
32.5

DAG-Aware AIG Rewriting
A Fresh Look at Combinational Logic Synthesis

Alan Mishchenko Satrajit Chatterjee Robert Brayton
Department of EECS Department of EECS Department of EECS

University of California, Berkeley University of California, Berkeley University of California, Berkeley
Berkeley, CA 94720 Berkeley, CA 94720 Berkeley, CA 94720

alanmi @ eecs.berkeley.edu satrajit eecs.berkeley.edu brayton@ eecs.berkeley.edu

ABSTRACT Traditional synthesis has several drawbacks:
This paper presents a technique for preprocessing combinational * It often relies on trial-and-error and hand-tuning of the
logic before technology mapping. The technique is based on the optimization scripts.
representation of combinational logic using And-Inverter Graphs * Improvements are measured using the reduction in the
(AIGs), a networks of two-input ANDs and inverters. The number of literals in the factored forms of the node SOPs,
optimization works by altemating DAG-aware AIG rewriting, while technology mappers [7][10] often use cost functions
which reduces area by sharing common logic without increasing not correlated with the literal counts.
delay, and algebraic AIG balancing, which minimizes delay * It is complicated and hard to implement. An implementation
without increasing area. The new technology-independent flow is of a robust technology-independent synthesis flow in SIS and
implemented in a public-domain tool ABC. Experiments on large MVSIS takes several person-months, in addition to in-depth
industrial benchmarks show that the proposed methodology scales knowledge of logic synthesis.
to very large designs and is several orders of magnitude faster * Even in its robust implementations, with resource limits
than SIS and MVSIS while offering comparable or better quality controlling runtime and memory, traditional synthesis is
when measured by the quality of the network after mapping. often slow because it involves time-consuming steps, such as

computation of intemal don't-cares [11].
Categories and Subject Descriptors We propose a new technology-independent combinational logic
B.6.3 [Logic Design]: Design Aids - Automatic synthesis. synthesis flow using fast local transformations of And-Inverter

Graphs (AIGs), composed of two-input ANDs and inverters. The
General Terms flow improves on the traditional logic synthesis by addressing the
Algorithms, Performance, Experimentation, Theory. above difficulties. Advantages are summarized as follows:

* While still being heuristic and suboptimal, the new algorithm
Keywords does not require as much hand-tuning and trial-and-error.

* Improvements in the complexity of the logic are measured byTechnology-independent logic synthesis, And-Inverter Graphs,AGndsadlvs,ibetrcrspdnewthoh
NPN equivalence, technologymapping. AIG nodes and levels,5 in better correspondence with both

standard-cell [6] and FPGA mappers [14], which use AIGs or
similar data structures as subject graphs.

1 INTRODUCTION * It is much simpler. A robust implementation reported in this
Optimization of multi-level logic networks using logic synthesis paper took a few person-weeks to conceive and implement.

[4][5] plays an important role in automated design flow. Logic * It is orders of magnitude faster than the traditional flow, even
synthesis is often applied to the network derived by compiling when compared with its most rugged and robust versions,
HDLs, such as VHDL or Verilog, before performing technology while the quality is comparable or better when measured by
mapping for standard cells or programmable devices. Other uses the delay and area of the network after technology mapping.
of logic synthesis include hardware emulation, design complexity AIG rewriting is local; however, rewriting is very fast and can
estimation, software synthesis, and fast preprocessing of circuits be applied to the network many times. For example, performing
before equivalence checking [3]. Traditional combinational logic ten rewriting passes over a typical network is still at least an order
synthesis, exemplified by SIS [18] and MVSIS [16], applies a of magnitude faster than running the resource-aware
sequence of optimization steps, having the goal of removing implementation of the traditional flow in MVSIS. By applying
redundant nodes (sweep), finding better logic boundaries rewriting many times, the scope of changes is no longer local. The
(eliminate, resubstitute), discovering shared logic (fast_extract), result is that the cumulative effect of several rewriting passes is
and simplifying the node representations (simpify, full simp4fy). often superior to traditional synthesis in terms of quality.

2 BACKGROUND
Permission to make digital or hard copies of all or part of this work for An And-Inverter Graph (AIG) is a directed acyclic graph
personal or classroom use is granted without fee provided that copies are (DAG), in which a node has either 0 or 2 incoming edges. A node
not made or distributed for profit or commercial advantage and that copies with no incoming edges is a primary input (Pl). A node with 2
bear this notice and the fulll citation on the first page. To copy otherwise, noigegsi w-nuN ae neg sete
or republish, to post on servers or to redistribute to lists, requires prior ncomplemntedgor notaw omiplemeNDgted Aedgeindcts ether
specific permission and/or a fee. cmlmne rnt opeetdeg niae h
DAC2006, July 24-28, 2006, San Francisco, California, USA. inversion of the signal. Certain nodes are marked as primary
Copyright 2006 ACM 1-59593-381-6/06/0007 $5.00. outputs (POs). Registers if present are considered as PI/PO pairs.

532

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on February 08,2021 at 10:10:07 UTC from IEEE Xplore. Restrictions apply.

The combinational logic of an arbitrary Boolean network can be no improvement and "zero-cost replacement" is enabled, a new
factored [4] and transformed into an AIG using DeMorgan's rule. subgraph that does not increase the number of nodes is used.
Structural hashing is applied during AIG construction to ensure Rewriting(network AIG, hash table PrecomputedStructures, bool UseZeroCost)
that no two AND gates have identical pairs of incoming edges.
A cut C of node n is a set of nodes of the network, called leaves, for each node N in the AIG in the topological order

such that each path from PIs to n passes through at least one leaf. for each 4-input cut C of node N computed using cut enumeration
A cut is K-feasible if the number of leaves does not exceed K. The F = Boolean function of N in terms of the leaves of C
cutfunction is the function of node n in terms of the cut leaves. PossibleStructures = HashTableLookup(PrecomputedStructures, F);
Two Boolean functions, F and G, belong to the same NPN-class I/find the best logic structure for rewrtingTwo ~~~~~~~~~~~~~~~~~~~~~~BestS=NULL; BestGain =-I;(are NPN-equivalent) ifF can be derived from G by negating (N) for each structure S in PossibleStructures

and permuting (P) inputs and negating (N) the output. NodesSaved = DereferenceNode(AIG, N);
Example. Functions F = ab + c and G = ac + b are NPN- NodesAdded =ReferenceNode(AIG, S);

equivalent because swapping b and c make them identical. Gain = NodesSaved - NodesAdded;
Functions F = ab + c and G= ab are not NPN-equivalent because Dereference(AIG, S Reference(AIG, N);
no amount of permuting and complementing variables can make a if (Gain > 0 iU (Gain 0 && UseZeroCost))
3-variable function equivalent to a 2-variable function. if (BestS = NULL 11 BestGain < Gain)

BestS = S; BestGain = Gain;
3 AIG REWRITING I

Rewritingis a fastgreedy alorithm fo mim'mizig the AIGif (BestS ==NULL) continue;
Rewriting is a fast greedy algorithm for minimizing the AIG 1/ use the best logic structure to update the netlist

size by iteratively selecting AIG subgraphs rooted at a node and NodesSaved = DereferenceNode(AIG, N);
replacing them with smaller pre-computed subgraphs, while NodesAdded = ReferenceNode(AIG, S);
preserving the functionality of the root node. Our rewriting assert(BestGain = NodesSaved - NodesAdded);
algorithm is developed by extending the prior work [3] as follows:

* Using 4-feasible cuts instead of two-level subgraphs.
* Restricting rewriting to preserve the number of logic levels. F
* Developing several variations of AIG rewriting to .Figure 1 4-inputhrewriG aorithm.

o selectively collapse and refactor [4] larger subgraphs, Example. Figure 2 shows three AIGs for F = abc that are pre-
o balance AIGs using algebraic tree-height reduction [8]. computed and stored. Figure 3 shows two instances of AIG

* Experimental tune-up for logic synthesis applications. rewriting. The upper part of the figure shows the situation when
For the purposes of 4-input AIG rewriting, all 4-feasible cuts of Subgraph 1 is detected and replaced by Subgraph 2. The lower

the nodes are enumerated using the procedure in [17]. For each part of the figure shows two nodes AND(a, b) and AND(a, c) that
cut, the Boolean function is computed and its NPN-class is are alreadypresent inthe network. Inthis case, Subgraph2 canbe
determined by hash-table lookup. Fast manipulation of 4-variable replaced by Subgraph 1. In both cases, one node is reduced.
functions is achieved by representing them using truth tables Subgraph 1 Subgraph 2 Subgraph 3
stored as 16-bit bit-strings. Altogether there are 222 NPN
equivalence classes of 4-variable functions [15], of which only
about one hundred appear more than once as functions of 4- a b
feasible cuts in the numerous benchmarks tested, and only about

a

40 of these have been found experimentally to lead to a a c b c a c
improvements in rewriting. The unifying characteristic of the Figure 2. Different AIG structures for function F= abc.
useful NPN-classes of functions is that they are decomposable Subgraph I Subgraph 2
using simple disjoint-support decomposition [2].
All non-redundant AIG subgraphs of the representative - -

functions of the useful equivalence classes are pre-computed in - - - ,
advance as a shared DAG containing approximately one thousand a
nodes and hashed by the truth table. This DAG is compiled into ^-'--------
the program as an integer array, which noticeably reduces the a b a c b c
setup time of the rewriting package. Subgraph 2 Subgraph I
Figure 1 shows the AIG rewriting procedure. The nodes are Sb 2

visited in a topological order. For each 4-input cut of a node, all , -
pre-computed subgraphs of its NPN class are considered. Logic =>
sharing between the new subgraphs and nodes already in the a
network is determined. First, the old subgraph is dereferenced and
the number of nodes, whose reference counts became 0, is a b b c a c a b a c
retumed. These nodes will be removed if the old subgraph is Figure 3. Two cases ofAIG rewriting of a node.
replaced. Next, a new subgraph is added while counting the A variation of AIG rewriting called refactoring uses a heuristic
number of new nodes and the nodes whose reference count went algorithm [12] to compute one large cut for each AIG node.
from 0 to a positive value. These nodes will be added. The agrtm[2 ocmueoelrectfrec I oedfer othe ountier is Theg e nodes if.added. The Refactoring tries to replace the current AIG structure of the cut bydifference of the counters iS the gain in the number of nodes if the ---+-A-'-_P+, 4 9+ M

is doe Tenwodis de-refrne an h l a factored form of the cut function. The change is accepted ifreplacement
* there is an improvement or no increase in the number of nodes.

node is referenced to return the MGe to itS original state.
After trying all available subgraphs for the given node, the one

that leads to the largest improvement at a node is used. If there is

533

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on February 08,2021 at 10:10:07 UTC from IEEE Xplore. Restrictions apply.

4 EXPERIMENTAL RESULTS replacements are useful for restructuring logic, allowing new
AIG rewriting is implemented in the sequential logic synthesis rewriting possibilities. Without zero-cost replacements, the second

and verification system, ABC [1], as commands rewrite, refactor, pass improves by only 11% (data is not shown in the table). With
and balance. A rewriting script, resyn2, was defined as an alias in replacements the first pass reduces the number of nodes by 14%,
the resource file abc.rc [1]. This script performs 10 passes over while without zero-cost replacements, by 12%.
the network as follows: b; rw; rf; b; rw; rwz; b; rfz; rwz; b. In the The last three columns of the table show the runtime of logic
abbreviated notation, b (balance) stands for AIG balancing, rwr/f synthesis in MVSIS (script mvsis.rugged), ABC (resyn2), and, as
(rewrite/refactor) stands for AIG rewriting/refactoring, and a sanity check, the runtime of standard-cell technology mapping
rwz/rfz is the same but with zero-cost replacements allowed. in ABC (command map -s). All runtimes are on a 1.6GHz laptop.
The resyn2 script optimizes area under delay constraints. It In summary, AIG rewriting as implemented in ABC (resyn2)

starts by balancing to reduce delay upfront as much as possible. performs 10 passes over the network to improve area and delay of
Next, rewriting/refactoring and balancing are interleaved. During the AIG. It is much faster than the resource-aware traditional logic
this, rewriting/refactoring tries to reduce area while not increasing synthesis script in MVSIS.
delay. Balancing tries to reduce delay while not increasing area. 4.2 Comparison using MCNC benchmarks
Zero-cost replacements are enabled later in the script to facilitate * P the enc mpro s
creating new rewriting opportunities. This process in resyn2 is In Table 1, we compare the average ratios of improvements
stopped after three iterations. Generally, this heuristic approach achieved by technology mapping for standard cells and FPGAs
works well for a varietyiofbenchmarks. after running several optimization scripts. The complete set of
One difficulty in comparing the quality of AIG rewriting with MCNC benchmarks [19] is used in this experiment. The results of

traditional logic synthesis is their use of different cost functions, mapping unoptimized circuits are used as the base for comparison
Previously, improvements were measured by counting the sum (Line 1 of Table 1). The optimization in SIS (script.rugged) did
total of literals in the factored forms while AIG rewriting looks at not complete on several benchmarks, which were excluded.
the total number of AIG nodes and the maximum number of AIG The last column shows the average ratios of runtime using AIG
levels. Therefore, in Tables 2 and 3, we compare the impact of rewriting (resyn2) as the base. On these relatively small
AIG rewriting to that of logic synthesis in SIS and MVSIS, after benchmarks, MVSIS is 7 times slower while SIS is slower by
technology mapping. We used the technology mappers in ABC, several orders of magnitude, depending on the script used. In
technolorFPGAsy[14]m apping.e useadte tcholoy[the library terms of quality, rewriting tends to produce better area and worsefor FPGAs [14] and standard cells [6] usingth liry delay than the combination of script.rugged followed by speed upmcnc.genlib from the SIS distribution. A load-independent timing i S skytha t a mor owerfulrewriting ta sesdare
model was assumed. Our experiments with a load-independent in SIS. It is likely that a more powerful rewriting that uses larger
combinational mapper in an industrial setting confirm that gate cuts will outperform SIS in delay while taking only a small
sizing and buffering can be done in later stages of the flow. fraction of the SIS runtime.
Experiments were performed on many public-domain Table 1. Summary of comparison on MCNC benchmarks.

benchmarks, including industrial circuits from IWLS 2005 [9]. Logic synthesis flow Stand. cells FPGAs
Section 4.1 analyzes the performance of the rewriting script. used for optimization Area Delay Area Delay Runtime
Section 4.2 compares AIG rewriting with logic synthesis scripts in | No optimization 1.00 1.00 1.00 1.00 0.00
SIS and MVSIS. Section 4.3 gives detailed statistics for IWLS ABC (AIG rewriting) 0.87 0.96 0.93 0.98 1.00
2005 benchmarks, showing the impact of AIG rewriting on tech- MVSIS (mvsis.rugged) 0.91 1.10 0.93 1.03 7.12
mapping for FPGAs and standard cells. SIS (script.delay) 0.94 0.99 0.98 0.97 -100.00

In all cases, the netlists produced by SIS, MVSIS and ABC SIS (script.rugged+speed up) 0.94 0.90 0.98 0.94 -1000.00
were structurally hashed and algebraically balanced for minimum
delay in ABC before mapping. The resulting netlists were verified 4.3 Comparison using IWLS 2005 benchmarks
using a SAT-based equivalence checker in ABC [13]. This section compares AIG rewriting in ABC with logic
Due to page limitation only the largest 10 IWLS benchmarks synthesis in MVSIS on the large benchmarks from IWLS 2005. A

are shown in Tables 2 and 3, although the average ratios listed in similar comparison proved impossible for ABC vs. SIS because
the last row of the tables refer to a set of 21 benchmarks used. several key commands in SIS timed out on circuits from this set.

The following notation is used in Table 3. Columns "Original",
4.1 Performance and runtime analysis "MVSIS", and "ABC" show the results of mapping of the original
The performance of rewriting is analyzed in Table 2. The first circuit, the circuit optimized by mvsis.rugged in MVSIS, and the

column lists the benchmarks. The next five columns show the same circuit optimized by resyn2 in ABC, respectively. Two sets
number of primary inputs (PI), primary outputs (PO), latches of mapping results are reported, one for LUT-based FPGAs and
(Latch), AIG nodes (AND2), and logic levels of two-input AND another for standard cells using mcnc.genlib.
gates (Lev). The number of gates and logic levels is given for an In summary, the ratios of improvements demonstrate that on
AIG after structural hashing and algebraic balancing. average, AIG rewriting performs better than traditional synthesis.
The next eight columns show the AIG rewriting statistics after In particular, the results of technology mapping for FPGAs

two successive applications of rwz to the original benchmarks. confirm that literal-based optimization in MVSIS does not reduce
The columns show the number of 4-input cuts computed for all area and delay while AIG rewriting reduces both.
intemal nodes ("Cuts"), the number of subgraphs tried during It should be noted that the original IWLS benchmarks were
rewriting ("Subgrs"), the number of times a rewriting was optimized by an industrial tool prior to distribution. They were
accepted ("Upds"), and the improvement in the number of AIG structurally hashed and balanced in ABC before running SIS and
nodes after each rewriting pass. MVSIS. When starting with unoptimized networks, the difference
The data shows that the second pass of rewriting leads to between rewriting and traditional synthesis should be greater.

smaller but still non-negligible gains in the number of AIG nodes
(18% of the first pass). This confirms that the zero-cost

534

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on February 08,2021 at 10:10:07 UTC from IEEE Xplore. Restrictions apply.

5 CONCLUSIONS AND FUTURE WORK [6] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
This paper presents AIGrewriting,aninnovativetec"Reducing structural bias in technology mapping", Proc. ICCAD '05,This paper presents hG rewriting, an nnovative technique for pp. 519-526.

combinational logic synthesis. The technique was inspired by [7] J. Cong and Y. Ding, "FlowMap: An optimal technology mapping
research in the field of formal verification where a similar algorithm for delay optimization in lookup-table based FPGA
algorithm was used for fast compression of redundant logic designs", IEEE Trans. CAD, vol. 13(1), January 1994, pp. 1-12.
circuits [3]. Our experiments show that AIG rewriting often leads [8] J. Cortadella, "Timing-driven logic bi-decomposition", IEEE TCAD,
to quality comparable or better than those afforded by the logic vol. 22(6), June 2003, pp. 675-685.
synthesis scripts in MVSIS and SIS while being one or two orders [9] IWLS 2005 Benchmarks. http://iwls.org/iwls2005/benchmarks.html
of magnitude faster as well as applicable to larger examples. [10] E. Y. Kukimoto, R. Brayton, P. Sawkar, "Delay-optimal technology

The proposed technique plays the crucialroleinanewlogic [11]mapping by DAG covering", Proc. DAC '98, pp. 348-351.The proposed technique plays the crucial role in a new logic [I 1] A. Mishchenko and R. Brayton, "SAT-based complete don't-care
synthesis flow [12] which may replace the traditional logic computation for network optimization", DATE '05, pp. 418423.
synthesis in the CAD tools. The extreme speed and good quality [12] A. Mishchenko and R. Brayton, "Scalable logic synthesis using a
of the proposed algorithm might make the new flow useful in a simple circuit structure", Proc. IWLS '06. http://www.eecs.
variety of applications such as hardware emulation, estimation of berkeley.edu/-alanmi/publications/2006/iwlsO6_sls.pdf.
design complexity, and equivalence checking [13]. [13] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een,
Future work will include extending the baseline AIG rewriting "Improvements to combinational equivalence checking", IWLS '06.

to use larger cut sizes. The challenge is to search a much larger http://www.eecs.berkeley.edu/balanmi/publications/2006/iwlsO6
space of possible replacements while keeping runtime low in cec.pdf

order to allow.multipleoptimization passes.
[14] A. Mishchenko, S. Chatterjee, and R. Brayton, "Improvements to

order to allow multiple optimization passes. technology mapping for LUT-based FPGAs", FPGA '06, pp. 41 49.
6REFERENCES [15] s. Muroga, Logic design and switching theory, John Wiley & Sons,

6 REFERENCES Inc., New York, NY, 1979.
[1] Berkeley Logic Synthesis and Verification Group. ABC: A System [16] MVSIS Group. MVSIS: Multi-Valued Logic Synthesis System. UC

for Sequential Synthesis and Verification. December 2005 Release. Berkeley. http://www-cad.eecs.berkeley.edu/mvsis/
http://www-cad.eecs.berkeley.edu/-alanmi/abc [17] P. Pan and C.-C. Lin, "A new retiming-based technology mapping

[2] V. Bertacco and M. Damiani, "Disjunctive decomposition of logic algorithm for LUT-based FPGAs," Proc. FPGA '98, pp. 3542.
functions," Proc. ICCAD '97, pp. 78-82. [18] E. Sentovich et al. "SIS: A system for sequential circuit synthesis".

[3] P. Bjesse and A. Boralv, "DAG-aware circuit compression for Technical Report, UCB/ERI, M92/41, ERL, Dept. of EECS, UC
formal verification", Proc. ICCAD '04, pp. 4249. Berkeley, 1992.

[4] R. Brayton and C. McMullen, "The decomposition and factorization [19] S. Yang. Logic synthesis and optimization benchmarks. Version 3.0.
ofBoolean expressions," Proc. ISCAS '82, pp. 29-54. Tech. Report. Microelectronics Center ofNorth Carolina, 1991.

[5] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, "Multilevel
logic synthesis", Proc. IEEE, Vol. 78, Feb.1990.

Table 2. IWLS benchmark statistics, rewriting performance, and runtime comparison.

IWLS Network statistics - First iteration (rwz) Second iteration (rwz) Runtime, s
benchmarks PI PO Latch AND2 Lev Cuts Subgrs Upds Gain Cuts Subgrs Upds ain MVSIS ABC Map

ac97 ctrl 84 48 2199 14261 11 30583 114770 4105 3242 21081 102688 2108 135 20.46 1.13 0.91
aes core 259 129 530 21125 21 64314 350417 10849 697 60386 331836 10205 141 175.80 5.54 1.57
des perf 234 64 8808 76716 17 394629 1701867 37530 4935 381979 1687585 30212 969 1010.70 33.23 8.87
ethernet 98 115 2235 19654 27 55413 326972 7401 4619 38365 238450 4080 381 50.39 3.81 0.99
mem ctrl 115 152 1083 15191 28 45670 297941 8257 5416 28759 188528 3762 686 17.20 1.95 0.72
pci bridge32 162 207 3359 22742 22 67838 331636 7865 3624 53148 279038 5191 155 51.57 3.14 1.46
systemcaes 260 129 670 12279 44 48620 164882 4539 1186 39962 145844 3993 273 28.17 1.87 0.87
usb funct 128 121 1746 15670 23 40237 195654 4679 1383 35017 171805 3730 325 66.59 2.29 0.96
vga lcd 89 109 17079 126687 19 463129 2887484 51088 34208 292358 2077801 32477 145 1998.27 32.55 8.51
wb_conmax 1130 1416 770 47535 18 159658 978491 15460 1891 149295 993207 16907 862 2323.01 12.38 3.31
Ratio _ _ _ 1.00 1.00 1.00 1.00 0.82 0.88 0.79 0.18 24.53 1.00 0.40

Table 3. Effect of AIG rewriting on technology mapping for LUT-based FPGAs (k = 5) and standard cells (mcnc.genlib).

IWLS Results o mapping into LUTs (k = 5) Results of mapping into mcnc.genlib
benchmarks Original MVSIS ABC Original MVSIS ABC

Area Delay Area Area Delay Area Delay Area Delay Area Delay
ac97 ctrl 3391 4 3864 5 3532 3 25961 9.20 23494 13.80 19491 8.30
aes core 6772 7 7214 8 7180 6 39635 17.70 38855 20.30 38555 17.30
des perf 19177 5 23406 5 19163 5 162228 14.10 155708 17.50 145133 14.80
ethernet 4665 9 5170 9 4297 8 33949 22.40 29180 24.40 23142 21.30
mem ctrl 4854 9 4551 10 3191 9 25521 23.30 23537 26.50 15865 21.10
pci_bridge32 6150 8 5888 9 5908 7 40322 18.60 35254 20.60 34860 17.70
systemcaes 2547 9 2770 13 2329 10 21715 28.70 16483 34.60 16533 28.10
usb funct 4530 7 4475 8 4030 7 27617 17.80 24386 28.30 23637 | 19.70
vga lcd 28458 8 28866 8 29562 7 240071 15.70 169276 16.50 201141 1 15.50
wb_conmax 16073 7 17165 8 13370 7 82353 15.90 87082 17.60 66124 |15.90
Ratio 1.00 1.00 1.01 1.17 0.94 0.97 1.00 1.00 0.88 1.22 0.83 |0.97

535

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on February 08,2021 at 10:10:07 UTC from IEEE Xplore. Restrictions apply.

