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Abstract—To solve the load imbalance problem of a solution-adaptive finite element application program on a distributed memory
multicomputer, nodes of a refined finite element graph can be remapped to processors or load of a refined finite element graph can
be redistributed based on the current load of each processor. For the former case, remapping can be performed by some fast
mapping algorithms. For the latter case, a load-balancing algorithm can be applied to balance the computational load of each
processor. In this paper, three tree-based parallel load-balancing methods, the MCSTLB method, the BTLB method, and the CBTLB
method, were proposed to deal with the load imbalance problems of solution-adaptive finite element application programs. To
evaluate the performance of the proposed methods, we have implemented those methods along with three mapping methods, the
AE/ORB method, the AE/MC method, and the MLkP method, on an SP2 parallel machine. Three criteria, the execution time of
mapping/load-balancing methods, the execution time of a solution-adaptive finite element application program under different
mapping/load-balancing methods, and the speedups achieved by mapping/load-balancing methods for a solution-adaptive finite
element application program, are used for the performance evaluation. The experimental results show that 1) if the initial mapping is
performed by a mapping method and the same mapping method and load-balancing methods were used in each refinement to
balance the load of processors, the execution time of an application program under a load-balancing method is always shorter than
that of the mapping method, and 2) the execution time of an application program under the CBTLB method is shorter than that of the
BTLB method and the MCSTLB method.

Index Terms—Distributed memory multicomputers, partitioning, mapping, load balancing, solution-adaptive finite element graphs.

——————————���F���——————————

1 INTRODUCTION

HE finite element method is widely used for the struc-
tural modeling of physical systems. In the finite ele-

ment model, an object can be viewed as a finite element
graph, which is a connected and undirected graph that con-
sists of a number of finite elements. Each finite element is
composed of a number of nodes. The number of nodes of a
finite element is determined by an application. Due to the
properties of computation-intensiveness and computation-
locality, it is very attractive to implement the finite element
method on distributed memory multicomputers [1], [11],
[33], [36], [37]. In the context of parallelizing a finite ele-
ment application program that uses iterative techniques to
solve system of equations [2], a parallel program may be
viewed as a collection of tasks represented by nodes of a
finite element graph. Each node represents a particular
amount of computation and can be executed independently.
In each iteration, a node performs its computation and
needs to get data from other nodes in the same finite ele-
ment before the next iteration can be performed.

To efficiently execute a finite element application pro-
gram on a distributed memory multicomputer, we need to

map nodes of the corresponding finite element graph to
processors of a distributed memory multicomputer such
that each processor has approximately the same amount of
computational load and the communication among proces-
sors is minimized. Since this mapping problem is known to
be NP-complete [12], many heuristic methods were pro-
posed to find satisfactory suboptimal solutions [3], [4], [8],
[10], [13], [14], [17], [18], [22], [23], [24], [33], [36].

If the number of nodes of a finite element graph do
not increase during the execution of a finite element ap-
plication program, the mapping algorithm only needs to
be performed once. For a solution-adaptive finite ele-
ment application program, the number of nodes in-
creases discretely due to the refinement of some finite
elements during the execution. This may result in load
imbalance of processors. A node remapping or a load-
balancing algorithm has to be performed many times in
order to balance the computational load of processors
while keeping the communication cost among processors
as low as possible. For the node remapping approach,
some mapping algorithms can be used to partition a fi-
nite element graph from scratch. For the load balancing
approach, some load-balancing algorithms can be used
to perform the load balancing process according to the
current load of processors. Since node remapping or
load-balancing algorithms are performed at run-time,
their execution must be fast and efficient.
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In this paper, we propose three tree-based parallel load-
balancing methods to efficiently deal with the load imbal-
ance problems of solution-adaptive finite element applica-
tion programs on distributed memory multicomputers.
They are the maximum cost spanning tree load-balancing
(MCSTLB) method, the binary tree load-balancing (BTLB)
method, and the condensed binary tree load-balancing (CBTLB)
method. When nodes of a solution-adaptive finite element
graph were evenly distributed to processors by some map-
ping algorithms, according to the communication property
of the finite element graph, we can get a processor graph
from the partition. For example, Fig. 1a shows a partition of
a 21-node finite element graph on seven processors. The cor-
responding processor graph of Fig. 1a is shown in Fig. 1b. In
a processor graph, nodes represent the processors and
edges represent the communication needed among proces-
sors. The weights associated with nodes and edges denote
the computation and the communication costs, respectively.

When a finite element graph is refined during run-time,
it will result in load imbalance of processors. To balance the
computational load of processors, the MCSTLB method first
finds the maximum cost spanning tree from the processor
graph. Based on the maximum cost spanning tree, the
global load balancing information is calculated by the tree
walking algorithm (TWA) [38]. According to the global load
balancing information and the current load distribution, a
load transfer algorithm is performed to balance the com-
putational load of processors and minimize the communi-
cation cost among processors. For the BTLB method, a bi-
nary tree is obtained from the processor graph. The global
load balancing information calculation and the load trans-
fer method are the same as those of the MCSTLB method.
In the CBTLB method, nodes of the processor graph are
first grouped into metaprocessors. Each metaprocessor is a
hypercube. We call the grouped processor graph as a con-
densed processor graph. Then the CBTLB method finds a bi-
nary tree from the condensed processor graph. Based on the
binary tree, the global load balancing information is calcu-
lated by a similar TWA method. According to the global
load balancing information and the current load distribu-
tion, a load transfer algorithm is performed to balance the
computational load of metaprocessors and minimize the
communication cost among metaprocessors. After the load

transfer algorithm is performed, a dimension exchange
method (DEM) [7], [39] is performed to balance the compu-
tational load of processors in a metaprocessor.

To evaluate the performance of the proposed methods,
we have implemented these methods along with three
mapping methods, the AE/ORB method [6], the AE/MC
method [6], and the MLkP method [22], on an SP2 parallel
machine. The finite element graph Truss is used as the test
sample. The experimental results show that 1) if the initial
mapping is performed by a mapping method and the same
mapping method and load-balancing methods were used in
each refinement to balance the computational load of proc-
essors, the execution time of an application program under
a load-balancing method is always shorter than that of the
mapping method, and 2) the execution time of an applica-
tion program under the CBTLB method is shorter than that
of the BTLB method and the MCSTLB method.

The paper is organized as follows: The relative work will
be given in Section 2. In Section 3, the proposed tree-based
parallel load-balancing methods will be described in de-
tails. In Section 4, we will present the cost model of map-
ping/load-balancing methods for finite element graphs on
distributed memory multicomputers. The performance
evaluation and experimental results will also be presented
in this section.

2 RELATED WORK

Many methods have been proposed to deal with the load
imbalance problems of solution-adaptive finite element
application programs on distributed memory multicom-
puters in the literature. They can be classified into two
categories, the remapping methods and the load redistri-
bution methods. The remapping methods, in general, can
be divided into five classes, the orthogonal section approach
[6], [21], [31], [34], the min-cut approach [6], [8], [10], [13],
[24], the spectral approach [3], [4], [17], [33], the multilevel
approach [3], [4], [18], [22], [23], and miscellaneous ap-
proaches [14], [26], [28], [36]. These methods were imple-
mented in several graph partition libraries, such as Chaco
[16], DIME [37], JOSTLE [34], METIS [23], ParMetis [31],
PARTY [29], Scotch [27], and TOP/DOMDEC [9], etc., to solve
graph partition problems.

Fig. 1. (a) A partition of a finite element graph on seven processors. (b) The corresponding processor graph of Fig. 1a.
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For the load redistribution methods, many load-
balancing algorithms have been proposed in the literature.
In [35], a recent comparison study of dynamic load bal-
ancing strategies on highly parallel computers is given.
The dimension exchange method (DEM) is applied to ap-
plication programs without geometric structure [7]. It is
conceptually designed for a hypercube system but may be
applied to other topologies, such as k-ary n-cubes [39]. Ou
and Ranka [26] proposed a linear programming-based
method to solve the incremental graph partition problem.
Wu [38] proposed the tree walking, the cube walking, and
the mesh walking run-time scheduling algorithms to bal-
ance the load of processors on tree-based, cube-based, and
mesh-based paradigms, respectively. Diffusion based
load-balancing methods were proposed in [7], [19], [20],
[31], [32], [34].

3 THE PARALLEL LOAD BALANCING METHODS

3.1 The Maximum Cost Spanning Tree Load-
Balancing (MCSTLB) Method

The main idea of the MCSTLB method is to find a maxi-
mum cost spanning tree from the processor graph that is
obtained from the initial partitioned finite element graph.
Based on the maximum cost spanning tree, it tries to bal-
ance the load of processors. The MCSTLB method can be
divided into the following four phases:

Phase 1: Obtain a processor graph G from the initial partition.

Phase 2: Use a similar Kruskal’s [25] algorithm to find a
maximum cost spanning tree T = (V, E) from G, where
V and E denote the processors and edges of T, respec-
tively. There are many ways to determine the shape of
T. In this method, the shape of T is constructed as
follows:

1)�The processor with the largest degree in V is se-
lected as the root of T.

2)�For each nonterminal processor v in T, if {u1, …, um}
are the m children of v and |u1| � |u2| � … �
|um|, then u1 will be the leftmost child of v, u2 will
be the second leftmost child of v, and so on, where
|ui| is the degree of ui and i = 1, …, m.

If the depth of T is greater than logM, where M is
the number of processors, we will try to adjust the
depth of T. The adjusted method is first to find the
longest path (from a terminal processor to another
terminal processor) of T. After the longest path is
determined, the middle processor of the path is se-
lected as the root of the tree and reconstruct the tree
according to the above construction process. If the
depth of the reconstructed tree is less than that of
T, the reconstructed tree is the desired tree. Other-
wise, T is the desired tree. The purpose of the ad-
justment is trying to reduce the load balancing
steps among processors.

Phase 3: Calculate the global load balancing information
and schedule the load transfer sequence of proces-
sors by using the TWA [38]. Assume that there are M
processors in a tree and N nodes in a refined finite

element graph. We define N/M as the average weight
of a processor. In the TWA method, the quota and the
load of each processor in a tree are calculated, where
the quota is the sum of the average weights of a
processor and its children processors and the load is
the sum of the weights of a processor and its chil-
dren processors. The difference of the quota and the
load of a processor is the number of nodes that a
processor should send to or receive from its parent.
If the difference is negative, a processor should send
nodes to its parent. Otherwise, a processor should
receive nodes from its parent. According to the
global load balancing information, a schedule can be
determined.

Phase 4: Perform load transfer (send/receive) based on the
global load balancing information, the schedule, and
T. The main purposes of load transfer are balancing
the computational load of processors and minimizing
the communication cost among processors. Assume
that processor Pi needs to send m nodes to processor
Pj and let N denote the set of nodes in Pi that are adja-
cent to those of Pj. In order to keep the communica-
tion cost as low as possible, in the load transfer, nodes
in N are transferred first. If |N| is less than m, then
nodes adjacent to those in N are transferred. This pro-
cess is continued until the number of nodes trans-
ferred to Pj is equal to m. We now give an example to
explain the above description.

EXAMPLE 1. An example of the behavior of the MCSTLB
method is shown in Fig. 2. Fig. 2a shows an initial par-
tition of a 61-node finite element graph on seven proc-
essors by using the AE/ORB method. In Fig. 2a, the
number of nodes assigned to processors P0, P1, P2, P3,
P4, P5, and P6 are 8, 9, 9, 8, 9, 9, and 9, respectively. After
a refinement, the number of nodes assigned to proces-
sors P0, P1, P2, P3, P4, P5, and P6 are 26, 10, 16, 13, 12, 13,
and 10, respectively, as shown in Fig. 2b. To apply the
MCSTLB method to balance the load of processors
shown in Fig. 2b, the corresponding processor graph
is obtained from Fig. 2b and is shown in Fig. 2c. From
Fig. 2c, a maximum cost spanning tree can be ob-
tained and is shown in Fig. 2d. The global load bal-
ancing information calculated by the TWA is shown
in Fig. 2e. From the global load balancing information
of Fig. 2e, we can determine the following load trans-
fer sequence.

Step 1: P0 �P2, P3 �P4, P5 �P6;

Step 2: P2 �P1;

Step 3: P2 �P3;

Step 4: P2 �P5.

Fig. 2f shows the load balancing result of Fig. 2b after
the load transfer is performed.

3.2 The Binary Tree Load Balancing (BTLB) Method
The BTLB method is similar to the MCSTLB method. The
only difference between these two methods is that the
MCSTLB method is based on a maximum cost spanning
tree to balance the computational load of processors while
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the BTLB method is based on a binary tree. The BTLB
method can be divided into the following four phases:

Phase 1: Obtain a processor graph G from the initial partition.

Phase 2: Use a similar Kruskal’s algorithm to find a binary
tree T = (V, E) from G, where V and E denote the
processors and edges of T, respectively. The method
to determine the shape of a binary tree is the same as
that of the MCSTLB method.

Phase 3: Calculate the global load balancing information
and schedule the load transfer sequence of processors
by using the TWA.

Phase 4: Perform load transfer (send/receive) based on the
global load balancing information, the schedule, and
T. The load transfer method is the same as that of the
MCSTLB method. We now give an example to explain
the behavior of the BTLB method.

EXAMPLE 2. An example of the behavior of the BTLB
method is shown in Fig. 3. To apply the BTLB
method to balance the load of processors shown in
Fig. 2b, the corresponding processor graph is ob-
tained from Fig. 2b and is shown in Fig. 3a. From
Fig. 3a, a binary tree can be constructed and is
shown in Fig. 3b. The global load balancing infor-
mation calculated by the TWA is shown in Fig. 3c.
From the global load balancing information of
Fig. 3c, we can determine the following load transfer
sequence.

Step 1: P0 � P2, P5 � P4;

Step 2: P2 � P1, P5 � P6;

Step 3: P2 � P3;

Step 4: P3 � P5.

Fig. 2. An example of the behavior of the MCSTLB method. (a) The initial partitioned finite element graph. (b) The finite element graph after a
refinement. (c) The corresponding processor graph obtained from (b). (d) The maximum cost spanning tree obtained from (c). (e) The global load
balancing information calculated by TWA. (f) The load balancing result of (b) after performing the MCSTLB method.
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Fig. 3d shows the load balancing result of Fig. 2b after
the load transfer is performed.

3.3 The Condensed Binary Tree Load Balancing
(CBTLB) Method

The main idea of the CBTLB method is to group processors of
the processor graph into metaprocessors. Each metaprocessor
is a hypercube. We call the grouped processor graph as a
condensed processor graph. From the condensed processor
graph, the CBTLB method constructs a binary tree. Based
on the binary tree, the global load balancing information is
calculated by a similar TWA method. According to the
global load balancing information and the current load
distribution, a load transfer algorithm is performed to bal-
ance the computational load of metaprocessors and mini-
mize the communication cost among metaprocessors. After
the load transfer in performed, a dimension exchange
method (DEM) is performed to balance the computational
load of processors in a metaprocessor. The CBTLB method
can be divided into the following five phases:

Phase 1: Obtain a processor graph G from the initial partition.

Phase 2: Group processors of G into metaprocessors to
obtain a condensed processor graph Gc incremen-
tally. Each metaprocessor of Gc is a hypercube. The
metaprocessors in Gc are constructed as follows:
First, a processor Pi with the smallest degree in G
and a processor Pj that is a neighbor processor of Pi
and has the smallest degree among those neighbor
processors of Pi are grouped into a metaprocessor.
Then, the same construction is applied to other un-
grouped processors until there are no processors can
be grouped into a hypercube. Repeat the grouping
process to each metaprocessor until there are no
metaprocessors can be grouped into a higher order
hypercube.

Phase 3: Find a binary tree T = (V, E) from Gc, where V and
E denote the metaprocessors and edges of T, respec-
tively. The method of constructing a binary tree is the
same as that of the BTLB method.

Phase 4: Based on T, calculate the global load balancing
information and schedule the load transfer sequence
by using a similar TWA method for metaprocessors.
Assume that there are M processors in a tree and N
nodes in a refined finite element graph. We define
N/M as the average weight of a processor. To obtain
the global load balancing information, the quota and
the load of each processor in a tree are calculated. The
quota is defined as the sum of the average weights of
processors in a metaprocessor Ci and processors in
children processors of Ci. The load is defined as the
sum of the weights of processors in a metaprocessor
Ci and processors in children metaprocessors of Ci.
The difference of the quota and the load of a
metaprocessor is the number of nodes that a
metaprocessor should send to or receive from its par-
ent metaprocessor. If the difference is negative, a
metaprocessor should send nodes to its parent
metaprocessor. Otherwise, a metaprocessor should re-
ceive nodes from its parent metaprocessor. After cal-
culating the global load balancing information, the
schedule is determined as follows. Assume that m is
the number of nodes that a metaprocessor Ci needs to
send to another metaprocessor Cj. We have the fol-
lowing two cases:

Case 1: If the weight of Ci is less than m, the schedule
of these two metaprocessors is postponed until
the weight of Ci is greater than or equal to m.

Case 2: If the weight of Ci is greater than or equal to
m, a schedule can be made between processors
of Ci and Cj. Assume that ADJ denotes the set of

Fig. 3. An example of the behavior of the BTLB method. (a) The corresponding processor graph obtained from Fig. 2b (b) A binary tree con-
structed from the processor graph. (c) The global load balancing information calculated by TWA. (d) The load balancing result of Fig. 2b after
performing the BTLB method.
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processors in Ci that are adjacent to those in Cj. If
the sum of the weights of processors in ADJ is less
than m, a schedule is made to transfer nodes of
processors in Ci to processors in ADJ such that
the weights of processors in ADJ is greater than
or equal to m. If the sum of the weights of proc-
essors in ADJ is greater than or equal to m, a
schedule is made to send m nodes from proces-
sors in ADJ to those in Cj.

Phase 5: Perform load transfer (send/receive) among
metaprocessors based on the global load balancing in-
formation, the schedule, and T. The load transfer
method is similar to that of the BTLB method. After
performing load transfer process among metaproces-
sors, a dimension exchange method (DEM) is per-
formed to balance the computational load of proces-
sors in metaprocessors. We now give an example to
explain the above description.

EXAMPLE 3. An example of the behavior of the CBTLB
method is shown in Fig. 4. Fig. 4a shows the process
of constructing a condensed processor graph from
Fig. 2b. In Fig. 4b, a binary tree is constructed from
the condensed processor graph. The global load bal-
ancing information of the condensed binary tree is

shown in Fig. 4c. From the global load balancing
information of Fig. 4c, we can determine the follow-
ing load transfer sequence.

Step 1: P2 � P5;

Step 2: P5 � P6.

Fig. 4d shows the load transfer process in each
metaprocessor using the DEM method. The load
transfer sequence is give as follows:

Step 1: P0 � P1, P3 � P2, P6 � P4;

Step 2: P0 � P3, P1 � P2.

Fig. 4e shows the load balancing result of Fig. 2b after
performing the CBTLB method.

4 PERFORMANCE EVALUATION AND EXPERIMENTAL
RESULTS

To evaluate the performance of the proposed methods, we
have implemented the MCSTLB method, the BTLB
method, and the CBTLB method along with three map-
ping methods, the AE/ORB method [6], the AE/MC
method [6], and the MLkP method [22], on an SP2 parallel
machine. All of the algorithms were written in C with MPI

Fig. 4. An example of the behavior of the CBTLB method. (a) The process of constructing a condensed processor graph from Fig. 2b. (b) A binary
tree constructed from the condensed processor graph. (c) The global load balancing information of the condensed binary tree. (d) The load
transfer process in each metaprocessor by using the DEM method. (e) The load balancing result of Fig. 2b after performing the CBTLB method.
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communication primitives. Three criteria, the execution
time of mapping/load-balancing methods, the computa-
tion time of an application program under different map-
ping/load-balancing methods, and the speedups achieved
by the mapping/load-balancing methods for an applica-
tion program, are used for the performance evaluation.

In dealing with the unstructured finite element graphs,
the distributed irregular mesh environment (DIME) [37] is
used. DIME is a programming environment for doing dis-
tributed calculations with unstructured triangular meshes.
The mesh covers a two-dimensional manifold, whose
boundaries may be defined by straight lines, arcs of circles,
or Bezier cubic sections. It also provides functions for cre-
ating, manipulating, and refining unstructured triangular
meshes. Since the number of nodes in an unstructured tri-
angular mesh cannot exceed 10,000 in DIME, in this paper,
we only use DIME to generate the initial test sample. From
the initial test graph, we use our refining algorithms and
data structures to generate the desired test graphs. The ini-
tial test graph used for the performance evaluation is
shown in Fig. 5. The number of nodes and elements for the
test graph after each refinement are shown in Table 1. For
presentation purpose, the number of nodes and the number
of finite elements shown in Fig. 5 are less than those shown
in Table 1.

To emulate the execution of a solution-adaptive finite
element application program on an SP2 parallel machine,
we have the following steps: First, read the initial finite
element graph. Then, the initial partitioning method, the
AE/ORB method, the AE/MC method, or the MLkP
method, is applied to map nodes of the initial finite ele-
ment graph to processors. After the mapping, the com-
putation of each processor is carried out. In our example,
the computation is to solve Laplaces’s equation (Laplace
solver). The algorithm of solving Laplaces’s equation is
similar to that of [1]. Since it is difficult to predict the
number of iterations for the convergence of a Laplace
solver, we assume that the maximum number of itera-
tions executed by the Laplace solver is 1,000. When the
computation is converged, the first refined finite element

graph is read. To balance the computational load of
processors, the AE/ORB method, the AE/MC method,
the MLkP method, the MCSTLB method, the BTLB
method, or the CBTLB method is applied. After a map-
ping/load-balancing method is performed, the compu-
tation for each processor is carried out. The procedures
of the mesh refinement, the load balancing, and the
computation processes are performed in turn until the
execution of a solution-adaptive finite element applica-
tion program is completed.

By combining the initial mapping methods and methods
for load balancing, there are 20 methods used for the per-
formance evaluation. We defined

Mf = {AE/ORB, AE/MC, MLkP, AE/ORB/MCSTLB,
           AE/MC/MCSTLB, MLkP/MCSTLB,
           AE/ORB/BTLB, AE/MC/BTLB, MLkP/BTLB,
           AE/ORB/CBTLB, AE/MC/CBTLB,
           MLkP/CBTLB}.

In Mf, AE/ORB means that the AE/ORB method is used to
perform the initial mapping and the AE/ORB method is
used to balance the computational load of processors in
each refinement. AE/ORB/MCSTLB means that the
AE/ORB method is used to perform the initial mapping
and the MCSTLB method is used to balance the computa-
tional load of processors in each refinement.

4.1 The Cost Model for Mapping Solution-Adaptive
FEGs on Distributed Memory Multicomputers

To map an N-node finite element graph on a P-processor
distributed memory multicomputer, we need to assign
nodes of the graph to processors of the multicomputer.
There are PN mappings. The execution time of a finite ele-
ment graph on a distributed memory multicomputer under
a particular mapping/load-balancing method Li can be de-
fined as follows:

Tpar(Li) = max{Tcomp(Li, Pj) + Tcomm(Li, Pj)},            (1)

where Tpar(Li) is the execution time of a finite element applica-
tion program on a distributed memory multicomputer under
Li, Tcomp(Li, Pj) is the computation cost of processor Pj under Li,
and Tcomm(Li, Pj) is the communication cost of processor Pj un-
der Li, where i = 1, ..., PN and j = 0, ..., P-1.

The cost model used in (1) is assuming a synchronous
communication mode in which each processor goes
through a computation phase followed by a communication
phase. Therefore, the computation cost of processor Pj un-
der a mapping/load-balancing method Li can be defined as
follows:

Tcomp(Li, Pj) = S � loadi(Pj) � Ttask,                     (2)

where S is the number of iterations performed by a finite
element method, loadi(Pj) is the number of nodes of a finite
element graph assigned to processor Pj, and Ttask is the time
for a processor to execute a task.

In our communication model, we assume that every
processor can communicate with all other processors in
one step. In general, it is possible to overlap the commu-
nication with the computation. In this case, Tcomm(Li, Pj)
may not always reflect the true communication cost since

TABLE 1
THE NUMBER OF NODES AND ELEMENTS OF THE

TEST SAMPLE TRUSS

Fig. 5. The test sample Truss (7,325 nodes, 14,024 elements).



LIAO AND CHUNG:  TREE-BASED PARALLEL LOAD-BALANCING METHODS FOR SOLUTION-ADAPTIVE FINITE ELEMENT GRAPHS 367

it could be partially overlapped with that of the computa-
tion. However, Tcomm(Li, Pj) can provide a good estimate for
the communication cost. Since we use a synchronous com-
munication mode, Tcomm(Li, Pj) can be defined as follows:

Tcomm(Li, Pj) = S � (d � Tsetup + f � Tc),              (3)

where S is the number of iterations performed by a finite
element method, d is the number of processors that proces-
sor Pj has to send data to in each iteration, Tsetup is the setup
time of the I/O channel, f is the total number of bytes that
processor Pj has to send out in each iteration, and Tc is the
data transmission time of the I/O channel per byte.

Let Tseq denote the execution time of a finite element
graph on a distributed memory multicomputer with one
processor. The speedup resulted from a mapping/load-
balancing method Li for an application program is de-
fined as

Speedup L
T

T Li
seq

par i
( ) = ( ) ,                             (4)

Let Ti(L) denote the time for the Laplace solver to exe-
cute one iteration for the ith refinement of the test finite
element graph under a mapping/load-balancing method,
where i = 0, 1, …, 5 and L ³ Mf. For the presentation pur-
pose, we assume that the initial finite element graph as the
0th refined finite element graph. Ti(L) is defined as follows:

T L T L P T L Pi comp j comm j( ) ( , ) ( , )= + ,                 (5)

The total execution time of test finite element graphs on
a distributed memory multicomputer is defined as follows:

T L T L T L Stotal exec i i
i

( ) ( ) ( )= + �
=
Ê

0

5

,                 (6)

where Ttotal(L) is the total execution time of the test samples
under a mapping/load-balancing method L on a distrib-
uted memory multicomputer, L ³ Mf, Texec(L) is the total
execution time of a mapping/load-balancing method L for
test samples, and Si is the number of iterations executed by the
Laplace solver for the ith refinement. From (6), we can derive
the speedup achieved by a mapping/load-balancing
method as follows:

Speedup L

Seq S

T L T L S

i i
i

exec i i
i

( )
( ) ( )

=

�

+ �

=

=

Ê

Ê
0

5

0

5 ,                 (7)

where Speedup(L) is the speedup achieved by a map-
ping/load-balancing L for test samples, L ³ Mf, and Seqi is
the time for the Laplace solver to execute one iteration for
the ith refinement of test graphs in sequential.

The maximum speedup achieved by a mapping/load-
balancing L can be derived by setting the value of Si to �. In
this case, Texec(L) is negligible. We have the following equation:

Speedup L

Seq

T L

i
i

i
i

max( )
( )

= =

=

Ê

Ê
0

5

0

5 .                              (8)

where Speedupmax(L) is the maximum speedup achieved by
mapping/load-balancing L and L ³ Mf.

4.2 Comparisons of the Execution Time of
Mapping/Load-Balancing Methods

The execution time of different mapping/load-balancing
methods for the test sample Truss on SP2 with 10, 30, 50,
and 70 processors are shown in Table 2. From Table 2, we
can observe that the execution time of the proposed load-
balancing methods is less than that of the mapping meth-
ods. The main reason is that the load-balancing methods
use the current load distribution of processors to do the
local load transfer task, while the mapping methods need to
repartition the finite element graph and redistribute nodes
to processors. The overheads of the load-balancing methods
are less than those of the mapping methods. For the pro-
posed methods, the execution time of the CBTLB method is
less than that of the MCSTLB method and the BTLB
method. This is because the CBTLB method can reduce the
size of a tree with a large ratio so that the overheads to do
the load transfer among metaprocessors are less than those
of the MCSTLB method and the BTLB method. Therefore, it
can reduce the load transfer time efficiently. The disadvan-
tage of the MCSTLB method is when all of the processors
except the root want to send nodes to their parents, the
bottleneck will be occurred in the root. The BTLB method
can avoid this situation since the degree of the root in a bi-
nary tree is two.

4.3 Comparisons of the Execution Time of the Test
Sample under Different Mapping/Load-Balancing
Methods

The times of a Laplace solver to execute one iteration (com-
putation + communication) for the test sample under dif-
ferent mapping/load-balancing methods on a SP2 parallel
machine with 10, 30, 50, and 70 processors are shown in
Fig. 6, Fig. 7, Fig. 8, and Fig. 9, respectively. Since we as-
sume a synchronous mode of communication in our model,
the total time for a Laplace solver to complete its job is the
sum of the computation time and the communication time.
From Fig. 6 to Fig. 9, we can see that the execution time of a
Laplace solver under the proposed load-balancing methods

TABLE 2
THE EXECUTION TIME OF MAPPING/LOAD-BALANCING

METHODS FOR THE TEST SAMPLE ON DIFFERENT
NUMBERS OF PROCESSORS
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(for example AE/ORB/BTLB) is less than that of their coun-
terparts (AE/ORB). For the proposed methods, the execu-
tion time of a Laplace solver under the CBTLB method is
less than that of the MCSTLB and the BTLB methods for all
cases (Assume that the same initial mapping method is
used).

4.4 Comparisons of the Speedups under the
Mapping/Load-Balancing Methods for the Test
Sample

The speedups and the maximum speedups achieved by
the mapping/load-balancing methods with 10, 30, 50,
and 70 processors for the test sample are shown in Table 3
and Table 4, respectively. In Table 3, the MLkP/CBTLB
method, in general, has the best performance among the
mapping/load-balancing methods for the test sample.
The speedups produced by the AE/MC method and its
counterparts (AE/MC/MCSTLB, AE/MC/BTLB, and
AE/MC/CBTLB) are much smaller than other map-
ping/load-balancing methods. The main reason is that

the execution of the AE/MC method is time consuming.
However, if the number of iterations executed by a
Laplace solver is set to �, the AE/MC method (its coun-
terparts), in general, produces better speedups than
those of AE/ORB (its counterparts) and the MLkP (its
counterparts) methods for the test sample. We can see
this situation from Table 4. Therefore, a fast and efficient
mapping/load-balancing method is of great important to
deal with the load imbalance problems of solution-
adaptive finite element application programs on distrib-
uted memory multicomputers.

5 CONCLUSIONS

In this paper, we have proposed three tree-based parallel
load-balancing methods, the MCSTLB method, the BTLB
method, and the CBTLB method, to deal with the load

Fig. 6. The time for a Laplace solver to execute one iteration (compu-
tation + communication) for the test sample under different map-
ping/load-balancing methods on 10 processors.

Fig. 7. The time for a Laplace solver to execute one iteration (compu-
tation + communication) for the test sample under different map-
ping/load-balancing methods on 30 processors.

Fig. 8. The time for a Laplace solver to execute one iteration (compu-
tation + communication) for the test sample under different map-
ping/load-balancing methods on 50 processors.

Fig. 9. The time for a Laplace solver to execute one iteration (compu-
tation + communication) for the test sample under different map-
ping/load-balancing methods on 70 processors.
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imbalance problems of solution-adaptive finite element
application programs on distributed memory multicom-
puters. To evaluate the performance of the proposed
methods, we have implemented those methods along
with three mapping methods, the AE/ORB method, the
AE/MC method, and the MLkP method, on an SP2 par-
allel machine. The finite element graph Truss is used as
test sample. Three criteria, the execution time of map-
ping/load-balancing methods, the execution time of a
solution-adaptive finite element application program
under different mapping/load-balancing methods, and
the speedups achieved by mapping/load-balancing
methods for a solution-adaptive finite element applica-
tion program, are used for the performance evaluation.
The experimental results show that 1) if the initial map-
ping is performed by a mapping method and the same
mapping method and load-balancing methods were used
in each refinement to balance the computational load of
processors, the execution time of an application program
under a load-balancing method is better than that of the
mapping method, and 2) The execution time of an appli-
cation program under the CBTLB method is better than
that of the BTLB method and the MCSTLB method.
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