
Don’t Look Back, Look into the Future: Prescient Data
Partitioning and Migration for Deterministic Database Systems

Yu-Shan Lin, Ching Tsai, Tz-Yu Lin, Yun-Sheng Chang, Shan-Hung Wu
Nation Tsing Hua University

Taiwan, R.O.C.
{yslin,ctsai,tylin,yschang}@datalab.cs.nthu.edu.tw,shwu@cs.nthu.edu.tw

ABSTRACT
Deterministic database systems have been shown to significantly
improve the availability and scalability of a distributed database sys-
tem deployed on a shared-nothing architecture across WAN while
ensuring strong consistency. However, their scalability and perfor-
mance advantages highly depend on the quality of data partitioning
due to the reduced flexibility in transaction processing. Although a
deterministic database system can employ workload driven data (re-
)partitioning and live data migration algorithms to partition data, we
found that the effectiveness of these algorithms is limited in complex
real-world environments due to the unpredictability of machine work-
loads. In this paper, we present Hermes, a deterministic database
system prototype that, for the first time, does not rely on sophisti-
cated data partitioning to achieve high scalability and performance.
Hermes employs a novel transaction routing mechanism that jointly
optimizes the balance of machine workloads, data (re-)partitioning,
and live data migration by looking into the queued transactions to
be executed in the near future. We conducted extensive experiments
which show that Hermes is able to yield 29% to 137% increase in
transaction throughput as compared to the state-of-the-art systems
under complex real-world workloads.

ACM Reference Format:
Yu-Shan Lin, Ching Tsai, Tz-Yu Lin, Yun-Sheng Chang, Shan-Hung Wu.
2021. Don’t Look Back, Look into the Future: Prescient Data Partitioning
and Migration for Deterministic Database Systems. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD ’21), June
18–27, 2021, Virtual Event, China. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3448016.3452827

1 INTRODUCTION
There have been recent proposals for deterministic database systems
[4, 15, 25, 32, 35, 36, 40] that guarantee if a system is given the
same transactional input, all nodes in the system will always end
in the same, consistent final state. This guarantee has been shown
[35, 36] to significantly improve the availability and scalability of a
distributed database system deployed on a shared-nothing architec-
ture across WAN while ensuring strong consistency; this is mainly
because it eliminates the need for an agreement protocol (e.g., 2PC)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 18–27, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3452827

Figure 1: 30-day workloads of some nodes in a cluster owned
by Google show unpredictable, episodic changes at small time
scales and changes due to dynamic machine provisioning. Axes
x and y represent the elapsed time and CPU loads, respectively.

between replicas or partitions when processing a transaction. The
benefits drive the development of new commercial database systems
such as VoltDB [4] and FaunaDB [2] that target high-performance
applications at scale.

However, the availability and scalability advantages of a deter-
ministic database system come at costs. One major drawback is the
reduced flexibility in dynamically reordering transactions [30, 35].
This leads to a serious performance drop when, for example, the
transaction needs to wait for the next command from a user, or to
wait until the accessing data is brought from disk or remote nodes
into the buffer pool. Therefore, modern deterministic database sys-
tems [1, 2, 4, 13, 36] usually 1) drop the support of ad-hoc queries
and take only the stored procedures as input, 2) use main-memory
storage or a large buffer pool, and 3) assume the presence of highly
optimized data partitions (also called shards) that minimize the oc-
currence of distributed transactions and maximize the balance of
machine loads. This paper attempts to relax the last assumption.

It is not easy to obtain good data partitions in complex real-world
systems such as a multi-tenant/cloud database system serving vari-
ous applications around the world [10] or a trading system used by
the NYSE [22]. The workloads of each machine in these systems
are usually unpredictable and highly dynamic. In order to investigate
the effectiveness of current data (re-)partitioning mechanisms, we
use the YCSB benchmark with the loading traces of a cluster owned
by Google [28] to create a complicated and highly fluctuating OLTP
workload, and emulate the system performance using a deterministic
database system, Calvin [36]. We leave the details of the experiment
settings to Section 5. Figure 1 shows the workload traces of some
machines. We can see that the machine workloads contain many fluc-
tuations and unpredictable spikes and shifts, which are the results of
episodic events and changes of machine provisioning in the cluster.

The “look-back” approaches. We first consider data partition-
ing and re-partitioning algorithms that analyze system statistics in
the past. We implement Clay [31], a state-of-the-art online data
(re-)partitioning approach that traces the workload and migrates
“clumps” of data when the system does not meet an SLA. Figure 2

https://doi.org/10.1145/3448016.3452827
https://doi.org/10.1145/3448016.3452827

5 10 15 20 25 30
Emulation Time (Hours)

200

400

600

Th
ro

ug
hp

ut
(K

 tx
s/

15
 se

cs
) Range Partition Clay LEAP

Figure 2: The performance of a deterministic database system,
Calvin [36], with some state-of-the-art data (re-)partitioning
approaches under the Google workload.

shows how the transaction throughput changes over time when the
system uses Clay to manage its data partitions. To our surprise, Clay
does not significantly outperform a naive range partitioning. This is
mainly due to the episodic events, which limit the effectiveness of
a “look-back” scheme because the events are not predictable from
the past. Furthermore, the look-back approaches usually require an
auxiliary data migration step [9, 19] to actually migrate the data.
Under changing workloads, this dedicated migration step may incur
a long delay that makes the data partitions outdated.

The “look-present” approaches. Another branch of studies
[7, 18] aims to overcome the problem of unpredictable workloads
by focusing on the present. Instead of precomputing data partitions,
these approaches migrate records to a single node in an on-demand
manner for each individual transaction so that the transaction and the
later transactions accessing the same set of records become single-
node transactions. We implement a state-of-the-art approach called
LEAP [18], whose performance is also shown in Figure 2. We can
see that this approach performs better than the naive range partition
and Clay, but the improvement is not significant as expected. With
further investigation, we observe that when there were many dis-
tributed transactions in the workload, LEAP tried to group records
together to benefit most from temporal locality. As a result, almost
all the active records were migrated to a single node, which creates
a bottleneck. On the other hand, if a look-present approach chooses
to balance machine loads, it may suffer from the ping-pong prob-
lem. Figure 3 illustrates two example schedules of four consecutive
transactions that access records {𝐴, 𝐵} on a two-node system, where
node 1 has {𝐴, 𝐵} initially. Both schedules evenly distribute the
transactions to two nodes, but the first schedule requires more data
migrations than the second. Unfortunately, in practice a look-present
approach will more likely produce the first schedule for load bal-
ancing since it has no knowledge about 𝑇3 and 𝑇4 while processing
𝑇2.

In this paper, we present Hermes, a deterministic database system
prototype based on the shared-nothing architecture that achieves
high transaction throughput without relying on sophisticated data
partitioning. In Hermes, the transaction routing module, which is
common in a distributed DBMS and was conventionally used to
balance machine loads, plays additional roles of dynamic data parti-
tioning and migration. It decides the route of a transaction by looking
into the future. Specifically, we propose a prescient transaction rout-
ing algorithm that jointly optimizes load balancing, dynamic data
(re-)partitioning, and live data migration by analyzing the read- and
write-sets of successively queued transactions to be executed in the

S
e

ri
a

l
O

rd
e

r

A, B

(a) Schedule 1

T1

T2

T3

T4

Node 1 Node 2

A, B

A, B

(b) Schedule 2

T1

T2

T3

T4

Node 1 Node 2

A, B

Figure 3: An example of the ping-pong problem. Each block
represents a transaction, and each dashed line between nodes
represents a data migration.

near future in the deterministic transaction processing flow.1 The
reasons why the concerns of data partitioning and migration can
be controlled by the routing module are that 1) the transaction pro-
cessing is deterministic, so given a sequence of transaction routes,
the router can “foresee” how the corresponding transactions will be
executed, including the cross-machine data movements triggered
by distributed transactions, and 2) like the look-present approaches,
Hermes migrates data on the fly with remote reads and writes of dis-
tributed transactions, so both data partitioning and migration will be
deterministic to the transaction routes. As a result, Hermes can pro-
duce the schedule shown in Figure 3(b) that simultaneously balances
machine loads, minimizes the number of distributed transactions,
and avoids ping-pong data migrations. Hermes also equips each node
with a fusion table that tracks the partitioning of hot records globally.
This table makes the system perform stably in cases of server scale-
out and consolidation because it not only facilitates the migration
of hot data but also prevents the migration of cold data (triggered
by a server scale-out or consolidation event) from interfering with
normal transaction processing. The support of dynamic machine pro-
visioning was neglected in traditional transaction routing literature,
but is an important feature nowadays for large-scale, multi-tenant
systems. The following summarizes our contributions:

• We present Hermes, a deterministic database system pro-
totype. To the best of our knowledge, Hermes is the first
deterministic database system whose performance does not
rely on high-quality data partitioning unavailable in complex
real-world applications.
• We propose the prescient transaction routing algorithm that

jointly optimizes load balancing, dynamic data (re-)partitioning,
and live data migration by looking into the future.
• We propose using a fusion table to isolate the migration of

hot and cold data. This allows Hermes to maintain stable
performance in cases of server scale-out and consolidation,
which are common nowadays in a large-scale deployment.
• We discuss practical considerations and prove (in our sup-

plementary materials [3]) the correctness of the proposed
techniques.
• We conduct extensive experiments to demonstrate the effec-

tiveness of Hermes and its techniques. The results show that

1See Section 2 for why transactions queue up on modern deterministic database systems
[1, 2, 4, 13, 36] and how the read- and write-sets of each transaction are obtained.

Sequencer

Scheduler

Txn
Ex.

Txn
Ex.

Storage

Partition 1

Data Center A

Client Application

Data Center B

Migration
Controller

Sequencer

Txn
Ex.

Txn
Ex.

Storage
Migration
Controller

Partition 2

a

b

c

e

Scheduler

Batch of requests Batch of requests

d

Figure 4: The system architecture of Calvin [36] (Txn Ex. stands
for Transaction Executor). This system requires high-quality
data partitions to deliver high performance.

Hermes is able to yield 29% to 137% increase in transac-
tion throughput as compared to the state-of-the-art determin-
istic systems under complex real-world workloads. It also
responds much more quickly to the workload changes and
yields stable performance in the presence of dynamic hard-
ware provisioning.

The rest part of the paper is organized as follows. We give some
background knowledge of deterministic database systems in Section
2, followed by the introduction of Hermes in Section 3. We then
discuss some practical considerations in Section 4, and evaluate the
performance of Hermes in the next section. Section 6 reviews related
work and finally, Section 7 concludes the paper.

2 BACKGROUND
In this section, we introduce Calvin [36], a deterministic database
system that will be used as the baseline system when describing
Hermes in later sections. Note that our proposed techniques can be
applied to other deterministic database systems as well.

2.1 Deterministic Database Systems
Figure 4 shows the architecture of Calvin. Each node in a data center
has a sequencer, a scheduler and multiple transaction executors. To
make the results of transaction execution deterministic to the input,
Calvin ensures that 1) all machines process transactions in the same
total order, and 2) all sources of non-deterministic transaction aborts
are eliminated. These goals are achieved by processing a (distributed)
transaction as follows. First, the sequencers (Figure 4(a)) receive
transaction requests issued from the clients and use a total ordering
protocol such as Paxos [16, 17] or Zab [27] to determine a total
order for these requests. Note that the sequencers usually order a total
number of batches of requests, each made by an individual sequencer,
in order to improve efficiency. Then, each sequencer forwards the

totally ordered transaction requests to the scheduler residing on
the same node (Figure 4(b)). The scheduler determines if the node
should ignore or process the request. The scheduler will then forward
the request to a transaction executor (Figure 4(c)) if the read- or write-
set of the request overlap with the data stored locally. The transaction
executor, after receiving the request, will start a transaction and
obtain locks following the conservative ordered locking protocol to
avoid deadlocks and non-deterministic transaction aborts. Note that
if there is a distributed transaction that reads records from multiple
nodes, all machines having the records will have to execute the
transaction by reading the records and sending them to the machines
owning the data to be written by the transaction (Figure 4(d)). Once
the read-set is collected, the machine owning the data to be written
performs transaction logic, writes the data it owns, and commits the
transaction. Calvin also makes some changes to the storage engine
to eliminate other sources of non-deterministic transaction aborts.

Note that Calvin, and most existing deterministic database sys-
tems, assume that the read-set and write-set of a transaction are
known before the transaction starts. Since modern OLTP applica-
tions usually access the database via stored procedures, this may
not be a too strong assumption. If the read-set and write-set cannot
be directly determined from a stored procedure, Calvin will use an
Optimistic Lock Location Prediction (OLLP) protocol that prepends
light-weight reconnaissance transactions to the transaction corre-
sponding to the stored procedure to determine the read-/write-set.

Calvin guarantees strong consistency and is able to ensure high
system availability even when the nodes are deployed across the
WAN. Every data center shown in Figure 4 contains a full replica of
data and can be placed in a geographically separated region. With
the help of determinism, there is no need for an expensive 2PC
to ensure the consistency between the replicas. As compared to
traditional, non-deterministic database systems, Calvin also offers
the advantage that the distributed transactions can be processed in
a more lightweight manner without the need for the 2PC protocol.
This advantage can lead to increased scalability when data in storage
are carefully partitioned such that distributed transactions are rare
and workloads of machines are balanced.

However, without high-quality data partitions, Calvin and most
existing deterministic database systems cannot improve the system
throughput and scalability [30, 40]. This is because the conservative
ordered locking protocol used by the transaction executors forbids
conflicting transactions from being dynamically re-ordered, which
is allowed in traditional 2PL. So, any stall in a transaction blocks
all following conflicting transactions in the total order and leads to
the clogging problem [35]. To avoid this problem, recent studies
have proposed dynamic data re-partitioning [31, 33] and live data
migration [8–10, 19] techniques trying to improve the quality of
data partitions so as to minimize the stalls due to network delay in
distributed transactions and overloaded machines. However, given
real-world, complex workloads like the one shown in Figure 1, it is
hard to find good data partitions using these techniques. It is thus
crucial to devise a new approach that allows a deterministic database
system to achieve high performance without relying on high-quality
data partitions.

3 HERMES
In this section, we present Hermes. For ease of presentation, we
use Calvin (see Section 2) as the baseline system, and assume that
the read-set and write-set of a transaction are available before the
transaction starts. Otherwise, the system runs OLLP [36] to first find
out the read- and write-sets. We also assume that each machine node
contains only one data partition, although it is easy to extend our
design to a system, such as H-Store [13], where a node contains
multiple partitions.

3.1 Overview
Observe that a deterministic database system such as Calvin com-
piles transaction requests into batches for better efficiency when
totally ordering transactions. This gives us an opportunity to under-
stand workloads in the near future. Based on this observation, we
redesign a deterministic database system such that it can leverage
the insights to future workloads to process transactions, partition
data, and migrate data more efficiently and smoothly. We name this
new architecture Hermes.

Hermes differs from Calvin in some key aspects. Schedulers. In
the scheduler of each node (see Figure 4), we replace the transac-
tion routing algorithm with the prescient transaction routing whose
details will be given in Section 3.2. The original algorithm routes
a transaction to all nodes storing records to be written by the trans-
action. In Hermes, a transaction is always routed to only one node
(which we call the master node). Furthermore, instead of processing
each transaction request one by one, the scheduler takes a batch of
requests as input, analyzes the batch, and determines the routing
schedule for all the requests in the batch at once. Note that, as long
as the routing algorithm is deterministic, each scheduler can perform
this action on its own without any additional network communica-
tion.2 Executors. We also modified the transaction executor of each
node such that a distributed transaction migrates the remote records
it reads and writes to the master node. So, data migrations happen on
the fly with the remote reads and writes performed by a distributed
transaction on the master node. This technique is known as data
fusion and has been used by existing look-present schemes [7, 18].
With the help of the prescient transaction routing, Hermes general-
izes the idea of fusing the records of a single transaction to fusing
the records of multiple transactions in a batch, avoiding the draw-
back of ping-pong data migration in the look-present approaches.
Fusion table. Hermes also has a major system component called
fusion table, which does not exist in Figure 4. In each scheduler, the
prescient transaction routing defines fine-grained partitioning of data.
Hermes employs a global fusion table, denoted as F, to book-keep
the partitioning. This table consists of multiple (record key, partition
ID) pairs and needs to be accessed by all schedulers in the system.
In order to ensure speedy accessing and to avoid additional network
communication, Hermes replicates this table across all schedulers
running on different nodes and leverages the determinism provided
by a deterministic database system to ensure consistency between
the replicas. Since the prescient transaction routing run by each
scheduler is a deterministic algorithm, each replica always yields the

2See Section 2 for how a scheduler routes a transaction request and how the Executor
on the same node runs the transaction deterministically.

same result given the same totally ordered transaction requests. Fur-
thermore, Hermes puts the fusion table in the main memory of each
node. To prevent the fusion table from becoming arbitrarily large,
Hermes limits the size of the fusion table by using a deterministic
replacement strategy to be described in Section 4.1 and tracking only
the partitioning of hot records. Hermes uses a naive, static range par-
titioning to store cold data. Such a design has implications to system
performance in the presence of dynamic machine provisioning. We
will discuss this in Section 3.3.

3.2 The Prescient Transaction Routing
Given that the transaction processing is deterministic to the total
transaction ordering and that data are migrated alongside distributed
transactions, a transaction routing algorithm in Hermes can control
not only the machine loads but also data partitioning and live mi-
gration. We propose the prescient transaction routing algorithm that
looks into the read- and write-sets of transactions in a batch to 1)
minimize (the cost of) distributed transactions while simultaneously
balancing machine loads, and 2) avoid the ping-pong data migration
problem shown in Figure 3.

3.2.1 Objective. Given a batch of transaction requestsB = {𝑇𝑖 }𝑏𝑖=1,
where 𝑏 is the batch size and 𝑇𝑖 is a transaction request, and the
current data partitioning P0 = {𝑃𝑖 }𝑛𝑖=1, where 𝑛 is the number of
machines in the system and 𝑃𝑖 is a data partition owned by a node,
we formally define the goal of the prescient transaction routing as

argminB′,1≤𝑥1, · · · ,𝑥𝑏 ≤𝑛
∑𝑏
𝑖=1 𝑟 (𝑥𝑖 ;𝑇𝑖 ∈ B′, P𝑖−1),

subject to 𝑙 (𝑃) ≤ 𝜃,∀𝑃 ∈ P𝑏 ,
(1)

where B′ is a permuted batch where transaction requests are re-
ordered, 𝑥𝑖 is the route (destination machine ID) of the transac-
tion request 𝑇𝑖 in B′, P𝑖−1 is the updated data partitioning after
executing transactions 𝑇1, · · · ,𝑇𝑖−1 with on-the-fly data migrations,
𝑟 (𝑥𝑖 ;𝑇𝑖 , P𝑖−1) is the number of remote records in the read-set of the
transaction request 𝑇𝑖 given the latest data partitioning P𝑖−1 if we
route𝑇𝑖 to the node 𝑥𝑖 , and 𝑙 (𝑃) is the load of a partition 𝑃 in the final
partitioning P𝑏 after all transactions in B’ are routed. For simplicity,
we define 𝑙 (𝑃) as the number of transactions routed to partition 𝑃

in P𝑏 . Note that minimizing
∑𝑏
𝑖=1 𝑟 (𝑥𝑖 ;𝑇𝑖 , P𝑖−1) minimizes the the

number of both remote reads in distributed transactions and data
migrations. The constraints in Eq. (1) ensure that the load of every
partition does not exceed a given threshold 𝜃 . We define the threshold
as

𝜃 =

⌈
𝑏

𝑛
× (1 + 𝛼)

⌉
,

where 𝛼 ≥ 0 is a configurable parameter that denotes the tolerance
to imbalanced loads. We use a ceiling function to ensure that the
trivial routing plan that evenly distributes requests to machines is
always a feasible solution to Eq. (1).

3.2.2 Algorithm. The solutions 𝑥1, · · · , 𝑥𝑏 to Eq. (1) depend on
each other. If we considered all possible transaction ordering inB and
all possible routes, there will be𝑏!×𝑛𝑏 plans to evaluate. For a system
with 𝑛 = 20 nodes and a batch of 𝑏 = 20 transactions, the scheduler
has to evaluate 1026 plans, which is unlikely (if not impossible) to

Algorithm 1: The Prescient Transaction Routing

Input: B = {𝑇𝑖 }𝑏𝑖=1, P0 = {𝑃𝑖 }𝑛𝑖=1 described by the fusion table
F and static range config, and 𝛼

Output: B′ and 𝑥1, · · · , 𝑥𝑏
1 begin
2 B′ ← ∅; 𝑙𝑖 ← 0,∀𝑖 = 1, · · · , 𝑛;
3 // Step 1: Order and routes requests by minimizing remote

reads.
4 for 𝑖 ← 1 to 𝑏 do
5 find transaction 𝑇𝑖 , 𝑇𝑖 ∈ B and 𝑇𝑖 ∉ B′, and 𝑥𝑖 such that

𝑟 (𝑥𝑖 ;𝑇𝑖 , P𝑖−1) is minimal;
6 B′ ← B′ ∪ {𝑇𝑖 };
7 add entries with read/write-sets of 𝑇𝑖 as keys and 𝑥𝑖 as

value to F to get P𝑖 ;
8 𝑙𝑥𝑖 ← 𝑙𝑥𝑖 + 1;
9 end

10 // Step 2: Finds overloaded and underloaded nodes

11 𝜃 ←
⌈
𝑏
𝑛 × (1 + 𝛼)

⌉
;

12 𝑂 ← {𝑖 : 𝑙𝑖 > 𝜃 }; 𝑈 ← {𝑖 : 𝑙𝑖 < 𝜃 };
13 // Step 3: Reroutes requests to balance loads
14 𝛿 ← 1;
15 while |𝑂 | > 0 do
16 // Iterates through B′ backward
17 for 𝑖 ← 𝑏 to 1 do
18 if 𝑥𝑖 ∈ 𝑂 then
19 𝑥 ′ ← findNewRoute(𝑇𝑖 ,𝑈 , P𝑏 , 𝛿);
20 if 𝑥 ′ ≠ 𝑛𝑢𝑙𝑙 then
21 𝑙𝑥𝑖 ← 𝑙𝑥𝑖 − 1; 𝑙𝑥 ′ ← 𝑙𝑥 ′ + 1;
22 update 𝑂 and 𝑈 ;
23 update P𝑏 by changing the values of entries

in F having read/write-sets of 𝑇𝑖 as keys
from 𝑥𝑖 to 𝑥 ′;

24 𝑥𝑖 ← 𝑥 ′;
25 end
26 end
27 if |𝑂 | = 0 then break
28 𝛿 ← 𝛿 + 1;
29 end
30 end
31 return B′ and 𝑥1, · · · , 𝑥𝑏
32 end

be done in realtime. Hermes employs a greedy algorithm shown in
Algorithm 1 to efficiently find an approximate solution to Eq. (1).

The algorithm consists of three major steps. In the first step (lines
4-9), the scheduler reorders and routes transaction requests by min-
imizing the number of remote reads. It greedily selects the first
reordered transaction 𝑇1 and its route 𝑥1 such that 𝑟 (𝑥1;𝑇1, P0) is
minimal, and then repeats this process until all transactions are re-
ordered and routed. We consider only the remote reads here because
each write will be local and result in a data migration. After the 𝑇𝑖
and 𝑥𝑖 are found in an iteration, the scheduler updates the fusion ta-
ble F by adding records with read- and write-sets of𝑇𝑖 as keys and 𝑥𝑖
as value. This updates P𝑖 , which will affect the ordering and routing
of subsequent transaction requests in later iterations. In the second
step (lines 11-12), the scheduler finds out the overloaded partitions
𝑂 and underloaded partitions 𝑈 by counting the number of assigned
transactions in each partition. In the last step (lines 14-30), it tries

to move some transaction requests from the overloaded partitions to
underloaded ones in order to balance the loads of different machines.
When it decides which node a request 𝑇𝑖 should be routed to, it calls
a subroutine findNewRoute(𝑇𝑖 , 𝑈 , P𝑏 , 𝛿). This function returns an-
other partition 𝑥 ′ ∈ 𝑈 for 𝑇𝑖 that will not results in more additional
“remote edges” than 𝛿 . The remote edges include 1) the remote reads
of 𝑇𝑖 if 𝑇𝑖 is routed to 𝑥 ′ and 2) the reads to 𝑇𝑖 ’s write-set performed
by subsequently ordered transactions in B′ that are not routed to
𝑥 ′. At line 17, the scheduler iterates the requests in B′ backward
so that it tends to move later requests which affects less subsequent
transactions. If there are still overloaded partitions after moving all
eligible transactions, it will relax 𝛿 and try to move transactions to
balance the loads again. This process repeats until all the constraints
in Eq. (1) are satisfied.

Note that in step 1, the scheduler tends to route a transaction to
the partition that contains most data in the read-set of the transaction.
Therefore, the lines 7 and 23 and can be simplified to updating
F using only the write-set of 𝑇𝑖 as keys. After receiving B′ and
the routes produced by the scheduler, the executer (Figure 4(c))
can migrate only the data written by transactions. This allows a
data record to be concurrently read (and shared locked using the
conservative ordered locking protocol) by multiple, non-conflicting
transactions on different nodes without contending for its ownership.

3.2.3 An Example. We use an example to demonstrate how ex-
actly the scheduler routes a batch of requests. Suppose that there are
three partitions in three server nodes, and tuple {A, B} are stored
in node 1 and tuple {C, D, E} are stored in node 2. The scheduler
on each node then receives a batch of requests shown in Figure 5(a)
where each row represents a transaction request with its read-set
and write-set. We assume that parameter 𝛼 = 0 so that threshold
𝜃 = 2. After the scheduler performs the first step, ordering and
routing routes based on the counts of remote reads, it generates the
plan shown in Figure 5(b). We can see that transaction 1 (𝑇1) and 3
(𝑇3) are reordered to the end of the sequence because this sequence
generates the least number of remote reads, which is only one in the
case. If we fixed the order, there might be the ping-pong problem
in the original sequence where transaction 1, 2 and 3 may migrate
tuple C back and forth. This shows that reordering transactions can
help Hermes avoid the ping-pong issue.

In the second step, the scheduler identifies node 2 as an overloaded
node since there are 4 requests routed to it. In order to reduce the load
of node 2, it tries to reassign transaction requests on it. According to
the algorithm, it will reassign an request only if the assignment adds
no more number of remote edges than 𝛿 = 1. Moving transaction
6 (𝑇6) to node 3 only creates one more remote edge, and thus the
scheduler reassigns 𝑇6 to node 3 as shown in Figure 5(c). However,
node 2 still has higher load than the threshold so that the scheduler
tries to move transaction 5 (𝑇5) as well. At this time, it finds that
moving 𝑇5 will not create additional network transmission because
𝑇5 will migrate tuple C and 𝑇6 can reuse the same tuple. This shows
that this algorithm can balance the loads by reassigning a group of
transaction requests with temporal locality. As a result, it moves two
transaction requests but only adds one more data migration as Figure
5(d) demonstrates.

3.2.4 Cost Analysis. Now we analyze the computational cost
of Algorithm 1. There are three main steps in the algorithm, and

T1: R:{A, B, C}, W: {C}

T2: R:{C, D, E}, W: {C}

T3: R:{A, B, C}, W: {C}

T4: R:{D}, W: {D}

T5: R:{C}, W: {C}

T6: R:{C}, W: {C}
Node 1

C

S
e

ri
a

l
O

rd
e

r
Node 2 Node 3

T5

T1

T3

T4

T6

T2

Node 1

C

S
e

ri
a

l
O

rd
e

r

Node 2 Node 3

T5

T1

T3

T4

T6

T2

C

Node 1

C

S
e

ri
a

l
O

rd
e

r

Node 2 Node 3

T5

T1

T3

T4

T6

T2

C

(a) a batch of requests (b) the plan after the first step (c) the plan after the first reassignment (d) the final plan

Figure 5: An example of routing a batch of requests. The dash lines between nodes represent network transmissions.

the most expensive step is the last step, which has 𝑂 (𝑎2𝑏2𝑛) time
complexity, where 𝑎 is the maximum size of a read-set among all
the requests in B. This is much faster than the brute-force search
of 𝑂 (𝑏!𝑛𝑏) time complexity. In our experiments, we observe that
Algorithm 1 takes only a few milliseconds on average for each trans-
action under a complex workload with 𝑛 = 20 nodes and 𝑏 = 1000
requests per batch, which only accounts for 4% of the overall latency.
We treat this as a reasonable overhead since some previous work
[20, 38] also trade throughput gain with a few milliseconds delay on
OLTP workloads. Furthermore, Hermes performs this algorithm in
the scheduler so that this latency is not counted into the contention
footprint of transaction execution. The prescient transaction routing
has little impact on the system performance.

3.3 Dynamic Machine Provisioning
So far, we assume that the number of machines in a system is fixed.
In practice, one may add or remove machines corresponding to the
workload changes, but this makes the dynamic data (re-)partitioning
even more challenging. Next, we show that Hermes readily supports
dynamic machine provisioning.

Adding or removing a node involves moving a data partition 𝑃

on a node to another, where the partition contains both hot and cold
records. Existing data (re-)partitioning algorithms [31, 33] usually
assign the entire 𝑃 to a new node. However, this makes it hard for
a live migration technique [8–10, 19] to migrate the partition in a
per-transparent manner because the migration process will touch hot
data that are being accessed by current normal transactions. Hermes
migrates 𝑃 using a hybrid approach, where the (hot) data in the
fusion table are migrated using data-fusion. This can be easily done
by including the added node/partition or excluding the removed node
in the fusion table. On the other hand, the (cold) data not in the fusion
table, denoted as 𝑃−, are migrated using existing coarse-grained data
(re-)partitioning and live migration algorithms.

To migrate the hot data in 𝑃 , the schedulers (Figure 4(b)) should
be aware of the change of the physical layout. Hermes notifies the
schedulers of such changes by issuing a special transaction that will
be totally ordered so that the schedulers will include the added node
or exclude the removed node in a consistent manner. To migrate the
cold data 𝑃−, Hermes uses the asynchronous migration technique
proposed by Squall [9]. The basic idea is to break the 𝑃− into multi-
ple chunks and then migrate each chunk using a dedicated migration
transaction. With the help of the fusion table, we can significantly de-
crease the chance that the transactions for migrating chunks conflict

with normal transactions,3 making the system performance more
resilient to changes of machine provisioning.

4 PRACTICAL CONSIDERATIONS
In this section, we discuss some practical considerations of the
Hermes design.

4.1 Condensing a Fusion Table
We discuss how to control the size of the table in this Section.

The most straightforward method is to compress the table. A pre-
vious work [34] discusses how to partition a database using a lookup
table which has a similar structure to that of our fusion table. Their
report shows that the table can be compressed with a 2.2×~250×
compression factor using Huffman encoding. The specific compres-
sion ratio depends on the characteristics of the workloads. However,
the main disadvantage of this method is to trade the space with com-
puting power. Since a lookup table is a read-intensive structure, the
delay of decompression may dramatically hurt the performance of
the entire system.

Another direction is to limit the number of key-value pairs stored
in the fusion table. Once the number exceeds the limit, it has to evict
a key-value pair based on a replacement strategy. The strategy can
be any deterministic replacement strategy such as First-In-First-Out
(FIFO) or Least Recently-Used (LRU). In addition to the pair, the
system has to migrate the corresponding record back to its original
partition. To implement this strategy, we first make the scheduler
check the size of the fusion table when it routes a transaction request.
If the size exceeds the defined threshold, it will evict some keys out
from the fusion table as an evicted key-set. Then, the scheduler will
add the evicted key-set to the write-set of the transaction, which has
to migrate the evicted records back to their original partitions. Note
that this transaction can soon return to the client before it migrates
the records back, which means that the migration will not create any
additional delay to the client who issues the transaction.

We believe that limiting the size of the fusion table is reasonable
for many OLTP workloads since a large number of OLTP workloads
only has small portions of hot data. This was shown in a study [39] in
which 99.94% of workloads in Wikipedia only accessed 5% of data
in the whole database. Also, our experiments described in Section
5 show that Hermes still outperforms previous work under Google
workloads even if we limit the size of the fusion table to under 2.5%
of the database size.
3A chunk-migration transaction may still conflict with a normal user transaction if the
user transaction accesses the cold data in the migrating chunk, but this is rare.

4.2 Handling Transaction Aborts
Since a deterministic database system has eliminated all types of
non-deterministic events that may change the results of execution,
random aborts caused by the system will not happen in Hermes.
We only need to consider the aborts due to the transaction logic as
defined by users. For example, a user might request to abort if the
stock level of an item is less than the amount it needs. This kind of
abort may happen even in stored procedures. When a transaction
decides to abort, Hermes follows the traditional UNDO process to
roll back the modification of the transaction. However, the aborted
transaction still has to migrate and push records according to the
original plan generated by the prescient routing so that the following
transactions will find all the records where they expect.

4.3 Handing System Failures
Hermes may encounter unexpected failures such as power failures
or software errors. In order to handle such failures, we follow the
strategy used by Calvin [36]. Each node must maintain UNDO logs
for its storage and command logs [21] for the transaction requests.
Each node may also periodically create consistent checkpoints [29]
to reduce the time for recovery. When a node fails, a replica of the
node can immediately take over. After we restart the failed node, it
first undoes the modifications until it reaches the state of the latest
consistent checkpoint. Then, it uses the command logs to replay
the prescient routing and data fusion for executing the transactions
so that it can recover the system to the latest state. If the node is
participating in migrating cold data when it fails, the system can also
recover the migration states by replaying the command log since
the process of cold migrations is deterministic and the requests of
transactions for cold migrations are also logged. Note that it may
also need to synchronize its command log with another machine to
update the log.

5 EXPERIMENTAL EVALUATION
In this section , we evaluate the performance of Hermes and compare
it with previous work.

5.1 Systems & Environment
We implemented Hermes on an open source deterministic database
system written in Java whose architecture are similar to Calvin
[36]. We ran the following experiments on a cluster consisting of 31
commodity machines: 20 machines as server nodes, 10 machines as
client nodes, and 1 dedicated machine as the leader in the Zab total-
ordering protocol [27]. Each machine in the cluster was equipped
with an Intel Core i5-4460 3.2 GHz CPU, 24 GB RAM, and a 240
GB SSD. We connected the machines with a 10Gbps switch and ran
each of the following experiments after warming up the system for
120 seconds so that it produces a stable throughput.

5.2 Dynamic Data Re-Partitioning under Complex
Workloads

In this section, we evaluate the performance of Hermes and the
baselines given highly complicated, fast changing, and unpredictable
workloads, as shown in Figure 1.

5.2.1 Baselines. We implemented the following baselines.

Calvin (vanilla). We introduced Calvin [36] in Section 2 and
implemented it as a baseline. We also used it as the base system when
implementing other previous work. Calvin executes transactions
in a multi-master scheme where a transaction is routed to all the
machines (called masters) that have records to be written by the
transaction. This scheme eliminates the need of writing records
across network but takes more resources to execute transactions than
a single-master scheme.

G-Store+ (look-present). G-Store [7] is a look-present approach
for NoSQL DBMSs. It dynamically groups records and provides
atomic access to a group for clients. However, G-Store requires the
clients to define which keys to be grouped and when to disband the
group. Since Calvin already knows the read-set and write-set of each
transaction, we adapted G-Store to Calvin by trivially grouping the
keys in the read-set and write-set for each individual transaction and
disbanding the group immediately after the transaction commits. We
also altered the execution model of Calvin for G-Store to a single-
master scheme where a transaction is routed to only one machine
(called master) that has the majority of records accessed by the
transaction, thus the master must pull the records not located on its
partition and write them back to their original partitions.

LEAP (look-present). LEAP [18] is another look-present ap-
proach that not only groups keys to a single master but also migrates
data records to the master node for each individual transaction so
that it eliminates the need of writing records back to their partitions
and benefits from temporal locality. However, it does not consider
load balancing and ping-pong problems.

T-Part (transaction-routing-only). T-Part [40] is a transaction
processing engine designed for deterministic database systems, which
executes transactions in a single-master scheme like G-Store. It opti-
mizes transaction routing for minimizing the cost of distributed trans-
actions while balancing loads. In addition, it proposes the forward-
pushing technique that allows a transaction to push its writes to
later transactions in the same batch of transactions in order to re-
duce the synchronization cost, which also eliminates the need of
writing records back within the batch. However, since T-Part does
not migrate data, the records transferred between transactions must
be written back to their original partitions once there is no later
transaction that needs the records in the same batch.

Clay (look-back). Clay [31] is a generator of data re-partition
plans for partitioned databases. Clay monitors workloads and breaks
down a database into small pieces (called clumps) according to the
hotness and co-access frequency of data4. It then generates plans
to migrate those dynamic blocks in order to balance machine loads.
Note that, unlike LEAP, which migrates records every time that a
master reads a record from another partition for a transaction, Clay
migrates records only when it detects overloaded machines and starts
a dedicated migration phase, which may be more heavyweight than
the migration scheme used by LEAP and Hermes. As in the Clay
paper, we pair up Clay with Squall [9], a live-migration technique,
to move data according to the plans at runtime.

Schism (off-line, look-back). Schism [6] is an off-line data parti-
tioning scheme. It models a database as a graph, where the nodes
represent the records and the edges represent co-access frequency

4In our implementation, we generate a clump by using data ranges instead of keys
because generating key-based, fine-grained clumps takes too much time. The size of the
range depends on workloads.

10 20 30 40 50 60 70
Emulation Time (Hours)

200

300

400

500

600

700

Th
ro

ug
hp

ut
(K

 tx
s/

15
 se

cs
)

Calvin Clay Schism 1 Schism 2 Hermes

10 20 30 40 50 60 70
Emulation Time (Hours)

200

300

400

500

600

700

Th
ro

ug
hp

ut
(K

 tx
s/

15
 se

cs
)

Calvin G-Store T-Part LEAP Hermes

(a) Hermes vs. Look-back Approaches (b) Hermes vs. On-line Approaches

Figure 6: The performance of Hermes and the baselines under the complex Google workloads.

of the endpoints in transactions. It then partitions the graph using
a graph partitioning algorithm. Schism partitions data from scratch
and does not support incremental data re-partitioning. Periodically
applying Schism to a system with changing workloads will result
in a large number of data migrations. Therefore, we only used it to
indicate the “optimal” data partitioning at a particular time within
an experiment period.

5.2.2 Google Workloads. Based on the workload trace of ma-
chines in Google’s data centers [28], we created a complex OLTP
workload whose characteristics are shown in Figure 1. We defined
transactions and databases by following the Yahoo! Cloud System
Benchmark (YCSB) while letting the final workload of each ma-
chine look similar to that of Google. Each database has one table,
and each record in the table is 1KB in size and has 10 fields. We
populated 200M records for the following experiments. The meta-
data, the indices and the data table of the database totally occupies
360GB disk space, which is hard to be loaded into the memory of
a single commodity machine. All approaches, except Schism, used
range partitions (where each range has 10M records) as the initial
partitions, where each machine has a 18GB database.

Each transaction accesses 2 records in the database. There are two
types of transactions: the first type are read-only transactions, where
each transaction reads two records; the second type are read-write
transactions, where each transaction performs read, modify, and
write on two records. Both types of transactions are further divided
into the local and distributed transactions. A local transaction first se-
lects a partition following a time-varying distribution proportional to
the machine loads logged by Google and then accesses two records
following the Zipfian distribution in the partition. This allows the
local transactions to reflect the workload spike, skewness, and dy-
namics of Google’s machines. A distributed transaction accesses
a record using the same access pattern of a local transaction and
another record selected from a global, two-sided Zipfian distribution
defined on all keys in the whole database. The global distribution
changes its peak over time repeatedly from the first to the last record
in order to simulate the behavior of active users around the world
in 24 hours. The changing global hot records, together with com-
plex per-machine workloads, make the optimal data partitioning
opaque and dynamic. We set the ratio of distributed transactions and
read-write transactions both to 50%.

We replayed a 3-day log consisting of 20 machines of Google’s
cluster. However, since it is too time consuming to run each emula-
tion for 3 days, we downscaled the emulation from 3 days to 2160
seconds by sampling every two minutes. Each emulating machine
has 24GB RAM, where 6GB is allocated for buffer pool and the rest
is used by the Java VM (to store objects such as the fusion table in
Hermes). For more details, please see the supplementary file [3].

5.2.3 Overall Performance. Figures 6(a)(b) show how the sys-
tem throughput of Hermes and the baselines changes over time under
the complex Google workloads. In Figure 6(a), the state-of-the-art
“look-back” data re-partitioning approach, Clay, does not signifi-
cantly outperform Calvin with only static range partitions. This is
mainly due to that 1) there are many episodic events which are not
predictable from the past, and 2) the dedicated data-migration phase
incurs delays so Clay fails to update data partitions in time. To see
the optimistic performance of the look-back scheme, we study the
performance of Schism. We first randomly select two periods of
12 hours long, run Schism offline given the workloads in these two
periods to determine their respective “optimal” data partitioning,
and then equip Calvin with the optimal data partitioning (marked
as Schism 1 and Schism 2 for the two periods, respectively). In
Figure 6(a), we can see that Schism 1 and 2 work well during the
selected periods (40th to 52nd hours for Schism 1, and 10th to 22nd
hours for Schism 2), but none of them fits the workloads in the long
term. Furthermore, if Schism is run periodically, we can see from
the difference between Schism 1 and 2 that there will be a high
data migration cost when the system updates the “optimal” data
partitioning calculated offline. The look-back approaches does not
work well with the complex Google workloads.

On the other hand, as Figure 6(b) shows, the existing “look-
present” approaches, including G-Store and LEAP, improve the
throughput by 2% and 50% respectively because they take advantage
of temporal locality. G-Store needs to put the records accessed by
a distributed transaction back to their owner data partitions after
the transaction terminates, thus has higher costs. LEAP leaves the
records at where they are accessed (by a distributed transaction) so it
improves the throughput better. However, Hermes still outperforms
LEAP because LEAP may suffer from ping-pong issues and does
not consider load balancing. The transaction routing approach, T-
Part, also improves the performance by trying to balance loads
among machines. In addition, its forward pushing technique lets a
transaction directly send its records to later transactions that read

Calvin Clay GStore TPart LEAP Hermes0

50

100

La
te

nc
y

(m
illi

se
co

nd
s)

Scheduling
Waiting for Locks

Accessing Local Storage
Waiting for Remote Data

Other Modules

Figure 7: The breakdown of average latency.

the records; this eliminates the need for accessing remote storage,
so T-Part can also benefit from temporal locality. In spite of this
strength, Hermes outperforms T-Part because the prescient routing
algorithm in Hermes not only routes transactions (which optimizes
transaction execution as in T-Part) but also re-partitions and migrates
data on the fly. In particular, T-Part has to put records back into
their original partitions while Hermes uses data-fusion to avoid this
overhead. To sum up, Hermes addresses all the issues above and
outperforms all the baselines by 29%~137%.

5.2.4 Latency breakdown. To understand how Hermes improves
performance, we tracked the time spent of each transaction action
by using code injection. Figure 7 shows the latency breakdown of a
transaction in each system. We have three observations. First, Her-
mes reduces both the average wait time for remote data and locks by
30% and 120%, respectively, because the prescient routing generally
yields better data partitions that minimizes distributed transactions
and balances loads. This explains why Hermes gives the best overall
transaction throughput (Figure 6). Although G-Store and LEAP also
reduce the wait time by grouping records on demand, both systems
have no ability to balance the loads among machines. LEAP has
slightly better performance since it migrates records such that trans-
actions can benefit from temporal locality and hot nodes can shift off
a little load. Second, while T-Part does not reduce wait time greatly,
it has a better performance than most of the baselines. This is be-
cause T-Part has the ability to balance loads using transaction routing
so that it utilizes the CPU resource better than other baselines. Third,
the latency of scheduling a transaction in Hermes is about 2 millisec-
onds, which is 4% of the overall latency. The latency represents the
time of analyzing transactions, performing the prescient routing and
scheduling an Executor thread. This justifies our claim in Section
3.2 that the latency is almost negligible.

5.2.5 Resource Utilization. We also recorded the CPU and net-
work usage.5 Figure 8 illustrates the average CPU and network usage
consumed by each transaction among the nodes. There are some no-
table observations. First, the CPU usage of T-Part is slightly higher
than the usage of LEAP. This, again, shows that T-Part has a better
capacity to balance loads among machines. However, since T-Part
has to put data records back into their original partitions, its improve-
ment is limited by the communication costs. Second, the network
usage of Clay sometimes gets higher than that of other baselines.
This is because Clay performs dedicated data migrations in order
to meet its new data partitions. Finally, Hermes has a better ability

5It is normal for a machine to have a low CPU usage under the Complex Google
workload because 50% of the transactions are distributed and there is a high chance of
network stall.

10 20 30 40 50 60 70
Emulation Time (Hours)

10

20

30

CP
U

Us
ag

e
(%

)

Calvin
Clay

G-Store
T-Part

LEAP
Hermes

10 20 30 40 50 60 70
Emulation Time (Hours)

3

4

5

6

Ne
tw

or
k

Us
ag

e
Pe

r T
ra

ns
ac

tio
n

(b
yt

es
/s

ec
)

Figure 8: The changing of (a) average CPU usage and (b) net-
work usage per transaction with the Google workload.

(5, 5) (10, 5) (10, 10) (20, 5) (20, 10) (20, 20)
(Mean, Std) of The Number of Records per Transaction

0

50

100
Im

pr
ov

em
en

t
 in

 T
hr

ou
gh

pu
t(%

)

Clay
G-Store

LEAP
T-Part

Hermes

Figure 9: Impact of transaction length. Std stands for standard
deviation.

to balance the loads among machines so that it can utilize more
resources than the other baselines. In addition, the network usage of
Hermes is almost the same with (and sometimes even lower than)
that of other baselines. This shows that Hermes not only balances
loads but also reduces the number of distributed transactions.

5.2.6 Impact of Transaction Length. Next, we conducted more
experiments to evaluate the impact of transaction length with the
Google workload. In order to create a workload with the transactions
having diverse length, we made the number of records accessed
by each transaction randomly sampled from a normal distribution
with different means and standard deviations. Figure 9 shows the
improvement in throughput over Calvin with six different settings.
We can see that Hermes consistently improves performance given
different combinations of the means and standard deviations. More-
over, it works even better under the workloads with higher means.
This is because longer transactions implies longer blocking time
for conflicting transactions, which enlarges the contention footprint.
Therefore, the benefits of reducing synchronization across machines
and balancing loads become more obvious.Sensitivity Analysis of
the Batch Size

In order to understand how the prescient routing affects the per-
formance of Hermes, we ran one more experiment by varying the
number of batched requests (called batch size) in Hermes with the
Google workload as shown in Figure 10. While increasing the batch

101 102 103

Batch Size

35.0

37.5

Th
ro

ug
hp

ut
(K

 tx
s/

se
cs

)

Figure 10: The trade-off between the batch size and the perfor-
mance under the Google workload.

Normal 50% 80% 90%0

2000

Th
ro

ug
hp

ut
(K

 tx
s/

m
in

)

Calvin
Clay

G-Store
T-Part

LEAP
Hermes

Figure 11: The average throughput of Hermes and baselines
on the TPC-C benchmark with different degrees of hot-spot
concentration.

size can increase the throughput to a certain degree (by allowing the
prescient routing to obtain a better routing plan), the performance
drops when the batch size becomes too large. This is because a
large batch increases the CPU utilization of the prescient routing
algorithm, which slows down the entire system. Therefore, we can
not arbitrarily increase the batch size, but we can also see how sig-
nificantly the prescient routing improves the performance when we
choose a good batch size.

5.3 Dynamic Data Re-Partitioning under Simpler
Workloads

Next, we study if Hermes is applicable to other, simpler workloads.

5.3.1 The TPC-C Benchmark. We first run Hermes and the
baselines on the TPC-C benchmark [24], which has a complicated
schema and transactions but well-partitioned data. The benchmark
simulates a warehouse management system, which consists of nine
tables and five types of transactions. We use only the New-Order
and Payment transactions in these experiments since they contribute
88% of the workload and form its main characteristics. We use
20 machines and load 20 warehouses for each machine, and thus
there are 400 warehouses in the database. In order to create a hot
spot in the workload, we make 4000 clients send requests to the
system in a close loop and modify the workload so that a significant
proportion of the requests concentrate on the warehouses in the first
node [9, 31, 33]. We test three degrees of concentration, namely
50%, 80%, and 90%, and the ordinary workload in our experiments.

Figure 11 shows the average throughput of Hermes and the base-
lines. When facing the ordinary TPC-C workload (marked as Nor-
mal), all approaches give similar throughput because the database
is already well partitioned (simply based on the warehouse) and
the loads are balanced. Hermes gives slightly lower throughput
due to the overhead of batch processing and analysis. Nevertheless,
its performance is still comparable to that of other baselines. As
the transaction requests concentrate on the first node (lowering the
quality of warehouse-based data partitioning), all approaches give

0 200 400 600 800 1000 1200
Time (seconds)

0

100

200

Th
ro

ug
hp

ut
(K

 tx
s/

10
 se

cs
)

Calvin
Clay

G-Store
T-Part

LEAP
Hermes

Figure 12: The throughput of Hermes and baselines under the
multi-tenant workload with a changing hot spot. The vertical
dash lines indicate the time where the hot spot changes from one
node to another.

degraded throughput. However, Hermes and Clay starts to outper-
form other baselines because both of them are able to balance the
loads among machines by migrating hot warehouses out from the
first node. This verifies that Hermes is capable of data re-partitioning
even when transactions and data schema are complicated. Note that
Clay yields slightly higher throughput than Hermes in this case be-
cause the modified TPC-C workloads with hot spots still have access
patterns that Clay can exploit by looking back. Specifically, Hermes
may distribute the records of a warehouse on multiple partitions
due to the load balancing concern in the prescient routing, but the
ideal solution is to put those records together. Clay is able to capture
this pattern because it collects a longer workload trace (than a mere
batch) to determine the optimal partitioning. Note that Clay needs
a dedicated migration phase to move the records, which may take
long time to update data partitioning and cause negative impact on
the throughput. This drawback does not affect the performance here
because the TPC-C workloads are static over time.

5.3.2 The Multi-tenant Workload with a Changing Hot Spot.
Next, we test Hermes under a multi-tenant workload that is dynamic
over time but has a simpler schema and no distributed transaction. In
this workload, each server has 4 non-overlapping tenant databases,
each of which contains 2.5M YCSB records, and each transaction
performs the read, modify, and then write operations on two records
randomly selected from a single tenant following a Zipfian distri-
bution (with the skewness parameter 𝜃 = 0.9). We create 4 servers
and 800 client threads submitting requests to the servers in a closed
loop. As in the modified TPC-C workloads, 90% of the workloads
concentrate on the tenants of one of the server nodes. However, we
change the concentration target from one node to another every 500
seconds to simulate that different tenants serve different users around
the world and the users become active at different time.

Figure 12 shows how the throughput of Hermes and the base-
lines change over time underthis workload. Since Calvin does not
balance loads dynamically, it perform the worst. T-Part gives only
slightly higher throughput because it cannot migrate data and its
load-balancing ability is limited in the absence of distributed transac-
tions. In contrast, LEAP can smoothly migrate records, but it cannot
not balance loads. Clay is the only baseline that gives comparable
performance against Hermes, which demonstrates its effectiveness
of load balancing and data migration by identifying the hot records
and its co-accessed records from system statistics. However, Clay

Perfect Hash-based Skewed
20

30

Th
ro

ug
hp

ut
(K

 tx
s/

se
c)

Calvin
Clay

G-Store
T-Part

LEAP
Hermes

Figure 13: The impact of initial partitioning. Please see Figure
11 for labels.

needs time to collect the statistics and generate a migration plan, and
as such, it reacts to workload changes more slowly than Hermes. Fur-
thermore, the data migrations block normal user transactions. These
lead to the drops of throughput right after the hot spot changes.6

Hermes gives relatively stable performancebecause it migrates data
on the fly with distributed transactions, which minimizes the data mi-
gration costs. Moreover, it adapts to the changing workload quickly
and starts to improve the performance earlier than Clay after the
hot-spot changes.

5.3.3 Impact of Initial Partitioning. Following Section 5.3.2,
we evaluate if Hermes is robust to the initial data partitioning. We
use three different initial partitioning plans to load the data into the
database: 1) perfect range partitioning, 2) hash-based, which decides
the partition of a key using a hash function, and 3) skewed range
partitioning, which is also a range partitioning but puts the data of
first 7 tenants (about 43% of data in the database) in a single node.
Note that the hash-based partitioning creates distributed transactions.

It is not surprising to see that all approaches give satisfactory
performance with the perfect initial data partitions, as shown in
Figure 13. With the hash-based initial data partitions, LEAP and
Hermes outperform the other baselines. However, LEAP does not
perform well with the skewed initial data partitions. This is because
LEAP merges records according to co-access patterns, but the co-
accessed records in the skewed initial partitioning do not separate
across different partitions. So, LEAP keeps the workload skewed.
In contrast, Clay performs best with the skewed initial partitioning
but does not work well with the hash-based initial data partitions.
We observe that Clay cannot find a better data partitioning plan in
the hash-based scenario because all nodes are equally loaded in the
long term and thus migrating a tenant to another node relieves a
temporal hot spot but creates another. Among all the approaches,
Hermes consistently gives good performance. This shows that the
data re-partitioning and migration abilities of Hermes is robust to
the initial data partitioning.

5.4 Dynamic Machine Provisioning
In the following experiments, we evaluate the performance of Her-
mes when the machine provisioning changes, which is common
in a large cluster. Here, we consider a scale-out scenario where a
system has to dynamically add a machine to a cluster with 3 machine
nodes in order to relieve a hot spot via data migration. We use the

6The performance of Clay is optimistic here because we implement an optimization. In
the multi-tenant workload, any two records in a tenant could be accessed by a transaction.
Thus, Clay has to examine every record in the tenant to generate a “clump” (i.e., a group
of records) to be migrated together, which takes a long time. To speed up the clump
generation, we let Clay examine ranges instead of individual records.

0 250 500 750 1000 1250 1500 1750
Time (seconds)

200

300

400

500

Th
ro

ug
hp

ut
(K

 tx
s/

10
 se

cs
)

Squall
Clay + Squall

Hermes w/o cold (5%)
Hermes w/o cold (10%)

Hermes with cold (5%)

Figure 14: The changing of throughput during the scale-out
scenario. The first solid vertical line indicates the event of adding
a new node, the second solid vertical line indicates the end of
data migration in Hermes, and the dash and dotted vertical lines
indicate the end of the migration in Squall and Clay+Squall,
respectively.

multi-tenants workloads described in Section 5.3.2 with single hot
spot tenant in the first node, which receives 25% of total workloads.

We consider two baselines that are able to perform dynamic data
migrations. Squall. Squall [9] is a state-of-the-art live migration
mechanism that uses reactive pulling to migrate hot data accessed by
transactions while using background jobs to migrate cold data. Note
that Squall is a migration executor (which decides how to migrate
data) instead of a migration planner (which decides what data to
migrate). We pair up Squall with the planner for migrating cold data
of Hermes. Clay+Squall. We use Clay as the migration planner and
Squall as the migration executor. This baseline also evaluates the
quality of the migration plan generated by Clay.

In the experiments, the system controller sends a notification of
adding a node after the system warms up. Squall immediately starts
a migration with a given migration plan, whereas Clay first monitors
the workloads for 30 seconds, generates a plan, and then starts a
migration using the generated plan. Hermes, on the other hand, not
only starts to migrate cold data but also notifies the scheduler of the
change of machine provisioning such that the prescient routing will
consider routing transactions to the new node. The chunk size used
by the cold migrations in Hermes and Squall are both 1000 records.
The cold data migration plan of Hermes simply migrates the hot
tenant (the first quarter of a range of keys in the first node) to the
new node. Squall uses the same plan. For ablation study, we also
consider two simplified versions of Hermes that do not perform cold
migrations and only migrate hot data using data fusion. The first one
has a fusion table that can cache 5% of the records in the database
(marked as w/o Cold (5%)) while the second one has a larger fusion
table that can cache 10% of the records (marked as w/o Cold (10%)).

Figure 14 shows the results. We can see that the throughput of
all approaches increases after the data migration finishes because of
the increased overall computing power. However, Squall results in a
severe performance drop during the migration period. This is because
Squall migrates some hot records that block later transactions. Clay
yields similar performance since it also uses Squall as its migration
executor. Hermes performs much better. The throughput of Hermes
immediately increases as it receives the notification of adding a
new node (the first vertical line in the figure). Because Hermes uses
the prescient routing and migrates data on the fly with distributed
transactions, it is able to quickly relieve a hot spot by shifting a part

of its workload to the new node. Interestingly, the performance can
be improved by Hermes even without cold migration, demonstrating
the benefits of fusing the hot records only. We can also see that with
a large fusion table, which allows more hot data to be migrated,
the throughput goes higher. However, migrating cold data is still
beneficial because it results in higher throughput in the later stage
of the migration period. With cold data migration, the transactions
executing on the new node can have a higher probability to find
cold data in the local storage. It is important to note that the cold
data migrations in Hermes skip the hot data kept in the fusion table.
Therefore, migrating cold data has no obvious negative impact on
the performance in the early stage of the migration period.

5.5 More Experiments
We also performed more experiments, but we can not discuss the
results here due to space limitation. Please check our supplementary
materials [3] for more results.

6 RELATED WORKS
In this section, we review previous studies related to Hermes.

6.1 Data Fission
Data fission refers to the concept of partitioning the data in a system
into multiple shards in order to increase the system performance. To
support transactions with the ACID guarantees, the system needs to
ensure the consistency between shards. Schism [6] uses a workload
trace to model the database as a graph, whose nodes are records
and edges are frequencies of co-accessing the endpoints. It then
uses Metis [14] to partition the graph such that the number of cross
partition edges are minimized and the distribution of the nodes are
balanced. Sword [26] uses the same idea but also considers repli-
cation for fault-tolerance. Horticulture [23] explores possible sets
of keys for partitioning and evaluates the quality of the sets using
workload traces. JECB [37] goes one step farther by analyzing SQL
statements in transactions. However, a fixed data partitioning can not
accommodate the changing workloads, and thus E-Store [33] ana-
lyzes the workload trace and periodically migrates hot data critical to
the performance. It first identifies the hot tuples in a given workload
trace and redistributes those tuples to colder partitions. Clay [31] is
the successor of E-Store but considers co-access frequencies between
records. Compared with above work, the prescient routing in Hermes
offers an advantage insofar as it does not analyze logs in the past.
Instead, Hermes analyzes the current batch of transactions to decide
the data partitions and can therefore deal with episodic workload
changes happening in the near future. Furthermore, by integrating
data migration with distributed transaction processing, it minimizes
the impact of live data migration on transaction throughput.

6.2 Data Fusion
Data-fusion refers to the concept of dynamically grouping the ini-
tially scattered data for the current need (e.g., executing a transac-
tion) in order to increase system performance. Megastore [5] allows
clients to create entity groups and guarantees atomic access to the
data in the entity group. However, a problem suffered by Megastore
is that once a key is assigned to a group, it will not be allowed to
change at runtime. In addition, Megastore requires the keys in the

same group must be continuous in sorted order. Another work, G-
Store [7], allows keys to be dynamically grouped while providing
transactional access to a group without any restriction on the proper-
ties of keys, but it still requires clients to define the groups. LEAP
[18] eliminates the need of intervention from clients by grouping
keys according to the demand of a transaction. It also migrates data
records accessed by the transaction to the master node, which bene-
fits the later transactions that access the same records. Nonetheless,
LEAP has the drawbacks described in Section 1. Hermes avoids
these drawbacks by generalizing the idea of data-fusion to future
transactions using the prescient routing.

6.3 Optimizations by Batching Transactions in
Deterministic Database Systems

The idea of batching transactions for optimizations with determin-
istic execution is not new. Faleiro et al. [12] propose to delay the
evaluation of a transaction and execute a batch of conflicting trans-
actions at once in order to maximize cache locality. Another work,
Piece-Wise Visibility [11], optimizes the execution of conflicting
transactions by chopping a batch of transactions into sub-transaction
pieces and scheduling the conflicting pieces to the same core such
that only the conflicting parts of the transactions are blocked. Both
of these techniques significantly increase the degree of concurrency
between transactions. However, they target single-machine scenarios
and cannot be straightforwardly adapted to distributed environments.
That is, they would still face the data partitioning issue that we
described in Section 2.1, which motivates our work. Hermes is or-
thogonal to these techniques and can be complementary to each
other. In distributed environments, T-Part [40] minimizes the cost
of executing distributed transactions with its forward-pushing tech-
nique where a transaction directly push its writes to later transactions
in the same batch to eliminate the need of accessing storage. How-
ever, a transaction in T-Part still needs to put the data it reads/writes
back to the origins because the data partitions are fixed. Hermes uses
data-fusion to eliminate the need of writing data back. Due to space
limitation, we cannot discuss all related work here. Please see our
supplementary file [3] for more related work.

7 CONCLUSION
We present Hermes, a deterministic database system prototype that
migrates data on the fly with distributed transaction processing.
It uses the prescient transaction routing algorithm to analyze near-
future transactions and jointly optimize load balancing, dynamic data
(re-)partitioning, and live data migration. It also uses the fusion table
to isolate the migration of hot and cold data. We conduct extensive
experiments and the results show that Hermes does not require
predefined high-quality data partitions to achieve high performance
in various situations. It also responds much more quickly to the
workload changes and yields stable performance in the presence of
dynamic hardware provisioning. Hermes opens up new directions
in joint design of transaction processing, data partitioning, and live
migrations.

8 ACKNOWLEDGMENT
This work is supported by the MOST Joint Research Center for AI
Technology and All Vista Healthcare (MOST 110-2634-F-007-013).

REFERENCES
[1] Elasql. http://www.elasql.org.
[2] Faunadb. https://fauna.com/.
[3] Hermes: Supplementary materials. http://www.cs.nthu.edu.tw/~shwu/pubs/shwu-

sigmod-21-sup.pdf.
[4] Voltdb. https://www.voltdb.com/.
[5] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon,

Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Providing scalable, highly available
storage for interactive services. In CIDR, volume 11, pages 223–234, 2011.

[6] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden. Schism: a workload-driven
approach to database replication and partitioning. Proc. of VLDB Endow., 3(1):48–
57, 2010.

[7] S. Das, D. Agrawal, and A. El Abbadi. G-store: a scalable data store for transac-
tional multi key access in the cloud. In Proc. of SoCC’10, pages 163–174. ACM,
2010.

[8] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi. Albatross: Lightweight
elasticity in shared storage databases for the cloud using live data migration. Proc.
of VLDB Endow., 4(8):494–505, 2011.

[9] A. J. Elmore, V. Arora, R. Taft, A. Pavlo, D. Agrawal, and A. El Abbadi. Squall:
Fine-grained live reconfiguration for partitioned main memory databases. In Proc.
of SIGMOD’15, pages 299–313, 2015.

[10] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr: live migration in
shared nothing databases for elastic cloud platforms. In Proc of SIGMOD’11,
pages 301–312, 2011.

[11] J. M. Faleiro, D. J. Abadi, and J. M. Hellerstein. High performance transactions
via early write visibility. Proc. of the VLDB Endow., 10(5), 2017.

[12] J. M. Faleiro, A. Thomson, and D. J. Abadi. Lazy evaluation of transactions in
database systems. In Proc. of SIGMOD’14, pages 15–26. ACM, 2014.

[13] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C. Jones,
S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-Store: a
high-performance, distributed main memory transaction processing system. Proc.
of VLDB Endow., 1(2):1496–1499, 2008.

[14] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392,
1998.

[15] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-r, a new way to
implement database replication.

[16] L. Lamport. The part-time parliament. ACM Trans. on Computer Systems (TOCS),
16(2):133–169, 1998.

[17] L. Lamport et al. Paxos made simple. 2001.
[18] Q. Lin, P. Chang, G. Chen, B. C. Ooi, K.-L. Tan, and Z. Wang. Towards a non-2pc

transaction management in distributed database systems. In Proc. of SIGMOD’16,
pages 1659–1674. ACM, 2016.

[19] Y.-S. Lin, S.-K. Pi, M.-K. Liao, C. Tsai, A. Elmore, and S.-H. Wu. Mgcrab:
transaction crabbing for live migration in deterministic database systems. Proc. of
VLDB Endow., 12(5):597–610, 2019.

[20] Y. Lu, X. Yu, and S. Madden. Star: scaling transactions through asymmetric
replication. Proceedings of the VLDB Endowment, 12(11):1316–1329, 2019.

[21] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main
memory oltp recovery. In Proc. of ICDE’14, pages 604–615. IEEE, 2014.

[22] A. Nazaruk and M. Rauchman. Big data in capital markets. In Proc. of SIG-
MOD’13, pages 917–918. ACM, 2013.

[23] A. Pavlo, C. Curino, and S. B. Zdonik. Skew-aware automatic database partitioning
in shared-nothing, parallel OLTP systems. In Proc. of SIGMOD’12, pages 61–72,
2012.

[24] T. processing performance council. http://www.tpc.org/tpcc/.
[25] D. Qin, A. D. Brown, and A. Goel. Scalable replay-based replication for fast

databases. Proc. of VLDB Endow., 10(13):2025–2036, 2017.
[26] A. Quamar, K. A. Kumar, and A. Deshpande. SWORD: scalable workload-aware

data placement for transactional workloads. In Proc. of EDBT’13, pages 430–441,
2013.

[27] B. Reed and F. P. Junqueira. A simple totally ordered broadcast protocol. In Proc.
of LADiS’08, page 2. ACM, 2008.

[28] C. Reiss, J. Wilkes, and J. L. Hellerstein. Google cluster-usage traces: format +
schema. Technical report, Google Inc., Mountain View, CA, USA, Nov. 2011.
Revised 2014-11-17 for version 2.1. Posted at https://github.com/google/cluster-
data.

[29] K. Ren, T. Diamond, D. J. Abadi, and A. Thomson. Low-overhead asynchronous
checkpointing in main-memory database systems. In Proc. of SIGMOD’16, pages
1539–1551. ACM, 2016.

[30] K. Ren, A. Thomson, and D. J. Abadi. An evaluation of the advantages and disad-
vantages of deterministic database systems. Proc. of VLDB Endow., 7(10):821–832,
2014.

[31] M. Serafini, R. Taft, A. J. Elmore, A. Pavlo, A. Aboulnaga, and M. Stonebraker.
Clay: fine-grained adaptive partitioning for general database schemas. Proc. of
VLDB Endow., 10(4):445–456, 2016.

[32] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Hel-
land. The end of an architectural era:(it’s time for a complete rewrite). In Proc. of
VLDB Endow., pages 1150–1160, 2007.

[33] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga, A. Pavlo,
and M. Stonebraker. E-store: Fine-grained elastic partitioning for distributed
transaction processing. Proc. of VLDB Endow., 8:245–256, November 2014.

[34] A. Tatarowicz, C. Curino, E. P. C. Jones, and S. Madden. Lookup tables: Fine-
grained partitioning for distributed databases. In Proc. of ICDE’12, pages 102–113,
2012.

[35] A. Thomson and D. J. Abadi. The case for determinism in database systems. Proc.
of VLDB Endow., 3(1):70–80, 2010.

[36] A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, and D. J. Abadi. Calvin: fast
distributed transactions for partitioned database systems. In Proc. of SIGMOD’12,
pages 1–12, 2012.

[37] K. Q. Tran, J. F. Naughton, B. Sundarmurthy, and D. Tsirogiannis. JECB: a
join-extension, code-based approach to OLTP data partitioning. In Proc. of
SIGMOD’14, pages 39–50, 2014.

[38] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions
in multicore in-memory databases. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 18–32, 2013.

[39] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload analysis for
decentralized hosting. Elsevier Computer Networks, 53(11):1830–1845, July
2009. http://www.globule.org/publi/WWADH_comnet2009.html.

[40] S. Wu, T. Feng, M. Liao, S. Pi, and Y. Lin. T-part: Partitioning of transactions
for forward-pushing in deterministic database systems. In Proc. of SIGMOD’16,
pages 1553–1565, 2016.

http://www.cs.nthu.edu.tw/~shwu/pubs/shwu-sigmod-21-sup.pdf
http://www.cs.nthu.edu.tw/~shwu/pubs/shwu-sigmod-21-sup.pdf
https://github.com/google/cluster-data
https://github.com/google/cluster-data
http://www.globule.org/publi/WWADH_comnet2009.html

	Abstract
	1 Introduction
	2 Background
	2.1 Deterministic Database Systems

	3 Hermes
	3.1 Overview
	3.2 The Prescient Transaction Routing
	3.2.1 Objective
	3.2.2 Algorithm
	3.2.3 An Example
	3.2.4 Cost Analysis

	3.3 Dynamic Machine Provisioning

	4 Practical Considerations
	4.1 Condensing a Fusion Table
	4.2 Handling Transaction Aborts
	4.3 Handing System Failures

	5 Experimental Evaluation
	5.1 Systems & Environment
	5.2 Dynamic Data Re-Partitioning under Complex Workloads
	5.2.1 Baselines
	5.2.2 Google Workloads
	5.2.3 Overall Performance
	5.2.4 Latency breakdown
	5.2.5 Resource Utilization
	5.2.6 Impact of Transaction Length

	5.3 Dynamic Data Re-Partitioning under Simpler Workloads
	5.3.1 The TPC-C Benchmark
	5.3.2 The Multi-tenant Workload with a Changing Hot Spot
	5.3.3 Impact of Initial Partitioning

	5.4 Dynamic Machine Provisioning
	5.5 More Experiments

	6 Related Works
	6.1 Data Fission
	6.2 Data Fusion
	6.3 Optimizations by Batching Transactions in Deterministic Database Systems

	7 Conclusion
	8 Acknowledgment
	References

