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ABSTRACT

Deterministic database systems have been shown to yield high
throughput on a cluster of commodity machines while ensuring
the strong consistency between replicas, provided that the data can
be well-partitioned on these machines. However, data partition-
ing can be suboptimal for many reasons in real-world applications.
In this paper, we present T-Part, a transaction execution engine
that partitions transactions in a deterministic database system to
deal with the unforeseeable workloads or workloads whose data
are hard to partition. By modeling the dependency between trans-
actions as a T-graph and continuously partitioning that graph, T-
Part allows each transaction to know which later transactions on
other machines will read its writes so that it can push forward
the writes to those later transactions immediately after committing.
This forward-pushing reduces the chance that the later transactions
stall due to the unavailability of remote data. We implement a pro-
totype for T-Part. Extensive experiments are conducted and the
results demonstrate the effectiveness of T-Part.

1. INTRODUCTION

Modern OLTP workloads have two salient features. First, most
transactions are short and drawn from predefined stored procedures
consisting of no user interaction/stall [27]. Applications use stored
procedures to cut down on the number of round trips between
themselves and the database systems. Second, the data being ac-
cessed change over time and may not be easily partitionable [9,31].
For example, it is difficult to partition the data for social network-
ing applications, as their schemas often consist of many n-to-n
relationships.

The first feature motivates re-examination of the deterministic
database systems [15,29,30], a type of distributed OLTP database
systems that requires different machines (holding data partitions
or replicas) to process all relevant transactions in the same total
order (or an equivalent one). This allows transactions to produce
the same results on different machines, avoids costly 2PC for data
synchronization, and significantly increases system throughput on
a large cluster of commodity machines while guaranteeing strong
consistency between replicas. On the other hand, the totally or-
dered execution of transactions makes the throughput vulnerable
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Figure 1: Partitioning of transactions and the forward-
pushing.

to long transactions [29], as short transactions ordered after a long
one cannot be reordered on-the-fly to complete first and to prevent
the long transaction from hurting throughput.

While OLTP transactions are generally short, there are two com-
mon cases that a transaction will be prolonged in a distributed

database system: when it is executed on an overloaded machine/storage

and when the data being accessed span multiple machines. To
work around these cases, most existing deterministic database sys-
tems require that the data in storage are well-partitioned ar all
times so the loads of machines are balanced and the number of
distributed transactions is minimized.

Unfortunately, in practice it is hard to keep the data well-partitioned

at all times. The second feature of modern OLTP workloads makes
static, coarse-grained data partitioning insufficent, and motivates
studies on dynamic, fined-grained data partitioning driven by work-
loads [9,20,21,34]. The basic idea is to employ the data access pat-
terns in the workload traces to determine better partitions. How-
ever, due to its “looking back” nature, the workload-driven data
partitioning only finds good partitions in the past, and gives no
guarantee on the quality of partitions when facing the changing
workloads. Furthermore, due to the large volume of data, frequent
data partitioning (so to keep up with changing workloads) may in-
cur unacceptable computing/data migration cost.

In this paper, we present 7-Part, a transaction execution engine
for deterministic database systems that achieves high throughput
in the presence of dynamic workloads and imperfect data parti-
tions. Observe that before executing a transaction, each machine
in a deterministic database system needs to assign that transaction
a place in the total order (follow in which all machines execute
transactions) and to analyze the read and write sets of that trans-
action. Therefore, the dependency between pending transactions



(i.e., transactions that have entered the system but not yet executed)
can be known early. Using this dependency, T-Part partitions pend-
ing transactions, by first establishing a 7-graph whose nodes and
edges denote transactions and their dependency respectively, and
then finds the partitions of that graph. Figure 1 gives an example of
transaction partitioning. T-Part ensures that 1) nodes/transactions
spread evenly among partitions, so that machines, each assigned a
partition of transactions, are evenly loaded; and 2) there exists as
few cross-partition edges as possible, so that execution of transac-
tions requires less remote data access.

Based on the partitioning results, each transaction can know ex-
actly which later transactions will read its writes, and can “push
forward” those writes immediately after its execution. For exam-
ple, the transaction 1 in Figure 1 can push forward the object B to
transaction 5 right after committing. So transaction 5, upon execu-
tion, need not pull data from other machines. This early forward-
pushing reduces the synchronization between machines (i.e., one
machine stops to wait for the others to catch-up and send data it
needs), a major cause of slowdown in a deterministic database sys-
tem when executing distributed transactions.

T-Part also opens up numerous opportunities for sophisticated
optimization of data movement and transaction execution. In terms
of optimizing data movement, T-Part moves data by looking for-
ward. The read/write sets of pending transactions are modeled into
the T-graph. So, finding partitions of pending transactions effec-
tively finds the partitions of the in-memory data to be accessed
in the near future. In addition, the number of nodes/transactions
in the T-graph is much smaller than the number of records in the
storage. Thus, transaction partitioning can be performed much
more frequently than data partitioning." The above augments the
workload-driven data partitioning techniques [9, 20, 21, 34] and
make the system robust to changing workloads. Following sum-
marizes our contributions:

e We propose T-Part, which allows transactions to push for-
ward their writes to later transactions early to avoid machine
synchronization. T-Part is compatible with existing deter-
ministic database systems [15, 29, 30] and works alongside
any storage with the CRUD interface and any data partition-
ing scheme.

e We discuss numerous performance optimization techniques
enabled by T-Part, such as the principles to obtain a better
T-graph.

e We implement a prototype for T-Part based on our imple-
mentation of Calvin [30]. We devise efficient partitioning
algorithms that can be run by individual machines continu-
ously without accounting for more than 0.25% of the trans-
action latency in general. Furthermore, these algorithms are
deterministic to the total order of transactions. So different
machines need not communicate with each other to reach
consensus on the partitioning. T-Part supports systems with
fully distributed architecture.

e Extensive experiments are conducted and the results show
that T-Part is able to make the baseline systems (with and
without fine-grained, dynamic data partitioning) much more
scalable when given the hard-to-partition workloads like TPC-
E. In particular, it is able to eliminate more than 50% dis-
tributed transactions having network stall (due to unavailable
remote data on local machines).

The rest of paper is organized as follows. Section 2 discusses the
advantages and limitations of existing deterministic database sys-

'In fact, the transaction partitioning is continuous in T-Part.
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Figure 2: System architecture of Calvin [29,30]. Each sched-
uler receives all transactions from the sequencers but only for-
wards a part of them (that touch data in the local storage) to
the local executor.

tems. Section 3 introduces T-Part while Section 4 describes op-
timization techniques for improving the system performance. We
discuss implementation challenges/pitfalls in Section 5. Section 6
evaluates the performance of T-Part and Section 7 discusses related
work. Finally, Section 8 concludes the paper.

2. BACKGROUND AND CHALLENGES

In this section, we review the deterministic database systems
and discuss their practical limitations when facing imperfect data
partitions.

2.1 Deterministic Database Systems

Assuming that all transactions are short and defined as stored
procedures without user stall, recent studies [15,29,30] show that
the deterministic database systems can be advantageous to high
scalability and availability. Here, we briefly review the architec-
ture of Calvin [30], shown in Figure 2, based on which we build
T-Part. In this architecture, data are fully replicated across multi-
ple data centers separated geographically for availability. A data
center has a cluster of machines. To avoid hot spots, each machine
holds a partition of data. Upon arrival of a transaction request, it
is assigned a place in the total order and replicated to all data cen-
ters, both done by the sequencers in the system. The sequencers
forward the replicated requests to all schedulers by following the
total order. Each scheduler, when receiving a request, determines
its read set and write set by analyzing the stored procedure,? and
forwards the request to the local executor if the read and write sets
cover any data stored locally. By determinism we mean that 1)
all executors in the system process transactions following the to-
tal order (or an equivalent one) decided by the sequencers; and 2)
there is no reason other than the stored procedure logic that can
cause the transaction to abort. So, the commit/abort decision and
the written values of each transaction are deterministic. Note that
each scheduler receives all transactions from the sequencers but

’In order to determine the read and write sets of a transaction be-
fore its execution, the scheduler may break the transaction into
multiple ones. For more details, please refer to [29,30].



each executor processes only partial transactions which touch data
in the local storage. The above system offers some nice features:

Lightweight distributed transactions. Execution of distributed
transactions (i.e., transactions accessing data on multiple parti-
tions) can be simplified with the aid of peer-pushing and local
writes. For example, suppose a transaction 7" reading data { A, D}
and writing {C, F'} is being executed by two machines holding
partitions 1 and 2 respectively (Figure 2(1)). Both machines rec-
ognize that this transaction is a distributed transaction and, addi-
tionally, which objects are missing on the other side in order to ex-
ecute that transaction. They both perform local reads first (Figure
2(2)), and then push to the peer those missing objects (Figure 2(3)).
Once obtaining {A, D}, these machines can execute the transac-
tion locally—there is no need for some expensive data synchro-
nization protocols (e.g., 2PL and 2PC), as the determinism ensures
that these two machines will always reach the same conclusion on
whether to commit the transaction or not and, if so, write the same
values for C' and F'. Furthermore, each machine needs only write
objects local to its storage (Figure 2(4)).

Cross-WAN data replication with strong consistency. By repli-
cating the transaction requests rather than the post-execution writes,
the system needs no agreement protocol (e.g., 2PC or the group-
commit protocol [17]) between replicas to commit a transaction.
Note that the delay incurred by the total-ordering protocol (e.g.,
Paxos [8] or its variants [14, 22]) for ordering a transaction does
not count into the contention footprint of that transaction during
the concurrency control. Therefore, such delay has no impact on
the system throughput. Data centers can be placed across WAN
to survive from geographical disasters. Furthermore, by determin-
ism, different replicas will always see/produce the same snapshot
of data at a given total order, preserving strong consistency.

The system has a fully distributed architecture, thereby prevent-
ing a single point failure. In addition, it supports any storage
engine (either memory- or disk-based) with the CRUD interface.
Study [30] demonstrates its improved performance over traditional
(R*-like) systems on a large cluster of commodity machines.

2.2 The Synchronization Problem

The totally ordered execution of transactions makes the system
throughput vulnerable to long transactions [29], as short transac-
tions ordered after a long one cannot be reordered on-the-fly in the
concurrency control module to prevent the long transaction from
blocking others. Although OLTP workloads do not tend to have
long transactions, in practice a transaction can be prolonged due
to either a hot machine, slow I/Os (over hot data), or remote data
access. This leads to the synchronization problem. Recall that
when processing the transaction 7" (Figure 2(3)), the participating
machines need to collect the read set from remote ones. If any
machine falls behind, then all others need to wait for that machine
to catch up and to push the missing data. Later transactions con-
flicting with T" will be blocked until the progress of participating
machines becomes synchronous, which could damage the through-
put badly. Figures 8(a) and (c) show the impacts of distributed
transactions and skewness of machine loads on the throughput of
our Calvin implementation, respectively. We can see that the oc-
currence of distributed transactions and workload skewness signifi-
cantly degrade the throughput. The settings and further discussions
will be detailed in Section 6.

One way to avoid the synchronization problem is to find good
data partitions such that 1) data access spreads evenly among par-
titions, so that the machines have balanced loads without hot spot;
and 2) the need for cross-partition data access is minimized, so that
the system encounters as few distributed transactions as possible.
However, as discussed in Section 1, it is hard to find good data par-
titions at all times in many OLTP workloads. It is crucial to have

a new transaction processing technique for deterministic database
systems that can cope with the synchronization problem itself.

3. OVERVIEW OF T-PART

In this section, we introduce T-Part, a new transaction execution
engine for deterministic database systems.

T-Part consists of two components, the scheduler and executor,
for the architecture shown in Figure 2. This is how T-Part works in
general:

As in Calvin, a T-Part scheduler receives all transactions * from
the sequencers and decides which of them will be routed to the
executor on the local machine. It analyzes and models transac-
tion dependency as a T-graph, finds the balanced partitioning of
that graph, and forwards to the local executor a push plan along
with the transactions assigned to the current machine. Then, the T-
Part executor processes the received transactions and push forward
their writes to other machine by following the push plan.

T-Part is designed to work alongside any deterministic database

system with architecture similar to the one shown in Figure 2 (Calvin),

any storage with the CRUD interface, and any data partitioning
scheme. The outputs of T-Part schedulers and executors are deter-
ministic to the total order of transactions so to support fully dis-
tributed architecture. Since the T-Part schedulers face all trans-
actions (requests), they are designed to be very efficient in com-
puting. Note that unlike Calvin, each transaction will be executed
only once in some executor.
Next, we provide more details about some important steps.

3.1 Constructing T-Graph

To maximize the throughput of a total-ordering protocol, each
sequencer in existing deterministic database systems [29,30] peri-
odically compiles its requests arriving within a time interval into
a batch (in which the order of requests are decided), and uses the
total-ordering protocol to determine the total order of that batch
only. Therefore, the totally ordered transactions actually come to
the schedulers in batches. This allows the schedulers to analyze
the dependency between transactions before forwarding them to
the executors.*

By analyzing the read set and write set of each transaction,’ the
T-Part scheduler models the transactions and their dependency as
the nodes and edges respectively in a graph, called 7-graph. Since
we are looking for the chances of pushing writes from one ma-
chine to another, we model the write-read conflicts (wr-conflicts
for short) as edges. Figure 3(a) gives an example T-graph based on
the following transactions:

T1:W{A, B}, T2 : R{B,C}, W{C},
T3 : R{C},W{C}, T4: R{A}, W{A,E},
T5: R{B,C},W{B,C}, T6: R{C},W{D},

T7: W{G}, T8 : R{A, B}, W{F}.

An forward-push edge from T'1 to T2 means “a wr-conflict such
that if T'1 and 72 are assigned to difference machines (after the
T-graph is partitioned), the machine executing 7'1 could push the

3Specifically, transaction requests. For simplicity, we do not dis-
tinguish transaction requests from transactions if doing so does not
lead to confusion.

“If the transactions come individually, the schedulers can still
buffer each transaction for a short time to analyze its dependency
with the others. The buffering delay does not add to the contention
footprint of transactions, and has no impact to the system through-
put.

3 As in traditional deterministic database systems [29,30], to obtain
the read and write sets T-Part may break a dependent transaction
into multiple ones, interleaved by the “reconnaissance” queries.
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Figure 3: T-graph. (a) An example. (b) Sinking of transactions
1 to 6. (c) Arrival of transactions 9 and 10.

commonly accessed data (object B) to the machine where 7'2 re-
sides. ”

Nodes and edges are associated with weights. The weight of
a node represents the processing cost of a transaction while the
weight of an edge denotes the synchronization cost. For simplicity,
here we assume that all node/edge weights equal to 1. We will
discuss other weighting rules in Section 4.1.

T-Part works with any data partitioning strategy in the storage,
and models each data partition held by a machine using a sink node.
For example, S1 and S2 in Figure 3(a) represent two data parti-
tions held by machines 1 and 2, with data:

S1:{C,D}, S2:{A,B,E,F,G},

respectively. The weight of a sink node denotes the load of the cor-
responding machine. It is defined as the sum of weights of nodes
that have already been sent to the executor on that machine, but
not committed yet. In our example, we assume that both machines
1 and 2 have 86 running transactions, so the weights of S1 and
S2 are 86. If a transaction reads an object not written by previ-
ous transactions, it needs to read the object from the storage on
some machine (e.g., T2 reads C from S1). This is modeled in T-
graph by a storage-access edge from the corresponding sink node
(where the object belongs to) to the transaction. Conversely, when
a transaction writes an object that will not be read nor overwritten
by later transactions, it needs to write back the object to the stor-
age (e.g., T4 writes E back to S2). This is modeled by another
storage-access edge in the opposite direction. The storage-access
edges can be weighted differently than the forward-push edges to
reflect the storage access cost. Note that, even if 7'6 does not write
C, it needs to write back C' to storage as C' was written by previous
transactions but had not been written back yet. Similarly, 7'8 needs
to write back A and B. We will discuss this behavior in Section
4.2.

3.2 Partitioning T-Graph

After obtaining a T-graph, the T-Part scheduler finds the bal-
anced partitioning of that graph, as shown by the thick line in Fig-
ure 3(a), such that: 1) the sums of the weights of nodes in different
partition are similar, so that each executor, once assigned a par-
tition of nodes/transactions, is not overloaded; and 2) the sum of
the weights of cross-partition edges is minimized, so that execu-
tion of transactions requires the least remote data access. Note
that, by taking the weights of storage-access edges into account,
T-Part tends to move transactions to machines holding the data to
be accessed.

The balanced graph partitioning is an NP-hard problem. In prac-
tice, there exist software such as METIS [16] that can solve the
problem efficiently using heuristics. However, our problem here
differs from the conventional one in that it has disconnectivity con-
straints; that is, two sink nodes (denoting two data partitions on
different machines) cannot be put into the same partition. So we
cannot directly apply the software to our problem. We devise a
new partitioning algorithm based on the streaming graph parti-
tioning [26], which is very efficient and gives quality partitions
comparable to those of METIS. Our results show that the algo-
rithm accounts for no more than 0.25% of the transaction latency
in general. We will discuss more about the challenges/pitfalls and
the algorithm in Section 5.1.

3.3 Sinking & Push-Plan Generation

As transactions keep arriving from the sequencers, the parti-
tion assignment of each transaction changes over time. The T-Part
scheduler periodically sink a batch® of the earliest transactions in
T-graph by fixing their assignment and merging them into the sink
nodes, as shown in Figure 3(b) (suppose the batch size is 6). The
weight of each sink node is increased by the sum of weights of the
transactions sunk to that node. Notice that some edges are trans-
formed into the cache-access edges during the sinking process. We
will discuss such transformation in Section 3.4.

After sinking transactions, the T-Part scheduler generates a push
plan for the local executor. For example, the plan for the executor
on machine 1 is as follows:

T2: Read B from cache; C from storage. Write C' to cache.
T'3: Read C from cache. Write C to cache.

T5: Read B, C from cache. Write B, C'to cache.

T6: Read C from cache. Write C, D to storage.

And the plan for machine 2 is:

T'1: Write A to cache. Push B to T2 and T'5 on S1.
T4: Read A from cache. Write A to cache; E to storage.

The scheduler then forwards the plan and the sunk transactions
to the local executor. Each executor receives only the plan and
transactions local to a T-graph partition.

It is important to note that each sinking process needs be deter-
ministic so that different schedulers under a distributed architecture
(like the one shown in Figure 2) do not generate inconsistent push
plans. To ensure the determinism, we require a scheduler to trig-
ger the sinking process whenever it sees a fixed number of totally
ordered transactions in T-graph. We call this number the sink size.
By taking advantage of total ordering, the schedulers will generate
consistent plans during each sinking process, as they are based on
the same transactions in the system. However, this creates a subtle
issue: the schedulers will stop sinking transactions if there are not
enough transactions available in the T-graph due to the silence of
clients (and sequencers too). To solve this issue, we require each

®The batch size need not be the same as the size of request batches
from sequencers.



sequencer to add dummy requests into every batch to be sent to
the total-ordering protocol if there are not enough requests from
the clients. The schedulers discard these dummy requests when
generating a push plan.

3.4 Push-Plan Execution

Upon receiving a batch of sunk transactions along with their
push plan, the T-Part executor processes the transactions by fol-
lowing the plan.

The T-Part executor implements a key-value cache area (above
the buffer manager of the storage engine) in memory to store the
objects that are either 1) written by the earlier transactions on the
same machine (e.g., 73 reads C' in Figure 3(b)); or 2) pushed from
the remote machines (e.g., 7’5 reads B). Upon execution, a trans-
action either reads an object from the storage (if that object has
not been written by earlier transactions) or the cache area (other-
wise). The transaction stalls if the object is not available in mem-
ory yet. Note that once accessed by a transaction, an object will
stay in the cache until it is not used by any transaction in the T-
graph. This prevents repeated storage access to the hot records,
and avoids unnecessary buffer/index/file manipulation. We will
discuss the cache management in more detail in Section 5.2 and its
implication to failure handling in Section 5.4.

T-Part does not use the conservative locking for concurrency
control as in Calvin. Rather, it makes use of the cache manager
to implement a version-based deterministic concurrency control.
The idea is to let each transaction access a unique version of a tar-
geted record that is created by some of it’s preceding transactions
which writes the record last. If that version is not available yet, the
current transaction stalls. More details are given in Section 5.2.

Unlike Calvin, each transaction in T-Part is processed by only
one executor, and it does not wait for the peer-pushing from other
machines, which requires precise machine synchronization, to ob-
tain the remote data it needs. In T-part, transactions access remote
data from previous transactions. This allows the data to be pre-
pared early so that they are likely to be available in the local cache
of machines executing later transactions. Consider those transac-
tions that are sunk in a batch. When processing a transaction in
that batch, the executor knows which later transactions in the same
batch will read the objects written by current transaction. The ex-
ecutor can push those objects to later transactions immediately af-
ter the current transaction commits. For example, in 3(b), right
after committing 7'1 the executor local to S2 pushes forward the
object B to T'2 on another machine. This early forward-pushing
reduces the need for machine synchronization.

Note that, since the partitions of unsunk nodes (e.g., 7'7 and
T'8 in Figure 3(b)) are subject to change, transactions (e.g., 7'5)
writing objects that will read by the unsunk nodes do not know
where to push the objects. During the sinking process, the T-Part
scheduler transforms all forward-push edges (e.g., the edge from
T'5 to T'8 in Figure 3(a)) from the sunk to unsunk nodes into the
cache-access edges (e.g., the cache-write edge from 7'5 to S1 in
Figure 3(b)). So transactions sunk in the next batch will read the
objects from the cache (e.g., the cache-read edge from S1 to T'8)
rather than the storage.

The above transformation should not affect the partitioning de-
cided earlier (otherwise transactions will not be executed optimally
from the graph partitioning point of view). To ensure this, we
leverage the fact that the cache-write edges have no impact on the
quality of partitioning since they are local. So, the partitioning will
be unchanged if the cache-read edges have the same weights as
those of the corresponding forward-push edges before the transfor-
mation. Setting the weight of each cache-read edge to the weight
of the original forward-push edge is realistic since these two edges

share the same endpoints at which only the memory access is in-
volved.

The T-graph construction, partitioning, and sinking processes
discussed above repeat for the continuously arriving transactions.
When building the T-graph, we have to write back the data read
from the sink nodes that have been cached due to the above trans-
formation. For example, suppose two new transactions arrive:

T9: R{B,C,D},W{B}, T10: R{E,F,G}.

The updated T-graph is shown in Figure 3(c). Notice that 7'9 needs
to write back B to the storage holding S2, as B is read from the
cache.

3.5 Merits

T-Part allows each transaction to push forward the data needed
by the later transactions early. This early forward-pushing reduces
the chance of transaction stalls due to the asynchronous machines
and makes the system robust to the progress skew among ma-
chines.

T-Part also augments existing data partitioning by instructing the
movement of data that will be accessed in the near future. Note the
the number of nodes in a T-graph is much smaller than the number
of records in storage. So the T-graph can be partitioned much more
efficiently and frequently than the data in storage. This alleviates
the need for frequent data partitioning in order to keep up with the
changing workloads, which may incur high computing/data migra-
tion cost.

Furthermore, T-Part opens up numerous opportunities for the so-
phisticated optimization of transaction execution, to be discussed
next.

4. OPTIMIZATION

In this section, we discuss techniques enabled by T-Part that can
improve transaction execution.

4.1 Refining Weights

Let w; be the weight of a node v;, where ¢ is an index in the
total order of transactions to be executed, and w;,; be the weight
of an edge e; ; from v; to v;. We did not observe significant per-
formance gain in tuning the node weights. This is because OLTP
transactions are usually short and lack of user interaction.

On the other hand, edge weights have impact on the system per-
formance. The weight w; ; of an edge e; ; should reflect the ma-
chine synchronization cost, which can be roughly defined as the
amount of time v; stalls to wait for the push from v;. Intuitively,
the larger the fransaction distance (j — 1), the lower the weight
should be. However, in a real system, there are many reasons that
can affect the progress of a machine, and it is very hard to know
the exact cost between two specific nodes. Our approach is to re-
gard w; ; as a function of (j — ¢), and fit the function to the inverse
of our measurements. Figures 4(a) and (b) show the average and
maximum stalls we observed over different (j — 4)’s, which can be
fitted by the linear and Sigmoid functions (notice the jump around
(j — i) = 200) respectively.” We choose the linear fitting in our
prototype due to its simplicity, and leave the latter our future work.

4.2 Modeling Principles

"Note there are some peaks at large distance. In each of these
cases, v; is a (relatively) long transaction and should excluded from
the fitting. Also, there are two levels in Figure 4(b) when the dis-
tance is above 200. These are contributed by the remote and local
pushes respectively. Since we care only about the remote pushes,
the Sigmoid function should be fitted to the higher level.
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Figure 4: Measurements of a system over 9 Amazon EC2 machines, giving throughput 350,000 txn/min under a microbenchmark.

(a) Average stall. (b) Maximum stall. (c) T-graph size.

We can model a given set of transactions into different T-graphs.
For example, in Figure 3(a), 15 can either read B from 7’1 or
T2. T-Part chooses to create an edge from 7'1 to T'5 based on the
reading-from-the-earliest principle, which prefers the source node
to be the earliest transaction that sees the version of data required
by the destination node. The intuition behind this is that, if the edge
becomes a cross-partition edge after partitioning, then the source
node can push the object as early as possible to prevent the stall at
destination.

T-Part also employs the writing-back-the-latest principle when
creating the storage-write edges, which requires only the latest
node writing an object to have an storage-write edge. For exam-
ple, in Figure 3(a), despite that all transactions 72, 1'3, T'5 and T'6
update the object C, only 76 needs to write it back to the storage.
This avoids unnecessary storage-access edges that could mislead
T-Part to bad partitions, and does not damage the recoverability of
transactions as long as their operations and commit decisions are
logged.

4.3 Plan Optimization

After generating a push plan and before sending it to the execu-
tor, the scheduler can optimize the plan by eliminating the cross-
partition edges if local reads are possible. For example, in Figure
3(b), we can eliminate a cross-partition edge from 7'1 to T'5 by
creating another local edge from from 72 to T'5. Plan optimiza-
tion further reduces the synchronization between machines. Note
that each machine only needs to optimize the plans for its owning
partition.

IMPLEMENTATION

In this section, we briefly discuss some of the key engineering
challenges and design decisions we made when building T-Part.

S.

5.1 Real-Time Partitioning

As discussed in Section 3.2, the problem of partitioning T-graph
differs from conventional balanced graph partitioning in that the
former has the disconnectivity constraints prohibiting the sink nodes
from going to the same partition.

To partition the T-graph, our initial direction is to reduce the
problem to the conventional one, then apply the off-the-shelf graph
partitioning software like METIS [16]. We first introduce a virtual
node, called the pin node, for each sink node and connect them us-
ing a virtual edge, called the tie edge. Then, by giving sufficiently
large weights to all the tie edges, we can ensure that each pair of
the sink and pin nodes will go to the same partition. Furthermore,
by giving sufficiently large weights to the pin nodes we can ensure
that two pins never go to the same partition, neither do the sinks.

However, this approach has some shortcomings. First, the large
pin weights dilute the weights of normal nodes, so we may not find
very balanced partitions. Second, whenever new nodes arrive, we
need to repartition the T-graph from scratch, which is not preferred
in a large-scale system.

We therefore take another direction in extending the streaming
graph partitioning algorithms [26]. These algorithms assume that
the nodes enter a graph as a stream, and build partitions incremen-
tally. We extend a greedy algorithm (called “weighted determinis-
tic greedy” in [26]) that is shown to work well for various types of
graphs. Our partitioning algorithm works as follows.

ALGORITHM |  (T-PART PARTITIONING). First, assign a sink
node to each partition. Upon arrival of a node v, calculate the to-
tal weight of edges between v and each partition. Assign v to the
partition having the smallest total weight.® If there is a tie, then as-
sign v to the partition having the smallest total weight of nodes in
that partition. Break tie again by assigning v deterministically to
a partition with smaller ID (which could be the ID of the machine).

The performance comparison of our METIS- and Streaming-
based algorithms under our simplified TPC-E workload is given
as follows:

Streaming-based METIS-based

#Txn | Time Cut  Skew | Time  Cut  Skew
100 0.14 474 114 5.1 464 25

1000 1.1 4914 94 18.1 4704 201
10000 | 12.7 59125 46 185.8 72909 242

The time, cut, and skew denote the time (in milliseconds) required
to update partitions after arrival of a batch of nodes, the number
of cross-partition edges, and the maximum difference between the
loads of machines (in total weight of nodes on a machine) respec-
tively. These metrics are measured against different numbers of
unsunk transactions in the system. Normally, the number of un-
sunk transactions (i.e., the size of T-graph) is under 200, as shown
in Figure 4(c). Based on the above facts, the streaming-based al-
gorithm offers both speed and quality advantages in spite of its
simplicity.

5.2 Cache Management

As discussed in Section 3.4, each executor in T-Part implements
a key-value cache area to store the hot data and to prevent repeated

8The total weight of a partition can be normalized by the capacity
of the corresponding machine. Our deployment consists of homo-
geneous machines. So we do not perform the normalization.



storage access. We now discuss how T-Part manages the cache area
to keep its minimum size small and, when necessary, to trade more
cache space for improved performance.

The value of an cache entry is an object value. Each cache access
in a push plan needs to specify a key. For example, the push plan
for machine holding S2 in Section 3.4 can be formally written as:

T1: Write cache: <A, T'1, T'4>;

Pushto S1: <B,T1,T2>,<B,T1, T5>.
T4: Read cache: <A, T'1, T4>;

Write cache: <A, Sink1>; storage: E.

Each forward-push edge involves entries with keys of the form:
<obj key, source txn, destination txn>, a triple consisting of the pri-
mary key of the object, the order of source transaction who writes
the object, and the order of destination transaction who will read
the object. By the definition of its key, each entry of this kind will
be read by only the destination transaction. So, after reading an ob-
ject from the cache area, the destination transaction can invalidate
the enclosing entry immediately.

The cache-access edges (e.g., the edge from 74 to S2 carrying
A in Figure 3(b)) involve entries with keys of the form: <obj key,
sink number>, where a sink number p denotes the p-th sinking
process. Assuming that the above plan is generated by the first
sinking process, 174 writes A using the key <A, Sinkl>. The
purpose of the sink number is to ensure that the later transactions
to be sunk in the next batch will read the correct version of data.
For example, in Figure 3(c), there will be a line:

T8: Read cache: <A, Sinkl>, <B, Sink1>

in the plan generated by the next sinking process to instruct 7'8 to
read A and B from the batch in the right front. Upon reading the
these objects, 1'8 can invalidate the corresponding entries immedi-
ately.

Version-based Deterministic CC. Since each transaction stalls
whenever the desired entry is not available in the cache area, T-Part
does not require the conservative 2PL for concurrency control as in
Calvin. Instead, the serializability is guaranteed by allowing each
transaction to know which specific version (recorded in the source
txn field of a cache entry for an forward-push edge, for example)
of the object it needs to access. To ensure the serializability and
recoverability, a transaction can only write to cache if it knows
that it will commit eventually.

Sticky Caching. From the above, all essential cache entries are
invalidated once they are accessed. This helps keeping a limited
cache size. Actually, we observe that, the total size of the essential
cache entries on each machine is proportional to the working set of
the transactions assigned to that machine.

We can introduce more cache entries to improve the perfor-
mance of storage access. Consider the plan for 7°6:

T6: Read cache: <C, T5, T6>;
Write storage: C, D.

If a new transaction 720 reading C' enters the system after 776 is
sunk, then it needs to read C' from the storage, causing unnecessary
storage access. We observe that such “immediate storage reads
after write” are frequent under some workloads, where there exists
locality in data access but the access interval of an object is longer
than that of the sinking process. T-Part deals with this problem by
creating a sticky entry that caches the data being written back for a
fixed small amount of time. For example, it first changes the plan
for 7'6 to the following:

T6: Read cache: <C, T'5, T6>;
Write sticky cache: <C>, <D>;
Write storage: C, D.

Instead of waiting 7'6 to commit or waiting the C' from being read
form the storage, 720 now can obtain C' immediately by searching
for the stick entry containing C'.

5.3 Handling Transaction Aborts

Next, we discuss how T-Part handles transaction aborts while en-
suring the correctness of transaction execution. Recall that a deter-
ministic database system eliminates all the cases of system-initiated
transaction aborts apart from that the transaction aborts initiated
by its own logic [29,30]. So, each transaction, upon execution,
can know whether its net effect will persist in the system or not
by simply looking at its own commit/abort decision hard-coded in
the transaction logic. Leveraging this, we require each transaction
in T-Part to read the objects it writes, and, if it decides to abort,
push the read data forward. So, whether a transaction commits or
not will not change the structure of a T-graph (but only the values
of the pushed data), and the T-Part schedulers can partition the T-
graph without worrying the commit/abort decisions of transaction
execution in the future.

5.4 Handling Failure

The properties of deterministic database systems that simplify
the task of fault tolerance have been discussed in [30]. First, if
machine failure happens, the failover process can be done imme-
diately because a failed machine can be taken over by an active
replica. Second, by logging each transaction request, the failed
machine can recover by acquiring a snapshot of data from replicas
(if they exist) and/or replaying the logged requests to get the latest
data back. There is no need for REDO-logging the transaction op-
erations. Moreover, various checkpointing methods are supported,
such as the Zig-Zag algorithm [7].

T-Part inherits all the above properties from existing determinis-
tic database systems. We only summarize the difference here. Re-
call from Section 5.2 that all storage access is actually done by the
write-back procedures rather than normal transactions. In T-Part,
only the operations of write-back procedures need to be UNDO-
logged. Normal transactions do not need any log .

When a failed machine decides to replay transactions (during,
say, the REDO phase in the recovery procedure), it cannot replay
the transactions that were assigned to itself alone, as 1) the parti-
tioning information is lost; and 2) some transactions need to read
the pushes from other machines, which already happened. In T-
Part, the transaction requests are logged only after they are parti-
tioned, and each machine logs only those requests that are assigned
to itself. Furthermore, T-Part requires each executor to create a
PUSH-log upon receiving a push in order to remember the object
value. Therefore, each machine in T-Part can replay its transac-
tions locally during the recovery.

6. PERFORMANCE EVALUATION

In this section, we evaluate the performance of T-Part.

Implementation and Systems. We implement T-Part on a dis-
tributed database system called ElaSQL [2], a Java implementa-
tion of Calvin [30]. Note that the Calvin source code available
from GitHub [1] focuses on the distributed transaction handling
and simplifies many low-level database operations (e.g., storage
access, buffering, latching, logging, indexing, etc.) by using simu-
lations. ElaSQL, on the other hand, employs VanillaDB [5] as its
core on each machine. VanillaDB is a single-node, IBM-System-
R-like database system for research purpose. Both ElaSQL and
VanillaDB have no simulated component. So we believe that build-
ing T-Part on ElaSQL can give more realistic performance results.

We implemented Zab [14, 22], a well-known simplification of
Paxos, as our total ordering protocol in our communication mod-



ule. In order to avoid the possible overuse of CPU caused by the
leader in Zab, we pull the leader out of the database nodes as a stan-
dalone node. We compare the default implementation of ElaSQL
(which we denote “Calvin”) and Calvin with T-Part (denoted as
“Calvin+TP”) in the following experiments.

6.1 Scalability

We first evaluate the scalability of T-Part by using the well-
known TPC-C and TPC-E benchmarks. To make the results com-
parable to those published in the Calvin paper [30], we run ex-
periments on machines/environment similar to that adopted in the
Calvin paper. We rent 46 Amazon EC2 C3.xlarge dedicated in-
stances, each promises 7.5 GB of memory and 14 EC2 Compute
Units® (4 virtual cores with 3.5 EC2 Compute Units each), and re-
serve 15 instances to run the clients (named Remote Terminal Em-
ulator (RTE) in the TPC terminology), 30 instances as DB nodes,
and one as the Zab leader. Note that, although we strive to cre-
ate a comparable environment, the actual capability/provision of
an EC2 instance changes overtime thus our environment may still
be different from that used in the Calvin paper.

6.1.1 TPC-C

The TPC-C benchmark simulates a warehouse management sys-
tem, and its data are known to be partitionable based on ware-
houses because each transaction has only 10% probability to ac-
cess the data in more than one warehouses. While T-Part focuses
on the hard-to-partition data, we show that it can also achieve the
same level of transaction throughput as Calvin does.

Figure 5(a) shows the system throughput of the New-Order trans-
actions given by T-Part and Calvin over different numbers of ma-
chines.'’As we can see, both Calvin and T-Part can scale out up to
30 machines. This implies that T-Part incurs little overhead on a
deterministic database system where data are well-partitioned. It
is safe to turn it on even with easy workloads.

Note that our Calvin implementation, without simulated compo-
nents, verifies the trends reported in the original Calvin paper [30].
However, the absolute values of our throughput readings are gener-
ally only one-third of those reported in [30]—the per-core through-
put of our implementation and the study is 208 and 625 transac-
tions per second in the above figure, respectively.'" This give a
sense how much the other components, such as index maintenance
and file system operations, may impact the performance of a deter-
ministic database system.

6.1.2 TPC-E

TPC-E emulates the behavior of customers, brokers, and mar-
kets in a financial brokerage system, and, as compared to TPC-C,
has more complicated and long-running transactions, non-uniform
data access, and hard-to-partition data.

Because there is no well-known best partitioning method for
TPC-E, we partition each table horizontally based on the hash
value of the primary key of each record. Among all types of TPC-E
transactions, we focus on the Trade-Order and Trade-Result trans-

°0One EC2 Compute Unit provides the equivalent CPU capacity of
a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

""We focus on the New-Order transactions because it is a major
limiting factor of the system scalability in TPC-C. For more dis-
cussions, please refer to [29].

""'Note that the capability of machines we used on AWS differs from
that of machines used in [30]. The machines they used are of the
Cl.xlarge type while we were using the C3.xlarge machines. Ac-
cording to the documentation, each C1.xlarge machine consists of
8 virtual cores and a C3.xlarge has 4. So, if we consider the per-
core throughput of TPC-C on 10 nodes, the original Calvin and our
implementation give 625 txs/sec and 208 txs/sec respectively.

Parameter | Default Value

#Records per Machine | 1,000,000
#RTE:s (i.e., #client processes) | 4000
#Server / #Client Machines | 20/ 10
Buffer Size per Server Machine | 390 MB

#Records Accessed per Txn. | 10
#Remote Records per Distributed Txn. | 9
#Write Records per Read-write Txn. | 5
Distributed Txn. Rate | 1.0
Read-write Txn. Rate | 0.5
Skewed Txn. Rate | 0.3
Txn. Conflict Rate | 1% (10k hot rec.)
Sink Size (T-Part parameter) | 100

Table 1: Default parameters of the Microbenchmark.

actions, as they are two most representative transaction types. Nor-
mally, almost all transactions of TPC-E are distributed transac-
tions. And a record read by a transaction could be on any machine;
that is, almost all operations of a TPC-E transaction are remote
operations. Moreover, the EGen program provided by TPC gen-
erates non-uniform customer ID, thus the data access pattern is
skewed. The above characteristics fit well to other types of appli-
cations such as the social networking services.

The throughput of T-Part and Calvin given up to 30 nodes are
shown in Figure 5(b). We can see that Calvin can only scale out
up to 4 machines. When the number of machines go beyond five,
Calvin starts to saturate. On the other hand, T-Part is still scalable,
and the linear scalability preserves up to 22 machines.!”> The rea-
son for this drastic change in trend is twofold. First, the forward-
pushing technique in T-Part significantly reduces the chance of
transaction stalls due to unavailable remote data, and mitigates
the machine synchronization problem in the presence of workload
skewness. We will further verify the effectiveness of forward-
pushing in later sections. Another reason, less obvious but still
important, is that T-Part does not let multiple machines execute the
same distributed transaction collaboratively (via peer-pushing, as
described in paragraph 2 in Section 2.1). Instead, it assigns each
transaction to only one machine, and that machine collects neces-
sary data from either previous transactions or storage on different
machines. So, the benefit is that it saves the computing resources
from processing the same transaction logic multiple times. In TPC-
C, this benefit doesn’t make much difference because each trans-
action is short and the portion of distributed transactions is low.
However, in TPC-E where the portion of distributed transactions
is high and each distributed transaction accesses data spanning al-
most all machines, Calvin requires almost all machines to partici-
pate in every distributed transaction, resulting in huge overhead.

6.2 Comparison with Data Partitioning / Mov-
ing Methods

Here we demonstrate the advantages of T-Part over conventional
data partitioning methods in the presence of hard-to-partition work-
loads. Figure 6 compares the 10-minute-average throughput of T-
Part against those of various data partitioning/moving techniques

2Notice that the performance of T-Part fluctuates when the number
of machines is large. This is because that not all EC2 instances
yield equivalent performance, and this issue has been reported in
the Calvin paper [30] as well as other industrial articles [4]. Given
hard-to-partition workloads like TPC-E, any slowdown of a single
machine could have an impact on the overall system performance.
And, as the number of machines increases, this impact can be more
significant, as we can see in the figure.
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Figure 5: System throughput with the (a) TPC-C benchmark (New-Order transactions); (b) TPC-E benchmark; and (c¢) Mi-

crobenchmark (default parameters).
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Figure 6: System throughput with (a) static hash-based data
partitioning, (b) static graph-based data partitioning (Schism
[9]), (c) dynamic graph-based data partitioning, (d) dynamic
data movement (G-Store [10]), and (e) T-Part.

(other than the basic hash-based data partitioning) under the TPC-
E workloads. The experiments are ran on 20 machines of our own.
Each machine is equipped with an Intel Core i5-4460 3.2 GHz
CPU and 8 GB RAM and running CentOS 7.

Static Graph-based Data Partitioning (Schism). In this ex-
periment, we follow Schism [9] to model the trace of 300K trans-
actions into a graph, then employ METIS [16] (a multi-way graph
partitioning algorithm) to partition the graph and obtain data par-
titions. As shown in Figure 6(b), Schism gives about 60% perfor-
mance boost as compared to the basic hash-based data partitioning.

Dynamic Graph-based Data Partitioning. One obvious way
to further improve the quality of data partitions is to run Schism pe-
riodically. In this experiment, we re-generate the data partitions ev-
ery 3 minutes. Note that we pre-generate all the data partitions of-
fline, so the reported throughout will not take into account the data
migration cost and be optimistic. Even so, the resultant throughput
does not change much, as shown in Figure 6(c), because TPC-E
does not render much temporal locality.

Dynamic Data Movement (G-Store). Another approach to
deal with hard-to-partition data is to use the dynamic data move-
ment approach proposed by G-Store [10], which transfers all rel-
evant records to a single machine and execute the corresponding
transactional operations on demand. However, this approach re-
quires the clients to specify explicitly a certain group of data that
is going to be accessed together in the near future before issuing
the corresponding transactions, which is not possible in TPC-E. In
fact, G-Store is proposed only for the NoSQL database systems.
Therefore, we can only simulate this dynamic data movement ap-
proach by moving the read-sets and write-sets of a group of trans-
actions to a single machine, executing the transactions, and then
moving the records back to their original machines. To determine
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Figure 7: Breakdowns of the average execution time (a) with
and (b) without transaction stalls due to the unavailable remote
records.

the transaction group without users’ specifications, we make it as a
transaction partition in a T-graph. In effect, this simplification re-
duces to T-Part with the sink size 1, and, as shown in Figure 6(d),
gives 270% performance boost as compared to the dynamic graph-
based data partitioning. This demonstrates the importance of joint
optimization of transaction execution and data movement.

T-Part. T-Part, with sink size larger than 1, additionally takes
into account the locality of data access between subsequent trans-
actions and move transactions around to avoid unnecessary storage
reads/writes. This gives yet another 30% boost in system through-
put, as shown in Figure 6(e), and demonstrates the effectiveness
of T-Part in replacing the storage reads/writes with the forward-
pushes.

6.3 Microbenchmark

To further investigate the factors that affect the T-Part perfor-
mance, we implemented a Microbenchmark that has several ad-
justable parameters whose default values are summarized in Table
1. This Microbenchmark consists of one table that are horizontally
and evenly partitioned across different machines. The size of each
record is 164 bytes. We split each data partition into the hot set
and cold set. We distinguish transactions from different aspects:
1) read-only vs. read-write; 2) local vs. distributed; and 3) non-
skewed vs. skewed. A read-only transactions reads a constant 10
records; while a read-write transaction, after reading 10 records,
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randomly writes back 5 of them back to the storage. A transac-
tion is deemed distributed if any of the accessed records is located
on a remote machine. A skewed transaction has 50% probability
of accessing remote records on machines that are numbered in the
first one-fifth. We control the conflict rate of transactions by vary-
ing the size of the hot sets—the 10 records read by each transaction
consists of one record in a hot set (called hot record) and 9 in a cold
set. So, the smaller the hot sets, the higher transaction conflict rate.

Like the previous experiments, these experiments are also ran on
the same machine described in Section 6.2. We carefully select the
default parameter values so that we can re-produce the same trends
shown in Figure 5(b) using the Microbenchmark. The throughput
of T-Part and Calvin over the default Microbenchmark is shown in
Figure 5(c). Looking into the parameters, we see high distributed
transaction and skewed transaction rates. This is consistent with
our observations in TPC-E, where almost all transactions are dis-
tributed and the skewness are high due to the non-uniform cus-
tomer ID generator.

6.3.1 Execution Time Breakdown

Running Microbenchmark on our own machines allows us to
break down the behavior of T-Part and Calvin in detail. We in-
ject the probing code to the codebases of T-Part and Calvin to
record the execution time of every major component. The results
are shown in Figure 7. Note that we do not include the time spent
in the total-ordering protocol Zab because it remains around 150
milliseconds in both Calvin and Calvin+TP.

We can see that, the main cause of the transaction delay is the
time spent in waiting for remote records. And T-Part can reduce
about 50% of this cost thanks to the partitioning of T-graph and the
forward-pushing technique. Note that the delay of T-graph analy-
sis and partitioning (covered in “Schedule” component) is almost
neglectable (less than 0.05% of the overall delay). These together
justify the effectiveness and efficiency of our run-time partitioning
algorithm, as described in Section 5.1.

Note that the role of concurrency control is replaced by the
(multi-version) cache management layer in T-Part, as described in
Section 5.2. Comparing the cost of the cache management in T-
Part against the concurrency control in Calvin, we can see that our
multi-version design yields better implementation efficiency than
conservative locking. Also note that, since T-Part spends less time
in communication, the storage engine is better utilized thus con-
tributing more to the delay.

6.3.2 Distributed Transactions

Next, we investigate the impact of distributed transactions on
system throughout. We conduct two experiments: one with vary-

ing distributed transaction rate, and another with distributed trans-
actions accessing a varying number of remote records. The results
are shown in Figures 8(a) and (b) respectively. As we can see, T-
Part leads to 60%~120% speedup when either the distributed trans-
action rate or the remote operation number is high. The improve-
ment becomes significant when the distributed transaction rate is
above 0.2 and when there are more than 5 remote records in a
transaction. This justifies the effectiveness of our 1) T-graph parti-
tioning, so the machine workloads be can indeed be balanced and
the (cross machine) storage reads/writes can be optimized; and 2)
forward-pushing of records, so the chance of transaction stall due
to unavailable remote records can be reduced. Recall that “bad”
data partitioning is a major reason of a high distributed transaction
rate and a high number of remote operations. T-Part mitigates the
synchronization problem of existing deterministic database sys-
tems and make them applicable to workloads where data are hard
to partition.

Note that, when all transactions are local, the throughput of
Calvin is little higher than T-Part. This is because 1) in the ab-
sence of distributed transactions, the cache management in T-Part
becomes relatively costly; and 2) with default workload skewness
(see Table 1), the schedulers in T-Part attempts to balance the load
between machines (see Algorithm 1) and thus may create a small
number of unnecessary distributed transactions. However, the gap
is very small and we believe that it can be further reduced by op-
timizing the T-Part source code about cache management, or by
further extending our real-time partitioning algorithm (to be de-
scribed in Section 6.3.6).

6.3.3 Network Stall

To further investigate whether T-Part decreases the chance of
network stall that happening when a distributed transaction needs
a record from a remote machine. We vary the number of remote
operations under a TPC-C-like workload and a TPC-E-like work-
load separately and record how many transactions need to wait for
remote records and the average waiting time of them. We call these
transactions the network-stalled transactions here. Followings are
our results.

TPC-C-like Workloads. We create such workloads by setting
the skewed transaction rate to 0.0 and the remote transaction rate
to 0.1. The results are reported in Figure 9. As the number of re-
mote operations increases, one would expect more network-stalled
transactions since there are more remote records to wait. This is
the case for Calvin, but not for Calvin+TP, as shown in Figure 9(a).
As the number of remote operations increases, the T-Part gradually
shifts its focus from balancing the machine workloads to minimiz-
ing the cross-partition edges when partitioning the T-graphs. So
the number of network-stalled transactions decreases slightly. This
validates the benefits of T-graph partitioning. In addition, Figure
9(b) shows that Calvin+TP is able to reduce more than 30% of the
average waiting time when the number of remote records is high.
This validates the effectiveness of the forward-pushing technique.

TPC-E-like Workloads. Now we step back to the default pa-
rameters of the Microbenchmark, which simulates the TPC-E. The
results are shown in Figure 10. The percentage of the network-
stalled transactions doesn’t change significantly in Calvin. We
believe this is because that the transaction throughput of Calvin
has already been saturated (as shown in 5(b)). On the other hand,
Calvin+TP gives a decreasing number of network-stalled transac-
tions again, validating the benefits of T-graph partitioning in this
case. And, as shown in Figure 10(b)," the forward-pushing tech-

3Note that the delay reported here is higher than that reported in
Figure 7, because Figure 7 takes into account all transactions while
we consider only the network-stalled transactions here.
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Figure 8: (a) Impact of distributed transaction ratio. (b) Impact of the number of remote operations in a distributed transaction.
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Figure 10: The impact of the number of remote operations un-
der a TPC-E-like workload. (a) Network-stalled transaction
percentage. (b) Average waiting time.

nique adopted by Calvin+TP is able to reduce more than 50% of
the average waiting time when the number of remote records is
high.

6.3.4 Workload Skewness

Another negative impact of “bad” partitioning is the imbalanced
workloads across machines, as most records accessed by a trans-
action may reside on few particular machines. Theses machines
would fall behind easily and make the synchronization problem
worse. We study the impact of workload skewness on system
throughput and conduct experiments with varying skew transaction
rate. The results are shown in Figure 8(c). Again, T-Part signifi-
cantly outperforms Calvin when the skewness is high. This justi-
fies the effectiveness of Algorithm 1 on balancing machine loads.

6.3.5 Transaction Conflict Rate

Next, we study how transaction conflict rate affects the system
throughput. We conduct experiments with varying hot set size (re-
call that each transaction access one hot record so we can change
the size of hot set to control the transaction conflict rate).'*

The results are given in Figure 8(d). While the main paper [30]
of Cavlin reports that the transaction conflict rate has significant
impact on performance under TPC-C-like workloads, we do not
observe similar results here under TPC-E-like workloads. We be-
lieve this is because that Calvin has already been saturated by the
communication overhead due to distributed transactions and nu-
merous remote operations. On the other hand, the Calvin+TP per-
formance can be affected by a high transaction conflict rate. This

“The actual transaction conflict rate may be slightly higher, be-
cause two transactions may conflict with each other when access-
ing the same cold record. However, due to the large amount of cold
records, the chance may be too low to be noticeable.
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Figure 11: The effects of T-Part parameters: (a) Sink Size; (b)
B.

is because that, at a high conflict rate, the T-graph becomes very
dense and hard to partition. However, with mild conflict rates T-
Part is still able to keep the T-graph partitioning beneficial, by re-
ducing the cross-machine links.

6.3.6 Parameter Tuning

The sink size in T-Part is an adjustable parameter. We study the
impact of this parameter by conducting experiments with varying
sink size. The results are shown in Figure 11(a). We can see that
either a too large or too small sink size has negative impact on the
system throughput. When the sink size is too large, the T-graph
becomes very large thus its partitioning overhead increases; on the
other hand, when the sink size is too small, the T-graph may be too
small to have enough forward-push edges to improve the efficiency
of transaction executors. Note that except with extreme values, the
sink size does not impact the system throughput too much. One
can easily pick a value around 100 to have good performance.

Recall that Algorithm 1’s goal is to minimize the cross-machine
edges and to balance the workloads between machines. Given that
most of the transaction execution time is spent in communication
(see Figure 7), it may seem that minimizing the cross-machine
edges is more important than balancing machine workloads. How-
ever, we observe that the latter is vital to good performance in
the presence of hard-to-partition data. We extend Algorithm 1 by
dispatching each transaction to the partition having the maximum
weight:

(total edge weight) + S(total node weight),

where the total-edge-weight denotes the sum of weights of edges
between the transaction and the partition, and the total-node-weight
denotes the sum of weights of nodes/transactions that has been as-
signed to the partition previously. The smaller the 3, the more
T-Part prefer minimizing the cross-machine edges than balancing
machine workloads. We conduct experiments with varying 8 and



the results are shown in Figure 11(b). As we can see, the through-
put is high only £ is sufficiently large, justifying the importance of
load balancing.

7. RELATED WORK

Our partitioning algorithms are based on the streaming graph
partitioning algorithms [26].

7.1 Transaction Execution Altering

A main contribution of T-Part is the design of transaction execu-
tion framework that allows the forward-pushing and reduces ma-
chine synchronization in a deterministic database system. There
are other studies that alter the execution of transactions to improve
the system performance. NuoDB [3] can dispatch/route transac-
tions to different machines on-the-fly. However, T-Part leverages
the determinism so to allow more sophisticated optimization—the
forward-pushing. G-Store [10] executes a group of transactions
that access the same data (called a key group) on the same ma-
chine and move data around beforehand. It assumes that the data
can be perfectly partitioned into key groups and each client can
tell exactly which key group to access before issuing a transac-
tion. T-Part, on the other hand, does not have such assumptions
and finds the optimal “transaction groups” by partitioning the T-
graph. Studies [12, 13] explicitly create transaction dependency
graphs for multi-versioned deterministic database systems in or-
der to increase data access locality in multi-core settings; while
T-Part uses dependency graphs for increasing data access locality
for multi-machine settings.

7.2 Pre-Fetching

The T-graph, having data-access links, is related to the pre-fetching
techniques. In the pre-fetching techniques, the storage system pre-
fetches a batch of blocks upon detecting some data access pattern.
Smith [24] develop an algorithm using the sequentiality of data
access. Nightingale et al. [18] implement a speculative execution
for file systems so to increase the I/O throughput by masking the
I/0 latency. Soundararajan et al. [25] propose QuickMine, which
improves pre-fetching by capturing application contexts, such as a
transaction or query. There are many other work on improving the
effectiveness of pre-fetching under particular settings. For exam-
ple, PROMISE [23] improves pre-fetching by predicting the query
behavior in OLAP systems, and Scout [28] improves pre-fetching
by capturing the latent structure behind spatial data.

T-Part differs from most of the above work in that it decides
not only the policy for pre-fetching (realized by the storage-read
edges in a T-graph), but also 1) the relay of modified data (realized
by the forward-push edges) and 2) the writeback (realized by the
storage-write edges). This jointly optimizes the management of
data in memory, in storage, and across machines (e.g., not to write
back certain data in one machine to avoid repeated fetching and to
reduce remote wait).

7.3 Content-Aware Request Dispatching

To partition the T-graph, T-Part employs the streaming-based
partitioning algorithms that dispatches the nodes to partitions upon
their arrival, therefore is related to the work on content-aware re-
quest dispatching. Studies, LARD [19] and HACC [35], propose
content-aware request dispatching protocols in the middleware and
dispatcher layers for clustered servers. In replicated database sys-
tems with lazy replication, Amza et al. [6] propose to route the
read request to the replica with the up-to-date data and with the
least load. Similar to T-Part, it totally orders the requests and pro-
cesses the conflict transactions following this order. Zuikeviciute
et al. [36] consider dispatching the update transaction to the ma-

chine which has processed some conflicting transaction in order to
reduce the abort rate. Yamamuro et al. [32] explore the working set
information of transaction to dispatch the requests. Tashkent+ [11]
uses the query engine to estimate the working sets of each trans-
action type, and then assigns a set of transaction types (forming a
transaction group) to replicas such that the memory is large enough
to serve the composite working set. This work shares with T-Part
a similar idea of partitioning the transaction workload (rather than
partitioning the data). However, the partition unit in Tashkent+ is
the coarse-grained transaction group.

T-Part differs from all of the above work in that it does not final-
ize the dispatch decisions on previous requests until it sink a batch
of requests. This allows T-Part to change the dispatch decisions on
previous requests to get better overall dispatch results.

7.4 Graph-based Data Partitioning

The T-graph modeling is related to the graph-based data par-
titioning techniques. Schism [9] models data objects and their
common access in the past transactions as the nodes and edges
of a graph respectively, and finds the partitions of this graph such
that 1) nodes spread evenly among partitions, so that the machine
loads are balanced; and 2) edges across partitions are the fewest,
so the communication cost is minimized. SWORD [21], an exten-
sion of Schism, supports dynamic data re-partitioning by swapping
pairs of data in different partitions and chooses different replica-
tion strategies based on the data update frequency. It also proposes
grouping the nodes to increase the efficiency of partitioning large
graphs. Yang et al. [33] propose a two-level partitioning technique
for large graphs, which uses the static primary and dynamic sec-
ondary partitions together to fit the changing workload. It repli-
cates the hotspot in different graph partitions to decrease the cross-
partition queries.

The design goals of T-Part are very different from the graph-
based data partitioning. First, it deals with a much smaller graph
but requires the graph to be partitioned in real-time (and contin-
uously). Second, T-Part does not change the data placement, but
how data are accessed and where transactions are executed.

8. CONCLUSIONS

This paper presents T-Part, a transaction execution engine for the
deterministic database systems. T-Part partitions pending transac-
tions to keep the balanced loads on machines while minimizing the
communication cost between them. By following the push plan,
each transaction can push forward the data to later transactions im-
mediately after its execution. Our experiments demonstrate that
T-Part reduces machine synchronization and makes the system ro-
bust to the unforeseeable workloads or workloads whose data are
hard to partition.

There are some points in T-Part that deserves further investiga-
tion. First, as discussed in Section 4.1, the maximum stall due to
transaction ¢ that a transaction j will encounter depends on (5 — %)
and can be approximated by a Sigmoid function. It remains unclear
how the performance of T-Part will be affected if we set the edge
weights using this model. Second, although not shown in Figure
2, data partitions may be replicated within a data center to survive
from machine failure and/or to avoid hot spots due to reads. The
replication of transactions in a T-graph may be further extended to
work with the data replicas inside a data center. The above matters
are our future inquiry.
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