
CS 613200 Advanced Logic Synthesis
Homework 2 (2025, Spring)

Due Date: 2025/5/22
OBJECTIVE
	 Based on the knowledge given in the following, using SAT Attack to
evaluate different logic encryption algorithms.
	 Upload the report (max 4 pages) to eeclass by 2025-05-22.

INTRODUCTION
	 Boolean Satisfiability Problem (SAT)
	 The Boolean Satisfiability Problem (SAT) is a fundamental problem
in computer science and logic, where the goal is to determine if there
exists an assignment of truth values (true or false) to a set of Boolean
variables that makes a given Boolean formula true. The formula is
typically expressed in Conjunctive Normal Form (CNF), which is a
standardized way to represent logical expressions. In the following, we
will introduce some basic concepts of the SAT problem.
	 Conjunctive Normal Form (CNF): A CNF formula is a conjunction
(AND) of one or more clauses, where each clause is a disjunction (OR) of
literals. A literal is either a variable (e.g.,) or its negation (e.g.,). For
example, the formula is in CNF,
with three clauses.
	 SAT: A formula is satisfiable (SAT) if there exists at least one
assignment of values to the variables that makes the entire formula
evaluate to true. For instance, in the example above, setting

 satisfies the formula.
	 UNSAT: A formula is unsatisfiable (UNSAT) if no such assignment
exists, meaning the formula is false for all possible assignments.
	 SAT is a classic NP-complete problem, meaning it belongs to the NP
complexity class and is as difficult as any problem in NP (i.e., NP-hard).
This implies that an efficient algorithm for SAT would yield efficient
solutions for all NP problems. Despite its theoretical complexity, modern

x ¬x
(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)

x1 = true, x2 = false, x3 = true

1

https://eeclass.nthu.edu.tw/course/24626

SAT solvers use fast and effective algorithms to handle practical instances.
Common SAT solving techniques include:
	 DPLL (Davis-Putnam-Logemann-Loveland): A backtracking-based
algorithm that systematically explores variable assignments, using unit
propagation and pure literal elimination to prune the search space.
	 CDCL (Conflict-Driven Clause Learning): An advanced extension
of DPLL, widely used in modern solvers like MiniSat and Glucose. CDCL
learns new clauses from conflicts during the search, improving efficiency
by avoiding repeated exploration of infeasible assignments.
	 SAT solvers, which implement these algorithms, are computational
tools designed to efficiently determine whether a given CNF formula is
satisfiable (SAT) or unsatisfiable (UNSAT). If the formula is satisfiable,
the solver returns a satisfying assignment. In the context of logic locking,
SAT solvers are employed in SAT attacks to identify distinguishing input
patterns (DIPs) by formulating the task of finding differing outputs under
different keys as a SAT problem.
	
	 Logic Locking
	 Logic locking is a technique used to protect the intellectual property
of digital circuits by making the design of the circuit only usable with an
authorized key. It is a form of hardware security that makes the circuit
behave differently with incorrect key. The key is connected to a tamper-
proof memory and used to unlock the desired behavior of the circuit. 1

	 (a) Original Circuit	 	 	 (b) XOR-based Locked Circuit
Fig. 1 Example of logic locking

 Tamper proof memory: Unreadable, ensuring attackers cannot obtain the key by reading memory.1

2

https://en.wikipedia.org/wiki/DPLL_algorithm
https://en.wikipedia.org/wiki/Conflict-driven_clause_learning

	 Fig. 1 demonstrates how logic locking works by using XOR and
XNOR gates as key gates to obscure the signal. The output of the locked
circuit is only correct when the values of k1 and k2 are set to 01. By using
logic locking, the design of the circuit is protected and only those with the
correct key can access its intended functionality.
	 In addition to XOR/XNOR, there are several other kinds of key
gates:

• AND/OR [IOLTS’14]
• MUX [TCAD’12, TC’15]
• LUT [IDT’10, ASPDAC’15]

Fig. 2 Various key gate types

	 Early logic locking research primarily focused on preventing key
values from propagating to primary outputs (PO) by ATPG tools.
Consequently, the main goal of such research was to choose a suitable
encryption position to prevent key values from effectively propagating to
PO:

• Random [DATE’08]
• Interference analysis [DAC’12]
• Controllability [IOLTS’14]

	 Some studies also explore how to achieve an optimal 50% error rate
for functions generated by incorrect keys:

• Fault analysis (Hamming distance) [TC’15]
	 Nonetheless, the SAT Attack introduced by Pramod Subramanyan in
2015 rendered previous logic locking techniques ineffective.
	
	

3

	 Attack Model
	 Logic locking presumes that the attacker can access the netlist of
encrypted circuits and the correctly activated circuits (black box), known
as the oracle, purchased from the market.	

	 SAT Attack
	 In a SAT attack, the attacker aims to acquire the correct key.
	 SAT attack iteratively eliminates incorrect keys to obtain the correct
one. It transforms the following two steps into a SAT problem, provides it
to a SAT solver, and ultimately acquires the correct key:

1. Search for a distinguish input pattern (DIP) that can cause 2
different keys to generate different outputs.

2. Query oracle to obtain the correct output so that we can
eliminate incorrect keys.

	 Fig. 3 illustrates the actual execution process of a SAT Attack. The
circuit in Fig. 3 (a) is called a miter and is used to find DIPs. It consists of
two identical encrypted circuits connected with a comparator. 	 	 	
	 These encrypted circuits share the same input but have different key
inputs. When the circuit outputs 1, it indicates a DIP has been found,
where different keys produce different outputs under this input pattern.
	 For a SAT solver, finding a DIP is equivalent to finding a solution
that makes the miter (in CNF form) satisfiable.
	 Fig. 3 (b) demonstrates the process of searching for the oracle. The
DIP (DI0) found in Fig. 3 (a) is input into the oracle, yielding a correct
output (DO0) as shown in Fig.3 (c). This IO pair will be added as a
condition to the previous round's CNF to eliminate incorrect keys for the
next round.

4

Fig. 3 Process of SAT Attack

	 Fig. 4 presents an example of a SAT attack on an encrypted circuit.
The first column shows the circuit input, and the second column displays
the correct circuit output. Note that from the attacker's perspective, the
correct output can only be obtained by querying the oracle. The remaining
columns demonstrate the function performance of the encrypted circuit
under different keys. k5 is the correct key, as its function matches the
correct key entirely.
	 The attack goes through five iterations:

1. In the 1st iteration, the SAT solver finds DIP: 110. By querying
the oracle, it obtains the correct output: 1. IO Pair 110:1 is added
as a constraint to the CNF, and incorrect key k4 is eliminated.

2. In the 2nd iteration, the SAT solver finds DIP: 111. By querying
the oracle, it obtains the correct output: 1. IO Pair 111:1 is added
as a constraint to the CNF, and incorrect key k2 is eliminated.

3. In the 3rd iteration, the SAT solver finds DIP: 101. By querying
the oracle, it obtains the correct output: 1. IO Pair 101:1 is added
as a constraint to the CNF, and incorrect key k1 is eliminated.

4. In the 4th iteration, the SAT solver finds DIP: 010. By querying
the oracle, it obtains the correct output: 0. IO Pair 010:0 is added
as a constraint to the CNF, and incorrect keys k0, k3, k6, and k7
are eliminated.

5

5. In the 5th iteration, the SAT solver can no longer find any DIPs
(UNSAT), so the iteration ends. The remaining key k5 from the
4th iteration is the correct key.

Fig. 4 Example of SAT attack

PROJECT DESCRIPTION
In this project, you will use SAT attack tools to decrypt locked

circuits based on different algorithms. You need to deliver a report on your
experimental results:

Apply SAT attack to the locked benchmarks: rnd, dac12, sarlock/
dac12 and record the results
The following information should be included
• Information on CPU and Memory of the PC (or workstation)
• For each benchmark

• Name
• #PIs
• #Key Inputs
• #POs
• #Gates
• #SAT iterations
• CPU time

You can	set a time limit of 2 hours for unlocking a benchmark
You need to tabulate your results (no restriction on format)

6

You do not need to explain the results, but any opinion on them is
welcome

BENCHMARK INFORMATION
	 Benchmark is located in the benchmarks/ folder after unzipping the
satAttackTool.zip source code.
	 There are eight subdirectories:

1. iolts14 (Controllability, XOR)
2. toc13mux (Fault analysis, MUX)
3. toc13xor (Fault analysis, XOR)
4. dtc10lut (Random, LUT)
5. rnd (Random, XOR)
6. dac12 (Inteference analysis, XOR)
7. sarlock (Point Function, XOR)
8. original

	 The naming convention for these benchmarks is: _enc.bench. PCT
(Percentage) is a 2 digit number which can be one of 05, 10, 25 and 50 and
denotes the percentage area overhead of encryption for this benchmark
	 Note that the sarlock folder contains dac12, iolts14, and original
subfolders. Files in dac12 are encrypted using the dac12 method and
SAR-lock block, likewise for iolts14. When decrypting sarlock-related
circuits, use the files in the original subfolder inside the sarlock folder as
the oracle.

	 Benchmark Format
	 Netlist circuits in “bench” format
	 INPUT(PI_name)
	 OUTPUT(PO_name)
	 Gate_name = Gate_type(Fanin1, Fanin2)
	 …
	 Be aware that INPUT and OUTPUT positions can change and are not
always at the top of the file.

7

https://ieeexplore.ieee.org/document/6873671
https://ieeexplore.ieee.org/document/6616532
https://ieeexplore.ieee.org/document/6616532
https://ieeexplore.ieee.org/document/5406673
https://ieeexplore.ieee.org/document/4484823
https://ieeexplore.ieee.org/document/6241494
https://ieeexplore.ieee.org/document/7495588

TOOL INFORMATION
A. General Information
	 You can obtain information about tools on this website.
B. NTHU CAD Severs, using host: ic51, ic55~58
C. How to run:

1. Download the source code of SAT Attack Tool
2. unzip satAttackTool
3. Carefully read “README.md” first
4. Move to the bin/ there are 2 binary executable file

a. sld: Binaries of decryption tool
b. lcmp: Binaries of verification tool

5. To use SAT attack to decryption the locked circuit, using the
following command:
$./sld <Locked circuit> <Original circuit>
You can find out more about this tool with the -h command.

6. To verify the key, using the following command:
$./lcmp <Original circuit> <Locked circuit> key=<Key value>

HINTS
About Tools,Benchmarks&Reports:
1. Please use Chinese as the language for writing your report.
2. Evaluating the security of logic encryption algorithms

About Chatgpt:
Don't use NLP model to generate your report !!!
We will use AI Text Classifier to check.

If you have any questions, feel free to ask TA via email.
TA: 王睿杰 | 唐梧遷
Email: wrj651121@gmail.com | towne.cpp@gmail.com

8

https://git.uwaterloo.ca/jmshahen/LogicLocking-Empirical/-/tree/master/SAT/spramod-host15-logic-encryption-90a8ca47d847
https://ieeexplore.ieee.org/document/7140252
https://platform.openai.com/ai-text-classifier
mailto:wrj651121@gmail.com
mailto:towne.cpp@gmail.com

