Mapping Finite Element Graphs on Hypercubes

Yeh-Ching Chung and Sanjay Ranka

School of Computer and Information Science
4-116, CST Center for Science and Technology
Syracuse University
Syracuse, NY 13244-4100
(315) 4434457

ABSTRACT

The 2-way stripes partition mapping and the greedy assignment
mapping are proposed to map finite element graphs (FEGs) onto
hypercubes. They can be used to map both 2-D and 3-D FEGs
on hypercubes. The 2-way stripes partition mapping is a two
phase mapping approach. In the first phase, a 2-way stripes
partition approach is used to achieve low communication cost.
In the second phase, the load transfer heuristic is used to balance
the computational load among processors. The greedy
assignment mapping tries to minimize the communication cost
and balance the computational load of processors simultaneously.

1. INTRODUCTION

In parallel computing, it is important to map a parallel
program onto a parallel computer such that the total execution
time of a parallel program is minimized. In general, a parallel
program and a parallel computer can be represented by a task
graph (TG) and a processor graph (PG). respectively. For a TG,
nodes represent tasks of a parallel program and edges denote the
data communication needed between tasks. The weights
associated with nodes and edges represent the computational load
and communication cost, respectively. For a PG, nodes and edges
denote processors and communication channels, respectively. By
using the graph model, the mapping problem becomes a task
allocation problem.

In the task allocation problem, we try to distribute the
computational load of a parallel program to the processors of a
parallel computer as evenly as possible (the load balance criterion
(LLBC)) and minimize the communication cost of processors (the
minimum communication cost criterion (MCCC)). The optimal
assignment of tasks to processors in order to minimize the total
execution time is known to be NP-complete [GaJo79]. This means
that the optimal solution is intractable. Therefore, satisfactory
suboptimal solutions are generally sought.

In this paper, we will discuss how to map finite element graphs
(FEGs) onto hypercubes. Our schemes are general and are
applicable to a wide variety of PGs. The finite element method
(FEM) is a widely used mgthod for the structural modeling of
physical system [LaPi83]. Due to the properties of
compute-intensiveness and compute-locality. it is very attractive
to implement this method on parallel computers [BeBo87]
[Bokh81] [Jord78] [SaEr87]. The number of nodes in a FEG is
usually greater than the number of processors in a parallel
computer. Itis important to partition a FEG into M modules such

CH2908-2/90/0000/0135/$01.00 © 1990 IEEE

135

that the computational load of modules are equal and the
communication cost among modules are minimized. where M is
the number of processors of a parallel computer.

In [BeBo87]. a binary decomposition approach was used to
partition a nonuniform mesh graph (a kind of FEG) into modules
such that each module has the same computational load. These
modules were then mapped onto meshes, trees, and hypercubes.
This method does not try to minimize the communication cost.
[SaEr87] proposed the nearest-neighbor mapping approach to
map planar FEGs onto meshes. It used the stripes partition (stripes
mapping) strategy to minimize the communication cost among
processors and then used the boundary refinement heuristic to
balance the computational load among processors. All of the
FEGs used by those mapping approaches are two dimensional
graphs. They cannot be trivially extended to three dimensional
FEGs. In a structural modeling system, most of the cases
encountered are three dimensional FEGs. Therefore, it is
important to show that a mapping approach can be applied to all
kinds of FEGs.

We propose two mapping approaches, the 2-way stripes
partition mapping and the greedy assignment mapping, which can
be applied to all kinds of FEGs. The 2-way stripes partition
mapping tries to minimize the communication cost by assigning
a node and its neighbor nodes of a FEG to the same processor or
neighbor processors of a hypercube (the definitions of neighbor
node and neighbor processor will be defined latter). Since the
computational load may not be equally assigned to each processor
by using this approach, the load transfer heuristic is used to balance
the computational load among processors. The greedy
assignment mapping tries to minimize the communication cost
and balance the computational load simultaneously. It assigns
one node of a FEG to a particular processor of a hypercube at a
time according to the current status of the neighbor nodes of that
node.

In our analysis, we assume that the number of edges (E), the
number of finite elements (F), and the number of nodes (N) differ

from each other by a multiplicative constant. i.e.. E = ¢|F = 3N,

for some constants ¢ and ¢;. These assumptions are true for most
of the FEGs. The computational complexities of the 2-way stripes
partition mapping and the greedy assignment mapping are

O(MN%log M) and O(Nlog?M + NlogN), respectively, where M
is the number of processors of a hypercube and N is the number
of nodes of a FEG. Our simulation results show that the speedups
for the 2-way stripes partition mapping are better than those for
the greedy assignment mapping when the LBC is achieved in both
approaches. ~ However, the greedy approach gives good
performance at a much lower cost.

This paper is organized as follows. Section 2 introduces the
definitions and notations used in this paper. The cost models of
mapping a FEG onto a hypercube are also described in this
section. The 2-way stripes partition mapping and the greedy
assignment mapping are addressed in Sections 3 and 4,

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 10,2024 at 23:54:35 UTC from IEEE Xplore. Restrictions apply.

respectively. In Section 5. we compare the mapping results of
these two approaches.

2. PRELIMINARIES

2.1. Hypercubes

Hypercubes or n-cubes are highly concurrent loosely coupled
multiprocessors based on the binary n-cube network and are
referred to by different names (such as cosmic cube [Seit85),
n-cube [HaMu86], binary n-cube [BhAg84], etc.).

Definition 1 : An n-dimensional hypercube Qn, forn > 1, can
be recursively defined in terms of the graph product x as follows
[Hara69):

Qn = K2 X Qp1, 1)

where K = Q1 is the complete 2-node graph. |

From Definition 1, we know that an n-dimensional hypercube
consists of 2" processors. The address of each processor can be
represented by an n-bit binary number ranging from 0 to 2"-1.

Definition 2 : In an n-cube, two processors Px and py are
adjacent processors if the address of px differs from that of py by
one bit. [|

In Figure 1, n-dimensional hypercubes are shown, for n =
1, 2, and 3. We use symbol M to denote the total number of
processors of a hypercube throughout this paper.

Figure 1: An example of n-cubes, for n = 1,2, and 3

2.2. Finite Element Graphs (FEGs)

The finite element method (FEM) is a widely used technique
to solve the partial differential equations (PDEs) by using iterative
approach. In the finite element model, an object can be viewed
as a FEG. A FEG is a connected and undirected graph which
consists of a number of rectilinear 4-node finite elements (FEs).

Definition 3 : A FEG is a 2-D FEG if it is a planar graph. B

Definition 4 : In a FEG, two nodes node(x) and node(y) are
adjacent nodes if <node(x), node(y)> is an edge of the FEG. ®

Definition 5 : In a FEG, two nodes node(x) and node(y) are
neighbor nodes if node(x) and node(y) are in the same FE.]

In Figure 2(a), for example. a 40-node FEG which consists
of 25 FEs is shown (The circled and uncircled numbers denote the
FE numbers and node numbers, respectively.). Let FE(x) denote
the set of nodes which form FE x, ADJ(node(y)) denote the set of
adjacent nodes of node(y). NB(node(y)) denote the set of neighbor
nodes of node(y). and #NB(node(y))) denote the cardinality of
NB(node(y)), i.e., the number of nodes in NB(node(y)). We have
FE(6) = {node(7). node(8). node(14). node(15)}, ADJ(node(14)) =
{node(7). node(13). node(15). node(19)}, ~ NB(node(14)) =

136

{node(6), node(7), node(8), node(13), node(15), node(18), node(19),
node(20)}, and #(NB(node(14))) = 8. Itis clear that ADJ(node(y))
is a subset of NB(node(y)), i.., ADJ(node(y)) € NB(node(y)). In
this paper, we assume that the number of edges (E), the number
of finite elements (F), and the number of nodes (N) differ from

each other by a multiplicative constant, i.e, E = ciF = cN, for

some constants ¢; and c;. These assumptions are true for most
of the FEGs. We also assume that the degree of every node ina
FEG is upper bounded by a constant, i.e. #ADJ(node(y))) is a
constant. This assumption implies that #{NB(node(y))) is also a
constant.

In a FEG, a node represents a particular amount of
computation. Fach node has the same computational load and
can be executed independently. Each node has to send data to its
neighbor nodes after completing its computation and all the nodes
have to finish their communication before they can commence
next iteration. The communication needed between nodes in the
FEG of Figure 2(a) are shown in Figure 2(b). We use symbol N
to denote the number of nodes of a FEG throughout this paper.

2.3. The Cost Models of Mapping FEGs onto
Hypercubes

From the parallel processing point of view, a FEG can be
characterized as a task interaction graph (TIG) [SaEr87]. Ina TIG,
nodes represent tasks and edges denote the communication
needed between tasks. All the tasks can be executed
independently and simultaneously, ie. the temporal
dependencies of tasks are not represented explicitly.

To map an N-node FEG onto an M-processor hypercubes,
we need to assign the nodes of a FEG to the processors of a
hypercube. Thereare MN mapping ways. The total execution time

of a FEG on a hypercube under a particular mapping MAP; is
defined as follows:

Tp,,, (MAP,) = max{load;(pj)} X Trask + C,’(P), (2)

where Tpor (MAP;), load{p;) , Task» and C(P) represent the total

execution time, the computational load assigned to processor pj,
the time to execute a task on a processor, and the communication
cost of processors under mapping MAP; respectively, where i =

1,..MVandj =0, .., M-1

The computational load assigned to each processor of a
hypercube is equal to the nodes of a FEG assigned to it. Since the
processor with the maximal computational load determines the
computational cost of a mapping, Equation 2 employs the
synchronous ~communication ~mode implicitly, ie., the
communication between processors cannot be started until all the
processors have completed their computations.

If we assign the four nodes of a FE to different processors,
there exists at least one pair of nodes in a FE such that the
communication distance of this pair of nodes in a hypercube is
greater than or equal to 2. In this paper, we consider only
mappings such that the communication distance between
neighbor nodes of a FEG in a hypercube is less than or equal to

. In an n-cube, any two processors whose

addresses differ by at most two bits are neighbor processors. 1
Definition 7 : A mapping is a neighbor mapping if any two
neighbor nodes (nodes corresponding to a FE) of a FEG are

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 10,2024 at 23:54:35 UTC from IEEE Xplore. Restrictions apply.

assigned to the same processor or two neighbor processors of a
hypercube.]
From Definitions 6 and 7, we have the following lemma.

Lemma 1 : To map a FEG onto a 2-cube, any mapping
approach is a neighbor mapping. |

In our communication models, we assume that every
processor can communicate with all its adjacent processors in one
step. Since we use the synchronous communication mode, C;(P)
is defined as follows:

s
Ci(P) = 2 (Tyenp + maxj{cu} x Te), 3

j=1
where S is the number of steps to finish the data communication
among processors, Ty, is the setup time of the /O channel,
max; {cx/} is the maximal amount of data sent from px to p: instep
/-and T, is the data transmission time of the I/O channel per word.
An I/0 channel between two adjacent processors, pi and pj, of a
hypercube is a bidirectional channel if pi and p; can send data to
each other simultaneously; otherwise, it is a unidirectional channel.

If the I/O channel used in a hypercube is bidirectional (the
bidirectional communication model), algorithm

bidirectional_comm_cost is used to compute the value of C;(P).

X
0'

DY,
0%
OO
0'

IXIX
OO
IXIXIX

N

a

algorithm bidirectional_comm_cos{(X)
/* X is the intermediate processor matrix. ¥ x; € X,

QO
X
\/

XX

if p = Gpy.. Qoo \@ilOsy .00 AN Py = by by Tillyey -Gy s (b) The communication needed between nodes.
thenx; = an...ap @ity a0 */ Figure 2 : An example of a 40-node FEG and the com-
1. Compute the communication cost matrix C according to a munication needed between nodes.
particular mapping;
2. Ci(P) = G

/* For the neighbor mapping, this loop is executed at most twice*/

3. while (3 ¢.» > 0)and (P. and ps are neighbor processors)) de

4. {vc;, > 0,0 =i js M-1 send datac, from pi tox;;
Update C and C;(P); }

5. return(C,(P));,
end_of bidirectional_comm_cost

The initialization of the communication cost matrix requires

N
O(Mlog? M) time*. Line 1requires O(Z #(NB(node(1)))) = O(N)
i=1
time; line 2 requires c, time; line 3 requires c, time; line 4 requires
O(Mlog? M) time, and line 5 requires ¢; time, where ¢, ¢, and ¢;
are constants. Lines 3 and 4 form a loop and this loop is executed
at most twice. The computational complexity of this algorithm is
equal to ON + ¢, + 2 X (c; + Mlog?M) + ¢)) = O(N +
Mlog? M). The communication behavior of algorithm
bidirectional_comm_cost is shown in Figure 3(a). In Figure 3(a),
Sis equal to 2, maxl{c,d} =cot 3= cClpt c2=C21t+ €23=
c30+ ¢33 = 2, and maxp{cy} = co2= €13= c20= c31= 1. We
can derive that C;(P) = 2 X Tsoup + 2 + 1) x Te = 2 X Tsenp

Figure 3(a) : The communication behavior of
algorithm bidirectional_comm_cost.

+3x%x T,
0000
0000
* Note that each processor can only have O(log? M) neighbor processors. The other [l) 8 (0] 8
values of the matrix are useless. For easy of presentation, ¥ ¢; > 0 in the
algorithm refers to only ¢, in which i and j are neighbor processors. Thus, . L. N
the comlexity of this operation is O(M log? M) as compared to obvious O(M?). Figure 3(b) : The communication behavior of
This assumption is true for rest of the presentation. a]gorj[hm un[direcﬁonal_comm_cgst.

137

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 10,2024 at 23:54:35 UTC from IEEE Xplore. Restrictions apply.

If the I/O channel used in a hypercube is unidirectional (the
unidirectional communication model), algorithm
unidirectional_comm_cost is used to compute the value of Ci(P).

algorithm unidirectional_comm_cost(X)
/* X is the intermediate processor matrix. V x; € X,
if p; = @py.. Qs 18ipor .- G0 and p, = ot - o Dra 1 Tilles - Qo s
then X, = p; = dny-- Qe Tdpr -0 */
1. Compute the communication cost matrix C according to a
particular mapping;
2. toggle = 0; Ci(P) = 0;
/* For the neighbor mapping, this loop is executed at most four
times */
3. while (3 ca» > 0) and (P« and P» are adjacent processors)) do
/* Set the communicating direction of channel, from pi to Px
if Pi = Gpy-- Qx| @ik - o> Pr = [/ ISR FY . Y, PR 1
Py = b b it - Ao Ak = toggle, and ¢, > 0*/
4. (v >0.0<ij< M-lp = ap.. G4 &ilhar.. . dos
b= bpoyerbgs 1 @@ear -+ Ao
Xy = D= Guy.. GeerTiliy - dos and a; = toggle,
5. if (channel, is available or channely = pi —> Pi) then
{ channely; = pi — pr;/*The communicating direction of
channel, is set from pi to pr*/
Send data ¢;j from pi to pi; Update C and C;(P); }

/* If there are some channels channel, are still available after
steps 4-5 are executed, set the communicating direction of

channely from p; 10 Pi il p; = b,.,...bee\Tillg-r-.- 0o
b= not - Drs 1@xo o Qo> Pi = Gnoy-o-Grs 1 Gilx - Do
ay = toggle, and ¢; > 0.°/

6. VGG >00<ij< M-lp =a, .. Q&G . G
P = bpar-bue Ty -+ A0 »
Xi = Py = bpy...bisr@illiar.. .o, ANA G = toggle,

7. if (channely is available or channel; = p; — pi) then

{ channel; = p; — pi; Send data c; from p; 10 pi;
Update C and C,(P); }
g) toggle = (toggle + 1) mod 2;

10. return(C;(P));
end_of compute_comm_cost

In algorithm unidirectional_comm_cost, line 1 requires

N
O3 KNB(node(i)))) = O(N) time: line 2 requires c, time; line 3
i=1

requires ¢, time; lines 5 and 7 require c; time; line 8 requires ¢, time;
and line 10 requires cs time, where ¢, ¢, ¢4, ¢,, and c5 are constants.
Lines 3t09,4to0 5, and 6 to 7 form loops and these loops have O(c),
O(Mlog? M), and O(Mlog? M) iterations, respectively, where ¢ is
a constant. The computational complexity of this algorithm is
equal to O(N + ¢, + ¢ x (& + MlogM x ¢, + Mlog?M xc,
+ ¢) + ¢) = ON + MiogtM). An example of the
communication behavior of algorithm compute_comm_cost is
shown in Figure 3(b). In Figure 3(b). § is equal to 4, maxi{cx} =
cor+ co3= c21+ c23 = 2 maxyfen} = cro+ Ci2= 30+ 2=
31 = 2. maxa{cy} = co2 = c13 = 1, and maxe{cy} = c20= 1.
We can derive that C;(P) = 4 X Toep + Q+ 2+ 1+ 1) x T
=4 X Tonp + 6 x Te.

138

Let T, denote the total execution time of a FEG on a O-cube
which contains only one processor. The speedup of a mapping
MAP; is defined as follows:

Treq

ToatMAP) @

SpeedUp(MAP;) =

The objective of mapping a FEG onto a hypercube is to minimize
the total execution time, i.e.. min{Tpa, (MAP)}. OT maximize the

speedup. i.e., max{SpeedUp(MAP))}, where i = 1,2, ... MN From
Equation 2, we know that the processor with the maximal
computational load; and the communication cost of processors
determine the total execution time ofa FEG ona hypercube under
a particular mapping. Since our main objective is to minimize
these quantities, there are three ways to achieve the objective of
a mapping. (1) First minimize communication cost, then balance
the computational load. (2)First balance the computational load.
then minimize the communication cost. (3) Minimize the
communication cost and balance the computational load
simultaneously. The 2-way stripes partition mapping and the
greedy assignment mapping adopt approaches (1) and (3),
respectively.

3. THE 2-WAY STRIPES PARTITION MAPPING

The 2-way stripes partition mapping is a two phase mapping
approach. In the first phase (partition and allocation phase). it
uses the 2-way stripes partition heuristic and stripes merge to
partition an N-node FEG into M modules and each module
contains m tasks, where 0 = m < N. These modules are assigned
to processors by using the binary reflected Gray code (BRGC).
Since the computational load may not be equally assigned to each
processor in this phase, we will try to balance the computational
load among processors by using the load transfer heuristic in the
second phase (the load balancing phase).

3.1
Stripes Allocation

Phase I : The 2-way Stripes Partition and

The basic approach used in the 2-way stripes partition to
partition a FEG into modules is the stripes partition approach. The
stripes partition approach starts at an arbitrary node node(x) of
a FEG and labels it as 0. Next, the neighbor nodes of node(x),
NB(node(x)), are labeled as 1. This process continues till each
node in a FEG is assigned a label. Our approach is more general
than the stripes partition approach of [SaEr87). The approach
proposed in [SaEr87] can only be used to partition 2-D FEGs and
has some restrictions. Our approach removes the restrictions in
[SaEr87] and can be used to partition any kind of FEGs. The
2-way stripes partition uses the stripes partition method twice.
The partitioning starts at node(1) and node(HJ + 1), respectively.
By using this method, the labels assigned to each node can be
denoted by a 2-tuple (/1. /2). where /) and /; denote the labels
assigned to a node by the first and second stripes partition,
respectively.

The next step is to assign these nodes to processors according
to their labels. By using the 2-way stripes partition, the 2-tuple
labels assigned to nodes imply the following lemma.

Lemma 2 : For any two neighbor nodes node(i) and node(j)
with labels (fi,. ;) and ([, [;,). respectively, we have |/;, - ;| =<
land |/;, -] s 1 []

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 10,2024 at 23:54:35 UTC from IEEE Xplore. Restrictions apply

To assign nodes to processors according to their labels, we
need to flatten an n~cube into a two dimensional form. For any

two neighbor processors processor(iy, j1) and processor(iz, j2) in a
mesh, we have |i; -i;| < 1and |j1-j2| s 1. Tomapa FEG onto
a mesh, the neighbor mapping can be easily achieved by assigning
node(i) with labels (/;,, /;,) to processor(li,, I;,). Since an n—cube can
emulate 1X 2% 2% 2™} | 2"X 1 meshes, we will try all cases. A

binary reflected Gray code (BRGC) [ChSa86] is defined as
follows:

_ [ifk=1

Ne ONeq + N g * ifk>1

®)

where + and * denote sequence concatenation and sequence
reversal operations, respectively. From Equation 5, we know that

Ny = (0, 1), Ny* = (0, 1)* = (1,0), N = ON; + IN;* = (0, 1)
+ 1(1, 6) = (00, 01) + (11, 10) = (00, 01, 11, 10), N3 = (000, 001,
011, 010, 110, 111, 101, 100), Nx0) = 000, and Ny3) = 010. Note
that Ny(r) denotes the (r+ 1)th element of N;, wherer = 0, ..., 2k,

To embed a 2°x 2 mesh in a (x+y)-cube, we assign processor(i,
) in a mesh to the processor in the (x +y)-cube according to the
following equation:

addr : processor(i, j) — Ny(i)™ Ny(j), ©

where 0 < i < 2°-1,0 s j < 2-1, and * is the binary string
concatenation operation.

An example of embedding a 2X 4 mesh in a 3-cube by using
Equation 6 is shown in Figure 4(e). In Figure 4(e), the addresses
of processor(0, 2) and processor(1, 0) are Ny(0) "~ NA2) = 011 and

(1.0) 1,2) 1.3)

(1.1

Figure 4(a): The labels as-
signed to nodes by the
first stripes partition.

Figure 4(f): The new
labels of nodes after
merging stripes.

Figure 4(b) : The labels
assigned to nodes by the
second stripes partition.

‘rﬁg. Figure 4(g) : Allo-
cate nodes to pro-
cessors by using

O—O0—0 rud Equation 7.

P

139

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 10,2024 at 23:54:35 UTC from IEEE Xplore. Restrictions apply.

Ny(1)" NA0) = 100, respectively. By using the BRGCs, the
addresses of any two adjacent processors and any two neighbor
processors of a mesh differ by one and two bits, respectively, when
the mesh is embedded in a hypercube.

Let L represent the number of nodes whose labels are equal
to b in the ath stripes partition, wherea = 1or2. Let Lyand L,
represent the largest label numbers of the first and the second
stripes partition, respectively. Assume that a 2°X 2 mesh is
embedded in a (x+ y)-cube by using Equation 6. If 2°-1 < Ly(2-1
< Lj), we will merge the two adjacent stripes m and m+ 1 (n and
n+ 1) which minimize L7 + L7+ (L5 + L3*1), forallm = 0,
.o Li=1(foralln = 0, ..., Ly~ 1). This merge processing continues
till Ly = 21 (L = 2-1). The computational complexity of this
merge process is equal to O(N?). After this merge processing,
every node ina FEG is assigned a new 2-tuple labels (/;’, 12), where
0</y <2-1and 0 < I’ < 2-1. Then, we assign nodes with

new labels to processors of a (x+y)-cube according to the
following equation:

allc : node(i) = N(I;") ™~ Ny(I2'), (7)
where the 2-tuple labels (/1’, /") are the new labels assigned to
node(i), 0 < I’ < 2-1and 0 < Iy’ < 2-1. An example of
partitioning a FEG into stripes and assigning stripes to a 3-cube
is shown in Figure 4.

The algorithm of the 2-way stripes partition and allocation
is given as follows.

algorithm 2_way_stripes_partition_allocation(row, col)
/* row and col denote the length and width of a mesh, respectively.*/
1. Calculate the adjacent and neighbor nodes of each node in a
FEG.
2. The first stripes partition.
3. The second stripes partition
4. Merge stripes produced by the first and second stripes partition
if necessary.
5. Assign nodes to processors according their new labels by using
Equation 7.
end_of 2_way_stripes_partition_allocation

In algorithm 2 way_stripes_partition_allocation, line 1
requires O(the number of FEs of a FEG) = O(N) time; both lines

N

2and 3require O(Z #(NB(node(i)))) = O(N)time; line 4 requires
i=1

O(N?) time; and line 5 requires O(N) time. The computational

complexity of this algorithm is equal to O(N + N + N + N? +

N) = O(N?).
3.2. Phase Il : The Load Balance Phase

The objective of this phase is to balance the computational
load assigned to processors in the first phase while preserving the
neighbor mapping property. It consists of two steps. In the first
step, an M X M load transfer matrix A is computed. Element a;;
in A denotes the number of nodes p; needs to transfer to p;. If
a; is negative, |a;;| denotes the number of nodes pi needs to
receive from pj;. Since a 2*X 2’ meshis embedded ina (x + y)-cube,
we can start with computing the balanced load for processor
N(0) "~ Ny(0), i.e., the number of nodes N.(0)" N,(0) needs to

140

transfer to or receive from its neighbor processors. Next, we
compute the balanced load for processor N (0)~Ny(1). This
process continues till the balanced load for processor
N{2-1)"~ Ny(2-1) have been computed. The time required to
compute the load transfer matrix is equal to O(MN).

In the second step, we perform the load transfer from one
processor to another according to the load transfer matrix A. The
algorithm proceeds iteratively, in an incremental manner, and is
similar to that of [SaEr87]. For sake of completemness, we present
the algorithm in [ChRa%0]. The worst case of the computational

complexity of this algorithm is equal to O(MN?).

Algorithm load_transfer does not guarantee to balance the
computational load of processors. If the computational load of
processors can be balanced by this algorithm, the values of all the
elements in A are equal to zeros.

The 2-way stripes partition mapping algorithm is given as
follows.

algorithm 2_way_stripes_partition_mapping(M, N, X)
/* X is the intermediate processor matrix. ¥ x, € X,
if p, = Gpy. GQesr@ilscy... @ AN p, = by g by \ Ty .- Go s

thenx; = p; = @p,... Qe \&liey---Go !
row = 1; col = M; best_bi = 0; best_uni = 0
repeat
{ 2_way_stripes_partition_allocation(row, col).
Compute the load transfer matrix A4;
load_transfer(A):.
if (best_bi < bidirectional_comm_cost(X)) then
best_bi = bidirectional_comm_cost(X);
if (best_uni < unidirectional_comm_cost(X)) then
best_uni = unidirectional_comm_cost(X);
row = row *2; col = col ! 2;
} until (row > M);)
end_of 2_way_stripes_partition_mapping

woe N A=

In algorithm 2_way_stripes_partition_mapping, line 1 requires
O(cy) time; line 3 requires O(N?); line 4 requires O(MN) time; line
5 requires O(MN?) time; lines 6 and 7 require O(N + Miog? M)
time; line 8 requires O(cy) time; and line 9 requires O(c3) time,
where ¢y, ¢, and c3are constants. Lines 2 to 9 form a loop and
this loop has log M iterations. The computational complexity of
this algorithm is equal to O(c; + logM X (N? + MN + MN? +
(N + Mlog? M) + (N + Mlog? M) + ¢, + ¢ = O(MN?logM).

Lemma 3 : The 2-way stripe partition mapping is a neighbor
mapping. ||

4. THE GREEDY ASSIGNMENT MAPPING

The greedy assignment mapping is a heuristic approach. It
assigns a node to a particular processor according to the current
status of its neighbor nodes. Initially. it assigns node(a), which has
the largest number of adjacent nodes in a FEG, to processor 0 and
the adjacent nodes of node(a) are put into a queue Q. The node
node(i) in Q which has the largest number of adjacent nodes is
selected as the next node to be assigned. Let P(NB(node(r)))
denote the set of processors which the neighbor nodes of node(i)
are assigned and P(POS(node(i))) denote the set of processors
whose addresses differ from the address of each processor in
P(NB(node(i))) by at most two bits. If P(POS(node(1))) is empty,
it implies that the neighbor mapping is impossible for this
approach: otherwise, for all p., p, € P(POS(node(i))) and load(p:)

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 10,2024 at 23:54:35 UTC from IEEE Xplore. Restrictions apply.

< load(p,), it assigns node(i) to p.. Then, the adjacent nodes of
node(i) are inserted in Q. This process continues till all the nodes
are assigned or the neighbor mapping is impossible. The
algorithm is given as follows.

algorithm greedy_assignment_mapping(X)
/* X is the intermediate processor matrix. v x, € X,
if p; = Gpo. s @illicr---ao 0D P, = by By Tl - Go s

thenx, = p; = @, Qe Tildgor-. Qo ™/
. Calculate the adjacent and neighbor nodes of each node in a

—

FEG:

2. Q=0

3. node(a) = The node with the largest number of adjacent nodes
in a FEG;

g‘ Assign node(a) to processor 0 and Q = Q U ADJ(node(a)).

. Make a heap H(Q) for the nodes in Q according to the number
of their adjacent nodes ;
6. while (Q is not empty) do
7. { node(i) = root(H(Q)): /* the node with the largest number
of adjacent nodes in Q */
8. Compute P(POS(node(i))).
9. if (P(POS(node(i))) is empty) then
stop (*"The neighbor mapping is impossible™);
10. px = the processor with the smallest load in P(POS(node(i))):

11. load(px) = load(px) + 1: Q = Q - {node(i)}; @ = QU {those
nodes in ADJ(node(i)) which have not been assigned} :
Update H(Q).

12.

13. best_bi = bidirectional_comm_cost(X);

14. best_uni = unidirectional_comm_cost(X):

end_of greedy_assignment_mapping

In algorithm greedy_assignmeni_mapping, line 1 requires
O(the number of FEs of FEG) = O(N) time; line 2 requires O(¢1)
time; line 3 requires O(N) time; line 4 requires O(c2) time: line 5
requires O(c3) time; line 7 requires O(¢4) time: line 8 requires
O#NB(node(i))) X logtM) = O(log?M) time: line 9 requires
O(cs) time; line 10 requires O(log? M) time; line 11 requires
O(log N) time; and lines 13 and 14 require O (N + Miog? M), where
¢1, €2, €3, €4, and Cs are constants. Lines 6 to 12 form a loop. This
loop has N iterations. The computational complexity of this
algorithm is equal to O(N + €1 + N + ¢2 + €3 + N X (Ca +
log?M + ¢s + log?M + logN) + (N + Mlog’M) + (N +
Mlog? M)) = O(Nlog?M + NlogN). An example of mappinga
FEG onto a hypercube by using algorithm
greedy_assignment_mapping is shown in Figure 5.

1.7

Figure 5 : Mapping a FEG onto a hypercube by using the
greedy assignment mapping.

141

5. PERFORMANCE
SIMULATION RESULTS

EVALUATION AND

The samples of FEGs tested in this paper consist of four 2-D
graphs and three 3-D graphs which are shown in Figures 7(a)-(d)
and 7(e)~(g). respectively. The number of nodes of these FEGs
are ranging from a few tens to a few hundreds. According to the
communication models described in Section 2.3, we derive the
estimated lower bound speedup (ELBS) and the estimated upper
bound speedup (EUBS) for both of the bidirectional and
unidirectional communication models to measure our mapping
results. They are given as follows:
{EUBSM = N X Tt

ELBS, =

@81
[%] X Tusk + Teewp + 2% Tc

N X Tiask

82
(o % Toa 7 2% Tog = @ x logb % (5] %7, &2
-, N x Tru
EUBSuy = i ©.1
{ " TE] X T + 2 % (Toowp + 2% T0)
ELBS,,, = N X Tt ©2)

TE] X T + 4 X Ty + (4 X logM-2) x [{] X T2

where 75k« Tsengr and T, denote the time required by a processor
to execute the computation of a node, the setup time of the I/O
channel. and the data transmission time of the I/O channel per

word, respectively: EUBS,; and ELBS,, denote the EUBS and
ELBS of the bidirectional communication model, respectively;

EUBS,,; and ELBS,,; denote the EUBS and ELBS of the
unidirectional communication model, respectively.

The EUBS and ELBS are obtained by assuming that both
the LBC and the neighbor mapping are achieved. If the LBC is
achieved by a mapping, the item max{/oad{p;)} in Equation 2 is
equal to [%] If a mapping is a neighbor mapping, the best case
of the communication cost is that any two neighbor nodes of a
FEG are assigned to the same processor or two adjacent
processors of a hypercube and every processor only need to send
two nodes’ data to each of its adjacent processors (see Figure 6).
According to the communication models described in Section 23,
we can derive Equations 8.1 and 9.1.

2 node’ data 2 node’ data

14 14 Px

2 node’ data

2 node’ data

Figure 6 : The best case of the communication cost ofa
mapping.

If a mapping is a neighbor mapping, the worst case of the
communication cost is that any two neighbor nodes of a FE are
assigned to two processors whose addresses differ by two bits in
a hypercube. For the bidirectional communication model, the
maximal number of steps to finish the data communication among
processors is equal to 2. Instep 1, a processor receives data from
its adjacent processors and sends data to its neighbor processors
simultaneously. The maximal amount of data sent by processors

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 10,2024 at 23:54:35 UTC from IEEE Xplore. Restrictions apply.

is equal to logMX [-,':ﬂ In step 2, the maximal amount of data
sent from a processor to its adjacent Processors is equal to
(log M-1)X% [%] (see Figure 3(a)). Therefore, we can derive
Equation 8.2. For the unidirectional communication model, the
maximal number of steps to finish the data communication among
processors is equal to 4. A processor may receive (send) data from
(to) its adjacent (neighbor) processors in step 1 and then send
(receive) data to (from) its neighbor (adjacent) processors in step
2. The maximal amount of data sent by processors in steps 1 and
2 are both equal to log M X [%] A processor may receive (send)
data from (10) its adjacent (adjacent) processors in step 3 and then
send (receive) data to (from) its adjacent (adjacent) processors in
step 4. The maximal amount of data sent by processors in steps

3 and 4 are both equal to logM X% [fﬂ - 1. (see Figure 3(b)).
Therefore, we can derive Equation 9.2.
We make the following assumptions about the capabilities of

the processors of a hypercube [SaEr87]. T is equal to 1190 ps.

Temp is €qual to 1150 ps. T is equal to 10 ps per word. By using
the 2-way stripes partition mapping and the greedy assignment
mapping, the speedups of all the test samples on n-cubes are
shown in Tables 1, 2, and 3, for n = 3, 4, and 5, respectively. The
following conclusions can be drawn from Tables 1, 2, and 3

1) : Both mappings give excellent performance. The
estimated speedups of these mappings are near optimal (given by
EUBS) for most cases.

2) : The greedy assignment mapping, in general, can produce
a good mapping at a low computation cost. This method is not
restricted to hypercubes and can be applied to a wide variety of
parallel architectures. It fails to preserve the neighbor mapping
for sample 5 onto 4- and 5-cube. Every node in sample 5 has the
same number of adjacent nodes. It is difficult for this algorithm
to determine which node is the best node to be assigned next
because the degree of all nodes are the same.

3) : For the cases where the LBC is achieved, the speedups
for the 2-way stripes partition mapping are better than those for
the greedy assignment mapping. The reason is that, by using
algorithm 2_way_stripes_partition_mapping, most of the nodes
assigned to the same processor are connected. It produces a
smaller communication cost than that of the greedy assignment
mapping.

4) : In Table 3, although the LBC is not achieved in sample
6 by using the 2-way stripes partition mapping, the speedup for
the 2-way stripes partition mapping is greater than the value of
the ELBS when the unidirectional communication model is used.
The is because that the number of steps, denoted by S, to finish
the data communication among processors in the unidirectional
communication model is greater than 1 and less than 5, i.e. 2 <
S < 4. If the maximal computational load assigned to processors
by the 2-way stripes partition mapping is equal to [%] + land
S is equal to 3, according to Equation 9.2, it is possible that the
speedup for the 2-way stripes partition mapping is greater than
the value of the ELBS.

6. CONCLUSIONS

We proposed two mapping approaches, the 2-way stripes
partition mapping and the greedy assignment mapping, to map
FEGs onto hypercubes. The 2-way stripes partition mapping uses
the stripes partition and BRGCs allocation to achieve the MCCC
and uses the load transfer heuristic to achieve the LBC. The
greedy assignment mapping uses greedy heuristic to achieve both
MCCC and LBC. The cost models of mapping a FEG onto a
hypercube are developed for the bidirectional communication

142

model and the unidirectional communication model. Four 2-D
and three 3-D FEGs are used as the test samples. To measure the
mapping results, the EUBS and ELBS are derived for both of the
communication models. The simulation results show that the
speedups for the 2-way stripes partition mapping are better than
those for the greedy assignment mapping when the LBC is
achieved in both approaches. However, the greedy approach gives
good performance at a much lower cost.

REFERENCES

M.J. Berger and S.H. Bokhari, "A Partitioning
Strategy for Nonuniform Problems on
Multiprocessors,” IEEE Trans. on Computers, Vol
C-36, No. 5, pp. 570-580, 1987.

LN. Bhuyan and D.P Agrawal, “Generalized
Hypercube and Hyperchannel structures for a
Computer Network,” IEEE Trans. on Computers, Vol.
C-33, pp. 323-333, 1984.

S.H. Bokhari, "On the mapping problem,” IEEE
Trans. on Computers, Vol. C-30, pp. 207-214, 1981.
Y.C. Chung and S. Ranka, "Mapping Finite Element
Graphs on Hypercube,” Syracuse University
Technical Report, 1990.

TF Chan and Y. Saad, "Multigrid Algorithms on the
Hypercube Multiprocessors,” IEEE Trans. ‘on
Computers, Vol. C-35, pp. 969-977, 1986.

M.R. Garey and D.S. Johnson, Computers and
Intractability, A Guide to Theory of NP-completeness.
San Francisco, CA: Freeman, 1979.

J. Hayes and T Mudge. "Architecture of a Hypercube
Supercomputer,” Proc. of Int'l Conference on Parallel
Processing, pp. 653-660, 1986.

H. Jordan, "A special purpose architecture for finite
element analysis,” Int’l Conference of FParallel
Processing, pp. 263-266, 1978.

L. Lapidus and G.E Pinder, Numerical Solution of
Partial Differential Equations in Science and
Engineering. New York: Wiley, 1983,

M.C. Pease, “The Indirect Binary n-cube
Multiprocessor Array,” IEEE Trans. on Computers,
Vol. 26, pp. 458-473, 1977.

P Sadayappan and E Ercal, “Nearest-Neighbor
Mapping of Finite Element Graphs onto Processor
meshes,” IEEE Trans. on Computers, Vol. C-36 No.
12, pp. 1408-1424, 1987.

C.L. Seitz, "The Cosmic Cube,” Communications of
ACM, Vol. 28, pp. 22-33. 1985.

[BeBo87]

[BhAg84]

[Bokh81]

[ChRa%0)]

[ChSa86]

[Galo79]

[HaMu86]

[Jord78]

[LaPi83)]

[Peas77]

[SaEr87)

[Seit85]

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 10,2024 at 23:54:35 UTC from IEEE Xplore. Restrictions apply

Unidirectional communication model Bidirectional communication model
Sample . .
P EUBS| ELBS | Greedy| 2-way stripes partition| EUBS ELBS | Greedy | 2-way stripes partition
1 (64) 6.42 | 5.10 5.19* 6.36* 712 | 6.13 6.32* 7.08*
2 (40) 574 | 4.31 3.92 4.44* 6.69 | 5.47 4.94 5.71*
3 (160 728 | 6.26 6.09 7.20* 7.63 | 6.97 6.78 7.57*
4 (505) 7.66 | 6.89 7.00* 7.61* 777 1 7.34 7.44* 7.75*
5 (160) 7.28 | 6.26 6.07 6.57* 7.63 | 6.97 6.77 7.20*
6 (340) 7.56 | 6.74 6.80* 7.18* 7.73 | 7.25 7.33* 7.52*
7(198) 7.34 | 6.39 6.48* 7.23* 7.62 | 6.30 7.12* 7.29*
Table 1 : The speedups of mapping FEGs onto 3—cubes.
Unidirectional communication model Bidirectional communication model
Sample
EUBS| ELBS | Greedy| 2-way stripes partition| EUBS| ELBS | Greedy | 2-way stripes partition
1 (64) 10.73{ 7.68 6.97 7.93* 12.84] 10.10 9.00 10.61*
2 (40) 8.05] 5.54 5.68* 5.70* 10.04| 7.58 7.97* 7.96*
3(160) | 13.37] 10.64] 10.14 11.23* 14.571] 12.61 | 12.01 13.17*
4(505) | 14.87} 12.74 | 13.31* 14.74* 15.31] 14.03 | 14.43" 15.24*
5(160) | 13.37] 10.64 - 11.13* 14.57] 12.61 - 13.06*
6(340) | 14.19] 11.95] 12.46* 12.79* 14.79] 13.39 | 13.77* 13.99*
7(198) 13.23] 10.76 11.19* 11.47* 14.16 | 12.48 | 12.90* 13.06*
Table 2 : The speedups of mapping FEGs onto 4-cubes.
Unidirectional communication model Bidirectional communication model
Sample
EUBS| ELBS | Greedy | 2-way stripes partition| EUBS| ELBS | Greedy | 2-way stripes partition
1 (64) 16.14 | 10.38 | 9.02 9.06 21.45] 15.05 | 12.65 12.67
2 (40) 10.08] 6.49 6.65" 6.66* 13.41] 9.41 9.94* 9.96*
3(160) | 22971 16.63 | 14.21 14.21 26.74] 21.39 | 17.44 17.53
4(505) | 28.11] 22.66 | 24.15* 24.75* 29.74] 26.15 | 27.30* 27.64*
5(160) | 22.97{ 16.63 - 11.97 26.74 | 21.39 - 14.31
6(340) | 26.22] 20.57] 21.61* 20.65 28.37] 24.40 | 25.43* 23.81
7(198) | 22.081 16.60 1 17.41* 17.57* 24.80] 20.56 | 21.46* 21.60*

Table 3 : The speedups of mapping FEGs onto 5-cubes.
* . The LBC is achieved in this case.
- : The neighbor mapping cannot be achieved in this case.

143

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 10,2024 at 23:54:35 UTC from IEEE Xplore. Restrictions apply.

(©)

11t

Figure 7 : The test samples.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 10,2024 at 23:54:35 UTC from IEEE Xplore. Restrictions apply.

