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ABSTRACT

This paper presents a technique for preprocessing combinational
logic before technology mapping. The technique is based on the
representation of combinational logic using And-Inverter Graphs
(AIGs), a networks of two-input ANDs and inverters. The
optimization works by alternating DAG-aware AIG rewriting,
which reduces area by sharing common logic without increasing
delay, and algebraic AIG balancing, which minimizes delay
without increasing area. The new technology-independent flow is
implemented in a public-domain tool ABC. Experiments on large
industrial benchmarks show that the proposed methodology scales
to very large designs and is several orders of magnitude faster
than SIS and MVSIS while offering comparable or better quality
when measured by the quality of the network after mapping.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids — Automatic synthesis.

General Terms
Algorithms, Performance, Experimentation, Theory.

Keywords
Technology-independent logic synthesis, And-Inverter Graphs,
NPN equivalence, technology mapping.

1 INTRODUCTION

Optimization of multi-level logic networks using logic synthesis
[4][5] plays an important role in automated design flow. Logic
synthesis is often applied to the network derived by compiling
HDLs, such as VHDL or Verilog, before performing technology
mapping for standard cells or programmable devices. Other uses
of logic synthesis include hardware emulation, design complexity
estimation, software synthesis, and fast preprocessing of circuits
before equivalence checking [3]. Traditional combinational logic
synthesis, exemplified by SIS [18] and MVSIS [16], applies a
sequence of optimization steps, having the goal of removing
redundant nodes (sweep), finding better logic boundaries
(eliminate, resubstitute), discovering shared logic (fast_extract),
and simplifying the node representations (simplify, full_simplify).
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Traditional synthesis has several drawbacks:

e It often relies on trial-and-error and hand-tuning of the
optimization scripts.

e Improvements are measured using the reduction in the
number of literals in the factored forms of the node SOPs,
while technology mappers [7][10] often use cost functions
not correlated with the literal counts.

e It is complicated and hard to implement. An implementation
of a robust technology-independent synthesis flow in SIS and
MVSIS takes several person-months, in addition to in-depth
knowledge of logic synthesis.

e Even in its robust implementations, with resource limits
controlling runtime and memory, traditional synthesis is
often slow because it involves time-consuming steps, such as
computation of internal don’t-cares [11].

We propose a new technology-independent combinational logic
synthesis flow using fast local transformations of And-Inverter
Graphs (AIGs), composed of two-input ANDs and inverters. The
flow improves on the traditional logic synthesis by addressing the
above difficulties. Advantages are summarized as follows:

e While still being heuristic and suboptimal, the new algorithm

does not require as much hand-tuning and trial-and-error.

¢ Improvements in the complexity of the logic are measured by
AIG nodes and levels, in better correspondence with both
standard-cell [6] and FPGA mappers [14], which use AIGs or
similar data structures as subject graphs.

e It is much simpler. A robust implementation reported in this
paper took a few person-weeks to conceive and implement.

e It is orders of magnitude faster than the traditional flow, even
when compared with its most rugged and robust versions,
while the quality is comparable or better when measured by
the delay and area of the network after technology mapping.

AIG rewriting is local; however, rewriting is very fast and can
be applied to the network many times. For example, performing
ten rewriting passes over a typical network is still at least an order
of magnitude faster than running the resource-aware
implementation of the traditional flow in MVSIS. By applying
rewriting many times, the scope of changes is no longer local. The
result is that the cumulative effect of several rewriting passes is
often superior to traditional synthesis in terms of quality.

2 BACKGROUND

An And-Inverter Graph (AIG) is a directed acyclic graph
(DAG), in which a node has either 0 or 2 incoming edges. A node
with no incoming edges is a primary input (PI). A node with 2
incoming edges is a two-input AND gate. An edge is either
complemented or not. A complemented edge indicates the
inversion of the signal. Certain nodes are marked as primary
outputs (POs). Registers if present are considered as PI/PO pairs.
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The combinational logic of an arbitrary Boolean network can be
factored [4] and transformed into an AIG using DeMorgan’s rule.
Structural hashing is applied during AIG construction to ensure
that no two AND gates have identical pairs of incoming edges.

A cut C of node r is a set of nodes of the network, called leaves,
such that each path from PIs to n passes through at least one leaf.
A cut is K-feasible if the number of leaves does not exceed K. The
cut function is the function of node # in terms of the cut leaves.

Two Boolean functions, F and G, belong to the same NPN-class
(are NPN-equivalent) if F can be derived from G by negating (N)
and permuting (P) inputs and negating (N) the output.

Example. Functions F = ab + ¢ and G = ac + b are NPN-
equivalent because swapping b and ¢ make them identical.
Functions F' = ab + ¢ and G= ab are not NPN-equivalent because
no amount of permuting and complementing variables can make a
3-variable function equivalent to a 2-variable function.

3 AIG REWRITING

Rewriting is a fast greedy algorithm for minimizing the AIG
size by iteratively selecting AIG subgraphs rooted at a node and
replacing them with smaller pre-computed subgraphs, while
preserving the functionality of the root node. Our rewriting
algorithm is developed by extending the prior work [3] as follows:

o Using 4-feasible cuts instead of two-level subgraphs.

o Restricting rewriting to preserve the number of logic levels.

e Developing several variations of AIG rewriting to

o selectively collapse and refactor [4] larger subgraphs,
o balance AlGs using algebraic tree-height reduction [8].

e Experimental tune-up for logic synthesis applications.

For the purposes of 4-input AIG rewriting, all 4-feasible cuts of
the nodes are enumerated using the procedure in [17]. For each
cut, the Boolean function is computed and its NPN-class is
determined by hash-table lookup. Fast manipulation of 4-variable
functions is achieved by representing them using truth tables
stored as 16-bit bit-strings. Altogether there are 222 NPN
equivalence classes of 4-variable functions [15], of which only
about one hundred appear more than once as functions of 4-
feasible cuts in the numerous benchmarks tested, and only about
40 of these have been found experimentally to lead to
improvements in rewriting. The unifying characteristic of the
useful NPN-classes of functions is that they are decomposable
using simple disjoint-support decomposition [2].

All non-redundant AIG subgraphs of the representative
functions of the useful equivalence classes are pre-computed in
advance as a shared DAG containing approximately one thousand
nodes and hashed by the truth table. This DAG is compiled into
the program as an integer array, which noticeably reduces the
setup time of the rewriting package.

Figure 1 shows the AIG rewriting procedure. The nodes are
visited in a topological order. For each 4-input cut of a node, all
pre-computed subgraphs of its NPN class are considered. Logic
sharing between the new subgraphs and nodes already in the
network is determined. First, the old subgraph is dereferenced and
the number of nodes, whose reference counts became 0, is
returned. These nodes will be removed if the old subgraph is
replaced. Next, a new subgraph is added while counting the
number of new nodes and the nodes whose reference count went
from O to a positive value. These nodes will be added. The
difference of the counters is the gain in the number of nodes if the
replacement is done. The new node is de-referenced and the old
node is referenced to return the AIG to its original state.

After trying all available subgraphs for the given node, the one
that leads to the largest improvement at a node is used. If there is

no improvement and “zero-cost replacement” is enabled, a new
subgraph that does not increase the number of nodes is used.

Rewriting( network AIG, hash table PrecomputedStructures, bool UseZeroCost )

for each node N in the AIG in the topological order {
for each 4-input cut C of node N computed using cut enumeration {

F = Boolean function of N in terms of the leaves of C
PossibleStructures = HashTableLookup( PrecomputedStructures, F );
I find the best logic structure for rewriting
BestS = NULL; BestGain = -1;
for each structure S in PossibleStructures {

NodesSaved = DereferenceNode( AIG, N );

NodesAdded = ReferenceNode( AlG, S );

Gain = NodesSaved - NodesAdded;

Dereference( AIG, S ); Reference( AIG, N );

if ( Gain > 0 || (Gain = 0 && UseZeroCost) )

if ( BestS = NULL || BestGain < Gain )
BestS = S; BestGain = Gain;

)

if ( BestS == NULL ) continue;

1 use the best logic structure to update the netlist
NodesSaved = DereferenceNode( AIG, N );
NodesAdded = ReferenceNode( AlG, S );

assert( BestGain = NodesSaved — NodesAdded );

}
}

}

Figure 1. 4-input rewriting algorithm.

Example. Figure 2 shows three AIGs for F' = abc that are pre-
computed and stored. Figure 3 shows two instances of AIG
rewriting. The upper part of the figure shows the situation when
Subgraph 1 is detected and replaced by Subgraph 2. The lower
part of the figure shows two nodes AND(a, b) and AND(q, c) that
are already present in the network. In this case, Subgraph 2 can be
replaced by Subgraph 1. In both cases, one node is reduced.

Subgraph 1 Subgraph 2 Subgraph 3

a a C b ¢ a ¢

Figure 2. Different AIG structures for function F = abc.

Subgraph 1

Subgraph 2

¢ a c
Figure 3. Two cases of AIG rewriting of a node.

A variation of AIG rewriting called refactoring uses a heuristic
algorithm [12] to compute one large cut for each AIG node.
Refactoring tries to replace the current AIG structure of the cut by
a factored form of the cut function. The change is accepted if
there is an improvement or no increase in the number of nodes.
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4 EXPERIMENTAL RESULTS

AIG rewriting is implemented in the sequential logic synthesis
and verification system, ABC [1], as commands rewrite, refactor,
and balance. A rewriting script, resyn2, was defined as an alias in
the resource file abc.re [1]. This script performs 10 passes over
the network as follows: b; rw; rf; b; rw; rwz; b, rfz; rwz; b. In the
abbreviated notation, b (balance) stands for AIG balancing, rw/rf
(rewrite/refactor) stands for AIG rewriting/refactoring, and
rwz/rfz is the same but with zero-cost replacements allowed.

The resyn2 script optimizes area under delay constraints. It
starts by balancing to reduce delay upfront as much as possible.
Next, rewriting/refactoring and balancing are interleaved. During
this, rewriting/refactoring tries to reduce area while not increasing
delay. Balancing tries to reduce delay while not increasing area.
Zero-cost replacements are enabled later in the script to facilitate
creating new rewriting opportunities. This process in resyn2 is
stopped after three iterations. Generally, this heuristic approach
works well for a variety of benchmarks.

One difficulty in comparing the quality of AIG rewriting with
traditional logic synthesis is their use of different cost functions.
Previously, improvements were measured by counting the sum
total of literals in the factored forms while AIG rewriting looks at
the total number of AIG nodes and the maximum number of AIG
levels. Therefore, in Tables 2 and 3, we compare the impact of
AIG rewriting to that of logic synthesis in SIS and MVSIS, after
technology mapping. We used the technology mappers in ABC,
for FPGAs [14] and standard cells [6] using the library
mcnc.genlib from the SIS distribution. A load-independent timing
model was assumed. Our experiments with a load-independent
combinational mapper in an industrial setting confirm that gate
sizing and buffering can be done in later stages of the flow.

Experiments were performed on many public-domain
benchmarks, including industrial circuits from IWLS 2005 [9].
Section 4.1 analyzes the performance of the rewriting script.
Section 4.2 compares AIG rewriting with logic synthesis scripts in
SIS and MVSIS. Section 4.3 gives detailed statistics for IWLS
2005 benchmarks, showing the impact of AIG rewriting on tech-
mapping for FPGAs and standard cells.

In all cases, the netlists produced by SIS, MVSIS and ABC
were structurally hashed and algebraically balanced for minimum
delay in ABC before mapping. The resulting netlists were verified
using a SAT-based equivalence checker in ABC [13].

Due to page limitation only the largest 10 IWLS benchmarks
are shown in Tables 2 and 3, although the average ratios listed in
the last row of the tables refer to a set of 21 benchmarks used.

4.1 Performance and runtime analysis

The performance of rewriting is analyzed in Table 2. The first
column lists the benchmarks. The next five columns show the
number of primary inputs (PI), primary outputs (PO), latches
(Latch), AIG nodes (AND2), and logic levels of two-input AND
gates (Lev). The number of gates and logic levels is given for an
AIG after structural hashing and algebraic balancing.

The next eight columns show the AIG rewriting statistics after
two successive applications of rwz to the original benchmarks.
The columns show the number of 4-input cuts computed for all
internal nodes (“Cuts”), the number of subgraphs tried during
rewriting (“Subgrs”), the number of times a rewriting was
accepted (“Upds™), and the improvement in the number of AIG
nodes after each rewriting pass.

The data shows that the second pass of rewriting leads to
smaller but still non-negligible gains in the number of AIG nodes
(18% of the first pass). This confirms that the zero-cost
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replacements are useful for restructuring logic, allowing new
rewriting possibilities. Without zero-cost replacements, the second
pass improves by only 11% (data is not shown in the table). With
replacements the first pass reduces the number of nodes by 14%,
while without zero-cost replacements, by 12%.

The last three columns of the table show the runtime of logic
synthesis in MVSIS (script mvsis.rugged), ABC (resyn2), and, as
a sanity check, the runtime of standard-cell technology mapping
in ABC (command map —s). All runtimes are on a 1.6GHz laptop.

In summary, AIG rewriting as implemented in ABC (resyn2)
performs 10 passes over the network to improve area and delay of
the AIG. It is much faster than the resource-aware traditional logic
synthesis script in MVSIS.

4.2 Comparison using MCNC benchmarks

In Table 1, we compare the average ratios of improvements
achieved by technology mapping for standard cells and FPGAs
after running several optimization scripts. The complete set of
MCNC benchmarks [19] is used in this experiment. The results of
mapping unoptimized circuits are used as the base for comparison
(Line 1 of Table 1). The optimization in SIS (script.rugged) did
not complete on several benchmarks, which were excluded.

The last column shows the average ratios of runtime using AIG
rewriting (resyn2) as the base. On these relatively small
benchmarks, MVSIS is 7 times slower while SIS is slower by
several orders of magnitude, depending on the script used. In
terms of quality, rewriting tends to produce better area and worse
delay than the combination of script.rugged followed by speed up
in SIS. 1t is likely that a more powerful rewriting that uses larger
cuts will outperform SIS in delay while taking only a small
fraction of the SIS runtime.

Table 1. Summary of comparison on MCNC benchmarks.

Logic synthesis flow Stand. cells | FPGAs

used for optimization Area |Delay| Area |Delay] Runtime
No optimization 1.00 | 1.00 | 1.00 | 1.00 0.00
ABC (AIG rewriting) 0.87 1 0.96 ] 0.93 | 0.98 1.00
MVSIS (mvsis.rugged) 0911101093 |1.03 7.12
SIS (script.delay) 09410994098 [097] ~100.00
SIS (script.rugged+speed up) | 0.94 | 0.90 ] 0.98 | 0.94 | ~1000.00

4.3 Comparison using IWLS 2005 benchmarks
This section compares AIG rewriting in ABC with logic
synthesis in MVSIS on the large benchmarks from IWLS 2005. A
similar comparison proved impossible for ABC vs. SIS because
several key commands in SIS timed out on circuits from this set.

The following notation is used in Table 3. Columns “Original”,
“MVSIS”, and “ABC” show the results of mapping of the original
circuit, the circuit optimized by mvsis.rugged in MVSIS, and the
same circuit optimized by resyn2 in ABC, respectively. Two sets
of mapping results are reported, one for LUT-based FPGAs and
another for standard cells using mcnc.genlib.

In summary, the ratios of improvements demonstrate that on
average, AIG rewriting performs better than traditional synthesis.
In particular, the results of technology mapping for FPGAs
confirm that literal-based optimization in MVSIS does not reduce
area and delay while AIG rewriting reduces both.

It should be noted that the original IWLS benchmarks were
optimized by an industrial tool prior to distribution. They were
structurally hashed and balanced in ABC before running SIS and
MVSIS. When starting with unoptimized networks, the difference
between rewriting and traditional synthesis should be greater.
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5 CONCLUSIONS AND FUTURE WORK

This paper presents AIG rewriting, an innovative technique for
combinational logic synthesis. The technique was inspired by
research in the field of formal verification where a similar
algorithm was used for fast compression of redundant logic
circuits [3]. Our experiments show that AIG rewriting often leads
to quality comparable or better than those afforded by the logic
synthesis scripts in MVSIS and SIS while being one or two orders
of magnitude faster as well as applicable to larger examples.

The proposed technique plays the crucial role in a new logic
synthesis flow [12] which may replace the traditional logic
synthesis in the CAD tools. The extreme speed and good quality
of the proposed algorithm might make the new flow useful in a
variety of applications such as hardware emulation, estimation of
design complexity, and equivalence checking [13].

Future work will include extending the baseline AIG rewriting
to use larger cut sizes. The challenge is to search a much larger
space of possible replacements while keeping runtime low in
order to allow multiple optimization passes.
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Table 2. IWLS benchmark statistics, rewriting performance, and runtime comparison.

IWLS Network statistics First iteration (rwz) Second iteration (rwz) Runtime, s

benchmarks Pl | PO |Latch | AND2 (Lev ] Cuts |Subgrs | Upds [Gain ] Cuts Subgrs | Upds |[Gain | MVSIS | ABC | Map
ac97 ctrl 84| 48| 2199| 14261 | 11] 30583 | 114770 | 4105 | 3242 ] 21081 | 102688 | 2108 | 135 2046 | 1.13] 091
aes_core 259 | 129 530| 21125| 21] 64314 | 350417 | 10849 | 697 | 60386 | 331836 | 10205 | 141 | 17580 | 5.54| 1.57
des_perf 234 | 64| 8808 | 76716 17] 394629 |1701867 | 37530 | 4935 | 381979 | 1687585 | 30212 | 969 | 1010.70 | 33.23 | 8.87
ethernet 98| 115| 2235| 19654 27| 55413 | 326972 | 7401 | 4619 ] 38365 | 238450 | 4080 | 381 50.39 | 3.81]0.99
mem_ctrl 115] 152 1083 | 15191 | 28] 45670 | 297941 | 8257 | 5416 ] 28759 | 188528 | 3762 | 686 1720 | 195 0.72
pci_bridge32 162 | 207 | 3359 22742 22| 67838 | 331636 7865 | 3624 | 53148 | 279038 | 5191 | 155 5157 | 3.14] 146
systemcaes 260 | 129 670 12279 44 48620 | 164882 | 4539 | 1186 | 39962 | 145844 | 3993 | 273 28.17 | 1.87]0.87
usb_funct 128 ) 121| 1746 15670 | 23| 40237 | 195654 | 4679 | 1383 | 35017 | 171805 | 3730 | 325 66.59 | 2.29 | 0.96
vga lcd 89 109 17079 | 126687 | 19] 463129 |2887484 | 51088 |34208 | 292358 | 2077801 | 32477 | 145 ] 1998.27 | 32.55 | 8.51
wb_conmax 1130 [ 1416 770 | 47535| 18] 159658 | 978491 | 15460 | 1891 | 149295 | 993207 | 16907 | 862 | 2323.01 | 12.38 | 3.31
Ratio 1.00 1.00 1.00 | 1.00 0.82 088 0.79]0.18 24.53 | 1.00 | 0.40

Table 3. Effect of AIG rewriting on technology mapping for LUT

based FPGAs (k = 5) and standard cells (mcnc.genlib).

IWLS Results of mapping into LUTs (k= 5) Results of mapping into menc.genlib
benchmarks Original MVSIS ABC Original MVSIS ABC

Area | Delay | Area | Delay | Area | Delay Area Delay Area Delay Area Delay
ac97 ctrl 3391 4 3864 5 3532 3 25961 9.20 23494 | 13.80 19491 8.30
aes_core 6772 7 7214 8 7180 6 39635 | 17.70 38855 | 20.30 38555 | 17.30
des_perf 19177 5] 23406 51 19163 S| 162228 | 14.10 | 155708 | 17.50 | 145133 | 14.80
ethernet 4665 9 5170 9 4297 8 33949 | 22.40 29180 | 24.40 23142 | 21.30
mem_ctrl 4854 9 4551 10 3191 9 25521 | 23.30 23537 | 26.50 15865 | 21.10
pci_bridge32 6150 8 5888 9 5908 7 40322 | 18.60 35254 | 20.60 34860 | 17.70
systemcaes 2547 9 2770 13 2329 10 21715 | 28.70 16483 | 34.60 16533 | 28.10
usb_funct 4530 7 4475 8 4030 7 27617 | 17.80 24386 | 28.30 23637 | 19.70
vga_led 28458 8| 28866 8| 29562 71 240071 ] 15.70 | 169276 | 16.50 | 201141 | 15.50
wb_conmax 16073 71 17165 8| 13370 7 82353 | 15.90 87082 | 17.60 66124 | 15.90
Ratio 1.00 1.00 1.01 1.17 094 ] 0.97 1.00 1.00 088 | 1.22 0.83 0.97
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