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Abstract—In many scientific applications, dynamic array redistribution is usually required to enhance the performance of an algorithm.
In this paper, we present a generalized basic-cycle calculation (GBCC) method to efficiently perform a BLOCK-CYCLIC(s) over

P processors to BLOCK-CYCLIC(f) over Q processors array redistribution. In the GBCC method, a processor first computes the
source/destination processor/data sets of array elements in the first generalized basic-cycle of the local array it owns. A generalized
basic-cycle is defined as lem(sP, tQ)/(ged(s,t) x P) in the source distribution and lem(sP, tQ)/(ged(s,t) x Q) in the destination
distribution. From the source/destination processor/data sets of array elements in the first generalized basic-cycle, we can construct
packing/unpacking pattern tables to minimize the data-movement operations. Since each generalized basic-cycle has the same
communication pattern, based on the packing/unpacking pattern tables, a processor can pack/unpack array elements efficiently. To
evaluate the performance of the GBCC method, we have implemented this method on an IBM SP2 parallel machine, along with the
PITFALLS method and the ScaLAPACK method. The cost models for these three methods are also presented. The experimental
results show that the GBCC method outperforms the PITFALLS method and the ScaLAPACK method for all test samples. A brief
description of the extension of the GBCC method to multidimensional array redistributions is also presented.

Index Terms—Redistribution, generalized basic-cycle calculation method, distributed memory multicomputers.

1 INTRODUCTION

HE data-parallel programming model has become a

widely accepted paradigm for programming
distributed-memory parallel computers. To efficiently exe-
cute a data-parallel program on a distributed memory
multicomputer, appropriate data decomposition is neces-
sary. Many data-parallel programming languages such as
High Performance Fortran (HPF) [7], Fortran D [2], and
High Performance C (HPC) [27] provide compiler directives
for programmers to specify regular array distribution,
namely, BLOCK, CYCLIC, and BLOCK-CYCLIC. Fig. 1 shows
examples of these three array distributions.

Dongarra et al. [5] have shown that the above distribu-
tions are essential for many dense matrix algorithms design
in distributed memory machines. Many methods were
proposed to address the problems of the communication
sets identification for array statements with BLOCK-
CYCLIC(c) distribution [1], [5], [7], [12], [13], [14], [15],
[21], [24], [25]. However, in many scientific programs, such
as multidimensional Fast Fourier Transform [28], the
Alternative Direction Implicit (ADI) method for solving
two-dimensional diffusion equations, linear algebra solvers
[19], etc., it is necessary to change distribution fashion of a
program at different phases in order to achieve a better
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performance. Since array redistribution is performed at run-
time, there is a performance trade-off between the efficiency
of the new data distribution for a subsequent phase of an
algorithm and the cost of redistributing array among
processors. Thus, efficient methods for performing array
redistribution are of great importance for the development
of distributed memory compilers for data-parallel program-
ming languages.

Given a redistribution of BLOCK-CYCLIC(s) over
P processors to BLOCK-CYCLIC(f) over QQ processors on a
one-dimensional array with N elements, in general, the
redistribution can be performed in two phases, the send
phase and the receive phase. In the send phase, a
processor P; has to determine all the data sets that it needs
to send to other processors (destination processors), pack
those data sets into messages, and send messages to their
destination processors. In the receive phase, a processor P;
has to determine all the data sets that it needs to receive
from other processors (source processors), receive messages
from source processors, and unpack elements in messages
to their corresponding local array positions. We called these
three steps in the send/receive phase the indexing, the
packing/unpacking, and the communication issues of a
redistribution, respectively.

Many methods for performing array redistribution have
been presented in the literature. In general, they can be
classified into three categories according to the redistribu-
tion type that they solved.

e General Case Solutions. Methods in this category
provide algorithms to perform the redistribution of
BLOCK-CYCLIC(s) over P processors to BLOCK-
CYCLIC(t) over Q processors, where s, t, P, Q are
positive integers and P may not be equal to Q. The
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Fig. 1. Examples of regular array distributions. (a) A BLOCK distribution,
(b) a cycL1c distribution, and (c) a BLOCK-CYCLIC(2) distribution on an
array with 12 elements over four processors.

PITFALLS [20], [21] and the ScaLAPACK [19]
methods are two examples. They pay more attention
on the indexing and the packing/unpacking issues.

e Special Case Solutions. Methods in this category
assume that the redistribution of an array is under
the same source/destination processor set, P = Q. In
general, they provide algorithms to generate the
communication sets for some specific type of
redistribution, such as BLOCK to CYCLIC redistribu-
tion [3], BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r)
redistribution [23], [24], and BLOCK-CYCLIC(s) to
BLOCK-CYCLIC(t) redistribution [4], where k, 7, s, t
are positive integers. The BLOCK-CYCLIC(s) to
BLOCK-CYCLIC(t) redistribution is the most general
case in this category. Methods in this category pay
more attention on the indexing and the packing/
unpacking issues.

e Communication Optimization Solutions. In general,
methods in this category provide different ap-
proaches to reduce the communication overheads
in a redistribution. Examples are the processor
mapping technique [9], [10], the multiphase redis-
tribution technique [11], [12], the communication
scheduling approaches [17], [18], [29], the strip
mining approach [30], and the spiral mapping
method [31]. Methods in this category pay more
attention on the communication issue.

In this paper, we want to provide an efficient method
for array redistributions in the category of General Case
Solutions. For the PITFALLS method, the main idea is to
find all intersections between source and target distribu-
tions. Based on the intersections, the send/receive pro-
cessor/data sets can be determined and general
redistribution algorithms can be devised. It uses the
repetitive pattern in communication sets calculation. The
disadvantage of this approach is that the number of
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iterations of the outermost loop in the FALLS intersection
algorithm depends on the number of processors. When the
number of processor is large, it may lead to high indexing
overheads and degrades the performance of a redistribu-
tion algorithm. The ScaLAPACK method is similar to the
PITFALLS method but has simpler indexing calculation
than that of the PITFALLS method. In addition, both
methods did not minimize the data-movement operations
when packing/unpacking array elements. This also leads
to high packing/unpacking costs for some cases.

To overcome the drawbacks of the PITFALLS method
and the ScaLAPACK method, we propose a generalized basic-
cycle calculation (GBCC) method. The GBCC method pro-
vides a fast indexing technique in which a processor first
computes the source/destination processor/data sets of
array elements in the first generalized basic-cycle of the
local array it owns. A generalized basic-cycle is defined as
lem(sP, tQ)/(gcd(s, t) x P) in the source distribution and
lem(sP, tQ)/(ged(s, t) x Q) in the destination distribution.
From the source/destination processor/data sets of array
elements in the first generalized basic-cycle, the GBCC
method constructs packing/unpacking pattern tables that
can optimize the data-movement operations. Based on the
packing/unpacking pattern tables, a processor can pack/
unpack array elements efficiently. The generalized basic-
cycle calculation (GBCC) technique has the following
characteristics:

e Itis asimple method to perform the general BLOCK-
CYCLIC(s) over P processors to BLOCK-CYCLIC(f)
over Q processors array redistribution.

e Theindexing overhead of the generalized basic-cycle
calculation technique is very small and independent
of the array size involved in a redistribution.

e [t minimizes the data-movement operations when
packing/unpacking array elements.

e The generalized basic-cycle calculation technique
uses an asynchronous communication scheme to
overlap the computation and the communication.
This leads to a better performance for a redistribution.

e It can be easily extended to handle multidimensional
array redistributions.

To evaluate the performance of the GBCC method, we
have implemented this method on an IBM SP2 parallel
machine, along with the PITFALLS and the ScaLAPACK
methods. Both theoretical analysis and experimental results
were conducted for these three methods. The theoretical
analysis shows that the indexing cost of the GBCC method
is less than that of the PITFALLS and the ScaLAPACK
methods. The packing/unpacking cost of the GBCC method
is less than or equal to that of the PITFALLS and the
ScaLAPACK methods. The experimental results show that
the GBCC method outperforms the PITFALLS method and
the ScaLAPACK method for all test samples.

The paper is organized as follows: In Section 2, we
introduce notations and terminology used in this paper.
Section 3 presents the GBCC method in details. A brief
description of the extension of the GBCC method to
multidimensional array redistributions is also presented in
this section. The cost models and performance comparisons
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BLOCK-CYCLIC(10), P=3
Tocal [0 1 2 3 4 5 6 7 & 9|10 11 12 13 14 15 16 17 18 19
SLA, 101|234 ]5]6[7]|8]9]30[31[32]33]34(35(36]37]38]39
SLA, |10 1112|1314 ]|15]|16[17 18|19 (40|41 |42 |43 |44 |45 [46 |47 48|49
SLA, [20[21]22]23|24]25]26)27)28]29]50|S1|52[53[54 55|56 |57|58]|59
Local |20 21 22 23 24 25 26 27 28 29|30 31 32 33 34 35 36 37 38 39
SLA, [60[61]62]63|64]65]66)67]|68]69]90]91[92([93[94 (9596979899
SLA, |70 (71172173 [74]75|76|77|78]79[100|101|102{103]104]|105{106]107|108{109
SLA, |80[81]82]|83(84|85]|86[87 88|89 [110]111|112 113|114 |115 [116|117]|118[119
!
BLOCK-CYCLIC(3), Q=4

Local |0 1 2|3 4 5|16 7 8|9 10 1|12 13 14

DLA, | 0|1 ]2 |12[13]14]24[25]26]36({37]|38]|48[49]50

DLA, |3 4|5 |15]16]17]27[28[29[39[40 41515253

DLA, | 6|7 |8 |18]19[20]30)31[32]42]43[44]54|55(56

DLA 9 [10] 11 )21 (22[23]33|34|35[45]46]47|57|58]59

Local [/5 16 17|18 19 20|21 22 23|24 25 26|27 28 29

DLA, [60]61]62)72]73]|74]84[85[86[96[97[98]108]109|110

DLA, [63]64]65]|75]|76|77|87|88]89]99|100{101{111{112[113

DLA, |166)67)|68]78]79]80]90|91(92[102{103{104|114|115]|116

DLA, 1697071 |81 [82]|83]|93(94]95]|105(106|107|117|118]119

Fig. 2. A (10,3) — (3,4) redistribution on a one-dimensional array with N = 120 elements.

of the GBCC method, the PITFALLS method, and the
ScaLAPACK method are given in Section 4.

2 PRELIMINARIES

To simplify the presentation, we use (s,P)— ({,Q) to
represent the redistribution of BLOCK-CYCLIC(s) over
P processors to BLOCK-CYCLIC(t) over Q processors and
N denotes the global array size for the rest of the paper. We
also assume that all array elements and processors are
indexed starting from 0.

Definition 1. Given a (s, P) — (t,Q) redistribution, BLOCK-
CYCLIC(s), BLOCK-CYCLIC(t), s, t, P, and Q are called the
source distribution, the destination distribution, the
source distribution factor, the destination distribution
factor, the number of source processors, and the number
of destination processors of the redistribution, respectively.

Definition 2. Given a (s, P) — (t,Q) redistribution on a one-
dimensional array A[0: N — 1], the source local array of
processor P;, denoted by SLA;[0: N/P —1], is defined as
the set of array elements that are distributed to processor P;
in the source distribution, where 1 =0 to P —1. The
destination local array of processor Q; denoted by
DLA;0: N/Q —1), is defined as the set of array elements
that are distributed to processor @; in the destination
distribution, where j =0 to Q — 1.

Definition 3. Given a (s, P) — (t,Q) redistribution on a one-
dimensional array A0 : N — 1], the source processor of an
array element in A[0: N —1] or DLA;0: N/Q —1] is
defined as the processor that owns the array element in the
source distribution, where j =0 to @ — 1. The destination
processor of an array element in A[0: N — 1] or SLA;[0:
N/P —1] is defined as the processor that owns the array
element in the destination distribution, where ¢ = 0 to P — 1.

Definition 4. Given integers a and b, their least common
multiple and greatest common divisor are denoted as Icm(a, b)
and gcd(a, b), respectively.

Definition 5. Given a (s, P) — (t,Q) redistribution on a one-
dimensional array A[0: N — 1], the generalized basic-cycle
(GBC) is defined as

lem(s x Pt x Q)

GBC = ged(s,t) x P

in the source distribution and

in the destination distribution. We define SLA;[0 : GBC — 1]
(DLA;0 : GBC — 1)) as the first generalized basic-cycle of a
source (destination) local array of processor P; (Qj),
SLA;[GBC :2 x GBC —1] (DLA;|[GBC :2x GBC — 1))
as the second basic-cycle of a source (destination) local array
of processor P; (Q;), etc.

Definition 6. Given a (s, P) — (t, Q) redistribution, a general-
ized basic-cycle of a source (destination) local array can be
divided into GBC/s (GBC/t) blocks. We define those blocks as
the source (destination) sections of a generalized basic-cycle
of a source (destination) local array.

We now give an example to clarify the above definitions.
Fig. 2 shows a (10,3) — (3,4) redistribution on a one-
dimensional array with N = 120 elements, A[0 : 119]. The
local array indices are represented as italic numbers while
the global array indices are represented as bold numbers.
According to Definition 5, we know that the generalized
basic-cycle in the source distribution is 20. The generalized
basic-cycle in the destination distribution is 15. The
first generalized basic-cycle in SLA; of source processor
Py is SLA;[0:19] {A[10],..., A[19], A[40],..., A[49]}.
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Source: BLOCK-CYCLIC(4)

local |0 1 2 3|4 5 o6 7|8 9 101112131415

P, 0 1 2 31213 14 15(24 25 26 27|36 37 38 39

P, 4 5 6 7|16 17 18 19|28 29 30 31(40 41 42 43

P, 8 9 10 11{20 21 22 23|32 33 34 35|44 45 46 47

J
Destination: BLOCK-CYCLIC(3)

Local [0 1 2 3 4 5|6 7 & 9 10 111213141516 17|18 19 20 21 22 23
0, 0 1 2|6 7 8|12 13 14|18 19 20|24 25 26|30 31 32|36 37 38|42 43 44
0, 3 4 5|9 10 11|15 16 17]21 22 23(27 28 29|33 34 35|39 40 41|45 46 47

Fig. 3. A (4,3) — (3,2) redistribution on a one-dimensional array with V = 48 elements.

SLA;[0 : 19] can be divided into two source sections (size =
10), SLA;[0:9] and SLA;[0: 19]. The second generalized
basic-cycle in SLA; of source processor P; is SLA;[20 : 39] =
{A[70],..., A[79], A[100],..., A[109]}. In the destination dis-
tribution, the first generalized basic-cycle in DLA; of
destination processor @) is

DLA[0 : 14]
= {A[3],..., A[5], A[15],..., A[17), A]27), ...,
A[29], A[39],..., A[41], A[51],..., A[53]}.

DLA,[0: 14] can be divided into five destination sections
(size=3): DLA;[0: 2], DLA;[3 : 5], DLA,[6 : 8], DLA;[9 : 11],
and DLA;[12: 14]. The second generalized basic-cycle of
destination processor @ is

DLA[15 : 29]
= {A[63],..., A[65], A[75), ..., A[77], A[87],...,
A[89], A[99], ..., A[101], A[111],.. ., A[113]}.

3 THE GBCC METHOD FOR ARRAY
REDISTRIBUTION

In the following, we will describe how the indexing and
packing /unpacking operations can be performed efficiently
by the GBCC method.

The main idea of the GBCC method is based on that
every generalized basic-cycle of a local array has the same
communication pattern. For example, Fig. 3 shows a
(4,3) — (3,2) redistribution on a one-dimensional array
with 48 elements. According to Definition 5, the generalized
basic-cycle in the source distribution and the destination
distribution of the redistribution is four and six, respec-
tively. In Fig. 3, the local array indices are represented as
italic numbers while the global array indices are repre-
sented as normal numbers. There are four generalized
basic-cycles in each source/destination local array. For each
source (destination) local array, array elements in the kth
position of each generalized basic-cycle have the same
destination (source) processor, i.e., all of them will be sent to
(received from) the same destination (source) processor
during the redistribution, where k=0 to GBC — 1. This
observation shows that each generalized basic-cycle of a
local array has the same communication pattern.

Another example of a (6,4) — (4,3) redistribution on
A[0 : 95] is shown in Fig. 4a. The generalized basic-cycle in
the source distribution and the destination distribution of
the redistribution is three and four, respectively. However,
the observation that we obtained from Fig. 3 (each general-
ized basic-cycle of a local array has the same communica-
tion pattern) cannot be applied to the case shown in Fig. 4a
directly. For example, the destination processors of the
second array elements in the first and the second general-
ized basic-cycles of the source local array of processor Fy are
Qo and @, respectively. The reason the observation cannot
be applied directly is that the value of gcd(6,4) is not equal
to one. By grouping every gcd(6,4) global array indices of
array A to a meta-index, array A[0: N —1] can be
transformed to a meta-array B0 : N/gcd(6,4) — 1], where
Blk] = {A[k x ged(6,4)], ..., A[(k+1) x ged(6,4) — 1]} and
k=0 to N/ged(6,4) — 1. Then, the observation that we
obtained from Fig. 3 can be held if we use array B for the
redistribution. An example of using meta-array for the
array redistribution of Fig. 4a is shown in Fig. 4b.

According to the above analysis, we have the following
lemmas.

Lemma 1. Given a (s,P) — (t,Q) redistribution on a one-
dimensional array A[0 : N — 1] and ged(s,t) = 1, for a source
(destination) processor P;(Q;), if the destination (source)
processor of SLA;[K|(DLAK]) is Q; (P;), then the
destination (source) processors of SLA;[k + GBC|, SLA;[k +

2x GBCY,...,SLA;[k+ N/P — GBC] (DLA;[k+ GBC),

DLA;[k+2xGBCY,...,DLAk+ N/Q —GBC]) will
also be Q; (P;), where 0 < k < GBC and N/P (N/Q) is a
multiple of GBC.

Proof. We only prove the source processor part. The proof
of the destination processor part is similar. In the source
distribution,

lem(s x Pt x Q) lem(s x Pt x Q)
ged(s,t) x P P

GBC = .
For a source processor P, if the global array index of
SLA;[k] is a, then the global array indices of SLA;[k+
GBC|,SLA;lk+2GBC],..., and SLA;[k+ N/P — GBC]
are a+lem(sx Pt x Q),a+2 x lem(s x Pt xQ),...,
and a+ (N — lem(s x P,t x Q)), respectively, where 0 <
1<P-10<k<GBC-1 and 0 < a<lem(sx P,tx
Q) — 1. Since lem(s x P,t x Q) is a multiple of ¢ x @, in
the destination distribution, if A[a] is distributed to the
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Source: BLOCK-CYCLIC(6)
index|0 7 2 3 4 516 7 8 9 1011[1213 141516 17[18 19 20 21 22 23
P, [0 1 2 3 4 5[24 25 26 27 28 2948 49 50 51 52 53[72 73 74 75 76 77
P, |6 7 8 9 10 1130 31 32 33 34 35[54 55 56 57 58 59|78 79 80 81 82 83
P, [12 13 14 15 16 17|36 37 38 39 40 41[60 61 62 63 64 6584 85 86 87 88 89
P; |18 19 20 21 22 23[42 43 44 45 46 47[66 67 68 69 70 71|90 91 92 93 94 95
J
Destination: BLOCK-CYCLIC(4)
index|0 1 2 3 4 5 6 7|8 9 1011 121314 15|16 17 18 19 20 21 22 23|24 25 26 27 28 29 30 31
Oy |0 1 2 312 13 14 1524 25 26 27[36 37 38 39[48 49 50 51[60 61 62 63|72 73 74 7584 85 86 87
O, |4 5 6 7[16 17 18 19{28 29 30 31{40 41 42 43[52 53 54 55[64 65 66 67(76 77 78 79[88 89 90 91
O |8 9 10 11]20 21 22 23{32 33 34 35[44 45 46 47[56 57 58 59[68 69 70 71[80 81 82 83[92 93 94 95
(a)
Source: BLOCK-CYCLIC(6)
index|0 1 2 3 4 5|6 7 8 9 10 11|12 13 14 15 16 17]18 19 20 21 22 23
metal 0 1 2 [ 3 4 516 7 819 10 1
Py |01 2,3 4,5 [24,25 26,27 28,29(48,49 50,51 52,53]72.73 74,75 76,77
P, | 6.7 89 10,11]30,31 32,33 34,35[54,55 56,57 58,59(78,79 80,81 82,83
P, 12,13 14,15 16,17]36,37 38,39 40,4160,61 62,63 64,65|84,85 86,87 88,89
P; 18,19 20,21 22,23[42,43 44,45 46,47(66,67 68,69 70,71[90,91 92,93 94,95
l
Destination: BLOCK-CYCLIC(4)
index| 0 1 2 3 4 5 6 7|8 9 1011 12 13 14 15]16 17 18 19 20 21 22 23|24 25 26 27 28 29 30 31
meta| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Oy [ 0.1 2.3 12,13 14,15[24,25 26,27 36,37 38,39[48,49 50,51 60,61 62,63[72,73 74,75 84,85 86,87
O, | 45 6.7 16,17 18,19]28,29 30,31 40,41 42,43[52,53 54,55 64,65 66,67(76,77 78,79 88,89 90,91
O, | 8.9 10,11 20,21 22,23(32,33 34,35 44,45 46,47(56,57 58,59 68,69 70,71[80,81 82,83 92,93 94,95

(b)

Fig. 4. (a) A (6,4) — (4, 3) redistribution with N = 96. (b) An example of using a grouped meta-array for the redistribution in (a).
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destination processor P;, so are Ala+ lem(s X P,t x Q)],
Ala+2 xlem(s x Pyt xQ)],..., and Ao+ (N-
lem(s x P, t x Q))], where 0 < j <@ — 1. O

Lemma 2. Given a (s,P) — (t,Q) and a (s/gcd(s,t), P) —
(t/gcd(s,t), Q) redistribution on a one-dimensional array
A[0 : N — 1], for a source (destination) processor P;(Q);), if the
destination (source) processor of SLA;[k](DLA;[k]) in
(s/gcd(s,t), P) — (t/gcd(s,t) redistribution is Q;(P;), then
the destination (source) processors of

SLA;[k x ged(s,t) : (k+1) x ged(s,t) — 1]
(DLA[k x ged(s,t) : (k4 1) x ged(s,t) — 1])
in (s, P) — (t,Q) redistribution will also be Q;(P;), where
0 < k < [N/(P x ged(s, ))](0 < k < [N/(Q x ged(s,))]).

Proof. We only prove the source processor part. The proof
of the destination processor part is similar. For a source
processor P, if the global array index of SLA;[k] in
(s/ged(s,t), P) — (t/gcd(s, t), Q) redistribution is «, then
the global array indices of SLA;[k x ged(s,t) : (k+1) x
ged(s,t) — 1] in (s, P) — (t, Q) redistribution are

a X ged(s,t),a x ged(s,t) +1,...,(a+ 1) x ged(s,t) — 1.

If A[0:N—1] is distributed by BLOCK-CYCLIC
(t/gcd(s,t)) distribution, then Afa] is in the [(«a x
ged(s,t))/t]th block of size t/ged(s,t). If A[0: N —1] is
distributed by BLOCK-CYCLIC(t) distribution, then
Ala X ged(s,t)], Ala X ged(s,t) +1],..., and Af(a+1) X
ged(s,t) —1] are in the [axged(s,t)/t]th, the
[(a x ged(s,t) +1)/t]th,..., and the [((a+ 1) x ged(s, t)
—1)/t]th block of size t, respectively. Since

[a X ged(s,t)/t] = [(a x ged(s,t) +1)/t] = ...
= [((a+1) x ged(s, t) — 1)/t],

if the destination processor of Afa] is @Q; in
(s/gcd(s,t), P) — (t/gcd(s, t), Q) redistribution, then the
destination processors of Ala x ged(s,t)], Ala X
ged(s,t) +1],..., and Al(a + 1) x ged(s,t) — 1] are Q; in
(s,P) — (t,Q) redistribution. Therefore, if the
destination processor of SLA;[k] in (s/ged(s,t), P) —
(t/gcd(s,t), Q) redistribution is @, then the destination
processors of SLA;[k x ged(s,t) : (k+ 1) x ged(s,t) — 1]
in (s, P) — (¢, Q) redistribution will also be @;, where

0<i<P-10<;<Q-1
and 0 < k < [N/(P x ged(s,t))].

In the following discussion, we assume that a (s, P) —

(t,Q) redistribution on A[0 : N — 1] is given. We also assume
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Local index 0 1 2 3 4 5 6 7 & 9110 11 1213 14 15 16 17 18 19
SLA, Global index 0l1 1234 5[6]7[8]9](30[31[32[33[34[35[36[37[38]39
Destination processor O, 0, 0o, 0, o, 0, 0, 0,
Local index 0 1 2 3 4 5 6 7 & 9110 11 12 13 14 IS 16 17 18 19
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Destination processor | O, [0 0, 0, 0, 0, 0, 0,

Fig. 5. The send processor/data sets of the first generalized basic-cycle for a (10, 3) —

that ged(s, t) is equal to one. If ged(s, t) is not equal to one, we
use s/ged(s,t) and t/ged(s,t) as the source and destination
distribution factors of the redistribution, respectively.

3.1 The Send Phase

According to Lemma 1, each generalized basic-cycle of a
local array has the same communication pattern. Therefore,
each source processor only needs to compute the send
processor/data sets on the first generalized basic-cycle of
the local array that it owns. Then, based on the send
processor/data sets of the first generalized basic-cycle, it
can pack array elements into messages and send messages
to their corresponding destination processors.

Given a (s, P) — (t, Q) redistribution on A[0 : N — 1], the
destination processor of array element SLA;[k] in SLA;[0 :
GBC — 1] of source processor P; can be determined by the
following equations,

lk/s] x s x P+ixs+mod(k,s),

sgindex; (k) = (1)

dp;(sgindex;(k)) = mod(|sgindex;(k)/t],Q), (2)

where k = 0 to GBC — 1. The function sgindex; (k) converts
the local array index of an array element in a source local
array to its corresponding global array index, i.e.,
SLA;[k] = Alsgindex;(k)]. The function dp;(sgindex;(k)) is
used to determine the destination processor of the global
array element A[sgindex;(k)].

If the value of GBC is large, it may take a lot of time
to compute the destination processor of every array
element in a generalized basic-cycle by using (1) and (2).
Since array elements in a source section have consecutive
global array indices, for a source processor P, if the
destination processor of SLA;[0:7—1] is Q;, then the
destination processors of SLA;[r:r+t—1], SLA;]r+t:
r+2t—1],..., and SLAi[r—k [(s—r)/t| xt:s—1] are
Qmod (j+1.Q)s Qmod (J+2,Q)r -+ and Qmad(j#{(s—r)/tj,@) , respec-
tively, where 1 <r gt For example, Fig. 5 shows the
send processor/data sets of the first generalized basic-
cycle of source processors for a (10,3) — (3,4) redistribu-
tion shown in Fig. 2. In Fig. 5, for source processor P,
the destination processor of SLA;[0:7—1] = SLA[0:1]
is @Q;=0Q3 where r=2 and j=3. The destination
processors of SLA[r:r+ t—1]=SLA[2:4], SLA|[r+
t:r+2t—1]=SLA[5:7), and SLA[r+ [(s—r)/t] xt:
s —1] = SLA[8:9] are Quoij+1,9) = Qo, Qumod(j+2.0) = Q1.
and Quod(jr|(s—r)/t),0) = Q2, respectively. Therefore, if we

(3,4) redistribution shown in Fig. 2.

know the destination processor of the first array element
of a source section and the value of r, we can determine
the send processors/data sets in a source section. To
determine the global array index of the first array
element of a source section, (1) can be simplified as
follows:

sgindex;(k) =k x P+1i x s, (3)

where k is the local array index of the first array element of a
source section. The value of r can be determined by the
following equation,

r = (|sgindex;(k)/t] + 1) (4)

Since a generalized basic-cycle has GBC/s source sections,
(2), (3), and (4) only need to be performed GBC/s times.
Then the send processor/data sets of a generalized basic-
cycle can be obtained.

From the send processor/data sets, we can pack array
elements into messages and send messages to their
corresponding destination processors. The naive way to
pack array elements into messages is to copy them to
messages one element at a time according to the send
processor/data sets. We define the operation of moving a
block of data between a local array and a message as a
data-movement operation. Since packing is a sequence of
data-movement operations, if the local array size is large,
this naive method may produce high packing cost. If we
can reduce the number of data-movement operations, the
packing cost can be reduced. From the indexing method
described above, for a source processor P, if the
destination processor of SLA;[0:r—1] is @, then the
destination processors of SLA;[r:r+t—1],SLA;[r+t:
r+2t—1],..., and SLA,{T—&— [(s=r)/t| xt:s—1] are
anod (+1.Q)» Q7710(l(/+2 Q)r+ and Qmod(j-%—[(s—r)/tj,@)v respec-
tively, where 1 <r <t. For each source processor P;, we
can construct a packing pattern table PPT;[0:Q —1] to
describe the above send processor/data sets. For example,
for the send processor/data sets of the first generalized
basic-cycle shown in Fig. 5, source processor P;’s
corresponding packing pattern table is given as follows:

X t — sgindex; (k).

PPTi[0] = {{2, 3}, {18, 2}},
PPT1[1] = {{5, 3}, {10, 2}},
PPT[2] = {{8, 2}, {12, 3},
PPTy[3] = 1, {15, 31}

Each entry of a packing pattern table contains a list of
descriptors. Each descriptor stores information of the start
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position and the number of array elements to be packed
when performing a data-movement operation. A descriptor
is of the form {pos, len}, where pos denotes the start position
and len is the number of array elements to be packed. It is
possible that the last array element of source section m and
the first array element of source section m + 1 have the
same destination processor. In our implementation, we will
combine the descriptors corresponding to these two array
elements to a descriptor. Based on the above packing
pattern table PPT;[0: 3], when packing array elements
whose destination processor is () into messagey, the entry
PPT[0] = {{2, 3}, {18, 2}} will be used. According to PPT[0]
= {{2, 3}, {18, 2}}, source processor P; will pack array
elements SLA;[2: 4] and SLA;[18 : 19] in the first general-
ized basic-cycle of SLA; into messagey[0: 2] (descriptor
{2,3})) and messagey[3 : 4] (descriptor {18,2}), respectively.
Array elements SLA[2+ GBC : 4+ GBC] and SLA[18 +
GBC :19 + GBC] in the second generalized basic-cycle of
SLA; will be packed into messagey[5 : 7] (descriptor {2,3})
and messageo[8 : 9] (descriptor {18,2}), respectively, etc.
Based on the packing pattern table, the total number of
data-movement operations performed by each source
processor P; is equal to (the number of descriptors in
PPT;[0: Q — 1]) x (the number of generalized basic-cycles
in SLA;), which is much less than that of the naive method.
The algorithm to construct the packing pattern table in the
send phase is given as follows:

Algorithm PPT_construction (i, s, P, t, Q)

1. gedst = ged(s, t); s =s/gedst; t = t/gedst;

2. calculate the GBC for the sending phase; lastp = -1;

3. for m = 0 to GBC/s-1

4. k=mxs; gidx =kxP +ixs; secend = gidx +s;

5. j=mod(|gidz/t], Q); = (min((|gidx/t| + 1) xt,
secend) -gidx);

6. if j = lastp then

7. PPT[jlle; — 1).len + = Ixgcdst;

8. k+=1; gidx+=1 1=t j=mod(j+1 Q)

9. endif

10. while gidx < secend

11. I = min(l, secend-gidx);

12.  PPT;[jllc;].pos = k x gedst; PPT;[j]c;].len =1 x gcdst;
13. c¢j++ k+=1L gidx+=1 1=t

14. lastp =j; j=mod(j + 1, Q);

15. endwhile

16. endfor

End_of PPT_construction

3.2 The Receive Phase

In the receive phase, techniques for the indexing and the
packing/unpacking issues are similar to those in the send
phase. We only state the key points of the techniques and
ignore the details of examples as we did in the send phase.
Given a (s,P) — (t,Q) redistribution on A[0: N — 1], for
destination processor (), the source processor of array
element DLA,[k] in DLA,[0: GBC — 1] can be determined
by the following equations:

1207

rgindex;(k) = [k/t] xt x Q@+ j x t +mod(k,t)  (5)

spj (rgz'ndemj(k)) = mod( Lrgindex]-(k')/sj ,P) (6)

where k& = 0 to GBC — 1. The function rgindez;(k) converts
the local array index of an array element in a destination
local array to its corresponding global array index, i.e.,
DLA[k] = A[rgindex;(k)]. The function sp;(rgindez;(k)) is
used to determine the source processor of the global array
element Afrgindex;(k)].

Since array elements in a destination section have
consecutive global array indices, for a destination processor
Q;, if the source processor of DLA;[0 : u — 1] is P, then the
source processors of DLAju:u+s—1], DLAu+
s:u+2s—1],..., and DLA;[u+ [(t —u)/s] x s:t—1] are
Prodiv1.p), Prodiva.pys -+ and  Proaiy((t—u)/s).p), T€SPec-
tively, where 1 <u < s. If we know the source processor
of the first array element of a destination section and the
value of 1, we can determine the receive processors/data
sets in a destination section. To determine the global array
index of the first array element of a destination section, (5)
can be simplified as follows:

rgindex;j(k) =k x Q+j x t, (7)

where k is the local array index of the first array element of a
destination section. The value of u can be determined by the
following equation:

u = (|rgindex;(k)/s| + 1) x s — rgindez;(k). (8)

According to the indexing method described above, for a
destination processors @, if the source processor of DLA;[0 :
u — 1]is P;, then the source processors of DLA;[u : u+ s — 1],
DLAjlu+s:u+2s—1],...,and DLAjju+ [(t —u)/s] X s:
t— 1] are pmod(z'#»LP)/ Pmod(v',+2.P)a cees and Pmod(i#{(t,fu)/sJ,P)/
respectively, where 1 < u < s. For each destination processor
Qj, we can construct an unpacking pattern table UPT;[0 :
P —1] to describe the above receive processor/data sets.
Based on the unpacking pattern table, a destination processor
can unpack array elements from received messages
efficiently. The algorithm to construct the unpacking pattern
table is given as follows:

Algorithm UPT_construction (j, s, P, t, Q)

1. gedst = ged(s, t); s = s/gedst; t = t/gcdst;

2. calculate the GBC for the receive phase; lastp = —1;

3. form =0to GBC/t — 1

4. k=mxt; gidx =kxQ + jxt; secend = gidx + t;

5. i=mod(|gidz/s|, P); | = (min((|gidx/s] + 1) X s,
secend) —gidx);

6. if i = lastp then

7. UPT;[i][c; — 1].len + = Ixgcdst;

8. k+=1 gidx+=1 l=s; i=mod(i+1P);
9. endif

10.  while gidx < secend

11. I = min(l, secend — gidz);

12. UPT;i][c;].pos = kxgcdst; UPTj[i][c;].len = Ixgcdst;
13. G+t k+=1 gidx+=1 =5

14. lastp = i; i=mod(i + 1,P);

15. endwhile

16. endfor

End_of UPT_construction
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Fig. 6. An example of a (3 x 4,2 x 2) — (4 x 3,3 x 2) redistribution, where g is the global array index and /is the source local array index of the

source processor Py, for each dimension.
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Fig. 7. Given a (24, 3) — (2, 2) redistribution, the shadowed array elements in a source section of SLA, will be sent from P, to Q,. There are six data-
movement operations and one data-movement operation in the send phase and the receive phase, respectively.

The algorithm of the GBCC method is given as follows:

Algorithm GBCC (s, P, t, Q)
/* Sending Phase */
i = get_myrank_of _source_processors();
call PPT_construction(i, s, P, t, Q);
.forj=0to @ —1
if ¢; > 0 then

pack data from source local array to a message according
to PPT}[j);
6. send message to Q;;

endif

endfor

/* Receiving Phase */
9. j = get_myrank_of_destination_processors();
10. call UPT_construction(j, s, P, t, Q);

SIS

S N

11. fori=0to P—1
12. if ¢; > 0 then

13. receive message from P,;

14. unpack received message to destination local array
according to UPT;[i];

15. endif

16. endfor

17. wait for all communication;

End_of GBCC

3.3 The GBCC Method for Multiimensional Array
Redistribution

The GBCC method can be extended easily to perform

multidimensional array redistributions. In the send phase,

the packing pattern table for each dimension is calculated

by using the GBCC method. Based on the packing pattern
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Fig. 8. Given a (2,2) — (24, 3) redistribution, the shadowed array elements in a source section of SLA, will be sent from P, to Q). There are one
data-movement operation and six data-movement operations in the send phase and the receive phase, respectively.
TABLE 1

The Indexing Costs and the Packing/Unpacking Costs of the PITFALLS Method, the ScaLAPACK Method,
and the GBCC Method for a (s, P) — (t,Q) Redistribution on a 1D Array with N Array Elements

Algorithms Indexing costs
PITFALLS lem(sx P,tx Q) v lcm(sxP,tXQ)xP
Scal APACK min(s,tx Q)x P min(t, s X P)x O
GBCC lem(sx P,t><Q)+ lem(sx P,txQ)
min(s,t)x P min(s, t)xQ
Packing/unpacking costs
PITFALLS
of NP+ N[O
ScaLAPACK min(s. )
s> txQ t > sxP otherwise
GBCC NP NIQY | NP, NQ N[P+N]Q
t txQ sxP s min(s,t)

tables, array elements that will be sent to the same
destination processor are packed dimension by dimension
starting from the first (last) dimension if the array is in
column-major (row-major). In the receive phase, the
unpacking pattern table for each dimension is calculated
by using the GBCC method. Based on the unpacking pattern
tables, elements in a message that was received from a
source processor are unpacked to their corresponding
positions dimension by dimension starting from the first
(last) dimension if the array is in column-major (row-major).

We now give an example to explain how to use the GBCC
method to perform a multidimensional array redistribution.
Fig. 6 shows the array elements that will be sent from P, to
Qr1 in a (3x4,2x2)— (4x3,3x2) redistribution with
N = 24 x 24 array elements. For the first dimension (P, to
Q1.), the packing pattern table for destination processor Q.
is PPTy.[1] = {{1,2}}. For the second dimension (P, to
Q12), the packing pattern table for destination processor Q1
is PPTy[1] = {{0,2},{7,1},{9,3}}. Assume that array
elements are stored in memory in a row-major manner.
From Fig. 6, for the source processor P, we can see that
the array elements in SLA, that have consecutive local
array indices in the second dimension (the last dimension)

will be stored in consecutive positions in memory. But it is
not the case for other dimensions. Based on the observation,
PPT,[1], and PPT, 1], source processor Pj,; can pack
array elements SLAj;([1,0], SLAn[1,1], SLA1:[1,7],
SLAm[1,9], SLA[1,10, SLAyq[1,11), SLA4[2,0],
SLAll-l [2, 1], SLAMl [2, 7}, SLAMJ [2, 9}, SLAlwl [2, 10], and
SLA;,1(2,11] into message,1[0 : 11] according to PPTi,[1]
and PPT,[1]. For the second generalized basic-cycle of
SLA;,; in the first dimension, array elements SLA;,4(7,0],
SLAm[7,1], SLA([7,7), SLAT,9], SLA[7,10],
SLA[7,11], SLA1x[7,0], SLAx[7,1], SLAnI[7,7],
SLA1[7,9], SLA1,1[7,10], and SLA;,41[7,11] will be packed
into messagei,1[12 : 23] according to PPTy,[1] and PPT,;[1].
For each destination processor, the received messages can
be unpacked in a similar manner.

4 PERFORMANCE EVALUATION AND EXPERIMENTAL
RESULTS

To evaluate the performance of the GBCC method, we

compare the proposed method with the PITFALLS method

and the ScaLAPACK method. Both theoretical analysis and
experimental evaluation were conducted. We first develop
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cost models for these three methods and analyze their
performance in terms of the indexing and the packing/
unpacking costs. The cost models developed for the
PITFALLS method and the ScaLAPACK method are based
on algorithms proposed in [20], [21], and [19], respectively.
We then execute these three methods on an IBM SP2
parallel machine and use the cost models to analyze the
experimental results.

4.1 Cost Models

Given a (s, P)—(t, Q) redistribution on a one-dimensional
array A[0:N-1], the time for an algorithm to perform the
redistribution, in general, can be modeled as follows:

T= T{:omp + Tcomnm (9)

where T, is the time for an algorithm to compute the
source/destination processors of local array elements, pack
source local array elements that have the same destination
processors to the same message, and unpack array elements
in messages that received from source processors to their
corresponding destination local array positions; and Ttomm,
is the communication time for an algorithm to send and
receive data among processors. We said that T,, and

methods PITFALLS Scal APACK GBCC
cases
N = 80000
Tind[”( Guinack comm 7“10/1/7 T‘Y'rl(]PY nnack Lonn 7‘//)!1/] Tirldx”r Guinack! comm T‘/l)l(l]
(5, 8)=(2, 5) 0.2291 1195 5721 17.9]10.155]111.02 | 5.13 16.310.029 | 9.39| 4.68 14.1
(50, 8)—(20, 5) 0.228| 2.25 5.42 7.910.1481 2.20| 5.25 7.610.029 2.06| 5.41 7.5
(4, 8)—(5,5) 1.143 | 6.18| 548 12.811.092| 5.73| 5.08 11.910.242 | 4.84| 5.62 10.7
(5,5)—>(2, 8) 0.816| 8.85| 4.83 14.5]10.807| 835]| 5.14 14310.142 | 7.25| 4.71 12.1
(50, 5)>(20,8) |0.816| 2.02| 5.06 7910806 192 5.17 7.910.142 1.88] 5.58 7.6
(4, 5)—(5, 8) 0.169| 6.86| 4.57| 11.6]0.123| 6.45]| 4.03 10.610.028 | 5.60| 3.87 9.5
(5, 10)—=(2, 10) 0.361 7.06| 6.48| 13.9]10312| 6.56| 6.13 13.010.036 | 5.60| 4.36 10.0
(50, 10)—(20, 10) 0.358] 1.40| 5.34 7.1 10.308 1.37 | 5.22 6.910.037 1.28] 3.98 53
(4, 10)=(5,10) 10.421 | 4.21 4.17 8.810.389 398 | 4.03 8410.052 3.45] 4.10 7.6
(5, 50)—(2, 50) 1.625| 1.52| 4.66 7.8 11.500] 142 | 3.88 6.810.038 1.23 ] 3.33 4.6
(50, 50)—(20, 50) 1.611] 0.38] 4.11 6.1 11.4981 037 | 3.53 5410039 0.36] 3.20 3.6
(4, 50)=(5,50) | 1.795[ 0.95] 3.16 5911831 093] 2.74 5510.053| 0.80| 2.35 3.2
N =20000000

Tinrh)r 7‘(11!1 wack Tmmm TVI)/N] T‘Y'rl(]PY T‘(!m wack 7—vmmm 7‘//)!1/] Tirldx”r 7‘(11!1 wack Tmmm T‘/l)l(l]
(5, 8)—(2,5) 0.238 | 3081 886 | 3967 10.160| 2844 858 | 370210.030 | 2426 824 | 3250
(50, 8)—=(20, 5) |0.233 717 938 1655]0.156 691 941 | 163210.030 652 950 | 1602
(4, 8)—(5,5) 1.159| 2063 875 2939 1 1.112] 1963 936 | 290010.243 | 1910 965 | 2875
(5,5)—(2, 8) 0.832| 2935 879 | 381510.816] 2799 820 | 362010.143 | 2771 793 | 3564
(50, 5)—(20, 8) ]0.831 629 | 1541 2171 10.815 618 1475 209410.143 576 1547 | 2123
(4, 5)—(5, 8) 0.174 ] 1828 826 2654 10.129] 1718 830 | 2548 10.028 | 1495 742 | 2237
(5, 10)—=>(2,10) 10.368| 1854 508 | 2362 10.321 ] 1723 525 2248 10.037 | 1482 588 | 2070
(50, 10)—(20, 10) 0.367 427 7631 1190 ]0.310 412 751 | 1163]10.037 390 7271 1117
(4, 10)—(5, 10) 0.446| 1243 7971 2040 1 0.391 | 1175 839 2014 10.053 | 1045 795 | 1840
(5, 50)—(2, 50) | 1.632 373 166 541 ) 1.495 344 173 5181 0.040 297 185 482
(50, 50)—(20, 50) 1.616 86 204 292 11.520 83 199 284 10.040 79 195 274
(4, 50)—(5, 50) 1.867 249 216 467 | 1.831 234 216 4521 0.055 210 210 420
Time (ms)

Teomm are the computation and communication time of an
algorithm to perform a redistribution, respectively. For the
communication cost, the number of send and receive
operations required by a processor in a redistribution are
the same for different methods. Therefore, we assume that
the communication costs of these three methods are the
same in our theoretical model. In the following, we will
focus on the analysis of the computation costs of the three
methods.

The computation cost consists of the indexing cost and
the packing/unpacking cost. The indexing cost is the time
to construct the send/receive processor/data sets for a
redistribution. The packing/unpacking cost is the time to
pack and unpack array elements. We have the following
equation,

7ﬁ(tomp = antl(%l' + T(un)packa (10)

where Tinge; and Tiun)pece are the indexing cost and the
packing /unpacking cost of a redistribution, respectively. In
the cost model analysis, the packing/unpacking cost is
represented in terms of the number of data-movement
operations. For the PITFALLS method, the indexing cost for
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a processor to perform the FALLS intersection algorithm
[20], [21] is
Tindex(PITFALLS)
X P>.

_0 lem(s x Pt x Q)
T \min(s,t x Q) x P

lem(s x P,t x Q)
min(t, s x P) x Q

(11)
The packing/unpacking cost of the PITFALLS method is
_ (N/PEN/Q
Tunypack(PITFALLS) = O( min(s.1) > (12)

For the ScaLAPACK method [19], the indexing and
packing/unpacking costs are the same as the PITFALLS
method.

For the GBCC method, according to the algorithm
presented in Section 3, the indexing cost is

/I"mdexlr (GBCC)
_0 lem(s x Pyt x Q) lem(s x Pt x Q) (13)
- ( min(s,t) x P min(s,t) x Q )

The packing/unpacking cost of the generalized basic
calculation method can be classified into three classes,

methods PITFALLS ScalAPACK GBCC
casces
N = 80000

Tirl(]l’Y T(ll!‘l wack 7—v(‘t)mm Tm/ﬂl Y—mefﬂY T(lln wack 7—'l‘nmm 7‘!/7/(17 7—'1'71111’Y 7‘(11!1 wack Trnmm 7—'/I)/N]

(500, 8)—(3, 5) 16.2 6.7 6.1 29.0 12.2 4.6 521 22.0 4.3 3.1 2.9 10.3
(3, 8)—>(500, 5) 10.2 7.3 59| 234 10.9 6.0 491 21.8 3.8 4.0 4.9 12.7
(500, 8)—=(1, 5) 15.9 15.7 57| 373 7.3 13.5 59| 26.7 1.4 5.6 4.9 11.9
(1, 8)=(500, 5) 10.1 16.2 7.5 33.8 9.3 13.5 6.1 28.9 1.6 8.0 5.0 14.6
(500, 5)—(3, 8) 10.2 7.4 531 229 10.9 5.1 521 21.2 3.8 4.1 5.7 13.6
(3, 5)—(500, 8) 16.2 6.9 49| 28.0 12.1 4.8 48 21.7 3.1 2.8 52 11.1
(500, 5)—(1, 8) 10.1 16.5 56| 322 9.3 13.9 53| 28.5 1.6 8.7 5.4 15.7
(1, 5)—(500, 8) 15.9 15.9 5.1 36.9 73 13.7 50 26.0 1.3 5.2 6.1 12.6
(500, 10)—(3, 10) 12.9 4.6 2.6 20.1 12.9 3.2 251 18.6 2.3 2.2 2.9 7.4
(3, 10)—>(500, 10) 12.9 4.6 2.6 20.1 12.8 3.2 251 18.5 2.4 2.2 2.8 7.4
(500, 10)—(1, 10) 12.6 10.1 3.1 25.8 10.3 8.5 26| 214 1.0 4.5 2.7 8.2
(1, 10)—>(500, 10) 12.5 10.2 26 253 10.3 8.5 26| 214 1.0 4.3 4.4 9.7

N = 20000000

Tirl(]l’Y Lanack 7—v(‘t)mm Tm/ﬂl Y—mefﬂY (upack Lo 7‘!/7/(17 index Guinack Lonun. 7—'/I)/N]

(500, 8)—=(3, 5) 16.3] 2521 799 | 3336 12.1 | 2436 829 | 3277 3.1 | 1395 800 | 2198
(3, 8)—=(500, 5) 10.3 ] 2581 798 | 3389 10.9 | 2487 805 | 3303 3.8 | 1503 795 | 2302
(500, 8)—(1, 5) 16.0 | 5084 | 1203 | 6303 7.3 | 4843 957 | 5807 1.4 | 2580 | 1126 | 3707
(1, 8)—(500, 5) 10.1 ] 5308 934 | 6252 9.4 | 5086 923 | 6018 1.7 | 3335 921 | 4258
(500, 5)—(3, 8) 10.4 | 2544 803 | 3357 109 | 2476 867 | 3354 3.8 2182 850 | 3036
(3, 5)—(500, 8) 16.3 ] 2500 857 | 3373 12.2] 2419 850 | 3281 3.1 1341 838 | 2182
(500, 5)—(1, 8) 10.1] 5611 | 1050 | 6671 9.4 1 5431 958 | 6398 1.6 | 3335 | 1124 | 4461
(1, 5)—(500, 8) 16.0 | 5381 876 | 6273 7.3 1 5179 | 1003 | 6189 1.4 | 2572 939 | 3512
(500, 10)—(3, 10) 12.9 ] 1482 831 | 2326 12.9 | 1436 744 | 2193 2.4 1 1063 821 | 1886
(3, 10)—(500, 10) 12.9 ] 1482 830 | 2325 12.9 | 1426 819 | 2258 2.4 1 1024 795 | 1821
(500, 10)—(1, 10) 12.6 | 3083 931 | 4027 10.4 | 2938 974 | 3922 1.0 | 2014 892 | 2907
(1, 10)—(500, 10) 12.6 | 3108 988 | 4109 10.3 | 2951 | 1073 | 4034 1.0 2018 | 1143 | 3162
Time (ms)

s>txQ, t>sx P, and otherwise. For the first class
s>t x (@, array elements that have the same destination
processors in the same source section will have consecutive
local array indices in its corresponding destination local
array. Therefore, %5 data-movement operations are needed
to pack those array elements to a message and one data-
movement operation is needed to unpack those array
elements to their corresponding local array positions. For
example, given a (24, 3) — (2, 2) redistribution, Fig. 7 shows
that there are ;75 = 6 data-movement operations that must
be performed to pack 12 array elements in a source section
of SLA; to messagesy by source processor F in the send
phase. In the receive phase, only one data-movement
operation is needed to unpack these 12 elements from the
received message to their corresponding local array
positions.

For the second class t > s x P, array elements that have
the same source processors in the same destination section
will have consecutive local array indices in its correspond-
ing source local array. Therefore, only one data-movement
operation is needed to pack these array elements into a
message and —'5 data-movement operations are needed to
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o =5, t=4, P'=8, Q'=5, and N=20000000 | $=5, t=2, P'=8, Q'=5, and N=20000000
| —e—rprFaLLS 7 —O®—PITFALLS
0.6 _\E, —W— Scal APACK 0.8 -% —— Scal APACK
&8 —A—GBCC £ —&—GBCC
= 06 |+
04 F
04 |
02 } oo L
0 | A —T—h— ' —k —A | 0 | A—— A—r—h—r—h—— A |
1 2 3 4 5k 1 2 3 4 5k
(@) (b)
, s=4, t=5, P'=10, Q'=10, and N=20000000 , $=20, =2, P'=10, Q'=10, and N=20000000
2 —e—PITFALLS % —e—PITFALLS
16 [ ——ScaldPACK 16 2 —m—ScalaPack
12 LE —a—aBcc 12 L& —a—ancc
08 | 0.8 |
0.4 | 04 F
0 L—& " S - 2k A 0 A — A A A
1 2 3 4 sk 1 2 3 4 sk

(©)

(d)

Fig. 9. The indexing costs of the (s, kP") — (¢, kQ') redistribution where k = 1,2, 3,4, and 5.

unpack those array elements to their corresponding local
array positions. For example, given a (2,2) — (24,3)
redistribution, Fig. 8 shows that only one data-movement
operation is needed to pack 12 array elements into messagey
by source processor P, in the send phase. There are -5 =6
data-movement operations that must be performed by
destination processor @ to unpack those 12 elements from
messagesy to their corresponding local array positions in the
receive phase.

The packing/unpacking costs of the three classes are
given as follows:

T(un)papk(GBCC) = 0<¥ %) if s >txQ, (14)
N/P  N/QY .
O(W+T) ift>sxP, (15)
or O(w> otherwise. (16)
min(s,t)

From the above analysis, we observe that the indexing cost
of the GBCC method is less than that of the PITFALLS and
the ScaLAPACK methods. The packing/unpacking cost of
the GBCC method is less than or equal to that of the
PITFALLS and the ScaLAPACK methods. We summarize
the indexing costs and the packing/unpacking costs of
these three methods in Table 1. According to Table 1, we
use the example given in Fig. 7 to show the advantages of

the GBCC method. For the (2,2) — (24, 3) redistribution in
Fig. 7, the indexing costs of the GBCC, the PITFALLS, and
the ScaLAPACK methods are equal to 30, 66, and 66,
respectively. The packing/unpacking costs of the GBCC,
the PITFALLS, and the ScaLAPACK methods are equal to
7N/24, 5N/12, and 5N/12, respectively, where N is the
array size. The GBCC method has smaller indexing and
packing/unpacking costs than those of the PITFALLS and
the ScaLAPACK methods.

4.2 Experimental Results

To verify the performance analysis presented in Section 4.1,
the GBCC method, the PITFALLS method, and the
ScaLAPACK method were implemented on an IBM SP2
parallel machine. All algorithms were written in C+MPI
codes with the single program multiple data (SPMD)
programming paradigm. Based on the values of s, t, P,
and Q in a (s,P)— (t,Q) redistribution, we have the
following three cases:

Casel.s<txQandt<sx P,

Case2. s>txQort>sxP,

Case 3. P=kP',Q =kQ where gcd(P',Q)=1 and
k>1,
For each case, at least 10 different redistributions were used
as test samples. Each test sample was executed 10 times.
The mean time for the 10 tests was used as the time of a test
sample. We also give some experimental results for two-
dimensional array distributions.
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Case 1. s<tx @ and ¢t <sx P Table 2 shows the
indexing costs, the packing/unpacking costs, the commu-
nication costs, and the total costs for these three methods to
perform test samples in this case on arrays with N = 80,000
and N = 20,000,000. From Table 2, we can see that the
indexing costs of the GBCC method are less than that of the
ScaLAPACK and the PITFALLS methods for all test samples.
We also observed that the indexing costs are independent of
the array size in these three methods. These phenomena
match the indexing cost models presented in Section 4.1.

For the packing/unpacking part, the execution time of
the three methods has the order T{,,)puck(GBCC) < Tiun)pack
(ScaLAPACK) < Tiunypack(PITFALLS). This result is bet-
ter than the analysis that given in Table 1. The reason is that
the GBCC method uses a simpler computation approach
than that of the ScaLAPACK and the PITFALLS methods
when packing/unpacking array elements.

For the communication part, these three methods use
asynchronous communication schemes. There is no clear
winner in the communication cost for all test samples due to
the characteristics of the asynchronous communication
schemes. However, these three methods have approxi-
mately the same communication costs for all test samples.

Case 2. s>tx @ or t>sx P. Table 3 shows the
experimental results for the redistributions in Case 2.

methods PITFALLS Scal APACK GBCC
cases
N=20000000

Tind[”( 7‘(1/}1\!)1/(’1( T(’nmm 7‘]!)!1/1 Tirl(]l’Y T(ll!‘l\ nack T/’nmm T/nml 7‘1'!1(1?{ T(l/rl\ nack 7—'l‘nmm 71/(7/(1]

(5, 8)=(4, 5) 0.185 ] 1797 813 | 2610 10.131 | 1693 807 | 2500 10.028 | 1469 804 | 2273
(5, 16)—>(4, 10) 0.327 895 369 | 1264 ] 0.246 839 3571 1196 10.029 724 405 1 1129
(5,24)—>(4, 15) 0.463 598 327 925 10.359 559 291 850 10.028 485 344 829
(5, 32)—(4, 20) 0.613 451 299 751 10.480 420 304 724 10.030 362 307 669
(5, 40)—>(4, 25) 0.753 361 196 558 1 0.593 342 192 535 10.030 294 165 459
(5, 8)—(2,5) 0.238 | 3081 886 | 3967 |10.160 | 2844 858 | 3702 10.030 | 2426 824 | 3250
(5,16)—>(2, 10) 0.419 | 1540 413 | 1953 10.286 | 1421 448 1 1869 10.031 | 1210 392 | 1602
(5,24)—>(2, 15) 0.580 | 1025 305 ] 1331]0.425 941 313 | 1254 10.030 803 324 | 1127
(5,32)—=(2,20) 0.759 764 282 | 1047 ] 0.562 705 280 986 10.032 602 268 870
(5,40)—(2, 25) 0.940 621 207 829 ] 0.698 568 218 787 10.032 491 207 698
(4, 10)=(5, 10) 0.446 | 1243 7971 2040 ]10.401 | 1175 739 | 1914 10.053 | 1045 795 | 1840
(4, 20)—(5, 20) 0.778 630 540 | 1171 ]10.745 597 5241 1122 10.053 528 474 1 1002
(4, 30)—>(5, 30) 1.160 500 392 893 11.103 469 361 831 10.053 392 378 770
(4, 40)—(5, 40) 1.655 348 380 730 ] 1.431 334 318 653 10.053 292 334 626
(4, 50)—(5, 50) 1.867 249 216 467 | 1.831 234 216 452 10.055 210 210 420
(20, 10)—>(2, 10) 0.490 | 1383 884 | 2267 10.405 | 1305 877 | 2182 10.040 | 1159 | 1009 | 2168
(20, 20)—=(2, 20) ] 0.863 694 510 ] 1205 ]0.744 657 488 | 1146 ]0.041 582 551 ] 1133
(20, 30)—(2, 30) 1.254 549 411 961 | 1.101 464 435 900 10.042 366 615 981
(20, 40)—(2, 40) 1.655 348 380 730 ] 1.431 335 317 653 10.043 292 334 626
(20, 50)=(2, 50) | 2.049 279 293 574 11.779 265 301 568 10.042 235 305 540
Time (ms)

According to Table 1, the packing/unpacking costs of array
redistribution depend on the array size. Therefore, when
array size is large, the performance of packing/unpacking
technique plays an important role in a redistribution. From
Table 3, for test samples with array size N = 20,000,000,
the packing/unpacking costs of the three methods has
the order T(upaek(GBCC) << Tiup)pack(ScaLAPACK) <
Tiunypack (PITFALLS). The packing/unpacking technique
of the GBCC method outperforms those provided in the
PITFALLS and the ScaLAPACK methods. The phenomenon
matches the theoretical analysis presented in Section 4.1.
For the communication costs, we have similar observations
as those described for Case 1.

Case 3. P = kP',Q = kQ' where ged(P',Q') =1land k > 1
Fig. 9 shows the indexing costs of (5,8k) — (4, 5k) redis-
tributions with array size N = 20,000,000, where k =1to 5 .
From Fig. 9, we can see that the indexing costs of the
PITFALLS method and the ScaLAPACK method increase
when the value of k increases. The indexing costs of the
GBCC method are independent of the value of k. As
described in Section 4.1, both T4, (PITFALLS) and
Tindes(ScaLAPACK) shown in (11) is approximately

tx Q%+ s x P?
ged(s X Pt x @)’
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TABLE 5
The Indexing Costs, the Packing/Unpacking Costs, the Communication Costs, and the Total Costs of
These Three Methods to Perform 2D Array Redistributions on Arrays with Size 960 x 960 and 4, 800 x 4,800

methods PITFALLS
cases

ScalAPACK GBCC

N = 960x960

T

index

T(zm))uc/f T T

T(un pack T T T(zm yack T T

index. index,

Comm lojal
(5%4, 4x3)—>(4x5,4x3) | 1.00| 48.1

Lo lolal Con Lolal
0.74 ] 41.1 0.08 ] 34.4

86.8 1135.9
654

(4x3, 4x3)—(8x2, 4x3) | 0.66

853 1127.1 83.0[117.5
59.7 53.2

0.45 0.04

51.0 |117.1
124.6

(40x40, 4x3)>(1x1, 4x3) | 3.53

50.3 1104 49.2 11024
97.2 56.2

2.49 0.18

89.41217.5
123.9

(1x1, 4x3)—(40x40, 4x3) | 3.57

85.0 | 184.7 79.51135.9
99.7 52.4

2.49 0.18

91.1 1218.6
19.8

(5x4, 8x6)—(4x5, 6x4) | 2.87

80.5 |182.7 82.7 |135.3
16.1 13.6

2.30 0.09

26.6 | 49.3
28.3

(4x5, 8x6)—(8x2, 6x4) | 3.43

24.8 | 43.2 25.5] 39.2
22.7 21.4

2.63 0.07

21.4 [ 53.1
57.9

(40x40, 8x6)—>(1x1, 6x4) |26.60

21.6 | 469 21.2 [ 427
39.2 19.0

18.17 0.42

33.81118.3
76.0

(1x1, 8x6)—>(40x40, 6x4) [ 11.08

2731 84.7 24.0 | 43.4
427 35.5

10.78 0.29

30.6 |117.7
24.5

(5x4, 6x4)—>(4x5, 8x6) | 6.60

2641 799 28.2| 64.0
17.2 17.2

5.80 0.22

25.1] 56.2
26.0

(4x5, 6x4)—>(8x2, 8x6) | 2.80 27.1] 559
76.3

23.7] 46.7
22.6

25.8 | 43.2
2.23 25.7] 50.5) 0.06| 209 269 | 47.9
453 38.5

(40x40, 6x4)—>(1x1, 8x6) [10.69

10.64 0.29

32.51119.5
58.9

(1x1, 6x4)—(40x40, 8x6) ]26.28 29.6 |114.8

25.7] 8l1.6
40.7

222 61.0
18.23 28.8 | 87.7] 049 21.0] 33.1| 54.6

N =4800x4800

T

index

T(zm))uck T T

Eun)Iuck T T T(zm)m(:k T T

index. index,

Comm lojal
(5x4, 4x3)—(4x5, 4x3) | 1.04 [ 1101

Lo lofal Lo Lolal
0.77 ] 1021 0.08 ] 826

1797 | 2899
1553

(4x5, 4x3)—(8x2, 4x3) | 0.68

1771 | 2793 1698 | 2524
1449 1281

0.46 0.04

1128 ] 2682
2590

(40x40, 4x3)—(1x1, 4x3) | 3.56

1112 | 2561 1032 | 2313
2346 1290

2.51 0.18

182514419
2596

(1x1, 4x3)—>(40x40, 4x3) | 3.59

1796 | 4145 1822 | 3112
2339 1198

2.51 0.18

1860 | 4460
443

(5x4, 8x6)—(4x5, 6x4) | 3.00

1808 | 4150 1805 | 3003
406 335

2.33 0.09

424 [ 870
617

(4x5, 8x6)—(8x2, 6x4) | 3.54

448 | 856 390 725
561 511

2.65 0.07

466 | 1087
1014

(40x40, 8x6)—>(1x1, 6x4) [28.09

467 | 1031 449 1 960
883 409

18.44 0.42

571 ] 1613
1115

(1x1, 8x6)—(40x40, 6x4) | 10.90

576 | 1477 91 482 891
905 623

10.71 0.29

613 | 1739
461

(5x4, 6x4)—(4x5, 8x6) | 6.81

581 | 1497 621 | 1244
412 382

5.84 0.22

695 | 1163
617

(4x5, 6x4)—>(8x2, 8x6) | 2.94

739 | 1157 672 | 1054
578 513

2.29 0.06

564 | 1184
1144

(40x40, 6x4)—(1x1, 8x6) [11.03

522 ] 1102 569 | 1082
943 682

10.69 0.29

830 | 1985
1042

28.68 800 | 1871

(Ix1, 6x4)—>(40x40, 8x6)

740 | 1694
911

671 | 1353
18.15 7351 1664 042 | 389 | 810 | 1199

while Tj,,4.. (GBCC) shown in (13) is approximately

txQ+sxP
ged(s x Pt x Q)

In this case, both Ty (PITFALLS) and
(ScaLAPACK) are approximately

Ende:l:

k(t x Q7% + s x P?)

ged(s x Pt x Q')
which depends on the value of k. T4, (GBCC) is
approximately

txQ +sx P
ged(s x Pt x Q')’

which is independent of the value of k. Therefore, the
experimental results match the theoretical analysis for this
case.

Table 4 shows the indexing costs, the packing/unpack-
ing costs, the communication costs, and the total costs for
these three methods to perform test samples in Case 3. For
the packing/unpacking costs and the communication costs,
we have similar observations as those described in Case 1.

Time (ms)

4.3 Experimental Results for Multidimensional
Array Redistributions

All three methods can be applied to multidimensional array
redistribution. Due to the page limitation, we only show
experimental results for two-dimensional array. Table 5
shows the indexing costs, the packing/unpacking costs, the
communication costs, and the total costs of these three
methods to perform two-dimensional array redistributions
on arrays with size 960 x 960 and 4,800 x 4,800. From
Table 5, we can see that the proposed method outperforms
the PITFALLS method and the ScaLAPACK method for all
test samples. For higher dimensional array redistributions,
we have similar observations as those described above.

5 CONCLUSIONS

In this paper, we have presented a generalized basic-cycle
calculation method to efficiently perform a general array
redistribution of BLOCK-CYCLIC(s) over P processors to
BLOCK-CYCLIC(t) over Q processors. The basic idea of the
GBCC method is to construct the packing (unpacking)
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pattern table for array elements in the first generalized
basic-cycle of a source (destination) local array. Based on
the packing (unpacking) pattern table, a source (destina-
tion) processor can pack (unpack) array elements efficiently.
To evaluate the performance of the GBCC method, we
compare it with the PITFALLS method and the ScaLAPACK
method. Both theoretical analysis and experimental results
were conducted for these three methods. The theoretical
analysis shows that the indexing cost of the GBCC method
is less than that of the PITFALLS and the ScaLAPACK
methods. The packing/unpacking cost of the GBCC method
is less than or equal to that of the PITFALLS and the
ScaLAPACK methods. The experimental results demon-
strate that the GBCC method outperforms the PITFALLS
method and the ScaLAPACK method for all test samples.
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