
Scaling Graph Neural Networks: Innovations in Distributed and
Decentralized Training for Billion-Scale Graphs

Yuyang Liang
The Chinese University of Hong Kong, Shenzhen

Shenzhen, China
119010174@link.cuhk.edu.cn

Abstract

Graph neural networks (GNNs) have emerged due to their success
at modeling graph data. Yet, it is challenging for GNNs to efficiently
scale to large graphs. To tackle this challenge, we develop Dist-
DGL, a system for training GNNs in a mini-batch fashion on a
cluster of machines. DistDGL distributes the graph and its asso-
ciated data (initial features and embeddings) across the machines
and uses this distribution to derive a computational decomposition
by following an owner-computer rule. Furthermore, to reduce the
communication cost and improve the CPU utilization and end-to-
end performance of distributed GNN training systems, we propose
ByteGNN. ByteGNN provides an abstraction of graph sampling to
support high parallelism, applies a two-level scheduling strategy to
improve resource utilization, and designs a graph partitioning algo-
rithm tailored for GNN. At last, to avoid communication caused by
expensive data movement between workers, we propose Sancus, a
staleness-aware communication-avoiding decentralized GNN sys-
tem. By introducing a set of novel bounded embedding staleness
metrics and adaptively skipping broadcasts, Sancus abstracts de-
centralized GNN processing as sequential matrix multiplication
and uses historical embeddings via cache. Experiment results show
that the proposed methods effectively address the challenges of
scalability of GNNs.

ACM Reference Format:

Yuyang Liang. 2024. Scaling Graph Neural Networks: Innovations in Dis-
tributed and Decentralized Training for Billion-Scale Graphs. In Proceedings
of Shenzhen, Guangdong (Conference). ACM, New York, NY, USA, 22 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Graph Neural Networks (GNNs) have shown success in learn-
ing from graph-structured data and have been applied to many
graph applications in social networks, recommendations, knowl-
edge graphs, etc. In these applications, graphs are usually huge, in
the order of many millions of nodes or even billions of nodes. For
instance, Facebook social network graph contains billions of nodes.
Amazon is selling billions of items and has billions of users, which
forms a giant bipartite graph for its recommendation task. Natural

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference, Dec. 6th,
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

language processing tasks take advantage of knowledge graphs,
such as Freebase [29] with 1.9 billion triples.

It is challenging to train a GNN model on a large graph. Unlike
domains such as computer vision and natural language processing,
where training samples are mutually independent, graph inherently
represents the dependencies among training samples (i.e., vertices).
Hence, mini-batch training onGNNs is different from the traditional
deep neural networks; each mini-batch must incorporate those de-
pending samples. The number of depending samples usually grows
exponentially when exploring more hops of neighbors. This leads
to many efforts in designing various sampling algorithms to scale
GNNs to large graphs [7, 8, 31, 35, 78]. The goal of these methods
is to prune the vertex dependency to reduce the computation while
still estimating the vertex representation computed by GNNmodels
accurately.

It gets even more challenging to train GNNs on giant graphs
when scaling beyond a single machine. For instance, a graph with
billions of nodes requires memory in the order of terabytes attribut-
ing to large vertex features and edge features. Due to the vertex
dependency, distributed GNN training requires to read hundreds
of neighbor vertex data to compute a single vertex representation,
which accounts for majority of network traffic in distributed GNN
training. This is different from traditional distributed neural net-
work training, in which majority of network traffic comes from
exchanging the gradients of model parameters. In addition, neural
network models are typically trained with synchronized stochas-
tic gradient descent (SGD) to achieve good model accuracy. This
requires the distributed GNN framework to generate balanced mini-
batches that contain roughly the same number of nodes and edges
as well as reading the same account of data from the network. Due
to the complex subgraph structures in natural graphs, it is difficult
to generate such balanced mini-batches.

Unfortunately, current systems cannot effectively address the
challenges of distributed GNN training. Previous distributed graph
analytical systems [27, 58, 69] are designed for full graph computa-
tion expressed in the vertex-centric program paradigm, which is
not suitable for GNN mini-batch training. Existing domain-specific
frameworks for training GNNs, such as DGL [75] and PyTorch-
Geometric [20], cannot scale to giant graphs. They were mainly
developed for training on a single machine. Although there have
been some efforts in building systems for distributed GNN train-
ing, they either focus on full batch training by partitioning graphs
to fit the aggregated memory of multiple devices [38, 57, 70] or
suffer from the huge network traffic caused by fetching neighbor
node data [1, 80, 86]. System architectures [12, 49, 63] proposed for
training neural networks for computer vision and natural language

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference, Dec. 6th,
Trovato et al.

Figure 1: Centralized vs. decentralized GNN processing ex-

ample. In the centralized scheme, workers periodically send

updates to a parameter server. In the decentralized scheme,

workers exchange them directly.

processing are not directly applicable because one critical bottle-
neck in GNN training is the network traffic of fetching neighbor
node data due to the vertex dependencies, while previous systems
majorly focuses on network traffic from exchanging the gradients
of model parameters.

In this work, we first develop DistDGL on top of DGL to per-
form efficient and scalable mini-batch GNN training on a cluster
of machines. It provides distributed components with APIs com-
patible to DGL’s existing ones. As such, it requires trivial effort to
port DGL’s training code to DistDGL. Internally, it deploys mul-
tiple optimizations to speed up computation. It distributes graph
data (both graph structure and the associated data, such as node
and edge features) across all machines and run trainers, sampling
servers (for sampling subgraphs to generate mini-batches), and
in-memory KVStore servers (for serving node data and edge data)
all on the same set of machines. To achieve good model accuracy,
DistDGL follows a synchronous training approach and allows ego
networks forming the mini-batches to include non-local nodes. To
reduce network communication, DistDGL adopts METIS [43] to
partition a graph with minimum edge cut and co-locate data with
training computation.

We conduct comprehensive experiments to evaluate the effi-
ciency of DistDGL and effectiveness of the optimizations. Overall,
DistDGL achieves 2.2× speedup over Euler [1] on a cluster of four
CPUmachines. Themain performance advantage comes from the ef-
ficient feature copy with 5× data copy throughput. DistDGL speeds
up the training linearly without compromising model accuracy as
the number of machines increases in a cluster of 16 machines and
easily scales the GraphSage [31] model to a graph with 100 million
nodes and 3 billion edges. It takes 13 seconds per epoch to train on
such a graph in a cluster of 16 machines.

While distributed mini-batch sampling has become the default
method for GNN training on a large graph (for which full-batch
training and full mini-batch training are not practical), existing
distributed GNN training systems suffer from a number of per-
formance problems. One main problem is that sampling can take
significantly longer time to complete than training, due to large
amounts of random data access and remote data fetching involved
in the sampling phase. The imbalance between the sampling and
training phases also leads to the under-utilization of computing

Figure 2: A toy 2-layer GNN example on Sancus: GPU𝑖−1
keeps its shards of H𝑖 and A𝑖 , with a full𝑊 ; H𝑖 are sent to

all GPUs in order via one-to-all broadcast (arrows omitted

without loss of generality). After 4 sequential broadcasts

→,→,→,→ and on-device computation, since the broadcasts

are in parallel, all H𝑖 updates for GPU𝑖−1. Next, Sancus may

tolerate H3 to skip 1 broadcast as shown by . In total,

only 4 + 3 = 7 broadcasts are needed.

resources and the problem is worsen if GPUs are used for training
(which further widens the gap between the sampling and train-
ing time) [66]. To address this imbalanced computing pattern in
mini-batch GNN training, existing systems have attempted to ap-
ply neighborhood caching [53] and fixed size prefetching [83] to
shorten the sampling time. However, it is difficult to set the right
hyper-parameters (i.e., cache ratio and prefetching number) for
training different GNN models on different graphs. Graph partition-
ing has also been applied to reduce the cost of remote data fetching
[86]. However, existing graph partitioning algorithms are designed
for traditional graph workloads (e.g., distributed PageRank) and
they do not consider the data access pattern and load balancing in
GNN training.

To address these problems, we further propose ByteGNN, a dis-
tributed GNN training framework to support fast end-to-end GNN
training in large graphs. To improve the efficiency of sampling, we
abstract the sampling phase of a mini-batch as a directed acyclic
graph (DAG) of small tasks, so that we can run DAGs and tasks
within each DAG in parallel. The fine-grained task abstraction in
DAG modeling also leads to the design of a two-level scheduling.
First, coarse-grained scheduling determines how much resources
should be used for minibatch sampling, in order to dynamically
adjust the computation loads between the sampling and training
phases to avoid resource contention and maximize CPU utilization.
Then, fine-grained scheduling decides the execution order of tasks
in the DAGs in order to pipeline the sampling outputs to be con-
sumed by the training phase at the right pace. The two scheduling
strategies work together to minimize the end-to-end GNN training
time. We also propose an effective graph partitioning algorithm
tailored for mini-batch graph sampling, which maintains the data
locality according to the data access pattern of mini-batch sampling
and balances the computation loads in the training, validation and
testing stages.

We implemented ByteGNN based on GraphLearn [86]. Our
performance evaluation shows that ByteGNN achieves significantly
higher training throughput and is more scalable than the state-of-
the-art distributed GNN systems. Experimental results show that

Scaling Graph Neural Networks: Innovations in Distributed and Decentralized Training for Billion-Scale Graphs
Conference, Dec. 6th,

ByteGNN achieves up to 23.8x speedup over GraphLearn and 3.5x
over DistDGL. The results verify that our system designs lead to
efficient GNN training.

In distributed training, the underlying system architecture of
how workers communicate is crucial, especially for GNNs with
substantial communication overhead. As illustrated in Figure 1,
two approaches exist: centralized and decentralized. Though most
distributed GNN systems [23, 39, 57, 83, 86] work in the popular
centralized parameter server (PS) scheme in Figure 1(a), they often
pay the price of heavy preprocessing and complex workflow, in pur-
suit of efficiency and scalability. By nature of GNNs, the intensive
communication between all the workers and the central PS plus
the waiting time for stragglers may lead to high communication
overhead [5]. Decentralized architectures, however, can be more
robust and easier to deploy, by avoiding the inconvenience in im-
plementing and tuning a PS, centralized bottleneck bandwidth, and
single point of failure [48]. Especially for large neural networks, the
decentralized scheme is proven to be more superior theoretically
[52].

To fill this gap in efficient GNN processing, we propose San-
cus, a staleness-aware communication-avoiding decentralized GNN
training system via adaptively skipping broadcast and caching his-
torical embeddings with bounded staleness. To bypass the irregular
data communication between GPUs, we firstly revisit the parallel
algorithms to distribute GNNs [70] and decrease communication
overhead in a fundamentally distinct way. As Figure 2 shows, by
regarding the GNN processing purely as a sequence of matrix mul-
tiplication operations in a decentralized scheme, each GPU loads
the split submatrices without taking the semantic meaning into
account. The excessively large adjacency and embedding matri-
ces are sliced into A𝑖 and H𝑖 𝑖 ∈ [1, 4] and distributed to GPU𝑖−1
with the full weight matrix𝑊 . Then H1 to H4 are sequentially
one-to-all broadcast to all GPUs in parallel. After 4 broadcasts, the
whole embedding matrixH is updated for a layer. Thus, by moving
intact matrix blocks, Sancus takes advantage of data parallelism
to avoid communication caused by intensive neighbor fetching.
Secondly, to further avoid communication under a decentral-
ized scheme, we propose to cache and skip-broadcast the historical
embeddingsWe define historical embeddings as the embedding sub-
matrices from earlier epochs in each distributed process, i.e., the
sub-matrix Hi individually computed on GPU𝑖−1 in Figure 2. We uti-
lize caching and design a novel skip-broadcast operator to support
historical embeddings in Sancus. Thirdly, to manage the system
staleness caused by using mixed-version embeddings on each GPU,
we propose the generalization of the widely-used bounded gradient
staleness in centralized schemes [13], to historical embeddings. We
introduce a set of novel bounded embedding staleness metrics in de-
centralized GNNs. Particularly, Sancus adaptively skip-broadcasts
embeddings within bounds and automatically reuses cached his-
torical embeddings to directly avoid communication; otherwise, if
the embeddings become too stale, the results are broadcast and up-
dated in cache among GPUs to keep the system staleness within
bounds.

2 Related Works

2.1 Distributed Deep Neural Networks

There are many system-related works to optimize distributed deep
neural network (DNN) training. The parameter server [50] is de-
signed tomaintain and update the sparsemodel parameters. Horovod [67]
and Pytorch distributed [51] uses allreduce to aggregate dense
model parameters but does not work for sparse model parame-
ters. BytePs [63] adopts more sophisticated techniques of overlap-
ping model computation and gradient communication to accelerate
dense model parameter updates. Many works reduce the amount
of communication by using quantization [65] or sketching [37].
Several recent work focuses on relaxing the synchronization of
weights [32, 56] in case some workers run slower than others tem-
porally due to some hardware issues. GNN models are composed
of multiple operators organized into multiple graph convolution
network layers shared among all nodes and edges. Thus, GNN
training also has dense parameter updates. However, the network
traffic generated by dense parameter updates is relatively small com-
pared with node/edge features. Thus, reducing the network traffic
of dense parameter updates is not our main focus for distributed
GNN training.

2.2 Distributed Graph Neural Networks

The distributed GNNs are still in its infancy [2], with a few prior
works on GPU-based systems. Compared to distributed systems
for large graph analysis [10, 18, 19, 58, 68], the communication
overhead in distributed GNNs is even more challenging since the
intensive data movement among workers to fetch neighbor em-
beddings is expensive. Currently, most existing systems utilize a
centralized architecture. For example, NeuGraph [57] proposes the
GNN training framework on a multi-GPU single machine with
METIS [18] partitioning and specialized optimization in scheduling
and pipelining. However, it is not released for public access. RoC
[38] dynamically partitions the graph with an online regression
method and proposes a sophisticated memory management method
among workers, at the cost of complex workflow. PaGraph [53]
exploits static caching of nodes with a higher degree in the GPU
memory, leveraging a nontrivial partitioning algorithm to balance
the workload and reduce the data movement in cross-device visits.
𝐺3 [54] leverages parallel graph optimizations to improve graph
operations in GPU systems, and Zhou et al. [85] utilize channel
pruning to accelerate GNN inference, while Grain [82] focuses on
GNN data selection via social influence maximization and RDD
[81] uses unlabeled data. Yet, their evaluation does not focus on
distributed training. AliGraph [86] utilizes static cache as well but
only supports CPU servers, while AGL [80] uses MapReduce and
optimizes both training and inference. To reduce and balance the
communication, DistDGL [83] leverages partitioning with load bal-
ancing, whileMin et al. [60] present a GPU-oriented communication
reduction via zero-copy access. These specialized systems often
come with heavy preprocessing and complex workflow. Moreover,
such newly proposed frameworks often pose challenges in their
deployment and extension. All of aforementioned distributed GNN
systems adopt a centralized design, which may lead to centralized
communication, high communication overhead, and a single point
of failure. Also, it should be noted that only NeuGraph and Roc

Conference, Dec. 6th,
Trovato et al.

support full GNN processing, while all others need sampling. More
recently, DGCL [5], a communication library for distributed full-
GNN training, tries to reduce communication by finding optimal
communication routes in specific system topology for every node
in the entire graph. Regardless of the substantial overhead caused
by planning communication for each node before every execu-
tion, it still follows the conventional message-passing paradigm for
vertex-centric computation. Tripathy et al. [70] incorporate matrix
blocking techniques into a set of parallel algorithms [24], to suit
the sparse matrix and dense matrix operations in distributed GNNs.
Though being a general implementation of distributed GNNs with
high extensibility, their proposed CAGNET still struggles in scala-
bility, owing to the communication bottleneck. Thus, we adapt the
powerful parallel algorithm [71] and abstract the GNN processing as
sequential matrix multiplication so that its intermediate historical
embeddings are cached and re-utilized to reduce the communica-
tion overhead further in a system environment with staleness for
the first time.

3 Preliminary

In this section, we review the related concepts of our target problem,
and introduce the necessary equations to set the background, then
formally define the problem. The key notations are listed in Table
1.

Figure 3: One sampled mini-batch in GNN training.

3.1 Graph Neural Networks

Let G = (V, E) be an undirected graph of order 𝑁 with a set of
edges E ⊆ V × V and nodes V = {𝑣1, 𝑣2, . . . , 𝑣𝑁 }. Consider the
graph adjacency matrix A, where the element 𝐴𝑖 𝑗 in the matrix
specifies the relation between the nodes 𝑣𝑖 and 𝑣 𝑗 with 𝐴𝑖 𝑗 = 1
if there exists an edge

(
𝑣𝑖 , 𝑣 𝑗

)
∈ E or otherwise 𝐴𝑖 𝑗 = 0. A is

Notation Description

A Adjacency matrix of the graph (𝑁 × 𝑁)
Â Adjacency matrix after symmetric normalization (𝑁 × 𝑁)

W(ℓ) Weight matrix at the ℓ𝑡ℎ layer (𝐹 × 𝐹)
H(ℓ) Embedding matrix at the ℓ𝑡ℎ layer (𝑁 × 𝐹)
Z(ℓ) Input matrix to activation function at the ℓ𝑡ℎ layer (𝑁 × 𝐹)
T(ℓ) Intermediate result matrix of the multiplication 𝐴̂H(ℓ)

∇Z(ℓ) L = 𝛿 (ℓ) Gradient matrix of the loss L with respect to Z(ℓ) at the ℓ𝑡ℎ layer
∇W (ℓ)L Gradient matrix of the loss L with respect toW(ℓ) at the ℓ𝑡ℎ layer
L Loss of the GNN
𝜂 Learning rate
𝜖 Staleness bound

𝑃 (𝑖) 𝑖-th process in distributed GNN

Table 1: Summary of the key symbols and notations

symmetric since G is undirected. Denote Â = D̄−
1
2 ĀD̄−

1
2 as the

adjacencymatrix after symmetric normalization in GCN [20], where
Ā = A + I𝑁 denotes the adjacency matrix with self-connections
and D̄ ∈ R𝑁×𝑁 = D + I𝑁 denotes the diagonal node degree matrix.

Without loss of generality, the ℓ-th layer propagation process of
such GNNs [2, 76] can be formulated in matrix form as:

H(ℓ) = 𝜎
(
H(ℓ−1) , Â;W(ℓ−1)

)
(1)

where 𝜎 denotes the activation function such as ReLU and W ∈
R𝐹×𝐹 denotes the weight matrix. Initially, H(0) = X where X ∈
R𝑁×𝐹 is the node embedding matrix whose 𝑖-th row represents
the length- 𝐹 embedding vector of node 𝑣𝑖 . For convenience, the
superscript (ℓ) notation is omitted when it is clear from context.

Forward Propagation. Specifically, the neighbors’ (ℓ−1)-th em-
bedding vectors are combined for each node. Based on the iterative
scheme of GNNs, the computation process is given:

Z(ℓ) = ÂH(ℓ−1)W(ℓ−1) (2)

H(ℓ) = 𝜎
(
Z(ℓ)

)
(3)

Backpropagation. Firstly we derive the recurrence to backprop-
agate the gradient. Let ∇Z(ℓ)L denote the gradient of the loss L
with respect to Z(ℓ) . To simplify, we define a factor 𝛿 (ℓ) = ∇Z(ℓ)L.
By the chain rule, the relation between 𝛿 (ℓ−1) and 𝛿 (ℓ) is:

𝛿 (ℓ−1) =
𝜕L

𝜕Z(ℓ−1) = 𝛿
(ℓ) Â

(
W(ℓ−1)

)⊤
⊙ 𝜎′

(
Z(ℓ−1)

)
, (4)

where𝜎′ (·) is the derivative of the activation function𝜎 (·). Then,
the gradient ∇w(ℓ)L of the loss L with respect toW(ℓ) is:

∇W(ℓ−1)L =
𝜕L

𝜕W(ℓ−1) =
𝜕L
𝜕Z(ℓ)

𝜕Z(ℓ)

𝜕W(ℓ−1) = 𝛿
(ℓ) Â

(
H(ℓ−1)

)⊤
(5)

In GNNs, one training epoch consists of a forward propagation
and a backpropagation pass, with subsequent weight update:

w(ℓ−1) = w(ℓ−1) − 𝜂∇w(ℓ−1)L (6)

where 𝜂 represents the learning rate. The GNN trains a number
of epochs until the accuracy saturates and the model converges.

Scaling Graph Neural Networks: Innovations in Distributed and Decentralized Training for Billion-Scale Graphs
Conference, Dec. 6th,

3.2 Mini-batch training

GNN models on a large dataset can be trained in a mini-batch fash-
ion just like deep neural networks in other domains like computer
vision and natural language processing. However, GNN mini-batch
training is different from other neural networks due to the data de-
pendency between vertices. Therefore, we need to carefully sample
subgraphs that capture the data dependencies in the original graph
to train GNN models.

A typical strategy of training a GNN model [31] follows three
steps: (i) sample a set of 𝑁 vertices, called target vertices, uniformly
at random from the training set; (ii) randomly pick at most𝐾 (called
fan-out) neighbor vertices for each target vertex; (iii) compute the
target vertex representations by gathering messages from the sam-
pled neighbors. When the GNN has multiple layers, the sampling
is repeated recursively. That is, from a sampled neighbor vertex,
it continues sampling its neighbors. The number of recursions is
determined by the number of layers in a GNNmodel. This sampling
strategy forms a computation graph for passing messages on. Fig-
ure 6(b) depicts such a graph for computing representation of one
target vertex when the GNN has two layers. The sampled graph
and together with the extracted features are called a mini-batch in
GNN training.

There have beenmanyworks regarding to the different strategies
to sample graphs for mini-batch training [7, 8, 11, 36, 89]. Therefore,
a GNN framework needs to be flexible as well as scalable to giant
graphs.

4 Propose Method

4.1 DistDGL

4.1.1 Distributed Training Architecture. DistDGLdistributes the
mini-batch training process of GNNmodels to a cluster of machines.
It follows the synchronous stochastic gradient descent (SGD) train-
ing; each machine computes model gradients with respect to its
own mini-batch, synchronizes gradients with others and updates
the local model replica. At a high level, DistDGLconsists of the
following logical components (Figure 4):

• A number of samplers in charge of sampling the mini-batch
graph structures from the input graph. Users invoke Dist-
DGLsamplers in the trainer process via the same interface
in DGL for neighbor sampling, which internally becomes
a remote process call (RPC). After mini-batch graphs are
generated, they are sent back to the trainers.
• A KVStore that stores all vertex data and edge data distribut-
edly. It provides two convenient interfaces for pulling the
data from or pushing the data to the distributed store. It
also manages the vertex embeddings if specified by the user-
defined GNN model.
• A number of trainers that compute the gradients of the model
parameters over a mini-batch. At each iteration, they first
fetch the mini-batch graphs from the samplers and the cor-
responding vertex/edge features from the KVStore. They
then run the forward and backward computations on their
own mini-batches in parallel to compute the gradients. The
gradients of dense parameters are dispatched to the dense

Figure 4: DistDGL’s logical components.

model update component for synchronization, while the gra-
dients of sparse embeddings are sent back to the KVStore
for update.
• A dense model update component for aggregating dense GNN
parameters to perform synchronous SGD. DistDGLreuses
the existing components depending on DGL’s backend deep
learning frameworks (e.g., PyTorch, MXNet, and Tensor-
Flow). For example, DistDGLcalls the all-reduce primitive
when the backend framework is PyTorch [51], or resorts to
parameter servers [49] for MXNet and TensorFlow backends.

When deploying these logical components to actual hardware,
the first consideration is to reduce the network traffic among ma-
chines because graph computation is data intensive [17]. Dist-
DGLadopts the owner-compute rule (Figure 5). The general princi-
ple is to dispatch computation to the data owner to reduce network
communication. DistDGLfirst partitions the input graph with a
light-weight min-cut graph partitioning algorithm. It then par-
titions the vertex/edge features and co-locates them with graph
partitions. DistDGLlaunches the sampler and KVStore servers on
each machine to serve the local partition data. Trainers also run
on the same cluster of machines and each trainer is responsible for
the training samples from the local partition. This design leverages
data locality to its maximum. Each trainer works on samples from
the local partition so the mini-batch graphs will contain mostly
local vertices and edges. Most of the mini-batch features are locally
available too via shared memory, reducing the network traffic sig-
nificantly. In the following sections, we will elaborate more on the
design of each component.

4.1.2 Graph Partitioning. The goal of graph partitioning is to split
the input graph into multiple partitions with a minimal number of
edges across partitions. Graph partitioning is a preprocessing step
before distributed training. A graph is partitioned once and used
for many distributed training runs, so its overhead is amortized.

DistDGLadopts METIS [43] to partition a graph. This algorithm
assigns densely connected vertices to the same partition to reduce
the number of edge cuts between partitions (Figure 6(a)). After
assigning some vertices to a partition, DistDGLassigns all incident

Conference, Dec. 6th,
Trovato et al.

Figure 5: The deployment of DistDGL’s logical components

on a cluster of two machines.

edges of these vertices to the same partition. This ensures that all
the neighbors of the local vertices are accessible on the partition
so that samplers can compute locally without communicating with
each other. With this partitioning strategy, each edge has a unique
assignment while some vertices may be duplicated (Figure 6(b)).
We refer to the vertices assigned by METIS to a partition as core
vertices and the vertices duplicated by our edge assignment strategy
as HALO vertices. All the core vertices also have unique partition
assignments.

While minimizing edge cut, DistDGLdeploys multiple strategies
to balance the partitions so that mini-batches of different trainers
are roughly balanced. By default, METIS only balances the number
of vertices in a graph. This is insufficient to generate balanced parti-
tions for synchronous mini-batch training, which requires the same
number of batches from each partition per epoch and all batches
to have roughly the same size. We formulate this load balancing
problem as a multi-constraint partitioning problem, which balances
the partitions based on user-defined constraints [45]. DistDGLtakes
advantage of the multi-constraint mechanism in METIS to balance
training/validation/test vertices/edges in each partition as well as
balancing the vertices of different types and the edges incident to
the vertices of different types.

METIS’ partitioning algorithms are based on the multilevel par-
adigm, which has been shown to produce high-quality partitions.
However, for many types of graphs involved in learning on graphs
tasks (e.g., graphs with power-law degree distribution), the suc-
cessively coarser graphs become progressively denser, which con-
siderably increases the memory and computational complexity of
multilevel algorithms. To address this problem, we extended METIS
to only retain a subset of the edges in each successive graph so
that the degree of each coarse vertex is the average degree of its
constituent vertices. This ensures that as the number of vertices
in the graph reduces by approximately a factor of two, so do the
edges. To ensure that the partitioning solutions obtained in the
coarser graphs represent high-quality solutions in the finer graphs,
we only retain the edges with the highest weights in the coarser
graph. In addition, to further reduce the memory requirements, we
use an out-of-core strategy for the coarser/finer graphs that are not
being processed currently. Finally, we run METIS by performing
a single initial partitioning (default is 5) and a single refinement
iteration (default is 10) during each level. For power-law degree
graphs, this optimization leads to a small increase in the edge-cut

(a)

(b)

Figure 6: Graph partitioning with METIS in DistDGL. (a) As-

sign vertices to graph partitions. (b) Generate graph parti-

tions with HALO vertices (the vertices with different colors

from majority of the vertices in the partition).

(2%-10%) but considerably reduces its runtime. Overall, the set of
optimizations above compute high-quality partitionings requiring
5× less memory and 8× less time than METIS’ default algorithms.

After partitioning the graph structure, we also partition vertex
features and edge features based on the graph partitions. We only
assign the features of the core vertices and edges of a partition to
the partition. Therefore, the vertex features and edge features are
not duplicated.

After graph partitioning, DistDGLmanages two sets of vertex
IDs and edge IDs. DistDGLexposes global vertex IDs and edge
IDs for model developers to identify vertices and edges. Internally,
DistDGLuses local vertex IDs and edge IDs to locate vertices and
edges in a partition efficiently, which is essential to achieve high
system speed as demonstrated by previous works [87]. To save
memory for maintaining the mapping between global IDs and local
IDs, DistDGLrelabels vertex IDs and edge IDs of the input graph
during graph partitioning to ensure that all IDs of core vertices and
edges in a partition fall into a contiguous ID range. In this way,
mapping a global ID to a partition is a binary lookup in a very small
array and mapping a global ID to a local ID is a simple subtraction
operation.

4.1.3 Distributed Key-Value Store. The features of vertices and
edges are partitioned and stored in multiple machines. Even though
DistDGLpartitions a graph to assign densely connected vertices to
a partition, we still need to read data from remote partitions. To
simplify the data access on other machines, DistDGLdevelops a
distributed in-memory key-value store (KVStore) to manage the
vertex and edge features as well as vertex embeddings, instead of
using an existing distributed in-memory KVStore, such as Reddis,
for (i) better co-location of node/edge features in KVStore and graph

Scaling Graph Neural Networks: Innovations in Distributed and Decentralized Training for Billion-Scale Graphs
Conference, Dec. 6th,

partitions, (ii) faster network access for high-speed network, (iii)
efficient updates on sparse embeddings.

DistDGL’s KVStore supports flexible partition policies to map
data to different machines. For example, vertex data and edge data
are usually partitioned and mapped to machines differently as
shown in Section 4.1.2. DistDGLdefines separate partition poli-
cies for vertex data and edge data, which aligns with the graph
partitions in each machine.

Because accessing vertex and edge features usually accounts
for the majority of communication in GNN distributed training,
it is essential to support efficient data access in KVStore. A key
optimization for fast data access is to use shared memory. Due to
the co-location of data and computation, most of data access to
KVStore results in the KVStore server on the local machine. Instead
of going through Inter-Process Communication (IPC), the KVStore
server shares all data with the trainer process via shared memory.
Thus, trainers can access most of the data directly without paying
any overhead of communication and process/thread scheduling.
We also optimize network transmission of DistDGL’s KVStore for
fast networks (e.g., 100Gbps network). We develop an optimized
RPC framework for fast networking communication, which adopts
a zero-copy mechanism for data serialization and a multi-thread
send/receive interface.

In addition to storing the feature data, we design DistDGL’s KV-
Store to support sparse embedding for training transductive models
with learnable vertex embeddings. Examples are knowledge graph
embedding models [84]. In GNN mini-batch training, only a small
subset of vertex embeddings are involved in the computation and
updated during each iteration. Although almost all deep learning
frameworks have off-the-shelf sparse embedding modules, most
of them lack efficient support for distributed sparse updates. Dist-
DGL’s KVStore shards the vertex embeddings in the same way as
vertex features. Upon receiving the embedding gradients (via the
PUSH interface), KVStore updates the embedding based on the
optimizer the user registered.

4.1.4 Distributed Sampler. DGLhas provided a set of flexible Python
APIs to support a variety of sampling algorithms proposed in the
literature. DistDGLkeeps this API design but with a different inter-
nal implementation. At the beginning of each iteration, the trainer
issues sampling requests using the target vertices in the current
mini-batch. The requests are dispatched to the machines according
to the core vertex assignment produced by the graph partitioning
algorithm. Upon receiving the request, sampler servers call DGL’s
sampling operators on the local partition and transmit the result
back to the trainer process. Finally, the trainer collects the results
and stitches them together to generate a mini-batch.

DistDGLdeploys multiple optimizations to effectively acceler-
ate mini-batch generation. DistDGLcan create multiple sampling
worker processes for each trainer to sample mini-batches in parallel.
By issuing sampling requests to the sampling workers, trainers over-
lap the sampling cost with mini-batch training. When a sampling
request goes to the local sampler server, the sampling workers to ac-
cess the graph structure stored on the local sampler server directly
via shared memory to avoid the cost of the RPC stack. The sam-
pling workers also overlaps the remote RPCs with local sampling
computation by first issuing remote requests asynchronously. This

Figure 7: Split the workloads evenly to balance the computa-

tion among trainer processes.

effectively hides the network latency because the local sampling
usually accounts for most of the sampling time. When a sampler
server receives sampling requests, it only needs to sample vertices
and edges from the local partition because our graph partition-
ing strategy (Section 4.1.2) guarantees that the core vertices in a
partition have access to the entire neighborhood.

4.1.5 Mini-batch Trainer. Mini-batch trainers run on each machine
to jointly estimate gradients and update the parameters of users’
models. DistDGLprovides utility functions to split the training set
distributedly and generate balanced workloads between trainers.

Each trainer samples data points uniformly at random to gener-
ate mini-batches independently. Because DistDGL generates bal-
anced partitions (each partition has roughly the same number of
nodes and edges) and uses synchronous SGD to train the model,
the data points sampled collectively by all trainers in each iteration
are still sampled uniformly at random across the entire dataset. As
such, distributed training in DistDGL in theory does not affect the
convergence rate or the model accuracy.

To balance the computation in each trainer, DistDGLuses a two-
level strategy to split the training set evenly across all trainers at the
beginning of distributed training. We first ensure that each trainer
has the same number of training samples. The multi-constraint
algorithm inMETIS (Section 4.1.2) can only assign roughly the same
number of training samples (vertices or edges) to each partition
(as shown by the rectangular boxes on the top in Figure 7). We
thus evenly split the training samples based on their IDs and assign
the ID range to a machine whose graph partition has the largest
overlap with the ID range. This is possible because we relabel
vertex and edge IDs during graph partitioning and the vertices
and edges in a partition have a contiguous ID range. There is a
small misalignment between the training samples assigned to a
trainer and the ones that reside in a partition. Essentially, we make
a tradeoff between load balancing and data locality. In practice,
as long as the graph partition algorithm balances the number of
training samples between partitions, the tradeoff is negligible. If
there are multiple trainers on one partition, we further split the
local training vertices evenly and assign them to the trainers in the
local machine. We find that random split in practice gives a fairly
balanced workload assignment.

In terms of parameter synchronization, we use synchronous SGD
to update dense model parameters. Synchronous SGD is commonly
used to train deep neural network models and usually leads to bet-
ter model accuracy. We use asynchronous SGD to update the sparse
vertex embeddings in the Hogwild fashion [61] to overlap commu-
nication and computation. In a large graph, there are many vertex
embeddings. Asynchronous SGD updates some of the embeddings
in a mini-batch. Concurrent updates from multiple trainers rarely
result in conflicts because mini-batches from different trainers run

Conference, Dec. 6th,
Trovato et al.

Figure 8: System architecture of ByteGNN

on different embeddings. Previous study [84] has verified that asyn-
chronous update of sparse embeddings can significantly speed up
the training with nearly no accuracy loss.

For distributed CPU training, DistDGLparallelizes the computa-
tion with both multiprocessing and multithreading. Inside a trainer
process, we use OpenMP to parallelize the framework operator
computation (e.g., sparse matrix multiplication and dense matrix
multiplication). We run multiple trainer processes on each machine
to parallelize the computation for non-uniform memory architec-
ture (NUMA), which is a typical architecture for large CPU ma-
chines. This hybrid approach is potentially more advantageous than
the multiprocessing approach for synchronous SGD because we
need to aggregate gradients of model parameters from all trainer
processes and broadcast newmodel parameters to all trainers. More
trainer processes result in more communication overhead for model
parameter updates.

4.2 ByteGNN

Figure 8 shows the architecture of ByteGNN, which consists of four
main components in each machine where ByteGNNis deployed.
Graph Store stores a partition of the input graph data and the
Graph Stores of all machines form a distributed Graph Store. PS
is a parameter server that stores the model parameters. Sampling

Worker (S-Worker), handles the sampling phase and constructs
sampled neighborhood subgraphs for sampled seed vertices. Train-
ing Worker (T-Worker), handles the training phase, which com-
putes model gradients on the sampled neighborhood subgraphs
constructed by the S-Worker in the same machine and synchronizes
the gradients with PS to update the model parameters.

4.2.1 Abstraction of Mini-Batch Graph Sampling. The sampling
process in existing GNN systems [21, 83, 86] is not well-organized as
the tasks in each sampling phase are executed without overlapping,
which often leads to CPU under-utilization. In addition, sampling
is conducted for one iteration (i.e., one minibatch) after another,
even though different mini-batches are independent of each other.
To support parallel sampling within a mini-batch and among mini-
batches, so as to maximize CPU utilization, we model the sampling
process as a DAG of tasks. Then, we can execute the DAGs of

Figure 9: The DAG of the sampling workflow

sampling multiple mini-batches in parallel. We also introduce a
scheduler to effectively utilize the computing resources for both
intra-DAG and inter-DAG parallelization, while balancing the loads
between sampling and training so that one is not waiting for the
other to finish in order to continue.

To construct this DAG for a general GNN model, we analyzed
the sampling phase of a broad range of existing GNN models,
which cover most of the widely-adopted models such as GCN [46],
GAT[73], GraphSAGE[31], PinSAGE[78], and GraphSAINT[79]. We
provide a common abstraction for the sampling phase of these GNN
models with a set of five operators: (1) Seed Sampler: sampling
a set of vertices as seeds from the local graph store; (2) Positive
Sampler: sampling vertices from the direct neighbors of each seed;
(3) Negative Sampler: sampling vertices from those that are not
the direct neighbors of each seed; (4) Neighborhood Subgraph

Construction (NSC): sampling vertices from the multi-hop neigh-
borhood of a given vertex and constructing the sampled neighbor-
hood subgraph; (5) Feature Fetching: fetching the attributes of a
given vertex/edge to construct its feature vector.

With the above five operators, we can present the workflow of
the sampling phase as a DAG, as shown in Figure 9. The DAG on the
left of Figure 9 models supervised training, which consists of three
tasks: Seed Sampling, NSC, and Feature Fetching. For unsupervised
training, we also need to construct the neighborhood subgraphs of
each positively and negatively sampled vertices of the seed vertices,
as shown in the DAG on the right of Figure 9. The three branches
in the DAG for unsupervised training can be executed in parallel,
and the results are then collected in the "End" node to be fed into a
T-Worker for training.

To enable higher parallelism for both supervised and unsuper-
vised training, we create an instance of the two dominating oper-
ations (i.e., NSC and Feature Fetching, as they access multi-hop
neighbors and their attributes) for each sampled vertex and execute
these instances in parallel. In addition, as NSC (along with Feature
Fetching) is executed repeatedly for each hop of neighborhood ex-
pansion, we can break the multi-hop operations into many smaller
tasks of one-hop operations. As shown in Figure 9, each small task
of Feature Fetching can start immediately when the corresponding
small NSC task finishes. The more fine-grained task abstraction

Scaling Graph Neural Networks: Innovations in Distributed and Decentralized Training for Billion-Scale Graphs
Conference, Dec. 6th,

results in higher parallelism and better resource utilization (e.g., less
head-of-line blocking and stragglers, less fragmentation in resource
utilization).

To construct a DAG, users only need to specify the customized
sampling functions in Seed Sampler, Positive Sampler, Negative
Sampler, and also in NSC (e.g., how and how many neighbors in
each hop should be sampled). This design also leaves space for
researchers and engineers to explore new, high-quality sampling
strategies using the framework. Note that the logical DAG is created
only once and physical instances are generated and executed for
each mini-batch by the S-Workers.

4.2.2 Two-Level Scheduling. ByteGNNadopts a two-level schedul-
ing strategy to improve CPU utilization and reduce the end-to-end
GNN training time. Althoughmany scheduling strategies have been
proposed, they are mostly for job scheduling at the cluster level
[14–16, 25, 30, 64] or heterogeneous jobs/tasks in dataflow systems
[42], which are over-complicated and incur extra overheads for
scheduling the simple tasks in our system (note that for the train-
ing of a GNN model, we only need to schedule instances of the
same DAG instead of many different DAGs).

Coarse-grained scheduling. The S-Worker in each machine
executes multiple DAGs in parallel to increase throughput and
reduce the end-to-end GNN training time. The first question we
need to answer is how many DAGs should be launched in a ma-
chine. If we launch too many DAGs, which means more resource is
needed by sampling, then resource contention becomes a problem.
Resource contention does not just occur among the DAGs, but also
between sampling (i.e., DAG execution) and training (i.e., model
computation). The training time increases significantly when too
many DAGs are launched. On the other hand, if too few DAGs are
running, the resource is under-utilized. The training phase finishes
quickly and the next iteration’s training waits for the neighborhood
subgraphs to be produced by the DAGs.

To control resource utilization, we need to decide when to launch
a DAG. We can model this problem as a variation of the classical
Job-Shop Scheduling Problem (JSP) [4]. Each DAG can be regarded
as a job, where a set of operations (tasks) in each job need to be
processed in a specific order, and we have a set of jobs that are to
be processed on a given set of workers. Knowing the best timing
for DAG launching is equivalent to getting the earliest starting
time of each job in the solution to this special Job-Shop Scheduling
Problem. The Job-Shop Scheduling Problem has been well studied
and finding a schedule that minimizes the makespan or minimizes
the sum of the job completion time was

proved to be strongly NP-hard [6]. Some new research also shows
that the currently best approximation algorithms have worse than
logarithmic performance guarantee [26].

We propose a heuristic strategy to decide when to launch a DAG
based on three runtime measures: 𝐶𝑢𝑡𝑖𝑙 , 𝑄𝑠𝑖𝑧𝑒 , and 𝑇𝑔𝑎𝑝 .
𝐶𝑢𝑡𝑖𝑙 is the CPU utilization rate. If 𝐶𝑢𝑡𝑖𝑙 is low, we may launch a
new DAG; otherwise, we may wait until 𝐶𝑢𝑡𝑖𝑙 drops to a suitable
level. Note that high 𝐶𝑢𝑡𝑖𝑙 does not necessarily result in better
performance because there could bemuch contention and switching
among DAGs and between sampling and training.

In addition to CPU utilization, We also need to consider the mem-
ory footprint. The neighborhood subgraph constructed from each

Algorithm 1 The Coarse-Grained Scheduling Strategy

Variable: 𝐶𝑢𝑡𝑖𝑙 , 𝑄𝑠𝑖𝑧𝑒 ,𝑇𝑔𝑎𝑝
Given: 𝜎 = launch-score
while more_dag do

//more_dag=1 when more DAGs can be launched
balance = 𝑇𝑎𝑣𝑔_𝑠𝑎𝑚𝑝𝑙𝑒

𝑇𝑎𝑣𝑔_𝑡𝑟𝑎𝑖𝑛∗𝑄𝑠𝑖𝑧𝑒
;

𝑓 (𝐶𝑢𝑡𝑖𝑙) = (101 − e𝐶𝑢𝑡𝑖𝑙 /c), where c = 100
ln 101 ;

launch_score = 𝑇𝑔𝑎𝑝 ∗ 𝑓 (𝐶𝑢𝑡𝑖𝑙) ∗ 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ;
if launch_score ≥ 𝜎 then

more_dag = Launch_DAG();
// launches a new DAG; returns 0 when no more DAG to

launch;
launch
𝑇𝑙𝑎𝑠𝑡_𝑙𝑎𝑢𝑛𝑐ℎ = 𝑇𝑖𝑚𝑒 () // used to calculate 𝑇𝑔𝑎𝑝 ;

else

sleep(5ms);
end if

end while

DAG execution is kept in the DAG output queue in the S-Worker
and𝑄𝑠𝑖𝑧𝑒 is the size of this queue. The neighborhood subgraphs are
then consumed by the T-Worker for training. Thus, 𝑄𝑠𝑖𝑧𝑒 is essen-
tially an indicator of the speed of production (by the S-Worker) and
the speed of consumption (by the T-Worker) of the neighborhood
subgraphs. If 𝑄𝑠𝑖𝑧𝑒 is small, we may launch new DAGs; otherwise,
we pause the launching. If 𝑄𝑠𝑖𝑧𝑒 is large, it implies an over-supply
of neighborhood subgraphs and we may shift more computing re-
sources from sampling to accelerate training. Thus, 𝑄𝑠𝑖𝑧𝑒 not only
controls the memory usage but also balances the overall resource
usage between sampling and training.

We also found that the real-timemeasure for𝐶𝑢𝑡𝑖𝑙 is not sensitive
enough since newly launched DAGs may not change the CPU
utilization in a short time period and many DAGs may be launched
during the period. Later, when the tasks in these DAGs start to
run in parallel and use up the computing resources, the system
suffers from severe resource contention. To avoid such delayed
performance punishments, we introduce 𝑇𝑔𝑎𝑝 , which is the time
gap elapsed since the previous DAG launch. If𝑇𝑔𝑎𝑝 is too small, we
may want to wait for a bit longer before we launch a new DAG.

It would be undesirable if users need to set the thresholds for the
three measures, as it is hard to determine what values of𝐶𝑢𝑡𝑖𝑙 , 𝑄𝑠𝑖𝑧𝑒 ,
and𝑇𝑔𝑎𝑝 are good and how to relate them to each other. To this end,
we integrate them into one single score, launch-score, to decide
whether we should launch a new DAG. The idea is to maintain the
balance between the production speed and the consumption speed
of neighborhood subgraphs while keeping CPU utilization high.
Ideally, we hope that the output of each DAG will be consumed
immediately by the training phase, which means that 𝑄size should
be close to 0 all the time. However, in most cases a very low 𝑄𝑠𝑖𝑧𝑒

happens with a very low 𝐶𝑢𝑡𝑖𝑙 . Thus, we need to consider 𝑄𝑠𝑖𝑧𝑒

together with 𝐶𝑢𝑡𝑖𝑙 .
Algorithm 1 shows the algorithm for coarse-grained schedul-

ing. First, we want to maintain 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =
𝑇𝑎𝑣𝑔_𝑠𝑎𝑚𝑝𝑙𝑒

𝑇𝑎𝑣𝑔_𝑡𝑟𝑎𝑖𝑛∗𝑄𝑠𝑖𝑧𝑒
, where

𝑇𝑎𝑣𝑔_𝑠𝑎𝑚𝑝𝑙𝑒 and 𝑇𝑎𝑣𝑔_𝑡𝑟𝑎𝑖𝑛 are the average time for sampling and
training amini-batch. If𝑏𝑎𝑙𝑎𝑛𝑐𝑒 > 1, it means that it would take less

Conference, Dec. 6th,
Trovato et al.

Algorithm 2 Block Assignment
Input: List of Blocks B = 𝐵1, 𝐵2, . . . , 𝐵𝑛
Output: Graph partitions 𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑘
for 𝑒𝑎𝑐ℎ 𝑏𝑙𝑜𝑐𝑘 𝐵𝑖 𝑖𝑛 B do

for 𝑗 ← 1 𝑡𝑜 𝑘 do

CE[j] = |Cross_Edge(𝑃 𝑗 , 𝐵𝑖) |/|𝑃 𝑗 |
BD[j] = 1 − 𝛼 ∗ |𝑃 𝑗 (𝑡𝑟𝑎𝑖𝑛) |

𝐶 (𝑡𝑟𝑎𝑖𝑛) − 𝛽 ∗
|𝑃 𝑗 (𝑣𝑎𝑙) |
𝐶 (𝑣𝑎𝑙 − 𝛾 ∗

|𝑃 𝑗 (𝑡𝑒𝑠𝑡) |
𝐶 (𝑡𝑒𝑠𝑡)

end for

𝑥 = argmax1≤𝑡≤𝑘 {CE[t]*BS[t]}
𝑃𝑥 = 𝑃𝑥 ∪ 𝐵𝑖

end for

return 𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑘

time to consume the current𝑄𝑠𝑖𝑧𝑒 sampling results than to produce
a new sampling result, which is an indicator that a new DAG should
be launched. Next, we first attempt to use (100 −𝐶𝑢𝑡𝑖𝑙) to give a
higher weight to balance if 𝐶𝑢𝑡𝑖𝑙 is low and penalize balance (i.e.,
delay new DAG launching) when𝐶𝑢𝑡𝑖𝑙 is high. However, simply us-
ing ((100 −𝐶𝑢𝑡𝑖𝑙) does not work well as it is a linear scale. Instead,
we want to quickly increase CPU utilization when 𝐶𝑢𝑡𝑖𝑙 is low and
prevent contention promptly when𝐶𝑢𝑡𝑖𝑙 is already very high. Thus,
we use an exponential function, 𝑓 (𝐶𝑢𝑡𝑖𝑙) = 101 − 𝑒𝐶𝑢𝑡𝑖𝑙 /𝑐 , where
𝑐 = 100

ln 101 is a constant used to align the range of 𝑓 (𝐶𝑢𝑡𝑖𝑙) with
that of 𝐶𝑢𝑡𝑖𝑙 , i.e., 𝑓 (0) = 100, 𝑓 (100) = 0, and 0 ≤ 𝑓 (𝐶𝑢𝑡𝑖𝑙) ≤ 100.
Finally, we also put 𝑇𝑔𝑎𝑝 as a weight to reflect the delay in the
real-time measurement of 𝐶𝑢𝑡𝑖𝑙 , which leads to the definition of
𝑙𝑎𝑢𝑛𝑐ℎ − 𝑠𝑐𝑜𝑟𝑒 in Algorithm 1.

4.2.3 GNN-based Graph Partitioning. We monitor launch-score
in real-time and launch a new DAG when 𝑙𝑎𝑢𝑛𝑐ℎ − 𝑠𝑐𝑜𝑟𝑒 ≥ 𝜎 ,
where 𝜎 is a threshold set as follows. As shown in Algorithm 1
and explained above, 𝑙𝑎𝑢𝑛𝑐ℎ − 𝑠𝑐𝑜𝑟𝑒 connects 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , 𝑓 (𝐶𝑢𝑡𝑖𝑙)
and 𝑇𝑔𝑎𝑝 together to determine whether a new DAG job should
be launched. In practice, there exist reasonable values of balance,
𝑓 (𝐶𝑢𝑡𝑖𝑙) and 𝑇𝑔𝑎𝑝 for which a new DAG should be launched; Note
that there are always trade-offs between 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 and 𝑓 (𝐶𝑢𝑡𝑖𝑙), e.g.,
a higher 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 and a lower 𝑓 (𝐶𝑢𝑡𝑖𝑙), to achieve a high 𝑙𝑎𝑢𝑛𝑐ℎ −
𝑠𝑐𝑜𝑟𝑒 . Such tradeoffs in runtime allow the system to automatically
adjust the resource allocation to balance the sampling and training
progress.

Fine-grained scheduling. After new DAGs are launched, the
SWorker executes the tasks in the DAGs, in parallel with the tasks in
other DAGs. These tasks are put in a queue when their dependency
is cleared (i.e., their parent tasks in the DAG are completed) and are
handled by a pool of processing threads. If we execute the tasks in
a FIFO order, some tasks of newly launched DAGs could be in front
of the tasks in those almost-finished DAGs. For example, when
the 𝐷𝐴𝐺1 pushes the "END" node in the task queue and there are
already "NSC" tasks from 𝐷𝐴𝐺2 and 𝐷𝐴𝐺3 in the queue, the "NSC"
taskswill be executed first and the "END" taskwill be processed later
even although the "END" task is the last task in 𝐷𝐴𝐺1, completing
which will immediately return the sampled data to the T-Worker
for training. Meanwhile, one task may unlock a lot of downstream
tasks in the same DAG, and heavy tasks may block many light tasks.

Figure 10: Traditional partitioning vs. GNN partitioning

Thus, the average completion time of the DAG jobs and hence the
end-to-end GNN training time can be significantly increased.

We schedule tasks according to the following orders: (1) tasks in
a DAG with a smaller ID will be executed first; (2) tasks in the same
DAG will be executed in ascending order of their costs. We assign a
smaller ID to a DAG launched earlier to prioritize earlier DAGs to be
completed first. We calculate the cost of a task by the data it needs
to handle. For example, for sampling tasks in each hop of NSC, the
cost is equal to the total number of neighbors of the input vertices;
for Feature Fetching, the cost is the number of vertices/edges to be
fetched multiplied by the vertex/edge feature dimension. As tasks
may require data from remote machines, the S-Worker sends data-
fetching requests to the local Graph Store, which communicates
with remote Graph Stores to fetch the data. The remote requests
are also scheduled in a similar way and the network operations are
processed concurrently with the CPU operations.

Existing graph partitioning algorithms [40, 44, 53] are mainly
designed to reduce inter-partition edges and balance the workload.
They have been widely adopted in distributed graph processing sys-
tems [28, 62, 88] to reduce inter-machine communication. However,
sample-based GNN training focuses on the 𝐾-hop neighborhood
of only the vertices in the training, validation and test sets (instead
of all vertices). For example, in Figure 10, traditional partitioning
strategies cut the graph into two parts by the left dotted line since
it not only balances the vertices but also has the least cut edge. But
for a 2-layer GNN training, since vertex 𝐴 and vertex 𝐵 are the
labeled vertices, partitioning by the right dotted line is actually a
better choice. Even if this results in two cut edges, it would not
cause any data movement in the training process as only the 2-hop
neighbors of the labeled vertices are required.

In addition, the ratio of the sizes of the training, validation, and
test sets of different real-world graphs may differ significantly. For
example, in the Ogbn-Product dataset, the test set size is 11 times
the training set size and 56 times the validation set size; while in the
Ogbn-Papers dataset, the test set size is only 0.18 times the training
set size and 1.7 times the validation set size. Thus, the partitioning
algorithm should consider both the special data access pattern of
𝑘-layer GNN training and the balanced distribution of the training,
validation, and test sets.

It is known that the traditional graph partitioning problem is
proved to be APX-hard [3]. Thus, our graph partitioning problem is
also APX-hard as it can be reduced to the traditional graph partition-
ing problem. We propose a heuristic two-step graph partitioning

Scaling Graph Neural Networks: Innovations in Distributed and Decentralized Training for Billion-Scale Graphs
Conference, Dec. 6th,

strategy tailored for GNN sampling workloads. The main idea is
to group vertices into multi-hop neighborhood-based blocks and
then assign these blocks to partitions by balancing the numbers of
training, validation, and test vertices in the partitions.

Step (1) neighborhood block construction. To better pre-
serve the locality of graph data for GNN sampling workloads, we
construct a neighborhood block for each vertex in the training,
validation, and test sets. We start a 𝐾-hop breadth-first search from
each vertex 𝑣 (𝑣 is called the block center) and broadcast the unique
block ID of 𝑣 to its 𝐾-hop neighbors being visited. Every vertex
only keeps the first block ID it receives, except for block centers
which keep their own block ID. A block is then formed of all the
vertices that keep the same block ID. Figure 10 demonstrates how
to construct the blocks.

Step (2) block assignment. Just as existing graph partitioning
algorithms aim to balance the number of vertices in the partitions,
our objective is to also balance the number of training, validation,
and test vertices in the partitions so that the work of training,
validation, and test is also balanced among the machines. Algorithm
2 shows how to assign the blocks. For each block 𝐵𝑖 , it is assigned
to the partition with the highest score. 𝑃 𝑗 is the set of vertices that
have already been assigned to partition 𝑗 . 𝐶𝐸 [𝑗] is the number
of cross-edges between 𝐵𝑖 and 𝑃 𝑗 , which will be eliminated if 𝐵𝑖
is assigned to 𝑃 𝑗 . Thus, the larger 𝐶𝐸 [𝑗] is, the more likely 𝐵𝑖 is
assigned to 𝑃 𝑗 . As the size of different partitions may vary during
the assignment, we normalize𝐶𝐸 [𝑗] by

��𝑃 𝑗 ��. 𝐵𝑆 [𝑗] is the balancing
score that controls the number of training/validation/test vertices
in partition 𝑗 to be close to the average value. For example, the
expected number of training vertices in each partition is 𝐶 (train)
=| 𝑉 (train) | /𝑁 , where𝑉 (train) is the set of all training vertices
and 𝑁 is the total number of partitions. Let 𝑃 𝑗 (𝑡𝑟𝑎𝑖𝑛) be the set of
training vertices currently in partition 𝑗 . Thus, a smaller |𝑃 𝑗 (𝑡𝑟𝑎𝑖𝑛) |

𝐶 (𝑡𝑟𝑎𝑖𝑛)
means that more training vertices can be assigned to partition 𝑗 .
The above applies to the validation and test vertices as well. In
addition, we also use a weight to put more attention on a specific
type of vertices according to the scale of that type in order to obtain
a better overall performance. For example, if the number of training
vertices is significantly more, we may set a larger 𝛼 to favor the
training process, which can improve the end-to-end processing
time.

Before the block assignment, we sort the blocks in descending or-
der of max{|𝑉 (train) |, |𝑉 (val) |, |𝑉 (test) |}. Then, we start the block
assignment according to this order. In this way, larger blocks are
assigned to different partitions first, so that smaller blocks may
be used later to fill the partitions more easily when the partitions
begin to fill up.

4.3 Sancus

First, we overview Sancus step by step in Section 4.3.1. Algorithm 3
introduces the complete staleness-aware communication-avoiding
decentralized full-GNN training algorithm. To further elaborate
on avoiding communication, we propose historical embeddings
and skip-broadcast accordingly in Section 4.3.3 and Section 4.3.4.
To manage system staleness caused by historical embeddings, we
propose a set of novel metrics on bounded embedding staleness in
Section 4.3.5.

Figure 11: The overall architecture. The full graph and its

node features are distributed to each process on the work-

ers. Sancus has five major steps: (1) Data Loading: load the

split graph, embedding matrix blocks, and full model into

each GPU; (2) Staleness Check: check if the embeddings be-

come too stale for the root GPU; (3) Embedding Broadcast: if

the embeddings is too stale, broadcast the up-to-date results

among GPUs, otherwise other GPUs reuse the cached histor-

ical results from current root GPU; (4) Model Computation:

compute the model either based on the latest or cached stale

results; (5) Results Cache: update cache accordingly.

4.3.1 Overview. In this work, we propose Sancus, an adaptive
staleness-aware communication-avoiding decentralized GNN sys-
tem. Fundamentally, Sancus is simple yet effective which caches
and reuses the stale historical embeddings and skips broadcast
accordingly during the decentralized GNN training, based on a
general communication-avoiding matrix blocking algorithm for
parallel computing.

We provide the overview of Sancus in Figure 11. Primarily,
there are five steps: (1) data loading, (2) staleness bound checking,
(3) embedding broadcasting, (4) GNN model computing, and (5)
results caching. Here, we briefly clarify these steps: (1) to begin
with, the whole sparse adjacency matrix of the full graph and the
dense embedding matrix are split into matrix blocks, then loaded
to individual workers. Each worker keeps its own replica of the full
model; (2) on each GPU, before broadcasting the last computing
results, we check whether the staleness of historical embeddings is
within proposed bounds. If the staleness is within bounds, the em-
bedding broadcast is skipped and the cached historical embeddings
are reused for this iteration’s model computing; (3) otherwise, if
the staleness exceeds the limit, the latest results are broadcast to
all workers and updated in cache; (4) thus either latest embeddings
or cached historical embeddings are loaded to the GNN model to
compute; (5) Finally, updated embeddings are dispatched to next
iteration’s staleness check before the broadcast.

Conference, Dec. 6th,
Trovato et al.

Algorithm 3 The decentralized stale parallel GNN training algo-
rithm based on arbitrary general block row decomposition prepro-
cessing strategy with a foward pass procedure to compute Z in
Equation (2) and H in Equation (3), a backpropagation procedure
to compute the gradients 𝛿 in Equation (4) and ∇WL in Equation
(5), and the final weight update in Equation (6). The matrices 𝐴 and
H are distributed on a 𝑝 × 𝑝 process grid, where each process 𝑃 (𝑖)
receives 𝑁 /𝑝 consecutive block rows.

Input: G = (V, E); Sparse adjacency matrix Â; Dense feature
matrix H(0) ; Dense weight matrixW;
Output: Node embedding matrix H(𝐿) ;
Preprocessing: Block row partition
for all process 𝑃 (𝑖) in parallel do

procedure Forward Pass

for ℓ = 1, . . . , 𝐿 do

for 𝑗 = 1 to 𝑝 do

if F(j)==ACTIVE then

BROADCAST(H(ℓ−1) 𝑗)
CACHE(H(ℓ−1) 𝑗)
T(ℓ−1)
𝑖

← T(ℓ−1)
𝑖

+ Â𝑖 𝑗H
(ℓ−1)
𝑗

else

T(ℓ−1)
𝑖

← T(ℓ−1)
𝑖

+ Â𝑖 𝑗 H̃
(ℓ−1)
𝑗

end if

end for

Z(ℓ)
𝑖
← T(ℓ−1)

𝑖
W(ℓ−1)

H(ℓ)
𝑖
← 𝜎

(
Z(ℓ)
𝑖

)
F(i) ← STALE

(
H(ℓ)
𝑖

)
end for

end procedure

procedure Backward Pass

for ℓ = 𝐿 − 1, · · · , 0 do

𝛿
(ℓ)
𝑖
← GRADIENT_ CLIP

(
𝛿
(ℓ)
𝑖

)
BROADCAST

(
𝛿
(ℓ)
𝑖

)
and Update weights Wℓ by gra-

dients
end for

end procedure

end for

4.3.2 Staleness-Aware Communication-Avoiding Decentralized Train-

ing. First, we present the comprehensive staleness-aware commu-
nication avoiding decentralized full-graph GNN Training in Algo-
rithm 3 and elaborate on its details. There are three keys: (1)Worker
state flag F(i) is equipped to indicate the worker state. The state is
recorded as either ACTIVE or STALE to support the Skip-Broadcast
operation in Section 4.3.4; (2) cache is utilized to store the historical
embeddings from other workers that can be repeatedly utilized
for future iterations to avoid communication; (3) bounded embed-
ding staleness is tolerated to manage system staleness, where each
worker may use embeddings from different iterations.

For the preprocessing, Sancus supports any partitioning algo-
rithms that split the graph and feature matrices into matrix blocks,
such as the classical METIS [43] adopted inmost existing distributed

Figure 12: Communication-Avoiding Data-Parallel GNN

training, from a sequential matrix multiplication processing

perspective.

systems including DistDGL [83] and AliGraph [86], or efficient ran-
dom partitioning. As shown in Figure 12, Sancus treats GNN
processing purely as sequential matrix multiplication operations
to avoid intensive neighbor fetching during GNN aggregation. To
start with, the sparse adjacency matrix 𝐴 and the dense embedding
matrix H are distributed to each process 𝑃 (𝑖) where 𝑖 ∈ [1, 𝑝] on
workers. To further illustrate, recall that 𝑁 denotes the node num-
ber and 𝐹 denotes the feature embedding length, then the (𝑁 × 𝑁)
matrix Â is computed with 𝑝 row partitions and 𝑝 column partitions
while the (𝑁 × 𝐹) matrix H is computed with 𝑝 row partitions as
shown in Figure 12. The (𝐹 × 𝐹) dense weight matrix W, however,
is fully replicated throughout every process 𝑃 (𝑖). Additionally, we
define the intermediate results T(ℓ)

𝑖
of the matrix multiplication

𝐴𝐻 (ℓ) as T(ℓ)
𝑖

=
∑𝑝

𝑗=1 Â𝑖 𝑗H
(ℓ)
𝑗

for each process 𝑃 (𝑖).
For each distributed process 𝑃 (𝑖) in parallel, Sancus proceeds

the forward pass and backpropagation with the help of collective
operations such as ring-based pipelined Broadcast and AllReduce.
At the beginning, the staleness of the intermediate embedding re-
sults H(ℓ−1)

𝑗
of process 𝑗 is checked in Line 6 before broadcasting

to other workers. If the process state is ACTIVE, then H(ℓ−1)
𝑗

is
sent to all workers in Line 7 from the root rank and copied to all
ranks via a One-to-All Broadcast sequentially and cached accord-
ingly. Otherwise, if the process state is STALE, Sancus performs
Skip-Broadcast to swap out the process 𝑗 from the communication
topology but leave it in the broadcast graph so that the worker 𝑗 can
still receive updates. The process 𝑗 stops broadcasting out H(ℓ−1)

𝑗

for this round, so all other workers repeatedly use their cached
version of stale embeddings H̃(ℓ−1)

𝑗
. Thus, either the up-to-date

results from the last epoch are used in Line 10 or the cached stale
results from earlier epochs are automatically repeated for local
computation in Line 13. Next, the intermediate results T(ℓ−1)

𝑖
are

used to compute the embeddings H(ℓ)
𝑖

for each process 𝑃 (𝑖). After
computing the latest embeddingsH(ℓ)

𝑖
for process 𝑖 , Sancus checks

whether H(ℓ)
𝑖

is within the staleness bound so that the worker state
flag 𝐹 (i) remains STALE to keep Skip-Broadcast H(ℓ)

𝑖
or becomes

ACTIVE to send out H(ℓ)
𝑖

. Note that for staleness checking, San-
cus either inspect staleness defined in Definition 1, Definition 2,
or Definition 3, respectively.

In the backward pass, gradients 𝛿 𝑗 are broadcast similarly. To
reduce communication of gradient sending, gradient clipping is
performed locally, also as a regularizer of historical embeddings.

Scaling Graph Neural Networks: Innovations in Distributed and Decentralized Training for Billion-Scale Graphs
Conference, Dec. 6th,

Conventionally, gradients are clipped whenever the L2-norm ∥ · ∥2
exceeds a threshold 𝑡ℎ. With decentralized 𝑃 workers, denote the
local threshold as 𝑡ℎ𝑖 . Assume i.i.d. gradients on each worker with
variance 𝜎2, then the sum of gradients on all workers has variance
𝑃𝜎2. Hence, E ∥𝛿𝑖 ∥2 ≈ 𝜎 and E∥𝛿 ∥2 ≈ 𝑃

1
2 𝜎 . It follows that the local

gradient threshold is scaled by 𝑃
1
2 , that is, 𝑡ℎ𝑖 = 𝑃

1
2 𝑡ℎ. Finally to

update the model, an AllReduce operation is performed to combine
gradients from all workers and send them to all ranks.

Since the GNN processing is treated purely as sequential matrix
multiplication operations as shown in Figure 12, matrix blocks are
directly moved among decentralized workers. Thus, Sancus avoids
the irregular and complex request-send communication to fetch
neighbors in vertex-centric distributed GNNs. To further avoid
communication, we define historical embeddings in Section 4.3.3
so that Sancus can cache and reuse historical embeddings.

4.3.3 Historical Embeddings. With 𝑃 decentralized workers, the
embedding matrix H split by rows is denoted as H𝑖 where 𝑖 ∈ [1, 𝑝]
and is distributed to each 𝑃 (𝑖) process. To compute the embedding
H(ℓ) in a general GNN in Equation (1), we need to combine the
matrix block H𝑖 on each GPU. Inspired by historical embeddings
h̃(ℓ) [9, 22], we generalize the idea of historical embeddings as stale
intermediate embedding results computed by other workers in dis-
tributed GNNs. Thus, the embedding matrix H(ℓ) in Equation (2)
consists of two parts the latest embedding submatrices from active
workers which just broadcast the results and the historical embed-
ding submatrices from stale workers whose embedding variation is
small enough to be neglected. The historical embeddings are stored
in the cache on each GPU, only preserving the fresh ones. Let []
denotes the vertical concatenation of matrix blocks. The processor
state ACTIVE and STALE denote whether the processor 𝑃 (𝑖) is ac-
tive to broadcast the latest result of embedding submatrix H(ℓ)

𝑖
or

stale so the history H̃(ℓ)
𝑖

is used:

H(ℓ) = 𝜎

([
H(ℓ−1)
𝑖

]𝑃
𝑖=1

, Â;W(ℓ−1)
)

≈ 𝜎

([
H(ℓ−1)
𝑖 :𝑃 (𝑖)⇐ACTIVE | H̃

(ℓ−1)
𝑖 :𝑃 (𝑖)⇐STALE

]𝑃
𝑖=1

, Â;W(ℓ−1)
)
.

(7)

4.3.4 Skip-Broadcast. With the decentralized scheme, the question
is how we can adjust the communication operation such as one-
to-all broadcast to support historical embeddings with bounded
staleness. Sincemost implementations of such decentralized scheme
[70] are based on bulk synchronism, it is challenging to directly
enforce historical embeddings. Thus, we propose a communication
primitive that is efficient to implement and requires no central-
ized parameter servers. Particularly, a Skip-Broadcast scheme is
designed, allowing seamless reshaping of the communication topol-
ogy during training. To realize Skip-Broadcast, Sancus keeps the
state flag Flag(i) on each worker 𝑖 to indicate the corresponding
worker status for the embeddings Hi computed on that worker,
where 𝑖 ∈ [1, 𝑝]. Specifically, Flag(i) == ACTIVE means worker
𝑖 needs to broadcast its latest version of embeddings Hi. During
the broadcast, the latest embeddings Hi should be sent to all other
workers and cached there respectively. If Flag(i) turns to STALE,
Sancus can Skip-Broadcast H𝑖 and let other workers utilize their
cached stale embeddings.

Figure 13: Skip-Broadcast Example, with STALE GPU worker

marked red.

Take Figure 13 as an example, GPU 2 is notified with Flag(2)
with STALE state so that other workers rely on their cached stale
version of the historical embeddings H2. Then the ring-based com-
munication topology is reshaped seamlessly to skip GPU 2 and
connect its neighbors directly. To receive updated embeddings and
gradients from other workers, it should be pointed out that GPU
2 is still preserved in the graph. Therefore, the Skip-Broadcast is
performed in replacement of the original broadcast operation when-
ever the portion of embeddings computed by the corresponding
worker is within the bounded staleness. By bypassing the STALE
worker to broadcast its stale embeddings, Sancus further reduces
the communication overhead. The stale flag Flag(i) is checked in ev-
ery iteration and updated if needed to help reshape the ring-based
communication topology.

4.3.5 Bounded Embedding Staleness. With skip-broadcast to sup-
port embedding staleness, workers can result with embeddings of
different iterations from others. To manage system staleness with
such mixed-version issues, Sancus supports bounded embedding
staleness. Though bounded gradient staleness is deeply investigated
[13, 41, 77] in traditional distributed ML for stochastic gradient de-
scent (SGD), its main purpose is to help SGD converge, mitigating
negative effects from stale gradients. However, we actively utilize
stale embeddings to avoid communication. By introducing a set of
novel bounded embedding staleness metrics 𝜖 , we can control the
errors caused by stale embeddings.

Bounded Staleness Definition Variants.We firstly provide
the definitions of three staleness of historical embeddings, including
one measured by the variation gap of embeddings. The first epoch-
fixed embedding staleness of one local update on each processor
𝑃 (𝑖) is formalized as follows:
Definition 1 (Epoch-Fixed Embedding Staleness). For all pro-
cessors in the decentralized GNNs, let 𝑒 and e denote the epoch number
of the intermediate stale embeddings and the current epoch respec-
tively, the maximum number 𝜖𝐸 of stale epochs that can be tolerated
is defined as the fixed-epoch embedding staleness: |𝑒 − 𝑒 | ≤ 𝜖𝐸 , where
the intermediate embeddings during model computation are only
broadcast after every 𝜖𝐸 epochs.

However, all workers can still be regarded as working in a fully
synchronous fashion. Thus, we propose two more flexible metrics
for the decentralized scheme, so workers may rely on stale em-
beddings of adaptive iterations from others. Thus, the system can
better manage its staleness where workers work at different speeds.
Definition 2 (Epoch-Adaptive Embedding Staleness). For each
processor 𝑃 (𝑖) in the decentralized GNNs, let the maximum epoch gap
𝜖𝐴 of embeddings between 𝑃 (𝑖) and all its in-coming neighbor proces-
sors be the epoch-adaptive embedding staleness. 𝑃 (𝑖) must broadcast

Conference, Dec. 6th,
Trovato et al.

its latest results to others after receiving stale embeddings from all its
in-coming neighbors at most 𝜖𝐴 epochs ago.
Definition 3 (Epoch-Adaptive Variation-Gap Embedding Stal-

eness). For each processor 𝑃 (𝑖) in the decentralized GNNs, let the
maximum variation gap 𝜖𝐻 in the values of the stale embeddings
that can be tolerated be defined as the epoch-adaptive variation-gap
embedding staleness:

H̃(ℓ)𝑖
− H(ℓ)

𝑖

 ≤ 𝜖𝐻 , where the intermediate
embeddings are adaptively broadcast whenever the embedding varia-
tion gap exceeds 𝜖𝐻 regardless of the number of epochs skipped.

Since all the above metrics are defined locally on each worker,
we need no centralized or global monitor to break the decentralized
scheme. Particularly, one can easily adapt the general definitions
above to any specific distributed GNN systems as the metrics to
study how the stale results affect the distributed training.

Bounded Staleness Check Procedure. Now, we introduce the
procedure to check whether the cached historical embeddings ex-
ceed the staleness bound to manage system staleness caused by the
mixed-version problem. One crucial distinction from traditional
distributed ML is that the bounded staleness is enforced on the
intermediate embeddings H𝑖 instead of gradients, with a new per-
spective to avoid unnecessary communication in distributed GNNs
by taking the initiative to utilize stale embeddings. However, we
need to control the errors caused by using stale embeddings. To
allow bounded embedding staleness in a decentralized setting, it is
natural to design a light-weighted local state tracker on each worker
for efficient bounded embedding staleness check-in Sancus.

From the database community, we adapt the idea of version
control [55] but in a decentralized approach tomonitor the staleness
of the system. We use ver to denote the current training epoch
number. Then on each worker 𝑖 , upon the arrival of each latest
H𝑗 from the worker 𝑗 , we stamp H𝑗 with version Ver𝑖 (𝑗), i.e., the
epoch number where H𝑗 is computed, correspondingly. We keep
track of the version number for all the H𝑗 where 𝑗 ∈ [1, · · · , 𝑝].

Algorithm 4 Embedding Staleness Check based on Definition 1.
Input: Current epoch number Ver; Cached embedding version
Ver(𝑗)
procedure STALE()

if Ver−Ver(𝑗) > 𝜖𝐸 then

F(i)← ACTIVE
else

F(i)← STALE
end if

end procedure

Firstly, we introduce the procedure to check the epoch-fixed
embedding staleness in Definition 1. The version (epoch number)
of latest broadcast H(ℓ−1)

𝑗
is stamped with Ver(𝑗). After a forward

and backward pass are finished, a new epoch is proceeded. The
algorithm to check the epoch-fixed embedding staleness is shown
in Algorithm 4. Notice that the subscript 𝑖 for Ver𝑖 (𝑗) is omitted
since this basic staleness bound is unified for all workers. An 𝜖𝐸 = 1
example in Figure 14(a) shows the embeddings skip-broadcast every
other epoch.

Algorithm 5 Embedding Staleness Check based on Definition 2
Input: Current epoch number Ver; Cached embedding version
Ver 𝑖 (𝑗)
procedure STALE()

for all process 𝑃 (𝑖) in parallel do

for 𝑗 = 1to𝑝 do

if Ver−Ver𝑖 (𝑗) > 𝜖𝐴 then

F(j)← ACTIVE
EndProcedure for 𝑃 (𝑗)

end if

end for

end for

end procedure

Secondly, for the epoch-adaptive embedding staleness in Defini-
tion 2, the latest broadcast H(ℓ−1)

𝑗
is stamped with Ver𝑖 (𝑗) for each

H(ℓ−1)
𝑗

on processor 𝑖 . Algorithm 5 depicts the staleness checking
procedure. If the embeddings H̃ℓ−1

𝑗
of any other worker 𝑗 cached

on worker 𝑖 is from 𝜖𝐴 epochs ago, the worker 𝑖 is running too fast
for the worker 𝑗 and H̃𝑗 is too stale, so F(j) is turned to ACTIVE to
send out H𝑗 soon. This ensures that the worker only broadcasts the
latest results proceeded in the new epoch when it receives updates
from other workers at most 𝜖𝐴 epochs ago. An example with 𝜖𝐴 = 1
is shown in Figure 14(b). In Epoch 9, the results H2_7 of worker
2 become too stale since 9 − 7 = 2 > 𝜖𝐴 = 1, worker 2 becomes
ACTIVE and broadcasts updated results to all others as shown in
Epoch 10. Then worker 1 becomes ACTIVE because others are using
H1_8 which is too stale. Similarly, worker 3 and 4 are designated as
ACTIVE in Epoch 11.

Algorithm 6 Embedding Staleness Check based on Definition 3

Input: Current Hℓ
𝑖
computed in 𝑃 (𝑖); Cached embeddings Hℓ

𝑖
procedure STALE()

if

Hℓ
𝑖
− H̃ℓ

𝑖

 > 𝜖𝐻 then

F(i)← ACTIVE
else

F(i)← STALE
end if

end procedure

Lastly, for the epoch-adaptive variation-gap embedding staleness
in Definition 3, the staleness check is purely based on the embed-
ding variation locally on each worker. The checking procedure
is elaborated in Algorithm 6. If the embedding variation of Hℓ

𝑖
is

within the bound, the latest results need no broadcasting, and other
workers can use the stale historical embedding H̃𝑒

𝑖
. Otherwise, the

embedding variation becomes too large, then the latest Hℓ
𝑖
needs

broadcasting and caching. It is noticed that no version tracker is
required here. As Figure 14(c) shows, since the staleness is only
based on the embedding variation gap, workers may become STALE
after an adaptive number of epochs.

Scaling Graph Neural Networks: Innovations in Distributed and Decentralized Training for Billion-Scale Graphs
Conference, Dec. 6th,

Figure 14: Example training based on each bounded embed-

ding staleness: worker 𝑖 is denoted by 𝑃 (𝑖) where 𝑖 ∈ [1, 4]
and𝐻𝑖−𝑒 denotes the results obtained from process 𝑖 in epoch

𝑒; ACTIVE worker is colored green while STALE worker is

colored red. For Algorithm 4 and 5 , the staleness bound

𝜖𝐸 = 𝜖𝐴 = 1. For Algorithm 6, a toy example is given.

Table 2: Dataset statistics from the Open Graph Bench-

mark [33].

Dataset # Nodes # Edges Node Features

ogbn-product 2,449,029 61,859,140 100
ogbn-papers100M 111,059,956 3,231,371,744 128

5 Experiments

5.1 DistDGL

We focused on the node classification task using GNNs throughout
the evaluation. The GNNs for other tasks such as link prediction
mostly differ in the objective function while sharing most of the
GNN architectures so we omit them in the experiments.

We benchmark the state-of-the-art GraphSAGE [31] model on
two Open Graph Benchmark (OGB) datasets [33] shown in Table
2. The GraphSAGE model has three layers of hidden size 256; the
sampling fan-outs of each layer are 15, 10 and 5. We use a cluster
of eight AWS EC2 m5n.24xlarge instances (96 VCPU, 384GB RAM
each) connected by a 100Gbps network.

In all experiments, we use DGL v0.5 and Pytorch 1.5. For Euler
experiments, we use Euler v2.0 and TensorFlow 1.12.

5.1.1 DistDGL vs. other distributed GNN frameworks. We compare
the training speed of DistDGL with Euler [1], one of the state-of-the-
art distributed GNN training frameworks, on four m5n.24xlarge
instances. Euler is designed for distributed mini-batch training,
but it adopts different parallelization strategy from DistDGL. It
parallelizes computation completely with multiprocessing and uses
one thread for both forward and backward computation as well as
sampling inside a trainer. To have a fair comparison between the
two frameworks, we run mini-batch training with the same global
batch size (the total size of the batches of all trainers in an iteration)
on both frameworks because we use synchronized SGD to train
models.

Figure 15: DistDGLvs Euler on ogbn-product graph on four

m5n.24xlarge instances.

DistDGLgets 2.2× speedup over Euler in all different batch sizes
(Figure 15(a)). To have a better understanding of DistDGL’s perfor-
mance advantage, we break down the runtime of each component
within an iteration shown in Figure 15(b). The main advantage
of DistDGL is data copy, in which DistDGL has more than 5×
speedup. This is expected because DistDGLuses METIS to generate
partitions with minimal edge cuts and trainers are co-located with
the partition data to reduce network communication. The speed of
data copy in DistDGL gets close to local memory copy while Euler
has to copy data through TCP/IP from the network. DistDGL also
has 2× speedup in sampling over Euler for the same reason: Dist-
DGL samples majority of vertices and edges from the local partition
to generate mini-batches. DistDGL relies on DGL and Pytorch to
perform sparse and dense tensor computation in a mini-batch and
uses Pytorch to synchronize gradients among trainers while Euler
relies on TensorFlow for both mini-batch computation and gradient
synchronization. DistDGL is slightly faster in mini-batch com-
putation and gradient synchronization. Unfortunately, we cannot
separate the batch computation and gradient synchronization in
Pytorch.

5.1.2 Ablation Study. We further study the effectiveness of the
main optimizations in DistDGL: 1) reducing network traffic by
METIS graph partitioning and co-locating data and computation,
2) balance the graph partitions with multi-constraint partitioning.
To evaluate their effectiveness, we compare DistDGL’s graph parti-
tioning algorithm with two alternatives: random graph partitioning
and default METIS partitioning without multi-constraints. We use
a cluster of four machines to run the experiments.

METIS partitioning with multi-constraints to balance the par-
titions achieves good performance on both datasets (Figure 16).
Default METIS partitioning performs well compared with random

Conference, Dec. 6th,
Trovato et al.

Figure 16: METIS vs Random Partition on four machines

partitioning (2.14× speedup) on the ogbn-product graph due to its
superior reduction of network communication; adding multiple
constraints to balance partitions gives additional 4% improvement
over default METIS partitioning. However, default METIS partition-
ing achieves much worse performance than random partitioning
on the ogbn-papers100M graph due to a high imbalance between
partitions created by METIS, even though METIS can effectively
reduce the number of edge cuts between partitions. Adding multi-
constraint optimizations to balance the partitions, we see the benefit
of reducing network communication. This suggests that achieving
load balancing is as important as reducing network communication
for improving performance.

5.2 ByteGNN

We evaluate the performance of ByteGNN by comparing with
Graph-Learn [86], Euler [1], and Distributed DGL (DistDGL) [83].
We also examine the effects of our system designs on the perfor-
mance.

Testbed.We ran our experiments on a cluster of machines where
each machine is equipped with 1T DDR4 main memory and two
2.40GHz Intel(R) Xeon(R) Platinum 8260 CPU (each CPU has 24
cores or 48 virtual cores by hyper-threading). All the machines are
connected by a 25 Gbps network and the OS is the Debian 9.13 with
Linux kernel 4.19.117.

Datasets. We used three datasets in the evaluation, as shown
in Table 3. ogbn-product and ogbn-papers100M are the largest two
graphs in the Open Graph Benchmark (OGB). ogbn-product is an
undirected and unweighted graph modeling an Amazon product
copurchasing network [34]. ogbn-papers100M is a directed citation
graph of 111million papers indexed byMAG [74]. The Social dataset
is a directed graph in industry from the social network scenario.

Models.We used three representative GNN models, Graph Con-
volutional Network (GCN) [47], GraphSAGE [31], and Graph Atten-
tion network(GAT) [73], in our evaluation. In order to demonstrate

Dataset

ogbn-product

(Product)

ogbn-papers100M

(Papers)

Social

Vertices 2, 449, 029 111, 059, 956 66, 351, 656
Edges 123, 718, 280 1, 615, 685, 872 1, 751, 915, 191
Feature 100 128 150
Classes 47 172 2
Training set 196,615 1, 207, 179 6, 631, 989
Validation set 39,323 125,265 19, 908, 461
Test set 2, 213, 091 214,338 39, 811, 206

Table 3: Graph datasets

the expressiveness and efficiency of ByteGNN, we also tested the
unsupervised variants of these three models. Although unsuper-
vised

5.2.1 Overall Performance. We evaluated the systems’ overall per-
formance by measuring throughput, the number of samples pro-
cessed per second, a standardmetric for training efficiency. Through-
put is calculated as the total seed vertices processed divided by the
end-to-end GNN training time. Higher throughput indicates shorter
training times. We set the hidden size to 32 for GCN and Graph-
SAGE, and for GAT, used 4 attention heads with a hidden size of 16.
Euler was excluded for unsupervised GAT training due to execution
failure.

Figure 17 shows ByteGNN outperforming GraphLearnwith 7.5 to
16.2x speedup in supervised training and up to 23x in unsupervised
training, attributed to the system designs of two-level scheduling.
The improvements are more pronounced in unsupervised training
due to ByteGNN’s parallel sampling capabilities. ByteGNN also
achieves up to 4.7x speedup over Euler by enabling concurrent
execution of multiple DAGs, which maximizes CPU utilization and
avoids convergence issues caused by TensorFlow’s computation
graphs in Euler.

Against DistDGL, ByteGNN achieves 2.1–3.5x speedup for dense
graphs like ogbn-product and outperforms on sparse graphs like
ogbn-papers100M and Social, with 1.5x and 1.3x speedups in su-
pervised GCN and GraphSAGE training. The improvements are
smaller for sparse graphs, especially with GAT, due to optimized
sparse tensor operations in DistDGL, which ByteGNN lacks. In
unsupervised training, ByteGNN shows greater gains, achieving
2.4x speedup for GraphSAGE and 1.6x for GAT, thanks to its higher
sampling parallelism. Figure 18 reports ByteGNN’s CPU utilization,
which is 3–6x higher than GraphLearn, Euler, and DistDGL. Lower
utilization in supervised GCN and GraphSAGE is due to efficient re-
source allocation between sampling and training phases and lighter
GCN workloads.

5.2.2 Scalability. Figure 19 shows the throughput scalability of
systems on the ogbn-papers100M dataset with machine counts
ranging from 4 to 64. ByteGNN outperforms all other systems
in scalability. Results for other datasets are omitted due to space
constraints but follow similar patterns, with ByteGNN performing
even better on the dense ogbn-product graph. A hidden size of 256
is used to test performance under different configurations.

Distributed GNN training typically has sub-linear scalability
due to synchronization overhead in the BSP model and high net-
work I/O. GraphLearn and Euler scale poorly, with low throughput
caused by the lack of an effective graph partitioning algorithm,

Scaling Graph Neural Networks: Innovations in Distributed and Decentralized Training for Billion-Scale Graphs
Conference, Dec. 6th,

Figure 17: The throughput of GraphLearn, Euler, DistDGL,

and ByteGNN for training different models on 4 machines.

leading to significant network communication overhead. Although
they use TensorFlow’s asynchronous gradient update to minimize
synchronization overhead, it risks accuracy loss. DistDGL, on the
other hand, suffers from synchronization delays during gradient
updates, as trainers must wait for mini-batch sampling outputs.
Prefetching helps but doesn’t scale well with more machines.

ByteGNN addresses these issues with pipelined sampling and
training, ensuring better resource utilization. Its GNN-specific graph
partitioning reduces network communication overhead as machine
numbers increase, enabling superior scalability compared to other
systems.

5.2.3 Model Accuracy. We also report the correctness of ByteGNN
by evaluating the test accuracy of the GraphSAGE model on the

Figure 18: The throughput of GraphLearn, Euler, DistDGL,

and ByteGNN for training different models on 4 machines.

Figure 19: The throughput of GraphLearn, Euler, DistDGL,

and ByteGNN for training different models on 4 machines.

ogbn-product dataset, comparing with GraphLearn and DistDGL.
Euler has similar accuracy as GraphLearn. In Figure 20, we report
the test accuracy of different systems at every epoch until the train-
ing converges. The result shows that the systems achieve similar or
the same accuracy eventually, but ByteGNN converges the fastest,
in both the single-machine setting (1M) and distributed 4-machine
setting (4M). We also note that as the mini-batch training can up-
date the model many times in one epoch, the accuracy increases
quickly in the first several epochs. The single-machine accuracy of
GraphLearn can also be seen as the baseline to demonstrate that our
code changes to GraphLearn do not affect the semantics of the GNN
models. And as ByteGNN uses BSP to ensure model convergence in
distributed training, it achieves approximately the same accuracy
as DistDGL but uses less time.

Conference, Dec. 6th,
Trovato et al.

Figure 20: The throughput of GraphLearn, Euler, DistDGL,

and ByteGNN for training different models on 4 machines.

5.3 Sancus

We evaluate Sancus on five commonly-used [2] large-scale bench-
mark datasets [34, 79], listed in Table 4. The task on Flickr and
Reddit is single-class node classification, while on Amazon, ogbn-
products, and ogbn-papers100M is multi-class classifications. Specif-
ically, Flickr models the relations between images uploaded with
common properties. Reddit dataset consists of posts and user com-
ments to predict the topical communities that the posts belong
to. On Amazon and ogbn-product datasets with node representing
product and edge representing products purchased by one customer,
we need to categorize the product nodes with multiple labels. Ogbn-
papers100M is a citation graph to predict subject areas of papers.
All datasets follow the "fixed-partition" splits [34, 79].

Dataset |V| |E | |𝐹 | # Class Byte size

Flickr 89,250 899,756 500 7 529 MB
Reddit 232,965 11, 606, 919 602 41 3.53 GB
Amazon 1, 598, 960 132, 169, 734 200 107(m) 2.34 GB

ogbn-products 2, 449, 029 61, 859, 140 100 47 1.38 GB
ogbn-papers100M 111, 059, 956 1, 615, 685, 872 200 172 56.2 GB

Table 4: Summary of the graph data statistics used in our

experiments to evaluate the proposed framework("m": multi-

class classification).

We implement Sancus using a PyTorch-based adaptation of
classical parallel algorithms for distributed GNN training. Unlike
existing methods, Sancus adaptively avoids communication by
skipping broadcasts of cached historical embeddings, leveraging
bounded embedding staleness. We implement 𝜖𝐸 (Definition 2) with
Algorithms 4 and 2 as SCS-E, which skips broadcasts and reuses
cached embeddings for 𝜖𝐸 epochs. Similarly, 𝜖𝐴 (Definition 3) and
𝜖𝐻 (Definition 4) are implemented as SCS-A and SCS-H using
Algorithms 5, and Algorithms 6, respectively, allowing adaptive
skip-broadcasting. We also implement SkipG, based on bounded
gradient staleness, to demonstrate the superiority of bounded em-
bedding staleness.

5.3.1 Sancus is effective. First, we demonstrate the communica-
tion reduction effectiveness of Sancus across benchmark datasets

Config Operation CAGNET SCS-A1 SCS-E SCS-H

(1) 8*1
p2p: no

compute 0.365 0.359 0.359 0.343
communicate 1 0.687 0.697 0.675

(2) 4*2
p2p: no

compute 0.093 0.093 0.092 0.090
communicate 1 0.717 0.714 0.698

(3) 4*1
p2p: yes

compute 0.437 0.431 0.431 0.425
communicate 1 0.703 0.708 0.692

Table 5: Summary of detailed time breakdown (second) mea-

sured in seconds in one epoch with SCS-A/E/H compared to

CAGNET, on Reddit dataset.

of increasing scale to show scalability. Figure 21 highlights results
with accuracy loss within 0.01. Compared to SOTA methods like
CAGNET and SkipG, our Sancus variants reduce communication
by 35% to 74% using bounded embedding staleness. To demonstrate
generality, we evaluate the least communication-reducing base-
lines, SCS-E1/A1/H1, focusing on system configurations. Figure
22 examines GPU configurations, number of GPUs, GNN layers,
and hidden feature sizes across ogbn-products, Flickr, Reddit, and
ogbn-papers100M. Training time breakdowns of computation and
communication are shown in Table 5.

Figure 22(a) shows that communication time varies with GPU
configurations, but Sancus consistently reduces communication
across all setups, including single-machine multi-GPU and multi-
server environments. Table 3 confirms this across configurations
(1)(2)(3). SCS-A1 achieves minimal overhead in all settings, includ-
ing multi-server setups. As Figure 22(b) shows, increasing GPUs
reduces total costs compared to CAGNET. With SCS-H, commu-
nication cost using 8 GPUs approaches CAGNET’s cost with 2
GPUs, alongside a 67% reduction in computation cost. Addition-
ally, avoided communication proportion increases with GPU count,
which centralized PS architectures [52] struggle to achieve. Fig-
ure 22(c) demonstrates effective communication reduction across
varying GNN depths. Figure 22(d) shows that with increasing hid-
den feature size, Sancus’s epoch-adaptive strategy results in much
slower communication cost growth compared to CAGNET. These
results confirm the robustness and generality of our framework
across diverse system configurations.

5.3.2 Sancus converges fast and reserves the GNN performance.

With repeated usage of historical embeddings to skip-broadcast
adaptively, Sancus avoids communication while preserving the
GNN accuracy. In Figure 23 and 24(b), all proposed variants con-
verge to a very close (⩽ 0.005), even the same, sometimes the
better accuracy results with communication avoiding, compared
to CAGNET. Besides, the convergence time to reach satisfying ac-
curacy is much faster. We also show that the traditional bounded
gradient method SkipG suffers far more accuracy loss (⩽ 0.02)
compared to our skip-broadcast historical embeddings. In general,
we draw the conclusion on the extremely close proximity of the
model performance between the proposed training framework and
the original GNN training.

5.3.3 Sancus is staleness-aware. We show the adaptivity in the
number of epochs that Sancus skips when using cached historical
embeddings to manage system staleness. As illustrated in Figure

Scaling Graph Neural Networks: Innovations in Distributed and Decentralized Training for Billion-Scale Graphs
Conference, Dec. 6th,

Figure 21: Communication-avoiding performance using all 8 GPUs on Flickr/Reddit/Amazon/ogbn-products datasets. In each

subplot, x-axis denotes the methods compared: CAGNET[72], SkipG[59], SCS-E1/E2/E3 with 𝜖𝐸 = {1, 2, 3}, SCS-A1/A2/A3 with

𝜖𝐴 = {1, 2, 3}, SCS-H1/H2/H3 with 𝜖𝐻 = {0.01, 0.02, 0.03}; y-axis denotes the time proportion during training, where blue bar

denotes model computation cost and orange bar denotes communication cost.

Figure 22: The performance with system architecture variants (GPU configurations/number of GPUs/GNN layer number/GNN

hidden feature size) compared to CAGNET on ogbn-products/Flickr/Reddit/ogbn-papers100M datasets, respectively. In each

subplot, y-axis denotes the time proportion during training, where blue bar denotes model computation cost and orange bar

denotes communication cost. For the x-axis, we denote the method/GPU configurations in Figure 22(a), method/number of

GPUs in Figure 22(b), method/layer number in Figure 22(c), and method/hidden feature size in Figure 22(d).

Figure 23: The accuracy results using all eight GPUs on Flickr/Reddict/Amazon datasets, respectively. In each subplot, 𝑥-axis

denotes the methods compared: CAGNET[72], SkipG [59], SCS-E1/E2 denotes 𝜖𝐸 = {1, 2}, SCS-A1/A2 𝜖𝐴 = {1, 2}, SCS −H1/H2𝜖𝐻 =

{0.01, 0.02}; y-xis denotes the time proportion.

24(a), we plot the corresponding epochs that actually perform broad-
casting in the training of the proposed framework. As the control
group, epoch-fixed SCS-E1 in Figure 24(a) broadcast the latest re-
sults in every 2 iterations. Thus its cached epochs - the orange
dots, increase regularly. As for epoch-adaptive schemes SCS-A and
SCS-H, we find the broadcasts exhibiting irregular patterns, by ob-
serving that the interspaces between dots are at varying distances,
especially for SCS-H. The explanation is that the staleness in epoch
number is adaptively controlled by the staleness tolerance 𝜖𝐻 , also
shown by the earlier example in Figure 14. In accordance with Fig-
ure 21, SCS-E1/A1/H1 cache the least epochs thus avoid the least
communication as Figure 21 shows. Compared to the epoch-fixed

SCS-E, epoch-adaptive methods provide higher accuracy results
(Figure 23). It shows that managing system staleness can lead to
better preservation of effectiveness. Notably, though SCS-E3 caches
similar epochs with similar communication avoiding in Figure 21,
it suffers from the most accuracy loss in Figure 23. Taking all above
into account, we conclude that the adaptive strategy with staleness-
awareness is more robust and advantageous in communication
avoiding with little and even no loss of accuracy, sometimes even
better accuracy.

Conference, Dec. 6th,
Trovato et al.

Figure 24: The scatter plots with x-axis denoting epochs per-

forming broadcast on Reddit, to show adaptive staleness-

awareness. SCS-E1/E3 denotes 𝜖𝐸 = {1, 2}; SCS-A1/A2/a3
denotes 𝜖𝐴 = {1, 2, 3}; SCS-H1/H2/H3 denotes 𝜖𝐻 =

{0.01, 0.02, 0.03}.

Dataset 2 GPUs 4 GPUs 8 GPUs
Flickr 170.2 MB 255.3 MB 297.9 MB
Reddit 0.5 GB 0.8 GB 0.9 GB
Amazon 1.2 GB 1.8 GB 2.1 GB

ogbn-products 0.9 GB 1.4 GB 1.6 GB
Table 6: Cache Memory Footprints with configuration(1).

Ogbn-paper100M is omitted from the table since it only runs

on 4 GPUs with 31GB cache size.

5.3.4 Sancus is memory-efficient. Due to the GPU memory con-
straints, the scalability of such distributed GNN training is in-
structed by the memory cost on GPUs. During Sancus training,
there are three parts of GPU memory footprints: local data (i.e., em-
beddings, local adjacency matrix, and full weight matrix), memory
for matrix operation, and cache of historical embeddings. Com-
pared to CAGNET, the only extra memory Sancus consumes is
the cache of historical embeddings. Thus, we show the cache mem-
ory footprints in Table 6. Generally, the cache memory cost is a
particularly small proportion for modern GPUs on most datasets.

6 Conclusion

The convergence of distributed and decentralized strategies has
transformed the scalability of GNN training on billion-scale graphs.
DistDGL’s owner-compute principle and partitioning optimiza-
tions reduce computational bottlenecks while preserving memory
efficiency. ByteGNN brings system-level innovations like mixed-
precision computation and GPU-centric hierarchical memory us-
age, tackling real-world industrial-scale workloads with remarkable
throughput improvements. Sancus demonstrates the viability of
decentralized training by embracing staleness-aware updates and
communication-avoiding techniques, balancing model accuracy
and communication overheads. These systems collectively redefine
the scalability limits of GNNs, paving theway for future innovations
in large-scale graph processing and enabling practical applications
across diverse domains, from social networks to biological systems.

References

[1] 2020. Euler Github. https://github.com/alibaba/euler.
[2] Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard

Alarcón. 2021. Computing Graph Neural Networks: A Survey from Algorithms

to Accelerators. ACM Comput. Surv. 54, 9, Article 191 (Oct. 2021), 38 pages.
https://doi.org/10.1145/3477141

[3] Konstantin Andreev and Harald Räcke. 2004. Balanced graph partitioning. In
Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms
and Architectures (Barcelona, Spain) (SPAA ’04). Association for Computing Ma-
chinery, New York, NY, USA, 120–124. https://doi.org/10.1145/1007912.1007931

[4] David Applegate and William Cook. 1991. A computational study of the job-shop
scheduling problem. ORSA Journal on computing 3, 2 (1991), 149–156.

[5] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. 2021.
DGCL: An efficient communication library for distributed GNN training. In
Proceedings of the Sixteenth European Conference on Computer Systems. 130–144.

[6] Bo Chen, Chris N Potts, and Gerhard J Woeginger. 1998. A review of machine
scheduling: Complexity, algorithms and approximability. Handbook of Combina-
torial Optimization: Volume1–3 (1998), 1493–1641.

[7] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In International Conference
on Learning Representations.

[8] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Con-
volutional Networks with Variance Reduction (Proceedings of Machine Learning
Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholmsmäs-
san, Stockholm Sweden, 942–950.

[9] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Con-
volutional Networks with Variance Reduction. In Proceedings of the 35th In-
ternational Conference on Machine Learning (Proceedings of Machine Learn-
ing Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 942–950.
https://proceedings.mlr.press/v80/chen18p.html

[10] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo Chen.
2019. Powerlyra: Differentiated graph computation and partitioning on skewed
graphs. ACM Transactions on Parallel Computing (TOPC) 5, 3 (2019), 1–39.

[11] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN. Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (Jul 2019).

[12] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
2014. Project Adam: Building an Efficient and Scalable Deep Learning Training
System. In 11th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 14). Broomfield, CO, 571–582.

[13] James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Gregory R Ganger, Garth
Gibson, Kimberly Keeton, and Eric Xing. 2013. Solving the straggler problem
with bounded staleness. In 14th Workshop on Hot Topics in Operating Systems
(HotOS XIV).

[14] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource central: Understanding and predicting
workloads for improved resource management in large cloud platforms. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles. 153–167.

[15] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware sched-
uling for heterogeneous datacenters. ACM SIGPLAN Notices 48, 4 (2013), 77–88.

[16] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-efficient
and qos-aware cluster management. ACM Sigplan Notices 49, 4 (2014), 127–144.

[17] Stijn Eyerman, Wim Heirman, Kristof Du Bois, Joshua B. Fryman, and Ibrahim
Hur. 2018. Many-Core Graph Workload Analysis. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage, and
Analysis (Dallas, Texas) (SC ’18). IEEE Press, Article 22, 11 pages.

[18] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, and Jiaxin Jiang. 2017. GRAPE:
Parallelizing sequential graph computations. In 43rd International Conference on
Very Large Data Bases. Very Large Data Base Endowment Inc., 1889–1892.

[19] Wenfei Fan, Wenyuan Yu, Jingbo Xu, Jingren Zhou, Xiaojian Luo, Qiang Yin, Ping
Lu, Yang Cao, and Ruiqi Xu. 2018. Parallelizing Sequential Graph Computations.
ACM Trans. Database Syst. 43, 4, Article 18 (Dec. 2018), 39 pages. https://doi.org/
10.1145/3282488

[20] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning
with PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

[21] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learningwith
PyTorch Geometric. arXiv:1903.02428 [cs.LG] https://arxiv.org/abs/1903.02428

[22] Matthias Fey, Jan E. Lenssen, Frank Weichert, and Jure Leskovec. 2021. GNNAu-
toScale: Scalable and Expressive Graph Neural Networks via Historical Embed-
dings. In Proceedings of the 38th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong
Zhang (Eds.). PMLR, 3294–3304. https://proceedings.mlr.press/v139/fey21a.html

[23] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed Deep Graph
Learning at Scale. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21). USENIX Association, 551–568. https://www.usenix.
org/conference/osdi21/presentation/gandhi

[24] Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. 2018. Inte-
grated Model, Batch, and Domain Parallelism in Training Neural Networks. In
Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architec-
tures (Vienna, Austria) (SPAA ’18). Association for Computing Machinery, New
York, NY, USA, 77–86. https://doi.org/10.1145/3210377.3210394

https://github.com/alibaba/euler
https://doi.org/10.1145/3477141
https://doi.org/10.1145/1007912.1007931
https://proceedings.mlr.press/v80/chen18p.html
https://doi.org/10.1145/3282488
https://doi.org/10.1145/3282488
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428
https://proceedings.mlr.press/v139/fey21a.html
https://www.usenix.org/conference/osdi21/presentation/gandhi
https://www.usenix.org/conference/osdi21/presentation/gandhi
https://doi.org/10.1145/3210377.3210394

Scaling Graph Neural Networks: Innovations in Distributed and Decentralized Training for Billion-Scale Graphs
Conference, Dec. 6th,

[25] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert NM Watson, and Steven
Hand. 2016. Firmament: Fast, centralized cluster scheduling at scale. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
99–115.

[26] Leslie Ann Goldberg, Mike Paterson, Aravind Srinivasan, and Elizabeth Sweedyk.
1997. Better approximation guarantees for job-shop scheduling. In Proceedings of
the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans,
Louisiana, USA) (SODA ’97). Society for Industrial and Applied Mathematics,
USA, 599–608.

[27] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12).

[28] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12). USENIX Association, Hollywood, CA, 17–30. https://www.usenix.
org/conference/osdi12/technical-sessions/presentation/gonzalez

[29] Google. [n. d.]. Freebase Data Dumps. https://developers.google.com/freebase/
data.

[30] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and
Aditya Akella. 2014. Multi-resource packing for cluster schedulers. ACM SIG-
COMM Computer Communication Review 44, 4 (2014), 455–466.

[31] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
1025–1035.

[32] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B
Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. 2013. More effective
distributed ml via a stale synchronous parallel parameter server. In Advances in
neural information processing systems. 1223–1231.

[33] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020).

[34] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. In Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.),
Vol. 33. Curran Associates, Inc., 22118–22133. https://proceedings.neurips.cc/
paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf

[35] Wen-bing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive
Sampling Towards Fast Graph Representation Learning. CoRR abs/1809.05343
(2018).

[36] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adap-
tive Sampling Towards Fast Graph Representation Learning. arXiv preprint
arXiv:1809.05343 (2018).

[37] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and
Raman Arora. 2019. Communication-efficient distributed SGD with Sketching.
arXiv preprint arXiv:1903.04488 (2019).

[38] Zhihao Jia, Sina Lin, MingyuGao,Matei Zaharia, and Alex Aiken. 2020. Improving
the Accuracy, Scalability, and Performance of Graph Neural Networks with Roc.
In Proceedings of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos,
and V. Sze (Eds.). Vol. 2. 187–198.

[39] Zhihao Jia, Sina Lin, MingyuGao,Matei Zaharia, and Alex Aiken. 2020. Improving
the accuracy, scalability, and performance of graph neural networks with roc.
Proceedings of Machine Learning and Systems 2 (2020), 187–198.

[40] Zhihao Jia, Sina Lin, MingyuGao,Matei Zaharia, and Alex Aiken. 2020. Improving
the Accuracy, Scalability, and Performance of GraphNeural Networkswith Roc. In
Proceedings of the Third Conference on Machine Learning and Systems, MLSys 2020,
Austin, TX, USA, March 2-4, 2020, Inderjit S. Dhillon, Dimitris S. Papailiopoulos,
and Vivienne Sze (Eds.). mlsys.org. https://proceedings.mlsys.org/paper_files/
paper/2020/hash/91fc23ceccb664ebb0cf4257e1ba9c51-Abstract.html

[41] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. 2017. Heterogeneity-aware
Distributed Parameter Servers. In Proceedings of the 2017 ACM International
Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD ’17). As-
sociation for Computing Machinery, New York, NY, USA, 463–478. https:
//doi.org/10.1145/3035918.3035933

[42] Tatiana Jin, Zhenkun Cai, Boyang Li, Chengguang Zheng, Guanxian Jiang, and
James Cheng. 2020. Improving resource utilization by timely fine-grained sched-
uling. In Proceedings of the Fifteenth European Conference on Computer Systems
(Heraklion, Greece) (EuroSys ’20). Association for Computing Machinery, New
York, NY, USA, Article 20, 16 pages. https://doi.org/10.1145/3342195.3387551

[43] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing
20, 1 (1998), 359–392.

[44] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1
(1998), 359–392.

[45] George Karypis and Vipin Kumar. 1998. Multilevel Algorithms for Multi-
Constraint Graph Partitioning. In Proceedings of the 1998 ACM/IEEE Conference
on Supercomputing (San Jose, CA). USA, 1–13.

[46] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[47] Thomas N. Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv preprint arXiv:1609.02907 (2016).

[48] Hao Li, Asim Kadav, Erik Kruus, and Cristian Ungureanu. 2015. Malt: distributed
data-parallelism for existing ml applications. In Proceedings of the tenth european
conference on computer systems. 1–16.

[49] Mu Li, David G. Andersen, JunWoo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling Dis-
tributed Machine Learning with the Parameter Server. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation (Broomfield,
CO) (OSDI’14). USENIX Association, USA, 583–598.

[50] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
distributed machine learning with the parameter server. In 11th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI} 14). 583–598.

[51] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. PyTorch
Distributed: Experiences on Accelerating Data Parallel Training. arXiv preprint
arXiv:2006.15704 (2020).

[52] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.
2017. Can decentralized algorithms outperform centralized algorithms? a case
study for decentralized parallel stochastic gradient descent. Advances in neural
information processing systems 30 (2017).

[53] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020. PaGraph:
Scaling GNN training on large graphs via computation-aware caching. In Pro-
ceedings of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA)
(SoCC ’20). Association for Computing Machinery, New York, NY, USA, 401–415.
https://doi.org/10.1145/3419111.3421281

[54] Husong Liu, Shengliang Lu, Xinyu Chen, and Bingsheng He. 2020. G3: when
<u>g</u>raph neural networks meet parallel <u>g</u>raph processing systems
on <u>G</u>PUs. Proc. VLDB Endow. 13, 12 (Aug. 2020), 2813–2816. https:
//doi.org/10.14778/3415478.3415482

[55] Frederick H Lochovsky and Won Kim. 1989. Object-Oriented Concepts, Databases
and Applications. ACM Press.

[56] Qinyi Luo, Jinkun Lin, Youwei Zhuo, and Xuehai Qian. 2019. Hop: Heterogeneity-
aware decentralized training. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. 893–907.

[57] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and
Yafei Dai. 2019. NeuGraph: Parallel Deep Neural Network Computation on Large
Graphs. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). Renton,
WA, 443–458.

[58] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-
Scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (Indianapolis, Indiana, USA) (SIGMOD ’10).
New York, NY, USA, 135–146.

[59] Xupeng Miao, Xiaonan Nie, Yingxia Shao, Zhi Yang, Jiawei Jiang, Lingxiao
Ma, and Bin Cui. 2021. Heterogeneity-Aware Distributed Machine Learn-
ing Training via Partial Reduce. In Proceedings of the 2021 International Con-
ference on Management of Data (Virtual Event, China) (SIGMOD ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, 2262–2270. https:
//doi.org/10.1145/3448016.3452773

[60] Seung Won Min, Kun Wu, Sitao Huang, Mert Hidayetoğlu, Jinjun Xiong, Eiman
Ebrahimi, Deming Chen, and Wen-mei Hwu. 2021. Large graph convolutional
network training with GPU-oriented data communication architecture. Proc.
VLDB Endow. 14, 11 (July 2021), 2087–2100. https://doi.org/10.14778/3476249.
3476264

[61] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. 2011. HOG-
WILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. arXiv
preprint arXiv:1106.5730 (2011).

[62] Anil Pacaci, Alice Zhou, Jimmy Lin, and M. Tamer Özsu. 2017. Do We Need
Specialized Graph Databases? Benchmarking Real-Time Social Networking Ap-
plications. In Proceedings of the Fifth International Workshop on Graph Data-
Management Experiences & Systems (Chicago, IL, USA) (GRADES’17). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 12, 7 pages.
https://doi.org/10.1145/3078447.3078459

[63] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan
Wu, and Chuanxiong Guo. 2019. A Generic Communication Scheduler for Dis-
tributed DNN Training Acceleration. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). New
York, NY, USA, 16–29.

[64] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Przemys-
law Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack, Piotr Witusowski,

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://developers.google.com/freebase/data
https://developers.google.com/freebase/data
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/hash/91fc23ceccb664ebb0cf4257e1ba9c51-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/91fc23ceccb664ebb0cf4257e1ba9c51-Abstract.html
https://doi.org/10.1145/3035918.3035933
https://doi.org/10.1145/3035918.3035933
https://doi.org/10.1145/3342195.3387551
https://doi.org/10.1145/3419111.3421281
https://doi.org/10.14778/3415478.3415482
https://doi.org/10.14778/3415478.3415482
https://doi.org/10.1145/3448016.3452773
https://doi.org/10.1145/3448016.3452773
https://doi.org/10.14778/3476249.3476264
https://doi.org/10.14778/3476249.3476264
https://doi.org/10.1145/3078447.3078459

Conference, Dec. 6th,
Trovato et al.

Steven Hand, and John Wilkes. 2020. Autopilot: workload autoscaling at Google.
In Proceedings of the Fifteenth European Conference on Computer Systems (Her-
aklion, Greece) (EuroSys ’20). Association for Computing Machinery, New York,
NY, USA, Article 16, 16 pages. https://doi.org/10.1145/3342195.3387524

[65] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-bit stochastic
gradient descent and its application to data-parallel distributed training of speech
dnns. In Fifteenth Annual Conference of the International Speech Communication
Association.

[66] Marco Serafini and Hui Guan. 2021. Scalable Graph Neural Network Training:
The Case for Sampling. SIGOPS Oper. Syst. Rev. 55, 1 (June 2021), 68–76. https:
//doi.org/10.1145/3469379.3469387

[67] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).

[68] Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. 2017. Accelerating dynamic
graph analytics on GPUs. Proc. VLDB Endow. 11, 1 (Sept. 2017), 107–120. https:
//doi.org/10.14778/3151113.3151122

[69] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing
Framework for Shared Memory. SIGPLAN Not. 48, 8 (Feb. 2013), 135–146.

[70] Alok Tripathy, Katherine Yelick, and Aydin Buluc. 2020. Reducing Commu-
nication in Graph Neural Network Training. arXiv preprint arXiv:2005.03300
(2020).

[71] Alok Tripathy, Katherine Yelick, and Aydın Buluç. 2020. Reducing communication
in graph neural network training. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (Atlanta, Georgia)
(SC ’20). IEEE Press, Article 70, 17 pages.

[72] Alok Tripathy, Katherine Yelick, and Aydın Buluç. 2020. Reducing Commu-
nication in Graph Neural Network Training. In SC20: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. 1–14.
https://doi.org/10.1109/SC41405.2020.00074

[73] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[74] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao
Dong, and Anshul Kanakia. 2020. Microsoft Academic Graph: When ex-
perts are not enough. Quantitative Science Studies 1, 1 (02 2020), 396–
413. https://doi.org/10.1162/qss_a_00021 arXiv:https://direct.mit.edu/qss/article-
pdf/1/1/396/1760880/qss_a_00021.pdf

[75] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

[76] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[77] Lintao Xian, Bingzhe Li, Jing Liu, Zhongwen Guo, and David HC Du. 2021. H-
ps: A heterogeneous-aware parameter server with distributed neural network
training. IEEE Access 9 (2021), 44049–44058.

[78] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. CoRR abs/1806.01973 (2018).

[79] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2019. Graphsaint: Graph sampling based inductive learning method.
arXiv preprint arXiv:1907.04931 (2019).

[80] Dalong Zhang, Xin Huang, Ziqi Liu, Zhiyang Hu, Xianzheng Song, Zhibang Ge,
Zhiqiang Zhang, Lin Wang, Jun Zhou, Yang Shuang, and Yuan Qi. 2020. AGL: a
Scalable System for Industrial-purpose Graph Machine Learning. arXiv preprint
arXiv:2003.02454 (2020).

[81] Wentao Zhang, Xupeng Miao, Yingxia Shao, Jiawei Jiang, Lei Chen, Olivier Ruas,
and Bin Cui. 2020. Reliable data distillation on graph convolutional network. In
Proceedings of the 2020 ACM SIGMOD international conference on management of
data. 1399–1414.

[82] Wentao Zhang, Zhi Yang, YexinWang, Yu Shen, Yang Li, LiangWang, and Bin Cui.
2021. Grain: Improving data efficiency of graph neural networks via diversified
influence maximization. arXiv preprint arXiv:2108.00219 (2021).

[83] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2021. DistDGL: Distributed Graph
Neural Network Training for Billion-Scale Graphs. arXiv:2010.05337 [cs.LG]
https://arxiv.org/abs/2010.05337

[84] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong,
Zheng Zhang, and George Karypis. 2020. DGL-KE: Training Knowledge Graph
Embeddings at Scale. arXiv preprint arXiv:2004.08532 (2020).

[85] Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan, and Viktor
Prasanna. 2021. Accelerating large scale real-time GNN inference using channel
pruning. Proc. VLDB Endow. 14, 9 (May 2021), 1597–1605. https://doi.org/10.
14778/3461535.3461547

[86] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li,
and Jingren Zhou. 2019. AliGraph: A Comprehensive Graph Neural Network

Platform. arXiv preprint arXiv:1902.08730 (2019).
[87] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:

A Computation-Centric Distributed Graph Processing System. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16).

[88] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A {Computation-Centric} distributed graph processing system. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). 301–316.

[89] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.
2019. Layer-Dependent Importance Sampling for Training Deep and Large Graph
Convolutional Networks. arXiv preprint arXiv:1911.07323 (2019).

https://doi.org/10.1145/3342195.3387524
https://doi.org/10.1145/3469379.3469387
https://doi.org/10.1145/3469379.3469387
https://doi.org/10.14778/3151113.3151122
https://doi.org/10.14778/3151113.3151122
https://doi.org/10.1109/SC41405.2020.00074
https://doi.org/10.1162/qss_a_00021
https://arxiv.org/abs/https://direct.mit.edu/qss/article-pdf/1/1/396/1760880/qss_a_00021.pdf
https://arxiv.org/abs/https://direct.mit.edu/qss/article-pdf/1/1/396/1760880/qss_a_00021.pdf
https://arxiv.org/abs/2010.05337
https://arxiv.org/abs/2010.05337
https://doi.org/10.14778/3461535.3461547
https://doi.org/10.14778/3461535.3461547

	Abstract
	1 Introduction
	2 Related Works
	2.1 Distributed Deep Neural Networks
	2.2 Distributed Graph Neural Networks

	3 Preliminary
	3.1 Graph Neural Networks
	3.2 Mini-batch training

	4 Propose Method
	4.1 DistDGL
	4.2 ByteGNN
	4.3 Sancus

	5 Experiments
	5.1 DistDGL
	5.2 ByteGNN
	5.3 Sancus

	6 Conclusion
	References

