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ABSTRACT

Traditionally, to program a distributed memory multiprocessor,
a programmer is responsible for partitioning an application program
into modules or tasks, scheduling tasks on processors, inserting
communication primitives, and generating parallel codes for each
processor manually. As both the number of processors and the com-
plexity of problems to be solved increases, programming distributed
memory multiprocessors becomes difficult and error-prone. In a dis-
tributed memory multiprocessor, the program partitioning and sched-
uling play an important role in the performance of a parallel program.
However, how to find the best program partitioning and scheduling
so that the best performance of a parallel program on a distributed
memory multiprocessor can be achieved, is not an easy task. In this
paper, we present a parallel programming tool, PPT, to aid program-
mers to find the best program partitioning and scheduling and auto-
matically generate the parallel code for the single program multiple
data (SPMD) model on a distributed memory multiprocessor. An
example of designing a parallel FFT program by using PPT on an
NCUBE-2 is also presented.

I. INTRODUCTION

Many commercial distributed memory multipro-
cessors have been introduced, such as NCUBE-2[10]
and the Connection Machine 5 (CM-5)[18]. In gen-
eral, they provide the following execution models
for programmers:
1. Single Program Multiple Data (SPMD) Model -

The same code runs on multiple processors, with
each processor working on its own portion of the
data. The processors are loosely synchronized in
that certain statements execute at approximately
the same time on all processors.

2. Host Model - One or more SPMD programs are
invoked, as needed, by a master program running
on a host computer. This model arises frequently
when "parallelizing" code originally written for
a sequential computer.

3. Heterogeneous Model - Multiple parallel pro-
grams on multiple processors, passing data to
each other in a pipeline, or in customer/sever
fashion.

4. Asynchronous Model - Each processor or group
of processors run its own program, communicat-
ing with other processors through a protocol
created by the applications programmer. The

*Correspondence addressee



366 Journal of the Chinese Institute of Engineers, Vol. 18, No. 3 (1995)

asynchronous model places no constraints on
the interactions of the processors.

However, it is not an easy task to design a
parallel program on a distributed memory multipro-
cessor. Jobs such as choosing the execution model,
partitioning the problem into proceses, grouping
these processes into tasks, assigning each task to
a processor, and inserting synchronization primi-
tives for proper execution have to be performed
(manually or automatically).

In general, three approaches are used to develop
a parallel program on a distributed memory multipro-
cessor:
1. Manual Approach - A programmer is responsible

for performing all these jobs [15].
2. Automatic Approach - A restructuring compiler is

responsible for extracting parallelism and restruc-
turing sequential programs into parallel programs
automatically [12].

3. Hybrid (semi-automatic) Approach - A hybrid ap-
proach includes partial automation.

Programmers are error-prone to handle tedious
chores, like communication primitives insertion. For
example, system deadlock is the most common
problem, and is difficult to detect once the program
has been developed. Thus the manual approach is
not very useful for large applications. A recent
study on the performance of automatic paralleliza-
tion compilers by Cheng and Pase [3] has shown
that "automatic tools produce insufficient perfor-
mance improvement due to false dependencies".
Many researchers have used the hybrid approach
to develop parallel programs on distributed memory
multiprocessors [19,20]. They show that automatic
scheduling and synchronization produce better re-
sults than the manual approach.

In this paper, we present a parallel program-
ming tool PPT, which uses a hybrid approach, for
the SPMD model on a distributed memory multipro-
cessor. PPT can be used for distributed memory
multiprocessors with different interconnection
networks, such as the hypercube network, the fully-
connected network, the mesh network, and the fat
tree network (CM-5). It is easy to design and
debug a parallel program for the SPMD model. How-
ever achieving a balanced load among processors
in the SPMD model is not a trivial task since the
computation load for each processor may be dif-
ferent (especially for irregular problems). Another
important issue for programming a distributed
memory multiprocessor is to minimize the com-
munication cost among processors. The goal of
PPT is to provide tools for programmers to design a
parallel program that can be run on a distributed
memory multiprocessor efficiently (i.e. balanced
load and low communication cost).

Since program partitioning and scheduling play
an important role in the performance of a parallel
program on a distributed memory multiprocessor,
in PPT, we provide a performance estimation scheme
for programmers to evaluate their program parti-
tioning. For the scheduling part, in the present
development, we provide six scheduling algorithms
for static scheduling problems. Each scheduling
algorithm is characterized by using some parameters
provided in PPT. To use PPT to design a parallel
program on a target distributed memory multiproces-
sor, the programmer is responsible for the program
partitioning. PPT will help the programmer to
generate the corresponding directed-acyclic graph
(DAG) of the partitioned program, evaluate the
properties of the DAG, choose a scheduling algorithm
according to the properties of the DAG, perform
scheduling, insert the communication primitives,
generate the parallel code for the partitioned pro-
gram, and produce the performance measures for
each processor (such as the execution time).

Many parallel program developing tools have
been developed by researchers. A survey of related
parallel program developing tools is given in Section
2. The proposed parallel programming tool is de-
scribed in Section 3. An example of designing a
parallel FFT program by using PPT on an NCUBE-2
parallel computer is presented in Section 4.

II. RELATED WORK

Many parallel program developing tools have
been addressed in the literature. In [17], Snyder
proposed a parallel programming environment tool,
POKER, for distributed memory multiprocessors.
POKER provides a graphical representation of
communication structures.

In [2], Allen et al. presented a parallel program-
ming assistant, PTOOL. PTOOL performs sophisti-
cated dependency analysis, including advanced
interprocedural flow analysis. It identifies parallel
loops, extracts global variables, and provides a
simple explanation facility. It also transforms
control dependencies into data dependencies. How-
ever, it only tests loops for independences and
does not provide partitioning and synchronization
mechanisms for nonparallel loops.

CAMP [13] partitions both parallel and nonpar-
allel loops, and reduces dependencies by using
process alignment and minimum-distance algorithms.
Since it extracts more parallelism and eliminates
many dependencies, efficiency loss because of pro-
cessor suspension is reduced. CAMP also inserts
synchronization primitives, and estimates perfor-
mance for different partitioning strategies.

In [8], Dongarra and Sorensen proposed a par-
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allel Fortran program developing and analyzing
tool, SCHEDULE, which uses centralized dynamic
scheduling algorithms. This algorithm performs
well for the shared memory multiprocessors but is
not suitable for the distributed memory multiproces-
sors.

TASK GRAPHER [9] schedules task graphs
onto arbitrary machines. It provides a graphical
interface for users to interact with the tool. How-
ever, it does not generate parallel code.

In [14], Polychronopoulos et al. described a
parallelizing compiler system, PARAFRASE-2,
which performs dependence analysis, program
partitioning and dynamic scheduling on shared
memory machines.

Hypertool [19] is a programming aid tool for
the SPMD model on message-passing systems. It
performs scheduling, mapping, and communication
primitives insertion automatically. It also generates
performance estimates and quality measures for
the parallel code. However, the generated code is for
the simulator SIMON.

In [20], Yang and Gerasoulis proposed a paral-
lel programming tool, PYRROS, for scheduling
on distributed memory multiprocessors. PYRROS
is designed for coarse grain programs. It.performs
scheduling, mapping, communication primitives
insertion, and parallel code generation automatically.

The work presented in this paper is similar to
[19] and [20]. PPT is designed for SPMD model
which is the same as Hypertool. It performs sched-
uling and communication primitives insertion
automatically which are also provided in [19] and
[20]. It generates the parallel program automatically
which is also provided in [20]. However, there
are two major differences between our work and
those of [19] and [20]. First, the tool of [19] is de-
signed for the medium grain programs and the
tool presented in [20] is aimed for the coarse grain
programs. PPT can be used for the coarse, medium,
and fine grains programs.

The second major difference between our
work and [19] and [20] is the approach used for
scheduling. In [19] and [20], a partitioned program
(a macro-dataflow graph) is first scheduled on a
virtual machine, which is generated by the schedul-
ing algorithms. The processor number is not decided
until the scheduling is done. Then a one-to-one
mapping algorithm is used to map the nodes of the
virtual machine on the processors of the taiget ma-
chine. In our approach, the scheduling and mapping
is performed simultaneously. In stead of scheduling
a partitioned program on a virtual machine, the
properties of the partitioned program, such as its
graph parallelism and grain size, are analyzed
first. According to the properties of the partitioned

program, the scheduling algorithm and the number
of processors are chosen. Then the scheduling is
performed by considering the number of proces-
sors used and the interconnection network of the
target machine.

III. PPT

PPT takes a user partitioned program, which is
represented by a DAG, and the interconnection
network of the target machine as input, generates
the corresponding DAG of the partitioned program,
analyzes the properties of the partitioned program,
selects the number of processors, performs schedul-
ing, inserts communication primitives, generates
the parallel program of the paritioned program, and
produces the performance measures for each proces-
sor.

The outline of PPT is shown in Fig. 1. From
Fig. 1, we can .see that PPT consists of six com-
ponents, an X-window user interface, a DAG handler,
a scheduler, a communication analyzer, a code gen-
erator, and a performance evaluator.

The X-window user interface is responsible for
interactions between programmers and other com-
ponents of PPT. A programmer can ask PPT to
perform the desired actions through this interface.

The DAG handler consists of two components,
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Fig. 1. The outline of PPT.
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the program partitioning and DAG generator, and
the DAG analyzer. In the program partitioning and
the DAG generation phase, a program is partitioned
into tasks and a corresponding DAG to the partitioned
program is generated. PPT provides a DAG genera-
tor for the programmer to generate the DAG in an
interactive fashion. The attribute table, which con-
tains information about the computation cost of
each task, the communication cost between two
tasks, and the data which must be sent from one task
to another, is also built in this stage. The DAG ana-
lyzer is responsible for the property analysis of a
DAG. It outputs the property table of a DAG.

According to the property table, the scheduler
selects a scheduling algorithm and the number of
processors that will be used for executing the paral-
lel program (the selection of a scheduling algorithm
and the number of processors can be done by pro-
grammers as well). The scheduler produces a (task,
processor) table, the scheduling length of each pro-
cessor, and the earliest start time of each task on a
processor.

The communication analyzer generates a
task block table and a communication table accord-
ing to the (task, processor) table and the earliest
start time of each task. From the task block table
and the communication table, the parallel program
corresponding to the partitioned program is generated
by the code generator for the target machine.

The performance evaluator is responsible for
executing the parallel program on a taiget machine.
It provides information about the execution time of
each processor, the speedup of each processor, and
the predicted (simulation) and real (experimental)
speedups of the parallel program. The details of
PPT is given in the following subsections.

1. The X-window user interface

The main menu of the X-window user interface
is composed of seven selection items: "Program
Partitioning & DAG Generator", "DAG Analyzer",
"Scheduler", "Communication Analyzer", "Code
Generator", "Performance Evaluator" and "Exit",
which is shown in Fig. 2.

The "Program Partitioning & DAG Generator"
selection item is for drawing the corresponding
DAG of a partitioned program. When this item is
selected, a DAG generator window will pop-up.
The DAG generator has seven icons, which repre-
sent seven functions and is shown in Fig. 7, for pro-
grammers to draw DAGs. The first icon is used to
select a node or a link. The second icon is used to
generate a node of a DAG and input the correspond-
ing data of the generated node. The third icon is
used to create a link of a DAG and input the corre-

sponding data of the created link. The fourth icon
is used to modify the data of a node or a link. The
fifth icon is used to delete a node or a link. The
sixth icon is used to save a DAG, which is generated
by the DAG generator, to a file. The file can be
read by PPT as well. The seventh icon is used to quit
from the DAG generator and go back to the main
menu.

The "DAG Analyzer" selection item is for ana-
lyzing the properties of a DAG.

The "Scheduler" selection item is for selecting
the number of processors, scheduling a DAG on
processors, and adding scheduling algorithms to
PPT. When this item is selected, a submenu, which
consists of "Processor Numbers", "Scheduling
Algorithms", and "Add Scheduling Algorithms" se-
lection items, will pop-up. The "Processor Numbers"
selection item is for determining the number of
processors that will be used to execute a parallel
program. When this item is selected, a submenu
will pop-up (see Fig. 8). Programmers can select
the number of processors they need or let PPT deter-
mine it. The "Scheduling Algorithms" selection
item is for selecting a scheduling algorithm. When
this item is selected, a submenu will pop-up (see
Fig. 9). The selection of a scheduling algorithm
can be done by a programmer or PPT. The "Add
Scheduling Algorithms" selection item is for adding
scheduling algorithms to PPT and enforcing the
performance evaluation of scheduling algorithms.

The "Communication Analyzer" selection
item is for analyzing the communication behavior
of tasks among, processors and creating a com-
munication table for the code generator

The "Code Generator" selection item is for gen-
erating the desired parallel program.

The "Performance Evaluator" selection item is
for executing a prallel program on an NCUBE-2

Program Partitioning & DAG Generator.

DAG Analyzer

Scheduler...

Communication Analyzer

Code Generator

Performance Evaluator

Fig. 2. The main menu of PPT.
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machine and showing the execution results.
The "Exit" select item is used to exit the PPT

tool.
The X-window user interface was implemented

by C language and X library version 11 release 4.

2. The DAG handler

(1) The program partitioning and the DAG genera-
tor

To execute a program on a distributed memory
multiprocessor, the program must be partitioned
into tasks. The purpose of the program partitioning
is to determine the grain size of tasks such that
the best performance of the program on a distributed
memory multiprocessor can be achieved. In general,
the finer the grain size, the higher the parallelism.
However, if a very fine grain partitioning is used,
the communication overhead due to data sent from
one processor to other processors may greatly increase
the execution time of a program. If a coarse grain
partitioning is used, a lot of parallelism available in
a program may be lost. This would result in a low
speedup. Therefore, it is important to balance the
trade-off between parallelism and grain size so that
a better partitioning can be obtained.

Since PPT is designed for SPMD model, we
prefer to use the modular programming style in
which a program is composed of a set of procedures
called by the main program. The same programming
style is also used in Hypertool. There are three
advantages by using the modular programming style:
l.The program is easy to design, maintain, and

debug.
2. The program partitioning is relatively easy to

perform.
3. The DAG can easily be generated from the parti-

tioned program (manually or automatically).
The programmer is required to partition a

program into tasks. PPT provides a DAG generator
for a programmer to generate the corresponding
DAG of the partitioned program in an interactive
fashion. The programmer is also responsible for
the attribute table generation. The attribute table
stores the information about the corresponding
procedure that a task is associated with, the com-
putation cost of each task, the communication
cost between tasks, and the data that must be sent to
other processors.

(2) The DAG analyzer

The DAG analyzer is responsible for the prop-
erty analysis of a DAG. The properties of a DAG,
such as the graph parallelism (the ratio of the total
computation time of a DAG to the total computation

time of tasks on the critical path of a DAG) [16] and
the ratio of the average communication cost to the
average computational cost (CCR) [4], have great
influence on the scheduling length of a scheduling
algorithm and the number of processors used for
execution. For example, if the graph parallelism is
equal to 4 and the CCR is less than 1, using the
highest level first with estimated time (HLFET) sched-
uling algorithm [1] with 4 processors may produce a
better scheduling length than using the HLFET
scheduling algorithm with 8 processors. Therefore,
it is important to study the relationship between
the scheduling algorithms and the properties of
D AGs and embed these properties in PPT.

In [5], we have performed extensive simulation
to study the relationship between the list scheduling
algorithms and the properties of DAGs. The simula-
tion results show that the graph parallelism and
CCR of a DAG are the most important properties
that have a great influence on the scheduling length
of a scheduling algorithm. Therefore, the DAG
analyzer designed in this tool is responsible for the
analysis of graph parallelism and CCR of the DAG.
From the values of graph parallelism and CCR, a
programmer can check if the partitioned program
meets the requirement. If it does not, a programmer
needs to change the partitioning until the desired
partitioning is obtained.

3. The scheduler

The scheduler is responsible for selecting a
scheduling algorithm and the number of processors
for execution (the scheduling algorithm and the
number of processors selection can also be made by
the programmer), scheduling a DAG on a target
machine, and producing a (task, processor) table as
well as the earliest start time table of tasks on every
processor.

In the current development, PPT provides six
list scheduling algorithms; the highest level first
with estimated time (HLFET) [1], HLFET-BTDH [5],
HLFET/BTDH [5], the earlier task first (ETF) [11],
ETF-BTDH [5], and ETF/BTDH [5]. HLFET is a
list scheduling algorithm which does not consider
the interprocessor communication overhead, while
ETF is a list scheduling algorithm that takes the
interprocessor communication overhead into ac-
count. HLFET-BTDH, HLFET/BTDH, ETF-BTDH,
and ETF/BTDH are list scheduling algorithms that
use a task duplication heuristic, BTDH, to minimize
the scheduling length. In [5], we have performed
extensive simulation to study the relationship be-
tween the efficiency of different list scheduling al-
gorithms and the properties of DAGs. A relationship
table is constructed to describe the relation between
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those scheduling algorithms and the properties of
DAGs. According to the output of the DAG ana-
lyzer, the scheduler consults the relationship table
to find the best candidate scheduling algorithm
and determine the number of processors for execu-
tion.

PPT allows a new scheduling algorithm as a
member of the list scheduling algorithms. The only
restriction is that the scheduling algorithm should
perform scheduling and mapping simultaneously.
This is true for nearly all variants of list scheduling
algorithms. The clustering algorithms proposed
in [19] and [20] do not fit into this category. Before
a scheduling algorithm can be added as a member
of the scheduling algorithm of the scheduler, the
performance evaluation simulator, which is provided
by PPT, must be executed for the scheduling algo-
rithm in order to obtain the relationship between
the scheduling algorithm and the properties of
DAGs.

4. The communication analyzer

The communication analyzer is responsible for
detecting redundant communication, removing
redundant communication, and creating a com-
munication table, which will be used by the code
generator.

To detect and remove redundant communica-
tion and create the communication table, a com-
munication analyzer must build a task block table
according to the (task, processor) table and the
earliest start time table. In the task block table, some
consecutive tasks on the same processor are labeled
with the same block number (if only the first and
the last tasks of those consecutive tasks must send
or receive data from other processors). According
to the labeled communication table, a new com-
munication table is created and redundant com-
munication is removed.

5. The code generator

The code generator is responsible for generat-
ing the corresponding procedure call for each task
on processors and inserting the communication
primitives. According to the task block table, the
corresponding procedure calls for tasks on proces-
sors are generated by consulting the attribute table.
The communication primitives are inserted ac-
cording to the communication table. The informa-
tion about the data that must be transferred to tasks
on other processors is provided by the attribute
table.

Since the syntax of the basic communication
primitives are machine dependent, there is a need

for a communication primitive insertion routine.
In the current development, we provide com-
munication primitives insertion routines for
NCUBE-2. One can potentially use syntax of com-
mercial packages like EXPRESS to achieve portabil-
ity. However, we do not use the communication
primitives provided by these packages in our tool.
This is because that the communication primitives,
provided by these packages are implemented by
using the communication primitives provided by
a machine. The overhead is significant and will
usually reduce the performance of a parallel pro-
gram. For example, on NCUBE-2, the time to
execute the communication primitives provided by
EXPRESS, in general, is 20% more than the time to
execute the communication primitives provided
by NCUBE-2.

6. The performance evaluator

The performance evaluator is responsible
for executing the parallel program on a target ma-
chine and papering the execution time of the paral-
lel program. It provides information about the
execution time of each processor, and the predicted
(simulation) and real (experimental) speedups of
the parallel program. Since many distributed memory
multiprocessors, such as NCUBE-2 and CM-5,
provide the execution profiler for the programmer to
check the time spent in the various subroutines
and functions on each processor, the programmer
can use the information provided by the performance
evaluator to make further refinement/modification
of the program partitioning.

IV. A PARALLEL FFT PROGRAM DESIGN
EXAMPLE

In the following, we show how to design a
parallel FFT program on NCUBE-2 by using PPT.

The program partitioning and DAG genera-
tor: An FFT algorithm, in general, can be described
as follows [6]:

Algorithm FFT{A)
1. n = length (A); l*n is a power of 2*1
2. if (« = 1) then return (A);
3. y<0) = FFT(A[0: n-2:2]);
4 jKD = FF7T(A[l:n-l:2]);

6. for k = 0 ton/2-1 do
7. { Y[k] = }*0)[k] + co * y<»[Jk];
8. F[fc+«/2] = y<°)[it] - co *
9. (o=co*con;}
10. return(y); /*Yis assumed to be column vector*/
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In algorithm FFT, A and Y are arrays, where A[0: n-
2:2] = {A[0],A[2], ...,A[n-2]} andA[l: n-l:2] = {A[l],
A[3],...,A[n-l]}. Since we prefer to use the modular
programming style, algorithm FFT needs to be re-
written. A sequential FFT program, which is written
in modular programming style, is given in Fig. 3.

To partition a program, a programmer needs
to study the behavior of the program. The behavior
of algorithm FFT with input vector size = 4 is
shown in Fig. 4. In Fig. 4, the computations of FFT
consists of two operations, the input vector opera-
tion (IVO) (lines 3 and 4 in algorithm FFT) and
the butterfly operation (BO) (lines 5 to 9 in algo-

#define len 16384
double temp[len);
double A[len][2];

/ •»»••• Program «***»»/
mainO

1
FFT(0, len);

/•*••*• Butterfly Operation *•• • • /
/* Butterfly operation for */
/* Y[tl2] J<°'[t] - to • lO)[t];*/

^••••** FFT •***••/
FFT(p, n)
int p, n;

{
if (n = 1) return;
IVO(p, n);
FFT(p, n/2);
FFT(p+n/2, n/2);
B01(p, p+n/2, n/2);
BO2(p, p+n/2, n/2);

/•••*** Butterfly Operation *•••• /
/* Butterfly operation for •/
/* Ylk) = i*>[*] + o> * ><«[*]; •/

B02(p. q, n)
int p, q, n;

( intk;
double w[2], x[2], u;

for (fc=O; k<n; k++)

u = 2*3.1416*k/n;
w[0] = cos(u); w[l] = sin(u);
x[0] = A[q+k][0]*w[0] - A[q+k][l]*w[l]:
x[l] = A[q+k][01*w[l] - A[q+k][l]M0]
A[q+k][O]=A[p+k][O]-x[O];

B01(p, q, n)
int p, q, n;

intk; }
double w[2],x[21,u;

for(k=O;k<n;k++)

' u = 2«3.1416*k/n; .
w[0) = cos(u); w[l] = sin(u);
x[O] = A[q+k][0]*w[0] - A[q+k][l]*w[l];
x[l] = A[q+k][0]*w[l] - A[q+k][l]*w[O];
A[p+k][0] = A[p+k][0]+x[0];

/•••«** Input Vector Operation ••*»**/
IVO(p. n)

for (i=0; i<n; i=i+2) temp[p+i] = A[p+i][O];
for (i=l; i<n; i=i+2) temp[p+i] = A[p+i][O];
for (i=0; i<n; i++) A[p+i][O] = temp[p+i];

Fig. 3. A sequential FFT program with modular programming
style.

Input Vector
Operation (TVO)

|Q4[0],yt[l]/t[2],A[3])|

Butterfly
Operation (BO)'r

rithm FFT). Fig. 5 shows the general behavior of
FFT. From Fig. 5, the programmer can decide how
to partition an FFT program. In our example, we as-
sume that the input vector size is 1024 and an FFT
program is partitioned into 39 tasks. The corre-
sponding DAG of the partitioned FFT program is
shown in Fig. 6. In Fig. 6, there are seven IVO
tasks (perform the IVO procedure), 8 FFT tasks
(perform the FFT procedure), and 24 BO1 and

Fig. 5. The general behavior of FFT.

7 r \ T% Tgf A Tip T^r \ T\l T\^ \

FFT FFT FFT FFT FFT FFT FFT FFT

Fig. 4. The behavior of FFT with 4 points. Fig. 6. The DAG generated for PPT.
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Fig. 7. The DAG generator & the corresponding DAG of FFT.

BO2 tasks (perform the BO1 and BO2 procedures).
In Fig. 7, the corresponding DAG of Fig. 6 is
drawn by using the DAG generator. During the
drawing of a node or a link, a programmer will
be asked to input the corresponding data for the
node or the link. When the drawing of a DAG is
completed, the DAG can be saved as a data file.
The data file can be read by the DAG generator as
well.

The DAG generator also generates the attribute
table for a DAG. The information in the attribute
table includes the computational load of each task,
the communication cost between two tasks, the
corresponding procedure name of each task, and
the data must be sent from one task to another. The
programmer is responsible for estimating this
information (This could potentially be done auto-
matically). The attribute table of the DAG shown
in Fig. 6 is given in Table 1. The DAG and the at-
tribute table are the inputs of the DAG analyzer

The DAG analyzer: The values of CCR and
the graph parallelism of the DAG shown in Fig. 6 are
0.34 and 7.08, respectively. In our example, we
assume that the programmer is satisfied with the val-
ues of CCR and the graph parallelism.

The Scheduler: The scheduler can automati-
cally select the number of processors and a schedul-
ing algorithm based on the values of CCR and the
graph parallelism of a DAG. Programmers can

select the number of processors and a scheduling
algorithm by themselves as well. The number of
processors and scheduling algorithm selection
submenus are shown in Fig. 8 and Fig. 9, respec-
tively. Since the DAG is a coarse grain graph
and the graph parallelism is 7.08, the scheduler
selects the "ETF/BTDH" [5] as the scheduling
algorithm and the number of processors used
for scheduling is equal to 8 if automatic selection is
chosen. The selecting criteria of the scheduling
algorithm and the number of processors are based
on the simulation results presented in [5]. The DAG
is then scheduled and the scheduler produces the
(task, processor) table and the earliest start time
table, which are shown in Table 2 and Table 3, re-
spectively.

The communication analyzer: According
to the (task, processor) table and the earliest start
time table, the communication analyzer first builds
the task block table, which is shown in Table 4. The
first task of a block must receive data from some
other tasks and the last task of a block must send
data to some other tasks. Tasks in between the
first and the last tasks of a block do not need to
send (or receive) data to (or from) other tasks. Based
on the block table, a communication table is gener-

4 processors

8 processors

16 processors

32 processors

Automatic

Cancel
.^v.v.^^x^xwwmww^w^ww

Fig. 8. The number of processor selection submenu.

ETF
ETF-BTDH
ETF/BTDH

HLFET
HLFET-BTDH
HLFET/BTDH

Automatic
Cancel

Fig. 9. The scheduler submenu.
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To
Ti
T2

T3

TA

T5

T6

Tn
7-8
7-9

7-,o
T-.i

T-,2

7-13

T-,4

7-15

T-,6

7-17

7-18

7-1 9

7*20

7-21

T22

T23

T24

7-25

7^26

^ 7

7^28

T29

7-30

7-31

^32

7-33

r3 4
7-35

7^36

^37

7^38

Table 1. The
Procedure

IVO
IVO
IVP
IVO
IVO
IVO
IVO
FFT
FFT
FFT
FFT
FFT
FFT
FFT
FFT
BO1
BO2
BO1
BO2
BO1
BO2
BO1
BO2
BO1
BO1
BO2
BO2
BO1
BO1
BO2
BO2
BO1
BO1
BO1
BO1
BO2
BO2
BO2
BO2

attribute table
Vector Size

-

-
-

-
-
-
-
-
-
-

-
-

256
256
256
256
256
256
256
256
512
512
512
512
512
512
512
512

1024
1024
1024
1024
1024
1024
1024
1024

for the DAG
Start Position

-
-
-
-
-
-
-

-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
0

128
0

128
0

128
0

128
0

128
256
384

0
128
256
384

shown in Fig. 6
Computation Cost ([is)

4198
2022
2022

998
998
998
998

32870
32870
32870
32870
32870
32870
32870
32870

3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366
3366

ated and is given in Table 5.
The code generator: From the attribute

table, the block table, and the communication table,
the code generator generates the corresponding
parallel code for each processor. After clicking
the "Code Generator" selection item, the program-
mer will be asked to give a file name (and path)
to save the corresponding parallel code, which is
shown in Fig. 10, generated by PPT.

The performance evaluator: After clicking
the "Performance Evaluator" selection item, the

generated parallel code is executed on 8 processors
of an NCUBE-2. The table of the execution time of
each processor is created and is shown in Table 6.
The comparison of the predicted speedup (simula-
tion) and the real speedup (experimental) is also
given. In our example, the predicted and real speed-
ups are 6.08 and 5.67, respectively.

V. CONCLUSIONS AND FUTURE WORK

As both the number of processors and the
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Table 1. (cont'd) The attribute table for the DAG shown in Fig. 6

To
7"i
T2
73

r4
Ts

T6

77

78

7-9
7 i 0

7 U

7 n

7j 3

7-14

7-15

Tl6

Tn
7-18

7-19

?20

7-21

7-22

7-23

724

7-25

726
727

T'28

729

7-30

7-31

7-32

733

^ 5

7-36

Send

Task

T\
73

T5
77

7-9
Ti l

7-13

7^15

Tn
Tn
Tl9

T19

7-21

7-21

7-23
724

7-23

7-24

727

728

727

728

7^31

7-32

733

7-34

7-31

^32

7-33

^ 4
-

-

-

-

-

Data

A[0..511]
A[0..255]
A[512..767]
A[0..127]
A[256..383]
A[512..639]
A[768..895]
A[0..127]
A[128..255]
A[256.383]
A[384..511]
A[512..639]
A[640..767]
A[768..895]
A[896..1O23]
A[0..127]
A[128..255]
A[256.383]
A[384..511]
A[512..639]
A[640..767]
A[768..895]
A[896..1O23]
A[0..127]
A[128..255]
A[256.383]
A[384..511]
A[512..639]
A[640..767]
A[768..895]
A[896..1O23]

-
-
-

-

-

Communication
Cost (us)

4296
2248
2248
1224
1224
1224
1224

712
712
712
712
712
712
712
712
712
712
712
712
712
712
712
712
712
712
712
712
712
712
712
712
-
-
-

-

-

Task
72

74

T6

7-8
710

7*12

Tu
7-16

7-16

7-18

7-18

7^20

7-20

722

722

7-25

7-26

7*25

7-26

729

7-30

729

7-30

7-35

736

^ 7

7^38

7-35

7-36

737

738

-
-
-

_

-

Data

A[512..1O23]
A[256..511]
A[768..1O23]
A[128..255]
A[384..511]
A[640..767]
A[896..1O23]
A[0..127]
A[128..255]
A[256..383]
A[384..511]
A[512..639]
A[640..767]
A[768..895]
A[896..1O23]
A[0..127]
A[128..255]
A[256.383]
A[384..511]
A[512..639]
A[640..767]
A[768..895]
A[896..1O23]
A[0..127]
A[128..255]
A[256.383]
A[384..511]
A[512..639]
A[640..767]
A[768..895]
A[896..1O23]

-
-
-

_

-

Communication
Cost (p.s)

4296
2248
2248
1224
1224
1224
1224
712
712
712
712
712
712
712
712
712
712
712
712
712
712
712
712
712
712
712.
712
712
712
712
712

-
-

-

-

complexity of problems to be solved increase,
programming distributed memory multiprocessors
becomes difficult and error-prone. In this paper,
we have presented a parallel programming tool,
PPT, to aid programmers to design a parallel pro-
gram for the single program multiple data (SPMD)
model on a distributed memory multiprocessor PPT
provides functions for DAG generation, scheduling,
communication primitives insertion, and parallel

code generation. An example of designing a parallel
FFT program by using PPT on an NCUBE-2. is also
presented. Our experiments with PPT show that an
automatically generated parallel program can attain
good performance. PPT can help the programmer
to design a parallel program by using the coarse
grain, medium grain, or fine grain DAGs. It can
also increase programming productivity by automat-
ing parts of parallelizing tasks.
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Table
^processor
orders^

1
2
3
4
5
6
7

2. The (task,

0

0
1
3
7
16
26
35

1

0
1
3
8
15
23
31

2

0
2
5
11
19
27
36

processor)

3

0
1
4
10
18
29
37

4

0
2
6
13
21
24
32

table

5

0
1
4
9
20
28
33

6

0
2
5
12
17
25
38

7

0
2
6
14
22
30
34

The current version of PPT uses static schedul-
ing approaches and is applied to the static problems.
That is, all tasks must be created before starting
execution. Also, the computation and communica-
tion costs must be known at compile time. In the
future, we plan to integrate an interactive depen-
dency analyzer to facilitate the specification of
task parallelism and run-time compilation techniques
used in PARTI [7].

The main advantage of the SPMD model is
that a parallel program is easy to design under this

or^\SS°r

1
2
3
4
5
6
7

0

0
4198
6297
7346
42976
49102
55228

Table 3.

1

0
4198
6297
7346
42976
49102
55228

The earliest

2

0
4198
6297
7346
42976
49102
55228

start time

3

0
4198
6297
7346
42976
49102
55228

table for tasks

4

0
4198
6297
7346
42976
49102
55228

5

0
4198
6297
7346
42976
49102
55228

6

0
4198
6297
7346
42976
49102
55228

7

0
4198
6297
7346
42976
49102
55228

Table 4. The task block table
^.Processor

Order \

1
2
3
4
5
6
7

Task

0
1
3
7

16
26
35

0
Block
No.

0
0
0
0
1
2
3

Task

0
1
3
8

15
23
31

1
Block

No.
4
4
4
4
5
6
7

Task

0
2
5

11

19
27
36

2
Block

No.
8
8
8
8
9

10
11

Task

0
1
4

10
18
29
37

3
Block

No.
12
12
12
12
13
14
15

Task

0
2
6

13
21
29
37

4
Block

No.
16
16
16
16
17
18
19

Task

0
1
4
9

20
28
33

5
Block
No.
20
20
20
20
21
22
23

Task

0
2
5

12
17
25
38

6
Block

No.
24
24
24
24
25
26
27

Task

0
2
6

14

22
30
34

7
Block

No.
28
28
28
28
29
30
31

# 0

Bi
B2

B,
# 4

B5

Be
B1

Bs
B9

B\o
Bu

Send
# 5

Bn
B21 #31

-

Bi

# 2 6

# 3
-

B2l

Bu
B7

-

Receive
-

B4
Bl3

#6 #10
-

# 0

B25

Bio
-

B24

Bn
Bis B22

Table 5.

B12
Bn
Z?14

Bi5

Bu
BX1

Bn
Big

B20
B21

B22

Z?23

The communication table
Send
B25

B2 Bn
Bn

-
B2g

fi10Bj4

fill
-

Bl3 B25
Bio

Bn Bl9

-

Receive
-

B20
Bg Bl7

B26
-

# 2 8
Bl #13

# 2 2

-

#8 #24
# 2 9

#14 #26

# 2 4

# 2 5

# 2 6

# 2 7

# 2 8

# 2 9

# 3 0

# 3 1

Send
#9 #21

# 6

#15 #23
-

# 1 7

# 2 2

# 2 7

-

Receive
-

#12 #20

# 5

#2 #30
-

# 1 6

#2 #21
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#define len 1024
double tempPen];
double A[len][2];

/ • • • • • • Program • • • • • • /
mainO

(

my_addr = npidO;
switch (myjiddr)

case 0:PEO0; break;
case 1:PE1O; break;
case 2 :PE20; break;
case 3 :PE30; break;
case 4 : PE40; break;
case 5 : PE5Q; break;
case 6 : PE6O; break;
case 7 : PE7Q; break;

/»«*••* Butterfly Operation • • • • • /
/* Butterfly operation for • /

B01(p, q, n, vs,sp)
int p, q, n, vs, sp;

intk;
double w[2], x[2], u;

for (k=0; k<n; k++)

' u = (2* 3.1416 *k + sp)/vs;
w[0] = cos(u); w[l] = sin(u);
x[0] = A[q+k][0]*w[0] - A[q
x[l]=Arq+k][O]*w[l]-A[q
A[p+k][0] = A[p+k][0] + x[0]

/ • • • • « • Butterfly Operation • » • • • /
/* Butterfly operation for • /
/ • y[t+n/2) = I<0>[JtJ - CO * !«>[*];•/

BO2(p, q, n, vs, sp)
int p, q, n, vs, sp;

intk;

double w[2],x[2],u;

for (k=0; k<n; k++)

u = (2* 3.1416 *k + sp)/vs;

w[0] = cos(u); w[l] = sm(u);
x[0] = A[q+k][0]«w[0] - A[q+k][l]«w[l]
x[l) = A[q+k][0]*w[l] - A[q+k][l]*w[0]
Arq+k][0] = A[p+k][0]-x[0];

/ • ••••• Input Vector Operation • • • • • • /
IVO(p, n)

for 0=0; i<n; i=i+2) temp[p+i] = A[p+i][0]
for (i=I; i<n; i=i+2) temp[p+i] = A[p+i][0]
for 0=0; i<n; i++) A[p+i][0] = temp[p+ij;

/****** Ppp • • • • * * /

FFT(p, n)
int p, n;

hkj[l]*w[l]; if (n = 1) return;

*][l]*w[0]; rVO(p,n);
FFT(p,n/2);
FFT(p+n/2, n/2);
BOKp. p+n/2, n/2, n/2,0);

BO2(p, p+n/2, n/2, n/2,0);

1

PE40

rVO(0,1024);
IVO(512,512);
rvCX768,256);
FFTC768.128);
nwritt(4A[768][0], 2048, pa[71 tagll3]. 0);
nread(4A[896][0], 2048.4paP]. 4tag[14], 0);
BO!(768.896,128,256,128);
nwritc(4A[7681[0],2048, pa[2], Hg[21], 0);
Dwritc(4A!768]rO], 2048, ja[3], Bg[21], 0);
nread(4A[0][01.2048,4pa[01,4Bg[I6], 0);
niead(4A[2561[0], 2048,4pa[3], «Bg[181,0);
BOK128.384,128,512,384);
nwrite(4A[128][01,2048, pa[2l tag[241.0);
iread(4A[640][0). 2048,4pal51,4Bg[28], 0);
BOK128.640,128,1024,640);

IVO(0,1024);

rVO(0,1024);
IVO(51Z512);
IVO(51i 256);
FFT(640.128);
nwrite(4A[640][0], 2048, pa[2], Bgtl2], 0);
nwrite(4A[640][0], 2048. pa[51 tag[12]. 0);
rata(J(4A[256][0], 2048,4pa[5J. 4tag[9J. 0);
nread(4A[384J[0], 2048.4pa(3J, 4Bg[10], 0);
BOK256. 384.128.256.128);
nwrile(4A[256][0], 2048. pa[U, tag[171,0);

nwrite(4A[0][0], 2048. paI31. Bg[251,0);
n«ritt(4A[01[0], 2048, pat5], Bg[251,0);
nread(4A[1281[0], 2048,4pa[0], 4tagt26], 0);
nread(4A[640][01, 2048.4pa(7]. 4ag[30]. 0);
BO2(384, 896,128,1024, 384);

IVO(256,256);
FFT(256,128);
nwritt<4A[256][01,2048, pa[3], tag(9), 0);
nwrite(4A[256][0], 2048, pa[6], Og[9), 0);
nrtad(*A[512][0],2048,4pa[2],&tagril].0);
nread(SA[640][01,2048, 4pa[61,4Bg[12], 0);
BO2(51l 640.128,256,0);
nwriffi(4A[512J[0], 2048, paf7), tag[201,0);
nread(4A[768]10], 2048,4pa[7), &tag[22], 0);
BOl(640,896,128,512,384);
nwrice(4A[640][0), 2048, paI2], Bg[281.0);
nwritc(4A[640][01,2048, pa(41, lag[28], 0);.
ntead(4A10]I0], 2048,4pa[6], 4Bg[25], 0);
ntead(4A[512)[01,2048,4pa[3], 4lag[29J, 0);
BOK256.768,128,1024,768);

PE70

IVCKO, 1024);
IVO(512.512);
rvOO68,256);
FTT(896,128);
nwriu<4A[896][0], 2048, pa(41, Bg[14], 0);
nitad(4Ar768][01.2048. Apa[4], 4tagtl3). 0);
BO2(768.896.128.256.0);
nwrite<&Ar768J[01.2048, pa[51, Bg[22], 0);
nread(*A[512][01,2048, 4pa[5), 4ag[201,0);
BO2(640,896,128,512,128);
nwriK(&A[640][0], 2048. pa[6], tag[30), 0);
nread(*A[128], 2048,4palO], 4Bg[26], 0);
BOK384,896,128,1024,896);

Fig. 10. (cont'd) The generated parallel code.

Fig. 10. The generated parallel code.

PE00

•VOW. 1024);
rVCKO.512);
IVO(0.256);
FFKO, 128);
nwriK(*A[0][0], 2048, pa[l], t g m .
nnall(4A[128][0]. 2048, *pa[l] , 4tag[8], 0);
BO2(0,128,128,256.0);
nwiile(4A[0][01.2048, pa[4], tag[16], 0);
nreaH(4A[2561[0], 2048, *pa[3], *Bg[18]. 0);
BO2(128,384,128, 512,1288);
mvritt(4A[1281[01,2048, pa[6], tag[26], 0);
nwritt(4A[1281[01.2048, pa[7), tag[26], 0);
nread(4A[0][0], 2048,4pa[l], *tag[23], 0);
nrea(J(4A[512][01.2048.4pa[2], 4dg[271.0);
BO2(0,512,128.1024,0);

1

PE20

rVCKO, 1024);
rVO(512.512);
IVO(512,256);
FFT(512,128);
nwriK(4A[512)[0], 2048. pat5]. tagtlll. 0);
nrea)(4A[640][01, 2048.4pat61,4tag[12], 0);
BOK512,640,128,256.128);
nwrite(4A[512][0], 2048. pa[3J. tag[191,0);
nread(4A[768][0], 2048,4pa(41,4tagI21], 0);
BOK512,768,128,512.256);
n»riK(4A[512][0], 2048, pa[01. tag[27], 0);
nwrllc(4A[512][01,2048, pa[0], lag[271,0);
nread(4A[1281[0], 2048, 4pa[4], 4tagI24), 0);
nread(4A[640][01.2048, 4pa(5]. 4tag(28], 0);
BO1(128.640,128,1024.128);

PE10

tSICKO, 1024);
IVO(0,512);
IVO(0,256);
FFT(128,128);
nwrile(4A[128][01,2048. pa(01. Bg[81,0);
nread(4A[0][0], 2048,4pa[01,4Bg[71.0);
BOl(0,128,128. 256.128);
nwritt(4A[0][0). 2048. pa[6], tag[15). 0);
luead<*A1256][01.2048. 4pa[6], 4Bg[171.0);
BOKO, 256,128, 512,256);
nwrite(4A[0K01,2048, pa[0], tag(23], 0);
nre»l(4A[512][01,2048, *pa[21,4tagr27], 0);
BOKO, 512,128,1024,512);

)

PE30

rvXXO, 1024);
IVO(0, 512);
IVO(256,25«;
FTT(384,128);
n«rite(4A[384J[0), 2048, pa[6], Bg[10), 0);
ratad(4A[256)[012048,4pa[5). 4tag[9].O);
BO2(256,384,128.256,0);
nwrile(4A[256][0], 2048, pa[0], tag[181.0);
nwrile(4Ar256)[0], 2048. pa[4]. Bg[18). 0);
nrcad(4A[512][012048,4pa[2], 4ag[19], 0);
nread(4Ar768][012048.4pa[4], 4ug[21). 0);
BO2(512,768.128. 512.0);
mcad(4A[512][0]. 2048, 4pa[5], 4tagt29). 0);
nread(4A[0][0]. 2048. Apa[6], «Bg[25]. 0);
BO2(256, 768.128,1024.256);

Table 6. The execution time (computation and
communication) and speedup table

Fig. 10. (cont'd) The generated parallel code.

model. However, the main memory capacity of
each processing node is the main restriction of
using this model. Assume that every processing
node of an NCUBE-2, which has 32 processing

processor^^v^^

0
1
2
3
4
5
6
7

Maximum
Sequential
Predicted
Speedup
Real

Speedup

Execution Time (us)

64603
63671
65646
63434
64608
64557
64718
64759
65646
371942

6.08

5.67

nodes, has 4 Megabytes memory. The total memory
capacity of the NCUBE-2 is 128 Megabytes. If a
node program requires memory over 4 Megabytes,
it is impossible to execute the program on an
NCUBE-2 if the program is written in the SPMD
model. However, if the program is written in the
host-node model, it can be executed on an NCUBE-
2. This implies that the host-node execution model
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is more general than the SPMD model. In the future,
we also plan to add a host-node code generator in
the code generator phase to support the host-node ex-
ecution model.
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