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SUMMARY 
To efficiently execute a finite element program on a 2D torus, we need to map nodes of the 
corresponding finite element graph to processors of a 2D torus such that each processor has 
approximately the same amount of computational load and the communication among proces- 
sors is minimized. If nodes of a finite element graph do not increase during the execution of 
a program, the mapping only needs to be performed once. However, if a finite element graph 
is solution-adaptive, that is, nodes of a finite element graph increase discretely due to the re- 
finement of some finite elements during the execution of a program, a dynamic load-balancing 
algorithm has to be performed many times in order to balance the computational load of pro- 
cessors while keeping the communication cost as low as possible. In the paper we propose a 
parallel dynamic load-balancing algorithm (LB) to deal with the load-imbalancing problem 
of a solution-adaptive finite element program on a 2D torus. The algorithm uses an iterative 
approach to achieve load-balancing. We have implemented the proposed algorithm along with 
two parallel mapping algorithms, parallel orthogonal recursive bisection (ORB) and parallel 
recursive mincut bipartitioning (MC), on a simulated 2D torus. Three criteria, the execution 
time of load-balancing algorithms, the computation time of an application program under dif- 
ferent load balancing algorithms, and the total execution time of an application program (under 
several refinement phases) are used for performance evaluation. Simulation results show that 
(1) the execution of LB is faster than those of MC and ORB; (2) the mappings of LB are better 
than those of ORB and MC; and (3) the speedups of LB are better than those of ORB and MC. 

1. INTRODUCTION 

The finiteelement method is widely used for the structural modeling of physical systems[ I ] .  
In the finite element model, an object can be viewed as afiriite elenlent graph, which is a 
connected and undirected graph that consists of a number of finite elements. Each finite 
element is composed of a number of nodes. The number of nodes of a finite element is deter- 
mined by applications. In Figure l(a), a 40-node finite element graph with 25 4-node finite 
elements is shown. Due to the properties of computation-intensiveness and computation- 
locality, i t  is very attractive to implement the finite element method on distributed-memory 
multiprocessors[2-4]. In the context of parallelizing a finite element modeling program 
that uses iterative techniques to solve a system of equations[2,3], a parallel program may 
be viewed as a collection of tasks represented by the nodes of a finite element graph. Each 
node represents a particular amount of computation and can be executed independently. In 
each iteration, a node needs to get data from other nodes in the same finite element before 
the next iteration can be performed. The communication needed between nodes in the finite 
element graph of Figure l(a) is shown in Figure l(b). 
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Figure 1 .  An example of a 40-node finite element graph and the communication needed between 
nodes: ( a )  a 40-node finite element graph with 25jniie elements (ihe circled and uncircled numbers 
denote the finite element numbers and node numbers, respectively); (b)  [he cornrnunication needed 

between nodes 

To efficiently execute a finite element modeling program on a 2D torus, we need to 
map nodes of the corresponding finite element graph to processors of a 2D torus such 
that each processor has approximately the same amount of computational load and the 
communication among processors is minimized. If nodes of a finite element graph do not 
increase during the execution of a program, the mapping only needs to be performed once. 
However, if a finite element graph is solution-adaptive, that is, nodes of a finite dement 
graph increase discretely due to the refinement of some finite elements during the execution 
of a program, a dynamic load-balancing algorithm has to be performed many times in order 
to balance the computational load of processors while keeping the communication cost 
as low as possible. For example, in Figure 2, a finite element graph is refined twice 
during execution. Initially, each processor has 16 nodes. If no load-balancing algorithm is 
performed, after the first and the second refinement, the number of nodes assigned to PO 
are 36 and 64, respectively, and the number of nodes assigned to P I ,  P2 and P3 are 16. 
However, if a load-balancing algorithm is carried out in  each refinement, the load may be 
evenly distributed as shown in Figure 2(d). 

In fact, the solution-adaptive finite element problem is a subset of a class of irregu- 
lar loosely synchronous problems[5]. In [5], types of loosely synchronous problems are 
classified into static single phase computations such as explicit unstructured mesh flu- 
ids calculation[6,7], multiple phase computations such as unstructured multigridl81 and 
particle-in-cell methods[9-10], adaptive irregular computations such as solution-adaptive 
finite element methods[4,11] and molecular dynamics calculations[ 121, implicitmuliiphase 
loose synchronous computations such as particle dynamics[ 131, and static and dynamic 
structured problems. Since data-dependency of algorithms for those problems is deter- 
mined at run time, a good run-time mapping scheme is critical for the performance of those 
algorithms. 
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ALGORITHM FOR SOLUTION-ADAPTIVE FINITE ELEMENT MESHES ON 2D TORI 617 

p2 p3 

(a) The initial finite element graph. 

Pn ! PI 

(b) The finite element graph after 
the first refinement. 

Pn ! ! PI 

p2 I p3 P3 ! 
I 

(c) The finite element graph after 
the second refinement. 

(d) Nodes remapping for (c). 

Figure 2. An example of solution-adaptivefinite element graph and load redistribution 

To solve the load-imbalancing problem of a solution-adaptive finite element program, 
nodes of a refined finiteelement graph can be remapped (nodes remapping approach) or load 
of a refined finite element graph can be redistributed based on the current load of processors 
(load redistribution approach). For the former case, nodes remapping can be performed by 
some fast mapping algorithms. In the load redistribution approach, after a finite element 
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graph is refined, a load-balancing heuristic is applied to balance the computational load of 
processors. For both approaches, a good node remapping or load redistribution algorithm 
should have two properties. Firstly, its execution is fast. Secondly, it should produce a good 
mapping. Algorithms for node remapping and load-redistribution are called load-balancing 
algorithms throughout this paper. 

In this paper we present a parallel dynamic load-balancing algorithm to deal with the 
load-imbalancing problem of a solution-adaptive finite element program. The algorithm 
uses iterative approach to achieve load-balancing. We have implemented the algorithm on 
a simulated 2D torus along with two parallel mapping algorithms, orthogonal recursive 
bisection[4] and recursive min-cut bipartitioning[ 141. Three criteria, the execution time of 
load-balancing algorithms, the computation time of an application program under different 
load-balancing algorithms, and the total execution time of an application program (under 
several refinement phases) are used for performance evaluation. Simulation results show 
that the proposed load balancing algorithm outperforms the other two and produces very 
good mapping results. 

In Section 2,  a brief survey of related work is presented. The definition of a 2D torus and 
the proposed parallel dynamic load-balancing algorithm are described in Section 3. The 
comparisons of the proposed parallel dynamic load-balancing algorithm, parallel orthogonal 
recursive bisection and parallel recursive min-cut bipartitioning are given in  Section 4. 

2. RELATED WORK 

Many finite element mapping algorithms have been addressed in the literature. In [ 5 ] ,  
a binary decomposition approach was used to partition a non-uniform mesh graph into 
modules such that each module has the same amount of computational load. These modules 
were then mapped on meshes, trees and hypercubes. This method does not try to minimize 
the communication cost. 

Sadayappan and Ercal[ 161 proposed a nearest-neighbor mapping approach to map planar 
finite element graphs on processor meshes. This approach used the stripes partition (stripes 
mapping) strategy to minimize the communication cost of processors and then used the 
boundary refinement heuristic to balance the computational load of processors. However, 
the boundary refinement heuristic does not guarantee the balancing of computational load. 

In [ 171, a pairwise interchange algorithm was proposed to map finite element graphs 
onto a finite element machine[ 181. This approach assumes that the number of nodes of a 
finite element graph is less than or equal to the number of processors of a finite element 
machine. An initial mapping is generated by assigning node i of a finite element graph to 
processor i of the finite element machine. Then the pairwise interchange heuristic is .applied 
to minimize the communication cost of processors. 

Grama and Kumar[ 191 presented scalabilty analysis of three finite element graph par- 
titioning strategies, namely striped partitioning, binary decomposition and scattered de- 
composition. The analysis was performed using the Isoeficiency metric, which helps in 
predicting the performance of these schemes on a range of processors and architectures. 

In [20]  and [ 2 1 ] ,  a two-way stripes partition mapping and a greedy assignment mapping 
algorithm were proposed. The two-way stripes partition mapping tried to minimize the 
communication cost by assigning a node and its neighbor nodes of a finite element graph to 
the same processors or neighbor processors of a hypercube. Then a load transfer heuristic 
was performed to balance the computational load of processors. The greedy assignment 
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ALGORITHM FOR SOLUTION-ADAPTIVE FINITE ELEMENT MESHES ON 2D TORI 619 

Figure 3. Two-dimensional meshes: (a) a mesh without wraparound connections: (b)  a mesh with 
wraparound connections 

mapping tried to minimize the communication cost and balance the computational load 
simultaneously. 

Williams[4] proposed three parallel load-balancing algorithms, orthogonal recursive 
bisection, eigenvector recursive bisection and a simple parallel simulated annealing, to 
deal with the load-imbalancing problem of a solution-adaptive finite element program. 
The performance analysis shows that the time to execute orthogonal recursive bisection 
is the fastest, and the execution of parallel simulated annealing is time-consuming. But 
the mapping produced by simulated annealing saves 21% in the execution time of a finite 
element mesh over the mapping produced by orthogonal recursive bisection. 

Of the papers mentioned above, only the work of [4] deals with the load-imbalancing 
problem of a solution-adaptivefinite element program. Others assume that nodes of a finite 
element graph do not change during the execution of a program. 

3. THE PROPOSED LOAD-BALANCING ALGORITHM 

In this section we first give the definition of a 2D torus. Then we describe the proposed 
parallel dynamic load-balancing algorithm in detail. 

3.1. 2D tori 

A 2 0  torus network is a variant of the mesh network, where nodes are arranged into a 
two-dimensional lattice. Figure 3(a) illustrates a two-dimensional mesh. A 2D torus allows 
wrap-around connections between processors on the edge of the mesh. These connections 
may connect processors in the same row and column (Figure 3(b)). We use P(a, b )  to denote 
the processor in row a and column b of an m x n torus, where 0 5 a < m and 0 5 b < n .  In 
an nt x n torus, each processor has north, east, west and south neighbors. The north, east, 
west, and south neighbors of a processor f ( a ,  b )  are P((a-1) mod m, b),  P(a, (b+ l )  mod n),  
f ( a ,  (b-1) mod n )  and P((a+l) mod m, b) ,  respectively, where 0 5 a < m and 0 5 b < n .  
Also, we use P, to denote the processor P(x/m, x mod n )  in an m x n torus. For example, in 
Figure 3(b), processor Po (or P(0,O)) has a north neighbor Pi2 (or P(3,0)), an east neighbor 
P I  (or P(0, l)), a west neighbor P3 (or P(0,3)) and a south neighbor P4 (or P(1,O)). 
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3.2. 

Many dynamic load-balancing algorithms have been addressed in the literature[22-25]. 
However, the problem addressed in this paper is different from that in [22-251. At run time, 
the computational load increased in a solution-adaptive finite element program is discrete 
in  nature while that in [22-251 is continuous. Therefore, those approaches proposed in  
[22-251 cannot efficiently handle the load-imbalancing issue presented in  this paper. 

In this paper we propose a parallel dynamic load-balancing algorithm to deal with the 
load-imbalancing problem of a solution-adaptive finite element program. The algorithm 
uses an iterative approach to achieve load-balancing. For an m x n torus, if tn > n i t  
will first balance the computational load of processors at the same column. Then, it will 
balance the computational load of processors at the same row. If m 5 n,  it will balance the 
computational load of processors at the same row followed by balancing the computational 
load of processors at the same column. The process of balancing the computational load 
of processors at the same row is performed as follows. Initially, every processor P(a, 
b)  with even (odd) column co-ordinate will balance its current computational load and 
the current computational load of its east (west) neighbor processor, where 0 5 a < m 
and 0 5 b < n. Then, processor P(a, b)  will balance its current computational load 
and the current computational load of its west (east) processor. The balancing process of 
processor P(a, b)  with its east and west neighbor processors is performed in turn until the 
computational load of processors at the same row is balanced. The process of balancing the 
computational load of two adjacent processors P(a, b)  and P(a,  c) consists of two phases: 

Determine the number of nodes needed to be sent from one processor to 
another. 
Perform load transfer while keeping the communication cost of finite ele- 
ment nodes of these two processors as low as possible. 

Let the current computational load of processors P(a, b) and P(a, c) be denoted by 
load(P(a, b)) and load(P(a, c)), respectively. In phase 1, if load(P(a, b)) > load(P(a, c)), 
then processor P(a, b) needs to send N = (load(P(a,b)) - load(P(a,c))) / 2 1 nodes to 
processor P(a, c). If load(P(a, b)) < load(P(a, c)), then processor P(a, c) needs to send N 
= [ (load(P(a, c)) - load(P(a, 6))) / 2 1 n3des to processor P(a, b). In phase 2, load transfer 
I S  performed. Assume that processor P(a, b) needs to send N nodes to processor P(a, c). 
In order to minimize the communication cost of finite element nodes of processors P(a, 6) 
and P(a, c) ,  we have the following four cases: 

A parallel dynamic load-balancing algorithm 

Phase 1: 

Phase 2: 

Case I :  
Case 2: 

Case 3: 
Case 4: 

Send nodes in P(a, b )  that are only adjacent to nodes of P(a, c) to P(a, c). 
Send nodes in P(a, 6) that are not adjacent to nodes of other processors to 
P(a, c). 
Send nodes in P(a, b)  that are adjacent to nodes of P(a, c) to P(u, c). 
Send a node in P(a, b) to P(a, c). 

To send nodes from processor P(a, b) to processor P(a, c), nodes in case 1 are considered. 
If nodes in case 1 do not exist, then nodes in case 2 are considered, and so on. Let M denote 
the set of nodes in P(a, b) that are selected from one of the cases stated above. If IMI is less 
than N ,  then nodes adjacent to those of M are selected. If the sum of IMI and the number 
of nodes adjacent to those of M is less than N ,  then nodes adjacent to those nodes adjacent 
to nodes of M are selected. This process is continued until the number of nodes selected is 
equal to N .  Then those nodes are transferred from processor P(a, 6 )  to processor P(a, c). 
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ALGORITHM FOR SOLUTION-ADAPTIVE FINITE ELEMENT MESHES ON 2D TORI 62 1 

A lgorithm dynamic-load-bnlancingSor_2D-tori() 
/* For an m x n torus, perform the load transfer for every processor P(a,b) */ 
if (m 5 n)  then ( balance-row_co/umn(m, n ,  1); balance-row_column(m, n, 2); ) 

else ( balance-row-column(m, n,  2); balance_row-column(m, n, 1); ) 
end_of-d~namic_load-balancing for-2D-tori 

Algorithm balance_row-column(m, n ,  row-col) 
I .  i t o .  
2. For every processor P, = P(a,b) do { 
3. if (row-col= 1) then 
4. if ( b  and i are both even or odd) 
S .  
6. else if (b  and i are both even or odd) 
7. then Py = P((a+l)  mod m, b )  else fy = P((a-I)  mod m, b) 
8. Send load(P,) to Py and receive load(f,)'from P y .  
9. if (load(f,) < load(fy)) then { /* P, needs to receive nodes from Pv */ 
10. 

' 

11. 
12. 
13. 
14. 
15. 

then Py = P(a, (b+1) mod n) else Py = P(a, (b-I) mod n) 

N t r(load(Py) - load(P,) + 21; load(P,) t load(F',) + N .  
Receive N nodes from Py. } 

if (load(P,) > /oad(P,)) then { I* P, needs to send nodes to Py */ 
N t r(load(P,) -.load(Py) + 21; load(P,) t load(P,) - N. 
M t 0. M I  t 0. done = false. 
K = the set of nodes assigned to P,,. 

16. do I 
17. M + M U  MI. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. LI:  
26. 
21. 
28. 
29. ; t i +  I .  
30. 

M I  = the set of nodes of f ,  that are only adjacent to nodes of K u M .  
if ( M I  <> 0) then goto LI. 
M I  = the set of a node of P, that are not adjacent to nodes of other processors. 
if (MI <> 0) then goto LI. 

M I  = the set of nodes o f f ,  that are adjacent to nodes of K u M .  
if ( M I  <> 0) then goto LI. 
M I  = the set of a node of P,. 
if (IMI + lM~l< N) then M t M u  MI else done = true. 

} until (done = true) 
M t M u  M2, where M2 
Send the set M to P,.. } 

} until (load is balanced) 

MI  and IMI + lM2l= N .  

end-of-balance-row-column 

Figure 4 .  The proposed parallel dynamic load-balancing algorithm 

The process of balancing the computational load of processors at the same column is 
similar to that of balancing the computational load of processors at the same row. The 
proposed algorithm is given in Figure 4. 

In algorithm balance-row-column, lines 1-10, 12-17, 19, 21, 23-27 and 29-30 take 
constant time. Lines 18 ,20  and 22 take L time, where L is the maximum number of nodes 
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assigned to processors. Let the time for a processor to send (receive) T nodes of data to 
(from) its adjacent processor on a 2D torus take ts + T x tm time, where tS is the startup 
time and the t ,  is the data transmission time per data. Then lines 11 and 28 take t ,  + T x t ,  
time. Lines 2-23 and 16-26 form loops. The loops are executed O(m) or O(n) and O(1) 
time, respectively, where m and n are the length of the row and column of the torus. The 
complexity of algorithm balance-row-column is O((m+n) x ( t ,  + T x 1,)). The complexity 
of algorithm dynamicloaddalancingfor2D-tori is O((m+n) x ( ts + T x I , , , ) ) .  

We now give an example to show how algorithm dynarnicloadbalancingfor2D-tori 
works. Assume that, initially, we are given a 64-node finite element mesh and nodes of the 
finite element mesh are evenly distributed to a 1 x 4 torus as shown in Figure 5(a), that is, 
each processor is assigned 16 nodes. During the execution, the finite element mesh is refined 
once. After the refinement, Po, PI ,  P2 and P3 have 32, 20, 16 and 16 nodes, respectively, 
which is shown in Figure 5(b). When algorithm dynamic-loadbalancingfor-2D-tori is 
applied, at the first iteration, the number of nodes N which need to be sent or received 
is calculated for every processor. After the calculation of N ,  a load transfer heuristic is 
performed to balance the computational load of processors as shown in Figure S(c). The 
calculation of N and the physical load transfer execution for the next iteration are ijhown in  
Figure 5(d). After the execution of algorithm dynamic-loaddalancingfor2D-tori, nodes 
are evenly distributed to each processor (as shown in Figure 5(d)). 

4. SIMULATION AND EXPERIMENTAL RESULTS 

Since we do not have a 2D torus machine and a 2D torus can be embedded in  a hypercube, 
algorithms for 2D torus are implemented on a 16-node NCUBE-2. To embed a 2" x 2'' 
torus on an (x+y)-cube, the binary reflected Gray code (BRGC) coding scheme is used. The 
binary reflected Gray code is defined as follows: 

if k=l 
+ lNk-I* if k>l Nk= { 

where + and * represent sequence concatenation and sequence reversal operations, respec- 
tively. For example, Nl = (O,l), Nl* = (O, l )*  = (1,O); N2 = ON1 + IN1* = O(0,l) + l(1,O) = 
(00,Ol) + ( 1  1,lO) = (00,01, 11, lo); N 3  = (000, 001, 01 1,010, 110, 1 11, 101, loo), N3(0) 
= 000, and N3(3)  = 010. Note that Nk(r) denotes the (r+l)th element of Nk, where r = 0, ..., 
2k - 1 .  To embed a 2" x 2,' torus in an (x+y)-cube, we assign processor P( i , j )  of a torus to 
the processor of an (x+y)-cube according to the following equation: 

f(i , j)=Nx(i)  A N J j )  ( 2 )  

where 0 5 i 5 2" - 1,O 5 j 5 2y - 1, and A is the binary string concatenation operation. An 
example of embedding a 2  x 4 torus in a 3-cube by using the embedding method mentioned 
above is shown in Figure 6. In Figure 6(b), the addresses of P(0,2) and P( 1,O) are Nl(0)  A 
N2(2) = 01 1 and Nl( 1) A N2(0) = 100, respectively. 

We have implemented algorithm dynamic-loadbalancingfor2d~ori (LB) on a simu- 
lated 2D torus along with two parallel mapping algorithms, orthogonal recursive bisection 
(ORB)[4] and recursive min-cut bipartitioning (MC)[ 141. All programs are written in EX- 
PRESS C. Three criteria, the execution time of load-balancing algorithms, the computation 
time of an application program under different load-balancing algorithms, and i.he total 
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(a) Initial status. 

6 nodes - 
PO PI 

0 node 
t----w 
p2 p3 

= 16 
= 16 
= 16 
= 16 

(b) Status after a refinement. 

Calculate N .  

(c) Load transfer for the first iteration. 

5 nodes - 
PI p2 

5 nodes - 
PO p3 

Calculate N .  

load(P0) = 32 
load(P 1) = 20 
load(P2) = 16 
load(P3) = 16 

load(P0) = 26 
load(P 1) = 26 
load(P2) = 16 
load(P3) = 16 

load( Po) = 2 1 
load(P 1) = 21 
load( P2) = 2 1 
load(P3) = 21 

(d) Load transfer for the second iteration. 

Figure 5.  The behavior of the parallel dynamic load-balancing algorithm on a 2 0  torus 
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01 1 fq/:oo 
010 110 

(a) A 3-cube. 

loo H 101 H 111 H 110 

(b) The emulation of a 2 x 4 2D-torus. 

Figure 6. An example of embedding a 2 x 4 mesh in a 3-cube 

execution time of an application program (under several refinement phases) are used for 
performance evaluation. 

In dealing with finite element meshes, the distributed irregular mesh environment 
(DIME)[26] is used to generate test samples. DIME is a programming environment for 
doing distributed calculations with unstructured triangular meshes. The mesh covers a two- 
dimensional manifold, whose boundaries may be defined by straight lines, arcs of circles 
or Bezier cubic sections. It also provides functions for creating, manipulating and refining 
unstructured triangular meshes. Although DIME is a programming environment, in this 
paper we only use DIME to generate desired finite element meshes. 

To create test samples, an initial finite element mesh, which has 310 nodes, is created 
by DIME. Then, the initial finite element mesh is refined five times. The refined process is 
carried out by DIME. In each refinement, the corresponding mesh structure is saved to a 
data file. Those data files will be used as test samples. The number of nodes for test samples 
are shown in Table 1. 

To emulate the execution of a solution-adaptive finite element program on a simulated 
2D torus we first read the mesh structure of the initial finite element mesh (sample 1). 
Then, algorithm ORB or MC is applied to map nodes of the initial finite element mesh to 
processors. After the mapping, the Computation for each processor is carried out. In our 
example, the computation is to solve Laplaces’s equation (Laplace solver). The algorithm 
of solving Laplaces’s equation is similar to that of [27]. Since it is difficult to predict 
the number of iterations for the convergence of a Laplace solver, we assume that the 
maximum iterations executed by our Laplace solver is 10,000. When the computation is 
converged, the mesh structure of the first refined finite element mesh (sample 2 )  is read. 
To balance the computational load, ORB or MC or LB is applied. After a load-balancing 
algorithm is performed, the computation for each processor is carried out. The refinement, 
load-balancing, and computation processes are performed in turn until the execution of a 
solution-adaptive finite element program is completed. 

To evaluate the performance of ORB, MC and LB, five cases are considered: 

Case 1: 
Case 2: 

The test samples are executed sequentially. 
Nodes in the initial finite element mesh are mapped to processors by ORB. 
In each refinement, ORB is applied to balance the computational load of 
processors. 
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ALGORITHM FOR SOLUTION-ADAPTIVE FINITE ELEMENT MESHES ON 2D TORI 625 

Table 1. The number of nodes of test samples 

Sample no. Number of nodes 

Sample 1 (the initial mesh) 
Sample 2 (the first refinement) 
Sample 3 (the second refinement) 
Sample 4 (the third refinement) 
Sample 5 (the fourth refinement) 
Sample 6 (the fifth refinement) 

31 1 
870 
1824 
2928 
4671 
9347 

Case 3: 

Case 4 :  

Case 5:  

Nodes in the initial finite element mesh are mapped to processors by ORB. In 
each refinement, LB is applied to halance the computational load of proces- 
sors. We use O R B L B  to represent the proposed load-balancing algorithm 
used in this case. 
Nodes in the initial finite element mesh are mapped to processors by MC. 
In each refinement, MC is applied to halance the computational load of 
processors. 
Nodes in the initial finite element mesh is mapped to processors by MC. In 
each refinement, LB is applied to balance the computational load of pro- 
cessors. We use M C L B  to represent the proposed load-balancing algorithm 
used in this case. 

4.1. 
The execution time of ORB, ORBLB,  MC and M C L B  for test samples on 1 x 16, 2 x 8 
and 4 x 4 tori are shown in Figure 7. From Figure 7 we can see that the execution time of 
MC ranges from hundreds of seconds to a few hours, the execution time of ORB ranges 
from a few seconds to hundreds of seconds, the execution time of O R B L B  ranges from 
a few seconds to tens of seconds, and the execution time of M C L B  is a few seconds. 
Obviously, the execution time of LB is less than those of ORB and MC. We also observe 
that the execution times of O R B L B  and M C L B  are high when the torus is not symmetrical. 
For example, on a 1 x 16 torus, the execution times of O R B L B  and M C L B  for the fifth 
refinement (sample 5) are 95.98 s and 22.18 s, respectively. For a 4 x 4 torus, the execution 
times of O R B L B  and M C L B  for the fifth refinement (sample 5) are 50.85 s and 1 1.87 s, 
respectively. The execution time of the 1 x 16 torus is almost twice that of the 4 x 4 torus. 
This is because for a 4 x 4 torus the number of steps to reach load-balancing is less than 
that of a 1 x 16 torus. 

Comparisons of the execution times of ORB, MC and LB 

4.2. Comparisons of the execution time of test samples under different load balancing 
algorithms 

In Table 2 we show the time for the Laplace solver to execute one iteration (computation + 
communication) for test samples under different load-balancing algorithms on 1 x 16,2 x 8 
and 4 x 4 tori. Let T,(S) denote the time for the Laplace solver to execute one iteration 
for sample i under load-balancing algorithm S, where i = 1,2 ,  ..., 6 and %{ORB, ORBLB,  
MC, MCLB}.  From Table 2, if we assume that the Laplace solver executes the same 
number of iterations for each test samples, then cp=, T;(MCILB) < ct, T,(ORBILB) < 
Cp=, T,(ORB) < I;=, T;(MC) for a 2  x 8 torus, and cp=, T,(MCILB) < x:=l T,(ORB/LB) < 
Cf=, T,(MC) < If=, Ti(0RB) for I x 16 and 4 x 4 tori. From the above observations, 
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PN= 16 Time (see) 
100000.00 

loooO.00 

lOOO.00 

100.00 

10.00 

1 .oo 

0.10 
0 1  2 3 4 5  
refinement (a) 1 x 16 torus. 

lime (see) 

PN= 16 Time (ree) 
100000.00 

1oooO.00 

lOOO.00 

100.00 

I 0.00 

1 .oo 

0.1c 
2 3 4 5  0 1  

refinement 
(b) 2 x 8 toms 

PN= 16 

0.10 I 
0 1 2 3 4 5  
refinement (c) 4 x 4 torus. 

Figure 7. The execution time of ORB, ORBLB, MC and MC/LB on 20 tori 
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ALGORITHM FOR SOLUTION-ADAPTIVE FINITE ELEMENT MESHES ON 2D TORI 627 

Table 2. The time for the Laplace solver to execute one iteration (computation + communication) 
for the test samples under different load-balancing algorithms on 2D ton 

Torus Sample/ Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Total 
Algorithm 

I x 1 Sequential 10.8 30.5 64.3 100.0 165.6 335.2 706 4 
ORB 15.3 18.9 22.7 26.9 33.3 51.2 I68 3 
ORBLB 15.2 17.4 21.4 25.4 32.2 51.9 163 6 

1x16  MC 14.5 18.6 24.9 25.5 31.9 49 1644 
M C L B  14.5 17.2 20.5 24.1 29.2 43.6 149 1 

ORB 10.3 12.8 15.5 18.4 22.7 34.6 114.3 
ORBLB 10.3 11.8 14.2 17.2 20.3 32.5 106.3 

2 x 8  MC 9 11.7 15.7 21 24.9 33.6 115.9 
MCLB 9.1 1 1  12.7 14.8 18 26.7 92.3 

ORB 8.5 10.6 12.6 14.9 18 26.1 90.7 
ORBLB 8.6 9.6 11.2 12.Y 15.6 24.1 82.6 

4 x 4  MC 7 9.3 12.5 16.9 18.1 26 89.8 
M C L B  7.3 8.6 10.2 I l . Y  14.5 22.2 14.7 

Time unit: I x 10-3s 

LB produces better mappings than those of MC and ORB. One possible reason is that LB 
uses the locality characteristic of a finite element mesh to do load transfer (see algorithm 
ci!lnamicloadbalancingfor_2D_tori) which results in a better mapping. 

4.3. Comparisons of the total execution time for test samples 
The total execution time of test samples on a 2D torus is defined as follows: 

6 

~ l o t ~ ~ ( ~ ) = ~ c . r ~ c ( ~ )  + C T,(s)  x iter-cctiort, (3) 

where S E {ORB, ORBLB,  MC, MCLB},  T,,,,[,/(S) is the total execution time of test 
samples under load-balancing algorithm S, Tcxe,,(S) is the total execution time of load- 
balancing algorithm S for test samples, and iterntion, is the number of iterations executed 
by the Laplace solver for sample i. From equation (3), we can derive the speedup of a 
load-balancing algorithm as follows: 

i= I 

where S E {ORB, O R B L B ,  MC, MCLB},  Speedup(S) is the speedup achieved by a load- 
balancing algorithm S, and Seq, is the time for the Laplace solver to execute one iteration 
for sample i on one processor. The maximum speedup of a load-balancing algorithm S is 
derived by setting the value of iteration, to 03. Then, we have the following equation: 

h h 
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628 YEH-CHING CHUNG, YAA-JYUN YEH AND J.-S LIU 

Table 3. The maximum speedups achieved by load-balancing 
algorithms for test samples on 2D tori 

~~ 

n-cube 1x16 2 x 8  4 x 4  
Algorithm 

ORB 4.22 6.21 7.83 
ORBLB 4.34 6.68 8.59 
MC 4.32 6.12 7.90 
MCLB 4.76 7.69 9.50 

where S E {ORB, ORBLB, MC, MCLB} and Speedup,,,(S) is the maximum speedup 
achieved by a load-balancing algorithm S. 

The speedups for test samples under different load-balancing algorithms are shown 
in Figure 8. Since it is difficult to predict the number of iterations executed by the 
Laplace solver for test samples, in Figure 8 we assume that the Laplace solver executes 
the same number of iterations for each test sample. From Figure 8 we can see that, in 
general, Speedup(MC/LB) > Speedup(0RBLB) > Speedup(0RB) > SpeedupCMC). We 
also observe that, if the number of iterations executed by the Laplace solver is less 
than 10,000, Speedup(MC) is less than 1. This implies that if the convergence rate of 
a Laplace solver is fast, MC is not a good load-balancing algorithm for a solution-adaptive 
finite element program. The maximum speedups of load-balancing algorithms for test 
samples on 2D tori are shown in Table 3. From Table 3, we observe that, in general, 
Speedup,,(MCLB) > Speedup-(ORBLB) > Speedup,,(MC) > Speedup,,,(ORB). 
From Figure 8 and Table 3 we can see that the speedups of LB are better than those of MC and 
ORB. 

5. CONCLUSIONS 

In this paper, a parallel dynamic load-balancing algorithm (LB) is proposed to deal with 
the load-imbalancing problem of a solution-adaptive finite element program on a 2D torus. 
We have implemented the proposed algorithm along with two parallel mapping algorithms, 
parallel orthogonal recursive bisection (ORB) and parallel recursive min-cut bipartitioning 
(MC), on a simulated 2D torus. Three criteria, the execution time of load-balancing al- 
gorithms, the computation time of an application program under different loatl-balancing 
algorithms, and the total execution of an application program (under several refinement 
phases) are used for performance evaluation. Simulation results show that (1) the execution 
time of LB is faster than those of MC and ORB; (2) the mappings of LB are better than 
those of ORB and MC; and (3) the speedups of LB are better than those of ORB and 
MC. 
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Figure 8. The speedups for rhe testfinite element meshes under direrent load-balancing algorithms 
on 2 0  tori 
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