

�

����������	�
��������������

Laboratory 1

in course “Logic synthesis”

2002-version

Written by Tomas Bengtsson and Shashi Kumar

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 2 -

�

�� �����	
����� �

���� �����	����������
 ���

���� ���������
 ��

�� � !��	���
 ���

�� ���������
������ �

���� "�
����!�
�����#���	���������$�$���� ����������������������������������%
2.1.1. Preparations __6
2.1.2. Two level optimization ___6
2.1.3. Information about BCD to 7-segment decoder _________________________6
2.1.4. Multi level optimization __6
2.1.5. Theory about multiplier___7

���� "�
����!�
�����#�
�&�����$�$���� ��������������������������������������'
2.2.1. Preparations __8
2.2.2. Lab task ___8
2.2.3. Theory about the Gray-code _______________________________________9

�� � "�
�� �����	�(�������#������	���
 �����������������������������������)
2.3.1. Preparations __9
2.3.2. Benchmark files___9
2.3.3. Two level optimization of combinatorial benchmarks ___________________9
2.3.4. Multi level optimization of combinatorial benchmarks __________________9
2.3.5. Optimization of sequential benchmarks _____________________________10

�� ��������������������������������������

 ��� *���+,-#��	���#�����	���������$�$���� ��������������������������������.
3.1.1. Example Full-adder ___10
3.1.2. Comments in “BLIF”-format______________________________________11
3.1.3. The command “write_blif” _______________________________________12

 ��� /����������$�0�
��������
����*���+,-#��	�� ����������������������������

 � � +�$�-#��	���*1�2,���
3.3.1. The command “write_pla”__15
3.3.2. pla-format for functions with don’t cares ____________________________15

 ��� "���*345,-#��	�� ���%
3.4.1. The command ”write_eqn” _______________________________________16

�� �������������������
������������ ��

���� *6����,-#��	��7���
�������#�*���+,����0�
���������+�8 ����������������9

 � !�!�"�����	� �#

���� /�:����
����� ���'

���� �������		��0
���'

�� � 1����

������		��0
 ��)

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 3 -

5.3.1. Two Level Optimization Commands _______________________________19
5.3.2. Multilevel Optimization Commands ________________________________21
5.3.3. FSM optimization commands _____________________________________27

���� ������
 ��� �
5.4.1. Using a script to simplify work ____________________________________32
5.4.2. A Script of SIS commands for Multi-Level Logic Optimization __________33

���� �������		��0
 ��

��%� ����
������������		��0
��� �

��9� 8�
��$$����
���		��0
��� %

�� $%%��	�& ��

Hint: There’s an English-Swedish dictionary on

http://www-lexikon.nada.kth.se/skolverket/swe-eng.html

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 4 -

�

����������������
Before a system is implemented in hardware, it is required to get the structure of the system in
terms of hardware components. Logic Synthesis generates the circuit in terms of gates and
flip-flops. Generally, Logic Synthesis has cost minimization (in terms of number of gates or
transistors) as its main objective. But sometimes, it is required to implement the circuit so that
it has minimum delay or fastest clock. Before generating the final implementation, optimizing
transformations are applied to the system representation so as to get an equivalent
representation that leads to implementation meeting the desired objectives. If the size of the
system is large then these techniques cannot be manually applied and computer tools are
required to do this job.

SIS is a tool from University of Berkeley, California, which incorporates a set of Logic
Optimization techniques. It has techniques for optimization and implementation of
bothCombinational Circuits (Boolean Functions) and Sequential Circuits (Finite State
Machines). SIS uses special formats for representation of Boolean functions, combinational
circuits and Finite State Machines (FSMs).

You will learn about the theory of techniques for Logic Synthesis in the lecture classes. The
purpose of laboratory exercises is to get hands-on experience in using the SIS tool for Logic
Synthesis.

����� �����	
�����������
To get experience with SIS tool, or CAD tools in general, we need to use a large number of
example circuits. Generating these circuits is a time consuming activity. Many CAD tool
designers and researchers have collected many such examples and designs and they have
made them available on the Internet for other people to use. Such design examples are
available at various levels of design and for various purposes. Such collections of design
examples are called benchmark circuits. A large variety of combinational and sequential
benchmark circuits are available for learning and experimenting with logic synthesis tools.
The benchmark circuits include adders and multipliers of various types; encoders and
decoders; controllers for various applications etc.

Benchmarks circuits are also used for comparing and evaluating the performance of various
CAD tools or CAD algorithms.

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 5 -

����� �����������
The objectives of the first laboratory are:

1. Learn formats for representation of combinational and sequential circuits.

a. Combinational Circuit: BLIF, PLA, EQUATION formats

b. Sequential Circuits: KISS

2. Learn SIS commands for combinational and sequential circuit optimization

3. Design and optimize a combinational circuit for a BCD to 7-segment display decoder
using SIS

a. Describe the circuit in PLA format

b. Optimize the circuit for two-level (PLA) implementation

4. Design and optimize a combinational circuit for 4 bit multiplier using SIS

a. Describe the circuit in BLIF format

c. Optimize the circuit for multi-level optimization

5. Design and optimize a sequential circuit

a. Describe the FSM using KISS format

b. Optimize using SIS commands

6. Practice the use of SIS tool to optimize three combinational benchmark circuits and
three sequential benchmark circuits.

7. Estimate the advantage obtained by the use of SIS optimization tool in different types
of designs.

����� ����	�����
A form is provided for this laboratory in which you should fill in your results. There is also a
document provided, describing how to login to the Unix system and how to make SIS
working.

There is a home page, which contains the lab manuals and some related documents. Its
address is “������������	�
����������
�
�����������������”. There you can find among
other things, a link to a document about SIS and one document about BLIF format. The lab
manuals are also available in Pingpong. There you can find the documents about SIS and
about BLIF format transformed to pdf format.

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 6 -

��������������������

����� �
�����������������	���
����
��������

������� �������������

In this task you should design a BCD to 7-segment display decoder. Before you come to the
lab you should have described three versions of it in PLA-format, see part “2.1.3 Information
about BCD to 7-segment decoder” in this manual. Don’t try to optimize it by hand when you
are writing the PLA-format, just write it in the way that feels most simple for you. Then in the
lab, the tool will help you to optimize.

You should also design a 4-bit unsigned multiplier and describe it in “BLIF”-format. It should
be a pure combinational multiplier without memory-elements. Before you come to the lab you
should have thought out how this multiplier should be built and also written this in “BLIF”-
format. A 4-bit multiplier has two 4-bit numbers as input. As output it has as many bits as
needed to be able to represent every possible product.

If you use hierarchical description, see section “3.2 Hierarchical descriptions in “BLIF”-
format”, it is possible to make a BLIF description of the multiplier containing less than 50
lines.

������� ��������������	�
������

Use “SIS” to optimize your two versions of the BCD to 7-segment decoder. Make two level
optimization and fill in the required data in the hand in form.

������� �����	����������� !"����#����	������������

A BCD to 7-segment decoder is a combinational circuit with four inputs and seven outputs.
Its purpose is to convert a BCD number to information to every segment telling if it should be
on or off. In some decoders if the inputs are between 1010 and 1111 the decoder outputs
values making the display showing the corresponding hexadecimal letters. When this is not
needed it is however better to let the outputs be don’t cares, to make the logic smaller. In this
lab you should make the outputs don’t cares for inputs 1010 and higher. Then you should
make three version of the decoder, one where the don’t cares are forced to “0”, one where the
don’t cares are forced to “1” and one where they are treated as don’t cares.

����$�� %��������������	�
������

First you should validate that your multiplier works, in other words check that the function is
correct. Use the “SIS”-command “simulate” which is described in part “5.7 Miscellaneous
Commands” in this document. (You don’t have to simulate your BCD to 7-segment decoder
in this way.)

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 7 -

Use “SIS” to optimize your 4-bit multiplier. Use a sequence of multi level optimization
operations so you get less than 167 literals. Read in your multiplier again and optimize it with
rugged script. Compare the result from your optimization with the result rugged script gives.
Write in the “hand-in” form what is required.

Next task is to convert the multiplier so it gets only two levels of logic. Use the command
“������������” to achieve this. Fill in the “hand-in” form how many literals you get.

����&�� �'���(������	���������

Here is an example of multiplying two binary numbers, which shows the principal of
multiplying. Assume that 1011 and 1101 should be multiplied. A simplifying observation is
that when two binary digits, which only can have value “zero” and “one”, are multiplied, it is
similar to the and-function.

1011*

1101

Write the calculation like this.

1101

1011*

1101

Take the least significant digit, the most right, in the number
written on the lower line and multiply it with the upper number.

1101

1101

0000

1101
1011*

1101

Continue and multiply the number on the upper line with every
digit on the lower line and write the products below and
adjusted to the left which means multiplied with 10, 100 and so
on.

11110001

1101

1101

0000

1101
1011*

1101

+

Add those numbers that you’ve got now with respect to their
position.

When designing the multiplier, don’t forget to think about where carries can come out from
adders and how they should be connected to get the multiplier work.

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 8 -

����� �
�����������������������
��������

������� �������������

In this task you should design a four bit sequential circuit for Gray-code to binary code
conversion. The Gray code is sent into the code converter bit serially as well as the binary
output is sent bit serially from the code converter. In both input and output the bits are starting
with most significant bit and ending with the least significant bit. There is no pause between
data words coming into the code converter. In other words one clock cycle after the least
significant bit is put into the code converter, the most significant bit of the subsequent word
enters the converter.

If this converter should work in reality it is important to force it to a specific state when it
starts up. Anyway in this lab we don’t bother about how to get there but just assuming that we
can get there in some way.

The properties of the Gray code is in a way such that the conversion described above can be
done without any delay from input to output in terms of clock cycles. That is only when bits
comes starting with most significant bit and ending with least significant bit.

Before the lab, you should design an FSM that makes a converter as described above. It
should not have any delay from input to output in terms of clock cycles. Observe that you
should not try to make the number of states in the state machine small. This work you should
let the SIS-tool do when you are at the lab. You should also have made a description of this
FSM in “KISS2”-format.

In the “hand-in” form you should show how the state diagram look like before optimization.

������� �������)�

Use “SIS” to minimize number of states in the FSM. Then let “SIS” assign the coding of the
states. Try both to assign for minimal number of flip-flops and for one-hot encoding. Try to
minimize the logic in the FSM, with multi-level optimization methods in both cases. Write
down required data in the “hand-in” form.

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 9 -

������� �'���(�������'��*��(������
Gray
code

Binary
code

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

The table above shows a conversion table between four bit Gray code and four bit binary
code. The Gray code is used in some devices where it is required that only one bit differs
between adjacent code words.

����� �
���������	�
�������������	
����

������� �������������

Read about benchmarks in part ���������������������
.

������� ���'	��)�������

In this task you should optimize some benchmarks with “SIS”. In directory
����������������������
�����
�
����������
 the benchmarks are stored. Make
appropriate directories in your home directory and copy the benchmarks to them.

The benchmarks are also possible to download from Internet at address:
http://www-cad.eecs.berkeley.edu/Software/software.html

Some of the benchmarks may not work so in this case just try another one.

������� ��������������	�
�����������	���������������'	��)��

You should select three of the benchmarks of combinational circuits described in pla-format
and do two-level optimization of them. Fill in the number of product terms before and after
minimization in the hand in form.

����$�� %��������������	�
�����������	���������������'	��)��

You should select three of the benchmarks of combinational circuits described in blif-format.
Try to use the same sequence of commands you used for optimizing the multiplier. Optimize
them also with help of rugged-script. Fill in the required information in the hand in form.

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 10 -

����&�� +���	�
�����������,�����������'	��)��

Select three of the sequential benchmarks. Use “SIS” to minimize number of states. Then let
“SIS” assign the coding of the states. Try both to assign for minimal number of flip-flops and
for one-hot encoding. Try to minimize the logic in the FSM in both cases. Write down
required data in the hand in form.

���-�������	����������	�����������������

����� !�"#$%&���	
��������	���
����
��������
The BLIF (Berkeley Logic Interchange Format) is a format for describing combinational
circuits as a network of nodes. Each node is a single output function and is described as a
truth table. The truth table has entries for only those input combinations for which the output
is “1”. A bar “-“ can be used as a “don’t-care” on an input.

������� ./�	����-����������

A full-adder has three inputs, let us call them “i1”, “i2” and “cin” where “cin” means carry-in.
It has two outputs “sum” and “cout”. The truth table for this is:

i1 i2 cin sum cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 11 -

In BLIF-format this can be described as shown below. The orders in which the signals are
written on the line starting with “.names” are the order the ones and zeros in the table are
interpreted.

.inputs i1 i2 cin
.outputs sum cout

.names i1 i2 cin sum
001 1
010 1
100 1
111 1

.names i1 i2 cin cout
110 1
101 1
011 1
111 1

.end

We can also use the don’t-care-character “-“ and then it can be written as follows, which are
equivalent with the code on the previous page.

...iiinnnpppuuutttsss iii111 iii222 ccciiinnn
...ooouuutttpppuuutttsss sssuuummm cccooouuuttt

...nnnaaammmeeesss iii111 iii222 ccciiinnn sssuuummm
000000111 111
000111000 111
111000000 111
111111111 111

.names i1 i2 cin cout
11- 1
1-1 1
-11 1

...eeennnddd

������� !�		��������0 ��-1����	���

Comments can be put in to a file in “BLIF”-format. A comment starts with “#” and last to the
end of line.

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 12 -

������� �'����		����0�����2����1�

The command “write_blif” writes the description of the circuit in “BLIF”-format. There is
one more line, “.model”, which only tells the name of the circuit and it will automatically be
the file-name if nothing else is specified.

sis> write_blif
.model fa.blif
.inputs i1 i2 cin
.outputs sum cout
.names i1 i2 cin sum
111 1
001 1
010 1
100 1
.names i1 i2 cin cout
111 1
011 1
101 1
110 1
.end

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 13 -

����� '���
�����
��(���������������!�"#$%&���	
��
When having larger systems it’s sometimes makes easy to be able to describe systems in a
hierarchical manner. To illustrate this a four-bit adder is used that is designed with four full-
adders. The code below shows how it can be described in “BLIF”-format.

.inputs a3 a2 a1 a0 b3 b2 b1 b0
.outputs s3 s2 s1 s0 cout

.subckt fa a=a0 b=b0 cin=zero sum=s0 cout=cout0
.subckt fa a=a1 b=b1 cin=cout0 sum=s1 cout=cout1
.subckt fa a=a2 b=b2 cin=cout1 sum=s2 cout=cout2
.subckt fa a=a3 b=b3 cin=cout2 sum=s3 cout=cout

.names zero

.end

.model fa

.inputs a b cin
.outputs sum cout

.names a b cin sum
001 1
010 1
100 1
111 1

.names a b cin cout
11- 1
1-1 1
-11 1

.end�

A description of a sub-cell starts with “.model” followed by a name on the sub-cell. It ends
with “.end”.

Above the first “.end” is the top level logic described. A sub cell is added as an instance with
help of the key word “.subckt”. After that keyword the name of the instance should be
written. Then a description follows that tells how the signals in the sub cell should be
connected to the environment of the sub cell. The signal name to the left of the “=”-sign is the
internal signal name in the sub cell and the signal name to the right of the “=”-sign is the
name of the signal in the environment of the sub cell.

Multi-level hierarchy is possible to use in “BLIF”-format.

The table below shows how to force a signal to “one” or “zero”.

.names s Assign constant value ”0” to the signal ”s”.

.names s
1

Assign constant value ”1” to the signal ”s”.

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 14 -

����� $���&���	
��!)"*%�
The “PLA”-format is quite similar to the “BLIF”-format. The example below is a description
of the full-adder described in section “3.1.1 Example Full-adder”.

.i 3
.o 2

.ilb i1 i2 cin
.ob sum cout

100 10
010 10
001 10
111 10
011 01
101 01
110 01
111 01

.e

 .i 3
.o 2

.ilb i1 i2 cin
.ob sum cout

100 10
010 10
001 10
-11 01
1-1 01
11- 01
111 11

.e

The first two rows “.i” and “.o” describes how many inputs and outputs the circuit has. The
two following rows, “.ilb” and “.ob”, defines the names of the inputs and outputs. The
definition of names is not needed.

The “ones” and “zeros” in the table are the description of the logical function. The digits to
the left are the inputs and the digits to the right are the outputs. A row in the table means that
for the specified input-combination the outputs marked with “1” in the output-column should
be “one”. The “zeros” in the output-column have another meaning. A “zero” there for an
output, in a row, means that this row does not affect the function of that output. This can be a
little misleading if you don’t know it. All combinations where an output has not been declared
to be “one”, the output becomes “zero”.

It’s also possible to use “-“ in the inputs to represent “don’t-cares”. If a combination of input
should set more than one output to “one”, it can be described in one row. The example to the
right in the squares above shows the same function, full-adder, as to the left, but described
using don’t cares.

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 15 -

������� �'����		����0�����2���1�

The command “write_pla” writes the description of the circuit in “PLA”-format. There is one
more line, “.p”, which only tells how many product-terms are there in the representation.

sis> write_pla
.i 3
.o 2
.ilb i1 i2 cin
.ob sum cout
.p 8
111 10
001 10
010 10
100 10
111 01
011 01
101 01
110 01
.e

������� �������	�������������������'����3��������

An incompletely specified function is a function that have don’t cares. This means that the
output value of the function does not matter for one or more combinations of input values. It
is possible to specify such functions in pla-format. To specify that the output is a don’t care
for a specific combination of input values, you can do in a similar way as specification is done
when the output is “1”. The difference is that instead of “1” in the right part of the table, you
should write “-” for the output that is don’t care for this combination of input values. The
symbol “-” can be replace by the digit “2”.

The example below shows a function and its corresponding pla-file.

.i 2

.o 1

.ilb x1 x2

.ob out
01 1
10 1
11 –
.e

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 16 -

��+�� ����!,-.%&���	
��
The “EQN”-format stands for equation-format. This is a way to describe a logical network
using Boolean equations. The example below shows how the full-adder can be described in
the “EQN”-format.

sum = i1*!i2*!cin + !i1*i2*!cin + !i1*!i2*cin + i1*i2*cin;
cout = i1*i2*!cin + i1*!i2*cin + !i1*i2*cin + i1*i2*cin;

Observe that every equation should be ended by “;”. The operators are:

! Inverse
* And
+ Or

It is also possible to write equation with intermediate nodes. In that case SIS computes which
nodes are outputs and inputs to the system.

sum = i1*!i2*!cin + !i1*i2*!cin + !i1*!i2*cin + node*cin;
cout = node*!cin + i1*!i2*cin + !i1*i2*cin + node*cin;
node = i1*i2;

��$���� �'����		����1�����2�,�1�

This command writes the system on equation form. There are two lines in the beginning
describing which nodes are inputs and which are outputs.

sis> write_eqn
INORDER = i1 i2 cin;
OUTORDER = sum cout;
node = i1*i2;
sum = i1*!i2*!cin + !i1*i2*!cin + !i1*!i2*cin + cin*node;
cout = i1*!i2*cin + !i1*i2*cin + !cin*node + cin*node;

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 17 -

$��-�������	���������,�������������

+���� !/#00�%&���	
�1�
�����
������!�"#$%����(��������
��$02�
The format “KISS2” is a sub format of “BLIF”. It is used to describe finite state-machines.
Because it is a sub format to “BLIF” you can get some useful information with help of the
command “write_blif”. It’s described in a way independent of the encoding of the states. The
example below helps to describe the format.

.start_kiss
.i 2
.o 2
.r s1
0- s1 s1 00
10 s1 s3 00
11 s1 s2 01
0- s2 s2 01
10 s2 s1 01
11 s2 s3 10
0- s3 s3 10
1- s3 s1 11
.end_kiss
.end

s1

s2 s3

0-/00

10/0011/01

10/01
1-/11

11/10

0-/01 0-/10

.i 2 (number of inputs)
.o 2 (number of outputs)
.r s1 (defines start-state, useful during simulation)

The rows after that describes:

���������		
�������
��
������
���������

So the second line in this section,

10 s1 s3 00

means that in state
� when the input is �! next state will be
" and the outputs !!.

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 18 -

&������!�		�����

3���� '�4��������0#0�
The “SIS” user-interface is a command prompt based software. This means that you have a
command prompt in which you have to write commands to make things happen. To exit
“SIS”, use the command “quit”.

The normal backspace and arrow key does not work in SIS. Backspace normally works if you
use it together with a shift key pressed. If this does not work “ctrl-h” can be use for backspace
and “ctrl-w” deletes the last written word.

There is no help included in the SIS describing each command, but you can get a list of
available commands with help of the command �
��.

If you have read a file into SIS, which have some errors in the format, SIS may get into a state
that makes it behave strange. In this case quit SIS and start it again. There could be other
similar strange behavior by other mistake commands.

3���� #������		
�(��
All commands starting with “read” (for example “read_kiss”) fall in this category. One of
these commands must be run to convey the input specification to the circuit. A file name
containing the input specification must be specified along with this type of commands. You
can learn more about various formats to specify a circuit from a document downloadable from
�������###����$����������������%����%�����.

��������	

Read the circuit, which is described in BLIF format. For example, if the circuit in blif format
is available in a file �����$�#, the command will be:

read_blif ckt.blif

There are similar commands to read the specification of the circuit in other formats.

��������

Read the specification given in Asynchronous State Transition Graph format.

��������

Read the specification given in Equation format.

���������

Read the specification given in KISS format.�

��������

Read the specification given in PLA format.�

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 19 -

3����)�����������		
�(��
These commands can be run only after input is conveyed to SIS through one of the input
commands. If input is in state machine type, which is in KISS2 or ASTG format, first a circuit
is to be generated and then optimization commands can be run. However, if input is already a
circuit specification, only optimization commands need to run. (For circuit generation,
commands like ‘state_minimize’ have to be used. For optimization, commands like
‘full_simplify’ are used).

&������ ����������+���	�
������!�		�����

��������

There is one “espresso” command that could be run from the UNIX prompt outside SIS.
There is also one that works inside SIS. Unfortunately they behave differently. The one inside
SIS divides multiple output functions into many single output functions and optimize them
separately. The “espresso” command in the UNIX-prompt can however optimize a multiple
output function so it takes advantage from common implicants between the outputs. In this lab
you should use “espresso” at the UNIX prompt outside SIS.

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 20 -

The espresso command is used for generating minimum cost circuit for “two level
implementation”. The command minimizes the number of product terms needed in “two level
optimization”. The output of “espresso” is an irredundant prime cover, often minimum in
cardinality.

For example, consider the following circuit in PLA format. It has six product terms.

bash-2.04$ cat example.pla
.i 3
.o 2
.ilb a b c
.ob f1 f2
100 10
101 10
111 10
011 01
010 01
111 01
.e
bash-2.04$

After using the Espresso command, the minimized circuit will be

bash-2.04$ espresso example.pla
.i 3
.o 2
.ilb a b c
.ob f1 f2
.p 3
111 11
10- 10
01- 01
.e
bash-2.04$

Notice the number of product terms after “two level” optimization has been reduced from six
to three.

If you instead want the result in a file on the screen you can add a “>” symbol and then the
name of the file. The box below shows an example.

bash-2.04$ espresso example.pla > name_of_out_file

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 21 -

&������ %���������+���	�
������!�		�����

������

This command decomposes an internal vertex into more than one internal node. Many times it
leads to reduction in number of literals. But this command, in general, leads to increase in
delay of the network.

Example : Consider a circuit in equation format:

sis>write_eqn
INORDER = b e c d a;
OUTORDER = v;
v = !e*a + !c*d + b*d + e*!c + b*e;
sis>

After decomposition using decomp command:

sis> decomp
sis> write_eqn
INORDER = b e c d a;
OUTORDER = v;
v = [2]*[1] + !e*a;
[1] = d + e;
[2] = !c + b;
sis>

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 22 -

���������
�

It removes internal vertices from the network if its removal will not increase the number of
literals by more than k . The variable corresponding to the vertex is replaced by the
corresponding expression in all its occurrences. This command is reverse of 0���	�. This
command helps in reducing the delay of the network.

Let the starting network in Equation format be:

sis> write_eqn
INORDER = b e c d a;
OUTORDER = v;
v = [4]*[3] + !e*a;
[3] = d + e;
[4] = !c + b;
sis>

After applying �$�	������� command, the new network will be:

sis> write_eqn
INORDER = b e c d a;
OUTORDER = v;
v = d*[4] + e*[4] + !e*a;
[4] = !c + b;
sis>

Notice that node [3] has been eliminated.

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 23 -

������	�
���
	����������	�

These command are used to simplify the specification of each of the node in the network.

Initial network:

sis> write_eqn
INORDER = a b c;
OUTORDER = v w;
v = a*!b*c + !a*!c + a*b;
w = !a*!b + a;
sis>

After using
�	�$�#; command

sis> write_eqn
INORDER = a b c;
OUTORDER = v w;
v = b*w + !a*!c + a*c;
w = !b + a;
sis>

Sometimes #$$�
�	�$�#; may lead to better results than
�	�$�#;.

������

Implement the “inverse” of the node. Many times it simplifies the specification of network.

Consider the following function:

sis> write_eqn
INORDER = a c d e g b;
OUTORDER = f;
F = g*b + e*b + d*b + c*b + a*g + a*e + a*d + a*c;
sis>

By using �������# command, we get:

sis> write_eqn
INORDER = a c d e g b;
OUTORDER = f;
[0] = !c*!d*!e*!g + !a*!b;
f = ![0];
sis>

���������

Use complemented input variables or produce a complemented output.

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 24 -

	�

This command extracts common sub-expressions among the nodes and rewrites the nodes of
the network in terms of common sub-expressions. The following example illustrates the use
of #< command.

sis> read_eqn book_example.eqn
sis> write_eqn
INORDER = a b c d e;
OUTORDER = w x y z;
w = a*!e + !c*d + b*d + !a*d;
x = d*e + c*e + !b + !a;
y = b*d + a*d + b*c + a*c + e;
z = c + b + a;
sis> fx
sis> write_eqn
INORDER = a b c d e;
OUTORDER = w x y z;
w = a*!e + !c*d + b*d + !a*d;
x = e*[4] + !b + !a;
y = [4]*[5] + e;
z = [5] + c;
[4] = d + c;
[5] = b + a;
sis>

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 25 -

�����

The command���
��try to substitute expression corresponding to one node in expressions
corresponding to other nodes. The purpose is to reuse the expression of a node as sub
expression in some other nodes. This step is expected to reduce the number of literals in the
circuit.

For example, consider the following network in equation format.

sis> write_eqn
INORDER = a c d b;
OUTORDER = u v;
u = c*b + a*d + a*!c;
v = d + !c;
sis>

After using ��
� command, the network will be

sis> write_eqn
INORDER = a c d b;
OUTORDER = u v;
u = a*v + c*b;
v = d + !c;
sis>

Notice that node “u” has been rewritten in terms of “v”.

�����

Sweep command eliminates all single input vertices and those with a constant value.

Consider the following network:

sis> write_eqn
INORDER = a c d b;
OUTORDER = u v;
u = a*v + c*b;
v = [2];
[2] = d + !c;
sis>

After applying sweep command, the new network will be

sis> write_eqn
INORDER = a c d b;
OUTORDER = u v;
u = a*v + c*b;
v = d + !c;
sis>

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 26 -

������������

This command is used to control the delay of the network during multi-level logic
optimization. The following example illustrates the use of this command.

sis> read_blif reduce_depth_example.blif
sis> write_blif
.model rd.blif
.inputs a b c d e
.outputs x
.names e r x
11 1
.names a b p
11 1
.names c p q
11 1
.names d q r
11 1
.end
sis> print_level
 0: a e d c b
 1: p
 2: q
 3: r
 4: {x}

The network has depth of 4 levels. The depth can be reduced to 2-levels by using the
command “�������������&����”, where k gives the number of levels in the reduced network.

sis> reduce_depth -d 2
sis> print_level
 0: b e a d c
 1: q
 2: {x}
sis> write_blif
.model rd.blif
.inputs a b c d e
.outputs x
.names d e q x
111 1
.names a b c q
111 1
.end

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 27 -

����
������

Rugged-script is not a command but a script containing a sequence of multilevel optimization
commands. Read more about this in section “5.4.2 A Script of SIS commands for Multi-Level
Logic Optimization”.

&������ -�%�����	�
��������		�����

��������������

Minimizes the number of states in a given FSM. Consider the following FSM that has one
input , 3 outputs and 6 states.

sis> write_kiss
.i 1
.o 3
.p 12
.s 6
.r s0
0 s0 s0 000
1 s0 s1 000
0 s1 s1 001
1 s1 s2 001
0 s2 s2 010
1 s2 s3 010
0 s3 s3 011
1 s3 s4 011
0 s4 s4 100
1 s4 s5 100
0 s5 s4 100
1 s5 s0 100
sis>

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 28 -

After using
�����	���	�(� command, the FSM has only 5 states.

sis> state_minimize
Running stamina, written by June Rho, University of Colorado at Boulder
Number of states in original machine : 6
Number of states in minimized machine : 5
sis> write_kiss
.i 1
.o 3
.p 10
.s 5
.r S1
0 S0 S0 100
1 S0 S1 100
0 S1 S1 000
1 S1 S2 000
0 S2 S2 001
1 S2 S3 001
0 S3 S3 010
1 S3 S4 010
0 S4 S4 011
1 S4 S0 011
sis>

�������

Assign one-hot codes to states of the FSM. If there are n states in an FSM, states will be given
n bit codes, such that each of the states has exactly one 1 in their codes. For an FSM with four
states, the following codes will be used:

0001
0010
0100
1000

Number of latches required will be equal to the number of states. Remember that the
minimum number of latches required to implement an FSM with n states is log2n . One-hot
encoding sometimes leads to smaller combinational logic for FSMs, which have small number
of states.

The example below shows this command used on the previous example, which was used for

�����	���	�(� command.

sis> one_hot
sis> write_eqn
Warning: only combinational portion is being written.
INORDER = IN_0 LatchOut_v1 LatchOut_v2 LatchOut_v3 LatchOut_v4 LatchOut_v5;
OUTORDER = [76] [78] [80] [82] [84] OUT_0 OUT_1 OUT_2;
[65] = !IN_0*LatchOut_v2;
[66] = IN_0*LatchOut_v2;

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 29 -

[67] = !IN_0*LatchOut_v1;
[68] = IN_0*LatchOut_v1;
[69] = !IN_0*LatchOut_v4;
[70] = IN_0*LatchOut_v4;
[71] = !IN_0*LatchOut_v3;
[72] = IN_0*LatchOut_v3;
[73] = IN_0*LatchOut_v5;
[74] = !IN_0*LatchOut_v5;
[75] = ![67]*![73];
[76] = ![75];
[77] = ![65]*![68];
[78] = ![77];
[79] = ![66]*![71];
[80] = ![79];
[81] = ![69]*![72];
[82] = ![81];
[83] = ![70]*![74];
[84] = ![83];
[85] = ![67]*![68];
OUT_0 = ![85];
[87] = ![69]*![70]*![73]*![74];
OUT_1 = ![87];
[89] = ![71]*![72]*![73]*![74];
OUT_2 = ![89];

Don’t care:
INORDER = IN_0 LatchOut_v1 LatchOut_v2 LatchOut_v3 LatchOut_v4 LatchOut_v5;
OUTORDER = LatchIn_v6.0 LatchIn_v6.1 LatchIn_v6.2 LatchIn_v6.3 LatchIn_v6.4
OUT_0 OUT_1 OUT_2;
LatchIn_v6.0 = !LatchOut_v1*!LatchOut_v2*!LatchOut_v3*!LatchOut_v4*!
LatchOut_v5 + LatchOut_v4*LatchOut_v5 + LatchOut_v3*LatchOut_v5 +
LatchOut_v2*
LatchOut_v5 + LatchOut_v1*LatchOut_v5 + LatchOut_v3*LatchOut_v4 +
LatchOut_v2*
LatchOut_v4 + LatchOut_v1*LatchOut_v4 + LatchOut_v2*LatchOut_v3 +
LatchOut_v1*
LatchOut_v3 + LatchOut_v1*LatchOut_v2;
LatchIn_v6.1 = !LatchOut_v1*!LatchOut_v2*!LatchOut_v3*!LatchOut_v4*!
LatchOut_v5 + LatchOut_v4*LatchOut_v5 + LatchOut_v3*LatchOut_v5 +
LatchOut_v2*
LatchOut_v5 + LatchOut_v1*LatchOut_v5 + LatchOut_v3*LatchOut_v4 +
LatchOut_v2*
LatchOut_v4 + LatchOut_v1*LatchOut_v4 + LatchOut_v2*LatchOut_v3 +
LatchOut_v1*
LatchOut_v3 + LatchOut_v1*LatchOut_v2;
LatchIn_v6.2 = !LatchOut_v1*!LatchOut_v2*!LatchOut_v3*!LatchOut_v4*!
LatchOut_v5 + LatchOut_v4*LatchOut_v5 + LatchOut_v3*LatchOut_v5 +
LatchOut_v2*
LatchOut_v5 + LatchOut_v1*LatchOut_v5 + LatchOut_v3*LatchOut_v4 +
LatchOut_v2*
LatchOut_v4 + LatchOut_v1*LatchOut_v4 + LatchOut_v2*LatchOut_v3 +
LatchOut_v1*
LatchOut_v3 + LatchOut_v1*LatchOut_v2;
LatchIn_v6.3 = !LatchOut_v1*!LatchOut_v2*!LatchOut_v3*!LatchOut_v4*!
LatchOut_v5 + LatchOut_v4*LatchOut_v5 + LatchOut_v3*LatchOut_v5 +
LatchOut_v2*
LatchOut_v5 + LatchOut_v1*LatchOut_v5 + LatchOut_v3*LatchOut_v4 +
LatchOut_v2*

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 30 -

LatchOut_v4 + LatchOut_v1*LatchOut_v4 + LatchOut_v2*LatchOut_v3 +
LatchOut_v1*
LatchOut_v3 + LatchOut_v1*LatchOut_v2;
LatchIn_v6.4 = !LatchOut_v1*!LatchOut_v2*!LatchOut_v3*!LatchOut_v4*!
LatchOut_v5 + LatchOut_v4*LatchOut_v5 + LatchOut_v3*LatchOut_v5 +
LatchOut_v2*
LatchOut_v5 + LatchOut_v1*LatchOut_v5 + LatchOut_v3*LatchOut_v4 +
LatchOut_v2*
LatchOut_v4 + LatchOut_v1*LatchOut_v4 + LatchOut_v2*LatchOut_v3 +
LatchOut_v1*
LatchOut_v3 + LatchOut_v1*LatchOut_v2;
OUT_0 = !LatchOut_v1*!LatchOut_v2*!LatchOut_v3*!LatchOut_v4*!LatchOut_v5 +
LatchOut_v4*LatchOut_v5 + LatchOut_v3*LatchOut_v5 + LatchOut_v2*LatchOut_v5
+
LatchOut_v1*LatchOut_v5 + LatchOut_v3*LatchOut_v4 + LatchOut_v2*LatchOut_v4
+
LatchOut_v1*LatchOut_v4 + LatchOut_v2*LatchOut_v3 + LatchOut_v1*LatchOut_v3
+
LatchOut_v1*LatchOut_v2;
OUT_1 = !LatchOut_v1*!LatchOut_v2*!LatchOut_v3*!LatchOut_v4*!LatchOut_v5 +
LatchOut_v4*LatchOut_v5 + LatchOut_v3*LatchOut_v5 + LatchOut_v2*LatchOut_v5
+
LatchOut_v1*LatchOut_v5 + LatchOut_v3*LatchOut_v4 + LatchOut_v2*LatchOut_v4
+
LatchOut_v1*LatchOut_v4 + LatchOut_v2*LatchOut_v3 + LatchOut_v1*LatchOut_v3
+
LatchOut_v1*LatchOut_v2;
OUT_2 = !LatchOut_v1*!LatchOut_v2*!LatchOut_v3*!LatchOut_v4*!LatchOut_v5 +
LatchOut_v4*LatchOut_v5 + LatchOut_v3*LatchOut_v5 + LatchOut_v2*LatchOut_v5
+
LatchOut_v1*LatchOut_v5 + LatchOut_v3*LatchOut_v4 + LatchOut_v2*LatchOut_v4
+
LatchOut_v1*LatchOut_v4 + LatchOut_v2*LatchOut_v3 + LatchOut_v1*LatchOut_v3
+
LatchOut_v1*LatchOut_v2;

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 31 -

�����������

Assign codes to the FSM states so the combinational circuit for multi-level implementation
gets minimized.

We use the same minimized FSM, which was used for illustrating state_minimize command,
and apply
������

��� command. Notice the names of inputs and outputs have been changed
by the tool (NOVA). Also notice that this state assignment is using minimum number of bits(
3) for encoding states. Therefore, it requires three latches.

sis> state_assign
Running nova, written by Tiziano Villa, UC Berkeley
Warning: network ‘SISKAAa29998’, node "v0" does not fanout
sis> write_eqn
Warning: only combinational portion is being written.
INORDER = IN_0 LatchOut_v1 LatchOut_v2 LatchOut_v3;
OUTORDER = v4.0 v4.1 v4.2 OUT_0 OUT_1 OUT_2;
OUT_0 = LatchOut_v2*LatchOut_v3;
OUT_1 = !LatchOut_v2*LatchOut_v3;
OUT_2 = !IN_0*LatchOut_v2*!LatchOut_v3 + IN_0*LatchOut_v2*!LatchOut_v3 +
LatchOut_v1*!LatchOut_v2;
v4.0 = !IN_0*LatchOut_v2*!LatchOut_v3 + !IN_0*LatchOut_v2*LatchOut_v3 +
LatchOut_v1*!LatchOut_v2 + IN_0*!LatchOut_v2;
v4.1 = IN_0*!LatchOut_v2*!LatchOut_v3 + !IN_0*LatchOut_v2*!LatchOut_v3 +
!IN_0*
LatchOut_v2*LatchOut_v3 + IN_0*LatchOut_v1*!LatchOut_v2;
v4.2 = IN_0*LatchOut_v2*!LatchOut_v3 + !IN_0*LatchOut_v2*LatchOut_v3 + !
LatchOut_v2*LatchOut_v3;

Don’t care:
INORDER = IN_0 LatchOut_v1 LatchOut_v2 LatchOut_v3;
OUTORDER = LatchIn_[58] LatchIn_[59] LatchIn_[60] OUT_0 OUT_1 OUT_2;
LatchIn_[58] = LatchOut_v1*!LatchOut_v2*!LatchOut_v3 + !LatchOut_v1*
LatchOut_v2;
LatchIn_[59] = LatchOut_v1*!LatchOut_v2*!LatchOut_v3 + !LatchOut_v1*
LatchOut_v2;
LatchIn_[60] = LatchOut_v1*!LatchOut_v2*!LatchOut_v3 + !LatchOut_v1*
LatchOut_v2;
OUT_0 = LatchOut_v1*!LatchOut_v2*!LatchOut_v3 + !LatchOut_v1*LatchOut_v2;
OUT_1 = LatchOut_v1*!LatchOut_v2*!LatchOut_v3 + !LatchOut_v1*LatchOut_v2;
OUT_2 = LatchOut_v1*!LatchOut_v2*!LatchOut_v3 + !LatchOut_v1*LatchOut_v2;

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 32 -

������

Add more latches, or re-position the latches, to reduce the clock period required by the FSM.
This command is generally used to speed up the circuit by adding more latches.

Try using retime command after state assignment. Since we have not really decided the actual
components, we need to give option –n with retime command. Therefore, use the command
����	��=� for reducing the clock period.

sis> retime -n
Lower bound on the cycle time = 2.20
Retiming will minimize the cycle time
RETIME: Initial clk = 2.20 , Desired clk = 2.20
Circuit meets specification

3�+�� 0�������

&�$���� 4�������������������	����(����)�

If you want to run a sequence of command in SIS you can use a script. You can write a simple
text-file containing the commands you want to execute. For example if you want to run the
commands
#��� followed by %' and
#���, then you can write a text file with the following
contents.

sweep
fx
sweep

You can then run this sequence of commands by entering the following.

sis> source filename

More information about script is written in the next section.

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 33 -

&�$���� 5�����������������		���������%����������������+���	�
������

It is quite difficult to decide what sequence of SIS commands will lead to the required amount
of optimization. Experienced designers at Univ. of California at Berkeley have worked out a
sequence of SIS commands that seems to give good results for a large variety of circuits. This
sequence of commands is available in the file “���������������������
�����
�
�������”

The “������” sequence of commands can be executed by the following SIS command.

sis> source rugged

��������
�����

sweep; eliminate -1
simplify -m nocomp
eliminate -1
sweep;
eliminate 5
simplify -m nocomp
resub -a
fx
resub -a; sweep
eliminate -1; sweep
full_simplify -m nocomp

Notice that it is possible to give many SIS commands in the same line by separating them
using a semi-colon(;).

3�3�� ��������		
�(��
These commands can be used to write the results after processing. The results can be stored in
a file. These commands mostly start with the word “write”, e.g. “write_blif”.

���������	

Write the current network in BLIF format. You need to provide the file where the network is
to be written. If no file is provided then it is written on the screen.

For example,

sis> write_blif temp.blif

will write the current network into the file “temp.blif” in the current directory.

:������$�#��command will write the current network in BLIF format on the screen.

Similarly, other write-commands write the network in the required format.

���������

���������

����������

�����������

���������	

���������

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 34 -

3�5�� 0�
�������������		
�(��
These commands�can be run any time after first input command to see status of the
optimisation. Many of these commands starts with a word ‘print’, e.g. ‘print_stats’).

�����������

This command prints the current status of the network. This command is useful to check the
improvement achieved after using some optimization commands. The following example
illustrates the use of this command.

sis> read_eqn book_example.eqn
sis> print_stats
book_example.eqn pi= 5 po= 4 nodes= 4 latches= 0
lits(sop)= 26
sis> decomp
sis> print_stats
book_example.eqn pi= 5 po= 4 nodes= 8 latches= 0
lits(sop)= 23
sis>

�� and �� give the number of primary inputs and primary outputs; ��0�
 gives sum of the
number of internal nodes and output nodes in the network; $�����
 give the number of latches
used to implement the system; $��
>
��? gives the number of literals in the representation of
the network. Note that in the above example, number of nodes goes up but number literals are
reduced by the use of “decomp” command.

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 35 -

�����������

This command gives the level of all nodes in the network. The following example illustrates
the use of this command. The nodes at the line starting with “0:” show the level 0 nodes.
Those nodes are the inputs. The following lines shows the signals after the first, second etc.,
level of logic.

sis> read_eqn book_example.eqn
sis> write_eqn
INORDER = a b c d e;
OUTORDER = w x y z;
w = a*!e + !c*d + b*d + !a*d;
x = d*e + c*e + !b + !a;
y = b*d + a*d + b*c + a*c + e;
z = c + b + a;
sis> print_level
 0: e d c b a
 1: {y} {x} {z} {w}
sis> decomp
sis> write_eqn
INORDER = a b c d e;
OUTORDER = w x y z;
w = d*[4] + a*!e;
x = e*[5] + !b + !a;
y = [7]*[6] + e;
z = c + b + a;
[4] = !c + b + !a;
[5] = d + c;
[6] = d + c;
[7] = b + a;
sis> print_level
 0: b a e c d
 1: {z} [4] [5] [6] [7]
 2: {w} {x} {y}
sis>

Observe that initially the network had all the input nodes at level 0 and output nodes were at
level 1. After optimization using 0���	� command, the network now has two levels and
some internal nodes are introduced. Number of levels in a network decides its delay.

!����
�����
��������

Similarly, other print commands print useful information about the network.

�����

��������

������������

������	�����

�����������

���������

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 36 -

3�6�� 2������
�������		
�(��
Some commands do different jobs than the above like technology mapping. Most of the
technology mapping commands ends up with a word ‘map’, e.g. ‘cutmap’. We will learn
about these commands in our next exercise. Here we learn only one command called

�	$���.

��������

This command is used for simulating a network. We illustrate by simulating the following
network.

sis> write_eqn
INORDER = a b;
OUTORDER = v;
v = a*!b + !a*b;

Suppose we want to simulate this circuit (XOR gate) for input patterns 0 1 and 1 1, then the
following commands will do the job. Simulate command can be used to simulate FSMs also.
Therefore, for a combinational network it will not specify any next state.

sis> simulate 0 1

Network simulation:
Outputs: 1
Next state:
sis> simulate 1 1

Network simulation:
Outputs: 0
Next state:

 ����������	�
������
��������
 7RPDV�%HQJWVVRQ� 7RPDV�%HQJWVVRQ#LQJ�KM�VH�

� 6KDVKL�.XPDU� 6KDVKL�.XPDU#LQJ�KM�VH�

�

�

 - 37 -

6��5������/�
'�4��������0#0�4����
This appendix describes how to run SIS on a Unix-machine. Those who are unfamiliar to
Unix or the configuration of the Unix-system at School of Engineering, Jönköping University
are referred to the document, “How to handle the Unix system”.

There is two parts of SIS installed on the Unix system, the basic version from UC Berkeley
and extensions for technology mapping from UCLA. To make the commands from both the
basic SIS and from the extensions to SIS work the path in the Unix-system has to first point to
the basic SIS and then to the extension. SIS should then be started with the executable file
“sis” in the directory containing the extension to SIS.

SIS and the extension for technology mapping can be found in the following directories:

Basic SIS: /usr/sw/sis/logic_optimization/

Extension for technology mapping: /usr/sw/sis/technology_map/

