CSC3150-Instruction-A4:

Introduction

This assignment uses xv6, a simple and Unix-like teaching operating system, as the platform to
guide you in implementing the mmap and munmp system calls. These two are used to share
memory among processes and to map files to process address spaces. Generally speaking,
this assignment focuses on memory-mapped files. A mechanism supporting memory-mapped
files can handle files as if they are a portion of the program's memory. This is achieved by
mapping a file to a segment of the virtual memory space (Reminder: Each process has its own
virtual address space). Such mapping between a file and memory space is achieved using the
mmap () System call, and the mapping is removed using the munmap() system call. We provide
a virtual machine image where everything is configured and set. The image is available on
Blackboard.

Submission

e Due on: 23:59, 1 December, 2025

e Plagiarism is strictly forbidden. Please note that TAs may ask you to explain the
meaning of your program to ensure that the codes are indeed written by yourself.
Please also note that we would check whether your program is too similar to your fellow
students' code and solutions available on the internet using plagiarism detectors.

e Late submission: A late submission within 15 minutes will not induce any penalty on
your grades. But 00:16 am-1:00 am: Reduced by 10%; 1:01 am-2:00 am: Reduced by
20%; 2:01 am-3:00 am: Reduced by 30% and so on. (e.g. Li Hua submit a perfect
attemp of assignment4 on 2:10 am. He will get (100+10 (bonus)) * 0.7 = 77 points for his
assignment4.)

e You should submit a zip file to the Blackboard. The zip file structure is as follows.

Format guide

The project structure is illustrated below. You can also use 1s command to check if your
structure is fine. Structure mismatch would cause grade deduction.

For this assignment, you don't need a specific folder for the extra credit part. The source folder
should contain four files: proc.c, proc.h, sysfile.c, trap.c

main@ubuntu:~/Desktop/Assignment 4 120010001$ 1s
Report.pdf source/

(One directory and one pdf.)
main@ubuntu:~/Desktop/Assignment 4 120010001/source$ 1s
proc.c proc.h sysfile.c trap.c

(three .c files and one .h file)

https://pdos.csail.mit.edu/6.828/2022/xv6/book-riscv-rev3.pdf

Please compress all files in the file structure root folder into a single zip file and name it using
your student ID as the code shown below and above, for example,
Assignment_4_xxxxxxxxx.zip. The report should be submitted in the format of pdf, together
with your source code. Format mismatch would cause grade deduction. Here is the sample
step for compressing your code.

main@ubuntu:~/Desktop$
zip -g -r Assignment 4 XXXXXXXXX.zlp Assignment 4 XXXXXXXXX
main@ubuntu:~/Desktop$ 1ls

Assignment_ 4 XxxXXXXXXXX Assignment 4 XXXXXXXXX.zip

Tips on interactions between host and virtual
machine

Here are some useful tips for you to interact between the host machine and the virtual
machine. If you are familiar with it and "Format guide", you can ignore this section.

In the terminal, you should not include "<" and ">". Here, they are just to present a custom string
variable.

1. Copy the assignment folder to your virtual machine. You can copy the folder in the
VSCode or use the scp command below.

In the host machine:

cd <your host path to project zip>
scp -P 2200 ./csc3150-projecté4.zip csc3150@127.0.0.1:~

If you have spaces in the path, use the double quote to include your path, e.g. cd "your
host path".

2. Unzip the assignment folder in your virtual machine.

In the virtual machine:

unzip ~/csc3150-projectd.zip ~/
chmod -R +x ~/csc3150-project4

Then, you can browse the assignment folder.

After finishing the project, you should wrap your file following the format instructions.
We prepare a script for you to generate the submission zip. This optional script is just
for your convenience to wrap the files. You can wrap your file in your own way, only
ensuring that you follow the format.

3. Suppose that you have already copied your Report.pdf to the virtual machine (like the
way you copy the assignment zip from the host machine to the virtual machine).

In the virtual machine:

cd ~/csc3150-projectd

bash gen submission.sh

gen submission.sh script will ask for your student id and path of your Report.pdf .

Then you can find your submission folder under ~/csc3150

project4/submission/Assignment 4 <your student id>.zip
4. You can use the following command to copy the submission zip to your host machine.

In the host machine:

scp -P 2200 ¢sc3150@127.0.0.1:~/csc3150-
project4/submission/Assignment 4 <your student id>.zip

<your_host_machine_folder path>

Then you will get the submission zip in your_host machine folder path .Don't
forget to submit your zip file to the BlackBoard.

Instruction Guideline

We limit your implementation within four files: proc.c, proc.h, sysfile.c, trap.c, where there are
some missing code sections starting with "TODO" comments. The entry (where you may start
learning) of the test program is the main function in mmaptest.c under the 'csc3150-
project4/user' directory.

Sections with (*) are introduction sections. These sections introduce tools and functions that
will help you understand what this system is about and how the system works with these
components. You might need to use some of the functions when implementing the TODO
parts.

You are ONLY allowed to modify the TODO parts in these four files! And we will grade your
project ONLY based on the implementation of the TODO parts. Any other modification will be
considered invalid.

1. For the introduction sections, please figure out how functions work and how to use
them.

2. Be sure you have a basic idea of the content before starting your assignment. We
believe that
those would be enough for handling this assignment.

3. (optional) For students who are interested in the xv6 system and want to learn more
about it,
you are welcome to read "xv6-book" to get more details.

a. https://pdos.csail.mit.edu/6.828/2022/xv6/book-riscv-rev3.pdf

Sections without (*) are TODO sections. In these sections, the logic of how this component/
function should work is listed in detail. You should implement functions in the given places.

1. However, no sample code will be shown here. You need to figure out the
implementation

https://pdos.csail.mit.edu/6.828/2022/xv6/book-riscv-rev3.pdf

based on the logic and APIs provided in the introduction sections.

Arguments fetching*

<xv6-book> chapter 4.3

void argint(int, int*);
int argstr(int, char*, int);
void argaddr(int, uint64 *);

int argfd(int n, int *pfd, struct file **pf);

The kernel functions argint , argaddr , and argfd retrieve the nth system call argument
from the trap frame as an integer, pointer, or file descriptor. They all call argraw to retrieve the
appropriate saved user register (kernel/syscall.c:34).

Proc*

// Define in proc.h
struct proc {

struct spinlock lock;

// p->lock must be held when using these:

enum procstate state; // Process state

void *chan; // If non-zero, sleeping on chan

int killed; // If non-zero, have been killed

int xstate; // Exit status to be returned to parent's wait
int pid; // Process ID

// wait_lock must be held when using this:

struct proc *parent; // Parent process

// these are private to the process, so p->lock need not be held.

uint64 kstack; // Virtual address of kernel stack
uint64 sz; // Size of process memory (bytes)
pagetable t pagetable; // User page table

struct trapframe *trapframe; // data page for trampoline.S
struct context context; // swtch() here to run process
struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

char name[16]; // Process name (debugging)

struct vma vma[VMASIZE]; // virtual mem area

// Defined in proc.c
// Return the current struct proc *, or zero if none.

struct proc* myproc(void)

Pages*

<xv6-book> chapter3

// Defined in riscv.h

typedef
typedef

uint64 pte_t;
uint64 *pagetable t; // 512 PTEs

#endif // _ ASSEMBLER

#define
#define

#define
#define

#define
#define
#define
#define
#define

PGSIZE 4096 // bytes per page
PGSHIFT 12 // bits of offset within a page

PGROUNDUP (sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
PGROUNDDOWN (a) (((a)) & ~(PGSIZE-1))

PTE V (1L << 0) // valid
PTE R (1L << 1)
PTE W (1L << 2)
PTE X (1L << 3)

PTE U (1L << 4) // user can access

// one beyond the highest possible virtual address.
// MAXVA is actually one bit less than the max allowed by

// Sv39,

// that
#define

to avoid having to sign-extend virtual addresses
have the high bit set.
MAXVA (1L << (9 + 9 + 9 + 12 - 1))

Prots & Flags*

// Defined in fcntl.h

#define
#define
#define
#define

#define
#define

PROT_NONE 0x0
PROT_READ 0x1
PROT_WRITE 0x2
PROT EXEC 0x4

MAP SHARED 0x01
MAP_ PRIVATE 0x02

(TODO) Traps

// trap.c

void usertrap(void)

{

// TODO: manage pagefault

else if(r scause() == 13 || r_scause() == 15){

// Supervisor Trap Cause
static inline uint64

r_scause()

{
uint64 x;
asm volatile("csrr %0, scause" : "=r" (x));
return Xx;

}

// Supervisor Trap Value
static inline uinté64
r stval()

{

uint64 x;

asm volatile("csrr %0, stval" : "=r" (x));

return x;

Usertrap handles an interrupt, exception, or system call from user space. It calls r_scause() to
get the exception code. In this assignment, you are asked to handle the PageFault exception.

Interrupt | Exception Code | Description

0 | Reserved

1 | Supervisor software interrupt
2-4 | Reserved

5 | Supervisor timer interrupt
6-8 | Reserved

9 | Supervisor external interrupt

10-15 | Reserved
>16 | Designated for platform use
Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
9 | Environment call from S-mode

10-11 | Reserved

12 | Instruction page fault

13 | Load page fault

14 | Reserved

15 | Store/AMO page fault
16-23 | Reserved
24-31 | Designated for custom use
32-47 | Reserved
48-63 | Designated for custom use

>64 | Reserved

o

0~ U W

SO OO OO OO OO OO OO OO |RRFERERFERFRFRFE=

Table 4.2: Supervisor cause register (scause) values after trap. Synchronous exception priorities
are given by Table 3.7.

Hint:

e r stval() provides trap value. (i.e. the address causing the exception)

e The swapping mechanism is not supported in the xv6 system. If the physical memory is
filled, you are expected to kill the process. (You shall learn to use kalloc() and
setkilled() functions)

e |f there is spare space in physical memory, map one page of the file with the
corresponding vma. (mapfile() and mappages())

// file.c
// read a page of file to address mem
// The off parameter in the mapfile and readi represents the offset
// from the start of the file where the read operation should begin.
void mapfile(struct file * £, char * mem, int offset){

// printf("off %d\n", offset);

ilock(f->ip);

readi(f->ip, 0, (uint64) mem, offset, PGSIZE);

iunlock(f->ip);

// vm.c
// Create PTEs for virtual addresses starting at va that refer to
// physical addresses starting at pa. va and size might not
// be page-aligned. Returns 0 on success, -1 if walk() couldn't
// allocate a needed page-table page.
int mappages(pagetable t pagetable, uint64 va, uint64 size, uinté64 pa, int
perm)
{
uint64 a, last;
pte_t *pte;
if(size == 0)
panic("mappages: size");
a = PGROUNDDOWN (va);
last = PGROUNDDOWN(va + size - 1);
for(;;){
if((pte = walk(pagetable, a, 1)) == 0)
return -1;
if (*pte & PTE V)
panic("mappages: remap");
*pte = PA2PTE(pa) | perm | PTE V;
if(a == last)
break;
a += PGSIZE;
pa += PGSIZE;
}

return 0;

File*

//

Defined in file.h

struct file {

//

enum { FD _NONE, FD PIPE, FD_INODE, FD DEVICE } type;
int ref; // reference count

char readable;

char writable;

struct pipe *pipe; // FD_PIPE

struct inode *ip; // FD_INODE and FD DEVICE

uint off; // FD_INODE

short major; // FD_DEVICE

in-memory copy of an inode

struct inode {

uint dev; // Device number
uint inum; // Inode number
int ref; // Reference count
struct sleeplock lock; // protects everything below here

int valid; // inode has been read from disk?

short type; // copy of disk inode
short major;

short minor;

short nlink;

uint size;

uint addrs[NDIRECT+1];

// Write to file f.

//

addr is a user virtual address.

int filewrite(struct file *f, uintaddr, int n);

//

Increment ref count for file f.

struct file* filedup(struct file¥*);

//

Close file f. (Decrement ref count, close when reaches 0.)

void fileclose(struct file*);

Struct "file" "inode" is presented for your information.

filewrite() will be invoked to write back when the memory map is over. i.e. Calling munmap
or Calling exit of process. Similarly to fileclose() .

filedup() will be invoked when there is an increment of accessing file. (mmap (), fork())

//
//
//

Defined in fs.c
Read data from inode.
Caller must hold ip->lock.

// If user dst==1, then dst is a user virtual address;
// otherwise, dst is a kernel address.

int readi(struct inode *ip, int user_dst, uint64 dst, uint off, uint n);

// Write data to inode.

// Caller must hold ip->lock.

// If user src==1, then src is a user virtual address;
// otherwise, src is a kernel address.

// Returns the number of bytes successfully written.
// 1If the return value is less than the requested n,
// there was an error of some kind.

int writei(struct inode *ip, int user_src, uint64 src, uint off, uint n);

// Lock the given inode.
// Reads the inode from disk if necessary.

void ilock(struct inode *ip);

// Unlock the given inode.

void iunlock(struct inode *ip);

Function that you need to use when handling page fault, pay attention to how readi() works
and figure out the parameter you should send to readi() .

If you have no idea what readi() is doing, think about read() or memcpy(),

which deal with pointers and address.

imilarly as “writei()"

ilock() and iunlock() are locks of inode, which are used to ensure consistency of the
memory.

Hint
You may take a look at sys open() to know how inode, file, and locks work.

(TODO) VMA Struct

// we already define size of VMA array for you
#define VMASIZE 16

// TODO: complete struct of VMA
struct VMA {
}i

Explanation

The VMA (Virtual Memory Area) struct is used to manage and track the memory regions that
are mapped into the address space of a process. Each VMA represents a contiguous region of
virtual memory that has the same permissions and is backed by the same kind of object.
The operating system needs to keep track of these mappings, including where they start,
how large they are, what permissions they have, and what file or device they're associated
with. This is what the vma struct is used for.

Implementation

e Keep track of what mmap has mapped for each process.

e Define a structure corresponding to the VMA (virtual memory area), recording the
address, length, permissions, file, etc. for a virtual memory range created by mmap.

e Since the xv6 kernel doesn't have a memory allocator in the kernel, it's OK to declare a
fixed-size array of VMAs and allocate from that array as needed. A size of 16 should be
sufficient. (I already define VMASIZE for you)

Hint
Take a look at what parameter will be sent into mmap() .

The VMA should contain a pointer to a struct file for the file being mapped;

If you would like to use more variables in VMA for further implementation, feel free to use
them.

There is not only one correct answer.

(TODO) mmap()

// Defined in user.h
void *mmap(void *addr, size t length, int prot, int flags, int fd, off t
offset);

// TODO: kernel mmap executed in sysfile.c
uinté64
sys_mmap (void)

{

e Arguments explanation:

In the mmaptest.c, we call ‘char p = mmap(0, PGSIZE2, PROT_READ, MAP_PRIVATE, fd,
0);'.

This call asks the kernel to map the content of file 'fd" into the address space. The first
'0" argument indicates that the kernel should choose the virtual address (In this

homework, you can assume that 'addr' will always be zero).
The second argument 'length' indicates how many bytes to map.

The third argument 'PROT_READ' indicates that the mapped memory should be read-
only, i.e., maodification is not allowed.

The fourth argument '"MAP_PRIVATE' indicates that if the process modifies then
mapped memory, the modification should not be written back to the file nor shared
with other processes mapping the same file (of course, due to PROT_READ, updates are
prohibited in this case).

The fifth argument is the file description of the file to be mapped.
The last argument 'offset’ is the starting offset in the file.
The return value indicates whether mmap succeeds or not.

sys_xxx() function is the kernel's implementation of the xxx() system call. In the xv6
operating system, system calls are prefixed with sys_ to distinguish them from other
functions and to indicate that they are system calls. The kernel functions argint ,
argaddr , and argfd retrieve the n'th system call argument from the trap frame as an
integer, pointer, or a file descriptor. See the Arguments fetching section.

Run mmaptest after mmap() implemented: the first mmap should succeed, but the first
access to the mmap-ed memory will cause a page fault and kill mmaptest.

o Before mmap() implemented

b mmaptest
mmap_test starting
test mmap f

mismatch at @, wanted 'A', got ex1l
mmaptest: mmap_test failed: vl mismatch (1), pid=4

o Page fault occurs after mmap () implemented(work correctly)

$ mmaptest
mmap_test starting
test mmap f

Now, after mmap, we get a page fault
usertrap(): unexpected scause 9x000000000000000d pid=6

sepc=0x0000000000000076 stval=0x0000003fffffceee

$ (]

Progress chart

Calling sys_mmap!()

Fetch Argument

Parameter invalid

All Argument Valid

Find a free vma to map
file

1. value invalid
2. permission/ flags conflict

No available vma

W

Err
return -1

Successfully match vma

Record infos to vma
structs

l

filedup (increment the
reference count)

l

return virtual address

(TODO) PageFault Handle

<xv6-book>chapter 4.5,4.6

W

Err
panic(*syscall mmap®)

e Add code to cause a page-fault in a mmap-ed region to allocate a page of physical

memory.

e Find corresponding valid vma by fault address.

e Read 4096 bytes of the relevant file onto that page, and map it into the user address
space.

e Read the file with readi, which takes an offset argument at which to read in the file (but
you
will have to lock/unlock the inode passed to readi).

e Set the permissions correctly on the page. Run mmaptest; it should get to the first
munmap.

e See Section Trap

(TODO) munmap()

e Implement munmap:

o find the VMA for the address range and unmap the specified pages (hint: use
uvmunmanp).

o If munmap removes all pages of a previous mmap, it should decrease the
reference count of the corresponding struct file.

o If an unmapped page has been modified and the file is mapped MAP_SHARED,
write the page back to the file. Look at filewrite for inspiration.

o Ideally your implementation would only write back MAP_SHARED pages that the
program actually modified. The dirty bit (D) in the RISC-V PTE indicates whether a
page has been written. However, mmaptest does not check that non-dirty pages
are not written back; thus, you can get away with writing pages back without
looking at D bits.

// TODO: complete munmap/()
uint64

sys_munmap (void)

{

}

//defined in vm.c
void uvmunmap (pagetable t pagetable, uint64 va, uint64 npages, int

do_free);

(TODO) Page Alignment

This is a reminder to raise your awareness that all the virtual addresses in your kernel
implementation should be page-aligned! It's very important to keep this rule in real
implementation. That is to say, wrap the addresses with PGROUNDUP Or PGROUNDOWN under
different situations. You have to figure out which to use.

(EXTRA CREDITS) Fork Handle

e Inyour Assignment 1, you should already know that fork() creates a sub process with
the same info. Therefore, you should handle how mmap() works when fork() is invoked.

e Ensure that the child has the same mapped regions as the parent. Don't forget to
increment the reference count for a VMA's struct file. In the page fault handler of the
child, it is OK to allocate a new physical page instead of sharing a page with the parent.
The latter would be cooler, but it would require more implementation work.

Grading Rules

Program part 90' + extra credits

You can test the correctness of your code using the following commands under ~/csc3150-
project4 directory.

make gemu

mmaptest

make gemu turns on the xv6 system, and you will see your terminal starting with $. You can
execute 1s command to see the files including 'mmaptest'.

'mmaptest' command executes the executable file mmaptest to test your programs. You are
expected to have the following outputs

$ mmaptest

mmap_test starting

test mmap £

test mmap f: OK

test mmap private

test mmap private: OK
test mmap read-only

test mmap read-only: OK
test mmap read/write
test mmap read/write: OK
test mmap dirty

test mmap dirty: OK

test not-mapped unmap
test not-mapped unmap: OK
test mmap two files

test mmap two files: OK
test mmap offset

test mmap offset: OK
test mmap half page

test mmap half page: OK
mmap test: ALL OK

fork test starting

fork test OK

mmaptest: all tests succeeded

function points

mmap f 13p
mmap private 5p
mmap read-only 5p
mmap read/write 5p
mmap dirty S5p
mmap two files 5p
not-mapped unmap 12p
mmap offset 5p
mmap half page 15p
Compile Success 20p

fork_test (extra credit)

Report part 10’

You shall strictly follow the provided latex template for the report, where we have
emphasized important parts and respective grading details.Reports based on other
templates will not be graded.

LaTex Editor

For your convenience, you might use Overleaf, an online LaTex Editor.

1. Create a new blank project.
2. Click the following highlight bottom and upload the template we provide.

3. Click Recompile and you will see your report in PDF format.

@ (CodeEdtor QPTG © C Nomatet ~ B I B Q % 8@

\documentclass{article}
\usepackage{graphicx, nips} % Required for insert

ng images

B nips.sty
\title{Assignment Report: Title}
\author {Name - Student ID}

\begin{document}
\maketitle

Your report should follow the template with the following section structure.

\textbf{No page Timitation}

\section{Introduction [2'1}

In the Introduction section, you are required to include a brief introduction about this 3

and your works.

\section{Design [5'1}

- In the Design section, you are required to include how you design your program.

outline

Introduction (21 \section{Environment and Execution [2'1}

Design [51

e Ere o 2] In the Environment and Execution section, you are required to include what is your program's running

environment, how to execute your program, and use appropriate ways to show your program runs well.

Conclusion [2] 27
28 + \section{Conclusion [2']}

30 In the Conclusion section, you are required to include a brief summary about this assignment and
what you have learned from this assignment.

33 \end{document}

9 History []] Layout ~ @ Chat
~ v - + 9%~

g share @ submit

CAb Review

: Title

Assignment Repor

Name - Student 1D

No page limitation

1 Introduction [2']

your works.

2 Design[5']

Inthe your pr

3 Environment and Execution [2']
Inthe Environment and Execution secton, you are required 1o include whatis your prograny's run-
rogram

pingenvironment how o execui Your pRagrm,ad U apupriate vays (0 sh Yo

4 Conclusion [2']

In the Conclusion section, you are required (0 include a brief summary about this assignment and

hat you have leamed from this assignment.

	CSC3150-Instruction-A4:
	Introduction
	Submission
	Format guide
	Tips on interactions between host and virtual machine
	Instruction Guideline
	Arguments fetching*
	Proc*
	Pages*
	Prots & Flags*
	(TODO) Traps
	Hint:

	File*
	Hint

	(TODO) VMA Struct
	Explanation
	Implementation
	Hint

	(TODO) mmap()
	Progress chart

	(TODO) PageFault Handle
	(TODO) munmap()
	(TODO) Page Alignment
	(EXTRA CREDITS) Fork Handle
	Grading Rules
	Program part 90' + extra credits
	Report part 10'
	LaTex Editor

