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ABSTRACT
Recent deterministic database systems have achieved high scala-
bility and high availability in distributed environments given OLTP
workloads. However, modern OLTP applications usually have chang-
ing workloads or access patterns, so how to make the resource pro-
visioning elastic to the changing workloads becomes an important
design goal for a deterministic database system. Live migration,
which moves the specified data from a source machine to a destina-
tion node while continuously serving the incoming transactions, is
a key technique required for the elasticity. In this paper, we present
MgCrab, a live migration technique for a deterministic database
system, that leverages the determinism to maintain the consistency
of data on the source and destination nodes at very low cost dur-
ing a migration period. We implement MgCrab on an open-source
database system. Extensive experiments were conducted and the
results demonstrate the effectiveness of MgCrab.
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1. INTRODUCTION
Distributed, deterministic database systems [18,38,39] have been

proposed to meet the requirements of modern online transaction
processing (OLTP) applications. The determinism, i.e., the database
state on each machine/node being deterministic to a total trans-
action order at any time, saves a system from using an expen-
sive agreement protocol (e.g., two phase commit, 2PC) to achieve
strong consistency between replicas [38], and enables lightweight
processing of distributed transactions across partitions [38,39]. This
makes the system highly available and scalable, and a superb con-
tainer of various OLTP databases, either as a large database storing
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data of global users or a large collection of tenants having small
footprints (both in terms of size and workload requirements).

Modern OLTP applications usually have changing workloads or
access patterns [9,29,36]. For example, users of a database around
the world may become active at different times due to timezone dif-
ferences and may access their data differently; on the other hand,
a tenant in a multi-tenant database may suddenly become very hot
as the owner application gains flash crowds originating from viral
popularity. Elastic load balancing, which moves data around the
provisioned machines and increases/reduces the provisioning in re-
sponse to changes of workload to maintain the system performance,
becomes an important design goal of a deterministic database sys-
tem [10]. Elasticity also helps minimize the operation cost when
the system is deployed on a cloud platform that charges per use.

Live migration [3, 12–15, 24, 34] is a fundamental step toward
elasticity. Given a migration plan for moving some data from a
source node to a destination node, it moves the data while con-
tinuously serving the incoming transactions so to keep the system
alive (available). Currently, live migration techniques can be di-
vided into those running an incoming transaction on the source ma-
chine [3,12,14,24], destination machine [15,34], or on either one of
the two machines [13].1 The source-based techniques [3,12,14,24]
have the advantage that the transaction can run smoothly in the be-
ginning of migration because the data are likely to be available lo-
cally and the cache is warm. However, these approaches have a
termination problem—the data migration may never end as the up-
dates made by transactions running on the source node need to be
constantly sent to the destination node (by shipping logs or snap-
shots). To terminate the migration, these techniques usually intro-
duce a short period of downtime and then copy the final updates
from source to destination. After that, the destination node starts
serving transactions and the system becomes available again. The
destination-based approaches [15,34] avoid such system downtime
by letting the destination node serve transactions immediately af-
ter the migration starts. Nevertheless, the transaction execution
will be slow in the beginning of the migration period since most
data are not available at the destination yet and need to be pulled
from the source node. This results in degraded system through-
put. Squall [13], the third approach, extends the destination-based
methods by carefully tracking the location of data being migrated

1This categorization is slightly different from the one used in previ-
ous work as we focus on where to run a single transaction arriving
after the migration starts.
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and allowing a transaction to run on the source node if the data ac-
cessed by the transaction locate entirely on the source node. This
mitigates the performance drop as some transactions in the system
can run faster now.

However, in practice, Squall still renders a considerable perfor-
mance drop during the migration period [13]. The system may
fail to meet an SLA and incur significant financial losses [2]. Fur-
thermore, with Squall and most existing live migration techniques,
there is a trade-off between performance and migration time (i.e.,
the duration of the migration period)—the shorter the migration
time, the larger the performance drop can be during the migration
period. This is because the migration process usually contends with
running transactions on the migrating data. For example, suppose
the data being migrated are broken into chunks and transmitted
one-by-one. On the destination node, the process that persists a
data chunk C will block all transactions accessing C. To meet the
SLA, one could set the chunk size small such that the migration
process will block fewer transactions (as fewer transactions may
access data in C) for a smaller amount of time (as it takes less time
to persist C). But this can prolong the migration period as there
is a higher communication overhead to transmit a larger number
of small chunks than a small number of large chunks. The pro-
longed migration time may prevent the system from reacting to the
changing workload in a timely manner. There is a crucial need for
a new live-migration technique that is more transparent (in terms of
performance degradation) and that avoids such a trade-off.

In this paper, we present MgCrab, a technique for live migra-
tion in a shared-nothing distributed, deterministic database system.
Unlike most existing live migration approaches that execute an in-
coming transaction on either the source or destination machine,
MgCrab executes the single transaction on both nodes.2 The client
who issues the transaction will get results once any of the nodes
completes the transaction. We call the node which answers faster
the winner node. At first glance, running a transaction on both
machines does not seem to be a good idea because it wastes com-
puting resource and introduces the complexity of synchronizing re-
sults between nodes for consistency. However, we argue that this
can actually lead to better resource utilization, as well as a simpler
design. Migration typically happens in either a scaling-out or con-
solidation scenario, where at least one machine is under-utilized
(the destination node in the scaling-out cases and both nodes in the
consolidation cases). Running the transaction on both nodes does
not saturate the system. In addition, by leveraging determinism,
we can let the transaction produce exactly the same results on the
source and destination nodes without using expensive agreement
protocols (e.g., 2PC) to maintain consistency. We can also avoid
the complex ownership tracking [13] used to decide which machine
runs a transaction best.

MgCrab offers the following advantages as compared to the pre-
vious work. First, it allows the transactions to run on the source
node to avoid a performance drop at the beginning of the migration
period. When the destination node catches up later on, it hands over
the winner node seamlessly on a per transaction basis (whenever the
transaction on destination completes more quickly) without incur-
ring downtime or aborted transactions. Second, we let the destina-
tion node “compute” the updates of the migrated data (by executing
the transactions) instead of waiting for the updates shipped from
the source. This saves the shipping cost (e.g., latency) and avoids
the termination problem as in the source-based approaches. More
importantly, MgCrab employs the two-phase background pushes

2We use the word “crab” in the name to emphasize where a transac-
tion runs before (on source), during (on both), and after migration
(on destination), which proceeds like a walking crab.

that migrate chunks without blocking any transaction on the source
node. This significantly improves the stability of system perfor-
mance during the migration. The following summarizes our contri-
bution:

• We present MgCrab that lets both the source and destination
machines execute every incoming transaction during the mi-
gration period, and discuss how determinism can simplify
the design of such a live-migration technique.

• Based on MgCrab, we propose the two-phase background
pushing that avoids a common performance bottleneck in ex-
isting systems when migrating the cold data.

• We prove the correctness of MgCrab by showing its safety
(i.e., correctness in the presence of failure) and liveness (i.e.,
migration eventually completes, despite failures occur) guar-
antees.

• We discuss many practical considerations, such as support-
ing distributed transactions, range queries, pipelining, etc., to
make MgCrab work under various situations.

• We implement MgCrab on an open-source deterministic database
system and conduct extensive experiments. The results show
that MgCrab offers a much more stable performance during
the migration period as compared to the state-of-the-art live
migration techniques.

The rest of this paper is organized as follows. Section 2 reviews
the architecture of a deterministic database system and existing mi-
gration techniques. Section 3 introduces MgCrab while Section 4
discusses some practical considerations. Section 5 evaluates the
performance of MgCrab and Section 6 reviews more related work.
Finally, Section 7 concludes the paper.

2. BACKGROUND
We first review the architecture of Calvin [38], an example of

the deterministic database systems targeted by MgCrab. We then
show how current live migration techniques are insufficient for this
type of systems. Although we use Calvin in this paper, MgCrab
is applicable to any deterministic database system, such as H-Store
[18].

2.1 System Architecture
Calvin is designed for workloads that contain transactions only

invoked as predefined stored procedures. As shown in Figure 1,
data are fully replicated across multiple data centers separated ge-
ographically for availability. A data center has a cluster of ma-
chines, each of which holds only one partition of data to avoid
hot spots. When transaction requests arrive, the sequencers in the
system communicate with each other to decide a single total or-
der (i.e., an order that all machines agree on) of these requests,
and forward the requests to all schedulers following the total order.
The scheduler on each machine, after receiving a request, analyzes
the request and decides whether the transaction will touch any data
stored locally, and if so, forwards the request to the executor resid-
ing on the same machine. Then, the executor processes the trans-
action while ensuring that the results will be the same as those of
processing the transaction (and all its preceding transactions) fol-
lowing the total order. In other words, the database state on each
node at any time is deterministic to the total ordering. This enables
lightweight distributed transactions [38] across partitions (at the se-
rializable isolation level) and low-cost strong consistency between
replicas. The latter comes with the fact that two replicas having
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Figure 1: Cooperative transaction execution in a deterministic
database system.

identical initial data will produce the exactly same results for every
transaction (due to the determinism), and therefore need no agree-
ment protocol (e.g, 2PC) to commit a transaction. Note that the
delay incurred by the total-ordering protocol (e.g., Paxos [21] or
Zab [17]) for ordering a transaction does not count into the con-
tention footprint of the transaction in concurrency control. There-
fore, such delay has no impact on the system throughput. Also, note
that this architecture supports any storage engine (either memory-
or disk-based) with the CRUD interface.

Elastic Load Balancing. Studies [13, 39] have shown that a de-
terministic database system is susceptible to load imbalances, and
for this reason, it is important for the system to have components
for elastic load balancing. We assume that inside each replica (data
center), there is a system controller that collects statistics of system
components in the background and decides when and how the data
should be re-partitioned to fit the current workload. The controller
periodically sends a partition plan to every partition in the replica.
A partition plan specifies the data partition for every node so each
partition can spot distributed transactions. After receiving the par-
tition plan, the migration controller on each partition compares the
old and new partition plans to derive migration plans, each of which
specifies partial data being migrated from a source node to a des-
tination node. A partition needs to infer only the migration plans
that are relevant to itself (i.e., those where the partition is either the
source or destination). Then, for each migration plan, the migration
controller on the source node triggers a migration task that runs a
live migration algorithm. After all migration tasks are completed,
the migration controller on each partition sends an acknowledg-
ment to the system controller so the system controller can generate
the next partition plan.

2.2 Migration Cost
Data migration has a cost that includes the following [10]: down-

time (system or database service outage), number of transactions
aborted, increase in transaction latency, drop in throughput, and
transfer of extra data (in addition to those specified in the migra-
tion plan). Also, there is a trade-off between the migration time
and the migration cost. Normally, the shorter the migration time,
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Figure 2: With TPC-C workload, Squall [13] renders a drop in
throughput in the binning of the migration period.

the higher the migration cost. A live migration technique is ex-
pected to minimize the migration cost while avoiding its trade-off
with migration time.

2.3 Some Migration Techniques
We now discuss some typical data migration techniques.
Stop-and-Copy. This is arguably the simplest and most heavy-

handed approach to migrate data. The system stops accepting trans-
action requests on the source node, moves the data from source to
destination, and then re-start serving requests on the destination
node. This technique incurs a long downtime lasting the entire mi-
gration period. It may also slow down the transactions and through-
put on the destination node after service restarts, as the node may
require some time to warm up the cache. However, in spite of its
inefficiency, this technique is currently the only choice in many
commercial database systems (e.g, MySQL) currently. Next, we
review some live migration techniques.

Albatross [12]. This approach allows the incoming transactions
to run on the source node after the migration starts. In addition to
migrating data, the source node iteratively ships to the destination
node the updates made by the transactions. When the data have
been migrated and there are relatively few (or stable) updates, the
source node performs a short stop-and-copy migration and hands
over the transactions to the destination. Although being reduced,
the downtime still exists and may not be acceptable to systems with
SLAs. Furthermore, to reduce the migration time, one may let the
source node perform the stop-and-copy earlier, resulting in a longer
downtime as there are more pending data/updates that need to be
shipped.

Zephyr [15]. This approach avoids the service downtime by let-
ting the incoming transactions run on the destination node. The
source node transmits data chunks to the destination node itera-
tively. If a transaction on a destination accesses data that are not
transmitted yet, it pulls the data from the source node. This in-
creases the transaction latency and the transaction will block more
conflicting transactions. Note that the blocking can result in a sig-
nificant drop in throughput in a deterministic database system [37]
because, to ensure the determinism, conflicting transactions can-
not be dynamically reordered at run time (conversely, a traditional
database system can achieve this easily by using, strict two-phase
locking, for example). Furthermore, Zephyr does not allow a trans-
action on the source node that was active at the start of migration
to change the metadata (specifically, the index used to track the mi-
gration progress) during the migration period. If so, the transaction
needs to abort. The upside is that there is no additional update that
need to be transferred. Note that, on the destination node the data
migration process that persists the data chunks may conflict with
both the read-only and read-write transactions. Therefore, setting a
larger chunk size in order to reduce the migration time may result
in further degradation in performance.

Squall [13]. This approach extends Zephyr by allowing an in-
coming transaction to run on the source node if the required data are
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Table 1: Comparison of some data migration techniques.

Stop&Copy Albatross [12]
(Source)

Zephyr [15]
(Dest.)

Squall [13]
(Either) MgCrab (Both)

Downtime Yes Yes No No No
Aborted Transaction Yes No Yes Yes No

Throughput Drop High (after) Low High Moderate Low
Increase in Latency High (after) Low High Moderate Low

Extra Data Transferred No Yes No No No
Migration Time Trade-Off None Downtime R-&RW-Txs R-&RW-Txs None

entirely present there.3 Squall knows the location of data required
by a transaction by splitting the records to migrate into ranges and
tracking the migration status of each range. A transaction can run
on the source node only if all the relevant ranges are not being
migrated or have not been migrated. Compared to Zephyr, Squall
improves the system performance in the beginning of the migration
process by letting some transactions run on the source node without
being delayed by data pulls. However, the improvement is limited
by the fact that any record that has started migrating in a range will
prevent all transactions accessing data in the range from running on
the source node. So, as soon as the data migration begins, the num-
ber of transactions that can complete on the source node decreases
rapidly, and the system can still suffer from the performance degra-
dation at the beginning of the migration period, as shown in Figure
2 (see Section 5 for the settings and detailed description). Further-
more, on H-store, the router may route a transaction to the source
node where the required ranges are migrating. In this case, the
transaction needs to abort and restart on the destination node.

Table 1 summarizes the performance characteristics of the above
data migration techniques. As we can see, none of the current ap-
proaches is ideal for a deterministic database system. There is a
need for a new design.

3. MGCRAB
In this section, we introduce MgCrab using some simplified as-

sumptions for ease of presentation. We assume no failures, no dis-
tributed transaction in the system, and that there is only one migra-
tion plan to be fulfilled. The extended design that works with dis-
tributed transactions and concurrent migration plans is discussed in
Section 4, while the failure handling is described in Appendix A.

3.1 Overview
The design goal of existing live migration techniques is to let

every transaction that arrives during the migration period run on
the most appropriate machine such that the clients perceive mini-
mal service interruption. However, as evidence with Squall [13],
deciding a better machine to execute a transaction requires pre-
cise information about the location of migrating data, and this in-
formation is hard to track in practice. MgCrab takes an opposite
approach—instead of relying on data locations to decide the bet-
ter one, it runs every incoming transaction on both the source and
destination machines. MgCrab’s live migration proceeds in three
phases: the initial, termination, and crabbing phases, as shown in
Figure 3. Transactions arriving at these three phases are processed
on the source node, destination node, and both respectively.

In the crabbing phase, MgCrab hides the migration cost from
clients by letting each client see the results from the winner node

3Squall focuses on the live reconfiguration, where multiple migra-
tion plans are executed concurrently, and consists of some other
techniques orthogonal to this paper.

(i.e., the node that completes the transaction issued by the client
faster). The source and destination nodes see strongly consistent
data, and thus always process a transaction in the same way. MgCrab
leverages the determinism discussed in Section 2.1 to avoid the high
cost of strong consistency.

MgCrab works alongside any data partitioning scheme (e.g., hash-
based, fine-grained record-based [9], or fine-grained range-based
[29] partitioning) used by the storage and any elastic load balanc-
ing algorithm [9, 29, 36] implemented in the system controller for
the scheme (cf. Figure 1).

3.2 Initial Phase
Given a migration plan (specifying the data to migrate, a source

node, and a destination node), this phase engages all partitions
in a replica such that every node enters the crabbing phase syn-
chronously and has enough information to execute transactions cor-
rectly. At first, the migration controller on the source node creates
an Init transaction request that includes the migration plan as a
parameter and sends the request to the sequencers in the system
so that after being forwarded to the scheduler on every node, the
transaction gets into the same place in the total order and can be
processed atomically throughout the system. Each scheduler for-
wards the request to the executor on the same machine. The ex-
ecutor then modifies the metadata about the ownership of migrat-
ing data (by changing “source” to “both”). After completing this
transaction, all partitions enter the crabbing phase and process later
transactions in the total order using the new ownership information.

Note that all partitions have to process the Init transaction be-
cause any node other than the source or destination may encounter
a distributed transaction accessing the migrating data later (to be
discussed in Section 4). However, there is no need for the transac-
tion to process/ship complex metadata (e.g, index wireframe [15])
in order to help track the locations of migrating data, because the
locations can be inferred deterministically on individual machines
(to be discussed in the next phase). As a result, the transaction is
generally very short and has a negligible impact on performance.

3.3 Crabbing Phase
Once entering the crabbing phase, the scheduler on the destina-

tion node starts forwarding transaction requests to the local execu-
tor if the required data overlap with the data to be migrated (re-
gardless of the actual locations of these data). So, both the source
and destination nodes process these transactions now. MgCrab em-
ploys two techniques, namely the foreground pushes and two-phase
background pushes, to migrate data when serving the transactions:

Foreground Pushes. When processing a transaction, the execu-
tor on the source node may push data to the destination node in or-
der to 1) migrate the active data as soon as possible, and 2) help the
same transaction complete on the destination executor. For exam-
ple, suppose the source partition owns data {A,B,C} and wants to
migrate data {B,C} to the destination partition, as shown in Fig-
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Figure 3: In MgCrab, a live migration task proceeds in the ini-
tial, crabbing, caught-up, and termination phases. User- and
system-generated transactions are colored black and white re-
spectively. The caught-up phase is described in Section 4.4.

ure 4. In the crabbing phase, a transaction T reading data {A,B}
and writing {C} will be processed by both partitions (Figure 4(1)).
In a deterministic database system, this transaction will be placed
in the same position in the total order therefore when executing T ,
both the source and destination see a consistent snapshot of data.
By virtue of this, the source executor reads its own data specified
in T ’s read-set (Figure 4(2)) and pushes them to the destination
executor (Figure 4(3)). Once obtaining {A,B}, the destination ex-
ecutor can execute and complete the transaction locally—there is
no need for an agreement protocol (e.g., 2PC) since the determin-
istic system already ensured that these two partitions will always
reach the same conclusion on whether to commit the transaction or
not and, if yes, write the same value of C [37, 38]. To complete T ,
the source and destination executors write C independently (Figure
4(4)). Furthermore, the destination executor writes B and the both
nodes mark on metadata that the data {B,C} have been migrated.

After processing T , the destination executor needs no more pushes
of B and C and can keep their states in sync with the source par-
tition at any logical time by executing the later transactions deter-
ministically following the total order. Note that the source executor
does not delete B and C until in the termination phase (to be dis-
cussed later). This allows the source node to continuously serve
later transactions during the migration period and hide the migra-
tion cost when the destination node is busy catching up with the

Source Partition

{A, B, C}

Executor

Dest. Partition

{ }

Executor

1. Tx: 

R(A, B)  W(C)

3. Push A, B

1. Tx: 

R(A, B)  W(C)

2. Read A, B

4. Write C
4. Write B, C

Figure 4: Execution of a transaction during the crabbing phase.
Missing data are synchronously pushed to the destination par-
tition.

source.
We call the above pushes generated during the transaction pro-

cessing the foreground pushes. These pushes migrate hot/active
data that are likely to be accessed again (due to the locality of ac-
cess pattern) as early as possible. Nevertheless, the cold data may
be left behind.

Two-Phase Background Pushes. One naive way to migrate the
cold data is to break them into fixed-sized chunks and push the
chunks one-by-one iteratively in the background. To preserve the
determinism (and to ensure the correctness), one should push a data
chunk synchronously—the migration controller on the source node
creates a BgPush transaction request and sends it to the sequencers
in the system so the transaction will be processed by both the source
and destination partitions at the same logical time (following the to-
tal order). On the source node, the transaction reads and sends out
the chunk; conversely, on the destination node the transaction waits
for the chunk and then writes it into the storage. Before complet-
ing the transaction, both the source and destination nodes mark on
metadata that the chunk has been migrated. By pushing a chunk
synchronously, we can ensure that the locations of migrating data
are always certain (after every transaction completes). So, there is
no need to deal with the uncertainty of data locations, which may
result in transaction aborts [13, 15].

However, the downside is that a BgPush transaction blocks all
conflicting transactions on both the source and destination nodes.
Even worse, the BgPush transaction is usually longer than normal
user transactions due to the relatively large chunk size. This leads
to the clogging [33, 37] where the blocked transactions continue to
block incoming conflicting transactions like a chain reaction and
finally results in a drastic drop of system performance, as shown in
Figure 13(a). The same issue occurs in Squall [8] as well..

To solve this problem, we split a BgPush transaction into two
phases, each accomplished by a distinct transaction, such that the
source node can keep hiding the migration cost from users. The
first transaction reads the chunk on the source node and sends it
to the destination node, and then creates and schedules the second
transaction into the system before it completes. The second transac-
tion, after being forwarded by sequencers following the total order,
inserts the buffered chunk to the storage of the destination node
and then updates the metadata about the chunk location on both
nodes. Between the first and the second phases, the sequencer may
assign other transactions in the total order, as shown in Figure 3.
The point of such a split is that both the first (T5) and second (T7)
transactions can be made very lightweight on the source node to
prevent the clogging of system performance. The second transac-
tion is clearly lightweight on the source node as it modifies only the
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metadata, so we focus on the first one. Notice that the first trans-
action (T5) is read-only on the source node. We let the node read
the chunk without acquiring read locks.4 Because of this, the first
transaction does not block the following transactions (T6 and so
on) and the source node can maintain the system performance. On
the other hand, this may lead to a dirty chunk (to be stored into the
storage of the destination node) in the second phase (T7), as the
transactions in between (T6) may touch data in the chunk. Thanks
to the crabbing mechanism, the destination node knows which data
have been modified since the first phase (T5) by actively executing
transactions, and can simply skip those modified data when storing
the chunk in the second transaction (T7) to maintain consistency.
The effectiveness of two-phase background pushes is demonstrated
in Figure 13(b).

3.4 Termination Phase
After all data have been migrated, the migration controller on

the destination node receives an empty background push and cre-
ates a Terminate transaction, as shown in Figure 3, that changes
the ownership of the migrating data from “both” to “destination”
on every partition. Like the Init transaction, this transaction is
very short and has a negligible impact on the performance. After it
completes, the source node stops executing transactions accessing
the migrating data.

Recall that, during the crabbing phase, the migrating data are not
deleted on the source node after they are pushed to the destination.
When processing the Terminate transaction, the source needs
to schedule a process that deletes the data. However, this process
can run in the background after the Terminate transaction com-
pletes, resulting in little impact on performance. Alternatively, the
source node can choose to keep the data if it foresees upcoming
consolidation tasks. When data are moving back, the source node
can locally replay the request logs (see Appendix A) to make the
data up-to-date faster. We leave this alternative approach to the
future work.

3.5 Correctness
MgCrab guarantees the safety and liveness [15].

THEOREM 3.1 (SAFETY). MgCrab is safe, meaning that it
meets the following conditions: (a) transaction correctness: trans-
actions run with the correct ACID guarantees during migration;
and (b) migration consistency: a failure during migration does not
leave the data and system state inconsistent.

THEOREM 3.2 (LIVENESS). MgCrab is live as it satisfies the
following requirements: (a) termination: if the source and destina-
tion nodes are not faulty and can communicate with each other for
a sufficiently long period during migration, the migration will ter-
minate; and (b) starvation freedom: every transaction that accesses
the migrating data can eventually be processed, despite failures
that may occur.

Due to space limitations, the formal proof is left to Appendix A.
Note that MgCrab does not require the REDO logs and a complex
ARIES-like recovery algorithm [25] to bring a failed machine back
to the latest state. Thus, it works nicely with exisitng deterministic
systems [18, 38, 39] that replay the request logs during the recov-
ery. Furthermore, MgCrab supports fast checkpointing such as the
CALC [32] and Zig-Zag [5] algorithms.

4For readers familiar with Calvin: this read-only transaction (T5)
is not the same as the low-isolation snapshot-read transactions [38],
as the former needs to be totally ordered.

3.6 Migration Cost Analysis
The cost of MgCrab is summarized in Table 1.
Downtime. There is no downtime because the clients see the

results from the winner nodes. The handover of winner nodes is
seamless on a per transaction basis.

Aborted Transaction. Since the source can continue executing
transactions and the data are always available during the migration
period, there is no transaction that needs to abort due to the live
migration.

Throughput Drop and Increase in Latency. There is no ex-
pensive agreement protocol (e.g., 2PC) in MgCrab for ensuring
data consistency between the source and destination nodes. Fur-
thermore, a foreground push can be performed very fast by a trans-
action on the source node as the source does not wait for the same
transaction on the destination node to receive and process the data.
If the destination node lags behind in physical time, the migration
controller on the destination receives and puts the pushed data into
the buffer and let the transaction read them locally later. Also, the
transaction latency perceived by a client is at least as short as that on
the source node. Therefore, MgCrab has little impact on the trans-
action latency. The same argument applies to the system through-
put.

Extra Data Transferred. Since the data locations are certain to
every transaction, there is no “false” push that transmits additional
data not required by the destination. Moreover, unlike most exist-
ing source-based approaches [3, 12, 14, 24], the updates to the mi-
grating data are not transmitted to the destination. In MgCrab, the
destination node computes these updates by executing the incoming
transactions deterministically. In effect, MgCrab trades computing
for communication overhead. This is worthwhile for most OLTP
applications as the transactions are generally short and the commu-
nication overhead (in distributed transactions) is a major reason for
the slowdown of the system performance [13, 39].

Migration Time Trade-Off. To shorten the migration time, one
can set a larger chunk size for the background pushes. Calvin [38]
uses the conservative two-phase locking in concurrency control.
Therefore, a BgPush transaction (in phase two) on the destination
node blocks all conflicting read-only and read-write transactions.
A larger chunk size can impact the performance of the destina-
tion node. However, the overall system performance depends on
the winner node. A BgPush transaction (in either phase one or
two) on the source node does not block other transactions, thus the
source node is likely to win and renders the system performance
less affected by large chunks. Furthermore, there are optimizations
that make the system even less sensitive to the large chunks. We
will discuss this in Section 4.

4. PRACTICES
In this section, we discuss how to apply MgCrab to real world

situations and present some optimizations.

4.1 Pipelining of 2-Phase Background Pushes
A naive implementation of two-phase background pushes may

suffer from a drawback: since each background push spans two
totally ordered transactions, the overall migration time may be pro-
longed. To avoid this issue, we pipeline the two-phase background
pushes. That is, we merge the second phase of the previous back-
ground push and the first phase of the next background push into
one transaction, as shown by T7 in Figure 3. This transaction is still
lightweight on the source node. Furthermore, the number of (to-
tally ordered) transactions for two-phase background pushes now
becomes similar to that of one-phase pushes. Figure 13(c) demon-
strates the effectiveness of the pipelining.
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Figure 5: Execution of a distributed transaction during the
crabbing phase. The other partition sees the pushes from the
winner partition.

4.2 Supporting Distributed Transactions
MgCrab can readily integrate with the default transaction pro-

cessing in Calvin [38]. Normally (without migration), if two nodes
have data to be accessed by a distributed transaction, their execu-
tors first read the data in the transaction’s read-set respectively from
their own storage, then push to each other the missing data on the
opposite node. Once getting all the data in the read-set, both ex-
ecutors run the transaction following the transaction logic and then
write the results belonging only to their respective data partition
into the storage. There is no need for synchronization (e.g, dis-
tributed 2PL or 2PC) as the transaction is processed deterministi-
cally and the two executors always write consistent data.

When data are being migrated from a source to a destination
node (in the crabbing phase in MgCrab) and the source gets in-
volved in a distributed transaction, each other node involved in the
same transaction can process the transaction by simply regarding
the source and destination nodes as a single node. For example,
suppose a distributed transaction T reading data {B,C,E} and
writing {A,F} is being executed by the source node in an environ-
ment where the source node holds data {A,B,C} with C being
migrated, the destination node holds data {A,B}, and the other
node holds data {D,E, F}, as shown in Figure 5(1). The other
node observes that the record C is migrating by checking the own-
ership metadata (which was updated by an Init transaction, as
discussed in Section 3.2). Then it reads the record E (Figure 5(2))
and pushes the record to both the source and destination nodes (Fig-
ure 5(3)) by treating them as a single node. Similarly, the source
and destination nodes read {B,C} and push the data to the other
node (Figure 5(3)). If the data are not available yet on the desti-
nation node, the destination simply omits the data from its push.
After receiving {B,C}, the other node can proceed to execute T
and write F independently (Figure 5(4)). Similarly, the source and
destination nodes write A and {A,C} respectively and there is no
need for a synchronization protocol to maintain the consistency of
data written by the three nodes. Note that the other node receives
two pushes (Figure 5(3)). When there is no missing data in the des-
tination node’s push (in the later migration period), the other node
can benefit from the winner node (as clients do) to process T more
quickly.

4.3 Supporting Range Queries
Like Squall [13], MgCrab supports the fine-grained range parti-

tions [36] in the storage as well as transactions with range queries.
In addition, it can be extended to support range queries more effi-
ciently. Suppose there is a query that reads a large range of data. In
the crabbing phase, the executor on the source node will push the

Source Partition
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{C}

Executor

1. Tx: 

R(A, B)  W(C)

3. Push A, B
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2. Read A, B
4. Write B, C

Figure 6: Execution of a transaction during the caught-up
phase. Source partition does not access the migrated data and
only pushes data not available on the destination.

entire data in the range to the destination node when processing the
enclosing transaction. This foreground push, with a large data vol-
ume, may prolong the transaction on the source node and result in
performance degradation (especially in the beginning of the crab-
bing phase). One can minimize this problem by letting the source
and destination nodes switch to a master-slave mode for this par-
ticular type of transactions. Unlike in the normal case (which we
called the multi-master mode) where the destination node executes
the transaction actively and writes its own results, the destination
node does not execute the transaction in the master-slave mode. In-
stead, it waits for the results pushed from the source and then writes
the received data it owns into the storage. Although this results in
additional data being transmitted, the advantage is that it avoids
pushing large data in the foreground. The consistency is not sacri-
ficed, and the destination node can write the same data as if it was
in the multi-master mode.

Note that the switching needs to be deterministic on a per trans-
action basis. To ensure this, we let the source and destination nodes
deterministically enter the master-slave mode if the read-set of a
transaction is larger than a data chunk pushed in the background.
Also note that the data locations are still always certain—even if a
range is partially migrated, the locations of the corresponding data
chunks are tracked in MgCrab. Different from Squall where the
source node needs to abort a transaction if the transaction accesses
a range that is partially migrated, the source node can always pro-
cess the transaction in MgCrab due to the “crabbing.”

Chunk Reordering. The master-slave mode introduced in Sec-
tion 4.3 may slow down the migration of active data because only
the data written by a transaction and owned by the destination are
migrated. To speed up transmitting the active data, one can let
the background-push process reorder the data chunks. When the
source executor enters the master-slave mode for a transaction, it
flags the data chunks that overlap with the transaction’s read-set
such that the background-push process will push these chunks first
(specifically, in a higher priority following a deterministic rule).

4.4 Slow or Fast Destination
In MgCrab, the winner nodes of transactions that arrive during

the crabbing phase may change over time. In the very beginning of
the crabbing phase, the source node is likely to be the winner for
each transaction, as the destination node may not have sufficient
data and need to wait for the foreground pushes. However, as the
destination node accumulates more and more data, the winner will
be decided by the running speed of individual machines (taking into
account the hardware speed, workload, etc.). So far, we assume that
the destination node runs at a similar speed with the source. Next
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we discuss how to extend MgCrab to handle destinations that are
either too slow or fast.

Slow Destination. This may happen, for example, in consoli-
dation scenarios where data are migrated to a machine with an ex-
isting workload in order to shutdown the source. If its aggregated
workload is too high, the destination node may never catch up dur-
ing the entire crabbing phase, resulting in the waste of computing
resources. To help the destination node catch up, MgCrab intro-
duces an optional phase, called the catching-up phase, between the
initial and crabbing phases. In this phase, the source and destina-
tion nodes execute every transaction using the master-slave mode
introduced in Section 4.3 so that the destination node can use its
full power to catch up with the source before entering the crabbing
phase. Another way to prevent a slow destination is to let the sys-
tem controller (see Figure 1) generate better migration plans based
on the statistics and SLA [9, 29, 36].

Fast Destination. This is common in scale-out scenarios where
the source node is overloaded and/or the destination node is a new
machine. When the destination node runs faster in the later crab-
bing phase, executing transactions on the source offers little help
to performance but rather wastes the computing resources. To con-
serve computing on the source node, MgCrab introduces another
optional phase, called the caught-up phase, between the crabbing
and termination phases. In this phase, the source node stops updat-
ing data that have been migrated and executes a transaction only
when the required data are not available on the destination. Fol-
lowing the example shown in Figure 4, suppose now the source
partition has already migrated {C} to the destination via previous
transactions, as shown in Figure 6. Because it no longer updates C,
if there is a transaction T that reads {A,B} and writes C (Figure
6(1)), the source node only reads and pushes {A,B} to the desti-
nation (Figure 6(2)(3)). After that, it marks on the metadata that
B has been migrated and does not access B anymore. This not
only makes T run faster on the source node, but also allows the
source node to skip all later transactions not accessing A, thereby
more quickly alleviating the overloaded source. Note that the data
{B,C} on the source node have no impact on the consistency (as
they are no longer read) and will be deleted as usual after the ter-
mination phase.

The source and destination nodes need to enter the caught-up
phase at the same logical time to preserve the determinism. MgCrab
accomplishes this by issuing a special transaction request, which is
totally ordered with other user transactions. Figure 3 shows the
switching from the crabbing phase to the caught-up phase. After
the switching, all later user transactions that touch the migrating
records will run on the destination node. In practice, this switching
can happen as early as 1) the amount of data pushed in the fore-
ground converges, and 2) there is no pending tagged data chunk in
the background (see Section 4.3).

4.5 Concurrent Migration Plans
Once the system controller broadcasts a new partition plan (see

Figure 1), the machines may infer more than one migration plans.
These migration plans can be executed concurrently to speed up the
reconfiguration of data partitioning. Generally, there is no problem
in running multiple instances of MgCrab on multiple nodes. How-
ever, if a node involves in too many migration tasks at the same
time, it may have to execute a large portion of transactions in the
system (because of the “crabbing”) and become a hotspot. One way
to avoid this problem is to 1) group the migration tasks such that
every node involves in only few migration tasks in each group [13];
and 2) run the tasks in different groups serially.

4.6 Supporting Disk Storage
As discussed in Section 3.3, a background push in MgCrab is

very lightweight on the source node thus can minimize the impact
on system performance. This offers a significant advantage in a sys-
tem equipped with the disk-based storage where reading/writing a
data chunk from/to the disk-based storage is very slow. MgCrab
can be further optimized to prefetch [38] the data chunks on the
source node to reduce the processing time of the BgPush transac-
tions in the first phase. In addition, the destination node can write
the data chunk into the storage asynchronously in the second phase
in order to speed up and catch up with the source node faster. The
asynchronous writes do not have an impact on the correctness in
the presence of failures as the chunks can be recreated by replaying
the request logs during the recovery process (see Appendix A).

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of MgCrab. We

implement MgCrab on top of an open-source database system. We
also implement Calvin [38] for distributed deterministic transaction
processing. Details about the system and our implementation can
be found in Appendix B. The chunk size of the background pushes
is set to 15000 records by default. The experiments are conducted
on a cluster where each machine is equipped with an Intel Core i5-
4460 3.2 GHz CPU and 32 GB RAM and running 64-bit CentOS 7.
The nodes in the cluster are interconnected by a 1Gbps switch. For
comparison, we also implement the following two live migration
approaches.

Stop-and-Copy: when a migration starts, the migration con-
troller on the source node issues a distributed transaction that locks
both the source and destination nodes and then performs data mi-
gration. All conflicting transactions are blocked until this transac-
tion completes.

Squall [13]: a migration begins with a distributed transaction
that updates the metadata on the source and destination nodes. Then,
each transaction request accessing the migrating data is routed (via
the scheduler) to the destination node by default. However, if the
data are all available on the source node, the transaction will be
routed to the source node. Squall has been shown to outperform
other live migration techniques, like Zephyr [15], and is designed
specifically for deterministic database systems. One key difference
between the original Squall on H-Store [18] and our implementa-
tion is that the transactions on H-Store are processed sequentially
by a single thread; while transactions on the Calvin/our system are
processed concurrently by multiple threads. Also, Squall proposes
some techniques for live reconfiguration targeting multiple concur-
rent migration plans. Since our focus is on improving the execution
of a single migration plan, we do not implement these live recon-
figuration techniques.

5.1 Scenarios & Workloads
Our experiments measure how well the above approaches are

able to fulfill a single source, single destination migration plan in
different scenarios, including scaling out and cluster consolida-
tion. We use a cluster with 3 nodes. In the scaling out scenario,
the source node, destination node, and the other node hold two,
zero and one data partitions initially and the goal is to migrate one
partition of data from the source to the empty destination. In the
consolidation scenario, each node holds one partition initially and
the goal is to migrate the partition held by the source node to the
destination.

We employ two OLTP workloads, the YCSB and TPC-C, in our
evaluation. Transaction requests are submitted from 600 and 180
client threads running on 3 nodes in YCSB and TPC-C workloads
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Figure 7: System performance during scaling out. The first and second vertical solid lines denote the start and end of migration
respectively. In MgCrab, the vertical dash line denotes the beginning of the caught-up phase.

respectively. Each client submits transaction requests to a partition
node in a closed loop, i.e., it blocks after submitting a request un-
til the result is returned. In MgCrab, the client can issue the next
transaction request once getting the result from the winner node (ei-
ther the source or destination node) during the migration. In each
experiment trial, we warm up the DBMS for 150 seconds before
collecting the measurements. Latencies are measured as the dura-
tion from the time a client submits a transaction request to when it
receives the result.

YCSB [8]: the Yahoo! Cloud Serving Benchmark (YCSB) is a
collection of workloads that simulate a large-scale online service.
We use a YCSB database consisting of a single table with 1.5 mil-
lion records (half a million records in each partition). Each tuple
has 10 columns including the primary key. Each column of a tuple
contains a randomly generated string of 100 bytes. The workload
consists of 85% read-only transactions and 15% read-write trans-
actions. Each read-only transaction reads two records in the same
partition. And each read-write transaction reads and updates a sin-
gle record and then inserts another new record to the same partition.
The keys of the records are selected from the Zipfian distribution
specified by YCSB.

TPC-C [31]: the TPC-C benchmark simulates a warehouse man-
agement system. It consists of nine tables and five types of transac-
tions. Here we focus on the New-Order transactions and Payment
transactions, which are both read-write transactions and together
contribute 88% of the standard TPC-C workload. We create 20
cold warehouses and one hot warehouse, where the hot warehouse
receives transaction requests from 10 times more clients than a cold
warehouse does. In the scaling out scenario, the migrating partition
consists of the hot warehouse, and the remaining partitions contains
10 cold warehouses each. As compared to the YCSB workload,
TPC-C has much longer transactions, and there are roughly 10% of
the transactions that are distributed across multiple partitions.

5.2 Scaling Out
We first evaluate how well the live migration approaches perform

in the scaling out scenario, where the source node is overloaded and

the goal is to transfer half of its workload to the destination node
via data migration.

YCSB. Initially, the source, destination, and the other nodes have
1, 0, and 0.5 million records respectively. We migrate 0.5 million
records (one partition) from the source to destination nodes. Each
partition has 200 client threads submitting requests to it from client
nodes. The changes of system performance during the migration
are shown in Figures 7(a)(c). It is obvious that Stop-and-Copy
has the worst performance (zero throughput and extremely high
latency) during the whole migration period. But it gives a lower
bound of the migration time because the data transfer can be done
much more efficiently by a dedicated process than live migration
approaches. Squall is alive but gives dropped performance during
the migration. Squall uses reactive polls to migrate hot data in the
foreground and one-phase background/asynchronous pushes to mi-
grate cold data in the background. We observe that the performance
drop is mainly due to the one-phase background pushes rather than
the reactive polls because YCSB transactions are generally short
and the delays of reactive polls do not clog up short transactions
easily. However, the one-phase background push transactions are
much longer and block many other transactions. On the other hand,
the two-phase background pushes in MgCrab are lightweight on the
source node and do not conflict with foreground transactions there.
This allows the source node to maintain the performance during the
migration period. Moreover, the fewer blocked foreground transac-
tions speed up the migration of hot data. Therefore, the total mi-
gration time is reduced. MgCrab also gives a latency comparable
to Squall’s.

TPC-C. The source, destination, and the other nodes contain 11,
0, and 10 warehouses respectively. One warehouse on the source
node is hot and will be migrated to the destination node. Each cold
warehouse has 6 client threads submitting requests to it, and the
hot warehouse has 60 client threads acting with it. Figures 7(b)(d)
show how the performance changes during the migration period. It
is not surprising that the Stop-and-Copy gives similar results as in
the last experiment. However, Squall renders a significant perfor-
mance drop after the migration starts, and the major reason differs
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Figure 8: System performance during cluster consolidation.

from the one in YCSB. Generally, TPC-C transactions are much
longer than those in YCSB and have about a 10% chance to in-
teract with remote partitions. In Squall, a data object is owned by
a single machine. The reactive migration, which pulls data from
the source node, prolongs distributed transactions by involving the
destination node in these transactions. This slows down not only
the source and destination nodes but also the other nodes (see Fig-
ure 7(b)), thereby resulting in the drop of entire system throughput
and increased latency. In contrast, the distributed transactions in
MgCrab are not prolonged by the foreground pushes, because it is
the winner node that responds to the clients and interacts with the
other node in the distributed transactions (see Section 4.2). So, the
latency and system throughput become much more stable.

In addition, the asynchronous pushes in Squall result in oscilla-
tion in throughput at the later part of the migration period. This is
because each asynchronous push is handled by a (long) distributed
transaction that can easily block other transactions. On the other
hand, the two-phase background pushes in MgCrab does not block
normal transactions and has little impact on the system throughput.
We can see that after the background pushes starts (the first verti-
cal line in MgCrab in Figure 7(b)), the throughput remains stable
since both the phase 1 and phase 2 background push transactions
can be processed very efficiently on the source node. However,
once MgCrab switches to the caught-up phase (the second dash line
in MgCrab in Figure 7(b)), the background pushes start to impact
the system throughput because the destination node takes over the
transaction processing of the migrating data. Note that we choose
to start the caught-up phase at the time when the data pushed in the
foreground converges.

In Figure 7(d), we can see that with Squall the latency increases
during the migration period. This is because of the destination node
busying inserting data chunks pushed in the background. On the
other hand, the latency of MgCrab remains stable. As stated in
Section 3.1, MgCrab lets both the source and destination nodes re-
spond to clients, so the latency observed by a client is determined
by the winner node, which is the source node in this case. MgCrab
let the source node hide the cost of migrations on the destination
node.

5.3 Consolidation
Next, we evaluate the performance of migration approaches dur-

ing cluster consolidation using the YCSB workload. We make all
nodes underloaded so that we could shut down a node in order to
save resources. The source, destination, and the other nodes have
one partition initially and our goal is to move the partition on the
source node to the destination node (and to shutdown the source
node later). The other node has 50 client threads submitting trans-
action request to it, while the source and the destination node only

has 10 client threads each. The results are shown in Figure 8. We
can see that the performance is unchanged before and after the mi-
gration in all figures because the system is not fully loaded. How-
ever, the consolidation allows the system to use fewer machines.

Just as in the scaling out scenario, the Stop-and-Copy blocks all
transactions and makes the system temporarily available. In Squall,
the performance drops again when the reactive and asynchronous
migration begins. The reason is similar to the one in the scaling
out scenario—the background pushes block many transactions on
the source node. The problem is more severe here because the des-
tination node is underloaded and pulls fewer data from the source
node, leaving more data cold and be migrated through background
pushes, which in turn blocks more transactions and results in a se-
vere drop in throughput on the source node. On the other hand,
the two-phase background pushes in MgCrab prevent foreground
transactions from being blocked on the source node and allows the
source node to smoothly hand over the workload to the destination
node.

5.4 Resource Utilization
Executing transactions on both the source and destination nodes

seems to imply doubled resource utilization (and saturated system).
However, this is not true. Instead, MgCrab improves resource uti-
lization. We compare the CPU and network utilization of Squall
and MgCrab, and the results are shown in Figure 9.

As we can see, Squall and MgCrab consume resources very dif-
ferently on the source and the other node during the migration. In
Squall, we see a clear drop in resource utilization after the reactive
and asynchronous migration starts. There are two major reasons
for this. First, the reactive migration lets the destination node pull
migrating data from the source, but since only one machine can
own the data, this prolongs the distributed transactions that origi-
nally lie between the source and the other node. The network la-
tency in these distributed transactions counts into the contention
footprint, thereby slowing down the entire system, as evidenced by
the drop of resource utilization on the other node. Second, the reac-
tive pull and asynchronous push transactions may conflict with the
user transactions. This seriously impacts the performance of the
source node on serving clients and results in the drop of resource
utilization on the source node.

MgCrab avoids both of the above problems. By allowing the
source and destination machines to execute transactions concur-
rently, the distributed transactions between the source and the other
node are not prolonged by the destination. This maintains the per-
formance of the other node, as evidenced by its stable resource uti-
lization between the first solid vertical line and the dash line. Fur-
thermore, neither the phase 1 nor phase 2 background push trans-
actions conflict with the normal transactions. Thus, after the back-
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Figure 9: The CPU and network usage during the migration in the scaling out scenario with TPC-C workload. See Figure 7 for the
explanations of vertical lines.

ground pushes start, the source performance remains stable, as ev-
idenced by the resource utilization as well.

There is something else noteworthy about MgCrab. We see slightly
higher loads (in both CPU and network) on the source node dur-
ing the migration period. This is the amount of effort that the
source node spends on identifying and pushing data to the desti-
nation node. We can also see this in the later migration period in
Squall (for asynchronous pushes).

5.5 Concurrent Migration Plans
In this section, we conduct two larger scale experiments to val-

idate the efficiency of MgCrab. In the first experiment, we run 3
concurrent migration plans on a 12-node cluster, where different
migrations involve different machines; while in the second experi-
ment, we run 6 concurrent migration plans on an 18-node cluster,
where each pair of destination nodes share the same source node.
We use the TPC-C workloads with the scaling-out scenario in the
following experiments.

Figure 10 shows the system throughput during the migration pe-
riod. As we can see, the impact of migrations to system perfor-
mance becomes larger when there are more nodes involved. And,
in a complex situation (Figure 10(b)), both Squall and MgCrab in-
cur a performance drop in the beginning of the migration period.
This is mainly due to the overhead of initializing migration states.
However, MgCrab still renders better performance than the base-
lines.

6. FURTHER RELATED WORK
In this section, we briefly discuss some related work not men-

tioned in Section 2.3.
The study [12] proposes the flush-and-copy technique as an al-

ternative to the stop-and-copy. During the migration, it first flushes
dirty records and then marks the source node as read-only. Any
read-write transaction on the source node is aborted and restarted
on the destination node. Although saving the system from going
down entirely, the read-only mode may not be acceptable to OLTP
applications.

Elmore et al. [14] propose the synchronous migration that relies
on replication techniques to migrate data. Like MgCrab, this tech-
nique replicates (instead of moving) data during migration. How-
ever, it uses the log shipping and an eager replication protocol to
sync the progress between the source and destination. These sync-
ing methods do not take advantages of a deterministic database
system [13] and introduce not only extra transmitted data but also
high communication overheads. Furthermore, the study employs a
failover mechanism to hand over all transactions at once, whereas

in MgCrab the handover is on a per transaction basis (via the win-
ner nodes).

In addition to Albatross [12], some studies aim to improve the
efficiency of the source-based approaches. Slack [3] minimizes
the impact of migration by throttling the rate that the data chunks
(specifically, pages) are migrated from the source to destination.
The throttling also takes into account the impact of migration on
other tenants in a multi-tenant database system. Slacker uses re-
covery mechanisms to stream updates. Madeus [24] employs a
middleware that analyzes the operations performed on the source
node and propagates only the necessary operations to the destina-
tion to synchronize the two nodes. Operations are propagated con-
currently to improve the communication efficiency. This study is
optimized for the snapshot isolation.

The destination-based approach ProRea [34] extends Zaphyr [15]
by proactively migrating hot records to the destination at the start
of migration; it also focus on snapshot isolation. Another work,
Rocksteady [20], is also a destination-based approach, which trans-
fers the ownership of migrating records at the beginning of the mi-
gration and processing incoming client requests at the destination
node. This approach reduces the time of the migration by issu-
ing multiple pull requests and taking the advantages of the thread
model of RAMCloud [27]. However, unlike MgCrab, the work fo-
cuses on key-value stores, and it does not consider how to ensure
consistency and isolation while processing transactions.

In addition to Squall [13], studies [1, 23] propose some opti-
mization techniques to improve the efficiency of live reconfigura-
tion where multiple migration tasks run concurrently in the sys-
tem. Wildebeest [1] applies both the reactive and asynchronous
data migration techniques to a distributed MySQL cluster. Minhas
et al. [23] propose a method for VoltDB that uses predefined virtual
partitions as the granule of migration. Although being orthogonal
to this paper, some techniques may be helpful in applying MgCrab
to a live reconfiguration task on these particular platforms.

PLP [28] proposes an intra-machine data migration technique
that moves data between the partitioned data structures used by dif-
ferent cores to improve concurrency. Elastic load balancing has
also been discussed in the virtual machine-based (VM-based) ap-
proaches [11, 35], where each tenant is contained in a dedicated
VM. These approaches usually focus on the “scale-up” scenarios
and make use of the VM migration techniques [7, 22] for resource
planning/allocation. The movement of data and the constraints
faced by the above techniques are very different from the inter-
machine data migration techniques we target in this paper.
Beyond transactional and operational databases, several stream pro-
cessing systems explore the use of live migration for elastic scal-
ing. While the goals of these approaches are similar to MgCrab and

11



0
30000
60000
90000

TP
5S

Stop and copy
0

40000
80000

120000

TP
5S

Stop and copy

0
30000
60000
90000

TP
5S

Squall
0

40000
80000

120000

TP
5S

Squall

100 150 200 250 300 350
Execution Time (s)

0
30000
60000
90000

TP
5S

MgCrab

100 150 200 250 300 350
Execution Time (s)

0
40000
80000

120000

TP
5S

MgCrab

(a) 3 sources, 3 destinations, 6 other nodes (b) 3 sources, 6 destinations, 9 other nodes
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other transactional migration techniques, their assumptions and re-
quirements differ. Many systems, such as [26], support simple mi-
gration through persistent queues and partitioning operators, but do
not support live migration [40]. Fernandez et al. [6] describe how to
dynamically scale-out stateful stream operators (e.g. join) by parti-
tioning the operator’s data and intelligently using check-points and
replay from upstream operators for explicit state management of
an operator. TimeStream [30] proposes “resilient substitution” that
tracks the state of an operator and it’s output dependencies, which
allows a provenance style replay to selectively rebuild an operator,
with checkpoints minimizing the amount of work to recreate state.
These projects differ in that the amount of data or state migrated
is bounded by having operators only work on a window of data.
ChronoStream [40] utilizes a strategy similar to Albatross [12] for
migration, where a destination operator is rebuilt from a local or
remote copy, and after a switch-over events are replayed at the des-
tination. Migration for these stream processing systems mainly dif-
fers by targeting the migration of only operators’ data, which can
be significantly smaller than migrating all of the persistent state
associated with a database or partition [40]. Additionally, stream
processing systems typically do not update data in-situ and instead
generate output based on immutable input data (streams). However,
transactional database migration must consider that multiple parti-
tions may invoke an in place update in the presence of multi-key
transactions and secondary record lookups.

7. CONCLUSIONS
We present MgCrab, a live migration technique, for determinis-

tic database systems. Different from most exiting migration tech-
niques, MgCrab lets both the source and destination machines ex-
ecute every incoming transaction during the migration period. We
show how such a design avoids the complexity of data ownership
tracking as well as distributed transactions that slow down the en-
tire system right after the migration starts. We also propose the
two-phase background pushes that prevent the migration transac-
tions from blocking normal transactions. In addition, we point out
some extensions and optimizations that can further improve the ap-
plicability of MgCrab as well as the system performance. Extensive
experiments are conducted on a real system and the results demon-
strate the effectiveness of MgCrab in both the scaling out and con-
solidation scenarios. MgCrab guarantees the safety and liveness.
We proof these guarantees formally in Appendix A.

Further Extensions and Future Work. This paper opens up
some interesting research directions. First, MgCrab is a live mi-
gration technique for a single source, single destination migration
plan. One may extend the system controller (e.g., E-store [36]) such

that it best utilizes MgCrab when generating a multi-source, multi-
destination migration plan (i.e., a live reconfiguration plan). Fur-
thermore, although MgCrab is proposed for deterministic database
systems, one may integrate it into a non-deterministic system by re-
quiring the system to enter a “deterministic mode” temporally dur-
ing the migration. This helps avoid the complexity and drawbacks
of non-deterministic migration techniques (e.g., [12,15]) discussed
in Section 1. The cost is that, during migration, the system will not
be able to accept ad-hoc queries because all transactions must be
totally ordered first. However, recent studies [16, 18, 33, 38] show
that this cost may be acceptable to many OLTP applications as the
clients (e.g., web/application servers) are usually optimized for per-
formance and issue queries through stored procedures. The above
are matters of our future inquiry.

8. REFERENCES
[1] Wildebeest. http://zendigital.co/wildebeest.
[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
et al. A view of cloud computing. Commun. ACM,
53(4):50–58, 2010.

[3] S. Barker, Y. Chi, H. J. Moon, H. Hacigümüş, and P. Shenoy.
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APPENDIX
A. CORRECTNESS & FAULT TOLERANCE

A live migration technique should ensure the two requirements
of safety and liveness. [15].
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DEFINITION A.1 (SAFETY). A data migration technique is
safe if it meets the following conditions: (a) transaction correct-
ness: transactions run with the correct ACID guarantees during
migration; and (b) migration consistency: a failure during migra-
tion does not leave the data and system state inconsistent.

DEFINITION A.2 (LIVENESS). A data migration technique is
live if the following conditions are met: (a) termination: if the
source and destination nodes are not faulty and can communicate
with each other for a sufficiently long period during migration,
the migration will terminate; and (b) starvation freedom: every
transaction that accesses the migrating data can eventually be pro-
cessed, despite failures that may occur.

In this section, we describe how MgCrab meets these conditions.

A.1 Consistency and Isolation
In Calvin, each executor processes transactions using multiple

threads and employs the conservative ordered locking [37, 38] to
ensure the serializability of transaction execution following the to-
tal order decided by the sequencers. The conservative ordered lock-
ing is known to be deadlock-free and has no phantom problem
[4, 19].

THEOREM A.1. In MgCrab, the conflicting transactions are ex-
ecuted serially following the total order during migration.

PROOF. Based on the study [4], this can be easily proved by the
fact that 1) the read and write sets of every transaction (an Init,
Terminate, BgPush, or a user transaction5) can be known prior
to execution; and 2) when running, each transaction first acquires
all the locks for the read/write sets and the lock requests of different
transactions are granted atomically across machines following the
total order.

Furthermore, Calvin provides the following primitive:

AXIOM A.1 (RUN TO COMPLETION). Every transaction must
run until it commits or aborts due to deterministic program logic.

Together with the conservative ordered locking, the above axiom
implies:

AXIOM A.2 (DETERMINISM). After each transaction, the data
and system state is deterministic as if the transaction and all its
precedences were executed serially following the total order.

We show that MgCrab preserves determinism in the following.

THEOREM A.2. In MgCrab, the data and system state is deter-
ministic during migration.

PROOF. We prove this theorem by contradiction. Axiom A.2
ensures that the first transaction in MgCrab begins with a consis-
tent data and system state. If the transaction completes but leaves
the system state inconsistent, then, with the serializability guaran-
tee given by Theorem A.1, the reasons could only be 1) the trans-
action logic writes inconsistent data; and/or 2) the transaction is
aborted by the system. Based on our discussions in Sections 3 and
4 of the main text, each transaction in MgCrab writes data consis-
tently regardless of the phase it is in and the mode it uses. Thus
the cause can only be the latter. However, because this contradicts
with Axiom A.1, the transaction leaves the system state consistent.
Applying the above argument to the second transaction and so on,
we obtain the proof.

Theorem A.2 implies that transaction processing in MgCrab guar-
antees consistency and serializable isolation.
5See [37, 38] on how to obtain the read and write sets of a user
transaction.

A.2 Fault Tolerance
We first explain how MgCrab ensures the atomicity and dura-

bility in transaction processing. Our failure model assumes that
all messages are transferred using reliable communication channels
that guarantee in-order, at most once delivery. We take into consid-
eration node crashes and network partitions, and that a node failure
does not lead to loss of data (e.g., logs) in the persistent storage.
However, we do not consider malicious node behavior.

One salient feature of a deterministic database system is that the
fault tolerance mechanisms can be greatly simplified [18, 37, 38].
Calvin lets multiple machines store the same copy of a data par-
tition in a data center. One machine is selected as the primary
partition to serve transactions in normal cases while the others,
called secondary partitions, actively replicate the data/updates by
running the same transactions. If the primary partition fails, a sec-
ondary partition takes over immediately (and deterministically). To
recover a failed machine, Calvin relies on the UNDO logs kept
during transaction processing to rollback transactions (either com-
plete or incomplete) until a checkpoint. Then it replays the request
logs kept during scheduling to bring the machine back to the latest
state. The replay of logged transaction requests follows the same
total order, and therefore is idempotent (see Axiom A.2). Note that
transactions do not keep the REDO logs, as there is no need for
the ARIES-like recovery algorithm [25]. Furthermore, Calvin sup-
ports fast checkpointing such as the CALC [32] and Zig-Zag [5]
algorithms.

MgCrab leverages the above mechanisms to ensure high avail-
ability and fault tolerance. MgCrab lets the secondaries participate
in a migration task in the exactly same way as the primary does.
Source machines process a transaction in the same manner but only
the primary machine pushes data to the destination machines (either
in the foreground or background). This guarantees a strong consis-
tency between 1) the source and destination primaries; and 2) a pri-
mary and its secondaries. If the source or destination primary fails
during the migration, a secondary can take over immediately and
deterministically. Furthermore, if network failure happens during a
migration, the source node and the destination node can still keep
processing transactions that are not conflicting with the current mi-
gration transaction. The migration transaction and its conflicting
user transactions will halt, but they will not hurt the consistency of
data and system states since their total order has been determined.

In an extreme case where a primary and all its secondaries fail at
the same time, the migration halts and MgCrab instructs the system
to stop accepting transactions that access the migrating data. The
availability level here is the same as when the machines holding mi-
grating data all fail in non-migration cases. To recover the machine
and migration state, MgCrab rollbacks the transactions on both the
source and destination nodes (including secondaries) until the last
checkpoint, then replays the request logs after the checkpoint fol-
lowing the total order to bring the system back to the latest state.
Note that the replay is idempotent because each migration opera-
tion is performed in transactions (e.g., Init, Terminate, and
BgPush transactions) and Theorem A.2 guarantees determinism.
After the machine and migration state recovers, MgCrab instructs
the system to accept incoming transactions and continues the mi-
gration progress. It can be easily seen that MgCrab ensures the
atomicity and durability of transactions.

Safety and Liveness. Next, we prove the safety and liveness of
MgCrab.

THEOREM A.3. MgCrab is safe.

PROOF. From the above discussions, we can see that MgCrab
runs transactions with full ACID guarantees. Furthermore, MgCrab
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Figure 11: The system architecture of our core database sys-
tem.

performs all data migration operations in transactions (including
Init, Terminate, BgPush, and user transactions), so we can
prove the migration safety (Definition A.1(b)) by considering only
the transaction correctness (Definition A.1(a)). Hence the proof.

THEOREM A.4. MgCrab guarantees liveness.

PROOF. We first prove that the migration terminates if there is
no failure (Definition A.2(a)). In MgCrab, the migration terminates
after the Terminate transaction. This transaction must be created
because the migrating data has a limited size so there must be an
empty BgPush transaction that triggers the Terminate transac-
tion (see Section 3.4 of the main text). Next, we show that transac-
tions in MgCrab are free from starvation (Definition A.2(b)). After
an arbitrary sequence of failures, the source and destination will
have a consistent state because each replay of request logs is idem-
potent. Therefore, the migration can resume and every transaction
arriving during the migration period will eventually be processed.
We obtain the proof.

B. SYSTEM ARCHITECTURE
We implement MgCrab on an open source database system and

extend the system to be a distributed, deterministic database system
following Calvin [38]. Each server node contains a core database
system and a distributed system module. A core database system
only deals with the data stored in the local storage. A distributed
system module manages the actions that need to collaborate with
other nodes. Both systems have been running for more than one
year to serve our R&D prototypes, and are briefly introduced in the
following.

B.1 Core Database Systems
Figure 11 shows the architecture of our core database system.

The architecture is based on IBM System R, a classical DBMS de-
veloped in the 1970s. All the fundamental components of a single-
node DBMS, such as file manager, buffer manager, record man-
ager, concurrency control manager, query parser, query planner and
query optimizer, are implemented in the system. It can be roughly
divided into a query engine and a storage engine.

The query engine (between the Native API and Storage API)
accepts SQL statements and translates them into executable plans
represented by relational algebra. Each algebra has a (or several)
predefined way to access the storage engine. The query planner is
responsible for finding the “best” (i.e., of lowest cost) plan tree for
each SQL statement. Note that we only slightly modify the code
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Figure 12: The system architecture of our distributed deter-
ministic system.

here without strictly following the standard (e.g., SQL-92), but it is
enough to run most research benchmarks rigorously.

The storage engine (under the Storage API) takes the responsibil-
ity of storing and retrieving records from the file system. The sys-
tem is a disk-based DBMS, and it puts all records on non-volatile
storage and organizes the physical structure of files itself. To mini-
mizing I/O times, we enlarge the buffer pool to cache file blocks in
memory. The system employs multiple buffer replacing strategies,
such as the Clock strategy, to reduce the chance of swapping. To
ensure durability, the system logs all changes made by transactions
and implements the Write-Ahead Logging. It also implements an
ARIES-like recovery manager to handle failures. The system peri-
odically performs quiescent checkpointing. For concurrency con-
trol, it implements the strict 2PL as well as the multiple-granularity
locks to prevent phantoms due to insertions. In addition, it employs
B-Tree indexes to speed up searches.

To support determinism, we modify the components of transac-
tions processing (which are colored in black in Figure 11). We
implement the conservative locking and record the parameters of
stored procedures as described in Calvin [38]. We also enhance our
stored procedure manager to so that it can extract the read and write
sets from each transaction.

B.2 Distributed Deterministic Systems
Our distributed system implementation is based on Calvin [38].

Figure 12 shows the architecture of our distributed system, which
consists of three main modules: the core module, the communica-
tion module, and the Distributed Deterministic (DD) module. The
core module is basically a simplified version of the database system
described in the last section. The communication module handles
the group communication between servers and clients. When re-
ceiving requests from the clients, our system employs the Paxos
protocol (precisely, the Zab protocol) to reach the global consensus
about the order of each incoming requests so that all server nodes
can process the transactions in the same order. The ordered requests
will be forwarded to the DD module on every server for transaction
management and concurrency control.

The DD module will process the total ordered requests, create
the transactions and then make sure they will be executed in the
same order on every server by leveraging the conservative lock
technique. Finally, when it comes to reading or writing a record
during the execution of a transaction, the core module will be called
and we can obtain the records by accessing database (via an ex-
ecutable plan). In short, the communication module handles the
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network communication, the DD module handles the transaction
management, and the core module handles the jobs that a single
node should do.

The communication module takes the responsibility of the group
communication between servers and clients. We use an open-source
group communication toolkit as the backbone of this module. When-
ever a server receives a batch of requests, it will first deliver the
requests to the communication module, and try to broadcast the
messages to other servers. The Paxos protocol is used here to make
sure all the servers reach a global consensus in a network of unre-
liable processors.

In distributed deterministic database system, transactions need to
be executed in the same order, which is decided by the Paxos pro-
tocol in the communication module, across all server nodes. This
is achieved by deterministic locking. The locking procedure is di-
vided into two phases, the requesting phase and obtaining phase.
A transaction first analyzes the read/write set and requests its locks
sequentially, and the locks will be maintained and stored in a queue
for each record. When a transaction actually starts execution, it can
obtain the locks only if it is in the first place in the queue, and it will
pop itself from the queue after releasing the locks. Since the locks
are stored in the queues in total order, the transactions can be exe-
cuted in parallel after the request phase without violating the global
transaction order. In the requesting phase, a transaction will ana-
lyze the read/write set and decide which server should participate
in this transaction. Only the participating servers need to request
the locks and execute the transaction. If a transaction is distributed
over multiple servers, it will have multiple participants. The par-
ticipants which have any record in the locally stored write set will
be the active participants while the ones that only have records in
the read set will be the passive participants. When the transaction
starts, it will first perform a local read on every participant node and
then all nodes will forward the results to every active participant,
which in turn will proceed to execute the transaction logic and then
apply the local writes.

In order to implement MgCrab, we modify the components of
transactions processing (which are colored in black in Figure 12).
We alter the transaction routing such that transactions accessing the
data in the migration range can run on both the source and destina-
tion node simultaneously. We also let the migration manager mon-
itor the read/write set (through the transaction manager) to record
which data have been migrated.

C. MORE EXPERIMENTS
This section shows the results of experiments that are not shown

in Section 5 due to the space limitation.

C.1 Sensitivity Analysis
Here, we investigate how each part of the design discussed in

Sections 3 and 4 improves performance. We use the same config-
uration described in Section 5.2 for the scaling out scenario with
the TPC-C workload. We start from a vanilla MgCrab with only
the foreground pushes (i.e., collaboratively executing transactions
on both the source and destination nodes) and the one-phase back-
ground pushes. Then, we add two-phase background pushes and
optimizations such as the pipelining of two-phase background pushes
(see Section 3.3) and the caught-up phase (see Section 4.4) one
by one and compare the performance of these variants. Note that
we delay the starting time of background pushes here in order to
demonstrate the individual impact of foreground pushes. Figure
13 shows the results. We can see from Figure 13(a) that the fore-
ground pushes themselves are sufficient to maintain the system
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Figure 13: A demonstration of how each part of the design dis-
cussed in Sections 3 and 4 improves the system throughput in
the scaling out scenario with TPC-C workload. The gray lines
denote the starts of background pushes and the dash lines de-
note the starts of caught-up phase.

performance right after the start of migration period. This justi-
fies the effectiveness of our “crabbing” design as shown in Figure
3. However, the performance drops right after the start of one-
phase background pushes. Replacing the one-phase background
pushes with two-phase background pushes, we can see from Figure
13(b) that the two-phase background pushes indeed improve sys-
tem performance by preventing the normal transactions (accessing
hot data) from being blocked by the background pushes (migrating
cold data). Breaking the background pushes into 2 phases, how-
ever, prolongs the migration time since the transactions running
the first and second phases of a background push need to be to-
tally ordered. We can see from Figure 13(c) that the pipelining of
two-phase background pushes indeed reduces the migration time
indeed. Finally, after the destination node has caught up, we re-
move redundant workload from the source node by enabling the
caught-up mode. As we can see in Figure 13(d), the overall per-
formance jumps because the source node can concentrate on its
own transactions now. Figure 13(e) shows the complete version of
MgCrab without delaying background pushes.

C.2 Migration Time Trade-Off
By default, we set the chunk size of a background push to 15000

records. Now, we share our evaluation of how chunk size affects the
system performance using the TPC-C benchmark. We use the same
configuration and workload described in Section 5.2 for the follow-
ing experiments. The results are shown in Figure 14. We can see
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Figure 14: The trade-off between migration time and chunk
size in the scaling out scenario with TPC-C workload. The ver-
tical dash line represents the start of caught-up phase.

that, first, using the larger chunk size reduces the migration time. If
the total amount of migrating data is fixed, sending the data using a
larger chunk size can save the overhead of communication and stor-
age access. Second, the larger chunk size has relatively little impact
on the system throughput in the crabbing phase (before the vertical
dash line) than in the caught up phase (after the vertical dash line)
since the phase 1 and phase 2 transactions of a background push
does not conflict with any user transaction on the source node, and
the source node can “hide” the migration cost by executing user
transactions actively. Third, the caught up phase where the desti-
nation node takes over the transaction processing (after the vertical
dash line) should be used with caution as it may “expose” the draw-
back of using a larger chunk size: the second phase/transaction of
a background push may be very long and block many user trans-
actions. Most previous live migration approaches also suffer from
this drawback.

In summary, MgCrab makes the migration time less sensitive to
the chunk sizes. This mitigates the trade-off between the system
performance and migration time so the system administrators can
explore more flexible configurations and spend less time on fine
tuning the system parameters. In our experiments, 15000 records
for each chunk seems to strike the balance between the migration
time and performance.

C.3 More YCSB experiments
In order to understand the impact of different types of work-

loads on MgCrab and the baselines, we adjust the parameters of
the YCSB benchmarks to conduct the following experiments. The
default settings of the benchmark is the same as in the scaling-out
scenario in Section 5.1 except that we use 300 client threads in the
experiments because 600 client threads create too heavy loads for
some settings.

C.3.1 Impact of Read-Write Transactions
We vary the ratio of read-write transactions from 15% to 50%.

We can see from Figure 15 that MgCrab outperforms Squall and
has more stable throughput on all situations because the two phase
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Figure 15: The impact of read-write transactions. The first
and second vertical solid lines denote the start and end of mi-
gration respectively. In MgCrab, the vertical dash line denotes
the beginning of the caught-up phase. TP3S stands for transac-
tions per 3 seconds.

background pushes of MgCrab are much more lightweight than the
background pushes used by Squall. In addition, we observe that
read-write transactions prolongs the migration time. This is be-
cause the read-write transactions create a high load for the storage
engine on destination node and slows down background chunk in-
sertion.

C.3.2 Impact of Read Set Size
Next, we evaluate the impact of the size of read-sets. We can see

from Figure 16 that when there are more reads in a transaction, the
migration time becomes shorter. This is because the storage engine
on the destination node receives fewer writes and can spare more
resources to process background pushes. Also, MgCrab has shorter
migration time than Squall.

C.3.3 Impact of Distributed Transactions
In our original setting of the YCSB benchmarks, there is no dis-

tributed transaction. To create a distributed transaction, we make
a transaction read one more record from another node. We con-
duct the experiments with 0%, 10% and 25% of distributed trans-
actions. Figure 17 shows the results. We can see that distributed
transactions certainly introduces considerable cost to both MgCrab
and Squall. As the ratio of distributed transactions increases, Squall
gives multiple performance drops during the migration because dis-
tributed transactions on the destination node slows down all other
nodes. MgCrab mitigates this problem by letting both the source
and destination nodes serve data to other nodes. In addition, the
two phase background pushes are lightweight and reduce the over-
head of migratiing cold data. We can see that the throughput re-
mains stable after MgCrab enters caught-up phase even when there
are lots of distributed transactions.
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Figure 16: The impact of the size of read-sets. See the descrip-
tion of Figure 15 for the meaning of vertical lines.
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Figure 17: The impact of varying the size of read-set. See the
description of Figure 15 for the meaning of vertical lines.
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Figure 18: The impact of the degree of load-unbalance. See
the description of Figure 15 for the meaning of vertical lines.

C.3.4 Impact of Load Balancing
In this experiment, we evaluate the performance of MgCrab when

the source and destination nodes have different loads. In the orig-
inal YCSB setting, the destination node has no workload and the
source node migrates a partition to the destination such that both
nodes will have the similar loads after the migration. We extend
this setting by issuing initial loads to the destination node.

Figure 18 shows the results of the experiments. First, we can see
that the migration time is much longer when there are loads on the
destination node. Because the destination node has to handle not
only the migration but also its original workloads. Second, we ob-
serve that the throughputs of both MgCrab and Squall drop at the
beginning of the migration. The reason is that there is a large num-
ber of foreground pushes/pulls at the beginning of the migration.
Inserting those data to the destination node slows down the trans-
action processing. However, MgCrab still gives higher throughput
because the dual execution allows the the winner node to hide the
latency of the slower node. Note that when the destination node has
existing workloads, it is hard to tell which node will be faster. Also
note that MgCrab does not enter the caught-up phase in Figures
18(b)(c) because the destination node, with a very busy storage en-
gine, catches up with the source node only at the time the migration
is about to end.

C.4 Comparison with Albatross
In this section, we compare MgCrab with a baseline, Albatross

[12], that executes transactions on the source node. We adapt the
idea of Albatross such that it can run on and take advantage of a
deterministic database system. We call this adaptation Albatross+.
We run the Albatross+ and MgCrab in the scaling-out scenario with
the TPC-C workload described in Section 5.1.

We can see from Figure 19 that both Albatross+ and MgCrab
have very stable throughput at the beginning of the migration be-
cause Albatross+ executes transactions on the source node and MgCrab
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Figure 19: The changing of throughput during scaling-out a
cluster under the TPC-C workload. See the description of Fig-
ure 15 for the meaning of vertical lines.

has the dual execution. However, Albatross+ has to perform an
atomic hand-over to migrate the changes during the migration. This
causes the partition temporarily unavailable and also blocks the
transactions accessing the migrating partition. This further blocks
other conflict distributed transactions and eventually halts the entire
system. MgCrab, on the other hand, has stable throughput during
the entire migration and does not require such an handover.
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