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Abstract. Array redistribution is usually required to enhance algorithm performance in many parallel pro-
grams on distributed memory multicomputers. Since it is performed at run-time, there is a performance tradeoff
between the efficiency of new data decomposition for a subsequent phase of an algorithm and the cost of
redistributing data among processors. In this paper, we present efficient algorithms for BLOCK-CYCLIC(kr) to
BLOCK-CYCLIC(r) and BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr) redistribution. The most significant
improvement of our methods is that a processor does not need to construct the send/receive data sets for a
redistribution. Based on the packing/unpacking information that derived from the BLOCK-CYCLIC(kr) to
BLOCK-CYCLIC(r) redistribution and vice versa, a processor can pack/unpack array elements into (from)
messages directly. To evaluate the performance of our methods, we have implemented our methods along with
the Thakur’s methods and the PITFALLS method on an IBM SP2 parallel machine. The experimental results
show that our algorithms outperform the Thakur’s methods and the PITFALLS method for all test samples. This
result encourages us to use the proposed algorithms for array redistribution.
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1. Introduction

The data parallel programming model has become a widely accepted paradigm for pro-
gramming distributed memory multicomputers. To efficiently execute a data parallel pro-
gram on a distributed memory multicomputer, an appropriate data decomposition is criti-
cal. The data decomposition involves data distribution and data alignment. The data
distribution deals with how data arrays should be distributed. The data alignment deals
with how data arrays should be aligned with respect to one another. The purpose of data
decomposition is to balance the computational load and minimize the communication
overheads.

Many data parallel programming languages such as High Performance Fortran (HPF)
[9], Fortran D [6], Vienna Fortran [32], and High Performance C (HPC) [27] provide
compiler directives for programmers to specify array distribution. The array distribution
provided by those languages, in general, can be classified into two categories, regular and
irregular. The regular array distribution, in general, has three types, BLOCK, CYCLIC,
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and BLOCK-CYCLIC(c). The BLOCK-CYCLIC(c) is the most general regular array
distribution among them. Dongarra et al [5] have shown that these distribution are es-
sential for many dense matrix algorithms design in distributed memory machines. Ex-
amples of distributing a one-dimensional array with 18 elements to three processors using
BLOCK, CYCLIC, and BLOCK-CYCLIC(c) distribution are shown in Figure 1. The
irregular array distribution uses user-defined array distribution functions to specify array
distribution.

In some algorithms, such as multi-dimensional fast Fourier transform [28], the Alter-
native Direction Implicit (ADI) method for solving two-dimensional diffusion equations,
and linear algebra solvers [20], an array distribution that is well-suited for one phase may
not be good for a subsequent phase in terms of performance. Array redistribution is
required for those algorithms during run-time. Therefore, many data parallel programming
languages support run-time primitives for changing a program’s array decomposition [1,
2, 9, 27, 32]. Since array redistribution is performed at run-time, there is a performance
trade-off between the efficiency of a new data decomposition for a subsequent phase of an
algorithm and the cost of redistributing array among processors. Thus efficient methods
for performing array redistribution are of great importance for the development of dis-
tributed memory compilers for those languages.

Array redistribution, in general, can be performed in two phases, the send phase and the
receive phase. In the send phase, a processor Pi has to determine all the data sets that it
needs to send to other processors (destination processors), pack those data sets into
messages, and send messages to their destination processors. In the receive phase, a
processor Pi has to determine all the data sets that it needs to receive from other proces-
sors (source processors), receive messages from source processors, and unpack elements
in messages to their corresponding local array positions. This means that each processor
Pi should compute the following four sets.

• Destination Processor Set (DPS[Pi]): the set of processors to which Pi has to send data.
• Send Data Sets ~Pj[DPS@Pi#

ø SDS@Pi, Pj#!: the sets of array elements that processor Pi has to
send to its destination processors, where SDS[Pi, Pj] denotes the set of array elements
that processor Pi has to send to its destination processor Pj.

• Source Processor Set (SPS[Pj]): the set of processors from which Pj has to receive data.

Figure 1. Examples of regular data distribution.
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• Receive Data Sets ~Pi[SPS@Pi#
ø RDS@Pj, Pi#!: the sets of array elements that Pj has to receive

from its source processors, where RDS[Pj, Pi] denotes the set of array elements that
processor Pj has to receive from its source processor Pi.

In the send phase, a processor uses the SDS to pack data for each destination processor.
In the receive phase, a processor uses the RDS to unpack messages. By determining the
send/receive data sets (SDS/RDS) and packing the send data sets into messages, a pro-
cessor will perform only one send operation and one receive operation for each processor
in its destination processor set (DPS) and its source processor set (SPS), respectively. This
implies that the minimum number of send and receive operations required by a processor
in a redistribution is equal to the number of processors in its destination processor set and
the number of processors in its source processor set, respectively. Using this observation,
we know that, to minimize the communication overheads in a redistribution is difficult.
On the contrary, to minimize the computation overheads (compute the source/destination
processors sets, send/receive data sets, packing, unpacking, etc.) is possible. If a processor
can reduce some computation overheads in a redistribution, then the overall performance
can be improved.

In this paper, we present efficient methods to perform BLOCK-CYCLIC(kr) to
BLOCK-CYCLIC(r) and BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr) redistribution.
The most significant improvement of our methods is that a processor does not need to
construct the send/receive data sets for a redistribution. Based on the packing/unpacking
information that derived from the BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r) redistri-
bution and vice versa, a processor can pack/unpack array elements into (from) messages
directly. To evaluate the proposed methods, we have implemented our methods along with
the Thakur’s methods [24, 25] and the PITFALLS method [21, 22] on an IBM SP2 parallel
machine. The experimental results show that our algorithms outperform the Thakur’s
methods and the PITFALLS method for all test samples.

This paper is organized as follows. In Section 2, a brief survey of related work will be
presented. Section 3 presents the algorithms for BLOCK-CYCLIC(kr) to BLOCK-
CYCLIC(r) and BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr) redistribution. The perfor-
mance evaluation and comparisons of array redistribution algorithms that proposed in this
paper and in [21, 22, 24, 25] will be given in Section 4. The conclusions will be given in
Section 5.

2. Related work

Many methods for performing array redistribution have been presented in the literature.
Since techniques of redistribution can be performed either by using the multicomputer
compiler technique [26] or using the runtime support technique, we briefly describe the
related research in these two approaches.
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Gupta et al. [7] derived closed form expressions to efficiently determine the send/
receive processor/data sets. They also provided a virtual processor approach [8] for ad-
dressing the problem of reference index-set identification for array statements with
BLOCK-CYCLIC(c) distribution and formulated active processor sets as closed forms. A
recent work in [15] extended the virtual processor approach to address the problem of
memory allocation and index-sets identification. By using their method, closed form
expressions for index-sets of arrays that were mapped to processors using one-level
mapping can be translated to closed form expressions for index-sets of arrays that were
mapped to processors using two-level mapping and vice versa. A similar approach that
addressed the problems of the index set and the communication sets identification for
array statements with BLOCK-CYCLIC(c) distribution was presented in [23]. In [23], the
CYCLIC(k) distribution was viewed as a union of k CYCLIC distribution. Since the
communication sets for CYCLIC distribution is easy to determine, communication sets
for CYCLIC(k) distribution can be generated in terms of unions and intersections of some
CYCLIC distributions.

Lee et al. [17] derived communication sets for statements of arrays which were dis-
tributed in arbitrary BLOCK-CYCLIC(c) fashion. They also presented closed form ex-
pressions of communication sets for restricted block size. In [3], Chatterjee et al. enu-
merated the local memory access sequence of communication sets for array statements
with BLOCK-CYCLIC(c) distribution based on a finite-state machine. In this approach,
the local memory access sequence can be characterized by a FSM at most c states. In.
[16], Kennedy et al. also presented algorithms to compute the local memory access
sequence for array statements with BLOCK-CYCLIC(c) distribution.

Thakur et al. [24, 25] presented algorithms for run-time array redistribution in HPF
programs. For BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r) redistribution (or vice
versa), in most cases, a processor scanned its local array elements once to determine the
destination (source) processor for each block of array elements of size r in the local array.
In [21, 22], Ramaswamy and Banerjee used a mathematical representation, PITFALLS,
for regular data redistribution. The basic idea of PITFALLS is to find all intersections
between source and target distributions. Based on the intersections, the send/receive
processor/data sets can be determined and general redistribution algorithms can be de-
vised. In [10], an approach for generating communication sets by computing the inter-
sections of index sets corresponding to the LHS and RHS of array statements was also
presented. The intersections are computed by a scanning approach that exploits the re-
petitive pattern of the intersection of two index sets.

Kaushik et al. [13, 14] proposed a multi-phase redistribution approach for BLOCK-
CYCLIC(s) to BLOCK-CYCLIC(t) redistribution. The main idea of multi-phase redistri-
bution is to perform a redistribution as a sequence of redistribution such that the com-
munication cost of data movement among processors in the sequence is less than that of
direct redistribution. Based on the closed form representations, a cost model for estimat-
ing the communication and the indexing overheads for array distribution was developed.
From the cost model, algorithms for determining the sequence of intermediate array
distribution that minimize the total redistribution time were presented.
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Instead of redistributing the entry array at one time, a strip mining approach was
presented in [30]. In this approach, portions of array elements were redistributed in
sequence in order to overlap the communication and computation. In [31], a spiral map-
ping technique was proposed. The main idea of this approach was to map formal proces-
sors onto actual processors such that the global communication can be translated to the
local communication in a certain processor group. Since the communication is local to a
processor group, one can reduce communication conflicts when performing a redistribu-
tion. Kalns and Ni [11, 12] proposed a processor mapping technique to minimize the
amount of data exchange for BLOCK to BLOCK-CYCLIC(c) redistribution and vice
versa. Using the data to logical processors mapping, they show that the technique can
achieve the maximum ratio between data retained locally and the total amount of data
exchanged. In [18], a generalized circulant matrix formalism was proposed to reduce the
communication overheads for BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr) redistribu-
tion. Using the generalized circulant matrix formalism, the authors derived direct, indi-
rect, and hybrid communication schedules for the cyclic redistribution with the block size
changed by an integer factor k. They also extended this technique to solve some multi-
dimensional redistribution problems [19].

Walker et al. [29] used the standardized message passing interface, MPI, to express the
redistribution operations. They implemented the BLOCK-CYCLIC array redistribution
algorithms in a synchronous and an asynchronous scheme. Since the excessive synchro-
nization overheads incurred from the synchronous scheme, they also presented the ran-
dom and optimal scheduling algorithms for BLOCK-CYCLIC array redistribution. The
experimental results show that the performance of synchronized method with optimal
scheduling algorithm is comparable to that of the asynchronous method.

3. Efficient methods for BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r) and
BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr) redistribution

In general, a BLOCK-CYCLIC(s) to BLOCK-CYCLIC(t) redistribution can be classified
into three types:

• s is divisible by t, i.e. BLOCK-CYCLIC(s 5 kr) to BLOCK-CYCLIC(t 5 r) redistri-
bution,

• t is divisible by s, i.e. BLOCK-CYCLIC(s 5 r) to BLOCK-CYCLIC(t 5 kr) redistri-
bution,

• s is not divisible by t and t is not divisible by s.

To simplify the presentation, we use kr R r, r R kr, and s R t to represent the first, the
second, and the third types of redistribution, respectively, for the rest of the paper. In this
section, we first present the terminology used in this paper and then describe efficient
methods for kr R r and r R kr redistribution.
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Definition 1: Given a BLOCK-CYCLIC(s) to BLOCK-CYCLIC(t) redistribution,
BLOCK-CYCLIC(s), BLOCK-CYCLIC(t), s, and t are called the source distribution, the
destination distribution, the source distribution factor, and the destination distribution
factor of the redistribution, respectively.

Definition 2: Given an s R t redistribution on A[1;N] over M processors, the source local
array of processor Pi, denoted by SLAi[0;N/M 2 1], is defined as the set of array elements
that are distributed to processor Pi in the source distribution, where 0 # i # M 2 1. The
destination local array of processor Pj, denoted by DLAj[0;N/M 2 1], is defined as the set
of array elements that are distributed to processor Pj in the destination distribution, where
0 # j # M 2 1.

Definition 3: Given an s R t redistribution on A[1;N] over M processors, the source
processor of an array element in A[1;N] or DLAj[0;N/M 2 1] is defined as the processor
that owns the array element in the source distribution, where 0 # j # M 2 1. The
destination processor of an array element in A[1;N] or SLAi[0;N/M 2 1] is defined as the
processor that owns the array element in the destination distribution, where 0 # i # M 2
1.

Definition 4: Given an s R t redistribution on A[1;N] over M processors, we define
SG;SLAi[m] R A[k] is a function that converts a source local array element SLAi[m] of Pi

to its corresponding global array element A[k] and DG;DLAj[n] R A[l] is a function that
converts a destination local array element DLAj[n] of Pj to its corresponding global array
element A[l], where 1 # k, l # N and 0 # m, n # N/M 2 1.

Definition 5: Given an s R t redistribution on A[1;N] over M processors, a global
complete cycle (GCC) of A[1;N] is defined as M times the least common multiple of s and
t, i.e., GCC 5 M 3 lcm(s, t). We define A[1;GCC] as the first global complete cycle of
A[1;N], A[GCC 1 1;2 3 GCC] as the second global complete cycle of A[1;N], and so
on.

Definition 6: Given an s R t redistribution, a local complete cycle (LCC) of a local array
SLAi[0;N/M 2 1] (or DLAj[0;N/M 2 1]) is defined as the least common multiple of s and
t, i.e., LCC 5 lcm(s, t). We define SLAi[0;LCC 2 1] (DLAj[0;LCC 2 1]) as the first local
complete cycle of SLAi[0;N/M 2 1] (DLAj[0;N/M 2 1]), SLAi[LCC;2 3 LCC 2 1]
(DLAj[LCC;2 3 LCC 2 1]) as the second local complete cycle of of SLAi[0;N/M 2 1]
(DLAj[0;N/M 2 1]), and so on.

Definition 7: Given an s R t redistribution, for a source processor Pi (or destination
processor Pj), a class is defined as the set of array elements in an LCC of SLAi (DLAj) with
the same destination (or source) processor. The class size is defined as the number of array
elements in a class.

Given a one-dimensional array A[1;30] and M 5 3 processors, Figure 2(a) shows a
BLOCK-CYCLIC(s 5 10) to BLOCK-CYCLIC(t 5 2) redistribution on A over M pro-
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cessors. In this paper, we assume that the local array index starts from 0 and the global
array index starts from 1. In Figure 2(a), we use the italic numbers and the normal
numbers to represent the local array indices and the global array indices, respectively. In
Figure 2(a), the global complete cycle (GCC) is 30 and the local complete cycle (LCC) is
10. For source processor P0, array elements SLA0[0, 1, 6, 7], SLA0[2, 3, 8, 9], and SLA0[4,
5] are classes in the first LCC of SLA0. The size of three classes SLA0[0, 1, 6, 7], SLA0[2,
3, 8, 9], and SLA0[4, 5] are equal to 4, 4 and 2 respectively.

To perform the redistribution shown in Figure 2(a), in general, a processor needs to
compute the send data sets, the receive data sets, the source processor set, and the
destination processor set. Figure 2(b) illustrates these sets that are computed by processor
P0 for the redistribution shown in Figure 2(a). In Figure 2(b), element (l4, A[5]) in
SDS[P0, P2] denotes that the source local array element with index 5 4 of P0 is A[5],
which will be sent to processor P2. Element (l8, A[25]) in RDS[P0, P2] denotes that the
array element A[25] that received from P2 should be put in DLA0[8]. In the send phase,
processor P0 sends data to P0, P1, and P2. The sets of array elements that P0 will send to
P0, P1, and P2 are {A[1], A[2], A[7], A[8]}, {A[3], A[4], A[9], A[10]}, and {A[5], A[6]},
respectively. Since a processor has known the send data set for each destination processor,
it only needs to pack these data into messages and send messages to their corresponding
destination processors. In the receive phase, processor P0 receives messages from P0, P1,

Figure 2. (a) A BLOCK-CYCLIC (10) to BLOCK-CYCLIC (2) redistribution on a one-dimensional array
A[1;30] over 3 processors. (b) The send/receive data sets and the source/destination processor sets that are
computed by processor P0.
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and P2. When it receives messages from its source processors, it unpacks these messages
by placing elements in messages to their appropriate local array positions according to the
receive data sets.

The method mentioned above is not efficient at all. When the array size is large, the
computation overheads is great in computing the send/receive data sets. In fact, for kr R
r and r R kr array redistribution, we can derive packing and unpacking information that
allows one to pack and unpack array elements without calculating the send/receive data
sets. In the following subsections, we will describe how to derive the packing and un-
packing information for kr R r and r R kr array redistribution.

3.1. kr R r redistribution

3.1.1. Send phase.

Lemma 1: Given an s R t redistribution on A[1;N] over M processors, SLAi[m], SLAi[m
1 LCC], SLAi[m 1 2 3 LCC], …, and SLAi[m 1 (N/GCC 2 1) 3 LCC] have the same
destination processor, where 0 # i # M 2 1 and 0 # m # LCC 2 1.

Proof In a kr R r redistribution, GCC 5 M 3 lcm(s,t) and LCC 5 lcm(s,t). In the source
distribution, for a source processor Pi, if the global array index of SLAi[m] is a, then the
global array indices of SLAi[m 1 LCC], SLAi[m 1 2 3 LCC], …, and SLAi[m 1 (N/GCC
2 1) 3 LCC] are a 1 GCC, a 1 2 3 GCC, …, and a 1 (N/GCC 2 1) 3 GCC,
respectively, where 0 # i # M 2 1, 0 # m # LCC 2 1. Since GCC 5 M 3 lcm(s,t) and
LCC 5 lcm(s,t), in the destination distribution, if A[a] is distributed to the destination
processor Pj, so are A[a 1 GCC], A[a 1 2 3 GCC], …, and A[a 1 (N/GCC 2 1) 3
GCC], where 0 # j # M 2 1 and 1 # a # GCC. m

Lemma 2: Given a kr R r redistribution on A[1;N] over M processors, for a source
processor Pi and array elements in SLAi[x 3 LCC;(x 1 1) 3 LCC 2 1], if the destination
processor of SLAi[x 3 LCC] is Pj, then the destination processors of SLAi[x 3 LCC: x 3
LCC 1 r 2 1], SLAi[x 3 LCC 1 r: x 3 LCC 1 2r 2 1], …, SLAi[x 3 LCC 1 (k 2 1)
3 r: x 3 LCC 1 kr 2 1] are Pj, Pmod(j11,M), …, Pmod(j1k21,M), respectively, where 0 #
x # N/GCC 2 1 and 0 # i, j # M 2 1.

Proof In a kr R r redistribution, LCC is equal to kr. In the source distribution, for each
source processor Pi, array elements in SLAi[x 3 LCC;(x 1 1) 3 LCC 2 1] have con-
secutive global array indices, where 0 # x # N/GCC 2 1 and 0 # i # M 2 1. Therefore,
in the destination distribution, if SLAi[x 3 LCC] is distributed to processor Pj, then SLAi[x
3 LCC: x 3 LCC 1 r 2 1] will be distributed to Pj. Since the destination distribution is
in BLOCK-CYCLIC(r) fashion, SLAi[x 3LCC 1 r: x 3 LCC 1 2r 2 1], SLAi[x 3 LCC
1 2r: x 3 LCC 1 3r 2 1], …, SLAi[x 3 LCC 1 (k 2 1) 3 r: x 3 LCC 1 kr 2 1] will
be distributed to processor Pmod(j11,M), Pmod(j12,M), …, Pmod(j1k21,M), respectively, where
0 # x # N/GCC 2 1 and 0 # i, j # M 2 1. m
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Given a kr R r redistribution on A[1;N] over M processors, for a source processor Pi,
if the destination processor for the first array element of SLAi is Pj, according to Lemma
2, array elements in SLAi[0;r 2 1], SLAi[r;2r 2 1], …, and SLAi[LCC 2 r;LCC 2 1]
will be sent to destination processors Pj, Pmod(j11,M), …, and Pmod(j1k21,M), respectively,
where 0 # i, j # M 2 1. From Lemma 1, we know that SLAi[0;r 2 1], SLAi[LCC;LCC
1 r 2 1], SLAi[2 3 LCC;2 3 LCC 1 r 2 1], …, and SLAi[(N/GCC 2 1) 3 LCC;(N/
GCC 2 1) 3 LCC 1 r 2 1] have the same destination processor. Therefore, if we know
the destination processor of SLAi[0], according to Lemmas 1 and 2, we can pack array
elements in SLAi to messages directly without computing the send data sets and the
destination processor set. For example, a BLOCK-CYCLIC(6) to BLOCK-CYCLIC(2)
redistribution on A[1;24] over M 5 2 processors is shown in Figure 3(a). In this example,
for source processor P0, the destination processor of SLA0[0] is P0. According to Lemma
2, SLA0[0, 1, 4, 5] and SLA0[2, 3] should be packed to messages msg0 and msg1 which will
be sent to destination processors P0 and P1, respectively. From Lemma 1, SLA0[6, 7, 10,
11], and SLA0[8, 9] will also be packed to messages msg0 and msg1, respectively. Figure
3(b) shows the messages packed by each source processor.

Given a kr R r redistribution over M processors, for a source processor Pi, the desti-
nation processor for the first array element of SLAi can be computed by the following
equation:

h 5 mod~rank~Pi! 3 k, M! (1)

where h is the destination processor for the first array element of SLAi and rank(Pi) is the
rank of processor Pi.

3.1.2. Receive phase.

Lemma 3: Given a kr R r redistribution on A[1;N] over M processors, for a source
processor Pi and array elements in SLAi[x 3 LCC;(x 1 1) 3 LCC 2 1], if the destination
processor of SG(SLAi[a0]), SG(SLAi[a1]), …, SG(SLAi[ag21]) is Pj, then SG(SLAi[a0]),

Figure 3. (a) A BLOCK-CYCLIC(6) to BLOCK-CYCLIC(2) redistribution on A[1;24] over M 5 2 processors.
(b) Messages packed by source processors.
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SG(SLAi[a1]), …, SG(SLAi[ag21]) are in the consecutive local array positions of
DLAj[0;N/M 2 1], where 0 # i, j # M 2 1, 0 # x # N/GCC 2 1, and x 3 LCC # a0

, a1 , a2 ,…, ag21 , (x 1 1) 3 LCC.

Proof In a kr R r redistribution, LCC is equal to kr. In the source distribution, for each
source processor Pi, array elements in SLAi[x 3 LCC;(x 1 1) 3 LCC 2 1] have con-
secutive global array indices, where 0 # i # M 2 1 and 0 # x # N/GCC 2 1. Therefore,
in the destination distribution, if SG(SLAi[a0]), SG(SLAi[a1]), …, SG(SLAi[ag21]) will be
distributed to processor Pj and SG(SLAi[a0]) 5 DG(DLAj[a]), then SG(SLAi[a1]) 5
DG(DLAj[a 1 1], SG(SLAi[a2]) 5 DG(DLAj[a 1 2]), …, SG(SLAi[ag21]) 5 DG(DLAj[a
1 g 2 1]), where 0 # i, j # M 2 1, 0 # x # N/GCC 2 1 and x 3 LCC # a0 , a1 ,
a2 ,…, ag21 , (x 1 1) 3 LCC. m

Lemma 4: Given a kr R r redistribution on A[1;N] over M processors, for a source
processor Pi, if SLAi[a] and SLAi[b] are the first array element of SLAi[x 3 LCC;(x 1 1)
3 LCC 2 1] and SLAi[(x 1 1) 3 LCC;(x 1 2) 3 LCC 2 1], respectively, with the same
destination processor Pj and SG(SLAi[a]) 5 DG(DLAj[a]), then SG(SLAi[b]) 5 DG(D-
LAj[a 1 kr]), where 0 # i, j # M 2 1, 0 # x # N/GCC 2 2, and 0 # a # N/M 2 1.

Proof In a kr R r redistribution, GCC and LCC are equal to Mkr and kr, respectively. In
the source distribution, for a source processor Pi, if SLAi[a] and SLAi[b] are the first array
element of SLAi[x 3 LCC;(x 1 1) 3 LCC 2 1] and SLAi[(x 1 1) 3 LCC;(x 1 2) 3 LCC
2 1], respectively, with the same destination processor Pj, according to Lemma 1, SLAi[b]
5 SLAi[a 1 LCC], where 0 # i, j # M 2 1 and 0 # x # N/GCC 2 2. Furthermore, if
SG(SLAi[a]) is A[u], then SG(SLAi[a 1 LCC]) is A[u 1 GCC], where 1 # u # N. In the
destination distribution, since LCC 5 kr and GCC 5 Mkr, the number of array elements
distributes to each destination processor in a global complete cycle of A[1;N] is kr.
Therefore, if A[u] 5 DG(DLAj[a]), then A[u 1 GCC] 5 DG(DLAj[a 1 kr]), where 0 #
a # N/M 2 1. m

Given a kr R r redistribution on A[1;N] over M processors, for a destination processor
Pj, if the first element of a message (assume that it was sent by source processor Pi) will
be unpacked to DLAj[a] and there are g array elements in DLAj[0;LCC 2 1] whose
source processor is Pi, according to Lemmas 3 and 4, the first g array elements of the
message will be unpacked to DLAj[a;a 1 g 2 1], the second g array elements of the
message will be unpacked to DLAj[a 1 kr;a 1 kr 1 g 2 1], the third g array elements
of the message will be unpacked to DLAj[a 1 2kr;a 1 2kr 1 g 2 1], and so on, where
0 # i, j # M 2 1 and 0 # a # LCC. Therefore, for a destination processor Pj, if we know
the values of g (the number of array elements in DLAj[0;LCC 2 1] whose source
processor is Pi) and a (the position to place the first element of a message in DLAj), we
can unpack elements in messages to DLAj without computing the receive data sets and the
source processor set. For the redistribution shown in Figure 3(a), Figure 4 shows how a
destination processor P0 unpacks messages using the unpacking information (values of a
and g). In this example, for destination processor P0, values of (a, g) for messages msg0

and msg1 that are received from source processors P0 and P1 are (0, 4) and (4, 2),
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respectively. Therefore, destination processor P0 unpacks the first 4 elements of msg0 to
DLA0[0;3] and the second 4 elements of msg0 to DLA0[6;9]. The first and the second 2
elements of msg1 will be unpacked to DLA0[4;5] and DLA0[10;11], respectively.

Given a kr R r redistribution on A[1;N] over M processors, for a destination processor
Pj, the values of a and g can be computed by the following equations:

g 5 ~k/M 1 G@mod~~rank~Pj! 1 M 2 mod~rank~Pi! 3 k, M!!,M! , mod~k, M!#!

3 r (2)

a 5 ~rank~Pi) 3 k/M 1 G@~rank~Pj! , mod~rank~Pi! 3 k,M!#! 3 r (3)

Where rank(Pi) and rank(Pj) are the ranks of processors Pi and Pj. G[e] is called Iverson’s
function. If the value of e is true, then G[e] 5 1; otherwise G[e] 5 0.

The kr R r redistribution algorithm is described as follows.

Algorithm kr R r_redistribution(k, r, M)

/*Send phase*/
1. i 5 MPI_Comm_rank¼;
2. max_local_index 5 the length of the source local array of processor Pi;
3. the destination processor of SLA0[0] is h 5 (k 3 i) mod M;

/*Packing data sets*/
4. index 5 1; lengthd 5 1, where d 5 0, …, M 2 1;
5. while (index # max_local_index)
6. { d 5 h; j 5 1;
7. while ((j # k) && (index # max_local_index))
8. { l 5 1;

Figure 4. Unpack messages using the unpacking information.

ARRAY REDISTRIBUTION 263

Kluwer Journal
@ats-ss10/data11/kluwer/journals/supe/v12n3art2 COMPOSED: 05/05/98 3:51 pm. PG.POS. 11 SESSION: 43



9. while ((l # r) && (index # max_local_index))
10. { out_bufferd[lengthd11] 5 SLAi[index11];
11. l11; }
12. j11; if (d 5 M) d 5 0 else d11; }
13. }
14. Send out_bufferd to processor Pd, where d 5 0, …, M 2 1;
/*Receive phase*/
15. max_cycle 5 max_local_index / kr;
16. Repeat m 5 min (M, k) times
17. Receive message buffer_ini from source processor Pi;
18. Calculate the value of g for message buffer_ini using Equation (2);
19. Calculate the value of a for message buffer_ini using Equation (3);

/*Unpacking messages*/
20. index 5 a; length 5 1; j 5 0;
21. while (j # max_cycle)
22. { index 5 a 1 j 3 kr; l 5 1;
23. while (l # g)
24. { DLAi[index11] 5 buffer_ini[length11];
25. l11; }
26. j11; }
end_of_kr R r_redistribution

3.2. r R kr redistribution

3.2.1. Send phase.

Lemma 5: Given an r R kr redistribution on A[1;N] over M processors, for a source
processor Pi and array elements in SLAi[x 3 LCC;(x 1 1) 3 LCC 2 1], if the destination
processor of SG(SLAi[a0]), SG(SLAi[a1]), …, SG(SLAi[an21]) is Pj, then SG(SLAi[a0]),
SG(SLAi[a1]), …, SG(SLAi[an21]) are in the consecutive local array positions of
SLAi[0;N/M 2 1], where 0 # i, j # M 2 1, 0 # x # N/GCC 2 1, and x 3 LCC # a0

, a1 , a2 ,…, an21 , (x 1 1) 3 LCC.

Proof In an r R kr redistribution, LCC is equal to kr. For a destination processor Pj, array
elements in DLAj[x 3 LCC;(x 1 1) 3 LCC 2 1] have consecutive global array indices,
where 0 # j # M 2 1 and 0 # x # N/GCC 2 1. Therefore, in the source distribution, if
DG(DLAj[a0]), DG(DLAj[a1]), …, DG(DLAj[an21]) are distributed to source processor Pi

in the source distribution, and DG(DLAj[a0]) 5 SG(SLAi[v]), then DG(DLAj[a1]) 5
SG(SLAi[v 1 1]), DG(DLAj[a2]) 5 SG(SLAi[v 1 2]), …, DG(DLAj[an21]) 5 SG(SLAi[v
1 n 2 1]), where 0 # i, j # M 2 1, 0 # x # N/GCC 2 1, and x 3 LCC#a0 , a1 ,
a2 ,…, an21 , (x 1 1) 3 LCC. m

Given an r R kr redistribution on A[1;N] over M processors, for a source processor Pi,
if the destination processor for the first array element of SLAi is Pj and there are u classes,
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C1, C2, C3, …, and Cu in SLAi[0;LCC 2 1] (assume that the indices of local array
elements in these classes have the order C1 , C2 , C3 ,…, Cu and the destination
processors of C1, C2, C3, …, and Cu are Pj1

, Pj2
, Pj3

, …, and Pju
, respectively), according

to Lemma 5, we know that

j1 5 j,

j2 5 mod~~?C1? 3 M!/kr 1 j1, M!,

j3 5 mod~~?C2? 3 M!/kr 1 j2, M!,

;

ju 5 mod~~?Cu21? 3 M!/kr 1 ju21, M!,

where 1 # u # min(k, M) and .C1., …, .Cu21. are class size of C1, …, Cu21, respectively.
This means that array elements SLAi[0;.C1. 2 1] will be sent to destination processor Pj1

,
array elements SLAi[.C1. ; .C1. 1 .C2. 2 1] will be sent to destination processor Pj2

, …,
and array elements SLAi[.C1. 1 .C2. 1…1 .Cu21. ; .C1. 1 .C2. 1…1 .Cu. 2 1] will be
sent to destination processor Pju

. From Lemma 1, we know that SLAi[0; .C1. 2 1],
SLAi[LCC;LCC 1 .C1. 2 1], SLAi[2 3 LCC;2 3 LCC 1 .C1. 2 1], …, and SLAi[(N/
GCC 2 1) 3 LCC;(N/GCC 2 1) 3 LCC 1 .C1. 2 1] have the same destination
processor. Therefore, if we know the destination processor of SLAi[0] and the values of
(.C1., Pj1

), (.C2., Pj2
), …, and (.Cu., Pju

), we can pack array elements in SLAi to messages
directly without computing the send data sets and the destination processor set. For
example, a BLOCK-CYCLIC(2) to BLOCK-CYCLIC(6) redistribution on A[1;24] over
M 5 2 processors is shown in Figure 5(a). In this example, for source processor P0, the
destination processor of SLA0[0] is P0. There are two classes C1 and C2 in SLAi[0;LCC 2
1]. The destination processors of C1 and C2 are P0 and P1, respectively. The size of classes
C0 and C1 are 4 and 2, respectively. According to Lemma 5, SLA0[0, 1, 2, 3], and SLA0[4,

Figure 5. (a) A BLOCK-CYCLIC(2) to BLOCK-CYCLIC(6) redistribution on A[1;24] over M 5 2 processors.
(b) Messages packed by source processors.
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5] should be packed to messages msg0 and msg1 which will be sent to destination pro-
cessors P0 and P1, respectively. From Lemma 1, SLA0[6, 7, 8, 9], and SLA0[10, 11] will
also be packed to messages msg0 and msg1, respectively. Figure 5(b) shows the messages
packed by each source processor.

Given an r R kr redistribution on A[1;N] over M processors, for a source processor Pi,
the destination processor for the first array element of SLAi can be computed by equation
(5) and the number of array elements in SLAi[0;LCC 2 1] whose destination processor is
Pj can be computed by equation (4). Equations (4) and (5) are given as follows:

?Cj? 5 ~k/M 1 G@mod~rank~Pi! 1 M 2 mod~rank~Pj!

3 k,M!!,M! , mod~k,M!#! 3 r (4)

w 5 rank~Pi!/k (5)

Where w is the destination processor for the first array element of SLAi and rank(Pi) and
rank(Pj) are the ranks of processors Pi and Pj, respectively. G[e] is the Iverson’s function
defined in Equations 2 and 3.

3.2.2. Receive phase.

Lemma 6: Given an r R kr redistribution on A[1;N] over M processors, for a source
processor Pi and array elements in SLAi[x 3 LCC;(x 1 1) 3 LCC 2 1], if the destination
processor of SG(SLAi[a0]), SG(SLAi[a1]), …, SG(SLAi[an21]) is Pj, then array elements of
SG(SLAi[a0]), …, SG(SLAi[ar21]); SG(SLAi[ar]), …, SG(SLAi[a2r21]); …; and
SG(SLAi[an2r]), …, SG(SLAi[an21]) are in the consecutive local array positions of
DLAj[0;N/M 2 1], where 0 # i, j # M 2 1, 0 # x # N/GCC 2 1 and x 3 LCC # a0

,a1 , a2 ,…, an21 , (x11)3LCC. Furthermore, if SG(SLAi[a0]) 5 DG(DLAj[v]),
then SG(SLAi[ar]) 5 DG(DLAj[v 1 Mr]), SG(SLAi[a2r]) 5 DG(DLAj[v 1 2Mr]), …, and
SG(SLAi[an2r]) 5 DG(DLAj[v 1 (n/r 2 1) 3 Mr]), where 0 # v # N/M 2 1.

Proof In an r R kr redistribution, GCC 5 Mkr and LCC 5 kr. In the source distribution,
for each source processor Pi, every r array elements in SLAi[x 3 LCC;(x 1 1) 3 LCC 2
1] have consecutive global array indices, where 0 # i # M 2 1 and 0 # x # N/GCC 2
1. Since LCC 5 kr, in the destination distribution, if SG(SLAi[a0]), SG(SLAi[a1]), …,
SG(SLAi[an21]) will be distributed to processor Pj, then array elements of SG(SLAi[a0]),
…, SG(SLAi[ar21]); SG(SLAi[ar]), …, SG(SLAi[a2r21]); …; and SG(SLAi[an2r]), …,
SG(SLAi[an21]) are in the consecutive local array positions of DLAj[0;N/M 2 1], where
0 # i, j # M 2 1, 0 # x # N/GCC 2 1 and x 3 LCC # a0 , a1 , a2 ,…,an21 ,
(x 1 1) 3 LCC.

Since in the source distribution, for each source processor Pi, every r array elements in
SLAi[x 3 LCC;(x 1 1) 3 LCC 2 1] have consecutive global array indices, if
SG(SLAi[a0]) 5 A[b], then SG(SLAi[ar]) 5 A[b 1 Mr], SG(SLAi[a2r]) 5 A[b 1 2Mr], …,
and SG(SLAi[an2r]) 5 A[b 1 (n/r 2 1) 3 Mr], where 1 # b # N 2 1, 0 # x # N/GCC
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2 1, and x 3 LCC # a0 , a1 , a2 ,…, an21 , (x 1 1) 3 LCC. Since the destination
processor of SG(SLAi[a0]), SG(SLAi[a1]), …, SG(SLAi[an21]) is Pj, in the destination
distribution, if A[b] 5 DG(DLAj [v]), we have A[b 1 Mr] 5 DG(DLAj[v 1 Mr]), A[b 1
2Mr] 5 DG(DLAj[v 1 2Mr]), …, and A[b 1 (n/r 2 1) 3 Mr] 5 DG(DLAj[v 1 (n/r 2
1) 3 Mr]), where 0 # v # N/M 2 1. m

Given an r R kr redistribution on A[1;N] over M processors, for a destination proces-
sor Pj, if the first array element of the message (assume it was sent by source processor
Pi) will be unpacked to DLAj[b] and there are d array elements in DLAj[0;LCC 2 1]
whose source processor is Pi. According to Lemma 6, the first d array elements of this
message will be unpacked to DLAj[b;b 1 r 2 1], DLAj[b 1 Mr;b 1 Mr 1 r 2 1],
DLAj[b 1 2Mr;b 1 2Mr 1 r 2 1], …, and DLAj[b 1 (d/r 2 1) 3 Mr;b 1 (d/r 2 1)
3 Mr 1 r 2 1]; the second d array elements of the message will be unpacked to DLAj[b
1 kr;b 1 kr 1 r 2 1], DLAj[b 1 kr 1 Mr;b 1 kr 1 Mr 1 r 2 1], DLAj[b 1 kr 1 2Mr;

b 1 kr 1 2Mr 1 r 2 1], …, and DLAj[b 1 kr 1 (d/r 2 1) 3 Mr;b 1 kr 1 (d/r 2 1)
3 Mr 1 r 2 1], and so on, where 0 # i, j # M 2 1 and 0 # b # N/M 2 1. Therefore,
if we know the values of d (the number of array elements in DLAj[0;LCC 2 1] whose
source processor is Pi) and b (the position to place the first element of a message in
DLAj), we can unpack messages to DLAj without computing the receive data sets and the
source processor set. For the redistribution shown in Figure 5(a), Figure 6 shows how a
destination processor P0 unpacks messages using the unpacking information (values of b
and d). In this example, for destination processor P0, values of (b, d) for messages msg0

and msg1 that are received from source processors P0 and P1 are (0, 4) and (2, 2),
respectively. Therefore, destination processor P0 unpacks the first 2 elements of msg0 to
DLA0[0;1] and the second 2 elements of msg0 to DLA0[4;5]. The third and the fourth 2
elements of msg0 will be unpacked to DLA0[6;7] and DLA0[10;11], respectively. The first
and second 2 elements of msg1 will be unpacked to DLA0[2;3] and DLA0[8;9], respec-
tively.

Figure 6. Unpack messages using the unpacking information.
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Given an r R kr redistribution on A[1;N] over M processors, for a destination proces-
sor Pj, the values of b and d can be computed by the following equations:

d 5 ~k/M 1 G@mod~~M 1 rank~Pi! 2 mod~rank~Pj!

3 k, M!!, M! , mod~k, M!#! 3 r (6)

b 5 mod~M 1 rank~Pi! 2 mod~rank~Pj! 3 k,M!,M! 3 r (7)

Where rank(Pi) and rank(Pj) are the ranks of processors Pi and Pj, respectively. G[e] is the
Iverson’s function defined in Equations 2 and 3.

The r R kr redistribution algorithm can be described as follows.

Algorithm r R kr_redistribution(k, r, M,)

/*Send phase*/
1. i 5 MPI_Comm_rank¼;
2. max_local_index 5 the length of the source local array of processor Pi;
3. the destination processor of SLAi[0] is w 5 i/k;
4. m 5 min(k, M); j1 5 w;
5. Calculate j2, j3, …jm;
6. Calculate class size .Cjw. using Equation (4), where w 5 1, …, m;
/*Packing data sets*/
7. index 5 1; lengthj 5 1, where j 5 0, …, M 2 1;
8. while (index # max_local_index)
9. { t 5 1;
10. while((t # m)&&(index # max_local_index))
11. { j 5 jt; l 5 1;
12. while((l # .Cj.) && (index # max_local_index))
13. { out_bufferj[lengthj11] 5 SLAi[index11];
14. l11;}
15. t11; }
16. }
17. Send out_bufferj to processor Pj, where j 5 j1, j2, … jm.
/*Receive phase*/
18. max_cycle 5 max_local_index divided by kr
19. Repeat m 5 min (M, k) times
20. Receive message buffer_ini from source processors Pi.
21. Calculate the value of d for buffer_ini using Equation (6);
22. Calculate the value of b for buffer_ini using Equation (7);

/*Unpacking data sets*/
23. index 5 b; length 5 1; j 5 0; count 5 0;
24. while (j # max_cycle)
25. { count 5 1; index 5 b 1 j 3 kr;
26. while (count # d)
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27. { l 5 1;
28. while (l # r)
29. { DLAi[index11] 5 buffer_in[length11];
30. count 11; l11; }
31. index 1 5 (M 2 1) 3 r; }
32. j11; }
end_of_kr R r_redistribution

4. Performance evaluation and experimental results

To evaluate the performance of the proposed algorithms, we have implemented the pro-
posed methods along with the Thakur’s methods [24, 25] and the PITFALLS method [21,
22] on an IBM SP2 parallel machine. All algorithms were written in the single program
multiple data (SPMD) programming paradigm with C 1 MPI codes. To get the experi-
mental results, we have executed those programs for different kinds of kr R r and r R kr
array redistribution with various array size N on a 64-node IBM SP2 parallel machine,
where N [ {1.28M, 2.56M, 3.84M, 5.12M, 6.4M} and k [ {5, 25, 50, 100, N/64}. For
a particular redistribution, all algorithms were executed 20 times. The mean time of the 20
tests was used as the time of an algorithm to perform the redistribution. Time was
measured by using MPI_Wtime¼. The single-precision array was used for the test. The
experimental results were shown in Figure 7 to Figure 11. In Figure 7 to Figure 11, the Krr
represents the algorithms proposed in this paper. The Thakur and the PITFALLS represent
the algorithms proposed in [24, 25] and [21,22], respectively.

Figure 7 gives the execution time of these algorithms to perform BLOCK-CYCLIC(10)
to BLOCK-CYCLIC(2) and BLOCK-CYCLIC(2) to BLOCK-CYCLIC(10) redistribution
with various array size, where k 5 5. In Figure 7(a), the execution time of these three
algorithms has the order T(Krr) , T(PITFALLS) , T(Thakur). From Figure 7(c), for the
kr R r redistribution, we can see that the computation time of these three algorithms has
the order Tcomp(Krr) , Tcomp(Thakur) , Tcomp(PITFALLS). For the PITFALLS method, a
processor needs to find out all intersections between source and destination distribution
with all other processors involved in the redistribution. Therefore, the PITFALLS method
requires additional computation time at communication sets calculation. For the Thakur’s
method, a processor needs to scan its local array elements once to determine the desti-
nation (source) processor for each block of array elements of size r in the local array. The
Thakur’s method also requires additional computation time at communication sets calcu-
lation. However, for the Krr method, based on the packing/unpacking information derived
from the kr R r redistribution, it can pack/unpack array elements to/from messages
directly without calculating the communication sets. Therefore, the computation time of
the Krr method is the lowest one among these three methods.

For the same case, the communication time of these three algorithms has the order
Tcomm(Krr) , Tcomm(PITFALLS) , Tcomm(Thakur). For the Krr method and the PITFALLS
method, both methods use asynchronous communication schemes. The computation and
the communication overheads can be overlapped. However, the Krr method unpacks any
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received messages in the receiving phase while the PITFALLS method unpacks messages
in a specific order. Therefore, the communication time of the Krr method is less than or
equal to that of the PITFALLS method. For the Thakur’s method, due to the algorithm
design strateagy, it uses a synchronous communication scheme in the kr R r redistribu-
tion. In a synchronous communication scheme, the computation and the communication
overheads can not be overlapped. Therefore, the Thakur’s method has higher communi-
cation overheads than those of the Krr method and the PITFALLS method.

Figure 7(b) presents the exetution time of these algorithms for the r R kr redistribution.
The execution time of these three algorithms has the order T(Krr) , T(Thakur) , T(PIT-
FALLS). In Figure 7(c), for the r R kr redistribution, the computation time of these three
algorithms have the order Tcomp(Krr) , Tcomp(Thakur) , Tcomp(PITFALLS). The reason is
similar to that described for Figure 7(a).

Figure 7. Performance of different algorithms to execute a BLOCK-CYCLIC(10) to BLOCK-CYCLIC(2)
redistribution and vice versa with various array size (N 5 1.28Mbytes) on a 64-node SP2. (a) The kr R r
redistribution. (b) The r R kr redistribution. (c) The computation time and the communication time of (a) and
(b).
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For the communication time, the Thakur’s method and the Krr method have similar
communication overheads and are less than that of the PITFALLS method. In the r R kr
redistribution, all these three algorithms use asynchronous communication schemes. How-
ever, the Krr method and the Thakur’s method unpack any received message in the
receiving phase while the PITFALLS method unpacks messages in a specific order. There-
fore, the PITFALLS method has more communication overheads than those of the Krr
method and the Thakur’s method.

Figures 8, 9, and 10 are the cases when k is equal to 25, 50, and 100, respectively. From
Figure 8 to Figure 10, we have similar observations as those described for Figure 7.

Figure 11 gives the execution time of these algorithms to perform BLOCK to CYCLIC
and vice versa redistribution with various array size. In this case, the value of k is equal
to N/64. From Figure 11(a) and (b), we can see that the execution time of these three
algorithms has the order T(Krr) , T(Thakur) ! T(PITFALLS) for both kr R r and r R
kr redistribution. In Figure 11(c), for both kr R r and r R kr redistribution, the compu-

Figure 8. Performance of different algorithms to execute a BLOCK-CYCLIC(50) to BLOCK-CYCLIC(2)
redistribution and vice versa with various array size (N 5 1.28M single precision) on a 64-node SP2. (a) The kr
R r redistribution. (b) The r R kr redistribution. (c) The computation time and the communication time of (a)
and (b).
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tation time of theses three algorithms has the order T
comp

(Krr) , Tcomp(Thakur) ! Tcomp

(PITFALLS). The PITFALLS method has very large computation time compared to those
of the Krr method and the Thakur’s method. Th reason is that each processor needs to find
out all intersections between source and destination distribution with all other processors
in the PITFALLS method. The computation time of the PITFALLS method depends on the
number of intersections. In this case, there are N/64 intersections between each source and
destination processor. Therefore, a processor needs to compute N/64 3 64 intersections
which demands a lot of computation time when N is large. For the communication
overheads, we have similar observations as those described for Figure 7(b).

From the above performance analysis and experimental results, we can see that the Krr
method outperforms the Thakur’s method and the PITFALLS method for all test samples.

Figure 9. Performance of different algorithms to execute a BLOCK-CYCLIC(100) to BLOCK-CYCLIC(2)
redistribution and vice versa with various array size (N 5 1.28M single precision) on a 64-node SP2. (a) The kr
R r redistribution. (b) The r R kr redistribution. (c) The computation time and the communication time of (a)
and (b).

272 CHING-HSIEN HSU AND YEH-CHING CHUNG

Kluwer Journal
@ats-ss10/data11/kluwer/journals/supe/v12n3art2 COMPOSED: 05/05/98 3:52 pm. PG.POS. 20 SESSION: 43



5. Conclusions

Array redistribution is usually used in data-parallel programs to minimizing the run-time
cost of performing data exchange among different processors. Since it is performed at
run-time, efficient methods are required for array redistribution. In this paper, we have
presented efficient algorithms for kr R r and r R kr redistribution. The most significant
improvement of our algorithms is that a processor does not need to construct the send/
receive data sets for a redistribution. Based on the packing/unpacking information that
derived from the kr R r and r R kr redistribution, a processor can pack/unpack array
elements to (from) messages directly. To evaluate the performance of our methods, we
have implemented our methods along with the Thakur’s method and the PITFALLS
method on an IBM SP2 parallel machine. The experimental results show that our algo-
rithms outperform the Thakur’s methods and the PITFALLS method. This result encour-
ages us to use the proposed algorithms for array redistribution.

Figure 11. Performance of different algorithms to execute a BLOCK to CYCLIC redistribution and vice versa
with various array size (N 5 1.28M single precision) on a 64-node SP2. (a) The BLOCK to CYCLIC redistri-
bution. (b) The CYCLIC to BLOCK redistribution. (c) The computation time and the communication time of (a)
and (b).
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