;“ The Journal of Supercomputing, 12:253-276 (1998)
'\ © 1998 Kluwer Academic Publishers, Boston. Manufactured in the Netherlands

Efficient Methods for kr — r and » — kr Array
Redistribution’

CHING-HSIEN HSU
Department of Information Engineering, Feng Chia University, Taichung, Taiwan 407, ROC,
chhsu@jecs.fcu.edu.tw

YEH-CHING CHUNG
Department of Information Engineering, Feng Chia University, Taichung, Taiwan 407, ROC,
ychung@iecs.feu.edu.tw

Abstract. Array redistribution is usually required to enhance algorithm performance in many parallel pro-
grams on distributed memory multicomputers. Since it is performed at run-time, there is a performance tradeoff
between the efficiency of new data decomposition for a subsequent phase of an algorithm and the cost of
redistributing data among processors. In this paper, we present efficient algorithms for BLOCK-CYCLIC(47) to
BLOCK-CYCLIC(r) and BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr) redistribution. The most significant
improvement of our methods is that a processor does not need to construct the send/receive data sets for a
redistribution. Based on the packing/unpacking information that derived from the BLOCK-CYCLIC(/7) to
BLOCK-CYCLIC(r) redistribution and vice versa, a processor can pack/unpack array elements into (from)
messages directly. To evaluate the performance of our methods, we have implemented our methods along with
the Thakur’s methods and the P/TFALLS method on an IBM SP2 parallel machine. The experimental results
show that our algorithms outperform the Thakur’s methods and the PITFALLS method for all test samples. This
result encourages us to use the proposed algorithms for array redistribution.

Keywords: Array redistribution, distributed memory multicomputers, data distribution, runtime support

1. Introduction

The data parallel programming model has become a widely accepted paradigm for pro-
gramming distributed memory multicomputers. To efficiently execute a data parallel pro-
gram on a distributed memory multicomputer, an appropriate data decomposition is criti-
cal. The data decomposition involves data distribution and data alignment. The data
distribution deals with how data arrays should be distributed. The data alignment deals
with how data arrays should be aligned with respect to one another. The purpose of data
decomposition is to balance the computational load and minimize the communication
overheads.

Many data parallel programming languages such as High Performance Fortran (HPF)
[9], Fortran D [6], Vienna Fortran [32], and High Performance C (HPC) [27] provide
compiler directives for programmers to specify array distribution. The array distribution
provided by those languages, in general, can be classified into two categories, regular and
irregular. The regular array distribution, in general, has three types, BLOCK, CYCLIC,

254 CHING-HSIEN HSU AND YEH-CHING CHUNG

and BLOCK-CYCLIC(c). The BLOCK-CYCLIC(c) is the most general regular array
distribution among them. Dongarra ef al [5] have shown that these distribution are es-
sential for many dense matrix algorithms design in distributed memory machines. Ex-
amples of distributing a one-dimensional array with 18 elements to three processors using
BLOCK, CYCLIC, and BLOCK-CYCLIC(c) distribution are shown in Figure 1. The
irregular array distribution uses user-defined array distribution functions to specify array
distribution.

In some algorithms, such as multi-dimensional fast Fourier transform [28], the Alter-
native Direction Implicit (ADI) method for solving two-dimensional diffusion equations,
and linear algebra solvers [20], an array distribution that is well-suited for one phase may
not be good for a subsequent phase in terms of performance. Array redistribution is
required for those algorithms during run-time. Therefore, many data parallel programming
languages support run-time primitives for changing a program’s array decomposition [1,
2,9, 27, 32]. Since array redistribution is performed at run-time, there is a performance
trade-off between the efficiency of a new data decomposition for a subsequent phase of an
algorithm and the cost of redistributing array among processors. Thus efficient methods
for performing array redistribution are of great importance for the development of dis-
tributed memory compilers for those languages.

Array redistribution, in general, can be performed in two phases, the send phase and the
receive phase. In the send phase, a processor P; has to determine all the data sets that it
needs to send to other processors (destination processors), pack those data sets into
messages, and send messages to their destination processors. In the receive phase, a
processor P; has to determine all the data sets that it needs to receive from other proces-
sors (source processors), receive messages from source processors, and unpack elements
in messages to their corresponding local array positions. This means that each processor
P, should compute the following four sets.

» Destination Processor Set (DPS[P,]): the set of processors to which P, has to send data.

* Send Data Sets (P/_ EHPS[PJ SDS[P, Pj]): the sets of array elements that processor P; has to
send to its destination processors, where SDS[P;, P;] denotes the set of array elements
that processor P; has to send to its destination processor P,.

* Source Processor Set (SPS[P]): the set of processors from which P; has to receive data.

plobal-index
block

cyelic
block-cyclici2)
block-cyclic(3)

Figure 1. Examples of regular data distribution.

ARRAY REDISTRIBUTION 255

* Receive Data Sets (P,E SLJJDS[PJ RDS[P, P,-]): the sets of array elements that P, has to receive
from its source processors, where RDS[P), P,] denotes the set of array elements that
processor P; has to receive from its source processor P,

In the send phase, a processor uses the SDS to pack data for each destination processor.
In the receive phase, a processor uses the RDS to unpack messages. By determining the
send/receive data sets (SDS/RDS) and packing the send data sets into messages, a pro-
cessor will perform only one send operation and one receive operation for each processor
in its destination processor set (DPS) and its source processor set (SPS), respectively. This
implies that the minimum number of send and receive operations required by a processor
in a redistribution is equal to the number of processors in its destination processor set and
the number of processors in its source processor set, respectively. Using this observation,
we know that, to minimize the communication overheads in a redistribution is difficult.
On the contrary, to minimize the computation overheads (compute the source/destination
processors sets, send/receive data sets, packing, unpacking, etc.) is possible. If a processor
can reduce some computation overheads in a redistribution, then the overall performance
can be improved.

In this paper, we present efficient methods to perform BLOCK-CYCLIC(4r) to
BLOCK-CYCLIC(r) and BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr) redistribution.
The most significant improvement of our methods is that a processor does not need to
construct the send/receive data sets for a redistribution. Based on the packing/unpacking
information that derived from the BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r) redistri-
bution and vice versa, a processor can pack/unpack array elements into (from) messages
directly. To evaluate the proposed methods, we have implemented our methods along with
the Thakur’s methods [24, 25] and the PITFALLS method [21, 22] on an IBM SP2 parallel
machine. The experimental results show that our algorithms outperform the Thakur’s
methods and the PITFALLS method for all test samples.

This paper is organized as follows. In Section 2, a brief survey of related work will be
presented. Section 3 presents the algorithms for BLOCK-CYCLIC(kr) to BLOCK-
CYCLIC(r) and BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr) redistribution. The perfor-
mance evaluation and comparisons of array redistribution algorithms that proposed in this
paper and in [21, 22, 24, 25] will be given in Section 4. The conclusions will be given in
Section 5.

2. Related work

Many methods for performing array redistribution have been presented in the literature.
Since techniques of redistribution can be performed either by using the multicomputer
compiler technique [26] or using the runtime support technique, we briefly describe the
related research in these two approaches.

256 CHING-HSIEN HSU AND YEH-CHING CHUNG

Gupta et al. [7] derived closed form expressions to efficiently determine the send/
receive processor/data sets. They also provided a virtual processor approach [8] for ad-
dressing the problem of reference index-set identification for array statements with
BLOCK-CYCLIC(c) distribution and formulated active processor sets as closed forms. A
recent work in [15] extended the virtual processor approach to address the problem of
memory allocation and index-sets identification. By using their method, closed form
expressions for index-sets of arrays that were mapped to processors using one-level
mapping can be translated to closed form expressions for index-sets of arrays that were
mapped to processors using two-level mapping and vice versa. A similar approach that
addressed the problems of the index set and the communication sets identification for
array statements with BLOCK-CYCLIC(c) distribution was presented in [23]. In [23], the
CYCLIC(k) distribution was viewed as a union of & CYCLIC distribution. Since the
communication sets for CYCLIC distribution is easy to determine, communication sets
for CYCLIC(k) distribution can be generated in terms of unions and intersections of some
CYCLIC distributions.

Lee et al. [17] derived communication sets for statements of arrays which were dis-
tributed in arbitrary BLOCK-CYCLIC(c) fashion. They also presented closed form ex-
pressions of communication sets for restricted block size. In [3], Chatterjee et al. enu-
merated the local memory access sequence of communication sets for array statements
with BLOCK-CYCLIC(c) distribution based on a finite-state machine. In this approach,
the local memory access sequence can be characterized by a FSM at most ¢ states. In.
[16], Kennedy et al. also presented algorithms to compute the local memory access
sequence for array statements with BLOCK-CYCLIC(c) distribution.

Thakur et al. [24, 25] presented algorithms for run-time array redistribution in HPF
programs. For BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r) redistribution (or vice
versa), in most cases, a processor scanned its local array elements once to determine the
destination (source) processor for each block of array elements of size 7 in the local array.
In [21, 22], Ramaswamy and Banerjee used a mathematical representation, PITFALLS,
for regular data redistribution. The basic idea of PITFALLS is to find all intersections
between source and target distributions. Based on the intersections, the send/receive
processor/data sets can be determined and general redistribution algorithms can be de-
vised. In [10], an approach for generating communication sets by computing the inter-
sections of index sets corresponding to the LHS and RHS of array statements was also
presented. The intersections are computed by a scanning approach that exploits the re-
petitive pattern of the intersection of two index sets.

Kaushik et al. [13, 14] proposed a multi-phase redistribution approach for BLOCK-
CYCLIC(s) to BLOCK-CYCLIC(?) redistribution. The main idea of multi-phase redistri-
bution is to perform a redistribution as a sequence of redistribution such that the com-
munication cost of data movement among processors in the sequence is less than that of
direct redistribution. Based on the closed form representations, a cost model for estimat-
ing the communication and the indexing overheads for array distribution was developed.
From the cost model, algorithms for determining the sequence of intermediate array
distribution that minimize the total redistribution time were presented.

ARRAY REDISTRIBUTION 257

Instead of redistributing the entry array at one time, a strip mining approach was
presented in [30]. In this approach, portions of array elements were redistributed in
sequence in order to overlap the communication and computation. In [31], a spiral map-
ping technique was proposed. The main idea of this approach was to map formal proces-
sors onto actual processors such that the global communication can be translated to the
local communication in a certain processor group. Since the communication is local to a
processor group, one can reduce communication conflicts when performing a redistribu-
tion. Kalns and Ni [11, 12] proposed a processor mapping technique to minimize the
amount of data exchange for BLOCK to BLOCK-CYCLIC(c) redistribution and vice
versa. Using the data to logical processors mapping, they show that the technique can
achieve the maximum ratio between data retained locally and the total amount of data
exchanged. In [18], a generalized circulant matrix formalism was proposed to reduce the
communication overheads for BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr) redistribu-
tion. Using the generalized circulant matrix formalism, the authors derived direct, indi-
rect, and hybrid communication schedules for the cyclic redistribution with the block size
changed by an integer factor k. They also extended this technique to solve some multi-
dimensional redistribution problems [19].

Walker et al. [29] used the standardized message passing interface, MPI, to express the
redistribution operations. They implemented the BLOCK-CYCLIC array redistribution
algorithms in a synchronous and an asynchronous scheme. Since the excessive synchro-
nization overheads incurred from the synchronous scheme, they also presented the ran-
dom and optimal scheduling algorithms for BLOCK-CYCLIC array redistribution. The
experimental results show that the performance of synchronized method with optimal
scheduling algorithm is comparable to that of the asynchronous method.

3. Efficient methods for BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r) and
BLOCK-CYCLIC(r) to BLOCK-CYCLIC(kr) redistribution

In general, a BLOCK-CYCLIC(s) to BLOCK-CYCLIC(?) redistribution can be classified
into three types:

* s is divisible by ¢, i.e. BLOCK-CYCLIC(s
bution,

e tis divisible by s, i.e. BLOCK-CYCLIC(s
bution,

e s is not divisible by ¢ and ¢ is not divisible by s.

kr) to BLOCK-CYCLIC(¢ = r) redistri-

r) to BLOCK-CYCLIC(t = kr) redistri-

To simplify the presentation, we use kr — r, r — kr, and s — ¢ to represent the first, the
second, and the third types of redistribution, respectively, for the rest of the paper. In this
section, we first present the terminology used in this paper and then describe efficient
methods for ki — r and r — kr redistribution.

258 CHING-HSIEN HSU AND YEH-CHING CHUNG

Definition 1: Given a BLOCK-CYCLIC(s) to BLOCK-CYCLIC(¢) redistribution,
BLOCK-CYCLIC(s), BLOCK-CYCLIC(?), s, and ¢ are called the source distribution, the
destination distribution, the source distribution factor, and the destination distribution
factor of the redistribution, respectively.

Definition 2: Given an s — ¢ redistribution on A[1: N] over M processors, the source local
array of processor P,, denoted by SLA,[0: N/M — 1], is defined as the set of array elements
that are distributed to processor P; in the source distribution, where 0 =i = M — 1. The
destination local array of processor P;, denoted by DLA[0:N/M — 1], is defined as the set
of array elements that are distributed to processor P; in the destination distribution, where
0=j=M-1.

Definition 3: Given an s — ¢ redistribution on A[1:N] over M processors, the source
processor of an array element in A[1:N] or DLA[0:N/M — 1] is defined as the processor
that owns the array element in the source distribution, where 0 = j = M — 1. The
destination processor of an array element in A[1:N] or SLA,[0: N/M — 1] is defined as the
processor that owns the array element in the destination distribution, where 0 =i = M —
1.

Definition 4: Given an s — ¢ redistribution on A[1:N] over M processors, we define
SG:SLA,[m] — A[k] is a function that converts a source local array element SLA,[m] of P,
to its corresponding global array element A[k] and DG :DLA [n] — A[/] is a function that
converts a destination local array element DLA [n] of P; to its corresponding global array
element A[l], where | =k, /[=Nand 0 =m, n = N/M — 1.

Definition 5: Given an s — ¢ redistribution on A[1:N] over M processors, a global
complete cycle (GCC) of A[1: N] is defined as M times the least common multiple of s and
t,i.e., GCC = M X lem(s, t). We define A[1: GCC] as the first global complete cycle of
A[1:N], A[GCC + 1:2 X GCC] as the second global complete cycle of A[1:N], and so
on.

Definition 6: Given an s — ¢ redistribution, a local complete cycle (LCC) of a local array
SLA[0:N/M — 1] (or DLA[0:N/M — 1]) is defined as the least common multiple of s and
t,i.e., LCC = lem(s, 1). We define SLA,[0:LCC — 1] (DLA,[0: LCC — 1]) as the first local
complete cycle of SLA[0:N/M — 1] (DLA[0:N/M — 1]), SLA[LCC:2 X LCC — 1]
(DLA[LCC:2 X LCC — 1]) as the second local complete cycle of of SLA[0:N/M — 1]
(DLA[0:N/M — 1]), and so on.

Definition 7: Given an s — ¢ redistribution, for a source processor P, (or destination
processor P)), a class is defined as the set of array elements in an LCC of SLA; (DLA;) with
the same destination (or source) processor. The class size is defined as the number of array
elements in a class.

Given a one-dimensional array A[1:30] and M = 3 processors, Figure 2(a) shows a
BLOCK-CYCLIC(s = 10) to BLOCK-CYCLIC(t = 2) redistribution on 4 over M pro-

ARRAY REDISTRIBUTION 259

Source : BLOCK-CYCLIC(10) Destination : BLOCK-CYCLIC(2)
index|0 I 2 3 4 5 6 7 &8 9 index|0 I 2 3 4 5 6 7 8 9
Po |12 18 127 8131419202526
P, |11121314151617 18 19 20 P, 51621222728
P, 21222324 252627 28 29 30 P 11217 18 23 24 29 30
(a)

DPS[Pg] = {Po, P1, P2}
SDS[Po, Po] = {(lo, A[1]), (I1, A[2D), (s, A[7]), (Ir, A[8])}, SDS[Po, P1] = {(L2, A[3D),
(13, A[4]), (Is, A[9]), (I, A[101)}, SDS[Po, P2] = {(ls, A[S]), (s, A[6])}
SPS[Po] = {Po, P1, P2}
RDS[Py, Po] = {(lo, A[1]), (L, A[2]), (2, A[7D), (I3, A[8])}, RDS[Po, P1] = {(ls, A[13]),
(Is, A[14]), (Is, A[191), (17, A[20])}, RDS[Py, P;] = {(Is, A[25]), (ls, A[26])}

(b)

Figure 2. (a) A BLOCK-CYCLIC (10) to BLOCK-CYCLIC (2) redistribution on a one-dimensional array
A[1:30] over 3 processors. (b) The send/receive data sets and the source/destination processor sets that are
computed by processor P,,.

cessors. In this paper, we assume that the local array index starts from 0 and the global
array index starts from 1. In Figure 2(a), we use the italic numbers and the normal
numbers to represent the local array indices and the global array indices, respectively. In
Figure 2(a), the global complete cycle (GCC) is 30 and the local complete cycle (LCC) is
10. For source processor P, array elements SLA,[0, 1, 6, 7], SLA,[2, 3, 8, 9], and SLA[4,
5] are classes in the first LCC of SLA,,. The size of three classes SLA([0, 1, 6, 7], SLA,[2,
3, 8, 9], and SLA[4, 5] are equal to 4, 4 and 2 respectively.

To perform the redistribution shown in Figure 2(a), in general, a processor needs to
compute the send data sets, the receive data sets, the source processor set, and the
destination processor set. Figure 2(b) illustrates these sets that are computed by processor
P, for the redistribution shown in Figure 2(a). In Figure 2(b), element (/,, 4[5]) in
SDS[P,, P,] denotes that the source local array element with index = 4 of P, is A[5],
which will be sent to processor P,. Element (/g, A[25]) in RDS[P,, P,] denotes that the
array element A[25] that received from P, should be put in DLA([8]. In the send phase,
processor P, sends data to P, P,, and P,. The sets of array elements that P, will send to
P, P,, and P, are {A[1], A[2], A[7], A[8]}, {A[3], A[4], A[9], A[10]}, and {A[5], 4A[6]},
respectively. Since a processor has known the send data set for each destination processor,
it only needs to pack these data into messages and send messages to their corresponding
destination processors. In the receive phase, processor P, receives messages from P, P,

260 CHING-HSIEN HSU AND YEH-CHING CHUNG

and P,. When it receives messages from its source processors, it unpacks these messages
by placing elements in messages to their appropriate local array positions according to the
receive data sets.

The method mentioned above is not efficient at all. When the array size is large, the
computation overheads is great in computing the send/receive data sets. In fact, for kr —
r and r — kr array redistribution, we can derive packing and unpacking information that
allows one to pack and unpack array elements without calculating the send/receive data
sets. In the following subsections, we will describe how to derive the packing and un-
packing information for k» — r and » — kr array redistribution.

3.1. kr — r redistribution
3.1.1. Send phase.

Lemma 1: Given an s — ¢ redistribution on A[1:N] over M processors, SLA,[m], SLA,[m
+ LCC], SLA[m + 2 X LCC], ..., and SLA,[m + (N/GCC — 1) X LCC] have the same
destination processor, where 0 =i =M — land 0 = m = LCC — 1.

Proof In a kr — r redistribution, GCC = M X lem(s,t) and LCC = Icm(s,f). In the source
distribution, for a source processor P,, if the global array index of SLA,[m] is «, then the
global array indices of SLA,[m + LCC], SLA,[m + 2 X LCC], ..., and SLA,[m + (N/GCC
— 1) X LCC] are o« + GCC, o + 2 X GCC, ..., and o + (N/GCC — 1) X GCC,
respectively, where 0 =i =M — 1,0 =m = LCC — 1. Since GCC = M X lcm(s,t) and
LCC = Icm(s,t), in the destination distribution, if 4[] is distributed to the destination
processor P, so are A[a + GCC], A[a + 2 X GCC], ..., and A[a + (N/GCC — 1) X
GCC)l,where 0 =j =M — land 1 = a = GCC. |

Lemma 2: Given a kr — r redistribution on A4[1:N] over M processors, for a source
processor P; and array elements in SLA,[x X LCC:(x + 1) X LCC — 1], if the destination
processor of SLA [x X LCC] is P,, then the destination processors of SLA;[x X LCC: x X
LCC +r — 1], SLAJx X LCC + r:x X LCC + 2r — 1], ..., SLAJx X LCC + (k — 1)
X rix X LCC + kr — 1] are Pj, P, pui+ 101 > Prodg+k—1.1) T€SPECtively, where 0 =
X=NGCC—1land0=ij;j=M-—1

Proof In a kr — r redistribution, LCC is equal to kr. In the source distribution, for each
source processor P, array elements in SLA,[x X LCC:(x + 1) X LCC — 1] have con-
secutive global array indices, where 0 =< x =< N/GCC — 1 and 0 =i = M — 1. Therefore,
in the destination distribution, if SLA4,[x X LCC] is distributed to processor P, then SLA [x
X LCC: x X LCC + r — 1] will be distributed to P;. Since the destination distribution is
in BLOCK-CYCLIC(r) fashion, SLA,[x XLCC + r: x X LCC + 2r — 1], SLA[x X LCC
+2rx X LCC + 3r — 1], ..., SLAJx X LCC + (k — 1) X r:x X LCC + kr — 1] will
be distributed to processor P, i+ 1.4 Prmod+2.:my -+ > Prmodg+k—1,11) T€SPECtively, where
0=x=NGCC—1land0=ij=M-—1. |

ARRAY REDISTRIBUTION 261

Given a kr — r redistribution on A[1:N] over M processors, for a source processor P,
if the destination processor for the first array element of SLA4, is P;, according to Lemma
2, array elements in SLA,[0:r — 1], SLA,[r:2r — 1], ..., and SLA,[LCC — r:LCC — 1]
will be sent to destination processors P, P, ui+1.a0 «-+» 04 Ppyouiiik—1 a1y T€SPECtively,
where 0 = i,j = M — 1. From Lemma 1, we know that SLA,[0:7 — 1], SLA,[JLCC:LCC
+r — 1], SLA,[2 X LCC:2 X LCC + r — 1], ..., and SLA,[(N/GCC — 1) X LCC:(N/
GCC — 1) X LCC + r — 1] have the same destination processor. Therefore, if we know
the destination processor of SLA,[0], according to Lemmas 1 and 2, we can pack array
elements in SLA4; to messages directly without computing the send data sets and the
destination processor set. For example, a BLOCK-CYCLIC(6) to BLOCK-CYCLIC(2)
redistribution on A[1:24] over M = 2 processors is shown in Figure 3(a). In this example,
for source processor P, the destination processor of SLA,[0] is P,. According to Lemma
2,SLA4,[0, 1,4, 5] and SLA[2, 3] should be packed to messages msg, and msg, which will
be sent to destination processors P, and P, respectively. From Lemma 1, SLA4,[6, 7, 10,
11], and SLA([8, 9] will also be packed to messages msg, and msg,, respectively. Figure
3(b) shows the messages packed by each source processor.

Given a kr — r redistribution over M processors, for a source processor P,, the desti-
nation processor for the first array element of SLA; can be computed by the following
equation:

M = mod(rank(P;) X k, M) (1)

where m is the destination processor for the first array element of SLA; and rank(P;) is the
rank of processor P,.

3.1.2. Receive phase.
Lemma 3: Given a kr — r redistribution on A4[1:N] over M processors, for a source

processor P; and array elements in SLA,[x X LCC:(x + 1) X LCC — 1], if the destination
processor of SG(SLA,[a,)), SG(SLA[a,]), ..., SG(SLA[a,_,]) is P;, then SG(SLA [a,]),

Source : BLOCK-CYCLIC(6) Destination : BLOCK-CYCLIC(2)
index| 0l 1]2]3]4]s5]6]7]8]9lio[i1] [index{o]1]2]3]4]5(6l7|8]9]i0]11
po 121370415 e6[13)14[15116[17]18 po b1t2}sleigtio]13)1a]17]18[21]22
b 20[21[22[23[24] [p, e 11]12]15]16[19]20[23]22

msgol 12151611314 (17{18] |msgo
msg1| 314]15|16 msgi

19{20]23]24

Messages sent by Py Messages sent by P,
(a) (b)

Figure 3. (a) A BLOCK-CYCLIC(6) to BLOCK-CYCLIC(2) redistribution on A[1:24] over M = 2 processors.
(b) Messages packed by source processors.

262 CHING-HSIEN HSU AND YEH-CHING CHUNG

SG(SLA[a,]), ..., SG(SLA[fa,_]) are in the consecutive local array positions of
DLAJ0:N/M — 1], where 0 = i,j =M — 1,0 = x = N/GCC — 1, and x X LCC = a,
<a <ag<..<a,_; <(x+1)XLCC

Proof In a kr — r redistribution, LCC is equal to kr. In the source distribution, for each
source processor P,, array elements in SLA,[x X LCC:(x + 1) X LCC — 1] have con-
secutive global array indices, where 0 =i =M — 1 and 0 = x = N/GCC — 1. Therefore,
in the destination distribution, if SG(SLA,[a,]), SG(SLA[a,]), ..., SG(SLA,[a,_,]) will be
distributed to processor P; and SG(SLA,[ao]) = DG(DLA[a]), then SG(SLA[a,]) =
DG(DLA[a + 1], SG(SLA/[a,]) = DG(DLA[a + 2]), ..., SG(SLA [a,_,]) = DG(DLA[«
+y—1]),where0 =i, j=M—-1,0=x=NGCC—landx X LCC=qa, < a, <
a, <..<a,; <@+ 1)XLCC [|

Lemma 4: Given a kr — r redistribution on A[1:N] over M processors, for a source
processor P,, if SLA,[a] and SLA,[b] are the first array element of SLA,[x X LCC:(x + 1)
X LCC — 1] and SLA,[(x + 1) X LCC:(x + 2) X LCC — 1], respectively, with the same
destination processor P; and SG(SLA,[a]) = DG(DLA[a]), then SG(SLA,[b]) = DG(D-
LAj[a+kr]),wher60§i,jSM— ,0=x=NGCC —2,and 0 = a = NM — 1.

Proof In a kr — r redistribution, GCC and LCC are equal to Mkr and kr, respectively. In
the source distribution, for a source processor P,, if SLA,[a] and SLA,[b] are the first array
element of SLA,[x X LCC:(x + 1) X LCC — 1] and SLA,[(x + 1) X LCC:(x + 2) X LCC
— 1], respectively, with the same destination processor P;, according to Lemma 1, SL4,[b]
= SLAJa + LCC], where 0 = i,j =M — 1 and 0 = x = N/GCC — 2. Furthermore, if
SG(SLA,[a]) is A[u], then SG(SLA,[a + LCC]) is A[u + GCC], where 1 = u = N. In the
destination distribution, since LCC = kr and GCC = Mkr, the number of array elements
distributes to each destination processor in a global complete cycle of A[1:N] is kr.
Therefore, if A[u] = DG(DLA,[a]), then A[u + GCC] = DG(DLA[a + kr]), where 0 <
o< NM— 1. |

Given a kr — r redistribution on A[1: N] over M processors, for a destination processor
P, if the first element of a message (assume that it was sent by source processor P;) will
be unpacked to DLA[a] and there are vy array elements in DLA[0:LCC — 1] whose
source processor is P,;, according to Lemmas 3 and 4, the first y array elements of the
message will be unpacked to DLAJa:a + vy — 1], the second <y array elements of the
message will be unpacked to DLA[a + kr:a + kr + y — 1], the third -y array elements
of the message will be unpacked to DLA,[a + 2kr:a + 2kr + y — 1], and so on, where
0=i,j=M-—1and 0 = a = LCC. Therefore, for a destination processor P,, if we know
the values of vy (the number of array elements in DLA,[0:LCC — 1] whose source
processor is P;) and « (the position to place the first element of a message in DLA4)), we
can unpack elements in messages to DLA; without computing the receive data sets and the
source processor set. For the redistribution shown in Figure 3(a), Figure 4 shows how a
destination processor P, unpacks messages using the unpacking information (values of o
and 7). In this example, for destination processor P, values of (o, y) for messages msg,
and msg, that are received from source processors P, and P, are (0, 4) and (4, 2),

ARRAY REDISTRIBUTION 263

(o, P=(0, 4) (a, N=(4,2)

msgo received from Py msg received from P,
[1]2]5]6[13[14]17]18] ;

14 |17

The destination local array of Py

Figure 4. Unpack messages using the unpacking information.

respectively. Therefore, destination processor P, unpacks the first 4 elements of msg, to
DLA[0:3] and the second 4 elements of msg, to DLA,[6:9]. The first and the second 2
elements of msg, will be unpacked to DLA,[4:5] and DLA,[10:11], respectively.

Given a kr — r redistribution on A[1: N] over M processors, for a destination processor
P, the values of a and y can be computed by the following equations:

v = (WMO+ Tmod((rank(P)) + M — mod(rank(P,) X k, M)),M) < mod(k, M)])
Xr 2)

a = (Ltank(P;) X kIMU+ T[(rank(P)) < mod(rank(P;) X k,M)]) X r (3)

Where rank(P;) and rank(P)) are the ranks of processors P; and P,. I'[¢] is called Iverson’s
function. If the value of e is true, then I'[e] = 1; otherwise I'[e] = 0.
The kr — r redistribution algorithm is described as follows.

Algorithm kr — r_redistribution(k, r, M)

/*Send phase*/

1. i = MPI_Comm_rank();

2. max_local_index = the length of the source local array of processor P;;
3. the destination processor of SLA,[0] is m = (k X i) mod M;

/*Packing data sets*/

4. index = 1; lengthy = 1, where 8 =0, ..., M — 1;

5. while (index = max_local_index)

6. {d=mj=1

7. while (G = k) && (index = max_local_index))
8 {1=1,

264 CHING-HSIEN HSU AND YEH-CHING CHUNG

9. while ((! = r) && (index = max_local_index))
10. { out_buffers[lengths++] = SLA[index+ +1;
11. I++;}

12. jt+;if (3= M) 5 =0else d++;}

13. }

14. Send out_buffers to processor Ps, where 8 = 0, ..., M — 1;

/*Receive phase*/

15. max_cycle = max_local_index | kr;

16. Repeat m = min (M, k) times

17. Receive message buffer_in, from source processor P;;

18. Calculate the value of vy for message buffer_in; using Equation (2);

19. Calculate the value of o for message buffer_in; using Equation (3);
/*Unpacking messages*/

20. index = «; length = 1;j = 0;

21. while (j = max_cycle)

22. {index = o +j X kr; 1 = 1;

23. while (/ = v)

24. { DLA[index++] = buffer_in,[length+ +1;
25. I++;}

26. jt+;}

end_of _kr — r_redistribution

3.2. r — kr redistribution
3.2.1. Send phase.

Lemma 5: Given an » — kr redistribution on A[1:N] over M processors, for a source
processor P; and array elements in SLA,[x X LCC:(x + 1) X LCC — 1], if the destination
processor of SG(SLA[a,)), SG(SLA[a,]), ..., SG(SLA[a,_]) is P;, then SG(SLA[a)),
SG(SLA;[a,]), ..., SG(SLA,a,_,]) are in the consecutive local array positions of
SLAJO:N/M — 1], where 0 =i,j =M — 1,0 =x = N/GCC — 1, and x X LCC = q,
<a<a<..<ag,_;<@x+1) XLCC

Proof In an r — kr redistribution, LCC is equal to kr. For a destination processor P, array
elements in DLA;[x X LCC:(x + 1) X LCC — 1] have consecutive global array indices,
where 0 =j =M — 1 and 0 = x = N/GCC — 1. Therefore, in the source distribution, if
DG(DLAj[ay)), DG(DLA[a,]), ..., DG(DLA/[a,_]) are distributed to source processor P;
in the source distribution, and DG(DLA[ay]) = SG(SLA,[v]), then DG(DLA[a,]) =
SG(SLA,[v + 1)), DG(DLA/[a,]) = SG(SLA[v + 2]), ..., DG(DLAJa,_]) = SG(SLA,[v
+n—1]),where0 =i j=M—1,0=x = NGCC — l,and x X LCC=qa, < a; <
a <..<a, <@+ 1) X LCC. [

Given an r — kr redistribution on 4[1: N] over M processors, for a source processor P,
if the destination processor for the first array element of SLA, is P; and there are u classes,

ARRAY REDISTRIBUTION 265

C,, C,, Cy, ..., and C, in SLAJ0:LCC — 1] (assume that the indices of local array
elements in these classes have the order C; < C, < C; <...< C, and the destination
processors of Cy, Cy, Cs, ..., and C, are P;, P;, P, , ..., and P, , respectively), according
to Lemma 5, we know that

=7
J» = mod((IC,| X M)/kr + j;, M),

3 = mod((IC, X MYkr + j,, M),

Ju = mod((IC,,_{| X M)/kr + j,_y, M),
where 1 < u < min(k, M) and |C,|, ..., |C,_,| are class size of C, ..., C,_,, respectively.
This means that array elements SLA4,[0:|C,| — 1] will be sent to destination processor P,
array elements SLA,[|C,| : |C,| + |C,| — 1] will be sent to destination processor P,
and array elements SLA[|C,| + |C,| +...+ |C,_,| : |C,| + |C,| +...+|C,| — 1] will be
sent to destination processor P, . From Lemma 1, we know that SLA[0: |c,| — 11,
SLAJLCC:LCC + |C,| — 1], SLA,[2 X LCC:2 X LCC + |C,| — 1], ..., and SLA,[(N/
GCC — 1) X LCC:(N/GCC — 1) X LCC + |C,| — 1] have the same destination
processor. Therefore, if we know the destination processor of SLA4,[0] and the values of
(1G], P,). (|G, Py), ..., and (|C,|, P;), we can pack array elements in SLA, to messages
directly without computing the send data sets and the destination processor set. For
example, a BLOCK-CYCLIC(2) to BLOCK-CYCLIC(6) redistribution on A[1:24] over
M = 2 processors is shown in Figure 5(a). In this example, for source processor P, the
destination processor of SLA,[0] is P,. There are two classes C,; and C, in SLA,[0: LCC —
1]. The destination processors of C, and C, are P, and P, respectively. The size of classes
C, and C, are 4 and 2, respectively. According to Lemma 5, SLA([0, 1, 2, 3], and SLA[4,

Source : BLOCK—CYCLIC(2) Destination : BLOCK~CYCLIC(6)

index | 0 3la]slel7]8]9]10l1s 91011
18[21]22 16]17[18

20[23]24 22[23]24

17|18
23124
Messages sent by Py Messages sent by P,
(a) (b)

Figure 5. (a) A BLOCK-CYCLIC(2) to BLOCK-CYCLIC(6) redistribution on A[1:24] over M = 2 processors.
(b) Messages packed by source processors.

266 CHING-HSIEN HSU AND YEH-CHING CHUNG

5] should be packed to messages msg, and msg, which will be sent to destination pro-
cessors P, and P,, respectively. From Lemma 1, SLA[6, 7, 8, 9], and SLA,[10, 11] will
also be packed to messages msg, and msg,, respectively. Figure 5(b) shows the messages
packed by each source processor.

Given an r — kr redistribution on A[1: N] over M processors, for a source processor P,
the destination processor for the first array element of SLA; can be computed by equation
(5) and the number of array elements in SLA4,[0: LCC — 1] whose destination processor is
P; can be computed by equation (4). Equations (4) and (5) are given as follows:

IC| = (/MU+ I'lmod(rank(P;) + M — mod(rank(P))
X k,M)),M) < mod(k,M)]) X r %)
¢ = Gank(P,)/k0 (5)

Where ¢ is the destination processor for the first array element of SLA; and rank(P,) and
rank(P;) are the ranks of processors P; and P;, respectively. I'[e] is the Iverson’s function
defined in Equations 2 and 3.

3.2.2. Receive phase.

Lemma 6: Given an r — kr redistribution on A[1:N] over M processors, for a source
processor P; and array elements in SLA;[x X LCC:(x + 1) X LCC — 1], if the destination
processor of SG(SLA[a,]), SG(SLA,[a,]), ..., SG(SLA[a,_,]) is P, then array elements of
SG(SLAay)), ..., SG(SLAja,_1); SG(SLA|a,]), ..., SG(SLA[ay,_,]); ..., and
SG(SLA[a,_,]), ..., SG(SLA,a,_,]) are in the consecutive local array positions of
DLAj[O:N/M — 1], where0 =i, j=M—1,0=x = N/GCC — 1 and x X LCC = q,
<a; < ay <...< a,_; < (x+1)XLCC. Furthermore, if SG(SLA[ay]) = DG(DLA,[v]),
then SG(SLA,[a,]) = DG(DLA,[v + Mr]), SG(SLA,[a,,]) = DG(DLA,[v + 2Mr]), ..., and
SG(SLA[a,_,])) = DG(DLA[v + (n/r — 1) X Mr]), where 0 = v = N/M — 1.

Proof In an r — kr redistribution, GCC = Mkr and LCC = kr. In the source distribution,
for each source processor P,, every r array elements in SLA;[x X LCC:(x + 1) X LCC —
1] have consecutive global array indices, where 0 =i =M — 1 and 0 = x = N/GCC —
1. Since LCC = kr, in the destination distribution, if SG(SLA,[a,]), SG(SLA,[a,]), ...,
SG(SLA [a,,]) will be distributed to processor P, then array elements of SG(SLA [a,]),
..., SG(SLA[a,_]); SG(SLA]a,]), ..., SG(SLA,[a,,_4]); ...; and SG(SLA/[a,_,]), --.,
SG(SLA,[a,,]) are in the consecutive local array positions of DLA[0:N/M — 1], where
0=i,j=M-1,0=x=NGCC—1landx X LCC=aqgy,<a,<a, <..<a, ; <
(x + 1) X LCC.

Since in the source distribution, for each source processor P;, every r array elements in
SLAJx X LCC:(x + 1) X LCC — 1] have consecutive global array indices, if
SG(SLA[a,]) = A[B], then SG(SLA,[a,]) = A[B + Mr], SG(SLA[a,,]) = A[B + 2Mr], ...,
and SG(SLAa,_,]) = A[B + (nr — 1) X Mr], where l =B =N — 1,0 = x = N/GCC

ARRAY REDISTRIBUTION 267

(B.8=(0,4 B, 9 =(2,2),

msgo received from Py msgi received from P,
[1[2]5]6]13[14]17]18]

The destination local array of Py

Figure 6. Unpack messages using the unpacking information.

—l,andx X LCC=ay<a, <a, <...<a,_; <(x + 1) X LCC. Since the destination
processor of SG(SLA,[a,]), SG(SLA[a;]), ..., SG(SLA[a,_,]) is P, in the destination
distribution, if A[B] = DG(DLA; [v]), we have A[B + Mr] = DG(DLA,[v + Mr]), A[p +
2Mr] = DG(DLA[v + 2Mr]), ..., and A[B + (n/r — 1) X Mr] = DG(DLA][v + (n/r —
1) X Mr]), where 0 = v = N/M — 1. |

Given an r — kr redistribution on A[1:N] over M processors, for a destination proces-
sor P, if the first array element of the message (assume it was sent by source processor
P;) will be unpacked to DLA,[B] and there are & array elements in DLA,[0:LCC — 1]
whose source processor is P;. According to Lemma 6, the first & array elements of this
message will be unpacked to DLA[B:B + r — 1], DLA[B + Mr:B + Mr + r — 1],
DLA[B + 2Mr:B + 2Mr + r — 1], ..., and DLA[B + 3/r — 1) X Mr:B + (8/r — 1)
X Mr + r — 1]; the second & array elements of the message will be unpacked to DLA [
+hkr:B + ke +r— 11, DLAIB + kr + Mr:B + kr + Mr + r — 1], DLA[B + kr + 2Mr:
B+ kr +2Mr +r — 1], ..., and DLAJ[B + kr + 3/r — 1) X Mr:B + kr + (3/r — 1)
X Mr +r — 1], and so on, where 0 =i, =M — 1l and 0 = 3 = N/M — 1. Therefore,
if we know the values of & (the number of array elements in DLA[0:LCC — 1] whose
source processor is P;) and [(the position to place the first element of a message in
DLA;), we can unpack messages to DLA; without computing the receive data sets and the
source processor set. For the redistribution shown in Figure 5(a), Figure 6 shows how a
destination processor P, unpacks messages using the unpacking information (values of 3
and d). In this example, for destination processor P, values of (3, 8) for messages msg,
and msg, that are received from source processors P, and P, are (0, 4) and (2, 2),
respectively. Therefore, destination processor P, unpacks the first 2 elements of msg, to
DLA[0:1] and the second 2 elements of msg, to DLA,[4:5]. The third and the fourth 2
elements of msg, will be unpacked to DLA[6:7] and DLA,[10:11], respectively. The first
and second 2 elements of msg, will be unpacked to DLA,[2:3] and DLA,[8:9], respec-
tively.

268 CHING-HSIEN HSU AND YEH-CHING CHUNG

Given an r — kr redistribution on A[1:N] over M processors, for a destination proces-
sor P, the values of 3 and & can be computed by the following equations:

d = (/MU+ I'lmod((M + rank(P;) — mod(rank(P))
X k, M)), M) < mod(k, M)]) X r (6)

B = mod(M + rank(P,) — mod(rank(P;) X k,M),M) X r (7)

Where rank(P;) and rank(P;) are the ranks of processors P; and P, respectively. I'[e] is the
Iverson’s function defined in Equations 2 and 3.
The r — kr redistribution algorithm can be described as follows.

Algorithm r — kr_redistribution(k, r, M,)

/*Send phase*/
1. i = MPI Comm_rank();
2. max_local_index = the length of the source local array of processor P;;
3. the destination processor of SLA,[0] is ¢ = i/k;
4. m = min(k, M); j, = ¢;
5. Calculate jy, j3, -« fms
6. Calculate class size |CJW| using Equation (4), where w = 1, ..., m;
/*Packing data sets*/
7. index = 1; length; = 1, where j = 0, ..., M — 1;
8. while (index = max_local_index)

9. {t=1;

10. while((z = m)&&(index = max_local_index))

I {j=jsl=1

12. while((/ = |C/~|) && (index = max_local_index))
13. { out_buﬁfe}fi[lengthi+ +] = SLA[index++1;
14. I++;}

15. t++;}

16. }

17. Send out_buffer; to processor P, where j = ji, o, -+ Ju-

/*Receive phase*/

18. max_cycle = max_local_index divided by kr

19. Repeat m = min (M, k) times

20. Receive message buffer_in; from source processors P;.

21. Calculate the value of & for buffer_in; using Equation (6);

22. Calculate the value of B for buffer_in; using Equation (7);
/*Unpacking data sets*/

23. index = B; length = 1;j = 0; count = 0;

24. while (j = max_cycle)

25. { count = 1; index = B + j X kr;

26. while (count = 9)

ARRAY REDISTRIBUTION 269

217. {I1=1;

28. while (/ = r)

29. { DLA[index++] = buffer_in[length++1];
30. count ++; [++; }

31 index + = (M — 1) X r; }

32. Jt+53

end_of _kr — r_redistribution

4. Performance evaluation and experimental results

To evaluate the performance of the proposed algorithms, we have implemented the pro-
posed methods along with the Thakur’s methods [24, 25] and the PITFALLS method [21,
22] on an IBM SP2 parallel machine. All algorithms were written in the single program
multiple data (SPMD) programming paradigm with C + MPI codes. To get the experi-
mental results, we have executed those programs for different kinds of kr — r and r — kr
array redistribution with various array size N on a 64-node IBM SP2 parallel machine,
where N € {1.28M, 2.56M, 3.84M, 5.12M, 6.4M} and k € {5, 25, 50, 100, N/64}. For
a particular redistribution, all algorithms were executed 20 times. The mean time of the 20
tests was used as the time of an algorithm to perform the redistribution. Time was
measured by using MPI_Wtime(). The single-precision array was used for the test. The
experimental results were shown in Figure 7 to Figure 11. In Figure 7 to Figure 11, the Krr
represents the algorithms proposed in this paper. The Thakur and the PITFALLS represent
the algorithms proposed in [24, 25] and [21,22], respectively.

Figure 7 gives the execution time of these algorithms to perform BLOCK-CYCLIC(10)
to BLOCK-CYCLIC(2) and BLOCK-CYCLIC(2) to BLOCK-CYCLIC(10) redistribution
with various array size, where £ = 5. In Figure 7(a), the execution time of these three
algorithms has the order T(Krr) < T(PITFALLS) < T(Thakur). From Figure 7(c), for the
kr — r redistribution, we can see that the computation time of these three algorithms has
the order 7.,,,,(Krr) < T,,,,(Thakur) < T, (PITFALLS). For the PITFALLS method, a
processor needs to find out all intersections between source and destination distribution
with all other processors involved in the redistribution. Therefore, the PITFALLS method
requires additional computation time at communication sets calculation. For the Thakur’s
method, a processor needs to scan its local array elements once to determine the desti-
nation (source) processor for each block of array elements of size r in the local array. The
Thakur’s method also requires additional computation time at communication sets calcu-
lation. However, for the Krr method, based on the packing/unpacking information derived
from the kr — r redistribution, it can pack/unpack array elements to/from messages
directly without calculating the communication sets. Therefore, the computation time of
the Krr method is the lowest one among these three methods.

For the same case, the communication time of these three algorithms has the order
T o Krr) < T, (PITFALLS) < T,,,,..(Thakur). For the Krr method and the PITFALLS
method, both methods use asynchronous communication schemes. The computation and
the communication overheads can be overlapped. However, the K7 method unpacks any

270 CHING-HSIEN HSU AND YEH-CHING CHUNG

350 250
E —— Thakur g —* Thakur
|
0 g ThpmeALs g Teemraus
— 200 K
250 Krr rr
200
150
150
100 100
50
ARRAY SIZE (N=1.28M single precision) s0 ARRAY SIZE (N=1.28M single precision)
0
N N N aN SN N N N aN 5N
(a) (b)
kr—r r—kr
Thakur PITFALLS Krr Thakur PITFALLS Krr

Comp. Comm. Comp. Comm.

Comp. Comm.

Comp. Comm.

Comp. Comm.

Comp. Comm.

2N
3N
4N
SN

36.364 31.795 41.660
75.133 57.815 81918 22.843
103.638 96.154 114.089 26.120

10.170

148.964 115.740 167.094 42.100
195.568 135.642 175.198 61.680

32.126 8.529
57.657 21.754
92.106 23.863
119.046 36.100
144.551 49.408

41.534 8.933
67.439 25.301
101.317 44.727
134.124 56.519
169.880 66.725

42.043 15.052
70.945 27.761
104.990 48.896
145.050 59.785

163.399 75.375

38.183 8.582
65.766 25.832
93.624 42,967
114.663 54.100
162.268 67.003

Time(ms)
(c)

Figure 7. Performance of different algorithms to execute a BLOCK-CYCLIC(10) to BLOCK-CYCLIC(2)
redistribution and vice versa with various array size (N = 1.28Mbytes) on a 64-node SP2. (a) The kr — r
redistribution. (b) The — kr redistribution. (c) The computation time and the communication time of (a) and

(b).

received messages in the receiving phase while the PITFALLS method unpacks messages
in a specific order. Therefore, the communication time of the Kr» method is less than or
equal to that of the PITFALLS method. For the Thakur’s method, due to the algorithm
design strateagy, it uses a synchronous communication scheme in the k» — r redistribu-
tion. In a synchronous communication scheme, the computation and the communication
overheads can not be overlapped. Therefore, the Thakur’s method has higher communi-
cation overheads than those of the Krr method and the PITFALLS method.

Figure 7(b) presents the exetution time of these algorithms for the » — kr redistribution.
The execution time of these three algorithms has the order T(Krr) < T(Thakur) < T(PIT-
FALLS). In Figure 7(c), for the » — kr redistribution, the computation time of these three
algorithms have the order 7..,,,,,(Krr) < T, (Thakur) < T, (PITFALLS). The reason is
similar to that described for Figure 7(a).

omp

ARRAY REDISTRIBUTION 271

ARRAY SIZE (N=1.28M single precision) ARRAY SIZE (N=1.28M single precision)

oN N 3N 4N SN ON 2N N 4N 5N
(a) (b)
kr—r r—kr
Thakur PITFALLS Krr Thakur PITFALLS Krr

Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm.

N 34932 39.847 43.805 23.501 28.336 13.536 34.413 16.346 48.389 29.418 31.594 16.384
2N 70.091 85.882 73.827 31.833 56.374 25.425 68.778 29.285 85.114 44.655 63.102 28.704
3N 118.017 120.472 135.841 32,920 94.381 30.287 99.957 48.886 124.429 53.545 94.800 41.287
4N 141.519 137.484 173.722 57.684 113.757 42.100 152,308 46.638 160.021 84.648 126.625 42.100
SN 179.806 139.634 209.926 59.450 151.592 52.920 191.431 67.190 219.808 72.622 158.830 66.876
Time(ms)

(c)

Figure 8. Performance of different algorithms to execute a BLOCK-CYCLIC(50) to BLOCK-CYCLIC(2)
redistribution and vice versa with various array size (N = 1.28M single precision) on a 64-node SP2. (a) The kr
— r redistribution. (b) The r — kr redistribution. (c) The computation time and the communication time of (a)
and (b).

For the communication time, the Thakur’s method and the K7 method have similar
communication overheads and are less than that of the PITFALLS method. In the r — kr
redistribution, all these three algorithms use asynchronous communication schemes. How-
ever, the Krr method and the Thakur’s method unpack any received message in the
receiving phase while the PITFALLS method unpacks messages in a specific order. There-
fore, the PITFALLS method has more communication overheads than those of the Krr
method and the Thakur’s method.

Figures 8, 9, and 10 are the cases when £ is equal to 25, 50, and 100, respectively. From
Figure 8 to Figure 10, we have similar observations as those described for Figure 7.

Figure 11 gives the execution time of these algorithms to perform BLOCK to CYCLIC
and vice versa redistribution with various array size. In this case, the value of & is equal
to N/64. From Figure 11(a) and (b), we can see that the execution time of these three
algorithms has the order T(Krr) < T(Thakur) < T(PITFALLS) for both kr — r and r —
kr redistribution. In Figure 11(c), for both k» — r and r — kr redistribution, the compu-

CHING-HSIEN HSU AND YEH-CHING CHUNG

272

£ —Tnakwr
300 g —8— PITFALLS
——Krr

200
150
100
50
0 ARRAY SIZE (N=1.28M single precision) 0 ARRAY SIZE (N=1.28M single precision)
N N 3N 4N SN N 2N 3N 4N SN
(a) (b)
kr—or r—kr
Thakur PITFALLS Krr Thakur PITFALLS Krr
Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm.
N 34996 52.990 69.069 19.960 28.638 17.704 35.690 19.942 48.628 26.227 31.754 19.590
2N 70.299 72.605 92.376 40.094 58.666 26.697 67.776 36.661 71.928 63.404 64.235 29.450
3N 101.153 98.645 148.98 41.841 85.748 37.670 101.702 48.266 122.045 56.000 96.599 43.544
4N 135.619 151.076 172.798 70.446 115.733 42.100 155.148 47.329 188.372 45.633 125.682 42.100
SN 189.154 164.476 201.033 92.933 140.428 68.043 188.093 63.568 223.770 84.105 165.061 59.070
Time(ms)
()

Figure 9. Performance of different algorithms to execute a BLOCK-CYCLIC(100) to BLOCK-CYCLIC(2)
redistribution and vice versa with various array size (N = 1.28M single precision) on a 64-node SP2. (a) The kr
— r redistribution. (b) The » — kr redistribution. (c) The computation time and the communication time of (a)
and (b).

tation time of theses three algorithms has the order T v,,,,,,,(K”’”) < T,opp(Thakur) < T,
(PITFALLS). The PITFALLS method has very large computation time compared to those
of the Krr method and the Thakur’s method. Th reason is that each processor needs to find
out all intersections between source and destination distribution with all other processors
in the PITFALLS method. The computation time of the PITFALLS method depends on the
number of intersections. In this case, there are N/64 intersections between each source and
destination processor. Therefore, a processor needs to compute [N/640X 64 intersections
which demands a lot of computation time when N is large. For the communication
overheads, we have similar observations as those described for Figure 7(b).

From the above performance analysis and experimental results, we can see that the Krr
method outperforms the Thakur’s method and the PITFALLS method for all test samples.

ARRAY REDISTRIBUTION 273

5000 3500
4500 é = Thakur
53]

4000 E ~—8— pITFALLS 300L "

——Krr a
3500 2500 g

i} ——
3000 E Thakur
2000 —®—PITFALLS

2500 —irr
2000 1500
1500) »

ARRAY SIZE (N=1.28M single precision) 1000
1600 ARRAY SIZE (N=1.28M single precision)
" " //

0 * 0 3
N 2N 3N aN 5N N N N N sN
(@) (b)
B—>C C-oB
Thakur PITFALLS Krr Thakur PITFALLS Krr

Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm.

N 60995 47.957 2604.27 23.433 25.217 21.403 71.295 20.927 2752.87 32.108 31.453 20.512
2N 132.927 61.863 2737.06 37.795 49.658 35.874 141.443 34.662 2774.36 43.613 57.855 34.786
3N 207.400 91.779 2829.74 49.372 73.716 48.813 218.876 39.928 2834.00 64.959 101.388 37.1490
4N 332.264 126.576 2784.76 59.221 99.822 42.100 277.103 45.309 2839.74 82.462 106.374 42.100

SN 308.744 134.895 2921.13 93.937 123.557 81.721 348.445 78.006 2904.35 96.881 156.440 72.246
Time(ms)

()

Figure 11. Performance of different algorithms to execute a BLOCK to CYCLIC redistribution and vice versa
with various array size (N = 1.28M single precision) on a 64-node SP2. (a) The BLOCK to CYCLIC redistri-
bution. (b) The CYCLIC to BLOCK redistribution. (c) The computation time and the communication time of (a)
and (b).

5. Conclusions

Array redistribution is usually used in data-parallel programs to minimizing the run-time
cost of performing data exchange among different processors. Since it is performed at
run-time, efficient methods are required for array redistribution. In this paper, we have
presented efficient algorithms for k& — r and » — kr redistribution. The most significant
improvement of our algorithms is that a processor does not need to construct the send/
receive data sets for a redistribution. Based on the packing/unpacking information that
derived from the k# — r and » — kr redistribution, a processor can pack/unpack array
elements to (from) messages directly. To evaluate the performance of our methods, we
have implemented our methods along with the Thakur’s method and the PITFALLS
method on an IBM SP2 parallel machine. The experimental results show that our algo-
rithms outperform the Thakur’s methods and the PITFALLS method. This result encour-
ages us to use the proposed algorithms for array redistribution.

274

CHING-HSIEN HSU AND YEH-CHING CHUNG

400

350

TIME(ms)

300

250

200

150

100

50

= Thakur
= DPITFALLS
—&—Krr

R ARRAY SIZE (N=1.28M single precision) o ARRAY SIZE (N=1.28M single precision)
N 2N 3N 4N 5N N 2N 3N 4N SN
(a) (b)
kr—r r—kr
Thakur PITFALLS Krr Thakur PITFALLS Krr
Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm. Comp. Comm.
N 34242 56.689 45490 33.120 28.089 16.140 33.440 18.615 67.028 27.673 29.489 18.615
2N 69.344 92207 100.996 56.120 53.568 28.459 65.311 36.997 104.210 46.929 58.536 32.359
3N 123528 113.691 137.049 68.470 76.972 42.646 112.608 38.567 142.419 66.427 92.456 38.358
4N 148.702 179.254 194.375 82.695 103.479 42.100 150.642 45.269 181.675 82.260 123.773 42.100
5N 187.916 197.152 234.207 88.120 135.932 58.247 181.544 65.916 233.561 85.919 148.389 59.917

Time(ms)

()

Figure 10. Performance of different algorithms to execute a BLOCK-CYCLIC(200) to BLOCK-CYCLIC(2)
redistribution and vice versa with various array size (N = 1.28M single precision) on a 64-node SP2. (a) The kr
— r redistribution. (b) The » — kr redistribution. (c) The computation time and the communication time of (a)
and (b).

Acknowledgements

The work of this paper was partially supported by NSC under contract NSC87-2213-E-
035-011.

References

1.

S. Benkner. Handling block-cyclic distribution arrays in Vienna Fortran 90. In Proceeding of Intl. Conf.
on Parallel Architectures and Compilation Techniques, Limassol, Cyprus, June 1995.

B. Chapman, P. Mehrotra, H. Moritsch, and H. Zima. Dynamic data distribution in Vienna Fortran. Proc.
of Supercomputing’93, pp. 284-293. Nov. 1993.

S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber, and S.-H. Teng. Generating Local Address and
Communication Sets for Data Parallel Programs. Journal of Parallel and Distributed Computing, vol. 26,
pp. 72-84. 1995.

ARRAY REDISTRIBUTION 275

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Y.-C Chung, C.-S Sheu and S.-W Bai. A Basic-Cycle Calculation Technique for Efficient Dynamic Data
Redistribution. In Proceedings of Intl. Computer Symposium on Distributed Systems, pp. 137-144. Dec.
1996.

J. J. Dongarra, R. Van De Geijn, and D. W. Walker. A look at scalable dense linear algebra libraries.
Technical Report ORNL/TM-12126 from Oak Ridge National Laboratory. Apr. 1992.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W. Tseng, and M. Wu. Fortran-D
Language Specification. Technical Report TR-91-170, Dept. of Computer Science. Rice University. Dec.
1991.

S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and P. Sadayappan. On the Generation of Efficient Data
Communication for Distributed-Memory Machines. Proc. of Intl. Computing Symposium, pp. 504-513.
1992.

S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and P. Sadayappan. On Compiling Array Expressions for
Efficient Execution on Distributed-Memory Machines. Journal of Parallel and Distributed Computing,
vol. 32, pp. 155-172. 1996.

High Performance Fortran Forum. High Performance Fortran Language Specification(version 1.1). Rice
University. November 1994.

S. Hiranandani, K. Kennedy, J. Mellor-Crammey, and A. Sethi. Compilation technique for block-cyclic
distribution. In Proc. ACM Intl. Conf. on Supercomputing, pp. 392-403. July 1994.

Edgar T. Kalns, and Lionel M. Ni. Processor Mapping Technique Toward Efficient Data Redistribution.
IEEFE Transactions on Parallel and Distributed Systems, vol. 6, no. 12. December 1995.

E. T. Kalns and L. M. Ni, DaReL: A portable data redistribution library for distributed-memory machines.
In Proceedings of the 1994 Scalable Parallel Libraries Conference II. Oct. 1994.

S. D. Kaushik, C. H. Huang, R. W. Johnson, and P. Sadayappan. An Approach to communication efficient
data redistribution. In Proceeding of International Conf. on Supercomputing, pp. 364-373. July 1994.
S. D. Kaushik, C. H. Huang, J. Ramanujam, and P. Sadayappan. Multiphase array redistribution: Mod-
eling and evaluation. In Proceeding of International Parallel processing Symposium, pp. 441-445. 1995.
S. D. Kaushik, C. H. Huang, and P. Sadayappan. Efficient Index Set Generation for Compiling HPF Array
Statements on Distributed-Memory Machines. Journal of Parallel and Distributed Computing, vol. 38,
pp. 237-247. 1996.

K. Kennedy, N. Nedeljkovic, and A. Sethi. Efficient address generation for block-cyclic distribution. In
Proceeding of International Conf. on Supercomputing, pp. 180—184, Barcelona. July 1995.

P-Z. Lee and W. Y. Chen. Compiler techniques for determining data distribution and generating commu-
nication sets on distributed-memory multicomputers. 29th IEEE Hawaii Intl. Conf. on System Sciences,
Maui, Hawaii. pp.537-546. Jan 1996.

Young Won Lim, Prashanth B. Bhat, and Viktor K. Prasanna. Efficient Algorithms for Block-Cyclic
Redistribution of Arrays. Proceedings of the Eighth IEEE Symposium on Parallel and Distributed Pro-
cessing, pp. 74-83. 1996.

Y. W. Lim, N. Park, and V. K. Prasanna. Efficient Algorithms for Multi-Dimensional Block-Cyclic
Redistribution of Arrays. Proceedings of the 26th International Conference on Parallel Processing, pp.
234-241. 1997.

L. Prylli and B. Touranchean. Fast runtime block cyclic data redistribution on multiprocessors. Journal of
Parallel and Distributed Computing, vol. 45, pp. 63-72. Aug. 1997.

S. Ramaswamy and P. Banerjee. Automatic generation of efficient array redistribution routines for dis-
tributed memory multicomputers. Frontier’95: The Fifth Symposium on the Frontiers of Massively Par-
allel Computation, pp. 342-349. Mclean, VA., Feb. 1995.

S. Ramaswamy, B. Simons, and P. Banerjee. Optimization for Efficient Array Redistribution on Distrib-
uted Memory Multicomputers. Journal of Parallel and Distributed Computing, vol. 38, pp. 217-228.
1996.

J. M. Stichnoth, D. O’Hallaron, and T. R. Gross. Generating communication for array statements: Design,
implementation, and evaluation. Journal of Parallel and Distributed Computing, vol. 21, pp. 150-159.
1994.

276

24.

25.

26.

217.

28.
29.

30.

31.

32.

CHING-HSIEN HSU AND YEH-CHING CHUNG

R. Thakur, A. Choudhary, and G. Fox. Runtime array redistribution in HPF programs. Proc. 1994 Scalable
High Performance Computing Conf., pp. 309-316. May 1994.

Rajeev. Thakur, Alok. Choudhary, and J. Ramanujam. Efficient Algorithms for Array Redistribution. /EEE
Transactions on Parallel and Distributed Systems, vol. 7, no. 6. June 1996.

A. Thirumalai and J. Ramanujam. HPF array statements: Communication generation and optimization.
3th workshop on Languages, Compilers and Run-time system for Scalable Computers, Troy. NY. May
1995.

V. Van Dongen, C. Bonello and C. Freehill. High Performance C - Language Specification Version 0.8.9.
Technical Report CRIM-EPPP-94/04—12. 1994.

C. Van Loan. Computational Frameworks for the Fast Fourier Transform. SIAM, 1992.

David W. Walker, and Steve W. Otto. Redistribution of BLOCK-CYCLIC Data Distributions Using MPI.
Concurrency: Practice and Experience, 8.9:707-728, Nov. 1996.

Akiyoshi Wakatani and Michael Wolfe. A New Approach to Array Redistribution: Strip Mining Redis-
tribution. In Proceeding of Parallel Architectures and Languages Europe. July 1994.

Akiyoshi Wakatani and Michael Wolfe. Optimization of Array Redistribution for Distributed Memory
Multicomputers. In Parallel Computing (submitted). 1994.

H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran - A Language Specifi-
cation Version 1.1. ICASE Interim Report 21. ICASE NASA Langley Research Center, Hampton, Vir-
ginia 23665. March, 1992.

