
A Generalized Basic-Cycle Calculation
Method for Efficient Array Redistribution

Ching-Hsien Hsu, Sheng-Wen Bai,

Yeh-Ching Chung, Member, IEEE Computer Society, and Chu-Sing Yang

AbstractÐIn many scientific applications, dynamic array redistribution is usually required to enhance the performance of an algorithm.

In this paper, we present a generalized basic-cycle calculation (GBCC) method to efficiently perform a BLOCK-CYCLIC(s) over

P processors to BLOCK-CYCLIC(t) over Q processors array redistribution. In the GBCC method, a processor first computes the

source/destination processor/data sets of array elements in the first generalized basic-cycle of the local array it owns. A generalized

basic-cycle is defined as lcm�sP ; tQ�=�gcd�s; t� � P � in the source distribution and lcm�sP ; tQ�=�gcd�s; t� �Q� in the destination

distribution. From the source/destination processor/data sets of array elements in the first generalized basic-cycle, we can construct

packing/unpacking pattern tables to minimize the data-movement operations. Since each generalized basic-cycle has the same

communication pattern, based on the packing/unpacking pattern tables, a processor can pack/unpack array elements efficiently. To

evaluate the performance of the GBCC method, we have implemented this method on an IBM SP2 parallel machine, along with the

PITFALLS method and the ScaLAPACK method. The cost models for these three methods are also presented. The experimental

results show that the GBCC method outperforms the PITFALLS method and the ScaLAPACK method for all test samples. A brief

description of the extension of the GBCC method to multidimensional array redistributions is also presented.

Index TermsÐRedistribution, generalized basic-cycle calculation method, distributed memory multicomputers.

æ

1 INTRODUCTION

THE data-parallel programming model has become a
widely accepted paradigm for programming

distributed-memory parallel computers. To efficiently exe-
cute a data-parallel program on a distributed memory
multicomputer, appropriate data decomposition is neces-
sary. Many data-parallel programming languages such as
High Performance Fortran (HPF) [7], Fortran D [2], and
High Performance C (HPC) [27] provide compiler directives
for programmers to specify regular array distribution,
namely, BLOCK, CYCLIC, and BLOCK-CYCLIC. Fig. 1 shows
examples of these three array distributions.

Dongarra et al. [5] have shown that the above distribu-

tions are essential for many dense matrix algorithms design

in distributed memory machines. Many methods were

proposed to address the problems of the communication

sets identification for array statements with BLOCK-

CYCLIC(c) distribution [1], [5], [7], [12], [13], [14], [15],

[21], [24], [25]. However, in many scientific programs, such

as multidimensional Fast Fourier Transform [28], the

Alternative Direction Implicit (ADI) method for solving

two-dimensional diffusion equations, linear algebra solvers

[19], etc., it is necessary to change distribution fashion of a

program at different phases in order to achieve a better

performance. Since array redistribution is performed at run-
time, there is a performance trade-off between the efficiency
of the new data distribution for a subsequent phase of an
algorithm and the cost of redistributing array among
processors. Thus, efficient methods for performing array
redistribution are of great importance for the development
of distributed memory compilers for data-parallel program-
ming languages.

Given a redistribution of BLOCK-CYCLIC(s) over
P processors to BLOCK-CYCLIC(t) over Q processors on a
one-dimensional array with N elements, in general, the
redistribution can be performed in two phases, the send
phase and the receive phase. In the send phase, a
processor Pi has to determine all the data sets that it needs
to send to other processors (destination processors), pack
those data sets into messages, and send messages to their
destination processors. In the receive phase, a processor Pj
has to determine all the data sets that it needs to receive
from other processors (source processors), receive messages
from source processors, and unpack elements in messages
to their corresponding local array positions. We called these
three steps in the send/receive phase the indexing, the
packing/unpacking, and the communication issues of a
redistribution, respectively.

Many methods for performing array redistribution have
been presented in the literature. In general, they can be
classified into three categories according to the redistribu-
tion type that they solved.

. General Case Solutions. Methods in this category
provide algorithms to perform the redistribution of
BLOCK-CYCLIC(s) over P processors to BLOCK-

CYCLIC(t) over Q processors, where s, t, P, Q are
positive integers and P may not be equal to Q. The

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 12, DECEMBER 2000 1201

. C.-H. Hsu and Y.-C. Chung are with the Department of Information
Engineering, Feng Chia University, Taichung, Taiwan 407, ROC.
E-mail: chhsu@fhk.edu.tw, ychung@fcu.edu.tw.

. S.-W. Bai and C.-S. Yang are with the Institute of Computer and
Information Engineering, National Sun-Yet-San University, Kaohsiung
804, ROC. E-mail: {swbai, csyang}@cie.nsysu.edu.tw.

Manuscript received 01 June 1998; revised 15 Aug. 2000; accepted 17 Aug.
2000.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 106936.

1045-9219/00/$10.00 ß 2000 IEEE

PITFALLS [20], [21] and the ScaLAPACK [19]
methods are two examples. They pay more attention
on the indexing and the packing/unpacking issues.

. Special Case Solutions. Methods in this category
assume that the redistribution of an array is under
the same source/destination processor set, P = Q. In
general, they provide algorithms to generate the
communication sets for some specific type of
redistribution, such as BLOCK to CYCLIC redistribu-
tion [3], BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r)
redistribution [23], [24], and BLOCK-CYCLIC(s) to
BLOCK-CYCLIC(t) redistribution [4], where k, r, s, t
are positive integers. The BLOCK-CYCLIC(s) to
BLOCK-CYCLIC(t) redistribution is the most general
case in this category. Methods in this category pay
more attention on the indexing and the packing/
unpacking issues.

. Communication Optimization Solutions. In general,
methods in this category provide different ap-
proaches to reduce the communication overheads
in a redistribution. Examples are the processor
mapping technique [9], [10], the multiphase redis-
tribution technique [11], [12], the communication
scheduling approaches [17], [18], [29], the strip
mining approach [30], and the spiral mapping
method [31]. Methods in this category pay more
attention on the communication issue.

In this paper, we want to provide an efficient method

for array redistributions in the category of General Case

Solutions. For the PITFALLS method, the main idea is to

find all intersections between source and target distribu-

tions. Based on the intersections, the send/receive pro-

cessor/data sets can be determined and general

redistribution algorithms can be devised. It uses the

repetitive pattern in communication sets calculation. The

disadvantage of this approach is that the number of

iterations of the outermost loop in the FALLS intersection
algorithm depends on the number of processors. When the
number of processor is large, it may lead to high indexing
overheads and degrades the performance of a redistribu-
tion algorithm. The ScaLAPACK method is similar to the
PITFALLS method but has simpler indexing calculation
than that of the PITFALLS method. In addition, both
methods did not minimize the data-movement operations
when packing/unpacking array elements. This also leads
to high packing/unpacking costs for some cases.

To overcome the drawbacks of the PITFALLS method
and the ScaLAPACK method, we propose a generalized basic-
cycle calculation (GBCC) method. The GBCC method pro-
vides a fast indexing technique in which a processor first
computes the source/destination processor/data sets of
array elements in the first generalized basic-cycle of the
local array it owns. A generalized basic-cycle is defined as
lcm�sP ; tQ�=�gcd�s; t� � P � in the source distribution and
lcm�sP ; tQ�=�gcd�s; t� �Q� in the destination distribution.
From the source/destination processor/data sets of array
elements in the first generalized basic-cycle, the GBCC
method constructs packing/unpacking pattern tables that
can optimize the data-movement operations. Based on the
packing/unpacking pattern tables, a processor can pack/
unpack array elements efficiently. The generalized basic-
cycle calculation (GBCC) technique has the following
characteristics:

. It is a simple method to perform the general BLOCK-
CYCLIC(s) over P processors to BLOCK-CYCLIC(t)
over Q processors array redistribution.

. The indexing overhead of the generalized basic-cycle
calculation technique is very small and independent
of the array size involved in a redistribution.

. It minimizes the data-movement operations when
packing/unpacking array elements.

. The generalized basic-cycle calculation technique
uses an asynchronous communication scheme to
overlap the computation and the communication.
This leads to a better performance for a redistribution.

. It can be easily extended to handle multidimensional
array redistributions.

To evaluate the performance of the GBCC method, we
have implemented this method on an IBM SP2 parallel
machine, along with the PITFALLS and the ScaLAPACK
methods. Both theoretical analysis and experimental results
were conducted for these three methods. The theoretical
analysis shows that the indexing cost of the GBCC method
is less than that of the PITFALLS and the ScaLAPACK
methods. The packing/unpacking cost of the GBCC method
is less than or equal to that of the PITFALLS and the
ScaLAPACK methods. The experimental results show that
the GBCC method outperforms the PITFALLS method and
the ScaLAPACK method for all test samples.

The paper is organized as follows: In Section 2, we
introduce notations and terminology used in this paper.
Section 3 presents the GBCC method in details. A brief
description of the extension of the GBCC method to
multidimensional array redistributions is also presented in
this section. The cost models and performance comparisons

1202 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 12, DECEMBER 2000

Fig. 1. Examples of regular array distributions. (a) A BLOCK distribution,

(b) a CYCLIC distribution, and (c) a BLOCK-CYCLIC(2) distribution on an

array with 12 elements over four processors.

of the GBCC method, the PITFALLS method, and the

ScaLAPACK method are given in Section 4.

2 PRELIMINARIES

To simplify the presentation, we use �s; P � ! �t; Q� to

represent the redistribution of BLOCK-CYCLIC(s) over

P processors to BLOCK-CYCLIC(t) over Q processors and

N denotes the global array size for the rest of the paper. We

also assume that all array elements and processors are

indexed starting from 0.

Definition 1. Given a �s; P � ! �t; Q� redistribution, BLOCK-

CYCLIC(s), BLOCK-CYCLIC(t), s, t, P, and Q are called the

source distribution, the destination distribution, the

source distribution factor, the destination distribution

factor, the number of source processors, and the number

of destination processors of the redistribution, respectively.

Definition 2. Given a �s; P � ! �t; Q� redistribution on a one-

dimensional array A�0 : N ÿ 1�, the source local array of

processor Pi, denoted by SLAi�0 : N=P ÿ 1�, is defined as

the set of array elements that are distributed to processor Pi
in the source distribution, where i � 0 to P ÿ 1. The

destination local array of processor Qj, denoted by

DLAj�0 : N=Qÿ 1�, is defined as the set of array elements

that are distributed to processor Qj in the destination

distribution, where j � 0 to Qÿ 1.

Definition 3. Given a �s; P � ! �t; Q� redistribution on a one-

dimensional array A�0 : N ÿ 1�, the source processor of an

array element in A�0 : N ÿ 1� or DLAj�0 : N=Qÿ 1� is

defined as the processor that owns the array element in the

source distribution, where j � 0 to Qÿ 1. The destination

processor of an array element in A�0 : N ÿ 1� or SLAi�0 :

N=P ÿ 1� is defined as the processor that owns the array

element in the destination distribution, where i � 0 to P ÿ 1.

Definition 4. Given integers a and b, their least common
multiple and greatest common divisor are denoted as lcm(a, b)
and gcd(a, b), respectively.

Definition 5. Given a �s; P � ! �t; Q� redistribution on a one-
dimensional array A�0 : N ÿ 1�, the generalized basic-cycle
(GBC) is defined as

GBC � lcm s� P; t�Q� �
gcd s; t� � � P

in the source distribution and

GBC � lcm s� P; t�Q� �
gcd s; t� � �Q

in the destination distribution. We define SLAi�0 : GBC ÿ 1�
(DLAj�0 : GBC ÿ 1�) as the first generalized basic-cycle of a
source (destination) local array of processor Pi (Qj),
SLAi�GBC : 2�GBC ÿ 1� (DLAj�GBC : 2�GBC ÿ 1�)
as the second basic-cycle of a source (destination) local array
of processor Pi (Qj), etc.

Definition 6. Given a �s; P � ! �t; Q� redistribution, a general-
ized basic-cycle of a source (destination) local array can be
divided into GBC/s (GBC/t) blocks. We define those blocks as
the source (destination) sections of a generalized basic-cycle
of a source (destination) local array.

We now give an example to clarify the above definitions.
Fig. 2 shows a �10; 3� ! �3; 4� redistribution on a one-
dimensional array with N = 120 elements, A�0 : 119�. The
local array indices are represented as italic numbers while
the global array indices are represented as bold numbers.
According to Definition 5, we know that the generalized
basic-cycle in the source distribution is 20. The generalized
basic-cycle in the destination distribution is 15. The
first generalized basic-cycle in SLA1 of source processor
P1 i s SLA1�0 : 19� = fA�10�; . . . ; A�19�; A�40�; . . . ; A�49�g.

HSU ET AL.: A GENERALIZED BASIC-CYCLE CALCULATION METHOD FOR EFFICIENT ARRAY REDISTRIBUTION 1203

Fig. 2. A �10; 3� ! �3; 4� redistribution on a one-dimensional array with N = 120 elements.

SLA1�0 : 19� can be divided into two source sections (size =
10), SLA1�0 : 9� and SLA1�0 : 19�. The second generalized
basic-cycle in SLA1 of source processor P1 is SLA1�20 : 39� =
fA�70�; . . . ; A�79�; A�100�; . . . ; A�109�g. In the destination dis-
tribution, the first generalized basic-cycle in DLA1 of
destination processor Q1 is

DLA1�0 : 14�
� fA�3�; . . . ; A�5�; A�15�; . . . ; A�17�; A�27�; . . . ;

A�29�; A�39�; . . . ; A�41�; A�51�; . . . ; A�53�g:

DLA1�0 : 14� can be divided into five destination sections
(size= 3): DLA1�0 : 2�; DLA1�3 : 5�; DLA1�6 : 8�; DLA1�9 : 11�;
and DLA1�12 : 14�. The second generalized basic-cycle of
destination processor Q1 is

DLA1�15 : 29�
� fA�63�; . . . ; A�65�; A�75�; . . . ; A�77�; A�87�; . . . ;

A�89�; A�99�; . . . ; A�101�; A�111�; . . . ; A�113�g:

3 THE GBCC METHOD FOR ARRAY

REDISTRIBUTION

In the following, we will describe how the indexing and
packing/unpacking operations can be performed efficiently
by the GBCC method.

The main idea of the GBCC method is based on that
every generalized basic-cycle of a local array has the same
communication pattern. For example, Fig. 3 shows a
�4; 3� ! �3; 2� redistribution on a one-dimensional array
with 48 elements. According to Definition 5, the generalized
basic-cycle in the source distribution and the destination
distribution of the redistribution is four and six, respec-
tively. In Fig. 3, the local array indices are represented as
italic numbers while the global array indices are repre-
sented as normal numbers. There are four generalized
basic-cycles in each source/destination local array. For each
source (destination) local array, array elements in the kth
position of each generalized basic-cycle have the same
destination (source) processor, i.e., all of them will be sent to
(received from) the same destination (source) processor
during the redistribution, where k � 0 to GBC ÿ 1. This
observation shows that each generalized basic-cycle of a
local array has the same communication pattern.

Another example of a �6; 4� ! �4; 3� redistribution on
A�0 : 95� is shown in Fig. 4a. The generalized basic-cycle in
the source distribution and the destination distribution of
the redistribution is three and four, respectively. However,
the observation that we obtained from Fig. 3 (each general-
ized basic-cycle of a local array has the same communica-
tion pattern) cannot be applied to the case shown in Fig. 4a
directly. For example, the destination processors of the
second array elements in the first and the second general-
ized basic-cycles of the source local array of processor P0 are
Q0 and Q1, respectively. The reason the observation cannot
be applied directly is that the value of gcd�6; 4� is not equal
to one. By grouping every gcd�6; 4� global array indices of
array A to a meta-index, array A�0 : N ÿ 1� can be
transformed to a meta-array B�0 : N=gcd�6; 4� ÿ 1�, where
B�k� � fA�k� gcd�6; 4��; . . . ; A��k� 1� � gcd�6; 4� ÿ 1�g a n d
k � 0 to N=gcd�6; 4� ÿ 1. Then, the observation that we
obtained from Fig. 3 can be held if we use array B for the
redistribution. An example of using meta-array for the
array redistribution of Fig. 4a is shown in Fig. 4b.

According to the above analysis, we have the following
lemmas.

Lemma 1. Given a �s; P � ! �t; Q� redistribution on a one-
dimensional array A�0 : N ÿ 1� and gcd�s; t� � 1, for a source
(destination) processor Pi�Qj�, if the destination (source)
processor of SLAi�k��DLAj�k�� is Qj �Pi�, then the
destination (source) processors of SLAi�k�GBC�; SLAi�k�
2�GBC�; . . . ; SLAi�k�N=P ÿGBC� �DLAi�k�GBC�;
DLAi�k� 2�GBC�; . . . ; DLAi�k�N=QÿGBC�� w i l l
also be Qj �Pi�, where 0 � k < GBC and N/P (N/Q) is a
multiple of GBC.

Proof. We only prove the source processor part. The proof
of the destination processor part is similar. In the source
distribution,

GBC � lcm s� P; t�Q� �
gcd s; t� � � P � lcm s� P; t�Q� �

P
:

For a source processor Pi, if the global array index of
SLAi�k� is �, then the global array indices of SLAi�k�
GBC�; SLAi�k� 2GBC�; . . . ; and SLAi�k�N=P ÿGBC�
are �� lcm�s� P; t�Q�; �� 2� lcm�s� P; t�Q�; . . . ;
and �� �N ÿ lcm�s� P; t�Q��, respectively, where 0 �
i � P ÿ 1; 0 � k � GBC ÿ 1 and 0 � � � lcm�s� P; t�
Q� ÿ 1. Since lcm�s� P; t�Q� is a multiple of t�Q, in
the destination distribution, if A��� is distributed to the

1204 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 12, DECEMBER 2000

Fig. 3. A �4; 3� ! �3; 2� redistribution on a one-dimensional array with N � 48 elements.

destination processor Pj, so are A��� lcm�s� P; t�Q��;
A��� 2� lcm�s� P; t�Q��; . . . ; a n d A��� �N ÿ
lcm�s� P; t�Q���, where 0 � j � Qÿ 1. tu

Lemma 2. Given a �s; P � ! �t; Q� and a �s=gcd�s; t�; P � !
�t=gcd�s; t�; Q� redistribution on a one-dimensional array
A�0 : N ÿ 1�, for a source (destination) processor Pi�Qj�, if the
destination (source) processor of SLAi�k��DLAj�k�� in
�s=gcd�s; t�; P � ! �t=gcd�s; t� redistribution is Qj�Pi�, then
the destination (source) processors of

SLAi�k� gcd�s; t� : �k� 1� � gcd�s; t� ÿ 1�
�DLAj�k� gcd�s; t� : �k� 1� � gcd�s; t� ÿ 1��

in �s; P � ! �t; Q� redistribution will also be Qj�Pi�, where

0 � k � dN=�P � gcd�s; t��e�0 � k < dN=�Q� gcd�s; t��e�:

Proof. We only prove the source processor part. The proof
of the destination processor part is similar. For a source
processor Pi, if the global array index of SLAi�k� in
�s=gcd�s; t�; P � ! �t=gcd�s; t�; Q� redistribution is �, then
the global array indices of SLAi�k� gcd�s; t� : �k� 1� �
gcd�s; t� ÿ 1� in �s; P � ! �t; Q� redistribution are

�� gcd�s; t�; �� gcd�s; t� � 1; . . . ; ��� 1� � gcd�s; t� ÿ 1:

If A�0 : N ÿ 1� is distributed by BLOCK-CYCLIC

�t=gcd�s; t�� distribution, then A��� is in the d���
gcd�s; t��=teth block of size t=gcd�s; t�. If A�0 : N ÿ 1� is
distributed by BLOCK-CYCLIC(t) distribution, then
A��� gcd�s; t��; A��� gcd�s; t� � 1�; . . . , and A���� 1� �
gcd�s; t� ÿ 1� a r e i n t h e d�� gcd�s; t�=teth, t h e
d��� gcd�s; t� � 1�=teth; . . . , and the d���� 1� � gcd�s; t�
ÿ1�=teth block of size t, respectively. Since

d�� gcd�s; t�=te � d��� gcd�s; t� � 1�=te � . . .

� d���� 1� � gcd�s; t� ÿ 1�=te;
if the destination processor of A��� is Qj in
�s=gcd�s; t�; P � ! �t=gcd�s; t�; Q� redistribution, then the
dest inat ion processors of A��� gcd�s; t��; A���
gcd�s; t� � 1�; . . . ; and A���� 1� � gcd�s; t� ÿ 1� are Qj in
�s; P � ! �t; Q� redistr ibution. Therefore, i f the
destination processor of SLAi�k� in �s=gcd�s; t�; P � !
�t=gcd�s; t�; Q� redistribution is Qj, then the destination
processors of SLAi�k� gcd�s; t� : �k� 1� � gcd�s; t� ÿ 1�
in �s; P � ! �t; Q� redistribution will also be Qj, where

0 � i � P ÿ 1; 0 � j � Qÿ 1

and 0 � k < dN=�P � gcd�s; t��e: ut

In the following discussion, we assume that a �s; P � !
�t; Q� redistribution onA�0 : N ÿ 1� is given. We also assume

HSU ET AL.: A GENERALIZED BASIC-CYCLE CALCULATION METHOD FOR EFFICIENT ARRAY REDISTRIBUTION 1205

Fig. 4. (a) A �6; 4� ! �4; 3� redistribution with N � 96. (b) An example of using a grouped meta-array for the redistribution in (a).

that gcd�s; t� is equal to one. If gcd�s; t� is not equal to one, we
use s=gcd�s; t� and t=gcd�s; t� as the source and destination
distribution factors of the redistribution, respectively.

3.1 The Send Phase

According to Lemma 1, each generalized basic-cycle of a

local array has the same communication pattern. Therefore,

each source processor only needs to compute the send

processor/data sets on the first generalized basic-cycle of

the local array that it owns. Then, based on the send

processor/data sets of the first generalized basic-cycle, it

can pack array elements into messages and send messages

to their corresponding destination processors.
Given a �s; P � ! �t; Q� redistribution on A�0 : N ÿ 1�, the

destination processor of array element SLAi�k� in SLAi�0 :

GBC ÿ 1� of source processor Pi can be determined by the

following equations,

sgindexi k� � � k=sb c � s� P � i� s�mod k; s� �; �1�

dpi sgindexi k� �� � � mod sgindexi k� �=tb c; Q� �; �2�
where k � 0 to GBC ÿ 1. The function sgindexi�k� converts

the local array index of an array element in a source local

array to its corresponding global array index, i.e.,

SLAi�k� � A�sgindexi�k��. The function dpi�sgindexi�k�� is

used to determine the destination processor of the global

array element A�sgindexi�k��.
If the value of GBC is large, it may take a lot of time

to compute the destination processor of every array

element in a generalized basic-cycle by using (1) and (2).

Since array elements in a source section have consecutive

global array indices, for a source processor Pi, if the

destination processor of SLAi�0 : rÿ 1� is Qj, then the

destination processors of SLAi�r : r� tÿ 1�, SLAi�r� t :

r� 2tÿ 1�; . . . ; and SLAi�r� b�sÿ r�=tc � t : sÿ 1� are

Qmod j�1;Q� �, Qmod j�2;Q� �; . . . ; and Qmod j� sÿr� �=tb c;Q� � , respec-

tively, where 1 � r � t. For example, Fig. 5 shows the

send processor/data sets of the first generalized basic-

cycle of source processors for a �10; 3� ! �3; 4� redistribu-

tion shown in Fig. 2. In Fig. 5, for source processor P1,

the destination processor of SLA1�0 : rÿ 1� � SLA1�0 : 1�
is Qj � Q3, where r � 2 and j � 3. The destination

processors of SLA1�r : r� tÿ 1� � SLA1�2 : 4�; SLA1�r�
t : r� 2tÿ 1� � SLA1�5 : 7�; and SLA1�r� b�sÿ r�=tc � t :

sÿ 1� � SLA1�8 : 9� are Qmod j�1;Q� � � Q0, Qmod j�2;Q� � � Q1,

and Qmod j� sÿr� �=tb c;Q� � � Q2, respectively. Therefore, if we

know the destination processor of the first array element

of a source section and the value of r, we can determine

the send processors/data sets in a source section. To

determine the global array index of the first array

element of a source section, (1) can be simplified as

follows:

sgindexi k� � � k� P � i� s; �3�
where k is the local array index of the first array element of a
source section. The value of r can be determined by the
following equation,

r � sgindexi k� �=tb c � 1� � � tÿ sgindexi k� �: �4�
Since a generalized basic-cycle has GBC/s source sections,
(2), (3), and (4) only need to be performed GBC/s times.
Then the send processor/data sets of a generalized basic-
cycle can be obtained.

From the send processor/data sets, we can pack array
elements into messages and send messages to their
corresponding destination processors. The naive way to
pack array elements into messages is to copy them to
messages one element at a time according to the send
processor/data sets. We define the operation of moving a
block of data between a local array and a message as a
data-movement operation. Since packing is a sequence of
data-movement operations, if the local array size is large,
this naive method may produce high packing cost. If we
can reduce the number of data-movement operations, the
packing cost can be reduced. From the indexing method
described above, for a source processor Pi, if the
destination processor of SLAi�0 : rÿ 1� is Qj, then the
destination processors of SLAi�r : r� tÿ 1�; SLAi�r� t :
r� 2tÿ 1�; . . . ; and SLAi�r� b�sÿ r�=tc � t : sÿ 1� are
Qmod j�1;Q� �; Qmod j�2;Q� �; . . . ; and Qmod j� sÿr� �=tb c;Q� �; respec-
tively, where 1 � r � t. For each source processor Pi, we
can construct a packing pattern table PPTi�0 : Qÿ 1� to
describe the above send processor/data sets. For example,
for the send processor/data sets of the first generalized
basic-cycle shown in Fig. 5, source processor P1's
corresponding packing pattern table is given as follows:

PPT1�0� = {{2, 3}, {18, 2}},
PPT1�1� = {{5, 3}, {10, 2}},
PPT1�2� = {{8, 2}, {12, 3}},
PPT1�3� = {{0, 2}, {15, 3}}.

Each entry of a packing pattern table contains a list of
descriptors. Each descriptor stores information of the start

1206 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 12, DECEMBER 2000

Fig. 5. The send processor/data sets of the first generalized basic-cycle for a �10; 3� ! �3; 4� redistribution shown in Fig. 2.

position and the number of array elements to be packed

when performing a data-movement operation. A descriptor

is of the form {pos, len}, where pos denotes the start position

and len is the number of array elements to be packed. It is

possible that the last array element of source section m and

the first array element of source section m� 1 have the

same destination processor. In our implementation, we will

combine the descriptors corresponding to these two array

elements to a descriptor. Based on the above packing

pattern table PPT1�0 : 3�, when packing array elements

whose destination processor is Q0 into message0, the entry

PPT1�0� = {{2, 3}, {18, 2}} will be used. According to PPT1�0�
= {{2, 3}, {18, 2}}, source processor P1 will pack array

elements SLA1�2 : 4� and SLA1�18 : 19� in the first general-

ized basic-cycle of SLA1 into message0�0 : 2� (descriptor

{2,3}) and message0�3 : 4� (descriptor {18,2}), respectively.

Array elements SLA1�2�GBC : 4�GBC� and SLA1�18�
GBC : 19�GBC� in the second generalized basic-cycle of

SLA1 will be packed into message0�5 : 7� (descriptor {2,3})

and message0�8 : 9� (descriptor {18,2}), respectively, etc.

Based on the packing pattern table, the total number of

data-movement operations performed by each source

processor Pi is equal to (the number of descriptors in

PPTi�0 : Qÿ 1�) � (the number of generalized basic-cycles

in SLAi), which is much less than that of the naive method.

The algorithm to construct the packing pattern table in the

send phase is given as follows:

Algorithm PPT_construction (i, s, P, t, Q)
1. gcdst = gcd(s, t); s = s/gcdst; t = t/gcdst;

2. calculate the GBC for the sending phase; lastp = -1;

3. for m = 0 to GBC/s-1

4. k = m�s; gidx = k�P + i�s; secend = gidx + s;

5. j = mod(bgidx=tc, Q); l = (min((bgidx=tc + 1) �t,

secend) -gidx);

6. if j = lastp then

7. PPTi�j��cj ÿ 1�:len� = l�gcdst;
8. k += l; gidx += l; l = t; j = mod(j + 1, Q);

9. endif

10. while gidx < secend

11. l = min(l, secend-gidx);

12. PPTi�j��cj�:pos = k � gcdst; PPTi�j��cj�:len = l � gcdst;

13. cj ��; k += l; gidx += l; l = t;

14. lastp = j; j = mod(j + 1, Q);

15. endwhile

16. endfor

End_of_PPT_construction

3.2 The Receive Phase

In the receive phase, techniques for the indexing and the

packing/unpacking issues are similar to those in the send

phase. We only state the key points of the techniques and

ignore the details of examples as we did in the send phase.

Given a �s; P � ! �t; Q� redistribution on A�0 : N ÿ 1�, for

destination processor Qj, the source processor of array

element DLAj�k� in DLAj�0 : GBC ÿ 1� can be determined

by the following equations:

rgindexj k� � � k=tb c � t�Q� j� t�mod k; t� � �5�

spj rgindexj k� �
ÿ � � mod rgindexj k� �=s

� �
; P

ÿ � �6�
where k � 0 to GBC ÿ 1. The function rgindexi�k� converts
the local array index of an array element in a destination
local array to its corresponding global array index, i.e.,
DLAj�k� � A�rgindexj�k��. The function spj�rgindexj�k�� is
used to determine the source processor of the global array
element A�rgindexj�k��.

Since array elements in a destination section have
consecutive global array indices, for a destination processor
Qj, if the source processor of DLAj�0 : uÿ 1� is Pi, then the
source processors of DLAj�u : u� sÿ 1�, DLAj�u�
s : u� 2sÿ 1�; . . . , and DLAj�u� b�tÿ u�=sc � s : tÿ 1� are
Pmod i�1;P� �, Pmod i�2;P� �; . . . ; and Pmod i� tÿu� �=sb c;P� �, respec-
tively, where 1 � u � s. If we know the source processor
of the first array element of a destination section and the
value of u, we can determine the receive processors/data
sets in a destination section. To determine the global array
index of the first array element of a destination section, (5)
can be simplified as follows:

rgindexj k� � � k�Q� j� t; �7�
where k is the local array index of the first array element of a
destination section. The value of u can be determined by the
following equation:

u � rgindexj k� �=s
� �� 1
ÿ �� sÿ rgindexj k� �: �8�

According to the indexing method described above, for a
destination processorsQj, if the source processor ofDLAj�0 :
uÿ 1� is Pi, then the source processors ofDLAj�u : u� sÿ 1�,
DLAj�u� s : u� 2sÿ 1�; . . . ; andDLAj�u� b�tÿ u�=sc � s :
tÿ 1� are Pmod i�1;P� �, Pmod i�2;P� �; . . . ; and Pmod i� tÿu� �=sb c;P� �,
respectively, where 1 � u � s. For each destination processor
Qj, we can construct an unpacking pattern table UPTj�0 :
P ÿ 1� to describe the above receive processor/data sets.
Based on the unpacking pattern table, a destination processor
can unpack array elements from received messages
efficiently. The algorithm to construct the unpacking pattern
table is given as follows:

Algorithm UPT_construction (j, s, P, t, Q)

1. gcdst = gcd(s, t); s = s/gcdst; t = t/gcdst;

2. calculate the GBC for the receive phase; lastp � ÿ1;

3. for m = 0 to GBC/tÿ 1

4. k = m�t; gidx = k�Q + j�t; secend = gidx + t;

5. i = mod(bgidx=sc, P); l = (min((bgidx=sc + 1) � s,
secend) ÿgidx);

6. if i = lastp then

7. UPTj�i��ci ÿ 1�:len� = l�gcdst;

8. k += l; gidx += l; l = s; i = mod(i + 1,P);

9. endif

10. while gidx < secend

11. l = min(l, secendÿ gidx);

12. UPTj�i��ci�:pos � k�gcdst; UPTj�i��ci�:len � l�gcdst;
13. ci++; k += l; gidx += l; l = s;

14. lastp = i; i = mod(i + 1,P);

15. endwhile

16. endfor

End_of_UPT_construction

HSU ET AL.: A GENERALIZED BASIC-CYCLE CALCULATION METHOD FOR EFFICIENT ARRAY REDISTRIBUTION 1207

The algorithm of the GBCC method is given as follows:

Algorithm GBCC (s, P, t, Q)

/* Sending Phase */

1. i = get_myrank_of_source_processors();

2. call PPT_construction(i, s, P, t, Q);

3. for j = 0 to Qÿ 1

4. if cj > 0 then

5. pack data from source local array to a message according

to PPTi�j�;
6. send message to Qj;

7. endif

8. endfor

/* Receiving Phase */

9. j = get_myrank_of_destination_processors();

10. call UPT_construction(j, s, P, t, Q);

11. for i = 0 to P ÿ 1

12. if ci > 0 then

13. receive message from Pi;

14. unpack received message to destination local array

according to UPTj�i�;
15. endif

16. endfor

17. wait for all communication;

End_of_GBCC

3.3 The GBCC Method for Multiimensional Array
Redistribution

The GBCC method can be extended easily to perform
multidimensional array redistributions. In the send phase,
the packing pattern table for each dimension is calculated
by using the GBCC method. Based on the packing pattern

1208 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 12, DECEMBER 2000

Fig. 6. An example of a �3� 4; 2� 2� ! �4� 3; 3� 2� redistribution, where g is the global array index and l is the source local array index of the

source processor P1x1 for each dimension.

Fig. 7. Given a �24; 3� ! �2; 2� redistribution, the shadowed array elements in a source section of SLA0 will be sent from P0 to Q0. There are six data-

movement operations and one data-movement operation in the send phase and the receive phase, respectively.

tables, array elements that will be sent to the same
destination processor are packed dimension by dimension
starting from the first (last) dimension if the array is in
column-major (row-major). In the receive phase, the
unpacking pattern table for each dimension is calculated
by using the GBCC method. Based on the unpacking pattern
tables, elements in a message that was received from a
source processor are unpacked to their corresponding
positions dimension by dimension starting from the first
(last) dimension if the array is in column-major (row-major).

We now give an example to explain how to use the GBCC

method to perform a multidimensional array redistribution.
Fig. 6 shows the array elements that will be sent from P1x1 to
Q1x1 in a �3� 4; 2� 2� ! �4� 3; 3� 2� redistribution with
N � 24� 24 array elements. For the first dimension (P1x to
Q1x), the packing pattern table for destination processor Q1x

is PPT1x�1� � ff1; 2gg. For the second dimension (P1x to
Q1x), the packing pattern table for destination processor Q1x

is PPTx1�1� � ff0; 2g; f7; 1g; f9; 3gg. Assume that array

elements are stored in memory in a row-major manner.
From Fig. 6, for the source processor P1�1, we can see that
the array elements in SLAo that have consecutive local
array indices in the second dimension (the last dimension)

will be stored in consecutive positions in memory. But it is
not the case for other dimensions. Based on the observation,
PPT1x�1�, and PPTx1�1�, source processor P1x1 can pack
array elements SLA1x1�1; 0�, SLA1x1�1; 1�, SLA1x1�1; 7�,
SLA1x1�1; 9�, SLA1x1�1; 10�, SLA1x1�1; 11�, SLA1x1�2; 0�,
SLA1x1�2; 1�, SLA1x1�2; 7�, SLA1x1�2; 9�, SLA1x1�2; 10�, and
SLA1x1�2; 11� into message1x1�0 : 11� according to PPT1x�1�
and PPTx1�1�. For the second generalized basic-cycle of
SLA1x1 in the first dimension, array elements SLA1x1�7; 0�,
SLA1x1�7; 1�, SLA1x1�7; 7�, SLA1x1�7; 9�, SLA1x1�7; 10�,
SLA1x1�7; 11�, SLA1x1�7; 0�, SLA1x1�7; 1�, SLA1x1�7; 7�,
SLA1x1�7; 9�, SLA1x1�7; 10�, and SLA1x1�7; 11� will be packed
into message1x1�12 : 23� according to PPT1x�1� and PPTx1�1�.
For each destination processor, the received messages can
be unpacked in a similar manner.

4 PERFORMANCE EVALUATION AND EXPERIMENTAL

RESULTS

To evaluate the performance of the GBCC method, we
compare the proposed method with the PITFALLS method
and the ScaLAPACK method. Both theoretical analysis and
experimental evaluation were conducted. We first develop

HSU ET AL.: A GENERALIZED BASIC-CYCLE CALCULATION METHOD FOR EFFICIENT ARRAY REDISTRIBUTION 1209

Fig. 8. Given a �2; 2� ! �24; 3� redistribution, the shadowed array elements in a source section of SLA0 will be sent from P0 to Q0. There are one

data-movement operation and six data-movement operations in the send phase and the receive phase, respectively.

TABLE 1
The Indexing Costs and the Packing/Unpacking Costs of the PITFALLS Method, the ScaLAPACK Method,

and the GBCC Method for a �s; P � ! �t; Q� Redistribution on a 1D Array with N Array Elements

cost models for these three methods and analyze their

performance in terms of the indexing and the packing/

unpacking costs. The cost models developed for the

PITFALLS method and the ScaLAPACK method are based

on algorithms proposed in [20], [21], and [19], respectively.

We then execute these three methods on an IBM SP2

parallel machine and use the cost models to analyze the

experimental results.

4.1 Cost Models

Given a (s, P)!(t, Q) redistribution on a one-dimensional

array A[0:N-1], the time for an algorithm to perform the

redistribution, in general, can be modeled as follows:

T � Tcomp � Tcomm; �9�
where Tcomp is the time for an algorithm to compute the

source/destination processors of local array elements, pack

source local array elements that have the same destination

processors to the same message, and unpack array elements

in messages that received from source processors to their

corresponding destination local array positions; and Tcomm
is the communication time for an algorithm to send and

receive data among processors. We said that Tcomp and

Tcomm are the computation and communication time of an

algorithm to perform a redistribution, respectively. For the

communication cost, the number of send and receive

operations required by a processor in a redistribution are

the same for different methods. Therefore, we assume that

the communication costs of these three methods are the

same in our theoretical model. In the following, we will

focus on the analysis of the computation costs of the three

methods.
The computation cost consists of the indexing cost and

the packing/unpacking cost. The indexing cost is the time

to construct the send/receive processor/data sets for a

redistribution. The packing/unpacking cost is the time to

pack and unpack array elements. We have the following

equation,

Tcomp � Tindex � T�un�pack; �10�
where Tindex and T�un�pack are the indexing cost and the

packing/unpacking cost of a redistribution, respectively. In

the cost model analysis, the packing/unpacking cost is

represented in terms of the number of data-movement

operations. For the PITFALLS method, the indexing cost for

1210 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 12, DECEMBER 2000

TABLE 2
The Indexing Costs, the Packing/Unpacking Costs, the Communication Costs, and the Total Costs
for These Three Methods to Perform Test Samples on Arrays with N = 80,000 and N = 20,000,000

a processor to perform the FALLS intersection algorithm
[20], [21] is

Tindex�PITFALLS�

� O lcm s� P; t�Q� �
min s; t�Q� � � P �Q�

lcm s� P; t�Q� �
min t; s� P� � �Q� P

� �
:

�11�
The packing/unpacking cost of the PITFALLS method is

T�un�pack�PITFALLS� � O N=P �N=Q
min�s; t�

� �
: �12�

For the ScaLAPACK method [19], the indexing and
packing/unpacking costs are the same as the PITFALLS
method.

For the GBCC method, according to the algorithm
presented in Section 3, the indexing cost is

Tindex�GBCC�

� O lcm s� P; t�Q� �
min s; t� � � P � lcm s� P; t�Q� �

min s; t� � �Q
� �

:
�13�

The packing/unpacking cost of the generalized basic

calculation method can be classified into three classes,

s > t�Q, t > s� P , and otherwise. For the first class

s > t�Q, array elements that have the same destination

processors in the same source section will have consecutive

local array indices in its corresponding destination local

array. Therefore, s
t�Q data-movement operations are needed

to pack those array elements to a message and one data-

movement operation is needed to unpack those array

elements to their corresponding local array positions. For

example, given a �24; 3� ! �2; 2� redistribution, Fig. 7 shows

that there are s
t�Q � 6 data-movement operations that must

be performed to pack 12 array elements in a source section

of SLA0 to messages0 by source processor P0 in the send

phase. In the receive phase, only one data-movement

operation is needed to unpack these 12 elements from the

received message to their corresponding local array

positions.
For the second class t > s� P , array elements that have

the same source processors in the same destination section

will have consecutive local array indices in its correspond-

ing source local array. Therefore, only one data-movement

operation is needed to pack these array elements into a

message and t
s�P data-movement operations are needed to

HSU ET AL.: A GENERALIZED BASIC-CYCLE CALCULATION METHOD FOR EFFICIENT ARRAY REDISTRIBUTION 1211

TABLE 3
The Indexing Costs, the Packing/Unpacking Costs, the Communication Costs, and the Total Costs
for These Three Methods to Perform Test Samples on Arrays with N = 80,000 and N = 20,000,000

unpack those array elements to their corresponding local

array positions. For example, given a �2; 2� ! �24; 3�
redistribution, Fig. 8 shows that only one data-movement

operation is needed to pack 12 array elements into message0

by source processor P0 in the send phase. There are t
s�P � 6

data-movement operations that must be performed by

destination processor Q0 to unpack those 12 elements from

messages0 to their corresponding local array positions in the

receive phase.
The packing/unpacking costs of the three classes are

given as follows:

T�un�pack�GBCC� � O N=P

t
� N=Q

t�Q
� �

if s > t�Q; �14�

or O
N=P

s� P �
N=Q

s

� �
if t > s� P; �15�

or O
N=P �N=Q
min�s; t�

� �
otherwise: �16�

From the above analysis, we observe that the indexing cost

of the GBCC method is less than that of the PITFALLS and

the ScaLAPACK methods. The packing/unpacking cost of

the GBCC method is less than or equal to that of the

PITFALLS and the ScaLAPACK methods. We summarize

the indexing costs and the packing/unpacking costs of

these three methods in Table 1. According to Table 1, we

use the example given in Fig. 7 to show the advantages of

the GBCC method. For the �2; 2� ! �24; 3� redistribution in

Fig. 7, the indexing costs of the GBCC, the PITFALLS, and

the ScaLAPACK methods are equal to 30, 66, and 66,

respectively. The packing/unpacking costs of the GBCC,

the PITFALLS, and the ScaLAPACK methods are equal to

7N/24, 5N/12, and 5N/12, respectively, where N is the

array size. The GBCC method has smaller indexing and

packing/unpacking costs than those of the PITFALLS and

the ScaLAPACK methods.

4.2 Experimental Results

To verify the performance analysis presented in Section 4.1,

the GBCC method, the PITFALLS method, and the

ScaLAPACK method were implemented on an IBM SP2

parallel machine. All algorithms were written in C+MPI

codes with the single program multiple data (SPMD)

programming paradigm. Based on the values of s, t, P,

and Q in a �s; P � ! �t; Q� redistribution, we have the

following three cases:
Case 1. s � t�Q and t � s� P ,
Case 2. s > t�Q or t > s� P ,
Case 3. P � kP 0; Q � kQ0 where gcd�P 0; Q0� � 1 and

k � 1,

For each case, at least 10 different redistributions were used

as test samples. Each test sample was executed 10 times.

The mean time for the 10 tests was used as the time of a test

sample. We also give some experimental results for two-

dimensional array distributions.

1212 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 12, DECEMBER 2000

Fig. 9. The indexing costs of the �s; kP 0� ! �t; kQ0� redistribution where k � 1; 2; 3; 4; and 5.

Case 1. s � t�Q and t � s� P Table 2 shows the

indexing costs, the packing/unpacking costs, the commu-

nication costs, and the total costs for these three methods to

perform test samples in this case on arrays with N = 80,000

and N = 20,000,000. From Table 2, we can see that the

indexing costs of the GBCC method are less than that of the

ScaLAPACK and the PITFALLS methods for all test samples.

We also observed that the indexing costs are independent of

the array size in these three methods. These phenomena

match the indexing cost models presented in Section 4.1.

For the packing/unpacking part, the execution time of

the three methods has the order T�un�pack�GBCC� < T�un�pack
�ScaLAPACK� < T�un�pack�PITFALLS�. This result is bet-

ter than the analysis that given in Table 1. The reason is that

the GBCC method uses a simpler computation approach

than that of the ScaLAPACK and the PITFALLS methods

when packing/unpacking array elements.

For the communication part, these three methods use

asynchronous communication schemes. There is no clear

winner in the communication cost for all test samples due to

the characteristics of the asynchronous communication

schemes. However, these three methods have approxi-

mately the same communication costs for all test samples.

Case 2. s > t�Q or t > s� P . Table 3 shows the

experimental results for the redistributions in Case 2.

According to Table 1, the packing/unpacking costs of array

redistribution depend on the array size. Therefore, when

array size is large, the performance of packing/unpacking

technique plays an important role in a redistribution. From

Table 3, for test samples with array size N = 20,000,000,

the packing/unpacking costs of the three methods has

the order T�un�pack�GBCC� << T�un�pack�ScaLAPACK� <
T�un�pack �PITFALLS�. The packing/unpacking technique

of the GBCC method outperforms those provided in the

PITFALLS and the ScaLAPACK methods. The phenomenon

matches the theoretical analysis presented in Section 4.1.

For the communication costs, we have similar observations

as those described for Case 1.

Case 3. P � kP 0; Q � kQ0 where gcd�P 0; Q0� � 1 and k � 1

Fig. 9 shows the indexing costs of �5; 8k� ! �4; 5k� redis-

tributions with array size N = 20,000,000, where k � 1 to 5 .

From Fig. 9, we can see that the indexing costs of the

PITFALLS method and the ScaLAPACK method increase

when the value of k increases. The indexing costs of the

GBCC method are independent of the value of k. As

described in Section 4.1, both Tindex�PITFALLS� and

Tindex�ScaLAPACK� shown in (11) is approximately

t�Q2 � s� P 2

gcd s� P; t�Q� � ;

HSU ET AL.: A GENERALIZED BASIC-CYCLE CALCULATION METHOD FOR EFFICIENT ARRAY REDISTRIBUTION 1213

TABLE 4
The Indexing Costs, the Packing/Unpacking Costs, the Communication Costs,

and the Total Costs for These Three Methods to Perform Test Samples

while Tindex�GBCC� shown in (13) is approximately

t�Q� s� P
gcd s� P; t�Q� � :

I n t h i s c a s e , b o t h Tindex�PITFALLS� a n d Tindex
�ScaLAPACK� are approximately

k t�Q02 � s� P 02� �
gcd s� P 0; t�Q0� � ;

which depends on the value of k. Tindex�GBCC� is

approximately

t�Q0 � s� P 0
gcd s� P 0; t�Q0� � ;

which is independent of the value of k. Therefore, the

experimental results match the theoretical analysis for this

case.
Table 4 shows the indexing costs, the packing/unpack-

ing costs, the communication costs, and the total costs for

these three methods to perform test samples in Case 3. For

the packing/unpacking costs and the communication costs,

we have similar observations as those described in Case 1.

4.3 Experimental Results for Multidimensional
Array Redistributions

All three methods can be applied to multidimensional array

redistribution. Due to the page limitation, we only show

experimental results for two-dimensional array. Table 5

shows the indexing costs, the packing/unpacking costs, the

communication costs, and the total costs of these three

methods to perform two-dimensional array redistributions

on arrays with size 960� 960 and 4; 800� 4; 800. From

Table 5, we can see that the proposed method outperforms

the PITFALLS method and the ScaLAPACK method for all

test samples. For higher dimensional array redistributions,

we have similar observations as those described above.

5 CONCLUSIONS

In this paper, we have presented a generalized basic-cycle

calculation method to efficiently perform a general array

redistribution of BLOCK-CYCLIC(s) over P processors to

BLOCK-CYCLIC(t) over Q processors. The basic idea of the

GBCC method is to construct the packing (unpacking)

1214 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 12, DECEMBER 2000

TABLE 5
The Indexing Costs, the Packing/Unpacking Costs, the Communication Costs, and the Total Costs of

These Three Methods to Perform 2D Array Redistributions on Arrays with Size 960� 960 and 4; 800� 4; 800

pattern table for array elements in the first generalized

basic-cycle of a source (destination) local array. Based on

the packing (unpacking) pattern table, a source (destina-

tion) processor can pack (unpack) array elements efficiently.

To evaluate the performance of the GBCC method, we

compare it with the PITFALLS method and the ScaLAPACK

method. Both theoretical analysis and experimental results

were conducted for these three methods. The theoretical

analysis shows that the indexing cost of the GBCC method

is less than that of the PITFALLS and the ScaLAPACK

methods. The packing/unpacking cost of the GBCC method

is less than or equal to that of the PITFALLS and the

ScaLAPACK methods. The experimental results demon-

strate that the GBCC method outperforms the PITFALLS

method and the ScaLAPACK method for all test samples.

ACKNOWLEDGMENTS

The work of this paper was partially supported by

National Science Council of the Republic of China under

contract NSC87-2213-E035-011.

REFERENCES

[1] S. Chatterjee, J.R. Gilbert, F.J.E. Long, R. Schreiber, and S.-H. Teng,
ªGenerating Local Address and Communication Sets for Data
Parallel Programs,º J. Parallel and Distributed Computing, vol. 26,
pp. 72-84, 1995.

[2] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W.
Tseng, and M. Wu, ªFortran-D Language Specification,º Technical
Report TR-91-170, Dept. of Computer Science, Rice Univ., Dec.
1991.

[3] S.K.S. Gupta, S.D. Kaushik, C.-H. Huang, and P. Sadayappan, ªOn
the Generation of Efficient Data Communication for Distributed-
Memory Machines,º Proc. Int'l Computing Symp., pp. 504-513, 1992.

[4] Y.-C. Chung, C.-H. Hsu, and S.-W. Bai, ªA Basic-Cycle Calculation
Technique for Efficient Dynamic Data Redistribution,º IEEE Trans.
Parallel and Distributed Systems, vol. 9, no. 4, pp. 359-377, Apr. 1998.

[5] J.J. Dongarra, R. Van De Geijn, and D.W. Walker, ªA Look at
Scalable Dense Linear Algebra Libraries,º Technical Report
ORNL/TM-12126 from Oak Ridge Nat'l Laboratory, Apr. 1992.

[6] S.K.S. Gupta, S.D. Kaushik, C.-H. Huang, and P. Sadayappan, ªOn
Compiling Array Expressions for Efficient Execution on
Distributed-Memory Machines,º J. Parallel and Distributed Comput-
ing, vol. 32, pp. 155-172, 1996.

[7] High Performance Fortran Forum, ªHigh Performance Fortran
Language Specification (version 1.1),º Rice Univ., Nov. 1994.

[8] S. Hiranandani, K. Kennedy, J. Mellor-Crammey, and A. Sethi,
ºCompilation Method for BLOCK-CYCLIC Distribution,º Proc.
ACM Int'l Conf. Supercomputing, pp. 392-403, July 1994.

[9] E.T. Kalns and L.M. Ni, ªProcessor Mapping Method Toward
Efficient Data Redistribution,º IEEE Trans. Parallel and Distributed
Systems, vol. 6, no. 12, Dec. 1995.

[10] E.T. Kalns and L.M. Ni, ªDaReL: A Portable Data Redistribution
Library for Distributed-Memory Machines,º Proc. Scalable Parallel
Libraries Conference II, Oct. 1994.

[11] S.D. Kaushik, C.H. Huang, R.W. Johnson, and P. Sadayappan,
ªAn Approach to Communication Efficient Data Redistribution,º
Proc. Int'l Conf. Supercomputing, pp. 364-373, July 1994.

[12] S.D. Kaushik, C.H. Huang, J. Ramanujam, and P. Sadayappan,
ªMulti-Phase Array Redistribution: Modeling and Evaluation,º
Proc. Int'l Parallel Processing Symp., pp. 441-445, 1995.

[13] S.D. Kaushik, C.H. Huang, and P. Sadayappan, ªEfficient Index
Set Generation for Compiling HPF Array Statements on Dis-
tributed-Memory Machines,º J. Parallel and Distributed Computing,
vol. 38, pp. 237-247, 1996.

[14] K. Kennedy, N. Nedeljkovic, and A. Sethi, ªEfficient Address
Generation for BLOCK-CYCLIC Distribution,º Proc. Int'l Conf.
Supercomputing, pp. 180-184, July 1995.

[15] C. Koelbel, ªCompiler-Time Generation of Communication for
Scientific Programs,º Supercomputing '91, pp. 101-110, Nov. 1991.

[16] P-Z. Lee and W.Y. Chen, ªCompiler Methods for Determining
Data Distribution and Generating Communication Sets on
Distributed-Memory Multicomputers,º Proc. 29th Hawaii Int'l
Conf. System Sciences, pp. 537-546, Jan. 1996.

[17] Y.W. Lim, P.B. Bhat, and V.K. Prasanna, ªEfficient Algorithms for
BLOCK-CYCLIC Redistribution of Arrays,º Proc. Eighth Symp.
Parallel and Distributed Processing, pp. 74-83, 1996.

[18] Y.W. Lim, N. Park, and V.K. Prasanna, ªEfficient Algorithms for
Multi-Dimensional Block-Cyclic Redistribution of Arrays,º Proc.
26th Int'l Conf. Parallel Processing, pp. 234-241, 1997.

[19] L. Prylli and B. Tourancheau, ªFast Runtime Block Cyclic Data
Redistribution on Multiprocessors,º J. Parallel and Distributed
Computing, vol. 45, pp. 63-72, Aug. 1997.

[20] S. Ramaswamy and P. Banerjee, ªAutomatic Generation of
Efficient Array Redistribution Routines for Distributed Memory
Multicomputers,º Proc. Frontier '95: Fifth Symp. Frontiers of
Massively Parallel Computation, pp. 342-349, Feb. 1995.

[21] S. Ramaswamy, B. Simons, and P. Banerjee, ªOptimization for
Efficient Array Redistribution on Distributed Memory Multi-
computers,º J. Parallel and Distributed Computing, vol. 38,
pp. 217-228, 1996.

[22] J.M. Stichnoth, D. O'Hallaron, and T.R. Gross, ºGenerating
Communication for Array Statements: Design, Implementation,
and Evaluation,º J. Parallel and Distributed Computing, vol. 21,
pp. 150-159, 1994.

[23] R. Thakur, A. Choudhary, and G. Fox, ªRuntime Array Redis-
tribution in HPF Programs,º Proc. Scalable High Performance
Computing Conf., pp. 309-316, May 1994.

[24] R. Thakur, A. Choudhary, and J. Ramanujam, ªEfficient Algo-
rithms for Array Redistribution,º IEEE Trans. Parallel and
Distributed Systems, vol. 7, no. 6, pp. 587-594, June 1996.

[25] A. Thirumalai and J. Ramanujam, ªHPF Array Statements:
Communication Generation and Optimization,º Proc. Third Work-
shop Languages, Compilers and Run-time system for Scalable Compu-
ters, May 1995.

[26] A. Thirumalai and J. Ramanujam, ªEfficient Computation of
Address Sequences in Data Parallel Programs Using Closed Forms
for Basis Vectors,º J. Parallel and Distributed Computing, vol. 38,
pp. 188-203, 1996.

[27] V. Van Dongen, C. Bonello, and C. Freehill, ª High Performance
C±Language Specification Version 0.8.9,º Technical Report CRIM-
EPPP-94/04-12, 1994.

[28] C. Van Loan, ªComputational Frameworks for the Fast Fourier
Transform,º SIAM, 1992.

[29] D.W. Walker and S.W. Otto, ªRedistribution of BLOCK-CYCLIC
Data Distributions Using MPI,º Concurrency: Practice and Experi-
ence, vol. 8, no. 9, pp. 707-728, Nov. 1996.

[30] A. Wakatani and M. Wolfe, ªA New Approach to Array
Redistribution: Strip Mining Redistribution,º Proc. Parallel Archi-
tectures and Languages Europe, July 1994.

[31] A. Wakatani and M. Wolfe, ªOptimization of Array Redistribution
for Distributed Memory Multicomputers,º Parallel Computing,
vol. 21, no. 9, 1995.

HSU ET AL.: A GENERALIZED BASIC-CYCLE CALCULATION METHOD FOR EFFICIENT ARRAY REDISTRIBUTION 1215

Ching-Hsien Hsu received the BS degree in
computer science from Tung Hai University in
1995, and the PhD degree in Information
Engineering from Feng Chia University in
1999, respectively. He is currently a teaching
instructor in the Information & Multimedia Edu-
cation Center at Fu Hsing Kang College. His
research interests are in the areas of parallel
and distributed computing, parallel algorithms,
and high performance compilers for data parallel

programming languages.

Sheng-Wen Bai received the BS and the MS
degrees in Information Engineering from Feng
Chia University in 1996 and 1998, respectively.
He is currently a PhD student in the Department
of Computer and Information Engineering at
National Sun-Yet-San University. His research
interests are in the areas of parallel and
distributed computing, performance analysis,
and high performance compilers for data parallel
programming languages.

Yeh-Ching Chung received the BS degree in
computer science from Chung Yuan Christian
University in 1983 and the MS and PhD degrees
in computer and information science from
Syracuse University in 1988 and 1992, respec-
tively. Currently, he is a professor and the chair
with the Department of Information Engineering
at Feng Chia University, where he directs the
parallel and distributed processing laboratory.
His research interests include parallel compilers,

parallel programming tools, mapping, scheduling, load balancing,
embedded systems, and virtual reality. He is a member of the IEEE
Computer Society.

Chu-Sing Yang received the BS degree in
engineering science from National Cheng Kung
University in 1976, and the MS and PhD degrees
in electrical engineering and institute of micro-
electronics from National Cheng Kung University
in 1984 and 1987, respectively. Since 1993, he
has been a professor in the Department of
Computer Science and Engineering at National
Sun Yat-Sen University. His research interests
include parallel and distributed systems, mobile
computing systems, and Web servers.

1216 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 12, DECEMBER 2000

