi, where 0 � i � P ÿ 1: If k < Q, then
at most r elements are retained on the local array
in each local complete cycle. Since there are
P local complete cycles in a GCC, the total
amount of data retained on the local array is Pr. In
a kr�P � ! r�Q� redistribution, GCC � Pkr, there-
fore, the ratio between local data and the number
of array elements in a GCC is

Pr : GCC � Pr : Pkr � 1 : k:

This is equal to k
Q

l m
: k � 1 : k, when k < Q.

If k � Q, then at most k
Q

l m
elements are retained

on local array in each local complete cycle.

Since there are P local complete cycles in a

GCC, the total amount of data that is retained

on the local array is Pr� k
Q

l m
. In a kr�P � ! r�Q�

redistribution, GCC � Pkr, therefore, the ratio

between the local data and the number of array

elements in a GCC is

Pr� k

Q

� �
: GCC � Pr� k

Q

� �
: Pkr � k

Q

� �
: k:

From the above description, the maximum ratio

between local data and global array size is k
Q

l m
: k.

2. In a kr�P � ! r�Q� redistribution, each GCC has the

same communication patterns, therefore, we only

need to prove that the generalized processor

mapping technique can achieve the maximum

ratio k
Q

l m
: k in the first GCC. In a kr�P � ! r�Q�

redistribution, there are P local complete cycles in

each GCC and are denoted as LCC0, LCC1; . . . ;

and LCCPÿ1, respectively.
If k < Q, in the source distribution, the source

processors of array elements in LCC0, LCC1; . . . ;

and LCCPÿ1 (i.e., A�1 : kr�, A�kr� 1 : 2kr�; . . . ;

and A��M ÿ 1� � kr� 1 : Mkr�� are p0, p1; . . . ;

and p�Pÿ1�, respectively. In the destination dis-

tribution, the destination processors of the first r

array elements of local complete cycles LCC0,

LCC1, LCC2; . . . ; and LCCPÿ1 (i.e.,

A�kr� 1 : kr� r�; . . . ;

and

A��M ÿ 1� � kr� 1 : �M ÿ 1� � kr� kr��
are q0, qk mod Q, q2k mod Q; . . . ; and q�Qÿ1�k mod Q,

respectively. According to (2), the new logical

processor ranks for q0, qk mod Q, q2k mod Q; . . . ; and

q�Qÿ1�k mod Q are equal to ��0� � 0, ��k mod Q� � 1,

��2k mod Q� � 2; . . . ; and

���Qÿ 1�k mod Q� � Qÿ 1;
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respectively. Therefore, there are Pr array
elements retained on the same logical processor
in the source and destination distribution in a
GCC. The ratio between local data and global
array size in a GCC is equal to

Pr : GCC � Pr : Pkr � 1 : k:

Since k < Q, we have k
Q

l m
: k � 1 : k. That

means the mapping sequence can achieve the

ratio k
Q

l m
: k � 1 : k.

For the case of k � Q, the proof of this part is

similar to above. Therefore, we know that (2) can

determine a logical sequence of destination

processors to achieve the maximum ratio k
Q

l m
: k,

between local data and global array size. tu

4.1.2 r�P � ! kr�Q� Array Redistribution

A. P � Q: In this section, we present the generalized
processor mapping technique for r�P � ! kr�Q� array redis-
tribution with same source and destination processor sets.
Given an r! kr redistribution on a one-dimensional array
A�1 : N� over M processors, we use < P0; P1; P2; . . . ; PMÿ1 >

and

< P��0�; P��1�; P��2�; . . . ; P��Mÿ1� >

to represent the normal sequence and the mapping
sequence, respectively, where ��j� represents the new
logical processor rank of Pj. For a destination processor
Pj, the new logical processor rank of Pj can be determined
by the following equation:

��j� � �j mod k� � M

k

� �
� j� k

M

� �
; �3�

where j � 0 to M ÿ 1.
Fig. 6 shows a BLOCK-CYCLIC(5) to BLOCK-CYCLIC(10)

redistribution on a one-dimensional array A�1 : 100� over
five processors. In Fig. 6, two kinds of logical processor

sequences are illustrated. The normal sequence of the

destination processor ranks is P0, P1, P2, P3, and P4.

According to (3), the new ranks of destination processors

P0, P1, P2, P3, and P4 are equal to 0, 2, 4, 1, and 3,

respectively. Therefore, the mapping sequence of destina-

tion processors is P0, P2, P4, P1, and P3. From Fig. 6, we can

see that there are 20 array elements retained locally in the

normal sequence scheme while there are 50 array elements

retained locally in a mapping sequence scheme. The

generalized processor mapping technique provides a larger

amount of local data. The following lemma states that the

mapping sequence generated by (3) can achieve the

maximum amount of data that is retained on the same

logical processor through an r! kr redistribution.

Lemma 5. Given an r! kr redistribution on a one-dimensional

array A�1 : N� over M processors, (3) determines a mapping

sequence of destination processors to achieve the maximum

ratio k
M

� �
: k between local data and the global array size.

Proof. The proof of this lemma can be easily established

according to Lemma 3. tu

B. P 6� Q: Given an r�P � ! kr�Q� redistribution on a one-

dimensional array A�1 : N �, we use < q0; q1; q2; . . . ; qQÿ1 >

and < q��0�; q��1�; q��2�; . . . ; q��Qÿ1� > to represent the normal

sequence and the mapping sequence, respectively, where

��j� represents the new logical processor rank of qj. For a

destination processor qj, the new logical processor rank of qj

can be determined by the following equation:

��j� � �j mod k� � Q

k

� �
� j� k

Q

� �
; �4�

where j � 0 to Qÿ 1.

Lemma 6. Given an r�P � ! kr�Q� redistribution on a one-

dimensional array A�1 : N �, if LCCd � kr, (4) determines

a logical sequence of destination processors to achieve the

maximum ratio k
Q

l m
, between local data and global array

size.
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Fig. 6. r! kr redistribution with normal sequence < P0; P1; P2; P3; P4 > and mapping sequence < P0; P2;P 4; P1; P3 > .



Proof. The proof of this lemma can be easily established

according to Lemma 4. tu
4.2 General Type

According to Table 1, there are two types of redistribu-

tion in the general type: kr�P � ! r�Q� redistribution with

LCCs 6� kr and r�P � ! kr�Q� redistribution with LCCd 6� kr.
For kr�P � ! r�Q� redistribution, the mapping function is the

same as (2). For r�P � ! kr�Q� redistribution, the mapping

function is the same as (4). Fig. 7 shows an example of

kr�P � ! r�Q� redistribution with LCCs � 3kr. According to

(2), the mapping sequence is P0; P3; P1; P4; P2; P5. In Fig. 7,

both the normal sequence scheme and the mapping

sequence scheme provide the same amount of local data.

The generalized processor mapping technique does not

provide a larger amount of local data than that of the

normal method in this case. Fig. 8 shows another example

of kr�P � ! r�Q� redistribution with LCCs � 2kr. According

to (2), the mapping sequence is

P0; P6; P1; P7; P2; P8; P3; P9; P4; P10; P5; P11:

In Fig. 8, the mapping sequence scheme provides a larger
amount of local data than that of the normal sequence
scheme. From the above two examples, we know that the
processor mapping technique provides a different improve-
ment for different kr�P � ! r�Q� redistribution. In Section 6,
we will present a theoretical model to analyze the amount
of local data in the generalized processor mapping
technique. The mathematical model can also calculate the
improvement of the generalized processor mapping
technique for kr�P � ! r�Q� redistribution or vice versa.

5 MULTIDIMENSIONAL ARRAY REDISTRIBUTION

The generalized processor mapping technique can be
extended to multidimensional arrays. To simplify the
presentation, we use

BC�k0r0; k1r1; . . . ; knÿ1rnÿ1� ! BC�r0; r1; . . . ; rnÿ1�
to represent an n-dimensional (BLOCK-CYCLIC�k0r0�,
BLOCK-CYCLIC�k1r1�; . . . ; BLOCK-CYCLIC�knÿ1rnÿ1�) to
(BLOCK-CYCLIC�r0�, BLOCK-CYCLIC�r1�; . . . ; BLOCK-

CYCLIC�rnÿ1�) redistribution and
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Fig. 7. kr�P � ! r�Q� redistribution on A�1 : N� with different sequence of destination processor ranks, where k � 2, r � 5, N � 120, P � 4, Q � 6.

Fig. 8. kr�P � ! r�Q� redistribution on A�1 : N� with different sequence of destination processor ranks, where k � 2, r � 5, N � 120, P � 3, Q � 12.



BC�r0; r1; . . . ; rnÿ1� ! BC�k0r0; k1r1; . . . ; knÿ1rnÿ1�
to represent the reverse case. Since the source and

destination processor sets may be different, we use

P �P0; P1; . . . ; Pnÿ1� and Q�Q0; Q1; . . . ; Qnÿ1� to represent

the source and the destination processor grids, respectively.

The mapping functions 2 and 4 can be extened as follows:
Given a

BC�k0r0; k1r1; . . . ; knÿ1rnÿ1� ! BC�r0; r1; . . . ; rnÿ1�
redistribution on an n-dimensional array

A�1 : m0; 1 : m1; . . . ; 1 : mnÿ1�;
for a destination processor qj in the `th dimension, if the

new logical processor rank of qj is denoted by ��j�, then the

value of ��j� can be determined by the following equation:

��j� � �j mod k`� � Q`

k`

� �
� j

k`

� �
; �5�

where 0 � j � Q` ÿ 1 and 0 � ` � nÿ 1.
Given a

BC�r0; r1; . . . ; rnÿ1� ! BC�k0r0; k1r1; . . . ; knÿ1rnÿ1�
redistribution on an n-dimensional array

A�1 : m0; 1 : m1; . . . ; 1 : mnÿ1�
for a destination processor qj in the `th dimension, if the

new logical processor rank of qj is denoted by 
�j�, then the

value of 
�j� can be determined by the following equation:


�j� � �j mod k`� � Q`

k`

� �
� jk`

Q`

� �
; �6�

where 0 � j � Q` ÿ 1 and 0 � ` � nÿ 1.

6 PERFORMANCE EVALUATION AND

EXPERIMENTAL RESULTS

6.1 Theoretical Analysis

From the description in Section 4, we know that the

generalized processor mapping technique can reduce the

data transmission cost for kr�P � ! r�Q� redistribution and

vice versa. In this section, we present a theoretical model to

analyze the performance of the generalized processor

mapping technique.

6.1.1 kr! r and r! kr Array Redistribution

We first consider the case of kr! r and r! kr array

redistribution with the same source and destination

processor set. Given a kr! r (or r! kr ) array redistribu-

tion on a one-dimensional array A�1 : N � over M processors,

since each global complete cycle (GCC) has the same

communication patterns, we only consider the redistribut-

ing patterns in a GCC. To analyze the normal method and the

generalized processor mapping technique, we use Lnormal

and Lmapping to represent the amount of local data generated

by normal sequence and mapping sequence in a GCC,

respectively. Therefore, the total number of local data for a

redistribution is equal to Lnormal � N
GCC (or Lmapping � N

GCC ).

Given a kr! r (or r! kr) redistribution on a one-

dimensional array A�1 : N� over M processors, the value of

Lnormal can be determined by the following equation:

Lnormal � k

M

� �
�M � �

� �
� r; �7�

where � is defined as follows:

� �
XMÿ1

i�0

A�i�; �8�

where A�i� is defined as follows:

A�i� � ÿ���i�M� ÿ �ik mod M�� mod M < k mod M�; �9�
where ÿ�e� is called Iverson's function. If the value of e is

true, then ÿ�e� � 1; otherwise ÿ�e� � 0.
The value of Lmapping can be determined by the following

equation:

Lmapping � k

M

� �
�Mr: �10�

According to (7) and (10), we can have the following

equation:

Lmapping > Lnormal ,M > �: �11�
The generalized processor mapping technique provides

a larger amount of local data than that of the normal

method, when M > �. Since the value of � is smaller than or

equal to M (according to (8)), the generalized processor

mapping technique is effective for all kr! r (or r! kr)

redistribution.

6.1.2 kr�P � ! r�Q� and r�P � ! kr�Q� Array Redistribution

Given a kr�P � ! r�Q� (or r�P � ! kr�Q�) redistribution with

different source and destination processor sets, the

theoretical analysis for kr�P � ! r�Q� and r�P � ! kr�Q�
redistribution are constructed as follows:

. kr�P� ! r�Q�: Given a kr�P � ! r�Q� redistribution, if
LCCs � mkr, where m is a positive integer, the value
of Lnormal can be determined by the following
equation:

Lnormal � k

Q

� �
� P � "

� �
� r; �12�

where � is defined as follows:

" �
Xm�Pÿ1

i�0

B�i�; �13�

where B�i� is defined as follows:

B�i� �ÿ���i mod P � �Qÿ �ik mod Q�� mod Q

< k mod Q�; �14�

where ÿ�e� is called Iverson's function. If the value of

e is true, then ÿ�e� � 1; otherwise ÿ�e� � 0. The value

of Lmapping can be determined by the following

equation:
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Lmapping � k

Q

� �
� Pr: �15�

. r�P� ! kr�Q�: Given an r�P � ! kr�Q� redistribution
with LCCd � mkr, where m is a positive integer, the
theoretical model for r�P � ! kr�Q� redistribution can
be constructed by exchanging the variables P and Q
in (12) to (15).

6.2 Experimental Results

To verify the performance analysis that was presented in

Section 6.1, we have implemented the generalized processor

mapping technique into the algorithms proposed in [11] for

kr! r and r! kr redistribution. We called algorithms

with and without the generalized processor mapping

technique GPMT_KRR and KRR, respectively. All

algorithms were written in the single program multiple

data (SPMD) programming paradigm with C+MPI codes

and executed on an IBM SP2 parallel machine. To get the

experimental results, each test sample with a particular

array size was executed 14 times by each algorithm. The

mean time of these 14 tests (except the two maximum and

the two minimum values) that were executed by an

algorithm was used as the time to perform a redistribution.

The single-precision array was used for the test.

Table 2 shows the time of GPMT_KRR and KRR to
execute different kr! r and r! kr redistribution on a
50-node SP2. From Table 2, we have the following two
observations:

1. The improvement of GPMT_KRR increases as the
value of k decreases.

2. The improvement of GPMT_KRR is more significant
when array size increases.

The reason for the first observation is that the local data
provided by the normal sequence is extremely less than that
of the mapping sequence when the value of k is small. For
example, for the case when k is equal to 2, the values of
Lnormal and Lmapping are equal to 4 and 100, respectively. In
this case, GCC = 200. That means the mapping sequence
provides 96/200 (= 48 percent) improvements. For the case
when k is equal to 4, the values of Lnormal and Lmapping are
equal to 12 and 100, respectively. In this case, GCC � 500,
the mapping sequence provides 88/500 (= 17.6 percent)
improvements. Therefore, when the value of k increases, the
performance of GPMT_KRR and KRR will become close.
These phenomena match the performance analysis pre-
sented in Section 6.1. Fig. 9 shows the performance of
GPMT_KRR and KRR to execute the redistribution samples
(k = 2, 5, 10) shown in Table 2. The array size is 1:6� 108

bytes. From Fig. 9a and Fig. 9b, we can see that the
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TABLE 2
The Time of GPMT_KRR and KRR to Execute Different kr! r (and r! kr) Redistribution

on a One-Dimensional Array on a 50-Node SP 2, Where N � 16 KBytes and r � 2

Fig. 9. Performance of different algorithms to execute kr! r redistribution and vice versa with various values of k (N � 1:6� 108 bytes) on

a 50-node SP2. (a) kr! r redistribution. (b) r! kr redistribution.



performance of GPMT_KRR and KRR are approximate

when the value of k increases.
The reason for the second observation is that when the

array size is small, the communication time is not

significant, in terms of the total time of redistribution. The

improvement of the generalized processor mapping

technique is not significant either. When the array size

is large, the communication time dominates the perfor-

mance of a redistribution. Therefore, the improvement of

the generalized processor mapping technique is more

significant.
Table 3 shows the time of GPMT_KRR and KRR to

execute different kr�P � ! r�Q� and r�P � ! kr�Q� redistribu-

tions with different source and destination processor sets,

where P � 50 and Q � 40. Fig. 10 shows the performance of

GPMT_KRR and KRR to execute the redistribution samples

(k � 2; 5; 10) shown in Table 3. From Table 3 and Fig. 10, we
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TABLE 3
The Time of GPMT_KRR and KRR to Execute Different kr�P � ! r�Q� (and r�P � ! kr�Q�) Redistribution

on a One-Dimensional Array, Where N � 16 KBytes, P � 50, Q � 40 and r � 2

Fig. 10. Performance of different algorithms to execute kr�P � ! r�Q� redistribution and vice versa with various values of k (N � 1:6� 108 bytes) on

SP2, where P � 50 and Q � 40. (a) kr�P � ! r�Q� redistribution. (b) r�P � ! kr�Q� redistribution.

Fig. 11. Performance of different algorithms to execute two-dimensional array redistribution on a 50-node SP2. (a) kr! r redistribution. (b) kr! r

redistribution.



have similar observations as those obtained from Table 2
and Fig. 9.

Fig. 11a and Fig. 11b show the performance of
GPMT_KRR and KRR to execute BC�10; 4� ! BC�5; 2� and
BC�20; 15� ! BC�5; 5� redistributions, respectively. Table 4
shows the execution time of the redistribution shown in
Fig. 11. From Fig. 11, we can see that the improvement of
the generalized processor mapping technique in Fig. 11a is
larger than that of the generalized processor mapping
technique in Fig. 11b. For BC�10; 4� ! BC�5; 2� and
BC�20; 15� ! BC�5; 5� redistribution, the values of �k0; k1�
are equal to �k0; k1� � �2; 2� and �k0; k1� � �4; 3�, respec-
tively. The values of �k0; k1� in Fig. 11a are smaller than the
values of �k0; k1� in Fig. 11b. According to the first
observation in Table 2, the GPMT_KRR can have a larger
improvement in Fig. 11a. From Fig. 11, we also observe
that the improvement is more significant when the array
size becomes large. The reason is the same as that
described for Table 2.

From the above performance analysis and experimental
results, we have the following remarks:

Remark 1. The generalized processor mapping technique
can minimize the amount of data exchange for BLOCK-
CYCLIC(kr) to BLOCK-CYCLIC(r) and BLOCK-CYCLIC(r)
to BLOCK-CYCLIC(kr) array redistribution. The data
transmission cost can be reduced.

Remark 2. The generalized processor mapping technique
provides significant improvement when the value of k is
small. However, when the value of k is large, the
improvement of the generalized processor mapping
technique will be limited.

Remark 3. The generalized processor mapping technique
provides significant improvement when the array size is
large.

7 CONCLUSIONS

Array redistribution is usually used in data-parallel
programs to minimize the runtime cost of performing data
exchange among different processors. Since it is performed
at runtime, efficient methods are required for array
redistribution. In this paper, we have presented a general-
ized processor mapping technique to minimize the amount
of data needed to be communicated for BLOCK-CYCLIC(kr)

to BLOCK-CYCLIC(r) array redistribution and vice versa.
Based on the mathematical mapping functions, a new
sequence of logical processors is derived to achieve the
maximum amount of data that can be retained locally
through a redistribution. The communication cost of a
redistribution can be reduced when the data transmission
costs become lower. The generalized processor mapping
technique can handle array redistribution with arbitrary
source and destination processor sets and can be applied to
multidimensional arrays. The theoretical model and
experimental results show that the generalized processor
mapping technique can provide performance improve-
ment over a wide range of redistribution problems. When
array size is large and the value of ªkº is small, the
generalized processor mapping technique performs very
well for BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r) array
redistribution and vice versa.

Our techniques can only handle dense arrays and In-core
programs. There are some possible extensions that could be
made. One of the issues would be to consider out-of-core
external array redistribution. Another important future
research direction would be to investigate the redis-
tribution techniques in irregular scientific computation
programs. It would also be interesting to consider the
array redistribution of sparse arrays.
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