JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 11, 155-181 (1995)
DOI: 10.6688/JISE.1995.11.

Applications and Performance Analysis of
An Optimization Approach for List Scheduling
Algorithms on Distributed Memory Multiprocessors

YEH-CHING CHUNG, ChHia-CHENG Liu, anp J.-S. Liu
Department of Information Engineering
" Feng Chia University
Taichung, Taiwan 407, R.O.C.
E-mail: ychung, ccliu, liuj@pine. iecs. fcu. edu.tw
Tel: 886-4-2522250 ext. 3714

We have proposed an optimization approach, the bottom-up top-down dupli-
cation heuristic (BTDH), for static scheduling of directed-acyclic graphs (DAGS)
on distributed memory multiprocessors [5]. In this paper, we discuss the appli-
cations of BTDH for list scheduling algorithms (LSAs). There are two ways to use
BTDH with LSAs. (1) BTDH can be used with an LSA to form a new scheduling
algorithm (LSA/BTDH). (2) It can be used as a pure optimization algorithm for
an LSA (LSA-BTDH). We have applied BTDH to two well-known LSAs, the
highest level first with estimated time (HLFET) and the earlier task first (ETF)
heuristics. Extensive simulation has been conducted to study the performance of
BTDH for LSAs. Three parameters, graph parallelism (GP) of a DAG [19], the
ratio of the average communication cost to the average computation cost (CCR)
of a DAG [5], and the processor number (PN) of a distributed memory multipro-
cessor, have been simulated. From the simulation, we have the following con-
clusions. (I) Given a DAG, the GP of a DAG can accurately predict the number of
processors to be used such that a good scheduling length and good resource utiliza-
tion (or efficiency) can be achieved simultaneously. (II) In terms of speedups, in
general, we have LSA/BTDH 2 LSA-BTDH > ETF > HLFET. Experimental

results of scheduling FFT programs on an NCUBE-2 are also presented. The
results confirm our simulation results and show that the speedups of LSA/BTDH
and LSA-BTDH are better than the speedups of LS As. :

Keywords: List scheduling algorithm, heuristic, graph parallelism, directed-acyclic
graph, distributed memory multiprocessor.

1. INTRODUCTION

The main purpose of using parallel computers is to reduce the execution time
of application programs. Optimal execution of an application programs on a paral-
lel computer depends on the method of partitioning an application program
into tasks (the partitioning problem) and the method of scheduling tasks on a paral-
lel computer (the scheduling problem). The main aspects of the partitioning prob-

Received July 6, 1993; revised September 30, 1994,
Communicated by Wen-Tsuen Chen.

155

user
打字機文字
DOI: 10.6688/JISE.1995.11.2.1

156 YEH-CHING CHUNG, CHIA-CHENG LIU, AND J.-S. LIU

lem are (1) how to partition an application program into tasks while exploiting as
much parallelism as possible; (2) how to determine the size of tasks (grain size)
such that a better scheduling length can be produced by a scheduling algorithm.
Once an application program has been partitioned, it can be represented, in gener-
al, by a directed-acyclic graph (DAG). In a DAG, nodes denote tasks, and an arc
from node u to node v represents the data dependency between the two nodes;
that is, node v can not be executed until the execution of node u has been com-
pleted. Weights are associated with nodes and arcs to represent the computation
cost (proportional to the time needed to execute the task) and the communi-
cation cost (proportional to the number of message units to be transferred),
respectively. The scheduling problem is to assign tasks of a DAG to processors
of a parallel computer such that the execution time of a DAG is minimized. This
problem is also known as the multiprocessor scheduling problem.

It has been shown that an algorithm for solving the multiprocessor schedu-
ling problem falls into the class of NP-complete problems [33]. Therefore, many
heuristic approaches are used to find satisfactory sub-optimal solutions [1]-[32].
The most well-known approach for the multiprocessor scheduling problem is the
list scheduling algorithm (LSA) [22, 23,25]. The underlying assumption of an LSA
is that the interprocessor communication overhead of a computing system, such as
processor communication or memory contention, is negligible. Under this assump-
tion, LSAs can produce near optimal solutions for most instances. However, this
assumption is not valid for distributed memory multiprocessors where interproces-
sor communication overhead is an important factor of system performance and is
typically not negligible. In fact, an LSA is a load balancing heuristic. It tries to
distribute the computation load among processors as evenly as possible and does
not consider the communication overhead. It has been shown that an LSA pro-
duces poor scheduling results when interprocessor communication overhead is not
negligible [3, 11]. Therefore, many approaches have been proposed for the mul-
tiprocessor scheduling problem with interprocessor communication overhead
[1-21].

In [5], we have proposed an optimization approach, the bottom-up top-down
duplication heuristic (BTDH), for static scheduling of DAGs on distributed
memory multiprocessors. The underlying concept of BTDH is proper duplication
of some tasks on processors such that the earliest start time of tasks on processors
can be achieved. Therefore, a better scheduling length can be achieved. In [5],
we also compared BTDH with another task duplication heuristic DSH [11]. The
major drawback of DSH is that, when a task T, is scheduled on a processor Py,
the duplication process is applied only to those predecessors (defined in Section 2)
which can be inserted into the idle time slot between the finish time of the task
before T, and the earliest start time of T,, and do not increase the earliest start
time of T,. It is possible that the insertion of some of the predecessors of T,
will increase the earliest start time of T, at a particular stage of the duplication
process. However, the insertion of those predecessors will eventually decrease the
earliest start time of T, at a later stage of the duplication process. To overcome
this drawback of DSH, BTDH allows the duplication of a predecessor 7; of a task
T, even though the duplication of T; before T, will increase the earliest start time
of T,,. The simulation results in [5] show that BTDH outperforms DSH, especially

LIST SCHEDULING ALGORITHMS FOR MULTIPROCESSORS 157

when the ratio of the average communication cost to the average computation cost
is increased.

In this paper, we will discuss the applications of BTDH for LSAs. There
are two ways to use BTDH for LSAs. (1) BTDH can be used with an LSA to
form a new scheduling algorithm (LSA/BTDH). (2) It can be used as a pure
optimization algorithm for an LSA (LSA-BTDH). We have applied BTDH to
two well-known LSAs, the highest level first with estimated time (HLFET) [22]
and the earliest task firsi (ETF) heuristics [8]. Extensive simulation has been
conducted to study the performance of BIDH for LSAs. Three parameters, graph
parallelism (GP) of a DAG [19], the ratio of the average communication cost to
the average computation cost (CCR) of a DAG [5], and the processor number
(PN) of a distributed memory multiprocessor, have been simulated. From the
perfor-mance analysis, we have the following conclusions. (I} Given a DAG, the
GP of a DAG can accurately predict the number of processors to be used such
that a good scheduling length and good resource utilization (or efficiency) can be
achieved simultaneously. (II) In terms of speedups, in general, we have LSA/
BTDH > LSA-BTDH > ETF > HLFET. Experimental results of scheduling
FFT programs on an NCUBE-2 are also presented. The results confirm our
simulation results and show that the speedups of LSA/BTDH and LSA-BTDH
are better than the speedups of LSAs.

In section 2, the computational and the architectural models used in this
paper will be described. The optimization approach BTDH will be described
briefly in Section 3. In Section 4, applications of BTDH for LSAs will be de-
scribed in detail. The performance analysis of BTDH for LASs using a simulation
approach will be given in Section 5. In Section 6, experimental results of schedu-
ling FFT programs on an NCUBE-2 will be presented.

2. THE COMPUTATIONAL AND THE ARCHITECTURAL
MODELS

In this paper, we will consider scheduling of static (the number of tasks of a
DAG is fixed during execution), non-preempted (the execution of a task can not
be interrupted once it has started), with communication delay (interprocessor com-
munication overhead is not negligible), and duplicated (a task may have several
copies on processors) multiprocessor scheduling problem on distributed memory
multiprocessors. An application program is modeled as a directed-acyclic graph
(DAG) G ={T, A}, where T = {Ty, T>, ..., T,} is a set of n tasks, and A is a set of
arcs between tasks which define a partial order or precedence constrain (<) on T
such that arc g;; directed from task 7; into task 7; implies that T; must precede 7;
(T; < T;) in execution. In this paper, we do not address the issue of partitioning
an application program into a DAG. However, for the experimental results
shown in Section 6, we will briefly describe how to partition and transform an
application program into a DAG. Every task T;in a DAG is associated with a posi-
tive number, denoted by u(7;), which represents the computation cost of task T;.
Every arc a; is also associated with a positive number, denoted by n(T;, 7)), Wl}ich
represents the number of message units sent from task 7T; to task 7;. T; is a

158 YEH-CHING CHUNG, CHIA-CHENG LIU, AND J.-S. LIU

predecessor of T;, and T; is a successor of T; if there exists a path from 7; to 7;. Ti
is an immediate predecessor of T;, and T; is an immediate successor of T; if there
is an arc directed from 7; to 7. A task without immediate predecessors is called
a source task, and a task without immediate successors is called a sink fask.

An example of a DAG is shown in Fig. 1 (a). In Fig. 1 (a), the underlined

number represents the computation cost of a task, and the italic number beside an
arc a; denotes the number of message units sent from task T; to task T;. For ex-
ample, the computation cost of T is equal to 6, that is, u(Ts) = 6, and the number
of message units sent from task 7 to T is equal to 2, that is, n(7y, T7) = 2. Ty,
T,, and T; are predecessors of T, and T3 is an immediate predecessor of T, Ty
_ is a source task. Tg, Ty, Tqg, and Ty; are sink tasks.
3 In a distributed memory multiprocessor, a processor communicates with other
- processors through message-passing. To characterize a distributed memory mul-
tiprocessor, a parameter t(P;, P;) is introduced to represent the time needed to
transfer a message unit from processor P; to P;. For real cases, especially for small
size problems, the setup time between two processors may have some effect on the
scheduling length of scheduling algorithms. However, in our simulation model, we
assume that the setup time is much smaller than the time needed to transfer a mes-
sage unit from one processor to another. Therefore, it is negligible. A distributed
memory multiprocessor is then defined as S = (P, 1), where P = {Py, P, ..., Py} is
a set of m processors. By varying the values of t(P;, P;), the architectural model
can be used to model several types of networks such as a fully connected network,
a local area network, or a hypercube. We make the following assumptions re-
garding the functions of our architectural model.

1. Every processor in a distributed memory multiprocessor is identical.

2. The intra-processor communication overhead is negligible, that is,
(P;, P;)) =0.

3. The communication subsystem is contention free.

4. A processor can send messages to some or all processors in a distributed
memory multiprocessor simultaneously.

5. The system overhead, such as initialization of a send communication
primitive, is negligible.

, In a real machine, such as an NCUBE-2 on which we will present some

experimental results, some of the above assumptions may not be valid. Assumption
2 is a realistic assumption as the cost of transferring something within-a processor
is equivalent to data copying (or changing of a few pointers). This cost is negligible
as compared to sending messages across the network.

Assumption 3 is useful for estimating the cost of sending a message from one
processor to another without taking into account the contention due to other
messages. This assumption is a good approximation for most architectures till the
maximal bandwidth required by a problem is much less than the total available
bandwidth. :

Assumptions 4 and 5 are necessary for the reduction of time complexity of
our mapping algorithms. This is because, if the system overhead (the setup time
before a non-blocking send is returned) is considered, then the scheduling

LIST SCHEDULING ALGORITHMS FOR MULTIPROCESSORS 159

algorithms need to take into account which message needs to be sent first (in
case a task has an outdegree greater than 1). Such a decision increases the com-
plexity of the algorithm. By ignoring the system overhead, Assumption 4 is auto-
‘matically true for architectures which support non-blocking send (such as
NCUBE-2). Further, if the grain size of the problem is such that the CCR is large
or the grain size of communication is large (that is, the number of bytes per mes-
sage is large), then the system overhead does not play a major role. Our experi-
mental results on an NCUBE-2 show that our heuristics behave close to (and highly
correlated to) the simulation results (which do not include the system overhead)
and produce very good mappings.

3. BTDH: BOTTOM-UP TOP-DOWN DUPLICATION
HEURISTIC

In the following, we will briefly describe BTDH (for detail, see [5]). Lete
(T, Py) be the earliest start time of task 7}, on processor P,, f(T,, P,) be the finish
time of task T, on processor P,, previous (T}, Py) be the task which will be execu-
ted right before the execution of task T, on processor P,, next (T,, P,) be the task
which will be executed right after the execution of task 7, on processor P, and
8(T,, P,) be the set of immediate predecessors of task T, (T, is scheduled on proces-
sor P,) such that for every task T, in 6(T,, P,) and T, is scheduled on processors
Py, the earliest start time of 7, on P, is equal to the sum of the finish time of T,
and the time of sending messages of T, from P to P,, thatis, e(T,, P,) = max {(T,,
Py) + WPy, P) x (T, T,) VT, €6(T,,, P,)).

Assume that a task T, is scheduled on a processor P, (T, is the last task
scheduled on P; at this moment). BTDH tries to minimize the earliest start time
of T,, on P, by duplicating predecessors of T}, on the critical path (or paths) from
the source. A high level description of the algorithm is given as follows:

Algorithm BTDH(T,, P,)
1. repeat
2. {e_time=e(T, P,), Ty = previous(T,, P,), Toy = T, weight = 0.
3 idle_time = e(T,,,, P,) — ATop, T). '
4 loop
5 {if (3 T. €6(T,, P,)) and (T, is not scheduled on P,))
6 then { Duplicate T, before 7, on P,.
7. Recompute the earliest start time of tasks from T;to T,,; on P,.
8 if (e(T.us, P.) < e_time) then | T, = T, exit. }
9 weight = weight + W(T;).
0

if (weight < idle_time) then T, = T.
else /* No predecessors of 7,,, is duplicated */
11. { Remove all the tasks between Ty and T,
12. e(Tpay P,) = e_time.
13. T, = next(T,., P,), recompute e(T,, P,), exit.}

} . .
14. else if (T, # T,,,) then T, = next(T,, P,).

160 : YEH-CHING CHUNG, CHIA-CHENG LIU, AND J.-S. LIU

else /* No predecessors of T,,, is duplicated */

15. { Remove all the tasks between T,,, and T
16. e(T g, Py) = e_time.

17. T, = next(T,.q, P,), recompute e(T,, P,), exit.}
18. } forever. :

19. }umtil (T, = @).
20. return (the earliest start time of the last task scheduled on P,).
end_of_algorithm_BTDH

T.nq (on P,) represents the task for which the earliest start time is being
considered for possible reduction (loop between lines 4-18). T, represents the task
scheduled on P, before T,,; This gives the window of size of e_time (e(Tena, Px)
~ f(T,op, Py)) in which tasks can be potentially replicated. BTDH tries to replicate
tasks on the critical path even though the earliest start time of the T,,; may increase
(temporary) till the tasks continue to fit this window. There are three ways to exit
this loop.

Case 1: The duplication of a predecessor of T, may lead to the reduction of the
earliest start time of Tend (line 8).

Case 2: The duplication of a predecessor of T}, overflows the window (line 10 else
part).

Case 3: The duplication has not shown any reduction of e(7,,,, P;) (line 14 else

part).

In Case 2 and Case 3, the duplicated tasks between T,,, and 7, are removed,
and the algorithm proceeds to minimize the earliest start time of the task imme-
diately after T,,; In the first case, the algorithm proceeds to reduce the earliest
start time of the predecessors. This may eventually lead to further reduction of the
initial task 7, on which the duplication heuristic was applied. The complexity of
algorithm BTD H is O(r®), where r is the maximum number of predecessors of tasks
in a DAG:

An example is given in Fig. 1 to show the behavior of algorithm BTDH.
The DAG is given in Fig. 1(a). The target computer, which has four processors
with complete connections between processors, is shown in Fig. 1(b). The initial
status is shown in Fig. 1(c). In Fig. 1(c), the current scheduling lengths of Py, P;,
P,, and P; are 32, 31, and 40 time units, respectively. Symbol ¢; denotes the idleness
of i time units. For example, in Fig. 1(c), ¢5; in P3 denotes that P; is idled for 37
time units before task Ty is executed. In the following, we assume that task Py
is scheduled on processor P, and we show how BTDH duplicates some predeces-
sors of task Tiq on P; step by step.

Step 1 : (T, P3) =Ty} and e(Typ, P3) = 37. Since duplicating Tg before Ty does
not increase the value of e(Ty, Ps), Ty is duplicated on processor P; Fig,.
1(d), and BTDH tries to minimize e(Tg, P3).

Step 2 : (T, P3) = {T4} and e(Ts, P3) = 27. Since duplicating T before T does
not increase the value of e(Tg, P3), T, is duplicated on processor P Fig.

LIST SCHEDULING ALGORITHMS FOR MULTIPROCESSORS) 161

1(e), and BTDH tries to minimize e(Ty, P3).

Step 3: 0(Ty, P3) = {T,} and e(Ty, P3) = 22. Since duplicating T, before T, does
not increase the value of e(7y, P3), T is duplicated on processor P; Fig.
1(f), and BTDH tries to minimize e(T,, P3).

Step 4: O(T, P3) = {Ty} and e(T, P3) = 19. Since duplicating 7 before T, does
not increase the value of e(T5, P3), T is duplicated on processor P; Fig.
1(g), and BTDH tries to minimize e(7;, Ps).

Step 5: Since 0(Ty, P3) = &, BTDH tries to minimize e(T5, Ps).
Step 6: Since 8(T,, P3;) = &, BTDH tries to minimize e(T,, P3).
Step 7: Since 8(Ty, P3) = &, BTDH tries to minimize e(T, P3).
Step 8: Since 8(Ts, P3) = &, BTDH tries to minimize e(Tyo, Ps).
Step 9: O(Ty, P3) ={T7} and e(Tyy, P3) =28. Since duplicating T before T}, does

not increase the value of (7}, P3), T is duplicated on processor P; Fig.
1(h), and BTDH tries to minimize e(T5, P;).

Step 10: Since 6(T7, Ps) = &, BTDH tries to minimize e(Ty, P3).

Step 11: Since 8(Ty, P3) = @, BTDH terminates its duplicating process.

4. APPLICATIONS OF BTDH FOR LSAS

Many list scheduling algorithms have been proposed in the literature [2, 6, 8,
11, 13,15, 19, 21, 22, 23, 28, 29, 31, 32]. In general, an LSA can be described as
follows:

Algorithm LSA:

Phase 1: Find the best (task, processor) pair from the ready to schedule task list
and the available processor list according to some cost functions.

Phase 2: Assign the task to the processor.

Phase 3: Update the ready to schedule task list and the available processor list.

Phase 4: Repeat Phase 1 to Phase 3 until all tasks are scheduled.

end_of _algorithm_LSA:

Since BTDH is a task duplication heuristic, it can be applied to an LSA in
two ways. (1) BTDH is used as a pure optimization algorithm for an LSA: When
BTDH is used as a pure optimization algorithm, it tries to reduce the earliest
start time of each task on each processor. (Note that, in this case, tasks are already
assigned to processors by an LSA before BTDH is used.) In algorithm LSA, only
one (task, processor) pair is selected whenever Phase 1 to Phase 3 are executed.
When all tasks are scheduled on processors, we have a sequence of (task, pro-
cessor) pairs. Since a (task, processor) pair is selected according to some cost func-
tions at a given time, the sequence of (task, processor) pairs provides us with an
order to select tasks for optimization. The algorithm is given as follows:

162

YEH-CHING CHUNG, CHIA-CHENG LiUu, AND J.-S. LIU
PO PZ
Pl P!

(b) A 4-node parallel computer.

Py P, P, Py Py P, Py Py Py P P P
1 1 [] 1 1 | M1 1 r1r1
Tl TI TI
K] I PR I PO O PO] [P O P PO i1 R PO o PO I P
7, 7, T
B B B
T 5 L%
B B = |] [
|l 1 b Ts K - Ts . 2] % .
I (R T I) [I e st
L%l 31 31 L) 31 31 31 L%l 31 31 31
32 3 32
(c) Initial status. {d) Duplicate Tgon Ps. (e) Duplicate T4 on P3.
7]
40
Fig. 1. Anexample of applying BTDH.
Py P Py Py Py P, Py Py Py P; P, Py
LY —T —
Tl Tl T, Tl Tl
T. T. T. T. T.
|21 gl || [¢00 L2 lon] |42 [2] L2 [¢n] %2 -l
Ty T, T, T, T,
T, T, | Tz Ty | T
| 7] 7] Ml T,
Ty 1 Ty ' 1
| | | T2} — s 1 | Ty
1] -
T}) T K&l | 7] 22
Ts | o [Te Ts [T | Ts T,
Ts T - Ts 7, [Ts T
A NS Bl T N o) i i) N T I s
Ll 31 31 31 [Tl 31 31 31 [Tl 31 31
32 32 32
(f) Duplicate T3 on Ps. (g) Duplicate 77 on Ps3. (h) Duplicate 77 on Ps.

Fig.1 (cont’d). An example of applying BTDH.

LIST SCHEDULING ALGORITHMS FOR MULTIPROCESSORS 163

Algorithm LSA-BTDH:

Phase 1: Use algorithm LSA to schedule a DAG on a distributed memory mul-
tiprocessor, and keep the sequence of (task, processor) pairs in a queue
0.

Phase 2: Let (T}, P;) = the first (task, processor) pair in Q.

Phase 3: Assign T; to P;, and apply BTDH to minimize the earliest start time of
Ti on P I

Phase 4: Delete the pair (T}, P;) from Q.

Phase 5: Repeat Phase 2 to Phase 4 until Q is empty.

end_of _algorithm_LSA_BTDH:

Algorithm LSA-BTDH is a generic term. The term LSA can be replaced
with any list scheduling algorithm. For example, if BTDH is used as an optimiza-
tion algorithm for HLFET, then the scheduling algorithm is HLFET-BTDH.
The time complexity of algorithm LSA-BTDH is upper bounded by O(N7) + O(L),
where N is the number of tasks of a DAG, r is the maximal number of predeces-
sors of any task of a DAG, and O(L) is the time complexity of an LSA.

(2) BTDH is used with an LSA to form a new scheduling algorithm: Let
(T, Py) be the best (task, processor) pair found from the ready to schedule task
list and the available processors list according to some cost functions in each execu-
tion of Phase 1 to Phase 3 of algorithm LSA. BTDH can be applied to the pair (T},
Py) to reduce the start time of T, on P,. Since some of the immediate predeces-
sors of T, may be duplicated on some other processors in the available processors
list after some tasks are scheduled, BTDH is also applied to the pair (T,, P,,),
where P, is in the available processors list, and some of the immediate predeces-
sors of T, are duplicated on P,,. For those (T}, processor) pairs to which BTDH
is applied, we choose the pair (7, P,) as the best pair, where e(T,, P,) is the
minimum for all processors BTDH applied. The algorithm is given as follows:

Algorithm LSA/BTDH:
Phase 1: Find the best (task, processor) pair from the ready to schedule task list
: and the available processor list according to some cost functions. Let
the task and processor be T, and Py, respectively.

Phase 2: Find the set of processors A, where for each P, €A, P, is in the availa-
ble processor list, and some of the immediate predecessors of T,, are
duplicated on P,,.

Phase 3: For each P, €A, U {P}, apply BTDH to each pair of (T,, P,), and
choose the pair (T, Py) as the best pair, where e(T,, P,) is the minimum
for all processors BTDH applied.

Phase 4: Assign T, to P,.

Phase 5: Update the ready to schedule task list and the available processor list.

Phase 6: Repeat Phase 1 to Phase 5 until all tasks are scheduled.

end_of_algorithm_LSA/BTDH:

164 YEH-CHING CHUNG, CHIA-CHENG LIU, AND J.-S. LIU

Algorithm LSA/BTDH is a generic term. The term LSA can be replaced
with any list scheduling algorithm. For example, if BTDH is used with the ETF
to form a scheduling algorithm, then the scheduling algorithm is ETEF/BTDH.
The time complexity of LAS/BTDH is upper bounded by O((N* + MN)r?),
where M is the number of processors of a distributed memory multiprocessor,
N is the number of tasks of a DAG, and r is the maximum number of predeces-
sors of tasks of a DAG.

5. SIMULATION RESULTS

There are many factors such as the graph size, the processor number (PN),
the ratio of the average communication cost to the average computational cost
(CCR), the graph parallelism (GP) [19] of a DAG, and the topology of a given
parallel machine which can affect the scheduling length of a scheduling algorithm.
In this paper, we will focus on the relationship of CCR, GP, and PN to the schedu-
ling length or speedup.

In our simulation, we assume that the system overhead is negligible. In a real
situation, especially for small size problems, the system overhead such as the initia-
tion of a communication primitive may have some effect on scheduling length of
scheduling algorithms. In this case, as will be seen in Section 6, the system over-
head sometimes will greatly offset the speedups of scheduling algorithms.
However, the results of performance comparisons of scheduling algorithms for
both simulation and experimental cases, in general, are identical. For the
simulation, we also assume that the target machine has a complete interconnection
between processors.

Since it is important to use a broad range of DAGs as the test samples, in our
simulation, we set the values of CCR = {1, 2, 3,4, 5,6,7, 8,9, 10, 20, 50, 100}, the
values of GP = {4, 8, 16, 32, 64}, and the values of PN = {4, 8, 16, 32}. For each
tuple (CCR, GP, PN), we randomly generate 10 DAGs as the test samples. The
number of tasks in each DAG is equal to 300. Each task in a DAG has at most
4 immediate predecessors and 4 immediate successors. The number of immediate
predecessors and immediate successors are uniformly distributed between 0 and 4.
The computation costs of tasks are uniformly distributed from 1 to 10 time units.
The average computation cost of the DAGs generated is around 1670 time units.
For simplicity, the communication cost and the computation cost use the same time
measurement. However, in this section, we did not evaluate the performance of
scheduling algorithms for the cases where 0 < CCR < 1. In Section 6, we will give
the experimental results for those cases.

Let GPP be the ratio of GP to PN, that is, GPP = GP / PN. Since GP is the
ratio of the total computation time of a DAG to the total computation time of
tasks on the critical path of a DAG, it represents the maximal speedup which can
be achieved by a scheduling algorithm for a given DAG on a distributed memory
multiprocessor. Therefore, GPP can be treated as an efficiency (of system utili-
zation) measure. In the following, we will analyze the performance of scheduling
algorithms based on the values of GPP.

LIST SCHEDULING ALGORITHMS FOR MULTIPROCESSORS

51GPP <1

165

GPP < 1 implies that the PN used in a scheduling algorithm is greater
than the GP of a DAG. In Fig. 2, the scheduling length for scheduling algo-
rithms with GPP = 0.5 and GPP = 0.25 are shown. From Fig. 2, we can see that
LSA/BTDH and LSA/BTDH outperformed LSA for CCR = 1. When the value
of CCR increased, the difference of scheduling length between LSA and LSA/
BTDH (or LSA-BTDH) increased as well. Moreover, the scheduling length of

scheduling length scheduling length
- 16501 i '/ ''''']
%MWW | ?’ / I
= i < A
o iy
J / v
4 'Y
1250 ,f _/;‘{a‘
- i0oE
/ Iy
1050 #4 Ry
i /' 7 /,/‘{
1 I
850-] YRS
+ X
SR e
\(.
x: ETF { ok)
AETF/BTDH 7:‘%’ x:ETF
; . 6 &: ETF/BTDH
+ ETE-BTDH A :
«:HLFET : +: ETE-BTDH
®: HLFET/BTDH o LR oH
w: HLFET-BTDH :HLFET/B
- u: HLFET-BTDH
550- T T T ™ T TrT1Tr T T T T T T 17T T T T T 1171 T T T T T rrr
1 2 3 4 5678910 20 50 100 1 2 3 4 5678910 20 50 100
CCR CCR
(a) GP=4,PN =8, and GPP = .5. (b) GP = §, PN = 16, and GPP = .5.
scheduling length scheduling length
7 i1
b i T B 1650+ i -
f *I e .::W""""M _ ” '/PW_:
1550+ joi f" Vi { s
i { 1450 ; : /JZ
[?‘ ‘g { ’a.:' /'/
1350+ # & 7‘: X/ 1250-] /% I /"
;] .8 'S RV 4
- ; J A 4 ;
Y
il / ,'/‘(;g 1050 /) // f,'/i
1150 ;] *a 7F B
/ % 7 il . £ ;/ K
] A i £
AR I 850 A)
// AR A/ {/ 5 ‘/,
wot S AR 1 Y
4/ /(L x: ETF 650 & XL X: ETF
5 Yy, A:ETE/BTDH A A:ETE/BTDH
<A +: ETE-BTDH 1 / e +: ETE-BTDH
™ ?§ . HLFET ¥ < & HLFET
%] . HLFET/BTDH 450+ 7 ®: HLFET/BTDH
Ly w: HCFET-BTDH | . s =: HLFET-BTDH
=
T T T 7T 11T T T T T T T TT 250 T T T T r1r7yr T T T T TrrTrr
1 2 3.4 5678910 20 50 100 1 2 3 4 5678910 20 50 100
CCR

CCR

(c) GP =4, PN = 16, and GPP = .25.

(d) GP = 8§, PN =32, and GPP = .25.

Fig.2. The scheduling lengths of LSAs for complete networks, where CCR =1, ..., 100 and

GPP < 1.

166 YEH-CHING CHUNG, CHIA-CHENG LIU, AND J.-S. LIU

LSA-BTDH and LSA/BTDH converge asymptotically when the value of CCR is
over a threshold (In our case, CCR = 50). This is because that when the value of
CCR is over a threshold, the value of idle_time in algorithm BTDH is greater
than or equal to the total computation cost of all predecessors of a task T
This implies that all the predecessors of T; can be duplicated in front of 7; when
BTDH is applied. In Fig. 2, the scheduling lengths of ETF, ETF/BTDH,
ETF-BTDH,HLFET,HLFET/BTDH, and HLFET-BTDH have the following order:

(HLFET/ BTDH)scheduling length < (ETF/ BTDH)scheduling length
< (HLFET'BTDH)scheduling length < (ETF'BTDH)scheduling length

< (ETF)scheduling length < (HLFET)scheduling length>

where (scheduling algorithm)esequsing iengin 15 the scheduling length for a scheduling
algorithm.

Since GPP < 1 implies that the PN used in a scheduling algorithm is greater
than the GP of a DAG, it is interesting to see if the scheduling lengths for the case
where GPP < 1 are less than the scheduling lengths for the case where GPP = 1.
In Fig. 3, the speedups for scheduling algorithms with CCR ={1,2,3,4,5,6,7, 8,
9, 10, 20, 50}, GP = 8, and GPP = {0.25, 0.5, 1} are shown. From Fig. 3, we can
see that, in general, the more processors we use, the better speedup we can expect
from LSA/BTDH and LSA-BTDH. However, the gain is not proportional to the
number of processors used. For example, in Fig. 3(f), the speedups of HLFET-
BTDH for DAGs with CCR =1 and GPP = 0.25, 0.5 and 1 are 4.71, 5.16 and 5.69,
respectively. The ratio of processors used is 32 : 16 : 8 =4 : 2 : 1, and the ratio
of speedups is 5.69:5.17:4.71 =1.21:1.11 : 1.. Therefore, GP can accurately predict
the number of processors to be used for a DAG such that a good scheduling
length and good resource utilization (or efficiency) can be achieved simultaneously.

52GPP =1

GPP =1 implies that the PN used in a scheduling algorithm is equal to the
GP of a DAG. Since the value of GP of a DAG is the maximal speedup which
can be achieved for a scheduling algorithm, the case where GPP = 1 seems likely
to be the most economical way to use processors. In Fig. 4, the scheduling lengths
for scheduling algorithms with GPP = 1 are shown. From Fig. 4, we can see that
LSA/BTDH and LSA-BTDH outperformed LSA for CCR = 2. When the value
of CCR increased, the difference of scheduling length between LSA and LSA/
BTDH (or LSA-BTDH) increased as well. Moreover, the scheduling length of
LSA-BTDH and LSA/BTDH converge asymptotically when the value of CCR is
over a threshold. (This is not clear from Fig. 4(c) and Fig. 4(d). In our simulation,
the scheduling lengths of LSA-BTDH and LSA/BTDH for the cases where
GP = 16 and GP = 32 converge asymptotically when CCR > 100 and CCR > 300,
respectively.) This is because when the value of CCR is over a threshold, the
value of idle_time in algorithm BTDH is greater than or equal to the total com-
putation cost of all predecessors of a task 7;. This implies that all the predecessors
of T; can be duplicated in front of 7; when BTDH is applied. In Fig. 4, the
scheduling lengths of HLFET, ETF, LSA/BTDH, and LSA-BTDH, in general,
have the following order:

LIST SCHEDULING ALGORITHMS FOR MULTIPROCESSORS 167

GP =28

speedup

GP=38

= PN =8

1 2 3 4 5 6 7 8 9 10 20 50
CCR

PN=8§
EE PN=16

5 6 7 8 9 10 20 50

. CCR
(d) HLFET

GP=8

1 2 3 4 5 6 7 & 9 10 2 50

EZ) PN=8
B PN=16
B PN=32

5 6 7 8 9 10 20 50

CCR CCR
(b) ETF/BTDH (¢) HLFET/BTDH
spzedup GP=8 spzedup GP=8
PN=8
5 PN =16 5
B PN=32

5 6 7 8 9 10 20 50
CCR
(c) ETF-BTDH

75 6 7 8 9 10 20 50

CCR
() HLFET-BTDH

Fig.. 3. The speedups of LSAs for complete networks, where CCR =1, ...,50 and GPP <1.

(LSA/ BTDH)scheduling length < (HLFET—BTDH)scheduling length <
(ETF'BTDH)scheduling length < (ETF)scheduling length < (HLEET)scheduling lengths

where (scheduling algorithm)cheguiing iengs i the scheduling for a scheduling algo-
rithm. The difference between HLFET/BTDH and ETF/BTDH is negligible.

53GPP>1

GPP > 1 implies that the PN used in a scheduling algorithm is less than the
GP of a DAG. In Fig. 5, the scheduling lengths for scheduling algorithms with
GPP = {2, 4, 8, 16} are shown. From Fig. 5, we can see that the scheduling lengths -

168 YEH-CHING CHUNG, CHIA-CHENG LIU, AND J.-S. LIU

scheduling length scheduling length
77 IF
~ i A sessenans - 16504 ! ey -
,’ . .-f‘;:.wm,;gm.—sa— l' / e :::::::H
o | 4 %
1550-] i 7 o/,
< | X:ETF / /4
7 il “%7 AlETRBTDH ! ¥
1 i / i 41 +ETF-BTDH] Y4
/ / & HLFET / 4
1350+ / g 12504 @®:HLFET/BTDH N
/ f Fed ®:HLFET-BTDH / W
4 $ Vi s 7/
! 8 1050-] A ¥ /
11504 P‘ | ,)0/('/,« ¥
IS s &
i A o/ 3
/6’, /,)‘ . 850 Y, ‘{
950-] ‘ A7 i ! /[f
7/ ’ /?‘ /"/ fﬁ/‘
AR X: ETE 650- / a”‘
// % . a:ETF/BTDH /‘ A
V' 7L +: ETR-BTDH i _ ARl
ol gL o HLFET R &
/ad ®:HLFET/BTDH . e
1 s: HLFET-BTDH e
350 T T T T T 1T rrr T T T T 1T 1Ir 250 T T T T 1T T 1Ty T T T T r1rrr
1 2 3 4 5678910 20 50 100 1 2 3 4 5678910 20 50 100
CCR CCR
(a) GP=4 and PN =4, (b) GP=8and PN=8.
scheduling length scheduling length
it i
b/ H
1600+ j 1600 i
| x:ETF i/ 1 xETF 7
a:ETF/BTDH i) & :ETF/BTDH /
14004 +:ETF-BTDH i g 1w+ +:ETF-BTDH ;7
| e:HLFET P 2 *:HLFET /
®: HLFET/BTDH / /;/ 4 7 ®:HLFET/BTDH
12004 w:HLFET-BTDH y/ 7 7 12004 w:HLFET-BTDH
- b //l e 4 ,’/
/ 4 /
1000 //' _//":,'/‘ 1000-] i
4 / 4 i /
VA /
800~ I /_7_/ 800 / X
4 / i I /,./
600~ /// 600 &/ /.\/“
) I3 Ve 1 V4 z ,}{/
400 ./"; X 400 // ;6:“°
] 2z g
4 ' o
(- . %
20y 200 g ***3 i
" -M
0 T T T T T rrrr T T T T r11r 0 T T T T T 11T T T T T TTT
1 2 3 4 5678910 20 50 100 50 100
CCR i 2 3 4 5678910 20 R

(c) GP =16 and PN = 16. (d) GP = 32 and PN = 32.

Fig.4. The scheduling length of LSAs for complete networks, where CCR =1, ..., 100 and
GPP=1.

of ETF are almost the same as those of LSA/BTDH and LSA-BTDH when CCR
<5 and GPP =2, or CCR <10 and GPP =4, or CCR < 20 and GPP > 8. This
implies that when GPP is large enough, and CCR is less than a threshold, the
scheduling lengths of ETF are almost the same as those of LSA/BTDH and LSA-
BTDH. If the value of CCR is large, the scheduling lengths of ETF are increased
dramatically. However, the scheduling lengths of LSA-BTDH and LSA/BTDH
converge asymptotically when the value of CCR is over a threshold. (However,
we do not show the convergence in Fig. 5(a) and Fig. 5(b). In our simulation, the

LIST SCHEDULING ALGORITHMS FOR MULTIPROCESSORS 169

scheduling length scheduling length
8o] 1 690 7 7
4 ” 1.!1 i ;"' j
50 H H 4 " ; A
1 xETE ; ; 07 X:ETF { T
A: ETF/BTDH i / 4 a:ETF/BTDH ,l ;oo
700{ +: ETE-BTDH i i s1o4 + ETE-BTDH / ff
| ®:HLFET ,’ / ; o HLFET i F
®: HLFET/BTDH ; AT 1 ®:HLFET/BTDH H FA.
604 w:HLFET-BTDH / / ”: i s ®:HLFET-BTDH i J A
2 / ’ A . K ; .
] / flf . /é /iy
600 ; AT 450 / e A
e ,,I / / ‘_// A / I- ,./ B Lo
550+ : ;/ S0 390 / A
- Ty _ e
500 i A 330 / A4 S
h p b é o
] < /‘5/) | & ,-'/ o
450 =5 AL . 270-] PR
J . ’3/:/' ot .,;/ J Agad fx/:‘/x/
e =] s 2§ = e
400 210z g0 0 2285
350 T T T LU RN T T T T rrur 150 T T T T T T TTT T T T T 1T
1 2 3 4 5678910 20 50 100 1 2 3 4 5678910 20 ’ 50 100
CCR CCR
(a) GP = 64, PN = 4, and GPP = 16. (b) GP = 64, PN =8, and GPP = 8,
scheduling length scheduling length
J ’,l 7 7 i T F]
0. I3 y 235 /’ / e
4 X:ETF. i o 1 X:ETF i i —
3304 &:ETF/BTDH i / - 25| &:ETE/BTDH l', /’ i
1 +ETE-BTDH { ST +: ETF-BTDH i 4
4 ®:HLFET FE { ®:HLFET [i
0] ®:HLFEI/BTDH P 4 ®: HLFET/BTDH i 4
m: HLFET-BTDH F A 1154 w:HLFET-BTDH L S e
B / Ii /' 7 e 4 ;! S
2504 S A ? 7 .
i AT Lot
8 VR AR
210 b f AL s
E A A
- ' ‘ L,
4 / e
170-] Py ,n?:(//’ 5
1 Pl \‘"’“
.~..' 3
130 o #
R - gessE g-E g.
904
50 T T T T T 1 11T T T T T rirrT 2 T T T T T Trrrr T T T T T Tr
1 2 3 4 5678910 20 50 100 1 2 3 4 5678910 20 50 100
CCR CCR
(d) GP = 64, PN = 32, and GPP = 2.

(c) GP = 64, PN = 16, and GPP = 4.
Fig.5. The scheduling length of LSAs for complete networks, where CCR = 1, ..., 100 and

GPP > 1.

scheduling lengths of LSA-BTDH and LSA/BTDH for the cases where GPP = 16
and GPP =8 converge asymptotically when CCR >300 and CCR =100, respectively.)
This is because when the value of CCR is over a threshold, the value of idle_time
in algorithm BTDH is greater than or equal to the total computation cost of all
predecessors of a task T;. This implies that all the predecessors of T; can be -dupli-

cated in front of T, when BTDH is applied.

170 YEH-CHING CHUNG, CHIA-CHENG LIU, AND J.-S. LU

5.4 Comparisons of Execution Time of Scheduling Algorithms

The execution time needed for each scheduling algorithm to schedule the test
samples on a distributed memory multiprocessor with complete connections
between processors, on a SUN SPARC-STATION 2, is given in Table 1. From
Table 1, we can see that the execution time of LSA/BTDH is much higher than
those of LSA-BTDH and LSAs. When the number of tasks of a DAG is large,
the time for LSA/BTDH may be relatively large. Therefore, LISA/BTDH is
suitable for DAGs with a few tens to a few hundreds of tasks. Since the execution
time of LSA-BTDH is a little higher than those of LSAs, for DAGs with large
number of tasks, LSA-BTDH, in general, can produce a better scheduling length
than can LSAs in a reasonable time.

Table 1. The execution time of scheduling algorithms for the test samples.

(a) The execution time (in second) of scheduling algorithms, where GPP < 1.

: 4—processor 8—processor | 16—processor | 32—processor
ETF not available | 0.26 — 0.41 0.42 - 0.59 0.75 - 1.24
ETF/BTDH | not available | 9.13 —18.07 | 14.50 — 59.15 | 31.00 - 216.17
ETF-BTDH | not available | 0.77 — 1.48 1.03 - 3.29 1.64 — 8.68
HLFET not available | 0.07 — 0.08 0.11 - 0.12 0.19 - 0.21 -
HLFET/BTDH | not available | 7.44 —22.38 | 10.36 — 64.89 | 11.62 — 184.69
HLFET-BTDH | not available | 0.71 —3.04 | 1.10 -10.88 | 1.77 —39.08

(b) The execution time (in second) of scheduling algorithms, where GPP = 1.

4—processor 8—processor | 16—processor | 32—processor
ETF 0.21 - 031 0.26 — 0.35 0.44 — 0.65 0.88 — 1.43
ETE/BIDH 571 — 944 | 11.37 —29.43 | 30.7 - 93.03 |160.66 — 276.22
ETF-BTDH 0.4 - 091 0.53 -2.12 0.82 — 2.53 1.37 - 10.8
HLFET 0.05 - 0.06 0.07 — 0.08 0.11 - 0.11 0.17 - 0.18
HLFET/BTDH | 4.65-9.24 539 -18.49 | 6.22—55.04 | 7.88 —91.00
HLFET-BTDH| 0.25- 0.86 0.35 - 2.95 0.51 — 9.04 0.77 — 14.54

(c) The execution time (in second) of scheduling algorithms, where GPP > 1.

4—processor 8—processor | 16—processor | 32—processor
ETF 0.22 - 0.63 0.30 - 0.75 0.51 - 1.00 1.11 - 1.53
ETF/BTDH 6.24 — 16.53 | 13.9 — 38.17 |50.36 — 100.38 [199.28 — 279.04
ETF-BTDH 0.33 - 1.00 0.46 — 2.84 0.74 - 5.47 1.41 -2.39
HLFET 0.05 - 0.07 0.08 — 0.08 0.10 - 0.11 0.15-0.16
HLFET/BTDH | 3.16 — 7.45 3.71 —19.84 | 4.19 - 37.06 | 4.55-10.14
HLFET-BTDH| 0.13 - 0.87 0.18 — 2.63 0.27 - 5.32 0.44 - 1.06

LIST SCHEDULING ALGORITHMS FOR MULTIPROCESSORS 171

5.5 Discussion
From the above comparisons, we have the following conclusions:

1) Given a DAG, the GP of a DAG can accurately predict the number of
processors to be used such that a good scheduling length and better
resource utilization can be achieved simultaneously.

2) If GPP is very large, to use BTDH with ETF may gain nothing in terms
of speedup or scheduling length; that is, it is not necessary to use BTDH.

3) In general, LSA/BTDH can produce better scheduling length than can
LSA-BTDH, LSA-BTDH can produce better scheduling length than can
ETF, and ETF can produce better scheduling length than can HLFET,
that iS, (LSA/ BTDH)scheduling length < (LSA'BTDH)scheduling length < (ETF)
scheduling length < (HLFET)scheduling lengths where (scheduling algorithm)scheduling

: lengtn 18 the scheduling length for a scheduling algorithm.

4) Interms of time complexity, in general, we have (LSA/BTDH),;,,, > (LSA
-BIDH),ipe 2 (ETF) e 2 (HLFET) 3, where (scheduling algorithm),,,.
is the time complexity of a scheduling algorithm.

6. EXPERIMENTAL RESULTS OF SCHEDULING ALGORITHMS
ON NCUBE-2

To demonstrate the performance of BTDH for real programs on an NCUBE
-2, FFT programs were implemented. The programs were written in C language
by using the Single Program Multiple Data (SPMD) programming model. Since
BTDH s a task duplication heuristic , and we used the SPMD programming model,
statements in an FFT program were implemented as procedure calls. The overall
program design flow is given in Fig. 6. In the DAG generation phase, we analyze
the sequential program, choose the grain size, and partition and transform the
sequential program to aDAG. In the scheduling phase, the DAG is scheduled and
a configuration table is generated. The configuration table contains information of
(task, processor) pairs, the earliest start time of tasks on processors, and the execu-
tion order of tasks on processors. In the communication analysis phase, the com-
munication needed among processors is analyzed, and the information for each task
which needs to communicate with other tasks is added to the configuration table.
According to the configuration table from the communication analysis phase, in
the code generation phase, the parallel codes of the sequential program are gen-
erated. The parallel program is then executed on an NCUBE-2 to evaluate its
execution time. All phases, except the DAG generation phase, are performed
automatically. The DAG generation phase is performed in a semi-automatic way.
Since the grain size of a DAG determines the value of CCR, in the following, we
will describe how the DAG generation phase is performed for the test samples in
detail. However, for other phases, we do not describe their implementation in this
paper. For FFT programs, we generate DAGs with CCR > 1, 0.5 < CCR < 1, and
0 < CCR < 0.5 and compare the performance of scheduling algorithms for each
case.

172 YEH-CHING CHUNG, CHIA-CHENG LIU, AND J.-S. LIU

A sequential program

DAG Generation Phase

l&—— The corresponding DAG

Scheduling Phase

le—— A configuration table

Communication Analysis Phase

lg—— A configuration table with
\ communication information

Code Generation Phase

The corresponding parallel program

Fig. 6. The parallel program design flow.

6.1 The performance of Scheduling Algorithms for FFT

An FFT program, in general, can be described as follows:

Algorithm FFT (A)

1. n = length (A); /* n is a power of 2 */

2. if (n = 1) then return (A);

3. YO = FFT(A[0: n-2: 2]);

4. YO = FFT(A[1: n—1: 2]);

5. @, =e2v o =1;

6. for k = 0 to n/2-1 do

7. { Y[K] = YO[k] + o* YO[K]; Y[k+n2] = YO[] - 0% YO[X]; 0 = 0* o)
8. return (Y); /* Y is assumed to be column vector */
end_of_algorithm_FFT

where A and Y are arrays, A[0: n-2: 2] = {A[0], A[2], ..., A[n-2]}, and A[1: n-1: 2]
={A[1], A[3], ..., A[n-1]}. The behavior of FFT with input vector size = 4 is shown
in Fig. 7. In Fig. 7, the computation of FFT consists of two operations, the input
vector operation (IVO) (lines 3 and 4 in algorithm FFT) and the butterfly operation
(BO) (lines 5 to 9 in algorithm FFT). Since the grain size of a DAG determines
the value of CCR, to produce the desired value of CCR, array A can be split into
an appropriate number of subarrays.

LIST SCHEDULING ALGORITHMS FOR MULTIPROCESSORS 173

Input Vector A[OL A[1], A[2]. A[3
Operation (IVO) l (A[0), AT1], AL2], AL])I

| | (AL0}, A12D) (A[0], A[2])

| (A[O])! | @)
Butterfly — B

Operation (.BO) Y Y Y
- (10D @2})! vyl [op)

Y Y
(¥10D) (Y12 (i (113D

Fig.7. The behavior of FFT with 4 points.

The DAG of FFT we have used for scheduling algorithms is shown in Fig.
8. In Fig. 8, we have 2'-1 IVO-task, 2! FFT-task, and [x 2/ BO-task, where [>
0. Each IVO-task with input vector size = k needs to send a vector with size =
k/2 to its immediate successors. Each FFT-task or BO-task with input vector size
= k needs to send a vector with size = k to its immediate successors. To obtain
the value of CCR of the corresponding DAG of an FFT program, we need to know
the computation cost of each IVO-task, FFT-task and BO-task with vector size
= k and the communication cost of sending k bytes and k/2 bytes of data from one
processor to another. Since each IVO-task, FFT-task and BO-task is implemented
as a procedure, we measure the execution time of each IVO-task, FFT-task and
BO-task with different vector sizes by running the corresponding procedures on
an NCUBE-2. We also measure the communication time of sending k bytes and
k/2 bytes of data from one processor to another on an NCUBE-2. From the
measurements, we have found that if the number of FFT-tasks in Fig. 8 is less than
orequal to 16 and array A has 1024 elements, then we have CCR < 0.5. If the number
of FFT-tasks in Fig. 8 is equal to 32 and array A has 1024 elements, then we have
0.5 < CCR < 1. If the number of FFT-tasks in Fig. 8 is greater than or equal to
64 and array A has 1024 elements, then we have CCR > 1. According to the values
- of CCR which we want, we generate DAGs with different numbers of tasks. »

The experimental results of scheduling FFT programs on an NCUBE-2 are
shown in Fig. 9 to Fig. 11. In Fig. 9 to Fig. 11, the input vector size of FFT is
1024. The predicted speedups were obtained by using a simulation approach; that
is, the corresponding DAG of an FFT program was scheduled on a simulated
hypercube (without system overhead). The real speedups were obtained by execu-
ting the corresponding DAG of an FFT program on an NCUBE-2 (with system
overhead).

Fig. 9 shows the speedups of scheduling algorithms for a DAG G, with 511

174 YEH-CHING CHUNG, CHIA-CHENG LIU, AND J.-S. LIU

| .IVO]

Fig. 8. The DAG generated for scheduling.

tasks (63 IVO-tasks, 64 FFT-tasks, and 384 BO-tasks). The values of CCR and
GP of G4 are 1.01 and 24.7, respectively. From Fig. 9, we can see that the system
overhead can greatly offset the speedups we predicted. This is due to the fine
grain nature of the FFT-tasks and the BO-tasks (which represent the majority of
the tasks). Further, the amount of communication sent to the FFI-tasks and the
BO-tasks is relatively small (that is jthe grain size of the communication is small;
thus, system overhead plays an important role). Fig. 10 shows the speedups of
_scheduling algorithms for a DAG Gs with 223 tasks (31 IVO-tasks, 32 FFT-tasks,
- and 160 BO-tasks). The values of CCR and GP of Gs are 0.64 and 19.05, respec-
tively. In Fig. 10, the system overhead can offset some of speedups we predicted
_ (However, it is not so severe as that of G4). Fig. 11 shows the speedups of schedul-
ing algorithms for a DAG G with 95 tasks (15 IVO-tasks, 16 FFT-tasks, and 64
BO-tasks). The values of CCR and GP of G are 0.47 and 12.18, respectively. From
Fig. 11, we can see that the real speedups are very close to the predicted speedups.
Thus, as the grain size of tasks and the grain size of communication (that is, the
number of bytes transferred per message) increase, the effect of system overhead
becomes negligible, and the experimental speedups are close to the speedups pro-
vided by the simulation method (which performs optimization assuming no system
overhead). ’
From Fig. 9 to Fig. 11, in general, the speedups for scheduling algorithms
have the following order: ‘

(LSA/ BTDH)speedup 2 (LSA'BTDH)speedup 2 (ETF)speedup 2 (HLFET) spéedupa
where (scheduling algorithm)gpe.q,, is the speedup for a scheduling al gorithm. These

results show a behavior pattern similar to that of the simulation results (of other
graphs) given in Section 5.

LIST SCHEDULING ALGORITHMS FOR MULTIPROCESSORS 175

predicted real

i 2 s
ETF ETF-BTDHETF/BTDH HLF HLF-BTDHHLF/BTDH ETF ETR-BTDHETF/BTDH HLF HLF-BTDHHLF/BTDH

(a) Speedups for 4 processors. (b) Speedups for 8 processors.

predicted predicted

Speedup

HLF-BTDHHLF/BTDH ETF ETR-BTDHETWBTDH HLF HLF-BTDHHLF/BTDH

(c) Speedups for 16 processors. (d) Speedups for 32 processors.

Fig. 9. Speedups of scheduling algorithms for FFT with input vector size = 1024, GP = 24.7,and
CCR =1.01.

6.2 Discussion

Based on the above experimental results, we can draw the following conclu-
sions.

1) Grain size determination has a great impact on speedups of scheduling
algorithms. If a DAG is too fine, the system overhead will sometimes
greatly offset the speedups of scheduling algorithms. If a DAG is too
coarse, the value of GP may be too small; that is, too much parallelism may

YEH-CHING CHUNG, CHIA-CHENG LIU, AND J.-S. LIU

i RO S 33
ETF/BTDH HLF HLF-BTDHIHLF/BTDH

(a) Speedups for 4 processors.

ETF ETF-BTDH

HLF-BTDHHLF/BTDH

(b) Speedups for 8 processors.

ETR-BTDHETF/BTDH

predicted

SIS

real

33

ETF ETP-BTDHEIF/BTDH HLF HLR-BTDHHLF/BTDH

(c) Speedups for 16 processors.

&"E
F HLF-BTDHHLF/BTDH

(d) Speedups for 32 processors.

Fig. 10. Speedups of scheduling algorithms for FFT with input vector size = 1024, GP =19.05,

2)

and CCR = 0.64.

be lost. In our experimental results, the best speedups, in terms of GPP,
of scheduling algorithms-were obtained when DAGs with 0.25 < CCR <

0.75 are used.

The relative speedup comparisons between different algorithms based on
experimental results are similar to those based on simulation results; that
is, the simulation results accurately show whether a scheduling algorithm
will give a better speedup as compared to another scheduling algorithm.
This is also true for cases in which the experimental results are not close
to simulation results due to neglect of system overhead in the latter.

LIST SCHEDULING ALGORITHMS FOR MULTIPROCESSORS 177

predicted [ENOTNRISNY real

Speedup

104

24

R §_ P A
ETF ETF-BTDHETF/BTDH HLF HLF-BTDHHLF/BTD!

(a) Speedups for 4 processors.

T

. predicted - real

.k 4 3 q 5 R
ETF ETF-BTDHETF/BTDH HLF HLF-BTDHHLF/BTOH ETF ETF-BTDHETF/BTDH HLF HLF-BTDHHLF/BTDH

(c). Speedups for 16 processors. (d) Speedups for.32.processors.

il

Fig. 11. Speedups of scheduling algorithms for FFT with input vector size = 1024, GP =12.18,
and CCR =047.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed the applications of BTDH for LSAs. There
are two ways to use BTDH with LSAs. (1) BTDH can be used with an LSA to
form a new scheduling algorithm (LSA/BTDH). (2) It can be used as a pure
optimization algorithm for an LSA (LSA-BTDH). We have applied BTDH to two
LSAs, HLFET and ETF, for both applications. We have studied the performance
of BTDH for LSAs using simulation as well as on an NCUBE-2. Three parame-
ters, GP, CCR, and PN, have been simulated. From the simulation, we have drawn

178 YEH-CHING CHUNG, CHIA-CHENG LIU, AND J.-S. LIU

the following conclusions. (I) Given a DAG, the GP of a DAG can accurately
predict the number of processors to be used such that a good scheduling length
and good resource utilization (or efficiency) can be achieved simultaneously. (II)
In terms of the scheduling lengths of scheduling algorithms, in general, we have
(LSA/ BTDH)scheduling length < (LSA'BTDH)scheduling length < (ETF)scheduling length <
(HLFET) sghequiing tengn- In terms of the execution time of scheduling algorithms,
in general, we have (LSA/BTDH);;,. 2 (LSA-BTDH);;. =2 (ETF) e 2
(HLFET) ;.. Experimental results of scheduling FFT programs on an NCUBE-
2 have been presented. The results confirm our simulation results and show that
the speedups of LSA/BTDH and LSA-BTDH are better than those of LSAs.

In this paper, we have only used a semi-automatic method to generate D AGs
of FFT programs. However, itis important and difficult to translate real programs
to DAGs automatically. In the future, we plan to develop a program transforma-
tion tool which can translate a sequential program into a corresponding DAG
automatically.

REFERENCES

1. Al-Mouhamed, M.A., “Lower bound on the number of processors and
time for scheduling precedence graphs with communication costs,” IEEE
Transactions on Software Engineering, Vol. 16, No. 12, 1990, pp. 1390-1401.

2. Anger, F.D., Hwang, J.J. and Chow, Y.C., ¢ Scheduling with sufficient loosely
coupled processors,” Journal of Parallel and Distributed Computing, Vol. 9,1990,
pp. 87-92.

3. Baxter, J. and Patel, J.H., “The LAST algorithm: a heuristic-based static
task allocation algorithm,” in Proceedings of International Conference on
Parallel Processing, Vol. 2, 1989, pp. 217-222.

4. Chaudhary, V. and Aggarwal, J.K., “Generalized mapping of parallel algo-
rithms onto parallel architectures,” Proceedings of International Conference on
Parallel Processing, Vol. 2, 1990, pp. 137-141.

5. Chung, Y.C. and Ranka, S., “An optimization approach for static scheduling
of directed-acyclic graphs on distributed memory multiprocessors,” NPAC-
SCCS Report, Syracuse University, 1991.

6. El-Rewini, H. and Lewis, T.G., “Scheduling parallel program tasks onto arbi-
trary target machines,” Journal of Parallel and Distributed Computing, Vol. 9,
1990, pp. 138-153.

7. Gupta, R. and Soffa, M.L., “Region scheduling: an approach for detecting
and redistributing parallelism,” IEEE Transactions on Software Engineering,
Vol. 16, No. 4, 1990, pp. 421-431.

8. Hwang, J.J. et al, “Scheduling precedence graphs in systems with interpro-
cessor communication times,” SIAM Journal of Computing, Vol. 18, 1989, pp.
244-257.

9. Jung, H., Kirousis, L. and Spirakis, P., “Lower bounds and efficient algo-
rithms for multiprocessor scheduling of DAGs with communication delay,”
in Proceedings of the ACM Symposiums of Parallel Algorithims and Archit-
ectures, 1989, pp. 254-264.

10.
11.
12.

13.

14.

- 15.
- 16.

17.
18.
19.
20.
21.
22.

23.
24.
25,

26.

27.

LIST SCHEDULING ALGORITHMS FOR MULTIPROCESSORS 179

Kim, S.J. and Browne, J.C., “A general approach to mapping of parallel com-
putations upon multiprocessor architectures,” in Proceedings of International
Conference on Parallel Processing, 1988, pp. 1-8.

Kruatrachue, B., Static Task Scheduling and Grain Packing in Parallel Proces-
sing Systems, Ph.D. dissertation, Electrical and Computer Engineering Depart-
ment, Oregon State University, Corvallis, 1987.

Lee, B., Hurson, A.R. and Feng, T.Y., “A vertically layered allocation
scheme for data flow systems,” Journal of Parallel and Distributed Computing,
Vol. 11, 1991, pp. 175-187.

Lee, C.Y. et al, “Multiprocessor scheduling with interprocessor com-
munication delays,” Operations Research Letters, Vol. 7, 1988, pp. 141-147.
Lin, K.J., Chung, J.Y. and Liu, J., “Scheduling real-time computations on
hypercubes with load balancing,” in Proceedings of The Fifth Conference of
Distributed Memory Multiprocessors, 1990, pp. 975-983.

Manohara, S. and Thanisch, P., “Assigning dependency graphs onto proces-
sor networks,” Parallel Computmg, Vol. 17, 1991, pp. 63-73.

Papadimitriou, CH. and Ullman, J.D., “A communication-time tradeoff,”
SIAM Journal of Computing, Vol. 14, No. 4, 1987, pp. 639-646.
Papadimitriou, C.H. and Yannakakis, M., “Towards an architecture-indepen-
dent analysis of parallel algorithms,” SIAM Journal of Computing, Vol. 19,
1990, pp. 322-328.

Ramamritham, K., Stankovic, J.A. and Shiah, P.F., "Efficient scheduling
algorithms for real-time multiprocessor systems,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 1, No. 2, 1990, pp. 184-194.

Sih, G.C. and Lee, E.A., “Scheduling to account for interprocessor communi-
cation within interconnection-constrained processor networks,” in Proceedings
of International Conference on Parallel Processing, Vol. 1, 1990, pp. 9-16.
Stone, H.S., “Multiprocessor scheduling with the aid of network flow algo-
rithms,” IEEE Transactions on Software Engineering, Vol. 3, No. 1, 1977, pp.
85-93.

Wu, M.Y. and Gajski, D.D., “Hypertool: a programming aid for message-pass-
ing systems,” IEEE Transactions on Parallel and Distributed Systems, Vol. 1,
No. 3, 1990, pp. 330-343.

Adam, T.L., Chandy, K.M. and Dickson, J.R., “A comparison of list
schedules for parallel processing systems,” Commumcatzon of ACM, Vol. 17,
No. 12, 1974, pp. 685-690.

Coffman, E.G. Jr., Computer Jr., and Job-Shop Scheduling Theory, Wiley, New
York, 1976. ‘
Friesen, D K., “Tighter bound for LPT scheduling on uniform processors,” SIAM
Journal of Computing, Vol. 16, No. 3, 1987, pp. 554-560.

Graham, R.L. “Bounds on multiprocessor timing anomalies,” SIAM
Journal of Applied Mathematics, Vol. 17, No. 2, 1969, pp. 416-429.

Granski, M., Koren, I. and Silberman, G.M., “The effect of operation
scheduling on the performance of a data flow computer, ” IEEE Transactions
on Computers, Vol. 36, No. 9, 1987, pp. 1019-1029.

Hochbaum, D.S. and Shmoys, D.B., “A polynomial approximation scheme
for scheduling on uniform processors: using the dual approximation ap-

180 YEH-CHING CHUNG, CHIA-CHENG LIU, AND J.-S. LIU

proach,” SIAM Journal of Computing, Vol. 17, No. 3, 1988, pp. 539-551.

28. Hu, T.C., “Parallel sequencing and assembly line problems,” Operations
Research, 1961, pp. 841-848.

29. Kasahara, H. and Narita, S., “Practical multiprocessor scheduling algorithms
for efficient parallel processing,” IEEE Transactions on Computers, Vol. 33,
No. 11, 1984, pp. 1023-1029.

30. Leung, J.Y.T. and Young, G.H., “Minimizing schedule length subject to
minimum flow time,” SIAM Journal of Computing, Vol. 18, No. 2, 1989, pp.
314-326.

31. Shirazi, B. and Wang, M., “Analysis and evaluation of heuristic methods for
static task scheduling,” J ournal of Parallel and Distributed Computmg, Vol. 10,
1990, pp. 222-232.

32. Simons, B.B. and Warmuth, M.K., “A fast algorithm for multiprocessor
scheduling of unit-time jobs,” SIAM Journal of Computing, Vol. 18, No. 4, 1989,
pp. 690-710.

33. Garey, M.R. and Johnson, D.S., Computers and Intractability - A Guide to the
Theory of NP- Completeness, W. H. San Francisco, 1979.

Yeh-Ching Chung ($23 %) was born in 1961. He
received a B.S. degree in computer science from Chung
Yuan Christian University in 1983, and an M.S. and a
Ph.D. degrees in computer and information science from
Syracuse University in 1988 and 1992, respectively. Since
1992, he has been an Associate Professor in the Depart-
ment of Information Engineering and Computer Science
v at Feng Chia University. His research interests include
parallel compilers, parallel programming tools, mapping, scheduling, and load
balancing.

Chia-Cheng Lin (2|3 H) received a B.S. degree
in computer science from Feng Chia University, a M.S.
degree in electrical engineering from National Taiwan
University and a Ph.D. degree in computer science from
National Tsing Hua University.

He is currently associate professor in the Depart-
ment of Information Engineering and executive vice di-
, : rector in Information Processing Center, Feng Chia Uni-
\ ty His research interests include distributed and multiprocessing systems,
computer aid design for VLSI, and parallel algorithms.

LIST SCHEDULING ALGORITHMS FOR MULTIPROCESSORS 181

Jenshiuh Liu (£J}R%%) received B.S. and M.S. de-
grees in nuclear engineering from National Tsing-Hua
University, and M.S. and Ph.D. degrees in computer sci-
ence from Michigan State University in 1979, 1981, 1987
and 1992, respectively.

Since 1992, he has been an associate professor in the
Department of Information Engineering and Computer

x Science at Feng Chia University, Taiwan. His research
1nterests include parallel and distributed systems, computer networks, parallel and
distributed simulation, and performance evaluation.

	199506_01
	199506_01-2

